Science.gov

Sample records for multiple foodborne pathogens

  1. Filter-based pathogen enrichment technology for detection of multiple viable foodborne pathogens in 1 day.

    PubMed

    Murakami, Taku

    2012-09-01

    Conventional foodborne pathogen assays currently used in the food industry often require long culture enrichments to increase pathogen levels so they can be detected. Even using sensitive real-time PCR assays, culture enrichment at least overnight is necessary especially for detection of pathogens with slow growth rates such as Listeria monocytogenes. To eliminate this cumbersome enrichment step and detect minute amounts of pathogens within 1 day, filter-based pathogen enrichment technology was developed utilizing a unique combination of glass fiber depth filter and porous filter aid materials to efficiently separate pathogens from food homogenates and avoid filter clogging by food particles. After pathogen immobilization in depth filters, only viable pathogens were selectively collected in a small volume of growth medium via microbial multiplication and migration; nonviable pathogens remained inside the filters. By assaying viable pathogens using real-time PCRs, multiple species of foodborne pathogens were detected, including L. monocytogenes, Salmonella enterica, and Escherichia coli O157:H7, at around 1 CFU/ml or 1 CFU/g in various food samples. This filter-based pathogen enrichment technology is a unique bacterial enrichment alternative to the conventional culture enrichment step and can significantly shorten the time necessary to obtain assay results.

  2. The Evolution of Foodborne Pathogens

    NASA Astrophysics Data System (ADS)

    Abu-Ali, Galeb S.; Manning, Shannon D.

    Despite continuous advances in food safety and disease surveillance, control, and prevention, foodborne bacterial infections remain a major public health concern. Because foodborne pathogens are commonly exposed to multiple environmental stressors, such as low pH and antibiotics, most have evolved specific mechanisms to facilitate survival in adverse environments.

  3. Emerging foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of new foodborne pathogens is due to a number of factors. An important factor is the globalization of the food supply with the possibility of the introduction of foodborne pathogens from other countries. Animal husbandry, food production, food processing, and food distribution system...

  4. Ultrasensitive detection and rapid identification of multiple foodborne pathogens with the naked eyes.

    PubMed

    Zhang, Heng; Zhang, Yali; Lin, Yankui; Liang, Tongwen; Chen, Zhihua; Li, Jinfeng; Yue, Zhenfeng; Lv, Jingzhang; Jiang, Qing; Yi, Changqing

    2015-09-15

    In this study, a novel approach for ultrasensitive detection and rapid high-throughput identification of a panel of common foodborne pathogens with the naked eyes is presented. As a proof-of-concept application, a multiple pathogen analysis array is fabricated through immobilizing three specific polyT-capture probes which can respectively recognize rfbE gene (Escherichia coli O157:H7), invA gene (Salmonella enterica), inlA gene (Listeria monocytogenes) on the plastic substrates. PCR has been developed for amplification and labeling target genes of rfbE, invA, inlA with biotin. The biotinated target DNA is then captured onto the surface of plastic strips through specific DNA hybridization. The succeeding staining of biotinated DNA duplexes with avidin-horseradish peroxidise (AV-HRP) and biotinated anti-HRP antibody greatly amplifies the detectable signal through the multiple cycle signal amplification strategy, and thus realizing ultrasensitive and specific detection of the above three pathogens in food samples with the naked eyes. Results showed approximately 5 copies target pathogenic DNA could be detected with the naked eyes. This simple but very efficient colorimetric assay also show excellent anti-interference capability and good stability, and can be readily applied to point-of-care diagnosis.

  5. Bacteriophage biocontrol of foodborne pathogens.

    PubMed

    Kazi, Mustafa; Annapure, Uday S

    2016-03-01

    Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about 'edible viruses'. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as "biocontrol". PMID:27570260

  6. Proteomics of foodborne bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on recent research on foodborne bacterial pathogens that use mass spectrometry-based proteomic techniques as well as protein microarrays. Mass spectrometry ionization techniques (e.g. electrospray ionization and matrix-assisted laser desorption/ionization), analyzers (e.g. ion ...

  7. Development of a DNA macroarray for simultaneous detection of multiple foodborne pathogenic bacteria in fresh chicken meat.

    PubMed

    Kupradit, Chanida; Rodtong, Sureelak; Ketudat-Cairns, Mariena

    2013-12-01

    A DNA macroarray was developed to provide the ability to detect multiple foodborne pathogens in fresh chicken meat. Probes targeted to the 16S rRNA and genus- and species-specific genes, including fimY, ipaH, prfA, and uspA, were selected for the specific detection of Salmonella spp., Shigella spp., Listeria monocytogenes, and Escherichia coli, respectively. The combination of target gene amplification by PCR and a DNA macroarray in our system was able to distinguish all target bacteria from pure cultures with a detection sensitivity of 10⁵ c.f.u. ml⁻¹. The DNA macroarray was also applied to 10 fresh chicken meat samples. The assay validation demonstrated that by combining the enrichment steps for the target bacteria and the DNA macroarray, all 4 target bacteria could be detected simultaneously from the fresh chicken samples. The sensitivity of L. monocytogenes and Shigella boydii detection in the fresh chicken samples was at least 10 and 3 c.f.u. of the initial contamination in 25 g samples, respectively. The advantages of our developed protocol are high accuracy and time reduction when compared to conventional culture. The macroarray developed in our investigation was cost effective compared to modern oligonucleotide microarray techniques because there was no expensive equipment required for the detection of multiple foodborne pathogens.

  8. Molecular Epidemiology of Foodborne Pathogens

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Brown, Eric; Knabel, Stephen J.

    The purpose of this chapter is to describe the basic principles and advancements in the molecular epidemiology of foodborne pathogens. Epidemiology is the study of the distribution and determinants of infectious diseases and/or the dynamics of disease transmission. The goals of epidemiology include the identification of physical sources, routes of transmission of infectious agents, and distribution and relationships of different subgroups. Molecular epidemiology is the study of epidemiology at the molecular level. It has been defined as "a science that focuses on the contribution of potential genetic and environmental risk factors, identified at the molecular level, to the etiology, distribution and prevention of diseases within families and across populations".

  9. Real Time Detection of Foodborne Pathogens

    NASA Astrophysics Data System (ADS)

    Velusamy, V.; Arshak, K.; Korostynka, O.; Vaseashta, Ashok; Adley, C.

    Contamination of foods by harmful bacteria by natural events or malicious intent poses a serious threat to public health and safety. This review introduces current technologies in detecting pathogens in food and foodborne illnesses. Causes of foodborne diseases and trends impacting foodborne diseases such as globalization and changes in micro-organisms, human populations, lifestyles, and climates are addressed. In addition, a review of the limitations in detecting pathogens with conventional technologies is presented. Finally, a review of nanostructured and nanomaterials based sensing technologies by pathogen, detection limits, and advantages is described.

  10. Internalization of fresh produce by foodborne pathogens.

    PubMed

    Erickson, Marilyn C

    2012-01-01

    Recent studies addressing the internalization of fresh produce by foodborne pathogens arose in response to the growing number of recent and high profile outbreaks involving fresh produce. Because chemical sanitizing agents used during harvest and minimal processing are unlikely to reach enteric pathogens residing within plant tissue, it is imperative that paths for pathogen entry be recognized and minimized. Using both microscopy and microbial enumeration tools, enteric pathogens have been shown to enter plant tissues through both natural apertures (stomata, lateral junctions of roots, flowers) and damaged (wounds, cut surfaces) tissue. In studies revealing preharvest internalization via plant roots or leaf stomata, experimental conditions have primarily involved exposure of plants to high pathogen concentrations (≥ 6 log g⁻¹ soil or 6 log ml⁻¹ water), but those pathogens internalized appear to have short-term persistence. Postharvest internalization of pathogens via cut surfaces may be minimized by maintaining effective levels of sanitizing agents in waters during harvesting and minimal processing.

  11. Intervention strategies for control of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Juneja, Vijay K.

    2004-03-01

    The increasing numbers of illnesses associated with foodborne pathogens such as Listeria monocytogenes and Escherichia coli O157:H7, has renewed concerns about food safety because of consumer preferences for minimally processed foods that offer convenience in availability and preparation. Accordingly, the need for better control of foodborne pathogens has been paramount in recent years. Mechanical removal of microorganisms from food can be accomplished by centrifugation, filtration, trimming and washing. Cleaning and sanitation strategies can be used for minimizing the access of microorganisms in foods from various sources. Other strategies for control of foodborne pathogens include established physical microbiocidal treatments such as ionizing radiation and heating. Research has continued to demonstrate that food irradiation is a suitable process to control and possibly eliminate foodborne pathogens, for example Listeria monocytogenes and Escherichia coli O157:H7, from a number of raw and cooked meat and poultry products. Heat treatment is the most common method in use today for the inactivation of microorganisms. Microorganisms can also be destroyed by nonthermal treatments, such as application of high hydrostatic pressure, pulsed electric fields, oscillating magnetic fields or a combination of physical processes such as heat-irradiation, or heat-high hydrostatic pressure, etc. Each of the non-thermal technologies has specific applications in terms of the types of food that can be processed. Both conventional and newly developed physical treatments can be used in combination for controlling foodborne pathogens and enhancing the safety and shelf life of foods. Recent research has focused on combining traditional preservation factors with emerging intervention technologies. However, many key issues still need to be addressed for combination preservation factors or technologies to be useful in the food industry to meet public demands for foods with enhanced safety

  12. Modern approaches in probiotics research to control foodborne pathogens.

    PubMed

    Amalaradjou, Mary Anne Roshni; Bhunia, Arun K

    2012-01-01

    Foodborne illness is a serious public health concern. There are over 200 known microbial, chemical, and physical agents that are known to cause foodborne illness. Efforts are made for improved detection, control and prevention of foodborne pathogen in food, and pathogen associated diseases in the host. Several commonly used approaches to control foodborne pathogens include antibiotics, natural antimicrobials, bacteriophages, bacteriocins, ionizing radiations, and heat. In addition, probiotics offer a potential intervention strategy for the prevention and control of foodborne infections. This review focuses on the use of probiotics and bioengineered probiotics to control foodborne pathogens, their antimicrobial actions, and their delivery strategies. Although probiotics have been demonstrated to be effective in antagonizing foodborne pathogens, challenges exist in the characterization and elucidation of underlying molecular mechanisms of action and in the development of potential delivery strategies that could maintain the viability and functionality of the probiotic in the target organ.

  13. Application of bacteriophages for detection of foodborne pathogens.

    PubMed

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Bacterial contamination of food products presents a challenge for the food industry and poses a high risk for the consumer. Despite increasing awareness and improved hygiene measures, foodborne pathogens remain a threat for public health, and novel methods for detection of these organisms are needed. Bacteriophages represent ideal tools for diagnostic assays because of their high target cell specificity, inherent signal-amplifying properties, easy and inexpensive production, and robustness. Every stage of the phage lytic multiplication cycle, from the initial recognition of the host cell to the final lysis event, may be harnessed in several ways for the purpose of bacterial detection. Besides intact phage particles, phage-derived affinity molecules such as cell wall binding domains and receptor binding proteins can serve for this purpose. This review provides an overview of existing phage-based technologies for detection of foodborne pathogens, and highlights the most recent developments in this field, with particular emphasis on phage-based biosensors. PMID:24533229

  14. Application of bacteriophages for detection of foodborne pathogens.

    PubMed

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Bacterial contamination of food products presents a challenge for the food industry and poses a high risk for the consumer. Despite increasing awareness and improved hygiene measures, foodborne pathogens remain a threat for public health, and novel methods for detection of these organisms are needed. Bacteriophages represent ideal tools for diagnostic assays because of their high target cell specificity, inherent signal-amplifying properties, easy and inexpensive production, and robustness. Every stage of the phage lytic multiplication cycle, from the initial recognition of the host cell to the final lysis event, may be harnessed in several ways for the purpose of bacterial detection. Besides intact phage particles, phage-derived affinity molecules such as cell wall binding domains and receptor binding proteins can serve for this purpose. This review provides an overview of existing phage-based technologies for detection of foodborne pathogens, and highlights the most recent developments in this field, with particular emphasis on phage-based biosensors.

  15. Application of bacteriophages for detection of foodborne pathogens

    PubMed Central

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Bacterial contamination of food products presents a challenge for the food industry and poses a high risk for the consumer. Despite increasing awareness and improved hygiene measures, foodborne pathogens remain a threat for public health, and novel methods for detection of these organisms are needed. Bacteriophages represent ideal tools for diagnostic assays because of their high target cell specificity, inherent signal-amplifying properties, easy and inexpensive production, and robustness. Every stage of the phage lytic multiplication cycle, from the initial recognition of the host cell to the final lysis event, may be harnessed in several ways for the purpose of bacterial detection. Besides intact phage particles, phage-derived affinity molecules such as cell wall binding domains and receptor binding proteins can serve for this purpose. This review provides an overview of existing phage-based technologies for detection of foodborne pathogens, and highlights the most recent developments in this field, with particular emphasis on phage-based biosensors. PMID:24533229

  16. Detection of Foodborne Bacterial Pathogens from Individual Filth Flies

    PubMed Central

    Pava-Ripoll, Monica; Pearson, Rachel E.G.; Miller, Amy K.; Ziobro, George C.

    2015-01-01

    There is unanimous consensus that insects are important vectors of foodborne pathogens. However, linking insects as vectors of the pathogen causing a particular foodborne illness outbreak has been challenging. This is because insects are not being aseptically collected as part of an environmental sampling program during foodborne outbreak investigations and because there is not a standardized method to detect foodborne bacteria from individual insects. To take a step towards solving this problem, we adapted a protocol from a commercially available PCR-based system that detects foodborne pathogens from food and environmental samples, to detect foodborne pathogens from individual flies.Using this standardized protocol, we surveyed 100 wild-caught flies for the presence of Cronobacter spp., Salmonella enterica, and Listeria monocytogenes and demonstrated that it was possible to detect and further isolate these pathogens from the body surface and the alimentary canal of a single fly. Twenty-two percent of the alimentary canals and 8% of the body surfaces from collected wild flies were positive for at least one of the three foodborne pathogens. The prevalence of Cronobacter spp. on either body part of the flies was statistically higher (19%) than the prevalence of S. enterica (7%) and L.monocytogenes (4%). No false positives were observed when detecting S. enterica and L. monocytogenes using this PCR-based system because pure bacterial cultures were obtained from all PCR-positive results. However, pure Cronobacter colonies were not obtained from about 50% of PCR-positive samples, suggesting that the PCR-based detection system for this pathogen cross-reacts with other Enterobacteriaceae present among the highly complex microbiota carried by wild flies. The standardized protocol presented here will allow laboratories to detect bacterial foodborne pathogens from aseptically collected insects, thereby giving public health officials another line of evidence to find out how

  17. Reducing the carriage of foodborne pathogens in livestock and poultry.

    PubMed

    Doyle, M P; Erickson, M C

    2006-06-01

    Several foodborne pathogens, including Salmonella species and campylobacters, are common contaminants in poultry and livestock. Typically, these pathogens are carried in the animal's intestinal tract asymptomatically; however, they can be shed in feces in large populations and be transmitted by other vectors from feces to animals, produce, or humans. A wide array of interventions has been developed to reduce the carriage of foodborne pathogens in poultry and livestock, including genetic selection of animals resistant to colonization, treatments to prevent vertical transmission of enteric pathogens, sanitation practices to prevent contamination on the farm and during transportation, elimination of pathogens from feed and water, feed and water additives that create an adverse environment for colonization by the pathogen, and biological treatments that directly or indirectly inactivate the pathogen within the host. To successfully reduce the carriage of foodborne pathogens, it is likely that a combination of intervention strategies will be required.

  18. Inhibition of foodborne pathogens by pomegranate juice.

    PubMed

    Haghayeghi, Koorosh; Shetty, Kalidas; Labbé, Ronald

    2013-05-01

    Pomegranates have health-promoting benefits because of their polyphenol constituents. Previous studies have demonstrated the antimicrobial activity of aqueous and organic extracts of pomegranate components and by-products. We sought to determine the antimicrobial activity against 40 foodborne pathogens representing eight bacterial species using juice itself. In addition, we sought to determine the synergistic antimicrobial activity between pomegranate juice and other plant products displaying antimicrobial activity. The antimicrobial activity of pomegranate juice was dependent on the test organism, which varied to highly susceptible (four Gram-positive species) to unaffected (Salmonella and Escherichia coli O157:H7). Two Gram-negative species, which were inhibited were Helicobacter pylori and Vibrio parahemolyticus. No synergistic antimicrobial activity was seen between pomegranate and either barberry, oregano, or cranberry. The antimicrobial activity of pomegranate juice is dependent on the test organism and extraction method. The sensitivity of H. pylori suggests that pomegranate juice may be an alternative or supplemental treatment for gastric ulcers caused by this organism.

  19. Listeria monocytogenes, a food-borne pathogen.

    PubMed Central

    Farber, J M; Peterkin, P I

    1991-01-01

    The gram-positive bacterium Listeria monocytogenes is an ubiquitous, intracellular pathogen which has been implicated within the past decade as the causative organism in several outbreaks of foodborne disease. Listeriosis, with a mortality rate of about 24%, is found mainly among pregnant women, their fetuses, and immunocompromised persons, with symptoms of abortion, neonatal death, septicemia, and meningitis. Epidemiological investigations can make use of strain-typing procedures such as DNA restriction enzyme analysis or electrophoretic enzyme typing. The organism has a multifactorial virulence system, with the thiol-activated hemolysin, listeriolysin O, being identified as playing a crucial role in the organism's ability to multiply within host phagocytic cells and to spread from cell to cell. The organism occurs widely in food, with the highest incidences being found in meat, poultry, and seafood products. Improved methods for detecting and enumerating the organism in foodstuffs are now available, including those based on the use of monoclonal antibodies, DNA probes, or the polymerase chain reaction. As knowledge of the molecular and applied biology of L. monocytogenes increases, progress can be made in the prevention and control of human infection. PMID:1943998

  20. Microbial ecology of foodborne pathogens associated with produce.

    PubMed

    Critzer, Faith J; Doyle, Michael P

    2010-04-01

    The recent recognition of fresh fruits and vegetables as major vehicles of foodborne illness has led to increased research on mechanisms by which enteric pathogens contaminate and persist on and in this non-host environment. Interactions between foodborne pathogens and plants as well among the naturally occurring microbial communities contribute to endophytic and epiphytic colonization. Scientific findings are just beginning to elucidate the mechanisms that contribute to colonization of produce. This review addresses current knowledge as well as future research needed to increase our understanding of the microbial ecology of enteric pathogens on fruits and vegetables.

  1. YERSINIA ENTEROCOLITICA: AN IMPORTANT HUMAN FOODBORNE PATHOGEN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yersinia enterocolitica is a Gram-negative microbe of public health importance and is under national FoodNet surveillance in the United States. The majority of human yersiniosis cases are foodborne. Consumption of dairy products (milk, ice cream), water, vegetables (tofu), and pork have been linke...

  2. Campylobacter jejuni--an emerging foodborne pathogen.

    PubMed Central

    Altekruse, S. F.; Stern, N. J.; Fields, P. I.; Swerdlow, D. L.

    1999-01-01

    Campylobacter jejuni is the most commonly reported bacterial cause of foodborne infection in the United States. Adding to the human and economic costs are chronic sequelae associated with C. jejuni infection--Guillian-Barré syndrome and reactive arthritis. In addition, an increasing proportion of human infections caused by C. jejuni are resistant to antimicrobial therapy. Mishandling of raw poultry and consumption of undercooked poultry are the major risk factors for human campylobacteriosis. Efforts to prevent human illness are needed throughout each link in the food chain. PMID:10081669

  3. The role of extraintestinal foodborne pathogens in human illness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years understanding the role of foodborne pathogens in human disease has evolved to include conditions outside the gastrointestinal diseases typically associated with bacteria such as Salmonella, Shiga toxin-producing Escherichia coli (STEC), Listeria monocytogenes, etc. Other human pathog...

  4. A new protocol to detect multiple foodborne pathogens with PCR dipstick DNA chromatography after a six-hour enrichment culture in a broad-range food pathogen enrichment broth.

    PubMed

    Hayashi, Masahiro; Natori, Tatsuya; Kubota-Hayashi, Sayoko; Miyata, Machiko; Ohkusu, Kiyofumi; Kawamoto, Keiko; Kurazono, Hisao; Makino, Souichi; Ezaki, Takayuki

    2013-01-01

    A quick foodborne pathogen screening method after six-hour enrichment culture with a broad-range food pathogen enrichment broth is described. Pathogenic factors of Salmonella enterica, Shigella spp., enteroinvasive Escherichia coli, and enterohemorrhagic E. coli are amplified with a cocktail primer and rapid polymerase chain reaction (PCR), which finishes amplification in 30 min. The PCR amplicon was differentiated with a dipstick DNA chromatography assay in 5-10 min. Starting from a four- to six-hour enrichment culture, this assay was finished within 45 min. Detection sensitivity of this protocol was less than 2.5 CFU/25 g for S. enterica and 3.3 CFU/25 g for enterohemorrhagic E. coli in spiked ground meat experiments.

  5. Human microbiome versus food-borne pathogens: friend or foe.

    PubMed

    Josephs-Spaulding, Jonathan; Beeler, Erik; Singh, Om V

    2016-06-01

    As food safety advances, there is a great need to maintain, distribute, and provide high-quality food to a much broader consumer base. There is also an ever-growing "arms race" between pathogens and humans as food manufacturers. The human microbiome is a collective organ of microbes that have found community niches while associating with their host and other microorganisms. Humans play an important role in modifying the environment of these organisms through their life choices, especially through individual diet. The composition of an individual's diet influences the digestive system-an ecosystem with the greatest number and largest diversity of organisms currently known. Organisms living on and within food have the potential to be either friends or foes to the consumer. Maintenance of this system can have multiple benefits, but lack of maintenance can lead to a host of chronic and preventable diseases. Overall, this dynamic system is influenced by intense competition from food-borne pathogens, lifestyle, overall diet, and presiding host-associated microbiota.

  6. Human microbiome versus food-borne pathogens: friend or foe.

    PubMed

    Josephs-Spaulding, Jonathan; Beeler, Erik; Singh, Om V

    2016-06-01

    As food safety advances, there is a great need to maintain, distribute, and provide high-quality food to a much broader consumer base. There is also an ever-growing "arms race" between pathogens and humans as food manufacturers. The human microbiome is a collective organ of microbes that have found community niches while associating with their host and other microorganisms. Humans play an important role in modifying the environment of these organisms through their life choices, especially through individual diet. The composition of an individual's diet influences the digestive system-an ecosystem with the greatest number and largest diversity of organisms currently known. Organisms living on and within food have the potential to be either friends or foes to the consumer. Maintenance of this system can have multiple benefits, but lack of maintenance can lead to a host of chronic and preventable diseases. Overall, this dynamic system is influenced by intense competition from food-borne pathogens, lifestyle, overall diet, and presiding host-associated microbiota. PMID:27102132

  7. Rapid detection, characterization, and enumeration of foodborne pathogens.

    PubMed

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible

  8. Mathematical Modeling of the Transmission and Control of Foodborne Pathogens and Antimicrobial Resistance at Preharvest

    PubMed Central

    Lu, Zhao; Gröhn, Yrjo T.

    2011-01-01

    Abstract Foodborne diseases are a significant health-care and economic burden. Most foodborne pathogens are enteric pathogens harbored in the gastrointestinal tract of farm animals. Understanding the transmission of foodborne pathogens and the dissemination of antimicrobial resistance at the farm level is necessary to design effective control strategies at preharvest. Mathematical models improve our understanding of pathogen dynamics by providing a theoretical framework in which factors affecting transmission and control of the pathogens can be explicitly considered. In this review, we aim to present the principles underlying the mathematical modeling of foodborne pathogens and antimicrobial resistance at the farm level to a broader audience. PMID:21043837

  9. Food-borne pathogens, health and role of dietary phytochemicals.

    PubMed

    Shetty, K; Labbe, R G

    1998-12-01

    Infectious diseases transmitted by food have become a major public health concern in recent years. In the USA alone, there are an estimated 6-33 million cases each year. The list of responsible agents continues to grow. In the past 20 years some dozen new pathogens that are primarily food-borne have been identified. Fruits and vegetables, often from the global food market, have been added to the traditional vehicles of food-borne illness; that is, undercooked meat, poultry, seafood, or unpasteurized milk. Such products are minimally processed and have fewer barriers to microbial growth such as salt, sugar or preservatives. The evolution of the epidemiology of food-borne illness requires a rethinking of traditional, though still valid, solutions for their prevention. Among various strategies to prevent food-borne pathogens, use of dietary phytochemicals is promising. The major obstacle in the use of dietary phytochemical is the consistency of phytochemicals in different foods due to their natural genetic variation. We have developed a novel tissue-culture-based selection strategy to isolate elite phenolic phytochemical-producing clonal lines of species belonging to the family Lamiaceae. Among several species we have targeted elite clonal lines of thyme (Thymus vulgaris) and oregano (Origanum vulgare) against Escherichia coli and Clostridium perfrigens in fresh and processed meats. We are also evaluating high phenolic profile-containing clonal lines of basil (Ocimum basilicum) to inhibit gastric ulcer-causing Helicobacter pylori. Other elite lines of the members of the family Lamiaceae, rosemary (Rosmarinus officinalis) and salvia (Salvia officinalis) also hold promise against a wide range of food pathogens such as Salmonella species in poultry products and Vibrio species in seafood. PMID:24393682

  10. High-Throughput Biosensors for Multiplexed Food-Borne Pathogen Detection

    NASA Astrophysics Data System (ADS)

    Gehring, Andrew G.; Tu, Shu-I.

    2011-07-01

    Incidental contamination of foods by pathogenic bacteria and/or their toxins is a serious threat to public health and the global economy. The presence of food-borne pathogens and toxins must be rapidly determined at various stages of food production, processing, and distribution. Producers, processors, regulators, retailers, and public health professionals need simple and cost-effective methods to detect different species or serotypes of bacteria and associated toxins in large numbers of food samples. This review addresses the desire to replace traditional microbiological plate culture with more timely and less cumbersome rapid, biosensor-based methods. Emphasis focuses on high-throughput, multiplexed techniques that allow for simultaneous testing of numerous samples, in rapid succession, for multiple food-borne analytes (primarily pathogenic bacteria and/or toxins).

  11. Innovative applications of bacteriophages in rapid detection and identification of foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relative to traditional microbiological approaches, biosensors are a rapid method for foodborne bacterial pathogen detection. Biosensors function by detecting the interaction of the target pathogen, or pathogen derived molecule, with a biological recognition component which must have sufficient aff...

  12. Gamma radiation sensitivity of foodborne pathogens on meat and poultry

    SciTech Connect

    Thayer, D.W.; Boyd, G.

    1994-12-31

    Several factors have been identified that may affect the responses of foodborne pathogens to ionizing radiation. Among these are the temperature and atmosphere during the process of irradiation; the medium in which the pathogen is suspended; and the genus, species, serovar, and physiological state of the organism. In addition to these factors, variations in {open_quotes}apparent{close_quotes} radiation sensitivity of bacteria may occur because of the incubation conditions and media used to estimate the number of surviving colony-forming units. Both incubation temperature and culture media frequently affect the ability of injured bacteria to recover. Because there are so many possible variables, it is often difficult to compare data on the radiation sensitivity of foodborne pathogens from different studies. The objectives of the studies reported here were to compare the radiation sensitivities of Bacillus cereus on beef, beef gravy, chicken, pork, and turkey; and of Escherichia coli 0157:H7, Listeria monocytogenes, Salmonella, and Staphylococcus aureus on beef, pork, lamb, turkey breast, and turkey leg meats. Examples of the effects of serovar, irradiation temperature, growth phase, and atmosphere during irradiation were also examined.

  13. Thermal inactivation of foodborne pathogens and the USDA pathogen modeling program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of heat to inactivate foodborne pathogens is a critical control point and the most common means for assuring the microbiological safety of processed foods. A key to optimization of the heating step is defining the target pathogens’ heat resistance. Sufficient evidence exists to document th...

  14. Foodborne Illness Acquired in the United States—Major Pathogens

    PubMed Central

    Hoekstra, Robert M.; Angulo, Frederick J.; Tauxe, Robert V.; Widdowson, Marc-Alain; Roy, Sharon L.; Jones, Jeffery L.; Griffin, Patricia M.

    2011-01-01

    Estimates of foodborne illness can be used to direct food safety policy and interventions. We used data from active and passive surveillance and other sources to estimate that each year 31 major pathogens acquired in the United States caused 9.4 million episodes of foodborne illness (90% credible interval [CrI] 6.6–12.7 million), 55,961 hospitalizations (90% CrI 39,534–75,741), and 1,351 deaths (90% CrI 712–2,268). Most (58%) illnesses were caused by norovirus, followed by nontyphoidal Salmonella spp. (11%), Clostridium perfringens (10%), and Campylobacter spp. (9%). Leading causes of hospitalization were nontyphoidal Salmonella spp. (35%), norovirus (26%), Campylobacter spp. (15%), and Toxoplasma gondii (8%). Leading causes of death were nontyphoidal Salmonella spp. (28%), T. gondii (24%), Listeria monocytogenes (19%), and norovirus (11%). These estimates cannot be compared with prior (1999) estimates to assess trends because different methods were used. Additional data and more refined methods can improve future estimates. PMID:21192848

  15. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  16. Prevalence of foodborne pathogens in retailed foods in Thailand.

    PubMed

    Ananchaipattana, Chiraporn; Hosotani, Yukie; Kawasaki, Susumu; Pongsawat, Sirikae; Latiful, Bari Md; Isobe, Seiichiro; Inatsu, Yasuhiro

    2012-09-01

    The consumption of foodborne pathogens contaminated in food is one of the major causes of diarrheal diseases in Thailand. The objective of this study was to evaluate the prevalence and types of contaminating bacteria in retailed foodstuffs in Thailand. Food from four categories (137 samples total), including meat (51 samples), vegetables (38 samples), fish or seafood (37 samples), and fermented food (11 samples), was purchased randomly from seven different open-markets and seven supermarkets in Thailand from August 2010 to March 2011. Seven types of major foodborne pathogens were identified using conventional culture methods. Approximately 80% of meat samples tested was contaminated with Salmonella spp. In contrast, the Salmonella spp. contamination rate of vegetable (5%) or fermented food (9%) samples was comparatively low. Six strains of Cronobacter sakazakii and two strains of Yersinia enterocolitica were also isolated. A substantially higher rate of contamination by Bacillus cereus was observed in fermented food (82%) than in samples of meat (2%) and fish or seafood (5%). Seven Listeria spp. isolates were obtained from meat and fish or seafood samples. Approximately 39% of samples tested were found to be contaminated with Staphylococcus spp. (54 isolates). The rate of bacterial contamination of meat did not depend on the type of market. However, the contamination rate of Staphylococcus spp. in vegetables was higher in open markets than in supermarkets, and the contamination rate of Salmonella spp. and Staphylococcus spp. in fish or seafood samples purchased in open markets was likewise higher than in those purchased in supermarkets. Therefore, improvement of hygienic practices throughout the food chain may be required to reduce the risk of food poisoning.

  17. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations

    PubMed Central

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612

  18. Aptamer-Based Technologies in Foodborne Pathogen Detection

    PubMed Central

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

  19. Aptamer-Based Technologies in Foodborne Pathogen Detection.

    PubMed

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

  20. Aptamer-Based Technologies in Foodborne Pathogen Detection

    PubMed Central

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome. PMID:27672383

  1. Aptamer-Based Technologies in Foodborne Pathogen Detection.

    PubMed

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome. PMID:27672383

  2. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  3. Alternatives to antibiotics: chemical and physical antimicrobial interventions and foodborne pathogen response.

    PubMed

    Ricke, S C; Kundinger, M M; Miller, D R; Keeton, J T

    2005-04-01

    Successful control of foodborne pathogens requires placement of chemical and physical hurdles in the preharvest and postharvest food production sectors. Pathogens may also encounter indigenous antimicrobials in foods including certain botanical compounds that have historically been used for flavor enhancement as well as preservation. Chemical additives have traditionally included organic acids to control microbial contamination in foods and feeds. However, there is some concern that continuous application of certain chemical antimicrobials can lead to a buildup of microbial resistance. This creates problems if foodborne pathogens survive and develop resistance to a variety of environmental stressors encountered in pre- and postharvest animal production. To expand the diversity of potential antimicrobials that have practical application to food animal production requires exploring the interaction between the food matrix and foodborne pathogens. There is potential for isolating antimicrobial compounds that exhibit mechanisms unrelated to conventional antimicrobial compounds. However, understanding the potential for novel antimicrobial compounds in foods and feeds will require the physiological examination of foodborne pathogen response under experimental conditions comparable to the environment where the pathogen is most likely to occur. Research on foodborne Salmonella pathogenesis is extensive and should provide a model for detailed examination of the factors that influence antimicrobial effectiveness. Analysis of pathogen response to antimicrobials could yield clues for optimizing hurdle technologies to more effectively exploit vulnerabilities of Salmonella and other foodborne pathogens when administering antimicrobials during food and feed production. PMID:15844827

  4. The Continuous Challenge of Characterizing the Foodborne Pathogen Listeria monocytogenes.

    PubMed

    Camargo, Anderson Carlos; Woodward, Joshua John; Nero, Luís Augusto

    2016-08-01

    Listeria monocytogenes is an important foodborne pathogen commonly isolated from food processing environments and food products. This organism can multiply at refrigeration temperatures, form biofilms on different materials and under various conditions, resist a range of environmental stresses, and contaminate food products by cross-contamination. L. monocytogenes is recognized as the causative agent of listeriosis, a serious disease that affects mainly individuals from high-risk groups, such as pregnant women, newborns, the elderly, and immunocompromised individuals. Listeriosis can be considered a disease that has emerged along with changing eating habits and large-scale industrial food processing. This disease causes losses of billions of dollars every year with recalls of contaminated foods and patient medical treatment expenses. In addition to the immune status of the host and the infecting dose, the virulence potential of each strain is crucial for the development of disease symptoms. While many isolates are naturally virulent, other isolates are avirulent and unable to cause disease; this may vary according to the presence of molecular determinants associated with virulence. In the last decade, the characterization of genetic profiles through the use of molecular methods has helped track and demonstrate the genetic diversity among L. monocytogenes isolates obtained from various sources. The purposes of this review were to summarize the main methods used for isolation, identification, and typing of L. monocytogenes and also describe its most relevant virulence characteristics. PMID:27120361

  5. Monitoring of Foodborne Pathogens in Raw Cow Milk in Tuscany

    PubMed Central

    D’Alonzo, Alessia; Senese, Matteo; Fabbri, Ilaria; Cirri, Cristina; Milioni, Carla; Valenza, Valeria; Tolli, Rita; Campeis, Francesca; Fischetti, Roberto

    2014-01-01

    Raw milk consumption in Italy has increased over the last few years and although raw milk is characterised by cold chain, short shelf-life and the duty of boiling before domestic consumption, it is still considered a hazard. From 2010 to 2013 a monitoring survey of raw milk sold through vending machines was carried out to investigate the occurrence of several foodborne pathogens stipulated in the national legal requirements, i.e. Listeria monocytogenes, Campylobacter spp., Salmonella spp., Escherichia coli O:157 and coagulase-positive Staphylococci. A total of 127 raw milk samples were collected from 19 dairy herds in Tuscany Region, Italy. In addition, the milk samples were tested for the presence and count of Yersinia genus. Results shown that only one sample was positive for non verocytotoxin-producing E. coli O:157, whereas a total of 38 samples (29.9%) were postive for Yersinia genus; of the total 39 isolated bacteria, 23.6% were Y. enterocolitica, 2.4% Y. kristenseni and 4.7% Y. frederiksenii. None isolate was enteropathogenic; serotypes O:5 and O:8 were found in 16.6 and 13.3% of the isolates respectively, whereas none of the serotypes tested was detected in 70% of the isolates. The most probable number method revealed a count value between 0.03 and 24 MPN/mL. Based on these data a general assurance on health safety of raw milk produced and sold in Tuscany could be assessed. PMID:27800320

  6. Enrichment, amplification, and sequence-based typing of Salmonella enterica and other foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection and characterization of foodborne pathogens typically involves microbiological enrichment with subsequent isolation and identification of a pure culture; this is ideally followed by strain typing which provides information critical to outbreak and source investigations. Pulsed-field gel e...

  7. An overview of transducers as platform for the rapid detection of foodborne pathogens.

    PubMed

    Arora, Pooja; Sindhu, Annu; Kaur, Harmanmeet; Dilbaghi, Neeraj; Chaudhury, Ashok

    2013-03-01

    The driving advent of portable, integrated biosensing ways for pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques. The miniaturization and automation of integrated detection systems present a significant advantage for rapid, portable detection of foodborne microbes. In this review, we have highlighted current developments and directions in foodborne pathogen detection systems. Recent progress in the biosensor protocols toward the detection of specific microbes has been elaborated in detail. It also includes strategies and challenges for the implementation of a portable platform toward rapid foodborne sensing systems.

  8. Prevalence and characterization of foodborne pathogens from Australian dairy farm environments.

    PubMed

    McAuley, Catherine M; McMillan, Kate; Moore, Sean C; Fegan, Narelle; Fox, Edward M

    2014-12-01

    The ability of foodborne pathogens to gain entry into food supply systems remains an ongoing concern. In dairy products, raw milk acts as a major vehicle for this transfer; however, the sources of pathogenic bacteria that contaminate raw milk are often not clear, and environmental sources of contamination or the animals themselves may contribute to the transfer. This survey examined the occurrence of 9 foodborne pathogens in raw milk and environments of 7 dairy farms (3 bovine, 3 caprine, and 1 ovine farm) in summer and autumn, in Victoria, Australia. A total of 120 samples were taken from sampling points common to dairy farms, including pasture, soil, feed, water sources, animal feces, raw milk, and milk filters. The prevalence of the Bacillus cereus group, Campylobacter, Clostridium perfringens, Cronobacter, Shiga-toxigenic Escherichia coli, Listeria, Salmonella, coagulase-positive staphylococci (CPS), and Yersinia enterocolitica across the farms was investigated. The 2 most prevalent bacteria, which were detected on all farms, were the B. cereus group, isolated from 41% of samples, followed by Cl. perfringens, which was isolated from 38% of samples. The highest occurrence of any pathogen was the B. cereus group in soil, present in 93% of samples tested. Fecal samples showed the highest diversity of pathogens, containing 7 of the 9 pathogens tested. Salmonella was isolated from 1 bovine farm, although it was found in multiple samples on both visits. Out of the 14 occurrences where any pathogen was detected in milk filters, only 5 (36%) of the corresponding raw milk samples collected at the same time were positive for the same pathogen. All of the CPS were Staphylococcus aureus, and were found in raw milk or milk filter samples from 6 of the 7 farms, but not in other sample types. Pathogenic Listeria species were detected on 3 of the 7 farms, and included 4 L. ivanovii-positive samples, and 1 L. monocytogenes-positive water sample. Shiga-toxigenic Escherichia coli

  9. Essential oils from herbs against foodborne pathogens in chicken sausage.

    PubMed

    Barbosa, Lidiane Nunes; Probst, Isabella Silva; Murbach Teles Andrade, Bruna Fernanda; Bérgamo Alves, Fernanda Cristina; Albano, Mariana; Mores Rall, Vera Lucia; Júnior, Ary Fernandes

    2015-01-01

    Consumption of chicken meat and its products, especially sausage, have increased in recent years. However, this product is susceptible to microbial contamination during manufacturing, which compromises its shelf life. The flavoring and preservative activities of essential oils (EO) have been recognized and the application of these antimicrobial agents as natural active compounds in food preservation has shown promise. The aim of this study was to evaluate the effect of Ocimum basilicum and Origanum vulgare EO on Listeria monocytogenes and Salmonella Enteritidis strains in artificially inoculated samples of fresh chicken sausage. First, the minimal inhibitory concentration (MIC) of EO in vitro was determined. The sausage was prepared and kept at ± 4°C; then, the inoculation of individual bacteria was carried out. EO were added at 0.3%, 1.0% and 1.5%v/w. After 0, 5, and 24 hours, the most probable number method (MPN) was performed. Transmission electron microscopy (TEM) was used to view the damage caused by these EO on bacterial morphology and/or structure. Only the 1.5% concentration was effective in reducing L. monocytogenes. 0.3% of O. vulgare EO was able to reduce the MPN/g of Salmonella Enteritidis (2 log) after 5 hours trials. O. basilicum EO showed no effect on Salmonella after 5 hours, but decreased by 2 log after 24 hours. O. vulgare EO at 1% gave a greater reduction of S. Enteritidis at 5 hours, increasing or maintaining this effect after 24 hours. The results confirmed the potential benefits of use EO in control of foodborne pathogens. PMID:25492235

  10. Essential oils from herbs against foodborne pathogens in chicken sausage.

    PubMed

    Barbosa, Lidiane Nunes; Probst, Isabella Silva; Murbach Teles Andrade, Bruna Fernanda; Bérgamo Alves, Fernanda Cristina; Albano, Mariana; Mores Rall, Vera Lucia; Júnior, Ary Fernandes

    2015-01-01

    Consumption of chicken meat and its products, especially sausage, have increased in recent years. However, this product is susceptible to microbial contamination during manufacturing, which compromises its shelf life. The flavoring and preservative activities of essential oils (EO) have been recognized and the application of these antimicrobial agents as natural active compounds in food preservation has shown promise. The aim of this study was to evaluate the effect of Ocimum basilicum and Origanum vulgare EO on Listeria monocytogenes and Salmonella Enteritidis strains in artificially inoculated samples of fresh chicken sausage. First, the minimal inhibitory concentration (MIC) of EO in vitro was determined. The sausage was prepared and kept at ± 4°C; then, the inoculation of individual bacteria was carried out. EO were added at 0.3%, 1.0% and 1.5%v/w. After 0, 5, and 24 hours, the most probable number method (MPN) was performed. Transmission electron microscopy (TEM) was used to view the damage caused by these EO on bacterial morphology and/or structure. Only the 1.5% concentration was effective in reducing L. monocytogenes. 0.3% of O. vulgare EO was able to reduce the MPN/g of Salmonella Enteritidis (2 log) after 5 hours trials. O. basilicum EO showed no effect on Salmonella after 5 hours, but decreased by 2 log after 24 hours. O. vulgare EO at 1% gave a greater reduction of S. Enteritidis at 5 hours, increasing or maintaining this effect after 24 hours. The results confirmed the potential benefits of use EO in control of foodborne pathogens.

  11. Integrating the surveillance of animal health, foodborne pathogens and foodborne diseases in developing and in-transition countries.

    PubMed

    de Balogh, K; Halliday, J; Lubroth, J

    2013-08-01

    Animal diseases, foodborne pathogens and foodborne diseases have enormous impacts upon the health and livelihoods of producers and consumers in developing and in-transition countries. Unfortunately, the capacity for effective surveillance of infectious disease threats is often limited in these countries, leading to chronic under-reporting. This further contributes towards underestimating the effects of these diseases and an inability to implement effective control measures. However, innovative communications and diagnostic tools, as well as new analytical approaches and close cooperation within and between the animal and human health sectors, can be used to improve the coverage, quality and speed of reporting, as well as to generate more comprehensive estimates of the disease burden. These approaches can help to tackle endemic diseases and build essential surveillance capacities to address changing disease threats in the future.

  12. Novel method to identify probiotic isolates against enteric foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter is the leading cause of foodborne illness worldwide, primarily caused by consumption of contaminated poultry products. One potential strategy to reduce Campylobacter colonization in poultry is by the use of oral probiotics, but this produces variable results, possibly due to destructio...

  13. Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins

    PubMed Central

    Bai, Jaewoo; Kim, You-Tae; Ryu, Sangryeol; Lee, Ju-Hoon

    2016-01-01

    Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield) was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs) from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods. PMID:27092128

  14. Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins.

    PubMed

    Bai, Jaewoo; Kim, You-Tae; Ryu, Sangryeol; Lee, Ju-Hoon

    2016-01-01

    Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield) was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs) from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods.

  15. Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins.

    PubMed

    Bai, Jaewoo; Kim, You-Tae; Ryu, Sangryeol; Lee, Ju-Hoon

    2016-01-01

    Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield) was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs) from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods. PMID:27092128

  16. Assessment of oligogalacturonide from citrus pectin as a potential antibacterial agent against foodborne pathogens.

    PubMed

    Wu, Ming-Chang; Li, Hui-chin; Wu, Po-Hua; Huang, Ping-Hsiu; Wang, Yuh-Tai

    2014-08-01

    Foodborne diseases are an important public health problem in the world. The bacterial resistance against presently used antibiotics is becoming a public health issue; hence, the discovery of new antimicrobial agents from natural sources attracts a lot of attention. Antibacterial activities of oligogalacturonide from commercial microbial pectic enzyme (CPE) treated citrus pectin, which exhibits antioxidant and antitumor activities, against 4 foodborne pathogens including Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Pseudomonas aeruginosa was assessed. Pectin hydrolysates from CPE hydrolysis exhibited antibacterial activities. However, no antibacterial activity of pectin was observed. Citrus oligogalacturonide from 24-h hydrolysis exhibited bactericidal effect against all selected foodborne pathogens and displayed minimal inhibitory concentration at 37.5 μg/mL for P. aeruginosa, L. monocytogenes, and S. Typhimurium, and at 150.0 μg/mL for S. aureus.

  17. Niche marketing production practices for beef cattle in the United States and prevalence of foodborne pathogens.

    PubMed

    Fox, J Trent; Reinstein, Shelby; Jacob, Megan E; Nagaraja, T G

    2008-10-01

    Niche-marketed food products are rapidly gaining market share in today's society. Consumers are willing to pay premium prices for food perceived to be safer, healthier, more nutritious, and better tasting than conventional food. This review outlines typical production practices for niche-market beef production systems in the United States and compares prevalence estimates of foodborne pathogens in animals and produce from conventional and niche-market production systems. The two main niches for food animal production are organic and natural productions. Organic and natural beef productions are becoming increasingly popular and there is high consumer demand. Two major differences between conventional beef production systems and niche-market production systems (natural and organic) are in the use of antimicrobials and growth-promoting hormones. The impacts of these production systems on foodborne pathogens in beef cattle are variable and often data are nonexistent. Studies directly comparing conventional and niche-market production systems for dairy, swine, poultry, and produce have observed that the prevalence of foodborne pathogens was seldom statistically different between production systems, but when differences were observed, prevalence was typically greater for the niche-market production systems than the conventional production system. The published literature suggests that the perception of niche-marketed food products being safer and healthier for consumers with regard to foodborne pathogens may not be justified.

  18. Hyperspectral microscope imaging methods to classify gram-positive and gram-negative foodborne pathogenic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...

  19. Classification of gram-positive and gram-negative foodborne pathogenic bacteria with hyperspectral microscope imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...

  20. Inactivation of foodborne pathogens on frankfurters using ultraviolet light (254 nm) and GRAS antimicrobials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is an occasional contaminant of ready-to-eat meats such as frankfurters and sausages and is responsible for foodborne illness outbreaks and recalls of the subsequently adulterated food products. Salmonella and Staphylococus aureus are prevalent among pathogens which cause food...

  1. Inactivation of foodborne pathogens on frankfurters using ultraviolet light and GRAS antimicrobials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes is an occasional contaminant of ready-to-eat meats such as frankfurters and sausages and is responsible for foodborne illness outbreaks and recalls of the subsequently adulterated food products. Salmonellae and Staphylococus aureus are prevalent among pathogens which cause foo...

  2. Potential of predatory bacteria as biocontrol agents for foodborne and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens such as Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, Shigella are responsible for frequent occurrences of illnesses and mortality in humans and produce losses. Pre-harvest yield losses and post-harvest decay on minimally processed produce (fruits, vegetables...

  3. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have strong antibacterial activities against several important foodborne pathogens. Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. Th...

  4. Cold Plasma as a novel intervention against food-borne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of meats, seafood, fresh and fresh-cut fruits and vegetables and other foods by foodborne pathogens has prompted research into novel interventions. Cold plasma is a nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes. This fle...

  5. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device.

    PubMed

    Oh, Seung Jun; Park, Byung Hyun; Choi, Goro; Seo, Ji Hyun; Jung, Jae Hwan; Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-05-21

    This work describes fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device, which is called a lab-on-a-disc. All the processes for molecular diagnostics including DNA extraction and purification, DNA amplification and amplicon detection were integrated on a single disc. Silica microbeads incorporated in the disc enabled extraction and purification of bacterial genomic DNA from bacteria-contaminated milk samples. We targeted four kinds of foodborne pathogens (Escherichia coli O157:H7, Salmonella typhimurium, Vibrio parahaemolyticus and Listeria monocytogenes) and performed loop-mediated isothermal amplification (LAMP) to amplify the specific genes of the targets. Colorimetric detection mediated by a metal indicator confirmed the results of the LAMP reactions with the colour change of the LAMP mixtures from purple to sky blue. The whole process was conducted in an automated manner using the lab-on-a-disc and a miniaturized rotary instrument equipped with three heating blocks. We demonstrated that a milk sample contaminated with foodborne pathogens can be automatically analysed on the centrifugal disc even at the 10 bacterial cell level in 65 min. The simplicity and portability of the proposed microdevice would provide an advanced platform for point-of-care diagnostics of foodborne pathogens, where prompt confirmation of food quality is needed. PMID:27112702

  6. Sensitivity of Escherichia albertii, a potential foodborne pathogen, to food preservation treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia albertii is a potential foodborne pathogen because of its documented ability to cause diarrheal disease by producing attachment and effacement lesions. Its tolerance to food preservation treatments has not been investigated. Heat, acid, and pressure tolerance were determined for stationa...

  7. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity.

    PubMed

    Lapidus, Alla; Goltsman, Eugene; Auger, Sandrine; Galleron, Nathalie; Ségurens, Béatrice; Dossat, Carole; Land, Miriam L; Broussolle, Veronique; Brillard, Julien; Guinebretiere, Marie-Helene; Sanchis, Vincent; Nguen-The, Christophe; Lereclus, Didier; Richardson, Paul; Wincker, Patrick; Weissenbach, Jean; Ehrlich, S Dusko; Sorokin, Alexei

    2008-01-30

    The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic

  8. Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity

    SciTech Connect

    Lapidus, Alla L.; Goltsman, Eugene; Auger, Sandrine; Galleron, Nathalie; Segurens, Beatrice; Simon, Jorg; Dossat, Carole; Broussolle, Veronique; Brillard, Julien; Guinebretiere, Marie-Helene; Sanchis, Vincent; Nguen-the, Christophe; Lereclus, Didier; Richardson, P M; Wincker, Patrick; Sorokin, Alexei

    2008-01-01

    The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530 kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic

  9. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay.

    PubMed

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 10(4) CFU mL(-1) or 10(5) CFU mL(-1) for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R(2)) of 0.916-0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥ 80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  10. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    PubMed Central

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  11. Functional properties of peanut fractions on the growth of probiotics and foodborne bacterial pathogens.

    PubMed

    Peng, Mengfei; Bitsko, Elizabeth; Biswas, Debabrata

    2015-03-01

    Various compounds found in peanut (Arachis hypogaea) have been shown to provide multiple benefits to human health and may influence the growth of a broad range of gut bacteria. In this study, we investigated the effects of peanut white kernel and peanut skin on 3 strains of Lactobacillus and 3 major foodborne enteric bacterial pathogens. Significant (P < 0.05) growth stimulation of Lactobacillus casei and Lactobacillus rhamnosus was observed in the presence of 0.5% peanut flour (PF) made from peanut white kernel, whereas 0.5% peanut skin extract (PSE) exerted the inhibitory effect on the growth of these beneficial microbes. We also found that within 72 h, PF inhibited growth of enterohemorrhagic Escherichia coli O157:H7 (EHEC), while PSE significantly (P < 0.05) inhibited Listeria monocytogenes but promoted the growth of both EHEC and Salmonella Typhimurium. The cell adhesion and invasion abilities of 3 pathogens to the host cells were also significantly (P < 0.05) reduced by 0.5% PF and 0.5% PSE. These results suggest that peanut white kernel might assist in improving human gut flora as well as reducing EHEC, whereas the beneficial effects of peanut skins require further research and investigation.

  12. Campylobacter spp. as a Foodborne Pathogen: A Review

    PubMed Central

    Silva, Joana; Leite, Daniela; Fernandes, Mariana; Mena, Cristina; Gibbs, Paul Anthony; Teixeira, Paula

    2011-01-01

    Campylobacter is well recognized as the leading cause of bacterial foodborne diarrheal disease worldwide. Symptoms can range from mild to serious infections of the children and the elderly and permanent neurological symptoms. The organism is a cytochrome oxidase positive, microaerophilic, curved Gram-negative rod exhibiting corkscrew motility and is carried in the intestine of many wild and domestic animals, particularly avian species including poultry. Intestinal colonization results in healthy animals as carriers. In contrast with the most recent published reviews that cover specific aspects of Campylobacter/campylobacteriosis, this broad review aims at elucidating and discussing the (i) genus Campylobacter, growth and survival characteristics; (ii) detection, isolation and confirmation of Campylobacter; (iii) campylobacteriosis and presence of virulence factors; and (iv) colonization of poultry and control strategies. PMID:21991264

  13. Nisin and class IIa bacteriocin resistance among Listeria and other foodborne pathogens and spoilage bacteria.

    PubMed

    Kaur, Gurpreet; Malik, Ravinder Kumar; Mishra, Santosh Kumar; Singh, Tejinder Pal; Bhardwaj, Arun; Singroha, Garima; Vij, Shilpa; Kumar, Naresh

    2011-06-01

    Food safety has been an important issue globally due to increasing foodborne diseases and change in food habits. To inactivate foodborne pathogens, various novel technologies such as biopreservation systems have been studied. Bacteriocins are ribosomally synthesized peptides or proteins with antimicrobial activity produced by different groups of bacteria, but the bacteriocins produced by many lactic acid bacteria offer potential applications in food preservation. The use of bacteriocins in the food industry can help reduce the addition of chemical preservatives as well as the intensity of heat treatments, resulting in foods that are more naturally preserved. However, the development of highly tolerant and/or resistant strains may decrease the efficiency of bacteriocins as biopreservatives. Several mechanisms of bacteriocin resistance development have been proposed among various foodborne pathogens. The acquiring of resistance to bacteriocins can significantly affect physiological activity profile of bacteria, alter cell-envelope lipid composition, and also modify the antibiotic susceptibility/resistance profile of bacteria. This article presents a brief review on the scientific research about the various possible mechanisms involved in the development of resistance to nisin and Class IIa bacteriocins among the foodborne pathogens.

  14. Nano-particle enhanced impedimetric biosensor for detedtion of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Kim, G.; Om, A. S.; Mun, J. H.

    2007-03-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency

  15. Detection of Foodborne Pathogenic Bacteria using Bacteriophage Tail Spike Proteins

    NASA Astrophysics Data System (ADS)

    Poshtiban, Somayyeh

    Foodborne infections are worldwide health problem with tremendous social and financial impacts. Efforts are focused on developing accurate and reliable technologies for detection of food contaminations in early stages preferably on-site. This thesis focuses on interfacing engineering and biology by combining phage receptor binding proteins (RBPs) with engineered platforms including microresonator-based biosensors, magnetic particles and polymerase chain reaction (PCR) to develop bacterial detection sensors. We used phage RBPs as target specific bioreceptors to develop an enhanced microresonator array for bacterial detection. These resonator beams are optimized to feature a high natural frequency while offer large surface area for capture of bacteria. Theoretical analysis indicates a high mass sensitivity with a threshold for the detection of a single bacterial cell. We used phage RBPs as target specific bioreceptors, and successfully demonstrated the application of these phage RBB-immobilized arrays for specific detection of C. jejuni cells. We also developed a RBP-derivatized magnetic pre-enrichment method as an upstream sample preparation method to improve sensitivity and specificity of PCR for detection of bacterial cells in various food samples. The combination of RBP-based magnetic separation and real-time PCR allowed the detection of small number of bacteria in artificially contaminated food samples without any need for time consuming pre-enrichment step through culturing. We also looked into integration of the RBP-based magnetic separation with PCR onto a single microfluidic lab-on-a-chip to reduce the overall turnaround time.

  16. Use of Extract of Citrus sinensis as an antimicrobial agent for foodborne zoonotic pathogens and spoilage bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens remain global health problems despite concerted efforts to control the transmission of these microorganisms through food. The resurgence of drug resistant bacteria has renewed interest in developing and testing new sources of antimicrobial agents to control foodborne illness. Thi...

  17. Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends.

    PubMed

    Koluman, Ahmet; Dikici, Abdullah

    2013-02-01

    Emerging foodborne pathogens are challenging subjects of food microbiology with their antibiotic resistance and their impact on public health. Campylobacter jejuni, Salmonella spp. and Verotoxigenic Escherichia coli (VTEC) are significant emerging food pathogens, globally. The decrease in supply and increase in demand lead developed countries to produce animal products with a higher efficiency. The massive production has caused the increase of the significant foodborne diseases. The strict control of food starting from farm to fork has been held by different regulations. Official measures have been applied to combat these pathogens. In 2005 EU declared that, an EU-wide ban on the use of antibiotics as growth promoters in animal feed would be applied on 1 January 2006. The ban is the final step in the phasing out of antibiotics used for non-medical purposes. It is a part of the Commission's strategy to tackle the emergence of bacteria and other microbes resistant to antibiotics, due to their overexploitation or misuse. As the awareness raises more countries banned application of antibiotics as growth promoter, but the resistance of the emerging foodborne pathogens do not represent decrease. Currently, the main concern of food safety is counter measures against resistant bugs. PMID:22639875

  18. Antimicrobial susceptibility of foodborne pathogens in organic or natural production systems: an overview.

    PubMed

    Jacob, Megan E; Fox, James Trent; Reinstein, Shelby L; Nagaraja, T G

    2008-12-01

    Organic and natural food production systems are increasing in popularity, at least partially because consumers perceive that these niche markets provide healthier and safer food products. One major difference between these niche markets and conventional production systems is the use of antimicrobials. Because antimicrobial agents exert selective pressures for antimicrobial resistance, relating antimicrobial susceptibility of foodborne bacteria to niche market production systems is of interest. Other differences between production systems might also influence the susceptibility of foodborne pathogens. The objective of this review is to compare the impact of food animal production systems on the antimicrobial susceptibility of common foodborne bacterial pathogens. Studies comparing the susceptibility of such pathogens were diverse in terms of geographic location, procedures, species of bacteria, and antimicrobials evaluated; thus, it was difficult to draw conclusions. The literature is highly variable in terms of production type and practices and susceptibility associations, although few studies have compared truly organic and conventional practices. When statistical associations were found between production type and minimum inhibitory concentrations or percentage of isolates resistant for a particular pathogen, the isolates from conventionally reared animals/products were more commonly resistant than the comparison group (organic, antibiotic free, etc.). Therefore, further studies are needed to better assess public health consequences of antimicrobial resistance and food animal production systems, specifically organic or natural versus conventional.

  19. Recent advances in bacteriophage based biosensors for food-borne pathogen detection.

    PubMed

    Singh, Amit; Poshtiban, Somayyeh; Evoy, Stephane

    2013-01-30

    Foodborne diseases are a major health concern that can have severe impact on society and can add tremendous financial burden to our health care systems. Rapid early detection of food contamination is therefore relevant for the containment of food-borne pathogens. Conventional pathogen detection methods, such as microbiological and biochemical identification are time-consuming and laborious, while immunological or nucleic acid-based techniques require extensive sample preparation and are not amenable to miniaturization for on-site detection. Biosensors have shown tremendous promise to overcome these limitations and are being aggressively studied to provide rapid, reliable and sensitive detection platforms for such applications. Novel biological recognition elements are studied to improve the selectivity and facilitate integration on the transduction platform for sensitive detection. Bacteriophages are one such unique biological entity that show excellent host selectivity and have been actively used as recognition probes for pathogen detection. This review summarizes the extensive literature search on the application of bacteriophages (and recently their receptor binding proteins) as probes for sensitive and selective detection of foodborne pathogens, and critically outlines their advantages and disadvantages over other recognition elements.

  20. Recent Advances in Bacteriophage Based Biosensors for Food-Borne Pathogen Detection

    PubMed Central

    Singh, Amit; Poshtiban, Somayyeh; Evoy, Stephane

    2013-01-01

    Foodborne diseases are a major health concern that can have severe impact on society and can add tremendous financial burden to our health care systems. Rapid early detection of food contamination is therefore relevant for the containment of food-borne pathogens. Conventional pathogen detection methods, such as microbiological and biochemical identification are time-consuming and laborious, while immunological or nucleic acid-based techniques require extensive sample preparation and are not amenable to miniaturization for on-site detection. Biosensors have shown tremendous promise to overcome these limitations and are being aggressively studied to provide rapid, reliable and sensitive detection platforms for such applications. Novel biological recognition elements are studied to improve the selectivity and facilitate integration on the transduction platform for sensitive detection. Bacteriophages are one such unique biological entity that show excellent host selectivity and have been actively used as recognition probes for pathogen detection. This review summarizes the extensive literature search on the application of bacteriophages (and recently their receptor binding proteins) as probes for sensitive and selective detection of foodborne pathogens, and critically outlines their advantages and disadvantages over other recognition elements. PMID:23364199

  1. Rapid detection, characterization, and enrumeration of food-borne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, there has been much research activity on the development of methodologies that are rapid, accurate, and ultrasensitive for detecting pathogenic microorganisms in food. Rapid methods include immunological systems such as the lateral flow assays and enzyme-linked immunosorbent assays...

  2. Post-genome Analysis of the Foodborne Pathogen Campylobacter jejuni

    NASA Astrophysics Data System (ADS)

    Kay, Emily J.; Gundogdu, Ozan; Wren, Brendan

    The human pathogen Campylobacter jejuni is part of the genus Campylobacter that lies within the epsilon proteobacteria subclass of bacteria. The nearest family in phylogenetic terms is the Helicobacteraceae which includes the Helicobacter and Wolinella genuses. Campylobacter species are Gram-negative, curved rod shaped or spiral and are motile (via polar flagella).

  3. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism.

    PubMed

    Lee, Dae-Sung; Je, Jae-Young

    2013-07-01

    In this study, antimicrobial activity of gallic acid-grafted-chitosans (gallic acid-g-chitosans) against five Gram-positive and five Gram-negative foodborne pathogens was evaluated. The minimum inhibitory concentrations (MICs) of gallic acid-g-chitosans ranged from 16 to 64 μg/mL against Gram-positive bacteria and ranged from 128 to 512 μg/mL against Gram-negative bacteria. These activities were higher than those of unmodified chitosan. The bactericidal activity of gallic acid-g-chitosan (I), which showed the highest antimicrobial activity, was evaluated by time-killing assay with multiples of MIC, and it was recognized to depend on its dose. The integrity of cell membrane, outer membrane (OM), inner membrane (IM) permeabilization experiments, and transmission electron microscopy (TEM) observation were conducted for elucidation of the detailed antimicrobial mode of action of gallic acid-g-chitosan. Results showed that treatment of gallic acid-g-chitosan (I) quickly increased the release of intracellular components for both Escherichia coli and Staphylococcus aureus. In addition, gallic acid-g-chitosan (I) also rapidly increased the 1-N-phenylanphthylamine (NPN) uptake and the release of β-galactosidase via increasing the permeability of OM and IM in E. coli. TEM observation demonstrated that gallic acid-g-chitosan (I) killed the bacteria via disrupting the cell membrane.

  4. Multiplexed detection of foodborne pathogens based on magnetic particles.

    PubMed

    Brandão, Delfina; Liébana, Susana; Pividori, María Isabel

    2015-09-25

    This paper addresses the novel approaches for the multiplex detection of food poisoning bacteria, paying closer attention to three of the most common pathogens involved in food outbreaks: Salmonella enterica, Escherichia coli O157:H7 and Listeria monocytogenes. End-point and real-time PCR, classical immunological techniques, biosensors, microarrays and microfluidic platforms, as well as commercial kits for multiplex detection of food pathogens will be reviewed, with special focus on the role of magnetic particles in these approaches. Although the immunomagnetic separation for capturing single bacteria from contaminating microflora and interfering food components has demonstrated to improve the performance on these approaches, the integration of magnetic particles for multiplex detection of bacteria is still in a preliminary stage and requires further studies. PMID:25858812

  5. Quantitative risk assessment: an emerging tool for emerging foodborne pathogens.

    PubMed Central

    Lammerding, A. M.; Paoli, G. M.

    1997-01-01

    New challenges to the safety of the food supply require new strategies for evaluating and managing food safety risks. Changes in pathogens, food preparation, distribution, and consumption, and population immunity have the potential to adversely affect human health. Risk assessment offers a framework for predicting the impact of changes and trends on the provision of safe food. Risk assessment models facilitate the evaluation of active or passive changes in how foods are produced, processed, distributed, and consumed. PMID:9366601

  6. Development of a magnetic nanoparticles microarray for simultaneous and simple detection of foodborne pathogens.

    PubMed

    Li, Song; Liu, Hongna; Deng, Yan; Lin, Lin; He, Nongyue

    2013-07-01

    Foodborne diseases are a widespread and growing public health problem affecting both developed and developing countries, microbiologically contaminated food and water are the major causes of diarrhoeal diseases. Methods based on polymerase chain reaction (PCR) and microarrays are rapid and sensitive enough to detect very small quantities of microorganisms, however, the requirement for expensive equipments limits their application. In the present paper, we describe a method based on multiplex PCR and magnetic nanoparticles labelling for simultaneous detection of four major foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica, Vibrio cholera and Campylobacter jejuni. The process utilizes an oligonucleotide array onto which 5' biotinylated single strand PCR products were hybridized and visualized with streptavidin-coated magnetic nanoparticles (SA-MNPs), the signal from which could be detected by the naked eye, microscope or CCD camera. By employing SA-MNPs as visible labels, the microarray unambiguously distinguished all 4 pathogens with detection sensitivity up to 316 CFU/mL. Due to its high sensitivity, specificity and simple detection procedure, the magnetic bead assay provides a powerful tool for the detection and identification of foodborne pathogens in a modestly equipped laboratory. PMID:23909141

  7. Protozoan Cysts Act as a Survival Niche and Protective Shelter for Foodborne Pathogenic Bacteria.

    PubMed

    Lambrecht, Ellen; Baré, Julie; Chavatte, Natascha; Bert, Wim; Sabbe, Koen; Houf, Kurt

    2015-08-15

    The production of cysts, an integral part of the life cycle of many free-living protozoa, allows these organisms to survive adverse environmental conditions. Given the prevalence of free-living protozoa in food-related environments, it is hypothesized that these organisms play an important yet currently underinvestigated role in the epidemiology of foodborne pathogenic bacteria. Intracystic bacterial survival is highly relevant, as this would allow bacteria to survive the stringent cleaning and disinfection measures applied in food-related environments. The present study shows that strains of widespread and important foodborne bacteria (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, and Listeria monocytogenes) survive inside cysts of the ubiquitous amoeba Acanthamoeba castellanii, even when exposed to either antibiotic treatment (100 μg/ml gentamicin) or highly acidic conditions (pH 0.2) and resume active growth in broth media following excystment. Strain- and species-specific differences in survival periods were observed, with Salmonella enterica surviving up to 3 weeks inside amoebal cysts. Up to 53% of the cysts were infected with pathogenic bacteria, which were located in the cyst cytosol. Our study suggests that the role of free-living protozoa and especially their cysts in the persistence and epidemiology of foodborne bacterial pathogens in food-related environments may be much more important than hitherto assumed. PMID:26070667

  8. Protozoan Cysts Act as a Survival Niche and Protective Shelter for Foodborne Pathogenic Bacteria

    PubMed Central

    Lambrecht, Ellen; Baré, Julie; Chavatte, Natascha; Bert, Wim; Sabbe, Koen

    2015-01-01

    The production of cysts, an integral part of the life cycle of many free-living protozoa, allows these organisms to survive adverse environmental conditions. Given the prevalence of free-living protozoa in food-related environments, it is hypothesized that these organisms play an important yet currently underinvestigated role in the epidemiology of foodborne pathogenic bacteria. Intracystic bacterial survival is highly relevant, as this would allow bacteria to survive the stringent cleaning and disinfection measures applied in food-related environments. The present study shows that strains of widespread and important foodborne bacteria (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, and Listeria monocytogenes) survive inside cysts of the ubiquitous amoeba Acanthamoeba castellanii, even when exposed to either antibiotic treatment (100 μg/ml gentamicin) or highly acidic conditions (pH 0.2) and resume active growth in broth media following excystment. Strain- and species-specific differences in survival periods were observed, with Salmonella enterica surviving up to 3 weeks inside amoebal cysts. Up to 53% of the cysts were infected with pathogenic bacteria, which were located in the cyst cytosol. Our study suggests that the role of free-living protozoa and especially their cysts in the persistence and epidemiology of foodborne bacterial pathogens in food-related environments may be much more important than hitherto assumed. PMID:26070667

  9. Estimates of Foodborne Illness–Related Hospitalizations and Deaths in Canada for 30 Specified Pathogens and Unspecified Agents

    PubMed Central

    Murray, Regan; Flockhart, Logan; Pintar, Katarina; Fazil, Aamir; Nesbitt, Andrea; Marshall, Barbara; Tataryn, Joanne; Pollari, Frank

    2015-01-01

    Abstract Foodborne illness estimates help to set food safety priorities and create public health policies. The Public Health Agency of Canada estimates that 4 million episodes of foodborne illness occur each year in Canada due to 30 known pathogens and unspecified agents. The main objective of this study was to estimate the number of domestically acquired foodborne illness–related hospitalizations and deaths. Using the estimates of foodborne illness for Canada along with data from the Canadian Hospitalization Morbidity Database (for years 2000–2010) and relevant international literature, the number of hospitalizations and deaths for 30 pathogens and unspecified agents were calculated. Analysis accounted for under-reporting and underdiagnosis. Estimates of the proportion foodborne and the proportion travel-related were incorporated for each pathogen. Monte Carlo simulations were performed to account for uncertainty generating mean estimates and 90% probability intervals. It is estimated that each year there are 4000 hospitalizations (range 3200–4800) and 105 (range 75–139) deaths associated with domestically acquired foodborne illness related to 30 known pathogens and 7600 (range 5900–9650) hospitalizations and 133 (range 77–192) deaths associated with unspecified agents, for a total estimate of 11,600 (range 9250–14,150) hospitalizations and 238 (range 155–323) deaths associated with domestically acquired foodborne illness in Canada. Key pathogens associated with these hospitalizations or deaths include norovirus, nontyphoidal Salmonella spp., Campylobacter spp., VTEC O157 and Listeria monocytogenes. This is the first time Canada has established pathogen-specific estimates of domestically acquired foodborne illness–related hospitalizations and deaths. This information illustrates the substantial burden of foodborne illness in Canada. PMID:26259128

  10. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens

    PubMed Central

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-01-01

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25–60 °C), times (1–5 min), and concentrations (5–30 ppm for SAEW and 0.125%–0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95–5.76 log CFU/mL at 25–60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens.

  11. Capture and concentration of viral and bacterial foodborne pathogens using apolipoprotein H.

    PubMed

    Almand, Erin A; Goulter, Rebecca M; Jaykus, Lee-Ann

    2016-09-01

    The need for improved pathogen separation and concentration methods to reduce time-to-detection for foodborne pathogens is well recognized. Apolipoprotein H (ApoH) is an acute phase human plasma protein that has been previously shown to interact with viruses, lipopolysaccharides (LPS) and bacterial proteins. The purpose of this study was to determine if ApoH was capable of binding and efficiently capturing two representative human norovirus strains (GI.1 and GII.4), a cultivable surrogate, and four bacterial pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus). Experiments were carried out using an ApoH-conjugated magnetic bead-based capture followed by pathogen detection using nucleic acid amplification. For all three viruses studied, >10% capture efficiency (<1 Log10 loss in RT-qPCR amplifiable units) was observed. The same capture efficiencies were observed for the bacterial pathogens tested, with the exception of E. coli O157:H7 (approximately 1% capture efficiency, or 2 Log10 loss in CFU equivalents). The efficiency of the capture steps did not vary as a consequence of input target concentration or in the presence of an abundance of background microflora. A complementary plate-based capture assay showed that ApoH bound to a variety of human norovirus virus-like particles. ApoH has the potential to be a broadly reactive ligand for separating and concentrating representative foodborne pathogens, both bacteria and viruses. PMID:27439140

  12. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens

    PubMed Central

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-01-01

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25–60 °C), times (1–5 min), and concentrations (5–30 ppm for SAEW and 0.125%–0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95–5.76 log CFU/mL at 25–60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens. PMID:27682077

  13. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens.

    PubMed

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-02-12

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25-60 °C), times (1-5 min), and concentrations (5-30 ppm for SAEW and 0.125%-0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95-5.76 log CFU/mL at 25-60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens.

  14. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes.

    PubMed

    Caamaño-Antelo, S; Fernández-No, I C; Böhme, K; Ezzat-Alnakip, M; Quintela-Baluja, M; Barros-Velázquez, J; Calo-Mata, P

    2015-04-01

    Bacillus genus includes foodborne pathogenic and spoilage-associated species, such as Bacillus cereus, Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus. Bacillus is also a heterogeneous genus that includes closely related species that are difficult to discriminate among, especially when well-conserved genes such as 16S rRNA and 23S rRNA are considered. The main goal of the present work was to study the usefulness of three housekeeping genes, the TU elongation factor (tuf), the DNA gyrase β subunit (gyrB) and the RNA polymerase β subunit (rpoB) genes, for use in differentiating among the most important foodborne Bacillus spp. sequences from 20 foodborne isolated Bacillus strains, and sequences belonging to different Bacillus spp. retrieved from the GenBank were analysed. In general terms, gyrB, rpoB and tuf gene regions for the strains considered in this study exhibited interspecific similarities of 57.8%, 67.23% and 77.66% respectively. Novel tufGPF and tufGPR universal primers targeted to the tuf gene were designed and proved to be useful for the amplification of all Bacillus spp considered. In conclusion, the tuf gene can be considered to be a good target for the differential characterisation of foodborne Bacillus species, especially for differentiating B. subtilis and B. cereus from other closely related species. PMID:25475298

  15. Socioeconomic Status and Foodborne Pathogens in Connecticut, USA, 2000–20111

    PubMed Central

    Mainero, Christina; Humes, Elizabeth; Hurd, Sharon; Niccolai, Linda; Hadler, James L.

    2015-01-01

    Foodborne pathogens cause >9 million illnesses annually. Food safety efforts address the entire food chain, but an essential strategy for preventing foodborne disease is educating consumers and food preparers. To better understand the epidemiology of foodborne disease and to direct prevention efforts, we examined incidence of Salmonella infection, Shiga toxin–producing Escherichia coli infection, and hemolytic uremic syndrome by census tract–level socioeconomic status (SES) in the Connecticut Foodborne Diseases Active Surveillance Network site for 2000–2011. Addresses of case-patients were geocoded to census tracts and linked to census tract–level SES data. Higher census tract–level SES was associated with Shiga toxin–producing Escherichia coli, regardless of serotype; hemolytic uremic syndrome; salmonellosis in persons ≥5 years of age; and some Salmonella serotypes. A reverse association was found for salmonellosis in children <5 years of age and for 1 Salmonella serotype. These findings will inform education and prevention efforts as well as further research. PMID:26291087

  16. Antimicrobial resistance of major foodborne pathogens from major meat products.

    PubMed

    Gousia, Panagiota; Economou, Vagelis; Sakkas, Hercules; Leveidiotou, Stamatina; Papadopoulou, Chrissanthy

    2011-01-01

    The bacterial contamination of raw and processed meat products with resistant pathogens was studied. The raw samples included sheep (40), goat (40), pork (120), beef (80), and chicken (19) meat, and the processed samples included turkey filets (33), salami (8), readymade mincemeat (16), stuffing (22), and roast-beef (50). The samples were collected from retail shops in Northwestern Greece over a period of 3 years. The isolated pathogens were evaluated for susceptibilities to 19 antimicrobial agents used in humans. Out of 428 samples, 157 strains of Escherichia coli, 25 of Yersinia enterocolitica, 57 of Staphylococcus aureus, 57 of Enterococcus spp., 4 of Salmonella spp., and 3 of Campylobacter jejuni were isolated. Among the isolates 14.6% of the E. coli, 10.5% of S. aureus, 4% of Y. enterocolitica, 25% of Salmonella spp., and 42.1% of Enterococcus spp. were susceptible to antibiotics. E. coli from chicken exhibited high rates of resistance to ciprofloxacin (62.5%) followed by lamb/goat (10.9%), pork (15.7%), and beef (27.9%) meat. Resistance to nitrofurantoin dominated in the lamb/goat isolates (60%). Resistance to tetracycline predominated in pork (68.2%) and chicken (62.5%), and resistance to aminoglycosides dominated in lamb/goat meat isolates. S. aureus resistance to clindamycin predominated in lamb/goat isolates (50%), whereas resistance to ciprofloxacin predominated in the pork strains, but no resistance to methicillin was observed. Of the enterococci isolates 21.1% were resistant to vancomycin. High resistance to ampicillin (96%) was observed in Y. enterocolitica and all of the C. jejuni isolates were resistant to ampicillin, cephalothin, and cefuroxime. These results indicate that meat can be a source of resistant bacteria, which could potentially be spread to the community through the food chain. PMID:21039131

  17. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain.

    PubMed

    Burgess, Catherine M; Gianotti, Andrea; Gruzdev, Nadia; Holah, John; Knøchel, Susanne; Lehner, Angelika; Margas, Edyta; Esser, Stephan Schmitz; Sela Saldinger, Shlomo; Tresse, Odile

    2016-03-16

    In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.

  18. Foodborne Bacterial Pathogens Associated with the Risk of Gastroenteritis in the State of Qatar

    PubMed Central

    Weam, Banjar; Abraham, Mariama; Doiphode, Sanjay; Peters, Kenlyn; Ibrahim, Emad; Sultan, Ali; Mohammed, Hussni O.

    2016-01-01

    Objective To assess the risk of gastroenteritis associated with bacterial foodborne pathogens and identify associated factors in a highly diverse population. Material and methods A series of case-control studies were carried out to address the stated objective. The study population consisted of individuals who were admitted to the Hamad Medical Corporation hospitals and stool analysis indicated positive findings to Campylobacter spp., Escherichia coli, or Salmonella spp. between the period of August 2009 and December 2012. Cases were defined based on positive stool analysis to any of the previously mentioned organisms. Control group was similar to case group but negative in stool analysis to the particular pathogen under study. Association between demographic characteristics and likelihood of pathogen infection were investigated using logistic regression analysis. Results A total of 423 individuals diagnosed with these bacterial pathogens were randomly enrolled in the study. The majority of cases were infected by E.coli. Age was significantly associated with E.coli and Salmonella spp. Conclusion E.coli infection is common among young children. The risk of Salmonella increases with age. Campylobacter may affect any age. Further investigation of interaction between foodborne pathogen infection and environmental factors is necessary PMID:27103902

  19. Recovery Estimation of Dried Foodborne Pathogens Is Directly Related to Rehydration Kinetics

    PubMed Central

    Lang, Emilie; Zoz, Fiona; Iaconelli, Cyril; Guyot, Stéphane; Alvarez-Martin, Pablo; Beney, Laurent; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2016-01-01

    Drying is a common process which is used to preserve food products and technological microorganisms, but which is deleterious for the cells. The aim of this study is to differentiate the effects of drying alone from the effects of the successive and necessary rehydration. Rehydration of dried bacteria is a critical step already studied in starter culture but not for different kinetics and not for pathogens. In the present study, the influence of rehydration kinetics was investigated for three foodborne pathogens involved in neonatal diseases caused by the consumption of rehydrated milk powder: Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Senftenberg and Cronobacter sakazakii. Bacteria were dried in controlled relative humidity atmospheres and then rehydrated using different methods. Our results showed that the survival of the three pathogens was strongly related to rehydration kinetics. Consequently, rehydration is an important step to consider during food safety assessment or during studies of dried foodborne pathogens. Also, it has to be considered with more attention in consumers’ homes during the preparation of food, like powdered infant formula, to avoid pathogens recovery. PMID:27494169

  20. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection.

    PubMed

    Oh, Seung Jun; Park, Byung Hyun; Jung, Jae Hwan; Choi, Goro; Lee, Doh C; Kim, Do Hyun; Seo, Tae Seok

    2016-01-15

    We present a centrifugal microfluidic device which enables multiplex foodborne pathogen identification by loop-mediated isothermal amplification (LAMP) and colorimetric detection using Eriochrome Black T (EBT). Five identical structures were designed in the centrifugal microfluidic system to perform the genetic analysis of 25 pathogen samples in a high-throughput manner. The sequential loading and aliquoting of the LAMP cocktail, the primer mixtures, and the DNA sample solutions were accomplished by the optimized zigzag-shaped microchannels and RPM control. We targeted three kinds of pathogenic bacteria (Escherichia coli O157:H7, Salmonella typhimurium and Vibrio parahaemolyticus) and detected the amplicons of the LAMP reaction by the EBT-mediated colorimetric method. For the limit-of-detection (LOD) test, we carried out the LAMP reaction on a chip with serially diluted DNA templates of E. coli O157:H7, and could observe the color change with 380 copies. The used primer sets in the LAMP reaction were specific only to the genomic DNA of E. coli O157:H7, enabling the on-chip selective, sensitive, and high-throughput pathogen identification with the naked eyes. The entire process was completed in 60min. Since the proposed microsystem does not require any bulky and expensive instrumentation for end-point detection, our microdevice would be adequate for point-of-care (POC) testing with high simplicity and high speed, providing an advanced genetic analysis microsystem for foodborne pathogen detection.

  1. Recovery Estimation of Dried Foodborne Pathogens Is Directly Related to Rehydration Kinetics.

    PubMed

    Lang, Emilie; Zoz, Fiona; Iaconelli, Cyril; Guyot, Stéphane; Alvarez-Martin, Pablo; Beney, Laurent; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2016-01-01

    Drying is a common process which is used to preserve food products and technological microorganisms, but which is deleterious for the cells. The aim of this study is to differentiate the effects of drying alone from the effects of the successive and necessary rehydration. Rehydration of dried bacteria is a critical step already studied in starter culture but not for different kinetics and not for pathogens. In the present study, the influence of rehydration kinetics was investigated for three foodborne pathogens involved in neonatal diseases caused by the consumption of rehydrated milk powder: Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Senftenberg and Cronobacter sakazakii. Bacteria were dried in controlled relative humidity atmospheres and then rehydrated using different methods. Our results showed that the survival of the three pathogens was strongly related to rehydration kinetics. Consequently, rehydration is an important step to consider during food safety assessment or during studies of dried foodborne pathogens. Also, it has to be considered with more attention in consumers' homes during the preparation of food, like powdered infant formula, to avoid pathogens recovery. PMID:27494169

  2. [Study of real-time PCR assays for rapid detection of food-borne pathogens].

    PubMed

    Fukushima, Hiroshi; Tsunomori, Yoshie

    2005-09-01

    A duplex real-time SYBR Green LightCycler PCR (LC-PCR) assay with DNA extraction using QIAamp DNA Stool Minikit was evaluated for detection of 8 of 19 species of food-borne pathogens, including Plesiomonas shigelloides, Providencia alcalifaciens, in five stool specimens. The time frame was within 2h or less. The protocol used the same LC-PCR with 22 pairs of specific primers. The rapid amplification and reliable detection of specific genes were determined by this LC-PCR assay from 10 cases of food-borne outbreaks in Shimane Prefecture from 2002 to 2005. These cases included Campylobacter jejuni (4), Clostridium perfringens (2), enteropathogenic Escherichia coli and astA positive E. coli (1), and astA positive E. coli, enterohemorrhagic E. coli 026, and Bacillus cereus (1 each). Rapid amplification and reliable detection of specific genes of food-or water-borne pathogenic bacteria in fecal samples should facilitate the diagnosis and management of food-borne outbreaks.

  3. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen

    PubMed Central

    Kim, Jong-Chul; Oh, Euna; Kim, Jinyong; Jeon, Byeonghwa

    2015-01-01

    Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense. PMID:26284041

  4. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and Outbreak Investigation of Foodborne Bacterial Pathogens.

    PubMed

    Deng, Xiangyu; den Bakker, Henk C; Hendriksen, Rene S

    2016-01-01

    As we are approaching the twentieth anniversary of PulseNet, a network of public health and regulatory laboratories that has changed the landscape of foodborne illness surveillance through molecular subtyping, public health microbiology is undergoing another transformation brought about by so-called next-generation sequencing (NGS) technologies that have made whole-genome sequencing (WGS) of foodborne bacterial pathogens a realistic and superior alternative to traditional subtyping methods. Routine, real-time, and widespread application of WGS in food safety and public health is on the horizon. Technological, operational, and policy challenges are still present and being addressed by an international and multidisciplinary community of researchers, public health practitioners, and other stakeholders.

  5. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and Outbreak Investigation of Foodborne Bacterial Pathogens.

    PubMed

    Deng, Xiangyu; den Bakker, Henk C; Hendriksen, Rene S

    2016-01-01

    As we are approaching the twentieth anniversary of PulseNet, a network of public health and regulatory laboratories that has changed the landscape of foodborne illness surveillance through molecular subtyping, public health microbiology is undergoing another transformation brought about by so-called next-generation sequencing (NGS) technologies that have made whole-genome sequencing (WGS) of foodborne bacterial pathogens a realistic and superior alternative to traditional subtyping methods. Routine, real-time, and widespread application of WGS in food safety and public health is on the horizon. Technological, operational, and policy challenges are still present and being addressed by an international and multidisciplinary community of researchers, public health practitioners, and other stakeholders. PMID:26772415

  6. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety.

    PubMed

    Mangal, Manisha; Bansal, Sangita; Sharma, Satish K; Gupta, Ram K

    2016-07-01

    Food safety is a global health concern. For the prevention and recognition of problems related to health and safety, detection of foodborne pathogen is of utmost importance at all levels of food production chain. For several decades, a lot of research has been targeted at the development of rapid methodology as reducing the time needed to complete pathogen detection tests has been the primary goal of food microbiologists. With the result, food microbiology laboratories now have a wide array of detection methods and automated technologies such as enzyme immunoassay, polymerase chain reaction, and microarrays, which can cut test times considerably. Nucleic acid amplification strategies and advances in amplicon detection methodologies have been the key factors in the progress of molecular microbiology. A comprehensive literature survey has been carried out to give an overview in the field of foodborne pathogen detection. In this paper, we describe the conventional methods, as well as recent developments in food pathogen detection, identification, and quantification, with a major emphasis on molecular detection methods.

  7. Irrigation water as source of foodborne pathogens on fruit and vegetables.

    PubMed

    Steele, Marina; Odumeru, Joseph

    2004-12-01

    Awareness is growing that fresh or minimally processed fruit and vegetables can be sources of disease-causing bacteria, viruses, protozoa, and helminths. Irrigation with poor-quality water is one way that fruit and vegetables can become contaminated with foodborne pathogens. Groundwater, surface water, and human wastewater are commonly used for irrigation. The risk of disease transmission from pathogenic microorganisms present in irrigation water is influenced by the level of contamination; the persistence of pathogens in water, in soil, and on crops; and the route of exposure. Groundwater is generally of good microbial quality, unless it is contaminated with surface runoff; human wastewater is usually of very poor microbial quality and requires extensive treatment before it can be used safely to irrigate crops; surface water is of variable microbial quality. Bacteria and protozoa tend to show the poorest survival outside a human host, whereas viruses and helminths can remain infective for months to years. Guidelines governing irrigation water quality and strategies to reduce the risk of disease transmission by foodborne pathogens in irrigation are discussed.

  8. Survival and growth of foodborne pathogens during cooking and storage of oriental-style rice cakes.

    PubMed

    Lee, Sun-Young; Chung, Hyun-Jung; Shin, Joong-Han; Dougherty, Richard H; Kangi, Dong-Hyun

    2006-12-01

    Fresh cooked rice cakes for retail sale are typically held at room temperature because refrigeration dramatically reduces their quality. Room temperature, high water activity, and a pH of > 4.6 provided an environment conducive to pathogen growth. To date, no studies have been published regarding survival and growth of foodborne pathogens in fresh cooked rice cakes. This study was undertaken to investigate the effect of steam cooking on foodborne pathogens and their subsequent growth in five varieties of rice cakes made from flours of regular rice, sweet rice, white rice, tapioca, and mung bean. Bacillus cereus spores were detected in white rice, tapioca, and mung bean samples. The rice cake flours were inoculated with non-spore-forming foodborne pathogens (Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Staphylococcus aureus) or spore-forming bacteria (Bacillus cereus) and steam cooked (100 degrees C) for 30 min. Steam cooking significantly reduced (> 6 log CFU/g) non-spore-forming foodborne pathogens in all samples and inactivated spores of B. cereus by 1 to 2 log CFU/g. Although spores of B. cereus survived steam cooking and germinated during 3 days of storage at room temperature, populations in most rice cakes remained below 106 CFU/g, which is the threshold for producing toxin. Rice cakes made from mung bean flour supported growth and germination of B. cereus spores above that critical level. In mung bean rice cakes, enterotoxin production was detected by the second day, when B cereus cell populations reached about 6.9 log CFU/g. The toxin concentration increased with storage time. However, our results suggest that rapid growth of total mesophilic microorganisms by more than 7 to 8 log CFU/ml during the first day of storage produced off flavors and spoilage before B. cereus was able to grow enough to produce toxins. Therefore, steam-cooked rice cakes made from a variety of flours including mung bean flour are safe

  9. Rapid analysis of foodborne pathogens by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sengupta, Atanu; Shende, Chetan; Huang, Hermes; Farquharson, Stuart; Inscore, Frank

    2012-05-01

    Foodborne diseases resulting from Campylobacter, Escherichia, Listeria, Salmonella, Shigella and Vibrio species affect as many as 76 million persons in the United States each year, resulting in 325,000 hospitalizations and 5,000 deaths. The challenge to preventing distribution and consumption of contaminated foods lies in the fact that just a few bacterial cells can rapidly multiply to millions, reaching infectious doses within a few days. Unfortunately, current methods used to detect these few cells rely on lengthy growth enrichment steps that take a similar amount of time (1 to 4 days). Consequently, there is a critical need for an analyzer that can rapidly extract and detect foodborne pathogens in 1-2 hours (not days), at 100 colony forming units per gram of food, and with a specificity that differentiates from indigenous microflora, so that false alarms are eliminated. In an effort to meet this need, we have been developing a sample system that extracts such pathogens from food, selectively binds these pathogens, and produces surface-enhanced Raman spectra (SERS). Here we present preliminary SERS measurements of Listeria and Salmonella.

  10. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.

    PubMed

    Kim, Tae-Hyeong; Park, Juhee; Kim, Chi-Ju; Cho, Yoon-Kyoung

    2014-04-15

    This paper describes a micro total analysis system for molecular analysis of Salmonella, a major food-borne pathogen. We developed a centrifugal microfluidic device, which integrated the three main steps of pathogen detection, DNA extraction, isothermal recombinase polymerase amplification (RPA), and detection, onto a single disc. A single laser diode was utilized for wireless control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification step, thereby yielding a compact and miniaturized system. To achieve high detection sensitivity, rare cells in large volumes of phosphate-buffered saline (PBS) and milk samples were enriched before loading onto the disc by using antibody-coated magnetic beads. The entire procedure, from DNA extraction through to detection, was completed within 30 min in a fully automated fashion. The final detection was carried out using lateral flow strips by direct visual observation; detection limit was 10 cfu/mL and 10(2) cfu/mL in PBS and milk, respectively. Our device allows rapid molecular diagnostic analysis and does not require specially trained personnel or expensive equipment. Thus, we expect that it would have an array of potential applications, including in the detection of food-borne pathogens, environmental monitoring, and molecular diagnostics in resource-limited settings.

  11. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation.

    PubMed

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  12. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation

    PubMed Central

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  13. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation.

    PubMed

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  14. Phage-amplified bioluminescent bioreporters for the detection of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Ripp, Steven; Young, Jacque C.; Ozen, Aysu; Jegier, Patricia; Johnson, Courtney; Daumer, Kathleen; Garland, Jay; Sayler, Gary S.

    2004-06-01

    The objective of this investigation is to develop a bioluminescent bioreporter system for the detection and monitoring of pathogenic microbial species. Current detection methodologies typically rely on time-consuming sample pre-enrichment steps to elevate pathogen concentrations to detectable levels or DNA based polymerase chain reaction (PCR) techniques that require extensive user training and expensive instrumentation. Detection utilizing bioluminescent bioreporter organisms, however, can provide a simple and rapid means of monitoring foodborne pathogens. Bioluminescent bioreporters are engineered to produce light in response to specific environmental inducers. The light signal is then measured with photodetector devices to generate a quantitative assessment of inducer concentration. The immediate goal of this research effort is to integrate key quorum sensing signal transduction elements into pathogen specific bacteriophages. Upon infection of a unique pathogenic species by the bacteriophages, quorum sensing signals will be generated that will subsequently stimulate bioluminescence in neighboring bioluminescent bioreporter cells. Utilizing both bacteriophages and bioluminescent bioreporters, we realize exceptional pathogen specificity while attaining enhanced bioluminescence production. This integrative approach will lead to rapid pathogen identification without requisite sample pre-enrichment. Additionally, since the bioluminescent response is completely intrinsic to the bioreporter organism, no user interventions are required for generating light signals; the protocol requires only addition of the food sample with the bacteriophage/bioluminescent bioreporter system. Measurement of light responses can be achieved using high-throughput microtiter plate readers, hand-held photomultiplier units, or microchip luminometers.

  15. [Investigation of pathogenic phenotypes and virulence determinants of food-borne Salmonella enterica strains in Caenorhabditis elegans animal model].

    PubMed

    Aksoy, Deniz; Şen, Ece

    2015-10-01

    between 3.4 and 7.3 days. The significance of the differences between TD50 values of the positive control and experimental groups was analysed by using Student's t test. Ten of the isolates (31.25%), of which six belonged to Infantis and four to the Enteritidis serotypes were non-pathogenic, and the rest 22 isolates including Infantis, Kentucky and Telaviv serovars (67.75%) were found to be pathogenic for the C.elegans animal system (p< 0.05). Twenty of the isolates (90.9%) which were determined as pathogens showed multiple drug resistance and three of them possessed 1-3 plasmids, sizes between 1.2 - 42.4 kb. The overall results underlined wide distribution of antibiotic-resistant Salmonella enterica strains and provided a practical alternative for studies aiming determination of pathogenic potential of environmental and food-borne strains through new experimental animal infection model. In this study, C.elegans was utilized for the first time to determine the profiles of pathogenicity of food-borne Salmonella serotypes in Turkey.

  16. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts.

    PubMed

    Tayel, Ahmed A; Hussein, Heba; Sorour, Noha M; El-Tras, Wael F

    2015-12-01

    Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy-based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy-based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese.

  17. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    PubMed Central

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  18. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria.

    PubMed

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review.

  19. Electroanalytical sensors and devices for multiplexed detection of foodborne pathogen microorganisms.

    PubMed

    Pedrero, María; Campuzano, Susana; Pingarrón, José M

    2009-01-01

    The detection and identification of pathogen microorganisms still rely on conventional culturing techniques, which are not suitable for on-site monitoring. Therefore, a great research challenge in this field is focused on the need to develop rapid, reliable, specific, and sensitive methods to detect these bacteria at low cost. Moreover, the growing interest in biochip development for large scale screening analysis implies improved miniaturization, reduction of analysis time and cost, and multi-analyte detection, which has nowadays become a crucial challenge. This paper reviews multiplexed foodborne pathogen microorganisms detection methods based on electrochemical sensors incorporating microarrays and other platforms. These devices usually involve antibody-antigen and DNA hybridization specific interactions, although other approaches such as the monitoring of oxygen consumption are also considered.

  20. Radiation sensitivity of foodborne pathogens in meat byproducts with different packaging

    NASA Astrophysics Data System (ADS)

    Yong, Hae In; Kim, Hyun-Joo; Nam, Ki Chang; Kwon, Joong Ho; Jo, Cheorun

    2015-10-01

    The aim of this study was to determine radiation sensitivity of Escherichia coli O157:H7 and Listeria monocytogenes in edible meat byproducts. Seven beef byproducts (heart, liver, lung, lumen, omasum, large intestine, and small intestine) and four pork byproducts (heart, large intestine, liver, and small intestine) were used. Electron beam irradiation significantly reduced the numbers of pathogenic microorganisms in meat byproducts and no viable cells were detected in both aerobically- and vacuum-packaged samples irradiated at 4 kGy. Meat byproducts packed under vacuum had higher D10 value than the ones packed aerobically. No significant difference was observed between the D10 values of E. coli O157:H7 and L. monocytogenes inoculated in either aerobically or vacuum packaged samples. These results suggest that low-dose electron beam irradiation can significantly decrease microbial numbers and reduce the risk of meat byproduct contamination by the foodborne pathogens.

  1. Recent developments in CE-based detection methods for food-borne pathogens.

    PubMed

    Shin, Gi Won; Hwang, Hee Sung; Chung, Boram; Jung, Gyoo Yeol

    2010-07-01

    Rapid and sensitive detection of food-borne pathogens is critical for food safety from the viewpoint of both the public health professionals and the food industry. Conventional method is, however, known to be labor-intensive, time-consuming, and expensive due to the separate cultivation and biochemical assay. Many relevant technologies, such as flow cytometry, MALDI-MS, ESI-MS, DNA microarray, and CE, have been intensively developed to date. Among them, CE is considered to be the most efficient and reproducible because of low sample loss and simple automation. CE-based pathogen detection methods can be classified into three categories based on the separation targets: cell separation, nucleic-acid-based identification, and protein separation coupled with characterization. In this review, recent developments in each sphere of CE-based technology are discussed. Additionally, the critical features of each approach and necessary future technical improvements are also reviewed.

  2. Electroanalytical Sensors and Devices for Multiplexed Detection of Foodborne Pathogen Microorganisms

    PubMed Central

    Pedrero, María; Campuzano, Susana; Pingarrón, José M.

    2009-01-01

    The detection and identification of pathogen microorganisms still rely on conventional culturing techniques, which are not suitable for on-site monitoring. Therefore, a great research challenge in this field is focused on the need to develop rapid, reliable, specific, and sensitive methods to detect these bacteria at low cost. Moreover, the growing interest in biochip development for large scale screening analysis implies improved miniaturization, reduction of analysis time and cost, and multi-analyte detection, which has nowadays become a crucial challenge. This paper reviews multiplexed foodborne pathogen microorganisms detection methods based on electrochemical sensors incorporating microarrays and other platforms. These devices usually involve antibody-antigen and DNA hybridization specific interactions, although other approaches such as the monitoring of oxygen consumption are also considered. PMID:22346711

  3. Antibacterial effectiveness of chitosan-propolis coated polypropylene films against foodborne pathogens.

    PubMed

    Torlak, Emrah; Sert, Durmuş

    2013-09-01

    Antibacterial properties of chitosan are well documented in the literature. However its antibacterial effectiveness in the film form is controversial due to the methodological differences in test methods used. In this study, antibacterial effectiveness of chitosan-coated polypropylene films alone and incorporating ethanolic extract of propolis (EEP) were evaluated against six foodborne pathogens (Bacillus cereus, Cronobacter sakazakii, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium and Staphylococcus aureus) using the ISO 22196 method designed for the antibacterial treated plastic products. The results demonstrated that chitosan coated film exhibited the broad-spectrum antibacterial activity. Incorporation of EPP to coating at 10% (propolis resin/chitosan) enhanced antibacterial activity against all pathogens tested. Results of this study revealed that chitosan has antibacterial activity in the film form and that propolis is a promising antimicrobial for the food packaging applications.

  4. Viable but nonculturable state of foodborne pathogens in grapefruit juice: a study of laboratory.

    PubMed

    Nicolò, Marco Sebastiano; Gioffrè, Angela; Carnazza, Santina; Platania, Giuseppe; Silvestro, Isabella Di; Guglielmino, Salvatore Pietro Paolo

    2011-01-01

    Several foodborne human pathogens, when exposed to harsh conditions, enter viable but nonculturable (VBNC) state; however, still open is the question whether VBNC pathogens could be a risk for public health, because, potentially, they can resuscitate. Moreover, cultural methods for food safety control were not able to detect VBNC forms of foodborne bacteria. Particularly, it has not been established whether food chemophysical characteristics can induce VBNC state in contaminating pathogen bacterial populations, especially in food, such as salads and fresh fruit juices, not subjected to any decontamination treatment. In this preliminary study, we intentionally contaminated grapefruit juice to determine whether pathogen bacteria could enter VNBC state. In fact, grapefruit juice contains natural antimicrobial compounds, has an average pH of about 3 and low content in carbohydrates. Such characteristics make grapefruit juice a harsh environment for microbial survival. For this purpose, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium ATCC 14028, Listeria monocytogenes ATCC 7644, and Shigella flexneri ATCC 12022, at two different inoculum sizes, have been used. Viability by the LIVE/DEAD BacLight Bacterial Viability kit and culturability by plate counts assay were monitored, whereas "resuscitation" of nonculturable populations was attempted by inoculation in nutrient-rich media. The data showed that L. monocytogenes lost both culturability and viability and did not resuscitate within 24 h independently on inoculum size, whereas E. coli O157:H7 was able to resuscitate after 24 h but did not after 48 h. Salmonella Typhimurium and S. flexneri, depending on inoculum size, lost culturability but maintained viability and were able to resuscitate; moreover, S. flexneri was still able to form colonies after 48 h at high inoculum size. In conclusion, entry into VBNC state differs on the species, depending, in turn, on inoculum size and time of incubation.

  5. Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce.

    PubMed

    Oliveira, M; Abadias, M; Colás-Medà, P; Usall, J; Viñas, I

    2015-12-01

    Fruits and vegetables can become contaminated by foodborne pathogens such as Escherichia coli O157:H7, Salmonella and Listeria monocytogenes, and it has been demonstrated that current industrial sanitizing treatments do not eliminate the pathogens when present. Chemical control is widely used, but biological control appears to be a better solution, mainly using the native microbiota present on fresh produce. The first objective of this study was to isolate native microbiota from whole and fresh-cut produce and to determine whether these bacteria were antagonistic toward foodborne pathogens. A total of 112 putative antagonist isolates were screened for their ability to inhibit the growth of Salmonella enterica on lettuce disks. Five different genera reduced S. enterica growth more than 1-log unit at 20°C at the end of 3 days. When tested against L. monocytogenes 230/3, only Pseudomonas sp. strain M309 (M309) was able to reduce pathogen counts by more than 1-log unit. Therefore, M309 strain was selected to be tested on lettuce disks at 10°C against S. enterica, E. coli O157:H7 and L. monocytogenes. M309 strain was only able to reduce S. enterica and E. coli O157:H7 populations. The second objective was to test different biopreservative methods including M309 strain, Pseudomonas graminis CPA-7 (CPA-7), bacteriophages (Listex P100 and Salmonelex) and nisin at conditions simulating commercial applications against Salmonella and L. monocytogenes on fresh-cut lettuce. The addition of the biopreservative agents did not result in a significant reduction of Salmonella population. However, CPA-7 strain together with nisin reduced L. monocytogenes numbers after 6 days of storage at 10°C. The cocktail of Salmonella and L. monocytogenes was not markedly inactivated by their respective bacteriophage solutions. This study highlighted the potential of biocontrol, but the combination with other technologies may be required to improve their application on fresh-cut lettuce. PMID

  6. Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce.

    PubMed

    Oliveira, M; Abadias, M; Colás-Medà, P; Usall, J; Viñas, I

    2015-12-01

    Fruits and vegetables can become contaminated by foodborne pathogens such as Escherichia coli O157:H7, Salmonella and Listeria monocytogenes, and it has been demonstrated that current industrial sanitizing treatments do not eliminate the pathogens when present. Chemical control is widely used, but biological control appears to be a better solution, mainly using the native microbiota present on fresh produce. The first objective of this study was to isolate native microbiota from whole and fresh-cut produce and to determine whether these bacteria were antagonistic toward foodborne pathogens. A total of 112 putative antagonist isolates were screened for their ability to inhibit the growth of Salmonella enterica on lettuce disks. Five different genera reduced S. enterica growth more than 1-log unit at 20°C at the end of 3 days. When tested against L. monocytogenes 230/3, only Pseudomonas sp. strain M309 (M309) was able to reduce pathogen counts by more than 1-log unit. Therefore, M309 strain was selected to be tested on lettuce disks at 10°C against S. enterica, E. coli O157:H7 and L. monocytogenes. M309 strain was only able to reduce S. enterica and E. coli O157:H7 populations. The second objective was to test different biopreservative methods including M309 strain, Pseudomonas graminis CPA-7 (CPA-7), bacteriophages (Listex P100 and Salmonelex) and nisin at conditions simulating commercial applications against Salmonella and L. monocytogenes on fresh-cut lettuce. The addition of the biopreservative agents did not result in a significant reduction of Salmonella population. However, CPA-7 strain together with nisin reduced L. monocytogenes numbers after 6 days of storage at 10°C. The cocktail of Salmonella and L. monocytogenes was not markedly inactivated by their respective bacteriophage solutions. This study highlighted the potential of biocontrol, but the combination with other technologies may be required to improve their application on fresh-cut lettuce.

  7. [The study of influence of stresses on virulence genes expression in foodborne pathogens Campylobacter jejuni].

    PubMed

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Sheveleva, S A

    2016-01-01

    The study of the responses to cold exposure in Campylobacterjejuni (C. jejuni)--one of the most common foodborne pathogens is important for elucidating the mechanisms of acquisition of products contaminated with campylobacter, hazardous properties. These data are also necessary to create effective systems of microbiological controls at all stages of production and storage of food. 5 pairs of oligonucleotide primers were selected for detecting of genes cadF, cdtB, ciaB, flaA, iamA, encoding the main factors of pathogenicity of foodborne pathogens Campylobacter jejuni--adhesion and invasion of epithelial cells, production of CDT-toxin and mobility. To quantify the expression levels of target genes of C. jejuni a comparative method of determining the amount of amplification products of genes encoding pathogenicity factors of Campylobacter spp. has been developed using real-time PCR with intercalating dyes. To calculate and quantify gene expression the mathematical models have been obtained that allow extrapolation of threshold cycles of amplification to the initial number of copies of RNA/DNA in the tested samples. It has been established that exposure of C. jejuni at low temperatures +4 degrees C did not lead to increased levels of expression of genes cdtB and ciaB. However, in the populations of C. jejuni subjected to freezing, followed by incubation at optimum for the pathogen temperature of +42 degrees C, the increase in expression of mRNA encoding protein subunit B of CDT-toxin and antigenic marker of invasion took place. The number of copies of RNA in C. jejuni after stress exposure increased by 1.14-2.6 lg in comparison with intact cultures. CdtB and ciaB gene expression in C. jejuni can serve as an indicator of cell response to stress and helps to restore the functions of the bacterial cells after the termination of cold exposure and return of the pathogen in conditions favourable to the realization of its pathogenic potential. PMID:27228703

  8. [The study of influence of stresses on virulence genes expression in foodborne pathogens Campylobacter jejuni].

    PubMed

    Efimochkina, N R; Bykova, I B; Markova, Yu M; Korotkevich, Yu V; Sheveleva, S A

    2016-01-01

    The study of the responses to cold exposure in Campylobacterjejuni (C. jejuni)--one of the most common foodborne pathogens is important for elucidating the mechanisms of acquisition of products contaminated with campylobacter, hazardous properties. These data are also necessary to create effective systems of microbiological controls at all stages of production and storage of food. 5 pairs of oligonucleotide primers were selected for detecting of genes cadF, cdtB, ciaB, flaA, iamA, encoding the main factors of pathogenicity of foodborne pathogens Campylobacter jejuni--adhesion and invasion of epithelial cells, production of CDT-toxin and mobility. To quantify the expression levels of target genes of C. jejuni a comparative method of determining the amount of amplification products of genes encoding pathogenicity factors of Campylobacter spp. has been developed using real-time PCR with intercalating dyes. To calculate and quantify gene expression the mathematical models have been obtained that allow extrapolation of threshold cycles of amplification to the initial number of copies of RNA/DNA in the tested samples. It has been established that exposure of C. jejuni at low temperatures +4 degrees C did not lead to increased levels of expression of genes cdtB and ciaB. However, in the populations of C. jejuni subjected to freezing, followed by incubation at optimum for the pathogen temperature of +42 degrees C, the increase in expression of mRNA encoding protein subunit B of CDT-toxin and antigenic marker of invasion took place. The number of copies of RNA in C. jejuni after stress exposure increased by 1.14-2.6 lg in comparison with intact cultures. CdtB and ciaB gene expression in C. jejuni can serve as an indicator of cell response to stress and helps to restore the functions of the bacterial cells after the termination of cold exposure and return of the pathogen in conditions favourable to the realization of its pathogenic potential.

  9. Shedding of foodborne pathogens and microbial carcass contamination of hunted wild ruminants.

    PubMed

    Obwegeser, Tobias; Stephan, Roger; Hofer, Eveline; Zweifel, Claudio

    2012-09-14

    To assess the shedding of selected bacterial foodborne pathogens, fecal samples from 239 hunted wild red deer, roe deer, chamois, and ibex were examined. All samples tested negative for Salmonella spp. and L. monocytogenes, but other Listeria species were occasionally found. Of the 239 fecal samples, 32.6% tested positive for stx (Shiga toxins), 6.7% for eae (intimin) and 13.8% for both stx and eae genes. Among the 56 isolated Shiga toxin-producing Escherichia coli (STEC) strains, 44.6% harbored genes for the Stx2 group, 30.4% for the Stx1 group, and 21.4% for both Stx1 and Stx2. Only two of these strains harbored eae. Hence, wild ruminants constitute a reservoir for STEC, but further characterization data of the isolated strains are required to assess their actual human pathogenicity. In addition, 328 carcasses from hunted wild red deer, roe deer, and chamois were examined for total viable counts (TVC) and Enterobacteriaceae by swabbing. For the examined animal species, average TVC (4.0-4.2 log CFU cm(-2)) and average Enterobacteriaceae counts/detection rates (2.3-2.6 log CFU cm(-2); 87.5-90%) were at comparable levels. On the other hand, the microbial status of carcasses differed between certain abattoirs by several orders of magnitude. Strict compliance with good hunting and hygiene practices during any step from shooting, through evisceration in the field, to dehiding, cooling, and processing is therefore of central importance to avoid contaminations and to prevent foodborne pathogens carried by the animals from entering the food chain.

  10. The Pathogen-annotated Tracking Resource Network (PATRN) system: a web-based resource to aid food safety, regulatory science, and investigations of foodborne pathogens and disease.

    PubMed

    Gopinath, G; Hari, K; Jain, R; Mammel, M K; Kothary, M H; Franco, A A; Grim, C J; Jarvis, K G; Sathyamoorthy, V; Hu, L; Datta, A R; Patel, I R; Jackson, S A; Gangiredla, J; Kotewicz, M L; LeClerc, J E; Wekell, M; McCardell, B A; Solomotis, M D; Tall, B D

    2013-06-01

    Investigation of foodborne diseases requires the capture and analysis of time-sensitive information on microbial pathogens that is derived from multiple analytical methods and sources. The web-based Pathogen-annotated Tracking Resource Network (PATRN) system (www.patrn.net) was developed to address the data aggregation, analysis, and communication needs important to the global food safety community for the investigation of foodborne disease. PATRN incorporates a standard vocabulary for describing isolate metadata and provides a representational schema for a prototypic data exchange standard using a novel data loading wizard for aggregation of assay and attribution information. PATRN currently houses expert-curated, high-quality "foundational datasets" consisting of published experimental results from conventional assays and next generation analysis platforms for isolates of Escherichia coli, Listeria monocytogenes, and Salmonella, Shigella, Vibrio and Cronobacter species. A suite of computational tools for data mining, clustering, and graphical representation is available. Within PATRN, the public curated data repository is complemented by a secure private workspace for user-driven analyses, and for sharing data among collaborators. To demonstrate the data curation, loading wizard features, and analytical capabilities of PATRN, three use-case scenarios are presented. Use-case scenario one is a comparison of the distribution and prevalence of plasmid-encoded virulence factor genes among 249 Cronobacter strains with similar attributes to that of nine Cronobacter isolates from recent cases obtained between March and October, 2010-2011. To highlight PATRN's data management and trend finding tools, analysis of datasets, stored in PATRN as part of an ongoing surveillance project to identify the predominant molecular serogroups among Cronobacter sakazakii isolates observed in the USA is shown. Use-case scenario two demonstrates the secure workspace available for private

  11. The Pathogen-annotated Tracking Resource Network (PATRN) system: a web-based resource to aid food safety, regulatory science, and investigations of foodborne pathogens and disease.

    PubMed

    Gopinath, G; Hari, K; Jain, R; Mammel, M K; Kothary, M H; Franco, A A; Grim, C J; Jarvis, K G; Sathyamoorthy, V; Hu, L; Datta, A R; Patel, I R; Jackson, S A; Gangiredla, J; Kotewicz, M L; LeClerc, J E; Wekell, M; McCardell, B A; Solomotis, M D; Tall, B D

    2013-06-01

    Investigation of foodborne diseases requires the capture and analysis of time-sensitive information on microbial pathogens that is derived from multiple analytical methods and sources. The web-based Pathogen-annotated Tracking Resource Network (PATRN) system (www.patrn.net) was developed to address the data aggregation, analysis, and communication needs important to the global food safety community for the investigation of foodborne disease. PATRN incorporates a standard vocabulary for describing isolate metadata and provides a representational schema for a prototypic data exchange standard using a novel data loading wizard for aggregation of assay and attribution information. PATRN currently houses expert-curated, high-quality "foundational datasets" consisting of published experimental results from conventional assays and next generation analysis platforms for isolates of Escherichia coli, Listeria monocytogenes, and Salmonella, Shigella, Vibrio and Cronobacter species. A suite of computational tools for data mining, clustering, and graphical representation is available. Within PATRN, the public curated data repository is complemented by a secure private workspace for user-driven analyses, and for sharing data among collaborators. To demonstrate the data curation, loading wizard features, and analytical capabilities of PATRN, three use-case scenarios are presented. Use-case scenario one is a comparison of the distribution and prevalence of plasmid-encoded virulence factor genes among 249 Cronobacter strains with similar attributes to that of nine Cronobacter isolates from recent cases obtained between March and October, 2010-2011. To highlight PATRN's data management and trend finding tools, analysis of datasets, stored in PATRN as part of an ongoing surveillance project to identify the predominant molecular serogroups among Cronobacter sakazakii isolates observed in the USA is shown. Use-case scenario two demonstrates the secure workspace available for private

  12. Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma.

    PubMed

    Kayes, Michael M; Critzer, Faith J; Kelly-Wintenberg, Kimberly; Roth, J Reece; Montie, Thomas C; Golden, David A

    2007-01-01

    This study was conducted to determine the efficacy of a one atmosphere uniform glow discharge plasma (OAUGDP) for inactivation of foodborne pathogens and to evaluate the influence of growth temperature, pH, and culture age on their inactivation. Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Salmonella Enteritidis, Vibrio parahaemolyticus, Yersinia enterocolitica, and Shigella flexneri were evaluated. Three-strain mixtures of each bacterium were inoculated (6-7 log CFU/cm(2)) onto microscope slides containing nonselective agar media adjusted to pH 5 or 7. Samples were exposed to plasma for 0-240 sec immediately, or after incubation for 24 h at 10 degrees C or 35 degrees C. After exposure, the agar was removed from the slides and pummeled in 0.1% peptone water with a stomacher, serially diluted, surface plated onto nonselective media, and incubated at 35 degrees C. Exposure time, pH, incubation temperature, and culture age affected survival of all pathogens exposed to plasma (P < 0.05). The greatest reduction of pathogens generally occurred during the initial exposure time of 30 or 90 sec. Pathogens incubated for 24 h before exposure were more resistant than those exposed immediately after inoculation. Incubation at 35 degrees C before exposure resulted in greater resistance to plasma inactivation than incubation at 10 degrees C. No appreciable differences between gram-positive and gram-negative pathogens were observed, although the spore-forming B. cereus was more resistant to plasma than non-spore-formers. These findings support the potential for plasma treatment of foods or surfaces for pathogen reduction. Increased sensitivity of pathogens to plasma at reduced pH and temperature is encouraging, since these conditions are applicable to many foods during processing, handling, and storage. PMID:17378708

  13. Simultaneous, specific and real-time detection of biothreat and frequently encountered food-borne pathogens

    PubMed Central

    Woubit, Abdela Salah; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-01-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia and Francisella include important food safety and biothreat agents causing food-related and other human illnesses worldwide. We aimed to develop rapid methods with the capability to simultaneously and differentially detect all six pathogens in one run. Our initial experiments to use previously reported sets of primers revealed non-specificity of some of the sequences when tested against a broader array of pathogens, or proved not optimal for simultaneous detection parameters. By extensive mining of the whole genome and protein databases of diverse closely and distantly related bacterial species and strains, we have identified unique genome regions, which we utilized to develop a detection platform. Twelve of the specific genomic targets we have identified to design the primers in F. tularensis ssp. tularensis, F. tularensis ssp. novicida, S. dysentriae, S. typhimurium, V. cholera, Y. pestis, and Y. pseudotuberculosis contained either hypothetical or putative proteins, the functions of which have not been clearly defined. Corresponding primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in-silico PCR against whole genome sequences of different species, sub-species, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (E.coli O157:H7 strain EDL 933, Shigella dysentriae, Salmonella typhi, Francisella tularensis ssp. tularensis, Vibrio cholera, and Yersinia pestis) and six foodborne pathogens (Salmonella typhimurium, Salmonella saintpaul, Shigella sonnei, Francisella novicida, Vibrio parahemolytica and Yersinia pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed using purified DNA showed the lowest detection limit of 640 fg

  14. Antibacterial activity of three medicinal Thai plants against Campylobacter jejuni and other foodborne pathogens.

    PubMed

    Dholvitayakhun, Achara; Cushnie, T P Tim; Trachoo, Nathanon

    2012-01-01

    Leaves of Adenanthera pavonina, Moringa oleifera and Annona squamosa are used in traditional Thai medicine to treat dysentery and other diseases. This study investigated the antibacterial activity of these plants against six species of foodborne pathogen. Methods and solvents employed to extract active constituents were optimised using the disc diffusion assay. Phytochemical analysis of the optimised extracts was performed by thin layer chromatography (TLC). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined by broth microdilution. A. pavonina contained flavonoids, terpines and tannins, and was the most active extract against Campylobacter jejuni, inhibiting growth at 62.5-125 µg mL(-1). The A. squamosa extract contained flavonoids, terpines, tannins and alkaloids, and had the broadest spectrum of antibacterial activity, inhibiting Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus and C. jejuni between 62.5 and 500 µg mL(-1). MBCs were 2- to 4-fold higher than MICs against C. jejuni and B. cereus, suggesting the extracts are bactericidal against these species. Negligible activity was detected from M. oleifera. The data presented here show that A. pavonina and A. squamosa could potentially be used in modern applications aimed at the treatment or prevention of foodborne diseases. PMID:21878033

  15. Antibacterial activity of three medicinal Thai plants against Campylobacter jejuni and other foodborne pathogens.

    PubMed

    Dholvitayakhun, Achara; Cushnie, T P Tim; Trachoo, Nathanon

    2012-01-01

    Leaves of Adenanthera pavonina, Moringa oleifera and Annona squamosa are used in traditional Thai medicine to treat dysentery and other diseases. This study investigated the antibacterial activity of these plants against six species of foodborne pathogen. Methods and solvents employed to extract active constituents were optimised using the disc diffusion assay. Phytochemical analysis of the optimised extracts was performed by thin layer chromatography (TLC). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined by broth microdilution. A. pavonina contained flavonoids, terpines and tannins, and was the most active extract against Campylobacter jejuni, inhibiting growth at 62.5-125 µg mL(-1). The A. squamosa extract contained flavonoids, terpines, tannins and alkaloids, and had the broadest spectrum of antibacterial activity, inhibiting Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus and C. jejuni between 62.5 and 500 µg mL(-1). MBCs were 2- to 4-fold higher than MICs against C. jejuni and B. cereus, suggesting the extracts are bactericidal against these species. Negligible activity was detected from M. oleifera. The data presented here show that A. pavonina and A. squamosa could potentially be used in modern applications aimed at the treatment or prevention of foodborne diseases.

  16. Foodborne Bacterial Pathogens in Retail Prepacked Ready-to-Eat Mixed Ingredient Salads.

    PubMed

    Söderqvist, Karin; Thisted Lambertz, Susanne; Vågsholm, Ivar; Boqvist, Sofia

    2016-06-01

    Prepacked ready-to-eat mixed ingredient salads (RTE salads) are readily available whole meals that include a variety of ingredients such as raw vegetables, cooked meat, and pasta. As part of a trend toward healthy convenience foods, RTE salads have become an increasingly popular product among consumers. However, data on the incidence of foodborne pathogens in RTE salads are scarce. In this study, the microbiological safety of 141 RTE salads containing chicken, ham, or smoked salmon was investigated. Salad samples were collected at retail and analyzed using standard methods for Listeria monocytogenes, Shiga toxin-producing Escherichia coli (STEC), pathogenic Yersinia enterocolitica, Salmonella, and Campylobacter spp.L. monocytogenes was isolated from two (1.4%) of the RTE salad samples. Seven (5.0%) of the samples were positive for the ail gene (present in all human pathogenic Y. enterocolitica isolates) and three (2.1%) of the samples were positive for the Shiga toxin genes stx1 and/or stx2. However, no strains of pathogenic Y.enterocolitica or STEC were isolated. Thus, pathogens were found or suspected in almost 1 of 10 RTE salads investigated, and pathogenic bacteria probably are present in various RTE salads from retail premises in Sweden. Because RTE salads are intended to be consumed without heat treatment, control of the ingredients and production hygiene is essential to maintain consumer safety. The recommended maximum storage temperature for RTE salads varies among countries but can be up to 8°C (e.g., in Sweden). Even during a short shelf life (3 to 5 days), storage at 8°C can enable growth of psychrotrophs such as L. monocytogenes and Y. enterocolitica. The maximum storage temperature should therefore be reduced. PMID:27296602

  17. Foodborne Bacterial Pathogens in Retail Prepacked Ready-to-Eat Mixed Ingredient Salads.

    PubMed

    Söderqvist, Karin; Thisted Lambertz, Susanne; Vågsholm, Ivar; Boqvist, Sofia

    2016-06-01

    Prepacked ready-to-eat mixed ingredient salads (RTE salads) are readily available whole meals that include a variety of ingredients such as raw vegetables, cooked meat, and pasta. As part of a trend toward healthy convenience foods, RTE salads have become an increasingly popular product among consumers. However, data on the incidence of foodborne pathogens in RTE salads are scarce. In this study, the microbiological safety of 141 RTE salads containing chicken, ham, or smoked salmon was investigated. Salad samples were collected at retail and analyzed using standard methods for Listeria monocytogenes, Shiga toxin-producing Escherichia coli (STEC), pathogenic Yersinia enterocolitica, Salmonella, and Campylobacter spp.L. monocytogenes was isolated from two (1.4%) of the RTE salad samples. Seven (5.0%) of the samples were positive for the ail gene (present in all human pathogenic Y. enterocolitica isolates) and three (2.1%) of the samples were positive for the Shiga toxin genes stx1 and/or stx2. However, no strains of pathogenic Y.enterocolitica or STEC were isolated. Thus, pathogens were found or suspected in almost 1 of 10 RTE salads investigated, and pathogenic bacteria probably are present in various RTE salads from retail premises in Sweden. Because RTE salads are intended to be consumed without heat treatment, control of the ingredients and production hygiene is essential to maintain consumer safety. The recommended maximum storage temperature for RTE salads varies among countries but can be up to 8°C (e.g., in Sweden). Even during a short shelf life (3 to 5 days), storage at 8°C can enable growth of psychrotrophs such as L. monocytogenes and Y. enterocolitica. The maximum storage temperature should therefore be reduced.

  18. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria.

    PubMed

    Shan, Bin; Cai, Yi-Zhong; Brooks, John D; Corke, Harold

    2007-07-11

    Cinnamomum burmannii Blume (cinnamon stick) from Indonesia is a little-investigated spice. In this study, the antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of cinnamon stick extract were evaluated against five common foodborne pathogenic bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella anatum). Cinnamon stick extract exhibited significant antibacterial properties. Major compounds in cinnamon stick were tentatively identified by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC-MS) as a predominant volatile oil component ((E)-cinnamaldehyde) and several polyphenols (mainly proanthocyanidins and (epi)catechins). Both (E)-cinnamaldehyde and proanthocyanidins significantly contributed to the antibacterial properties. Additionally, scanning electron microscopy was used to observe morphological changes of bacteria treated with the crude extract of cinnamon stick and its major components. This study suggests that cinnamon stick and its bioactive components have potential for application as natural food preservatives.

  19. Modeling optimal process conditions for UV-heat inactivation of foodborne pathogens in liquid foods.

    PubMed

    Gayán, Elisa; Serrano, María Jesús; Álvarez, Ignacio; Condón, Santiago

    2016-12-01

    The combination of ultraviolet radiation and heat (UV-H treatment) has been demonstrated as a promising strategy to overcome the limited UV germicidal effect in fruit juices. Nonetheless, there are so far no data regarding the efficacy of the combined process for the inactivation of bacterial foodborne pathogens in other liquid foods with different pH and composition. In this investigation, the optimum UV-H processing conditions for the inactivation of Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and S. aureus in chicken and vegetable broth, in addition to juices, were determined. From these data models that accurately predict the most advantageous UV-H treatment temperature and the expected synergistic lethal effect from UV and heat resistance data separately were constructed. Equations demonstrated that the optimum UV-H treatment temperature mostly depended on heat resistance, whereas the maximum synergistic lethal effect also was affected by the UV resistance of the microorganism of concern in a particular food.

  20. Modeling optimal process conditions for UV-heat inactivation of foodborne pathogens in liquid foods.

    PubMed

    Gayán, Elisa; Serrano, María Jesús; Álvarez, Ignacio; Condón, Santiago

    2016-12-01

    The combination of ultraviolet radiation and heat (UV-H treatment) has been demonstrated as a promising strategy to overcome the limited UV germicidal effect in fruit juices. Nonetheless, there are so far no data regarding the efficacy of the combined process for the inactivation of bacterial foodborne pathogens in other liquid foods with different pH and composition. In this investigation, the optimum UV-H processing conditions for the inactivation of Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and S. aureus in chicken and vegetable broth, in addition to juices, were determined. From these data models that accurately predict the most advantageous UV-H treatment temperature and the expected synergistic lethal effect from UV and heat resistance data separately were constructed. Equations demonstrated that the optimum UV-H treatment temperature mostly depended on heat resistance, whereas the maximum synergistic lethal effect also was affected by the UV resistance of the microorganism of concern in a particular food. PMID:27554141

  1. Potential for bio-control of food-borne pathogens with Bacteriovorax spp. and implications for food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriovorax spp. (Bvx) are delta proteobacteria adapted to marine ecosystems where salinity concentration range from 1-3%. Due to their predation of Gram-negative bacteria, Bvx may have great potential for biocontrol of food-borne pathogens on fruits and leafy greens. The goal of this research was...

  2. Learning about Foodborne Pathogens: Evaluation of Student Perceptions of Group Project Work in a Food Microbiology Course

    ERIC Educational Resources Information Center

    Turner, Mark S.

    2009-01-01

    This study examined the experiences of students in an active learning group work exercise in an introductory food microbiology course involving the study of foodborne pathogens. Small groups were required to access, analyze, and present information regarding a single food poisoning bacterium. The presentations contained features and…

  3. Immunological biosensing of foodborne pathogenic bacteria using electrochemical and light-addressable potentiometric sensor (LAPS) detection platforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Centers for Disease Control and Prevention estimates that contaminated foods account for 48 million illnesses, 128,000 hospitalizations, and 3000 deaths per year in the United States alone. Of these cases,9.4 million have been attributed to 31 major foodborne pathogens. Microbial culture-bas...

  4. Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens Listeria monocytogenes, Salmonella enterica, and enterohemorrhagic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation on abiotic surfaces in fresh produce processing facilities might play a role in foodborne outbreaks by providing protective microniches for pathogenic bacteria. Our previous study showed that a strain of Ralstonia insidiosa isolated from a fresh produce processing plant could enhan...

  5. Interaction of a free-living soil nematode, Caenorhabditis elegans, with surrogates of foodborne pathogenic bacteria.

    PubMed

    Anderson, Gary L; Caldwell, Krishaun N; Beuchat, Larry R; Williams, Phillip L

    2003-09-01

    Free-living nematodes may harbor, protect, and disperse bacteria, including those ingested and passed in viable form in feces. These nematodes are potential vectors for human pathogens and may play a role in foodborne diseases associated with fruits and vegetables eaten raw. In this study, we evaluated the associations between a free-living soil nematode, Caenorhabditis elegans, and Escherichia coli, an avirulent strain of Salmonella Typhimurium, Listeria welshimeri, and Bacillus cereus. On an agar medium, young adult worms quickly moved toward colonies of all four bacteria; over 90% of 3-day-old adult worms entered colonies within 16 min after inoculation. After 48 h, worms moved in and out of colonies of L. welshimeri and B. cereus but remained associated with E. coli and Salmonella Typhimurium colonies for at least 96 h. Young adult worms fed on cells of the four bacteria suspended in K medium. Worms survived and reproduced with the use of nutrients derived from all test bacteria, as determined for eggs laid by second-generation worms after culturing for 96 h. Development was slightly slower for worms fed gram-positive bacteria than for worms fed gram-negative bacteria. Worms that fed for 24 h on bacterial lawns formed on tryptic soy agar dispersed bacteria over a 3-h period when they were transferred to a bacteria-free agar surface. The results of this study suggest that C. elegans and perhaps other free-living nematodes are potential vectors for both gram-positive and gram-negative bacteria, including foodborne pathogens in soil.

  6. Prevalence of major foodborne pathogens in food confiscated from air passenger luggage.

    PubMed

    Schoder, Dagmar; Strauß, Anja; Szakmary-Brändle, Kati; Stessl, Beatrix; Schlager, Sabine; Wagner, Martin

    2015-09-16

    The EU has issued several directives and regulations pertaining to the importation of animals and products of animal origin (POAO) and veterinary controls on importation. Unfortunately, little information is available concerning associated risks and no attempts have been made to collect baseline data on the actual prevalence of zoonotic agents in POAO carried by travellers. To meet these challenges the EU recently introduced and financed a research project "PROMISE". Its main objectives were to assess the risks involved when foodborne pathogens are introduced to the EU via uncontrolled imports. With special permission of the Austrian health authorities, spot-checks were made of the luggage of 61,355 passengers from 240 flights from non-EU countries arriving at the Vienna International Airport (VIE airport). Over a period of eight months (August 2012 through March 2013) 1473 POAO items were confiscated. A total of 600 samples were suitable for Salmonella spp., Campylobacter spp., verotoxigenic Escherichia coli and Listeria monocytogenes prevalence analysis. Foodborne pathogens could be detected in 5% (30/600) of all samples. The highest prevalence was attributed to L. monocytogenes, at 2.5%, followed by VTEC and Salmonella spp. at 1.3% and 1.2%, respectively. Campylobacter spp. was not present in any of the 600 samples. Multi-locus sequence typing (MLST) of L. monocytogenes revealed that current sequence types (ST) corresponded to the worldwide most present clonal complexes 1, 2, 3, 5, 9, and 121. Generally, L. monocytogenes ST9 was the predominant allelic profile, which was mainly isolated from Turkish meat products.

  7. Effectiveness of low concentration electrolyzed water to inactivate foodborne pathogens under different environmental conditions.

    PubMed

    Rahman, S M E; Ding, Tian; Oh, Deog-Hwan

    2010-05-15

    Strong acid electrolyzed water (SAEW) has a very limited application due to its low pH value (<2.7) and corrosive characteristics. Thus, we developed new low concentration electrolyzed water (LcEW). The efficacy of LcEW under various treatment conditions for the inactivation of different foodborne pathogens in pure culture was evaluated and compared with SAEW. The efficiency of LcEW and SAEW for the inactivation of predominant foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium) with different dipping times (1, 3, 5, 7 and 10 min), pH values (2.5, 4.0, 5.0, 6.0 and 9.0) and temperatures (4, 15, 23, 35 and 50 degrees C) were determined. Reductions of bacterial populations of 1.7 to 6.6 log(10) CFU/mL in various treated conditions in cell suspensions were observed after treatment with LcEW and SAEW, compared to the untreated control. Dip washing (1 min at 35 degrees C) of lettuce leaves in both electrolyzed water resulted in 2.5 to 4.0 log(10) CFU/g compared to the unwashed control. Strong inactivation effects were observed in LcEW, and no significant difference (p>0.05) was observed between LcEW and SAEW. The effective form of chlorine compounds in LcEW was almost exclusively hypochlorous acid (HOCl), which has strong antimicrobial activity and leaves no residuals due to the low concentration of residual chlorine. Thus, LcEW could be widely applied as a new sanitizer in the food industry.

  8. [Development of molecular detection of food-borne pathogenic bacteria using miniaturized microfluidic devices].

    PubMed

    Iván, Kristóf; Maráz, Anna

    2015-12-20

    Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.

  9. [Investigation of antitumorigenic effects of food-borne non-pathogenic and pathogenic Salmonella enterica strains on MEF, DU145 and HeLa cell lines].

    PubMed

    Altıntaş Kazar, Gamze; Şen, Ece

    2016-07-01

    Basic applications in cancer therapy may fail to eradicate cancer cells completely, they can show toxic affects to healthy cells and development of resistance to antitumor agents may increase tendency to metastasis. Bacterial therapies have the advantage of specific targetting of tumors by selective toxicity, responsiveness to external signals, self-propelling capacity, and the sense of microenvironment. The most interest on the bacterial cancer therapy is about Salmonella spp. with a special emphasis of S.Typhimurium. The aim of this study was to investigate the antitumorigenic effects of food-borne non-pathogenic and pathogenic Salmonella enterica strains on different cell cultures. Non-pathogenic Salmonella Enteriditis (A17) and pathogenic Salmonella Telaviv (A22) strains isolated from chicken carcasses which were put on the market in Edirne province (located at Thrace region of Turkey), and Salmonella Typhimurium ATCC 14028 strain were used in the study. ATCC-derived MEF (mouse embryonic fibroblasts), DU145 (human prostate cancer cells), and HeLa (human cervical cancer cells) cell lines were cocultivated with Salmonella strains of MOI (Multiplicity of infection; number of bacteria:number of cell) of 1000:1, 100:1, 10:1, 1:1, 0.1:1. The cell viability was measured by colorimetric MTT cytotoxicity assay, the percentage of apoptosis was assessed by Tali® Apoptosis Assay-Annexin V Alexa Fluor® 488 kit (Invitrogen, Molecular Probes, Life Technologies, USA), and the caspase-3 activity was determined by colorimetric protease ApoTarget™ kit (Invitrogen, BioSource International, USA). It was shown that non-pathogenic S.Enteriditis (A17) decreased cell viability approximately to 70%, wheras patogenic S.Telaviv (A22) and standart S.Typhimurium ATCC 14028 strains reduced cell viability approximately to 80%. Adversely, it was also observed that pathogenic S.Telaviv (A22) strain induces apoptosis more effectively than non-pathogenic S.Enteriditis (A17) and S

  10. [Investigation of antitumorigenic effects of food-borne non-pathogenic and pathogenic Salmonella enterica strains on MEF, DU145 and HeLa cell lines].

    PubMed

    Altıntaş Kazar, Gamze; Şen, Ece

    2016-07-01

    Basic applications in cancer therapy may fail to eradicate cancer cells completely, they can show toxic affects to healthy cells and development of resistance to antitumor agents may increase tendency to metastasis. Bacterial therapies have the advantage of specific targetting of tumors by selective toxicity, responsiveness to external signals, self-propelling capacity, and the sense of microenvironment. The most interest on the bacterial cancer therapy is about Salmonella spp. with a special emphasis of S.Typhimurium. The aim of this study was to investigate the antitumorigenic effects of food-borne non-pathogenic and pathogenic Salmonella enterica strains on different cell cultures. Non-pathogenic Salmonella Enteriditis (A17) and pathogenic Salmonella Telaviv (A22) strains isolated from chicken carcasses which were put on the market in Edirne province (located at Thrace region of Turkey), and Salmonella Typhimurium ATCC 14028 strain were used in the study. ATCC-derived MEF (mouse embryonic fibroblasts), DU145 (human prostate cancer cells), and HeLa (human cervical cancer cells) cell lines were cocultivated with Salmonella strains of MOI (Multiplicity of infection; number of bacteria:number of cell) of 1000:1, 100:1, 10:1, 1:1, 0.1:1. The cell viability was measured by colorimetric MTT cytotoxicity assay, the percentage of apoptosis was assessed by Tali® Apoptosis Assay-Annexin V Alexa Fluor® 488 kit (Invitrogen, Molecular Probes, Life Technologies, USA), and the caspase-3 activity was determined by colorimetric protease ApoTarget™ kit (Invitrogen, BioSource International, USA). It was shown that non-pathogenic S.Enteriditis (A17) decreased cell viability approximately to 70%, wheras patogenic S.Telaviv (A22) and standart S.Typhimurium ATCC 14028 strains reduced cell viability approximately to 80%. Adversely, it was also observed that pathogenic S.Telaviv (A22) strain induces apoptosis more effectively than non-pathogenic S.Enteriditis (A17) and S

  11. Biosensors and bio-based methods for the separation and detection of foodborne pathogens.

    PubMed

    Bhunia, Arun K

    2008-01-01

    The safety of our food supply is always a major concern to consumers, food producers, and regulatory agencies. A safer food supply improves consumer confidence and brings economic stability. The safety of foods from farm-to-fork through the supply chain continuum must be established to protect consumers from debilitating, sometimes fatal episodes of pathogen outbreaks. The implementation of preventive strategies like hazard analysis critical control points (HACCP) assures safety but its full utility will not be realized unless supportive tools are fully developed. Rapid, sensitive, and accurate detection methods are such essential tools that, when integrated with HACCP, will improve safety of products. Traditional microbiological methods are powerful, error-proof, and dependable but these lengthy, cumbersome methods are often ineffective because they are not compatible with the speed at which the products are manufactured and the short shelf life of products. Automation in detection methods is highly desirable, but is not achievable with traditional methods. Therefore, biosensor-based tools offer the most promising solutions and address some of the modern-day needs for fast and sensitive detection of pathogens in real time or near real time. The application of several biosensor tools belonging to the categories of optical, electrochemical, and mass-based tools for detection of foodborne pathogens is reviewed in this chapter. Ironically, geometric growth in biosensor technology is fueled by the imminent threat of bioterrorism through food, water, and air and by the funding through various governmental agencies. PMID:18291303

  12. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  13. Biosensors and bio-based methods for the separation and detection of foodborne pathogens.

    PubMed

    Bhunia, Arun K

    2008-01-01

    The safety of our food supply is always a major concern to consumers, food producers, and regulatory agencies. A safer food supply improves consumer confidence and brings economic stability. The safety of foods from farm-to-fork through the supply chain continuum must be established to protect consumers from debilitating, sometimes fatal episodes of pathogen outbreaks. The implementation of preventive strategies like hazard analysis critical control points (HACCP) assures safety but its full utility will not be realized unless supportive tools are fully developed. Rapid, sensitive, and accurate detection methods are such essential tools that, when integrated with HACCP, will improve safety of products. Traditional microbiological methods are powerful, error-proof, and dependable but these lengthy, cumbersome methods are often ineffective because they are not compatible with the speed at which the products are manufactured and the short shelf life of products. Automation in detection methods is highly desirable, but is not achievable with traditional methods. Therefore, biosensor-based tools offer the most promising solutions and address some of the modern-day needs for fast and sensitive detection of pathogens in real time or near real time. The application of several biosensor tools belonging to the categories of optical, electrochemical, and mass-based tools for detection of foodborne pathogens is reviewed in this chapter. Ironically, geometric growth in biosensor technology is fueled by the imminent threat of bioterrorism through food, water, and air and by the funding through various governmental agencies.

  14. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection.

    PubMed

    Shu, Bowen; Zhang, Chunsun; Xing, Da

    2014-05-15

    High-throughput and rapid identification of multiple foodborne bacterial pathogens is vital in global public health and food industry. To fulfill this need, we propose a segmented continuous-flow multiplex polymerase chain reaction (SCF-MPCR) on a spiral-channel microfluidic device. The device consists of a disposable polytetrafluoroethylene (PTFE) capillary microchannel coiled on three isothermal blocks. Within the channel, n segmented flow regimes are sequentially generated, and m-plex PCR is individually performed in each regime when each mixture is driven to pass three temperature zones, thus providing a rapid analysis throughput of m×n. To characterize the performance of the microfluidic device, continuous-flow multiplex PCR in a single segmented flow has been evaluated by investigating the effect of key reaction parameters, including annealing temperatures, flow rates, polymerase concentration and amount of input DNA. With the optimized parameters, the genomic DNAs from Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7 and Staphylococcus aureus could be amplified simultaneously in 19min, and the limit of detection was low, down to 10(2) copiesμL(-1). As proof of principle, the spiral-channel SCF-MPCR was applied to sequentially amplify four different bacterial pathogens from banana, milk, and sausage, displaying a throughput of 4×3 with no detectable cross-contamination.

  15. Segmented continuous-flow multiplex polymerase chain reaction microfluidics for high-throughput and rapid foodborne pathogen detection.

    PubMed

    Shu, Bowen; Zhang, Chunsun; Xing, Da

    2014-05-15

    High-throughput and rapid identification of multiple foodborne bacterial pathogens is vital in global public health and food industry. To fulfill this need, we propose a segmented continuous-flow multiplex polymerase chain reaction (SCF-MPCR) on a spiral-channel microfluidic device. The device consists of a disposable polytetrafluoroethylene (PTFE) capillary microchannel coiled on three isothermal blocks. Within the channel, n segmented flow regimes are sequentially generated, and m-plex PCR is individually performed in each regime when each mixture is driven to pass three temperature zones, thus providing a rapid analysis throughput of m×n. To characterize the performance of the microfluidic device, continuous-flow multiplex PCR in a single segmented flow has been evaluated by investigating the effect of key reaction parameters, including annealing temperatures, flow rates, polymerase concentration and amount of input DNA. With the optimized parameters, the genomic DNAs from Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7 and Staphylococcus aureus could be amplified simultaneously in 19min, and the limit of detection was low, down to 10(2) copiesμL(-1). As proof of principle, the spiral-channel SCF-MPCR was applied to sequentially amplify four different bacterial pathogens from banana, milk, and sausage, displaying a throughput of 4×3 with no detectable cross-contamination. PMID:24793853

  16. Comparison of sample preparation methods for the recovery of foodborne pathogens from fresh produce.

    PubMed

    Kim, Se-Ri; Yoon, Yohan; Kim, Won-Il; Park, Kyeong-Hun; Yun, Hye-Jeong; Chung, Duck Hwa; Yun, Jong Chul; Ryu, Kyoung Yul

    2012-07-01

    Sample preparation methods (pummeling, pulsifying, sonication, and shaking by hand) were compared for achieving maximum recovery of foodborne pathogens from iceberg lettuce, perilla leaves, cucumber, green pepper, and cherry tomato. Antimicrobial and dehydration effects also were examined to investigate causes of poor recovery of pathogens. Each produce type was inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus at 6.0 log CFU/cm(2), and samples were prepared using the four methods. Bacterial populations recovered from the five types of produce were significantly different (P < 0.05) according to sample preparation methods and produce type. The bacterial populations recovered from pummeled and pulsified samples were higher (P < 0.05) than those recovered from sonicated and hand-shaken samples, except for cherry tomato. The number of bacteria recovered from produce was reduced (P < 0.05) from that of the inoculum by 0.16 to 2.69 log CFU/cm(2). Although extracts of iceberg lettuce, perilla leaves, cucumber, and green pepper had no antimicrobial activity, the populations of E. coli O157:H7, Salmonella Typhimurium, B. cereus, and L. monocytogenes in cherry tomato extract were slightly reduced after these treatments (P < 0.05). The pathogen populations on perilla leaves and cherry tomatoes decreased by >2 log CFU/cm(2) after exposure to 40% relative humidity for 1 h. No reduction was observed when the five pathogens were exposed to 90% relative humidity. These data suggest that pummeling and pulsifying are optimal sample preparation methods for detection of microorganisms. Acidic produce such as cherry tomato should be treated with a method that does not cause sample breakdown so that acid stress on the bacteria can be minimized. Dehydration stress also affects recovery of pathogens from produce. PMID:22980003

  17. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review.

    PubMed

    Hellberg, Rosalee S; Chu, Eric

    2016-08-01

    According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.

  18. Genomic paradigms for food-borne enteric pathogen analysis at the USFDA: case studies highlighting method utility, integration and resolution.

    PubMed

    Elkins, C A; Kotewicz, M L; Jackson, S A; Lacher, D W; Abu-Ali, G S; Patel, I R

    2013-01-01

    Modern risk control and food safety practices involving food-borne bacterial pathogens are benefiting from new genomic technologies for rapid, yet highly specific, strain characterisations. Within the United States Food and Drug Administration (USFDA) Center for Food Safety and Applied Nutrition (CFSAN), optical genome mapping and DNA microarray genotyping have been used for several years to quickly assess genomic architecture and gene content, respectively, for outbreak strain subtyping and to enhance retrospective trace-back analyses. The application and relative utility of each method varies with outbreak scenario and the suspect pathogen, with comparative analytical power enhanced by database scale and depth. Integration of these two technologies allows high-resolution scrutiny of the genomic landscapes of enteric food-borne pathogens with notable examples including Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica serovars from a variety of food commodities. Moreover, the recent application of whole genome sequencing technologies to food-borne pathogen outbreaks and surveillance has enhanced resolution to the single nucleotide scale. This new wealth of sequence data will support more refined next-generation custom microarray designs, targeted re-sequencing and "genomic signature recognition" approaches involving a combination of genes and single nucleotide polymorphism detection to distil strain-specific fingerprinting to a minimised scale. This paper examines the utility of microarrays and optical mapping in analysing outbreaks, reviews best practices and the limits of these technologies for pathogen differentiation, and it considers future integration with whole genome sequencing efforts.

  19. Prevalence and antimicrobial susceptibility of major foodborne pathogens in imported seafood.

    PubMed

    Wang, Fei; Jiang, Lin; Yang, Qianru; Han, Feifei; Chen, Siyi; Pu, Shuaihua; Vance, Amanda; Ge, Beilei

    2011-09-01

    Seafood is a leading commodity implicated in foodborne disease outbreaks in the United States. Seafood importation rose dramatically in the past 3 decades and now contributes to more than 80% of the total U.S. seafood supply. However, limited data are available on the microbiological safety of imported seafood. In this study, we obtained a total of 171 salmon, shrimp, and tilapia samples imported from 12 countries in three retail stores in Baton Rouge, LA. The total microbial population and the prevalence and antimicrobial susceptibilities of six major foodborne-pathogen genera (Campylobacter, Escherichia coli, Listeria, Salmonella, Shigella, and Vibrio) were determined. The aerobic plate counts (APC) for the 171 samples averaged 4.96 log CFU/g, with samples from Chile carrying the highest mean APC of 6.53 log CFU/g and fresh samples having a significantly higher mean APC than frozen ones (P < 0.0001). There were 27 samples (15.8%) with unacceptable microbiological quality (APC > 7 log CFU/g). By culture, no sample tested positive for Campylobacter coli, Shigella, or Vibrio vulnificus. Campylobacter jejuni and Salmonella enterica serovar Typhimurium were each recovered once from farm-raised tilapia from China. By PCR, 17.5 and 32.2% of the samples were positive for Salmonella and Shigella, respectively. The overall prevalence rates of other target bacteria were low, ranging from 4.1% for Listeria monocytogenes to 9.4% for E. coli. All of the Vibrio parahaemolyticus isolates recovered were from shrimp, and 63.3% showed intermediate resistance to ampicillin. Both C. jejuni isolates possessed a rare resistance to gentamicin, while 75% of L. monocytogenes isolates were resistant to nitrofurantoin. Taken together, these findings suggest potential food safety hazards associated with imported seafood and warrant further large-scale studies. PMID:21902913

  20. Applying fluorescence microscopy to the investigation of the behavior of foodborne pathogens on produce

    NASA Astrophysics Data System (ADS)

    Brandl, Maria T.

    2009-05-01

    In the past decade, the development of new tools to better visualize microbes at the cellular scale has spurred a renaissance in the application of microscopy to the study of bacteria in their natural environment. This renewed interest in microscopy may be largely attributable to the advent of the confocal laser scanning microscope (CLSM) and to the discovery of the green fluorescent protein. This article provides information about the use of fluorescence microscopy combined with fluorescent labels such as GFP, DsRed, and DNA stains, with immunofluorescence, and with digital image analysis, to examine the behavior of bacteria and other microbes on plant surfaces. Some of the advantages and pitfalls of these methods will be described using practical examples derived from studies of the ecology of foodborne pathogens, namely Salmonella enterica and E. coli O157:H7, on fresh fruit and vegetables. Confocal microscopy has been a powerful approach to uncover some of the factors involved in the association of produce with epidemics caused by these human pathogens and their interaction with other microbes in their nonhost environment.

  1. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens.

    PubMed

    Smith-Palmer, A; Stewart, J; Fyfe, L

    1998-02-01

    The antimicrobial properties of 21 plant essential oils and two essences were investigated against five important food-borne pathogens, Campylobacter jejuni, Salmonella enteritidis, Escherichia coli, Staphylococcus aureus and Listeria monocytogenes. The oils of bay, cinnamon, clove and thyme were the most inhibitory, each having a bacteriostatic concentration of 0.075% or less against all five pathogens. In general, Gram-positive bacteria were more sensitive to inhibition by plant essential oils than the Gram-negative bacteria. Campylobacter jejuni was the most resistant of the bacteria investigated to plant essential oils, with only the oils of bay and thyme having a bacteriocidal concentration of less than 1%. At 35 degrees C, L. monocytogenes was extremely sensitive to the oil of nutmeg. A concentration of less than 0.01% was bacteriostatic and 0.05% was bacteriocidal, but when the temperature was reduced to 4 degrees, the bacteriostatic concentration was increased to 0.5% and the bacteriocidal concentration to greater than 1%. PMID:9569693

  2. Establishment and Application of a Visual DNA Microarray for the Detection of Food-borne Pathogens.

    PubMed

    Li, Yongjin

    2016-01-01

    The accurate detection and identification of food-borne pathogenic microorganisms is critical for food safety nowadays. In the present work, a visual DNA microarray was established and applied to detect pathogens commonly found in food, including Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in food samples. Multiplex PCR (mPCR) was employed to simultaneously amplify specific gene fragments, fimY for Salmonella, ipaH for Shigella, iap for L. monocytogenes and ECs2841 for E. coli O157:H7, respectively. Biotinylated PCR amplicons annealed to the microarray probes were then reacted with a streptavidin-alkaline phosphatase conjugate and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP); the positive results were easily visualized as blue dots formatted on the microarray surface. The performance of a DNA microarray was tested against 14 representative collection strains and mock-contamination food samples. The combination of mPCR and a visual micro-plate chip specifically and sensitively detected Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in standard strains and food matrices with a sensitivity of ∼10(2) CFU/mL of bacterial culture. Thus, the developed method is advantageous because of its high throughput, cost-effectiveness and ease of use.

  3. Survey of raw milk cheeses for microbiological quality and prevalence of foodborne pathogens.

    PubMed

    Brooks, J C; Martinez, B; Stratton, J; Bianchini, A; Krokstrom, R; Hutkins, R

    2012-09-01

    Cheese may be manufactured in the United States using raw milk, provided the cheese is aged for at least 60 days at temperatures not less than 35°F (1.7°C). There is now increased concern among regulators regarding the safety of raw milk cheese due to the potential ability of foodborne pathogens to survive the manufacturing and aging processes. In this study, 41 raw milk cheeses were obtained from retail specialty shops, farmers' markets, and on-line sources. The cheeses were then analyzed for the presence of Listeria monocytogenes, Salmonella, Escherichia coli O157:H7, Staphylococcus aureus, and Campylobacter. Aerobic plate counts (APC), coliform and yeast/mold counts were also performed. The results revealed that none of the enteric pathogens were detected in any of the samples tested. Five samples contained coliforms; two of those contained E. coli at less than 10(2) cfu/g. Three other cheese samples contained S. aureus. The APC and yeast-mold counts were within expected ranges. Based on the results obtained from these 41 raw milk cheeses, the 60-day aging rule for unpasteurized milk cheeses appears adequate for producing microbiologically safe products.

  4. Establishment and Application of a Visual DNA Microarray for the Detection of Food-borne Pathogens.

    PubMed

    Li, Yongjin

    2016-01-01

    The accurate detection and identification of food-borne pathogenic microorganisms is critical for food safety nowadays. In the present work, a visual DNA microarray was established and applied to detect pathogens commonly found in food, including Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in food samples. Multiplex PCR (mPCR) was employed to simultaneously amplify specific gene fragments, fimY for Salmonella, ipaH for Shigella, iap for L. monocytogenes and ECs2841 for E. coli O157:H7, respectively. Biotinylated PCR amplicons annealed to the microarray probes were then reacted with a streptavidin-alkaline phosphatase conjugate and nitro blue tetrazolium/5-bromo-4-chloro-3'-indolylphosphate, p-toluidine salt (NBT/BCIP); the positive results were easily visualized as blue dots formatted on the microarray surface. The performance of a DNA microarray was tested against 14 representative collection strains and mock-contamination food samples. The combination of mPCR and a visual micro-plate chip specifically and sensitively detected Salmonella enterica, Shigella flexneri, E. coli O157:H7 and Listeria monocytogenes in standard strains and food matrices with a sensitivity of ∼10(2) CFU/mL of bacterial culture. Thus, the developed method is advantageous because of its high throughput, cost-effectiveness and ease of use. PMID:26860568

  5. A survey of foodborne pathogens in bulk tank milk and raw milk consumption among farm families in pennsylvania.

    PubMed

    Jayarao, B M; Donaldson, S C; Straley, B A; Sawant, A A; Hegde, N V; Brown, J L

    2006-07-01

    A 2-part study was conducted to determine the risk of exposure to human pathogens from raw milk. The first part of the study focused on determining raw milk consumption habits of dairy producers. A total of 248 dairy producers from 16 counties in Pennsylvania were surveyed. Overall, 105 (42.3%) of the 248 dairy producers consumed raw milk and 170 (68.5%) of the 248 dairy producers were aware of foodborne pathogens in raw milk. Dairy producers who were not aware of foodborne pathogens in raw milk were 2-fold more likely to consume raw milk compared with dairy producers who were aware of foodborne pathogens. The majority of dairy producers who consumed raw milk indicated that taste (72%) and convenience (60%) were the primary factors for consuming raw milk. Dairy producers who resided on the dairy farm were nearly 3-fold more likely to consume raw milk compared with those who lived elsewhere. In the second part of the study, bulk tank milk from the 248 participating dairy herds was examined for foodborne pathogens. Campylobacter jejuni (2%), Shiga toxin-producing Escherichia coli (2.4%), Listeria monocytogenes (2.8%), Salmonella (6%), and Yersinia enterocolitica (1.2%) were detected in the milk samples. Salmonella isolates were identified as S. enterica serotype Typhimurium (n = 10) and S. enterica serotype Newport (n = 5). Of the 248 bulk tank milk samples, 32 (13%) contained > or = 1 species of bacterial pathogens. The findings of the study could assist in developing farm community-based educational programs on the risks of consuming raw milk.

  6. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years.

    PubMed

    Scallan, E; Hoekstra, R M; Mahon, B E; Jones, T F; Griffin, P M

    2015-10-01

    We explored the overall impact of foodborne disease caused by seven leading foodborne pathogens in the United States using the disability adjusted life year (DALY). We defined health states for each pathogen (acute illness and sequelae) and estimated the average annual incidence of each health state using data from public health surveillance and previously published estimates from studies in the United States, Canada and Europe. These pathogens caused about 112 000 DALYs annually due to foodborne illnesses acquired in the United States. Non-typhoidal Salmonella (32 900) and Toxoplasma (32 700) caused the most DALYs, followed by Campylobacter (22 500), norovirus (9900), Listeria monocytogenes (8800), Clostridium perfringens (4000), and Escherichia coli O157 (1200). These estimates can be used to prioritize food safety interventions. Future estimates of the burden of foodborne disease in DALYs would be improved by addressing important data gaps and by the development and validation of US-specific disability weights for foodborne diseases.

  7. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.

    PubMed

    Sulakvelidze, Alexander

    2013-10-01

    Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA.

  8. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.

    PubMed

    Sulakvelidze, Alexander

    2013-10-01

    Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA. PMID:23670852

  9. Epidemiologic profiling: evaluating foodborne outbreaks for which no pathogen was isolated by routine laboratory testing: United States, 1982-9.

    PubMed Central

    Hall, J. A.; Goulding, J. S.; Bean, N. H.; Tauxe, R. V.; Hedberg, C. W.

    2001-01-01

    The objective was to evaluate foodborne outbreaks of undetermined aetiology by comparing them to pathogen-specific epidemiologic profiles of laboratory-confirmed foodborne outbreaks. National foodborne outbreak data reported to CDC during 1982-9 were categorized by clinico-epidemiologic profiles based on incubation, duration, percent vomiting, fever and vomiting to fever ratio. From the pathogen-specific profiles, five syndromes were developed: a vomiting-toxin syndrome resembling Bacillus cereus and Staphylococcus aureus; a diarrhoea-toxin syndrome characteristic of Clostridium perfringens, a diarrhaeogenic Escherichia coli syndrome, a Norwalk-like virus syndrome, and a salmonella like syndrome. Of 712 outbreaks, 624 (87.6%) matched one of five syndromes; 340 (47.8%) matched the Norwalk-like syndrome and 83 (11.7%) matched the salmonella-like syndrome. After combining information on known pathogens and epidemiologic profiles, only 88 (12.4%) outbreaks remained unclassified. Norwalk-like virus outbreaks appear as common as salmonella-like outbreaks. We conclude that profiling can help classify outbreaks, guide investigations and direct laboratory testing to help detect new and emerging pathogens. PMID:11811869

  10. Variations in the radiation sensitivity of foodborne pathogens associated with complex ready-to-eat food products

    NASA Astrophysics Data System (ADS)

    Sommers, Christopher H.; Boyd, Glenn

    2006-07-01

    Foodborne illness outbreaks and product recalls are occasionally associated with ready-to-eat (RTE) sandwiches and other "heat and eat" multi-component RTE products. Ionizing radiation can inactivate foodborne pathogens on meat and poultry, fruits and vegetables, seafood, and RTE meat products. However, less data are available on the ability of low-dose ionizing radiation, doses under 5 kGy typically used for pasteurization purposes, to inactivate pathogenic bacteria on complex multi-component food products. In this study, the efficacy of ionizing radiation to inactivate Salmonella spp., Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, and Yersinia enterocolitica on RTE foods including a "frankfurter on a roll", a "beef cheeseburger on a bun" and a "vegetarian cheeseburger on a bun" was investigated. The average D-10 values, the radiation dose needed to inactivate 1 log 10 of pathogen, by bacterium species, were 0.61, 0.54, 0.47, 0.36 and 0.15 kGy for Salmonella spp., S. aureus, L. monocytogenes, E. coli O157:H7, and Y. enterocolitica, respectively when inoculated onto the three product types. These results indicate that irradiation may be an effective means for inactivating common foodborne pathogens including Salmonella spp, S. aureus, L. monocytogenes, E. coli O157:H7 and Y. enterocolitica in complex RTE food products such as 'heat and eat" sandwich products.

  11. Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety.

    PubMed

    Chavatte, N; Baré, J; Lambrecht, E; Van Damme, I; Vaerewijck, M; Sabbe, K; Houf, K

    2014-11-17

    In the present study, the occurrence of free-living protozoa (FLP) and foodborne bacterial pathogens on dishcloths was investigated. Dishcloths form a potentially important source of cross-contamination with FLP and foodborne pathogens in food-related environments. First various protocols for recovering and quantifying FLP from dishcloths were assessed. The stomacher technique is recommended to recover flagellates and amoebae from dishcloths. Ciliates, however, were more efficiently recovered using centrifugation. For enumeration of free-living protozoa on dishcloths, the Most Probable Number method is a convenient method. Enrichment was used to assess FLP diversity on dishcloths (n=38). FLP were found on 89% of the examined dishcloths; 100% of these tested positive for amoebae, 71% for flagellates and 47% for ciliates. Diversity was dominated by amoebae: vahlkampfiids, vannellids, Acanthamoeba spp., Hyperamoeba sp. and Vermamoeba vermiformis were most common. The ciliate genus Colpoda was especially abundant on dishcloths while heterotrophic nanoflagellates mainly belonged to the genus Bodo, the glissomonads and cercomonads. The total number of FLP in used dishcloths ranged from 10 to 10(4) MPN/cm(2). Flagellates were the most abundant group, and ciliates the least abundant. Detergent use was identified as a prime determinant of FLP concentrations on used dishcloths. Bacterial load on dishcloths was high, with a mean total of aerobic bacteria of 7.47 log 10 cfu/cm(2). Escherichia coli was detected in 68% (26/38) of the used dishcloths, with concentrations up to 4 log 10 cfu/cm(2). Foodborne pathogens including Staphylococcus aureus (19/38), Arcobacter butzleri (5/38) and Salmonella enterica subsp. enterica ser. Halle (1/38) were also present. This study showed for the first time that FLP, including some opportunistic pathogens, are a common and diverse group on dishcloths. Moreover, important foodborne pathogens are also regularly recovered. This simultaneous

  12. Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety.

    PubMed

    Chavatte, N; Baré, J; Lambrecht, E; Van Damme, I; Vaerewijck, M; Sabbe, K; Houf, K

    2014-11-17

    In the present study, the occurrence of free-living protozoa (FLP) and foodborne bacterial pathogens on dishcloths was investigated. Dishcloths form a potentially important source of cross-contamination with FLP and foodborne pathogens in food-related environments. First various protocols for recovering and quantifying FLP from dishcloths were assessed. The stomacher technique is recommended to recover flagellates and amoebae from dishcloths. Ciliates, however, were more efficiently recovered using centrifugation. For enumeration of free-living protozoa on dishcloths, the Most Probable Number method is a convenient method. Enrichment was used to assess FLP diversity on dishcloths (n=38). FLP were found on 89% of the examined dishcloths; 100% of these tested positive for amoebae, 71% for flagellates and 47% for ciliates. Diversity was dominated by amoebae: vahlkampfiids, vannellids, Acanthamoeba spp., Hyperamoeba sp. and Vermamoeba vermiformis were most common. The ciliate genus Colpoda was especially abundant on dishcloths while heterotrophic nanoflagellates mainly belonged to the genus Bodo, the glissomonads and cercomonads. The total number of FLP in used dishcloths ranged from 10 to 10(4) MPN/cm(2). Flagellates were the most abundant group, and ciliates the least abundant. Detergent use was identified as a prime determinant of FLP concentrations on used dishcloths. Bacterial load on dishcloths was high, with a mean total of aerobic bacteria of 7.47 log 10 cfu/cm(2). Escherichia coli was detected in 68% (26/38) of the used dishcloths, with concentrations up to 4 log 10 cfu/cm(2). Foodborne pathogens including Staphylococcus aureus (19/38), Arcobacter butzleri (5/38) and Salmonella enterica subsp. enterica ser. Halle (1/38) were also present. This study showed for the first time that FLP, including some opportunistic pathogens, are a common and diverse group on dishcloths. Moreover, important foodborne pathogens are also regularly recovered. This simultaneous

  13. [The Advances in the Contamination and Detection of Foodborne Pathogen Noroviruses in Fresh Produce].

    PubMed

    Xie, Yajing; Liu, Xianjin

    2015-11-01

    This article reviewed the researches proceeding on the contamination and detection of the foodborne pathogen noroviruses (NoVs) in fresh produce, which involved the NoVs contaminations in fresh produce, the special attachment of NoVs in fresh produce, the NoVs outbreaks associated with fresh produce and the NoVs detection in fresh produce. There had been an increase in reported infectious disease risks associated with the consumptions of fresh produce for recent 30 years. Because the NoVs, as a primary cause of viral gastroenteritis thoughout the world, were highly contagious, had a low infectious dose, and were persistent in the environment. And also the methods for NoVs detection in food had significantly developed over the last 15 years. Currently NoVs were the most common pathogen accounting for 40% of outbreaks associated with fresh produce (i. e., fruits and vegetables). Data from outbreaks investigations verified fresh produce as the high risk food products for NoVs. The fresh produce were typically eaten raw with no thermal processing, can be contaminated at any step during production and processing from faecally polluted water and fertilizers, the poor hygiene practices by food handlers and the cross-contamination. The attachment of NoVs to the fresh produce was due to the physio-chemical factors of virus protein coat, the special attachment to different fresh produce, and the possibility for internalization of NoVs. It might provide answers to why those high risk foods were more frequently implicated (i. e., lettuce and raspberries). According to the data of foodborne NoVs outbreaks which were associated with fresh produce from EU countries and the USA, the outbreaks in EU countries were mainly associated with NoVs contaminated raspberries and lettuce, while in USA which were associated with NoVs contaminated lettuce. Unfortunately, there were no NoVs detection methods for fresh produce or the data of foodborne NoVs outbreaks which were associated with

  14. [The Advances in the Contamination and Detection of Foodborne Pathogen Noroviruses in Fresh Produce].

    PubMed

    Xie, Yajing; Liu, Xianjin

    2015-11-01

    This article reviewed the researches proceeding on the contamination and detection of the foodborne pathogen noroviruses (NoVs) in fresh produce, which involved the NoVs contaminations in fresh produce, the special attachment of NoVs in fresh produce, the NoVs outbreaks associated with fresh produce and the NoVs detection in fresh produce. There had been an increase in reported infectious disease risks associated with the consumptions of fresh produce for recent 30 years. Because the NoVs, as a primary cause of viral gastroenteritis thoughout the world, were highly contagious, had a low infectious dose, and were persistent in the environment. And also the methods for NoVs detection in food had significantly developed over the last 15 years. Currently NoVs were the most common pathogen accounting for 40% of outbreaks associated with fresh produce (i. e., fruits and vegetables). Data from outbreaks investigations verified fresh produce as the high risk food products for NoVs. The fresh produce were typically eaten raw with no thermal processing, can be contaminated at any step during production and processing from faecally polluted water and fertilizers, the poor hygiene practices by food handlers and the cross-contamination. The attachment of NoVs to the fresh produce was due to the physio-chemical factors of virus protein coat, the special attachment to different fresh produce, and the possibility for internalization of NoVs. It might provide answers to why those high risk foods were more frequently implicated (i. e., lettuce and raspberries). According to the data of foodborne NoVs outbreaks which were associated with fresh produce from EU countries and the USA, the outbreaks in EU countries were mainly associated with NoVs contaminated raspberries and lettuce, while in USA which were associated with NoVs contaminated lettuce. Unfortunately, there were no NoVs detection methods for fresh produce or the data of foodborne NoVs outbreaks which were associated with

  15. Detection of Foodborne Pathogens and Mycotoxins in Eggs and Chicken Feeds from Farms to Retail Markets

    PubMed Central

    Lee, Minhwa; Seo, Dong Joo; Jeon, Su Been; Ok, Hyun Ee; Jung, Hyelee; Choi, Changsun; Chun, Hyang Sook

    2016-01-01

    Contamination by foodborne pathogens and mycotoxins was examined in 475 eggs and 20 feed samples collected from three egg layer farms, three egg-processing units, and five retail markets in Korea. Microbial contamination with Salmonella species, Escherichia coli, and Arcobacter species was examined by bacterial culture and multiplex polymerase chain reaction (PCR). The contamination levels of aflatoxins, ochratoxins, and zearalenone in eggs and chicken feeds were simultaneously analyzed with high-performance liquid chromatography coupled with fluorescence detection after the post-derivatization. While E. coli was isolated from 9.1% of eggs, Salmonella species were not isolated. Arcobacter species were detected in 0.8% of eggs collected from egg layers by PCR only. While aflatoxins, ochratoxins, and zearalenone were found in 100%, 100%, and 85% of chicken feeds, their contamination levels were below the maximum acceptable levels (1.86, 2.24, and 147.53 μg/kg, respectively). However, no eggs were contaminated with aflatoxins, ochratoxins, or zearalenone. Therefore, the risk of contamination by mycotoxins and microbes in eggs and chicken feeds is considered negligible and unlikely to pose a threat to human health.

  16. New antimicrobial peptides against foodborne pathogens: From in silico design to experimental evidence.

    PubMed

    Palmieri, Gianna; Balestrieri, Marco; Proroga, Yolande T R; Falcigno, Lucia; Facchiano, Angelo; Riccio, Alessia; Capuano, Federico; Marrone, Raffaele; Neglia, Gianluca; Anastasio, Aniello

    2016-11-15

    Recently there has been growing interest in the discovery of new antimicrobial agents to increase safety and shelf-life of food products. Here, we developed an innovative approach by introducing the concept that mitochondrial targeting peptides (MTP) can interact and disrupt bacterial membranes, acting as antimicrobial agents. As proof-of-principle, we used a multidisciplinary strategy by combining in silico predictions, docking simulations and antimicrobial assays, to identify two peptides, MTP1 and MTP2, which were structurally and functionally characterized. Both compounds appeared effective against Listeria monocytogenes, one of the most important foodborne pathogens. Specifically, a significant bactericidal activity was evidenced with EC50 values of 16.8±1.2μM for MTP1 and 109±7.0μM for MTP2. Finally, NMR structure determinations suggested that MTP1 would be oriented into the membrane bilayer, while the molecular shape of MTP2 could indicate porin-mediated antimicrobial mechanisms, as predicted using molecular docking analysis. Therefore, MTPs represent alternative sources to design new potential bio-preservatives. PMID:27283665

  17. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts.

    PubMed

    Loizzo, M R; Tundis, R; Chandrika, U G; Abeysekera, A M; Menichini, F; Frega, N G

    2010-06-01

    Total water extract, ethyl acetate, and aqueous fractions from the leaves of Artocarpus heterophyllus were evaluated for phenolic content, antioxidant, and antibacterial activities against some foodborne pathogens such as E. coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella enterica, Bacillus cereus, Enterococcus faecalis, and Staphylococcus aureus. The minimum inhibitory concentration (MICs) of extract and fractions determined by the agar dilution method were ranged from 221.9 microg/mL for ethyl acetate fraction to 488.1 microg/mL for total extract. In the agar diffusion method the diameters of inhibition were 12.2 for the total extract, 10.7 and 11.5 for ethyl acetate and aqueous fractions, respectively. A. heterophyllus showed significant antioxidant activity tested in different in vitro systems (DPPH, ABTS, FRAP, and Fe(2+) chelating activity assay). In particular, in DPPH assay A. heterophyllus total extract exhibited a strong antiradical activity with an IC(50) value of 73.5 microg/mL while aqueous fraction exerted the highest activity in FRAP assay (IC(50) value of 72.0 microg/mL). The total phenols content by Folin-Ciocalteau method was determined with the purpose of testing its relationship with the antioxidant and antibacterial activities.

  18. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  19. The Impact of Carvacrol on Ammonia and Biogenic Amine Production by Common Foodborne Pathogens.

    PubMed

    Özogul, Fatih; Kaçar, Çiğdem; Kuley, Esmeray

    2015-12-01

    The impact of carvacrol at different levels (0.1%, 0.5%, and 1%) on ammonia (AMN) and biogenic amines (BAs) production by 8 common foodborne pathogens (FBPs) (Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Pseudomonas aeruginosa, Listeria monocytogenes, Aeromonas hydrophila, and Salmonella Paratyphi A) was studied using a rapid high-performance liquid chromatography method. Significant differences among bacteria (P < 0.05) in AMN and BA production were observed using a tyrosine decarboxylase broth. Tyramine, dopamine, agmatine, spermine, and putrescine were the main amines produced by the bacteria. Tyramine production by P. aeruginosa was the highest (967 mg/L), whereas K. pneumoniae was the poorest tyramine producer (6.42 mg/L). AMN and BA production varied significantly depending on carvacrol levels and the specific bacterial strains. Tyramine production for all bacterial strains was significantly suppressed by addition of carvacrol at levels of 0.5% and 1%, but not 0.1%. Consequently, the effect of carvacrol on BA and AMN formation by FBP was dependent on bacterial strain as well as carvacrol level. PMID:26580308

  20. Contamination of knives and graters by bacterial foodborne pathogens during slicing and grating of produce.

    PubMed

    Erickson, Marilyn C; Liao, Jean; Cannon, Jennifer L; Ortega, Ynes R

    2015-12-01

    Poor hygiene and improper food preparation practices in consumers' homes have previously been demonstrated as contributing to foodborne diseases. To address potential cross-contamination by kitchen utensils in the home, a series of studies was conducted to determine the extent to which the use of a knife or grater on fresh produce would lead to the utensil's contamination with Escherichia coli O157:H7 or Salmonella enterica. When shredding inoculated carrots (ca. 5.3 log CFU/carrot), all graters became contaminated and the number of E. coli O157:H7 present on the utensil was significantly greater than Salmonella (p < 0.05). Contamination of knives after slicing inoculated produce (4.9-5.4 log CFU/produce item) could only be detected by enrichment culture. After slicing tomatoes, honeydew melons, strawberries, cucumbers, and cantaloupes, the average prevalence of knife contamination by the two pathogens was 43%, 17%, 15%, 7%, and 3%, respectively. No significant increase in the incidence or level of contamination occurred on the utensils when residues were present (p > 0.05); however, subsequent contamination of 7 produce items processed with the contaminated utensils did occur. These results highlight the necessity of proper sanitization of these utensils when used in preparation of raw produce. PMID:26338127

  1. Detection of Foodborne Pathogens and Mycotoxins in Eggs and Chicken Feeds from Farms to Retail Markets

    PubMed Central

    Lee, Minhwa; Seo, Dong Joo; Jeon, Su Been; Ok, Hyun Ee; Jung, Hyelee; Choi, Changsun; Chun, Hyang Sook

    2016-01-01

    Contamination by foodborne pathogens and mycotoxins was examined in 475 eggs and 20 feed samples collected from three egg layer farms, three egg-processing units, and five retail markets in Korea. Microbial contamination with Salmonella species, Escherichia coli, and Arcobacter species was examined by bacterial culture and multiplex polymerase chain reaction (PCR). The contamination levels of aflatoxins, ochratoxins, and zearalenone in eggs and chicken feeds were simultaneously analyzed with high-performance liquid chromatography coupled with fluorescence detection after the post-derivatization. While E. coli was isolated from 9.1% of eggs, Salmonella species were not isolated. Arcobacter species were detected in 0.8% of eggs collected from egg layers by PCR only. While aflatoxins, ochratoxins, and zearalenone were found in 100%, 100%, and 85% of chicken feeds, their contamination levels were below the maximum acceptable levels (1.86, 2.24, and 147.53 μg/kg, respectively). However, no eggs were contaminated with aflatoxins, ochratoxins, or zearalenone. Therefore, the risk of contamination by mycotoxins and microbes in eggs and chicken feeds is considered negligible and unlikely to pose a threat to human health. PMID:27621686

  2. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.

  3. Detection of Foodborne Pathogens and Mycotoxins in Eggs and Chicken Feeds from Farms to Retail Markets.

    PubMed

    Lee, Minhwa; Seo, Dong Joo; Jeon, Su Been; Ok, Hyun Ee; Jung, Hyelee; Choi, Changsun; Chun, Hyang Sook

    2016-01-01

    Contamination by foodborne pathogens and mycotoxins was examined in 475 eggs and 20 feed samples collected from three egg layer farms, three egg-processing units, and five retail markets in Korea. Microbial contamination with Salmonella species, Escherichia coli, and Arcobacter species was examined by bacterial culture and multiplex polymerase chain reaction (PCR). The contamination levels of aflatoxins, ochratoxins, and zearalenone in eggs and chicken feeds were simultaneously analyzed with high-performance liquid chromatography coupled with fluorescence detection after the post-derivatization. While E. coli was isolated from 9.1% of eggs, Salmonella species were not isolated. Arcobacter species were detected in 0.8% of eggs collected from egg layers by PCR only. While aflatoxins, ochratoxins, and zearalenone were found in 100%, 100%, and 85% of chicken feeds, their contamination levels were below the maximum acceptable levels (1.86, 2.24, and 147.53 μg/kg, respectively). However, no eggs were contaminated with aflatoxins, ochratoxins, or zearalenone. Therefore, the risk of contamination by mycotoxins and microbes in eggs and chicken feeds is considered negligible and unlikely to pose a threat to human health. PMID:27621686

  4. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences. PMID:27555764

  5. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts.

    PubMed

    Loizzo, M R; Tundis, R; Chandrika, U G; Abeysekera, A M; Menichini, F; Frega, N G

    2010-06-01

    Total water extract, ethyl acetate, and aqueous fractions from the leaves of Artocarpus heterophyllus were evaluated for phenolic content, antioxidant, and antibacterial activities against some foodborne pathogens such as E. coli, Listeria monocytogenes, Salmonella typhimurium, Salmonella enterica, Bacillus cereus, Enterococcus faecalis, and Staphylococcus aureus. The minimum inhibitory concentration (MICs) of extract and fractions determined by the agar dilution method were ranged from 221.9 microg/mL for ethyl acetate fraction to 488.1 microg/mL for total extract. In the agar diffusion method the diameters of inhibition were 12.2 for the total extract, 10.7 and 11.5 for ethyl acetate and aqueous fractions, respectively. A. heterophyllus showed significant antioxidant activity tested in different in vitro systems (DPPH, ABTS, FRAP, and Fe(2+) chelating activity assay). In particular, in DPPH assay A. heterophyllus total extract exhibited a strong antiradical activity with an IC(50) value of 73.5 microg/mL while aqueous fraction exerted the highest activity in FRAP assay (IC(50) value of 72.0 microg/mL). The total phenols content by Folin-Ciocalteau method was determined with the purpose of testing its relationship with the antioxidant and antibacterial activities. PMID:20629886

  6. UV-Heat Treatments for the Control of Foodborne Microbial Pathogens in Chicken Broth

    PubMed Central

    Gouma, M.; Gayán, E.; Raso, J.; Condón, S.; Álvarez, I.

    2015-01-01

    This investigation established the process criteria for using UV-C light and mild heat (UV-H treatment) to inactivate 5-Log10 cycles (performance criterion) of common foodborne pathogen populations, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, when inoculated in chicken broth. To define the target microorganism and the proper UV-H treatment conditions (including UV dose, treatment time, and temperature) that would achieve the stated performance criterion, mathematical equations based on Geeraerd's model were developed for each microorganism. For the sake of comparison, inactivation equations for heat treatments were also performed on the same chicken broth and for the same microorganisms. L. monocytogenes was the most UV-H resistant microorganism at all temperatures, requiring a UV dose between 6.10 J/mL (5.6 min) and 2.26 J/mL (2.09 min) to achieve 5-Log10 reductions. In comparison with UV treatments at room temperatures, the combination of UV and mild heat allowed both the UV dose and treatment time to be reduced by 30% and 63% at 55°C and 60°C, respectively. Compared to heat treatments, the UV-H process reduced the heating time for 5-Log10 reductions of all the investigated microorganisms in chicken broth from 20-fold to 2-fold when the operating temperature varied from 53 to 60°C. PMID:26539493

  7. Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates

    NASA Astrophysics Data System (ADS)

    Yoon, Seung-Chul; Shin, Tae-Sung; Park, Bosoon; Lawrence, Kurt C.; Heitschmidt, Gerald W.

    2014-03-01

    This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance spectra measured in the visible and near-infrared spectral range from 400 and 1,000 nm (473 narrow spectral bands). Multivariate regression methods were used to estimate and predict hyperspectral data from RGB color values. The six representative non-O157 Shiga-toxin producing Eschetichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) were grown on Rainbow agar plates. A line-scan pushbroom hyperspectral image sensor was used to scan 36 agar plates grown with pure STEC colonies at each plate. The 36 hyperspectral images of the agar plates were divided in half to create training and test sets. The mean Rsquared value for hyperspectral image estimation was about 0.98 in the spectral range between 400 and 700 nm for linear, quadratic and cubic polynomial regression models and the detection accuracy of the hyperspectral image classification model with the principal component analysis and k-nearest neighbors for the test set was up to 92% (99% with the original hyperspectral images). Thus, the results of the study suggested that color-based detection may be viable as a multispectral imaging solution without much loss of prediction accuracy compared to hyperspectral imaging.

  8. Contamination of knives and graters by bacterial foodborne pathogens during slicing and grating of produce.

    PubMed

    Erickson, Marilyn C; Liao, Jean; Cannon, Jennifer L; Ortega, Ynes R

    2015-12-01

    Poor hygiene and improper food preparation practices in consumers' homes have previously been demonstrated as contributing to foodborne diseases. To address potential cross-contamination by kitchen utensils in the home, a series of studies was conducted to determine the extent to which the use of a knife or grater on fresh produce would lead to the utensil's contamination with Escherichia coli O157:H7 or Salmonella enterica. When shredding inoculated carrots (ca. 5.3 log CFU/carrot), all graters became contaminated and the number of E. coli O157:H7 present on the utensil was significantly greater than Salmonella (p < 0.05). Contamination of knives after slicing inoculated produce (4.9-5.4 log CFU/produce item) could only be detected by enrichment culture. After slicing tomatoes, honeydew melons, strawberries, cucumbers, and cantaloupes, the average prevalence of knife contamination by the two pathogens was 43%, 17%, 15%, 7%, and 3%, respectively. No significant increase in the incidence or level of contamination occurred on the utensils when residues were present (p > 0.05); however, subsequent contamination of 7 produce items processed with the contaminated utensils did occur. These results highlight the necessity of proper sanitization of these utensils when used in preparation of raw produce.

  9. Do leafy green vegetables and their ready-to-eat [RTE] salads carry a risk of foodborne pathogens?

    PubMed

    Mercanoglu Taban, Birce; Halkman, A Kadir

    2011-12-01

    Over the past 10 years, there is an increasing demand for leafy green vegetables and their ready-to-eat (RTE) salads since people changed their eating habits because of healthier lifestyle interest. Nevertheless fresh leafy green vegetables and their RTE salads are recognized as a source of food poisoning outbreaks in many parts of the world. However, this increased proportion of outbreaks cannot be completely explained by increased consumption and enhanced surveillance of them. Both in Europe and in the USA, recent foodborne illness outbreaks have revealed links between some pathogens and some leafy green vegetables such as mostly lettuces and spinaches and their RTE salads since fresh leafy green vegetables carry the potential risk of microbiological contamination due to the usage of untreated irrigation water, inappropriate organic fertilizers, wildlife or other sources that can occur anywhere from the farm to the fork such as failure during harvesting, handling, processing and packaging. Among a wide range of pathogens causing foodborne illnesses, Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes are the most common pathogens that contaminate leafy green vegetables. Children, the elderly, pregnant women and immunocompromised people are the most at risk for developing complications from foodborne illness as a result of eating contaminated leafy greens or their RTE salads. These outbreaks are mostly restaurant associated or they sometimes spread across several countries by international trade routes. This review summarizes current observations concerning the contaminated leafy green vegetables and their RTE salads as important vehicles for the transmission of some foodborne pathogens to humans.

  10. An introduction to on-farm strategies to control foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illnesses affect more than 48 million Americans each year. The economic impact of these foodborne illnesses caused by bacteria associated with food animals ranges from $10 to 40 billion (USD) per year, and effects across the EU are similar in scale. Because of the large drain on the GDP,...

  11. Transmission of foodborne zoonotic pathogens to riparian areas by grazing sheep

    PubMed Central

    Sutherland, Sara J.; Gray, Jeffrey T.; Menzies, Paula I.; Hook, Sarah E.; Millman, Suzanne T.

    2009-01-01

    The objective of this study was to determine if sheep grazing near riparian areas on pasture in Ontario are an important risk factor for the contamination of water with specific foodborne pathogens. Ten Ontario sheep farms were visited weekly for 12 wk during the summer of 2005. Samples of feces, soil, and water were collected and analyzed for the presence of Escherichia coli O157:H7, Salmonella spp., Campylobacter jejuni and C. coli, and Yersinia enterocolitica, by bacteriological identification and polymerase chain reaction (PCR). The data was analyzed as repeated measures over time using mixed models. No samples were positive for Salmonella, and no samples were confirmed positive for E. coli O157:H7 after PCR. Levels of Campylobacter were highest in the soil, but did not differ between soil where sheep grazed or camped and roadside soil that had never been grazed (P = 0.85). Levels of Yersinia were highest in water samples and were higher in soil where sheep had access (P = 0.01). The prevalence of positive Campylobacter and Yersinia samples were not associated with locations where sheep spent more time (Campylobacter P = 0.46, Yersinia P = 0.99). There was no effect of stocking density on the prevalence of Campylobacter (P = 0.30), but as the stocking density increased the levels of Yersinia increased (P = 0.04). It was concluded that although sheep transmit Yersinia to their environment, pastured sheep flocks are not major risk factors for the transmission of zoonotic pathogens into water. PMID:19436581

  12. Temperature and biological soil effects on the survival of selected foodborne pathogens on a mortar surface.

    PubMed

    Allan, J T; Yan, Z; Genzlinger, L L; Kornacki, J L

    2004-12-01

    The survival of three foodborne pathogens (Listeria monocytogenes, Yersinia enterocolitica, and Salmonella) attached to mortar surfaces, with or without biological soil (porcine serum) and incubated at either 4 or 10 degrees C in the presence of condensate, was evaluated. Soiled and unsoiled coupons were inoculated by immersion into a five-strain cocktail (approximately 10(7) CFU/ml) of each organism type and evaluated. Coupons were incubated at 25 degrees C for 2 h to allow attachment of cells, rinsed to remove unattached cells, and incubated at either 4 or 10 degrees C at high humidity to create condensate on the surface. Sonication was used to remove the attached cells, and bacteria (CFU per coupon) was determined at 9 to 10 sampling periods over 120 h. Yersinia populations decreased more than 5 log units in the presence of serum in a 24-h period. Listeria and Salmonella had better survival on mortar in the presence of serum than Yersinia throughout the 120-h incubation period. Populations of L. monocytogenes declined more rapidly at 10 than at 4 degree C after 24 h. In general, differences in temperature did not affect the survival of Salmonella or Yersinia. Serum had a protective effect on the survival of all three organisms, sustaining populations at significantly (P < or = 0.05) higher numbers over time than on corresponding unsoiled coupons. There were no significant differences (P > 0.05) among the mean number (CFU per coupon) of L. monocytogenes, Y. enterocolitica, or Salmonella on initial attachment onto the mortar surfaces (unsoiled). The results indicate relatively rapid destruction of selected pathogenic bacteria on unsoiled mortar surfaces compared with those that contained biological soil, thus highlighting the need for effective cleaning to reduce harborage of these microbes in the food factory environment.

  13. Burden and impact of acute gastroenteritis and foodborne pathogens in Trinidad and Tobago.

    PubMed

    Lakhan, Carelene; Badrie, Neela; Ramsubhag, Adash; Sundaraneedi, Kumar; Indar, Lisa

    2013-12-01

    Objectives of this study were to determine the burden and impact of acute gastroenteritis (AGE) and foodborne pathogens in Trinidad and Tobago. A retrospective, cross-sectional population survey, based on self-reported cases of AGE, was conducted in November-December 2008 and May-June 2009 (high- and low-AGE season respectively) by face-to-face interviews. From 2,145 households selected to be interviewed, the response rate was 99.9%. Of those interviewed, 5.1% (n = 110; 95% CI 4.3-6.2) reported having AGE (3 or more loose watery stools in 24 hours) in the 28 days prior to the interview (0.67 episodes/person-year). Monthly prevalence of AGE was the highest among children aged < 5 years (1.3 episodes/year). Eighteen (16%) persons with AGE sought medical care (4 treated with oral rehydration salts and 6 with antibiotics), and 66% reported restricted activity [range 1-16 day(s)]. The mean duration of diarrhoea was 2.3 days (range 2-10 days). One case submitted a stool sample, and another was hospitalized. Overall, 56 (10%) AGE specimens tested positive for foodbome pathogens. It was estimated that 135,820 AGE cases occurred in 2009 (84% underreporting), and for every 1 AGE case reported, an additional 6.17 cases occurred in the community. The estimated economic cost of AGE ranged from US$ 27,331 to 19,736,344. Acute gastroenteritis, thus, poses a huge health and economic burden on Trinidad and Tobago.

  14. Detection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices.

    PubMed

    Wu, Xiaomeng; Xu, Chao; Tripp, Ralph A; Huang, Yao-wen; Zhao, Yiping

    2013-05-21

    Vancomycin functionalized silver nanorod arrays substrates were used to obtain the surface enhanced Raman scattering (SERS) signals of six foodborne pathogenic bacteria in mung bean sprouts samples using both a portable and a handheld Raman system. The silver nanorod arrays substrates were optimized to facilitate quantitative, rapid, and sensitive detection of Salmonella enterica serotype Anatum, Salmonella enterica serotype Cubana, Salmonella enterica serotype Stanley, Salmonella enteritidis, Escherichia coli O157:H7, and Staphylococcus epidermidis. Substrate optimization was achieved by varying the nanorod length and vancomycin incubation concentration. By combining these substrates with a two-step filtration process we found that the foodborne pathogenic bacteria used in this study can be identified in mung bean sprouts with a limit of detection as low as 100 CFU ml(-1) in less than 4 h using both portable and handheld Raman systems. The results show that SERS spectra can be used to differentiate between bacterial species and serotypes when chemometric methods are employed. The low detection limit and rapid detection time of this biosensing platform for foodborne pathogenic bacteria could be a valuable field detection method for the fresh produce and food processing industries.

  15. Inactivation of foodborne pathogens in ground beef by cooking with highly controlled radio frequency energy.

    PubMed

    Schlisselberg, Dov B; Kler, Edna; Kalily, Emmanuel; Kisluk, Guy; Karniel, Ohad; Yaron, Sima

    2013-01-01

    treatment of RF or convection was applied. This 2-step treatment proved to be efficient with 4.5 log CFU/g reduction for both RF and convection. In conclusion, here we show that combination of RF with convection cooking resulted in similar or even better effects on selected foodborne pathogens compared to convection only, while the time required for safe cooking is cut down by up to 86%. The equal or better results in the levels of all investigated pathogens using RF with convection compared with convection only suggest that this technology looks promising and safe for ground beef cooking.

  16. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 4. Infective doses and pathogen carriage.

    PubMed

    Todd, Ewen C D; Greig, Judy D; Bartleson, Charles A; Michaels, Barry S

    2008-11-01

    In this article, the fourth in a series reviewing the role of food workers in foodborne outbreaks, background information on the presence of enteric pathogens in the community, the numbers of organisms required to initiate an infection, and the length of carriage are presented. Although workers have been implicated in outbreaks, they were not always aware of their infections, either because they were in the prodromic phase before symptoms began or because they were asymptomatic carriers. Pathogens of fecal, nose or throat, and skin origin are most likely to be transmitted by the hands, highlighting the need for effective hand hygiene and other barriers to pathogen contamination, such as no bare hand contact with ready-to-eat food. The pathogens most likely to be transmitted by food workers are norovirus, hepatitis A virus, Salmonella, Shigella, and Staphylococcus aureus. However, other pathogens have been implicated in worker-associated outbreaks or have the potential to be implicated. In this study, the likelihood of pathogen involvement in foodborne outbreaks where infected workers have been implicated was examined, based on infectious dose, carriage rate in the community, duration of illness, and length of pathogen excretion. Infectious dose estimates are based on volunteer studies (mostly early experiments) or data from outbreaks. Although there is considerable uncertainty associated with these data, some pathogens appear to be able to infect at doses as low as 1 to 100 units, including viruses, parasites, and some bacteria. Lengthy postsymptomatic shedding periods and excretion by asymptomatic individuals of many enteric pathogens is an important issue for the hygienic management of food workers. PMID:19044283

  17. Antibacterial Activity and Action Mechanism of the Essential Oil from Enteromorpha linza L. against Foodborne Pathogenic Bacteria.

    PubMed

    Patra, Jayanta Kumar; Baek, Kwang-Hyun

    2016-01-01

    Foodborne illness and disease caused by foodborne pathogenic bacteria is continuing to increase day by day and it has become an important topic of concern among various food industries. Many types of synthetic antibacterial agents have been used in food processing and food preservation; however, they are not safe and have resulted in various health-related issues. Therefore, in the present study, essential oil from an edible seaweed, Enteromorpha linza (AEO), was evaluated for its antibacterial activity against foodborne pathogens, along with the mechanism of its antibacterial action. AEO at 25 mg/disc was highly active against Bacillus cereus (12.3-12.7 mm inhibition zone) and Staphylococcus aureus (12.7-13.3 mm inhibition zone). The minimum inhibitory concentration and minimum bactericidal concentration values of AEO ranged from 12.5-25 mg/mL. Further investigation of the mechanism of action of AEO revealed its strong impairing effect on the viability of bacterial cells and membrane permeability, as indicated by a significant increase in leakage of 260 nm absorbing materials and K⁺ ions from the cell membrane and loss of high salt tolerance. Taken together, these data suggest that AEO has the potential for use as an effective antibacterial agent that functions by impairing cell membrane permeability via morphological alternations, resulting in cellular lysis and cell death. PMID:27007365

  18. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    PubMed

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection.

  19. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    PubMed

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. PMID:27476059

  20. Antibiotic resistance versus antimicrobial substances production by gram-negative foodborne pathogens isolated from minas frescal cheese: heads or tails?

    PubMed

    Damaceno, Hugo Figueiredo Botelho; de Freitas J, Claudinei Vieira; Marinho, Iuri Lourenço; Cupertino, Thomaz Rocha; Costa, Leonardo Emanuel de Oliveira; Nascimento, Janaína dos Santos

    2015-04-01

    In this study, 15 Gram-negative isolates from Minas Frescal cheese sold in commercial establishments in Rio de Janeiro, Brazil, were able to produce antimicrobial substances (AMSs). Seven, four, two, one, and one isolates identified as Yersinia, Acinetobacter, Enterobacter, Escherichia, and Hafnia genera, respectively, were considered potentially pathogenic. All 15 AMS(+) isolates were resistant to at least 1 antibiotic; however, 7 strains presented resistance to at least 3 antibiotics from different classes, exhibiting multiresistance profiles. The strains were also subjected to plasmid profile analysis. All isolates presented different plasmid forms with most ranging in size from 1 to 10 kb. Activity against various pathogens associated with food was tested and all 15 AMS(+) showed the same activity spectrum, inhibiting all Escherichia coli and Salmonella strains that were tested. Although restricted, the action spectrum of AMS-producing strains is extremely relevant to the food industry because Gram-negative bacteria such as E. coli and Salmonella spp. are most often associated with foodborne illnesses. The findings of this study reveal that even AMS produced by pathogens can have potential applications against other foodborne pathogens. PMID:25622265

  1. Landscape and Meteorological Factors Affecting Prevalence of Three Food-Borne Pathogens in Fruit and Vegetable Farms

    PubMed Central

    Strawn, Laura K.; Fortes, Esther D.; Bihn, Elizabeth A.; Nightingale, Kendra K.; Gröhn, Yrjö T.; Worobo, Randy W.; Wiedmann, Martin

    2013-01-01

    Produce-related outbreaks have been traced back to the preharvest environment. A longitudinal study was conducted on five farms in New York State to characterize the prevalence, persistence, and diversity of food-borne pathogens in fresh produce fields and to determine landscape and meteorological factors that predict their presence. Produce fields were sampled four times per year for 2 years. A total of 588 samples were analyzed for Listeria monocytogenes, Salmonella, and Shiga toxin-producing Escherichia coli (STEC). The prevalence measures of L. monocytogenes, Salmonella, and STEC were 15.0, 4.6, and 2.7%, respectively. L. monocytogenes and Salmonella were detected more frequently in water samples, while STEC was detected with equal frequency across all sample types (soil, water, feces, and drag swabs). L. monocytogenes sigB gene allelic types 57, 58, and 61 and Salmonella enterica serovar Cerro were repeatedly isolated from water samples. Soil available water storage (AWS), temperature, and proximity to three land cover classes (water, roads and urban development, and pasture/hay grass) influenced the likelihood of detecting L. monocytogenes. Drainage class, AWS, and precipitation were identified as important factors in Salmonella detection. This information was used in a geographic information system framework to hypothesize locations of environmental reservoirs where the prevalence of food-borne pathogens may be elevated. The map indicated that not all croplands are equally likely to contain environmental reservoirs of L. monocytogenes. These findings advance recommendations to minimize the risk of preharvest contamination by enhancing models of the environmental constraints on the survival and persistence of food-borne pathogens in fields. PMID:23144137

  2. Effect of sanitizer combined with steam heating on the inactivation of foodborne pathogens in a biofilm on stainless steel.

    PubMed

    Ban, Ga-Hee; Kang, Dong-Hyun

    2016-05-01

    The combined effect of chemical sanitizers including sodium hypochlorite, hydrogen peroxide, iodophor, and benzalkonium chloride with steam heating on the inactivation of biofilms formed by Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel was investigated. Six day old biofilms, comprised of a mixture of three strains each of three foodborne pathogens, were produced on stainless steel coupons at 25 °C and treated with each sanitizer alone (for 5, 15, and 30 s), steam alone (for 5, 10, and 20 s), and the combination. There was a synergistic effect of sanitizer and steam on the viability of biofilm cells of the three pathogens as evidenced by plating counts and imaging. The combination treatment achieved an additional 0.01 to 2.78 log reduction compared to the sum of each individual treatment. The most effective combination for reducing levels of biofilm cells was the combination of steam and iodophor; steam for 20 s and merely 20 ppm iodophor for 30 s reduced cell numbers to below the detection limit (<1.48 log CFU/coupon). These results suggest that the combination treatment of sanitizer with steam can be applied to control foodborne pathogens biofilm cells in food processing facilities as a potential intervention.

  3. Enhanced antimicrobial effect of organic acid washing against foodborne pathogens on broccoli by vacuum impregnation.

    PubMed

    Kang, Jun-Won; Kang, Dong-Hyun

    2016-01-18

    This study was undertaken to evaluate the effect of vacuum impregnation applied to the washing process for removal of Salmonella Typhimurium and Listeria monocytogenes from broccoli surfaces. Broccoli was inoculated with the two foodborne pathogens and treated with simple dipping washing or with vacuum impregnation in 2% malic acid for 5, 10, 20, or 30 min. There were two methods of vacuum impregnation: continuous and intermittent. After 30 min of 101.3 kPa (=14.7 psi, simple dipping), 61.3 kPa (=8.9 psi), and 21.3 kPa (=3.1 psi) of continuous vacuum impregnation treatment, there were 1.6, 2.0, and 2.4 log 10 CFU/g reductions of S. Typhimurium and 1.5, 1.7, and 2.3 log 10 CFU/g reductions of L. monocytogenes, respectively. After 30 min of 101.3, 61.3, and 21.3 kPa of intermittent vacuum impregnation treatment, there were 1.5, 2.3, and 3.7 log 10 CFU/g reductions of S. Typhimurium and 1.6, 2.1, and 3.2 log 10 CFU/g reductions of L. monocytogenes, respectively. Scanning electron photomicrographs showed that bacteria tend to attach to or become entrapped in protective sites after simple wash processing (dipping). However, most bacteria were washed out of protective sites after intermittent treatment. Direct treatment of cell suspensions with vacuum impregnation showed that it had no inactivation capacity in itself since there were no significant differences (P ≥ 0.05) between the reduction rates of non- and vacuum impregnation treatment. These results demonstrate that the increased antimicrobial effect of vacuum impregnation can be attributed to increased accessibility of sanitizer and an enhanced washing effect in protected sites on produce. Color, texture and titratable acidity values of broccoli treated with intermittent vacuum impregnation in 2% malic acid for 30 min were not significantly (P ≥ 0.05) different from those of untreated samples even though a storage interval was needed for titratable acidity values to be reduced to levels comparable to those of

  4. Completeness of reporting in abstracts from clinical trials of pre-harvest interventions against foodborne pathogens.

    PubMed

    Snedeker, Kate G; Canning, Paisley; Totton, Sarah C; Sargeant, Jan M

    2012-04-01

    Abstracts are the most commonly read part of a journal article, and play an important role as summaries of the articles, and search and screening tools. However, research on abstracts in human biomedicine has shown that abstracts often do not report key methodological features and results. Little research has been done to examine reporting of such features in abstracts from papers detailing pre-harvest food safety trials. Thus, the objective of this study was to assess the quality of reporting of key factors in abstracts detailing trials of pre-harvest food safety interventions. A systematic search algorithm was used to identify all in vivo trials of pre-harvest interventions against foodborne pathogens in PubMed and CAB Direct published from 1999 to October 2009. References were screened for relevance, and 150 were randomly chosen for inclusion in the study. A checklist based on the CONSORT abstract extension and the REFLECT Statement was used to assess the reporting of methodological features and results. All screening and assessment was performed by two independent reviewers with disagreements resolved by consensus. The systematic search returned 3554 unique citations; 356 were found to be relevant and 150 were randomly selected for inclusion. The abstracts were from 51 different journals, and 13 out of 150 were structured. Of the 124 abstracts that reported whether the trial design was deliberate disease challenge or natural exposure, 113 were deliberate challenge and 11 natural exposure. 103 abstracts detailed studies involving poultry, 20 cattle and 15 swine. Most abstracts reported the production stage of the animals (135/150), a hypothesis or objective (123/150), and results for all treatment groups (136/150). However, few abstracts reported on how animals were grouped in housing (25/150), the location of the study (5/150), the primary outcome (2/126), level of treatment allocation (15/150), sample size (63/150) or whether study units were lost to follow up

  5. Enhanced antimicrobial effect of organic acid washing against foodborne pathogens on broccoli by vacuum impregnation.

    PubMed

    Kang, Jun-Won; Kang, Dong-Hyun

    2016-01-18

    This study was undertaken to evaluate the effect of vacuum impregnation applied to the washing process for removal of Salmonella Typhimurium and Listeria monocytogenes from broccoli surfaces. Broccoli was inoculated with the two foodborne pathogens and treated with simple dipping washing or with vacuum impregnation in 2% malic acid for 5, 10, 20, or 30 min. There were two methods of vacuum impregnation: continuous and intermittent. After 30 min of 101.3 kPa (=14.7 psi, simple dipping), 61.3 kPa (=8.9 psi), and 21.3 kPa (=3.1 psi) of continuous vacuum impregnation treatment, there were 1.6, 2.0, and 2.4 log 10 CFU/g reductions of S. Typhimurium and 1.5, 1.7, and 2.3 log 10 CFU/g reductions of L. monocytogenes, respectively. After 30 min of 101.3, 61.3, and 21.3 kPa of intermittent vacuum impregnation treatment, there were 1.5, 2.3, and 3.7 log 10 CFU/g reductions of S. Typhimurium and 1.6, 2.1, and 3.2 log 10 CFU/g reductions of L. monocytogenes, respectively. Scanning electron photomicrographs showed that bacteria tend to attach to or become entrapped in protective sites after simple wash processing (dipping). However, most bacteria were washed out of protective sites after intermittent treatment. Direct treatment of cell suspensions with vacuum impregnation showed that it had no inactivation capacity in itself since there were no significant differences (P ≥ 0.05) between the reduction rates of non- and vacuum impregnation treatment. These results demonstrate that the increased antimicrobial effect of vacuum impregnation can be attributed to increased accessibility of sanitizer and an enhanced washing effect in protected sites on produce. Color, texture and titratable acidity values of broccoli treated with intermittent vacuum impregnation in 2% malic acid for 30 min were not significantly (P ≥ 0.05) different from those of untreated samples even though a storage interval was needed for titratable acidity values to be reduced to levels comparable to those of

  6. Analysis of a food-borne fungal pathogen outbreak: virulence and genome of a Mucor circinelloides isolate from yogurt.

    PubMed

    Lee, Soo Chan; Billmyre, R Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C; Cuomo, Christina A; Heitman, Joseph

    2014-07-08

    Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (-) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. Importance: The U.S. FDA reported that yogurt products were contaminated with M

  7. Inactivation of foodborne pathogens on crawfish tail meat using cryogenic freezing and gamma radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illness outbreaks occasionally occur as a result of microbiologically contaminated crustaceans, including crawfish. Cryogenic freezing and gamma radiation are two technologies which can be used to improve the microbiological safety and shelf-life of foods. In the U.S. the majority of non-c...

  8. Detection and enumeration of four foodborne pathogens in raw commingled silo milk in the United States.

    PubMed

    Jackson, Emily E; Erten, Edibe S; Maddi, Neeraj; Graham, Thomas E; Larkin, John W; Blodgett, Robert J; Schlesser, Joseph E; Reddy, Ravinder M

    2012-08-01

    A nationwide survey was conducted to obtain qualitative and quantitative data on bacterial contamination of raw commingled silo milk intended for pasteurization. The levels of total aerobic bacteria, total coliforms, Enterobacteriaceae, Escherichia coli, and Staphylococcus aureus were determined using the TEMPO system. The prevalence rates and levels of presumptive Bacillus cereus, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. were determined in 214 samples. B. cereus was detected in 8.91% of samples, at 3.0 to 93 CFU/ml. E. coli O157:H7 was detected in 3.79 to 9.05% of samples, at <0.0055 to 1.1 CFU/ml, depending on the assay utilized. Salmonella spp. were recovered from 21.96 to 57.94% of samples, at <0.0055 to 60 CFU/ml. L. monocytogenes was detected in 50.00% of samples, at <0.0055 to 30 CFU/ml. The average log-transformed counts of total viable bacteria were slightly lower in samples containing no pathogens. No correlation was observed between the levels of organisms detected with the TEMPO system and the presence or levels of any pathogen except E. coli O157:H7. A higher average log-transformed count of total viable bacteria was observed in samples positive for this organism. The high prevalence rates of target pathogens may be attributed to a variety of factors, including detection methods, sample size, and commingling of the milk in the silo. The effects of commingling likely contributed to the high prevalence rates and low levels of target pathogens because of the inclusion of milk from multiple bulk tanks. The high prevalence rates also may be the result of analysis of larger sample volumes using more sensitive detection methods. These quantitative data could be utilized to perform more accurate risk assessments and to better estimate the appropriate level of protection for dairy products and processing technologies.

  9. Purification and Characterization of a Rabbit Serum Factor That Kills Listeria Species and Other Foodborne Bacterial Pathogens.

    PubMed

    Kothary, Mahendra H; Franco, Augusto A; Tall, Ben D; Gopinath, Gopal R; Datta, Atin R

    2016-08-01

    In an in-vitro assay, rabbit serum, but not human serum, killed Listeria monocytogenes, a foodborne pathogen. The aim of our study was to purify and partially characterize this killing factor. Listericidin was purified from rabbit serum by a single-step ion-exchange chromatography with DEAE-Sephadex A-50 and its antimicrobial activity was assessed by a microdilution method. Listericidin is a protein with a molecular weight of 9 kDa and an isoelectric point of 8.1. It kills L. monocytogenes at 4°C, 25°C, and 37°C, and its activity is resistant to heat (boiling) and acidic conditions (pH <2). Listericidin's activity is inhibited by sodium chloride and various growth media, is sensitive to proteolytic enzymes and is enhanced by calcium chloride, and is neutralized by monoclonal antibodies to human complement C3a. However, the listericidin reacts weakly with these antibodies in an ELISA. The first 33 N-terminal residues of listericidin (SVQLTEKRMDKVGQYTNKELRKXXEDGMRDNPM) have homology to various complement C3a components. Listericidin also kills other Listeria spp., Vibrio spp., Salmonella spp., Escherichia spp., Cronobacter spp., and Bacillus spp. The listericidin peptide purified in a single-step chromatography is pH and heat stable, and has a broad antimicrobial spectrum against major foodborne pathogens in addition to L. monocytogenes. PMID:27455064

  10. Antioxidant, antibacterial, and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens.

    PubMed

    Xu, Changmou; Yagiz, Yavuz; Hsu, Wei-Yea; Simonne, Amarat; Lu, Jiang; Marshall, Maurice R

    2014-07-16

    Polyphenols are predominantly secondary metabolites in muscadine grapes, playing an important role in the species' strong resistance to pests and diseases. This study examined the above property by evaluating the antioxidant, antibacterial, and antibiofilm activities of muscadine polyphenols against selected foodborne pathogens. Results showed that antioxidant activity for different polyphenols varied greatly, ranging from 5 to 11.1 mmol Trolox/g. Antioxidant and antibacterial activities for polyphenols showed a positive correlation. Muscadine polyphenols exhibited a broad spectrum of antibacterial activity against tested foodborne pathogens, especially Staphylococcus aureus (MIC = 67-152 mg/L). Muscadine polyphenols at 4 × MIC caused nearly a 5 log10 CFU/mL drop in cell viability for S. aureus in 6 h with lysis, whereas at 0.5 × MIC they inhibited its biofilm formation and at 16 × MIC they eradicated biofilms. Muscadine polyphenols showed synergy with antibiotics and maximally caused a 6.2 log10 CFU/mL drop in cell viability at subinhibitory concentration. PMID:24865879

  11. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain.

    PubMed

    Yang, Xiang; Noyes, Noelle R; Doster, Enrique; Martin, Jennifer N; Linke, Lyndsey M; Magnuson, Roberta J; Yang, Hua; Geornaras, Ifigenia; Woerner, Dale R; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina; Morley, Paul S; Belk, Keith E

    2016-04-01

    Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica,Listeria monocytogenes,Escherichia coli,Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni,C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica,E. coli, and C. botulinumwere greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes.

  12. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain.

    PubMed

    Yang, Xiang; Noyes, Noelle R; Doster, Enrique; Martin, Jennifer N; Linke, Lyndsey M; Magnuson, Roberta J; Yang, Hua; Geornaras, Ifigenia; Woerner, Dale R; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina; Morley, Paul S; Belk, Keith E

    2016-04-01

    Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica,Listeria monocytogenes,Escherichia coli,Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni,C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica,E. coli, and C. botulinumwere greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes. PMID:26873315

  13. Use of Metagenomic Shotgun Sequencing Technology To Detect Foodborne Pathogens within the Microbiome of the Beef Production Chain

    PubMed Central

    Yang, Xiang; Noyes, Noelle R.; Doster, Enrique; Martin, Jennifer N.; Linke, Lyndsey M.; Magnuson, Roberta J.; Yang, Hua; Geornaras, Ifigenia; Woerner, Dale R.; Jones, Kenneth L.; Ruiz, Jaime; Boucher, Christina; Morley, Paul S.

    2016-01-01

    Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni, C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica, E. coli, and C. botulinum were greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes. PMID:26873315

  14. High-throughput detection of food-borne pathogenic bacteria using oligonucleotide microarray with quantum dots as fluorescent labels.

    PubMed

    Huang, Aihua; Qiu, Zhigang; Jin, Min; Shen, Zhiqiang; Chen, Zhaoli; Wang, Xinwei; Li, Jun-Wen

    2014-08-18

    Bacterial pathogens are mostly responsible for food-borne diseases, and there is still substantial room for improvement in the effective detection of these organisms. In the present study, we explored a new method to detect target pathogens easily and rapidly with high sensitivity and specificity. This method uses an oligonucleotide microarray combined with quantum dots as fluorescent labels. Oligonucleotide probes targeting the 16SrRNA gene were synthesized to create an oligonucleotide microarray. The PCR products labeled with biotin were subsequently hybridized using an oligonucleotide microarray. Following incubation with CdSe/ZnS quantum dots coated with streptavidin, fluorescent signals were detected with a PerkinElmer Gx Microarray Scanner. The results clearly showed specific hybridization profiles corresponding to the bacterial species assessed. Two hundred and sixteen strains of food-borne bacterial pathogens, including standard strains and isolated strains from food samples, were used to test the specificity, stability, and sensitivity of the microarray system. We found that the oligonucleotide microarray combined with quantum dots used as fluorescent labels can successfully discriminate the bacterial organisms at the genera or species level, with high specificity and stability as well as a sensitivity of 10 colony forming units (CFU)/mL of pure culture. We further tested 105 mock-contaminated food samples and achieved consistent results as those obtained from traditional biochemical methods. Together, these results indicate that the quantum dot-based oligonucleotide microarray has the potential to be a powerful tool in the detection and identification of pathogenic bacteria in foods.

  15. Impact of changing consumer lifestyles on the emergence/reemergence of foodborne pathogens.

    PubMed Central

    Collins, J. E.

    1997-01-01

    Foodborne illness of microbial origin is the most serious food safety problem in the United States. The Centers for Disease Control and Prevention reports that 79% of outbreaks between 1987 and 1992 were bacterial; improper holding temperature and poor personal hygiene of food handlers contributed most to disease incidence. Some microbes have demonstrated resistance to standard methods of preparation and storage of foods. Nonetheless, food safety and public health officials attribute a rise in incidence of foodborne illness to changes in demographics and consumer lifestyles that affect the way food is prepared and stored. Food editors report that fewer than 50% of consumers are concerned about food safety. An American Meat Institute (1996) study details lifestyle changes affecting food behavior, including an increasing number of women in the workforce, limited commitment to food preparation, and a greater number of single heads of households. Consumers appear to be more interested in convenience and saving time than in proper food handling and preparation. PMID:9366599

  16. From multiple pathogenicity islands to a unique organized pathogenicity archipelago

    PubMed Central

    Bouyioukos, Costas; Reverchon, Sylvie; Képès, François

    2016-01-01

    Pathogenicity islands are sets of successive genes in a genome that determine the virulence of a bacterium. In a growing number of studies, bacterial virulence appears to be determined by multiple islands scattered along the genome. This is the case in a family of seven plant pathogens and a human pathogen that, under KdgR regulation, massively secrete enzymes such as pectinases that degrade plant cell wall. Here we show that their multiple pathogenicity islands form together a coherently organized, single “archipelago” at the genome scale. Furthermore, in half of the species, most genes encoding secreted pectinases are expressed from the same DNA strand (transcriptional co-orientation). This genome architecture favors DNA conformations that are conducive to genes spatial co-localization, sometimes complemented by co-orientation. As proteins tend to be synthetized close to their encoding genes in bacteria, we propose that this architecture would favor the efficient funneling of pectinases at convergent points within the cell. The underlying functional hypothesis is that this convergent funneling of the full blend of pectinases constitutes a crucial strategy for successful degradation of the plant cell wall. Altogether, our work provides a new approach to describe and predict, at the genome scale, the full virulence complement. PMID:27302835

  17. Antagonistic Characteristics Against Food-borne Pathogenic Bacteria of Lactic Acid Bacteria and Bifidobacteria Isolated from Feces of Healthy Thai Infants

    PubMed Central

    Uraipan, Supansa; Hongpattarakere, Tipparat

    2015-01-01

    Background: Food-borne pathogens are among the most significant problems in maintaining the health of people. Many probiotics have been widely reported to alleviate and protect against gastrointestinal infections through antibacterial secretion. However, the majority of them cannot always play antagonistic roles under gut conditions. Probiotic bacteria of human origin must possess other protective mechanisms to survive, out-compete intestinal flora and to successfully establish in their new host at a significant level. Objectives: Probiotic characteristics of Lactic Acid Bacteria (LAB) and bifidobacteria isolated from the feces of Thai infants were primarily investigated in terms of gastric acid and bile resistances, antibacterial activity and mucin adhesion ability. Antagonistic interaction through secretion of antibacterial compounds and competitive exclusion against food-borne pathogens were also evaluated. Materials and Methods: Culturable LAB and bifidobacteria were isolated from feces of Thai infants. Their ability to withstand gastric acid and bile were then evaluated. Acid and bile salt tolerant LAB and bifidobacteria were identified. They were then further assessed according to their antagonistic interactions through antibacterial secretion, mucin adhesion and competitive mucin adhesion against various food-borne pathogenic bacteria. Results: Gastric acid and bile tolerant LAB and bifidobacteria isolated from healthy infant feces were identified and selected according to their antagonistic interaction against various food-borne pathogenic bacteria. These antagonistic probiotics included four strains of Lactobacillus rhamnosus, two strains of L. casei, five strains of L. plantarum, two strains of Bifidobacterium longum subsp. longum and three strains of B. bifidum. All strains of the selected LAB inhibited all pathogenic bacteria tested through antibacterial secretion, while bifidobacteria showed high level of competitive exclusion against the pathogenic

  18. Assessment of a regulatory sanitization process in Egyptian dairy plants in regard to the adherence of some food-borne pathogens and their biofilms.

    PubMed

    Bayoumi, Mohamed A; Kamal, Rania M; Abd El Aal, Salah F; Awad, Esmat I

    2012-09-01

    Food-borne pathogens may develop certain strategies that enable them to defy harsh conditions such as chemical sanitization. Biofilm formation represents a prominent one among those adopted strategies, by which food-borne pathogens protect themselves against external threats. Thus, bacterial biofilm is considered as a major hazard for safe food production. This study was designed to investigate the adherence and the biofilm formation ability of some food-borne pathogens on stainless steel and polypropylene surfaces using chip assay, and to validate regular sanitizing process (sodium hypochlorite 250 mg/L) for effective elimination of those pathogens. Sixteen pathogenic bacterial strains, previously isolated from raw milk and dairy products at Zagazig city, Egypt (9 Staphylococcus aureus, 4 Cronobacter sakazakii and 3 Salmonella enterica serovar Typhimurium), were chosen for this study. Strains showed different patterns of adherence and biofilm formation on tested surfaces with minor significance between surfaces. The ability of sodium hypochlorite to completely eradicate either adhered or biofilm-embedded pathogens varied significantly depending on the strain and type of surface used. Whilst, sodium hypochlorite reduced tested pathogens counts per cm² of produced biofilms, but it was not able to entirely eliminate neither them nor adherent Cronobacter sakazakii to stainless steel surface. This study revealed that biofilm is considered as a sustainable source of contamination of dairy products with these pathogens, and also emphasized the need of paying more attention to the cleaning and sanitizing processes of food contact surfaces.

  19. Assessment of a regulatory sanitization process in Egyptian dairy plants in regard to the adherence of some food-borne pathogens and their biofilms.

    PubMed

    Bayoumi, Mohamed A; Kamal, Rania M; Abd El Aal, Salah F; Awad, Esmat I

    2012-09-01

    Food-borne pathogens may develop certain strategies that enable them to defy harsh conditions such as chemical sanitization. Biofilm formation represents a prominent one among those adopted strategies, by which food-borne pathogens protect themselves against external threats. Thus, bacterial biofilm is considered as a major hazard for safe food production. This study was designed to investigate the adherence and the biofilm formation ability of some food-borne pathogens on stainless steel and polypropylene surfaces using chip assay, and to validate regular sanitizing process (sodium hypochlorite 250 mg/L) for effective elimination of those pathogens. Sixteen pathogenic bacterial strains, previously isolated from raw milk and dairy products at Zagazig city, Egypt (9 Staphylococcus aureus, 4 Cronobacter sakazakii and 3 Salmonella enterica serovar Typhimurium), were chosen for this study. Strains showed different patterns of adherence and biofilm formation on tested surfaces with minor significance between surfaces. The ability of sodium hypochlorite to completely eradicate either adhered or biofilm-embedded pathogens varied significantly depending on the strain and type of surface used. Whilst, sodium hypochlorite reduced tested pathogens counts per cm² of produced biofilms, but it was not able to entirely eliminate neither them nor adherent Cronobacter sakazakii to stainless steel surface. This study revealed that biofilm is considered as a sustainable source of contamination of dairy products with these pathogens, and also emphasized the need of paying more attention to the cleaning and sanitizing processes of food contact surfaces. PMID:22884171

  20. Antibiofilm formation and anti-adhesive property of three mediterranean essential oils against a foodborne pathogen Salmonella strain.

    PubMed

    Miladi, Hanene; Mili, Donia; Ben Slama, Rihab; Zouari, Sami; Ammar, Emna; Bakhrouf, Amina

    2016-04-01

    Plant extracts, and their essential oils (EOs) are rich in a wide variety of secondary metabolites with antimicrobial properties. Our aim was to determine the bioactive compound in three mediterranean essential oils belonging to Lamiaceae family, Satureja montana L., Thymus vulgaris L. and Rosmarinus officinalis L., and to assess their antimicrobial, antibiofilm and anti-adhesive potentials against a foodborne pathogen Salmonella strain. The antibacterial activity of EOs and its biofilm inhibition potencies were investigated on 2 reference strains Salmonella typhimurium and 12 Salmonella spp. isolated from food. Biofilm inhibition were assessed using the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. The analytical data indicated that various monoterpene hydrocarbons and phenolic monoterpenes constitute the major components of the oils, but their concentrations varied greatly among the oils examined. Our results showed that S. montana L. and T. vulgaris L. essential oils possess remarkable anti biofilm, anti-adhesive and bactericidal properties, compared to R. officinalis EO. There is an indication that Rosmary EO might inhibit biofilm formation at higher concentrations. Therefore, the witer savory and thyme EOs represent a source of natural compounds that exhibit potentials for use in food systems to prevent the growth of foodborne bacteria and extend the shelf life of the processed food. PMID:26802522

  1. Validation of a high-throughput immunobead array technique for multiplex detection of three foodborne pathogens in chicken products.

    PubMed

    Charlermroj, Ratthaphol; Makornwattana, Manlika; Grant, Irene R; Elliott, Christopher T; Karoonuthaisiri, Nitsara

    2016-05-01

    This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings showed that the immunobead array method was capable of detecting as low as 1CFU of the pathogens spiked in the culture media after being cultured for 24h for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1CFU of the pathogens spiked in the food samples after being cultured for 24h in the case of Salmonella spp., and L. monocytogenes and 48 h in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 h, whereas the conventional ISO protocols for the same pathogens take 90-144 h. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing.

  2. Validation of a high-throughput immunobead array technique for multiplex detection of three foodborne pathogens in chicken products.

    PubMed

    Charlermroj, Ratthaphol; Makornwattana, Manlika; Grant, Irene R; Elliott, Christopher T; Karoonuthaisiri, Nitsara

    2016-05-01

    This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings showed that the immunobead array method was capable of detecting as low as 1CFU of the pathogens spiked in the culture media after being cultured for 24h for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1CFU of the pathogens spiked in the food samples after being cultured for 24h in the case of Salmonella spp., and L. monocytogenes and 48 h in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 h, whereas the conventional ISO protocols for the same pathogens take 90-144 h. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing. PMID:26950032

  3. Characterization and complete genome sequence of a virulent bacteriophage B4 infecting food-borne pathogenic Bacillus cereus.

    PubMed

    Lee, Ju-Hoon; Shin, Hakdong; Son, Bokyung; Heu, Sunggi; Ryu, Sangryeol

    2013-10-01

    Bacillus cereus causes food poisoning, resulting in vomiting and diarrhea, due to production of enterotoxins. As a means of controlling this food-borne pathogen, the virulent bacteriophage B4 was isolated and characterized. Bacterial challenge assays showed that phage B4 effectively inhibited growth of members of the B. cereus group as well as B. subtilis, and growth inhibition persisted for over 20 h. One-step growth analysis also revealed the host lysis activity of phage B4, with relatively short eclipse/latent times (10/15 min) and a large burst size (>200 PFU). The complete genome of phage B4, containing a 162-kb DNA with 277 ORFs, was analyzed. The endolysin encoded by the phage B4 genome accounts for the cell lysis activity of this phage. These results suggest that phage B4 has potential as a biological agent to control B. cereus propagation.

  4. Veterinary education in the area of food safety (including animal health, food pathogens and surveillance of foodborne diseases).

    PubMed

    Vidal, S M; Fajardo, P I; González, C G

    2013-08-01

    The animal foodstuffs industry has changed in recent decades as a result of factors such as: human population growth and longer life expectancy, increasing urbanisation and migration, emerging zoonotic infectious diseases and foodborne diseases (FBDs), food security problems, technological advances in animal production systems, globalisation of trade and environmental changes. The Millennium Development Goals and the 'One Health' paradigm provide global guidelines on efficiently addressing the issues of consumer product safety, food security and risks associated with zoonoses. Professionals involved in the supply chain must therefore play an active role, based on knowledge and skills that meet current market requirements. Accordingly, it is necessary for the veterinary medicine curriculum, both undergraduate and postgraduate, to incorporate these skills. This article analyses the approach that veterinary education should adopt in relation to food safety, with an emphasis on animal health, food pathogens and FBD surveillance. PMID:24547647

  5. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens.

    PubMed

    Zhao, Yi; Chen, Mingshun; Zhao, Zhengang; Yu, Shujuan

    2015-10-15

    Sugarcane bagasse contains natural compositions that can significantly inhibit food-borne pathogens growth. In the present study, the phenolic content in sugarcane bagasse was detected as higher than 4 mg/g dry bagasse, with 470 mg quercetin/g polyphenol. The sugarcane bagasse extract showed bacteriostatic activity against the growth of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salomonella typhimurium. Additionally, the sugarcane bagasse extract can increase the electric conductivity of bacterial cell suspensions causing cellular leaking of electrolytes. Results of sodium dodecyl sulfate polyacrylamide gel electrophoresis suggested the antibacterial mechanism was probably due to the damaged cellular proteins by sugarcane bagasse extract. The results of scanning electron microscopy and transmission electron microscopy showed that the sugarcane bagasse extract might change cell morphology and internal structure.

  6. Veterinary education in the area of food safety (including animal health, food pathogens and surveillance of foodborne diseases).

    PubMed

    Vidal, S M; Fajardo, P I; González, C G

    2013-08-01

    The animal foodstuffs industry has changed in recent decades as a result of factors such as: human population growth and longer life expectancy, increasing urbanisation and migration, emerging zoonotic infectious diseases and foodborne diseases (FBDs), food security problems, technological advances in animal production systems, globalisation of trade and environmental changes. The Millennium Development Goals and the 'One Health' paradigm provide global guidelines on efficiently addressing the issues of consumer product safety, food security and risks associated with zoonoses. Professionals involved in the supply chain must therefore play an active role, based on knowledge and skills that meet current market requirements. Accordingly, it is necessary for the veterinary medicine curriculum, both undergraduate and postgraduate, to incorporate these skills. This article analyses the approach that veterinary education should adopt in relation to food safety, with an emphasis on animal health, food pathogens and FBD surveillance.

  7. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    PubMed

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria. PMID:27543841

  8. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    PubMed

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria.

  9. Antibacterial activity of guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria.

    PubMed

    Mahfuzul Hoque, M D; Bari, M L; Inatsu, Y; Juneja, Vijay K; Kawamoto, S

    2007-01-01

    The antibacterial activity of guava (Psidium guajava) and neem (Azadirachta indica) extracts against 21 strains of foodborne pathogens were determined--Listeria monocytogenes (five strains), Staphylococcus aureus (four strains), Escherichia coli O157:H7 (six strains), Salmonella Enteritidis (four strains), Vibrio parahaemolyticus, and Bacillus cereus, and five food spoilage bacteria: Pseudomonas aeroginosa, P. putida, Alcaligenes faecalis, and Aeromonas hydrophila (two strains). Guava and neem extracts showed higher antimicrobial activity against Gram-positive bacteria compared to Gram-negative bacteria except for V. parahaemolyticus, P. aeroginosa, and A. hydrophila. None of the extracts showed antimicrobial activity against E. coli O157:H7 and Salmonella Enteritidis. The minimum inhibitory concentration (MIC) of ethanol extracts of guava showed the highest inhibition for L. monocytogenes JCM 7676 (0.1 mg/mL), S. aureus JCM 2151 (0.1 mg/mL), S. aureus JCM 2179 (0.1 mg/mL), and V. parahaemolyticus IFO 12711 (0.1 mg/mL) and the lowest inhibition for Alcaligenes faecalis IFO 12669, Aeromonas hydrophila NFRI 8282 (4.0 mg/mL), and A. hydrophila NFRI 8283 (4.0 mg/mL). The MIC of chloroform extracts of neem showed similar inhibition for L. monocytogenes ATCC 43256 (4.0 mg/mL) and L. monocytogenes ATCC 49594 (5.0 mg/mL). However, ethanol extracts of neem showed higher inhibition for S. aureus JCM 2151 (4.5 mg/mL) and S. aureus IFO 13276 (4.5 mg/mL) and the lower inhibition for other microorganisms (6.5 mg/mL). No significant effects of temperature and pH were found on guava and neem extracts against cocktails of L. monocytogenes and S. aureus. The results of the present study suggest that guava and neem extracts possess compounds containing antibacterial properties that can potentially be useful to control foodborne pathogens and spoilage organisms.

  10. Fundamental Characteristics of Deep-UV Light-Emitting Diodes and Their Application To Control Foodborne Pathogens

    PubMed Central

    Shin, Joo-Yeon; Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm2. At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens. PMID:26162872

  11. Fundamental Characteristics of Deep-UV Light-Emitting Diodes and Their Application To Control Foodborne Pathogens.

    PubMed

    Shin, Joo-Yeon; Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2015-07-10

    Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm(2). At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens.

  12. Novel genomic tools for specific and real-time detection of biothreat and frequently encountered foodborne pathogens.

    PubMed

    Woubit, Abdela; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen

    2012-04-01

    The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens. PMID:22488053

  13. Multiplex quantitative foodborne pathogen detection using high resolution CE-SSCP coupled stuffer-free multiplex ligation-dependent probe amplification.

    PubMed

    Chung, Boram; Shin, Gi Won; Na, Jeongkyeong; Oh, Mi-Hwa; Jung, Gyoo Yeol

    2012-05-01

    Sensitive multiplex detection methods for foodborne pathogens are important in controlling food safety, and detection of genetic markers is accepted to be one of the best tools for sensitive detection. Although CE technology offers great potential in terms of sensitive multiplex detection, the necessary amplification is confined to markers sharing common primers such as the 16S rRNA gene. For precise and sensitive detection, pathogen-specific genes are optimal markers. Although multiplex ligation-dependent probe amplification (MLPA) is appropriate for amplification of specific markers, the requirement for stuffers, to ensure length-dependent separation on CE, is a major obstacle in detection of foodborne pathogens. In the present study, we developed stuffer-free MLPA using high-resolution CE-SSCP to sensitively detect ten foodborne pathogens. The probe set for MLPA prior to CE-SSCP analysis was designed for species-specific detection. After careful optimization of each MLPA step, to ensure that CE-SSCP analysis was informative, we found that all ten pathogens could be reliably identified; the limits of detection were 0.5-5 pg of genomic DNA, and more than 100-fold increase could be quantitatively determined. Thus, MLPA-CE-SSCP is a sensitive and reliable technique for pathogen detection.

  14. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    PubMed

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage.

  15. Antibacterial effect of water-soluble arrowroot (Puerariae radix) tea extracts on foodborne pathogens in ground beef and mushroom soup.

    PubMed

    Kim, S; Fung, D Y C

    2004-09-01

    Antimicrobial activity of water-soluble arrowroot tea extract was evaluated against Escherichia coli O157:H7, Salmonella enterica Serotype Enteritidis, Listeria monocytogenes, and Staphylococcus aureus in ground beef and mushroom soup. The concentrations of arrowroot tea used were 0, 3, and 6% (wt/wt) for ground beef and 0, 1, 5, and 10% (wt/vol) for mushroom soup. Samples without tea extract were considered controls. Each sample was stored for 0, 1, 3, 5, and 7 days at 7 degrees C for ground beef and for 0, 1, 3, and 5 days at 35 degrees C for mushroom soup. On each sampling time, proper dilutions were spread plated on each pathogen-specific agar. Viable cell counts of each pathogen were performed after incubation at 35 degrees C for 24 to 48 h. For ground beef, Salmonella Enteritidis and L. monocytogenes were slightly suppressed by approximately 1.5 log, compared with the control, on day 7 at 3 and 6% arrowroot tea treatment. For mushroom soup, all test pathogens were suppressed by 6.5, 4.7, 3.4, and 4.3 log at 5% and 6.0, 4.7, 5.0, and 4.3 log at 10% against E. coli O157:H7, Salmonella Enteritidis, L. monocytogenes, and S. aureus, respectively, compared with the control on day 5. Mushroom soup with 1% arrowroot tea also showed 2.3- and 2.7-log growth suppression of Salmonella Enteritidis and S. aureus, respectively, compared with the control on day 5. This study showed that the use of arrowroot tea would effectively inhibit the microbial growth of both gram-negative and gram-positive foodborne pathogens in various foods, especially liquid foods. PMID:15453588

  16. Antibacterial effect of water-soluble arrowroot (Puerariae radix) tea extracts on foodborne pathogens in ground beef and mushroom soup.

    PubMed

    Kim, S; Fung, D Y C

    2004-09-01

    Antimicrobial activity of water-soluble arrowroot tea extract was evaluated against Escherichia coli O157:H7, Salmonella enterica Serotype Enteritidis, Listeria monocytogenes, and Staphylococcus aureus in ground beef and mushroom soup. The concentrations of arrowroot tea used were 0, 3, and 6% (wt/wt) for ground beef and 0, 1, 5, and 10% (wt/vol) for mushroom soup. Samples without tea extract were considered controls. Each sample was stored for 0, 1, 3, 5, and 7 days at 7 degrees C for ground beef and for 0, 1, 3, and 5 days at 35 degrees C for mushroom soup. On each sampling time, proper dilutions were spread plated on each pathogen-specific agar. Viable cell counts of each pathogen were performed after incubation at 35 degrees C for 24 to 48 h. For ground beef, Salmonella Enteritidis and L. monocytogenes were slightly suppressed by approximately 1.5 log, compared with the control, on day 7 at 3 and 6% arrowroot tea treatment. For mushroom soup, all test pathogens were suppressed by 6.5, 4.7, 3.4, and 4.3 log at 5% and 6.0, 4.7, 5.0, and 4.3 log at 10% against E. coli O157:H7, Salmonella Enteritidis, L. monocytogenes, and S. aureus, respectively, compared with the control on day 5. Mushroom soup with 1% arrowroot tea also showed 2.3- and 2.7-log growth suppression of Salmonella Enteritidis and S. aureus, respectively, compared with the control on day 5. This study showed that the use of arrowroot tea would effectively inhibit the microbial growth of both gram-negative and gram-positive foodborne pathogens in various foods, especially liquid foods.

  17. Combination treatment of chlorine dioxide gas and aerosolized sanitizer for inactivating foodborne pathogens on spinach leaves and tomatoes.

    PubMed

    Park, Sang-Hyun; Kang, Dong-Hyun

    2015-08-17

    The objective of this study was to evaluate the antimicrobial effect of chlorine dioxide (ClO2) gas and aerosolized sanitizer, when applied alone or in combination, on the survival of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated onto spinach leaves and tomato surfaces. Spinach leaves and tomatoes were inoculated with a cocktail of three strains each of the three foodborne pathogens. ClO2 gas (5 or 10 ppmv) and aerosolized peracetic acid (PAA) (80 ppm) were applied alone or in combination for 20 min. Exposure to 10 ppmv of ClO2 gas for 20 min resulted in 3.4, 3.3, and 3.4 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on spinach leaves, respectively. Treatment with 80 ppm of aerosolized PAA for 20 min caused 2.3, 1.9, and 0.8 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) for 20 min caused 5.4, 5.1, and 4.1 log reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. E. coli O157:H7, S. Typhimurium, and L. monocytogenes on tomatoes experienced similar reduction patterns to those on spinach leaves. As treatment time increased, most combinations of ClO2 gas and aerosolized PAA showed additive effects in the inactivation of the three pathogens. Combined treatment of ClO2 gas and aerosolized PAA produced injured cells of three pathogens on spinach leaves while generally did not produce injured cells of these pathogens on tomatoes. Combined treatment of ClO2 gas (10 ppmv) and aerosolized PAA (80 ppm) did not significantly (p>0.05) affect the color and texture of samples during 7 days of storage. PMID:26001524

  18. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review.

    PubMed

    Dhama, K; Rajagunalan, S; Chakraborty, S; Verma, A K; Kumar, A; Tiwari, R; Kapoor, S

    2013-10-15

    The term food borne diseases or food-borne illnesses or more commonly food poisoning are used to denote gastrointestinal complications that occur following recent consumption of a particular food or drink. Millions of people suffer worldwide every year and the situation is quiet grave in developing nations creating social and economic strain. The food borne pathogens include various bacteria viz., Salmonella, Campylobacter, Escherichia coli, Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus, Arcobacter, Clostridium perfringens, Cl. botulinum and Bacillus cereus and helminths viz., Taenia. They also include protozoa viz., Trichinella, Sarcocystis, Toxoplasma gondii and Cryptosporidium parvum. The zoonotic potential and the ability to elaborate toxins by many of the microbes causing fatal intoxication are sufficient to understand the seriousness of the situation. The viral agents being host specific their transmission to humans through food of animal origin is not yet confirmed although these animal viruses are similar to that of viruses infecting human. Food-borne bacteria; protozoa and helminthes have complex distribution pattern in the environment and inside the host system. This along with complexity of the maintenance chain and life cycle (of parasites) has made it difficult for epidemiologist and diagnostician to undertake any immediate safety measures against them. Serological and molecular diagnostic tests viz. ELISA, Latex agglutination test, Lateral flow assays, Immunomagnetic separation assays, molecular assays viz. Polymerase Chain Reaction (PCR), multiplex PCR, immuno-PCR, Realtime PCR, Random Amplified Polymorphic DNA (RAPD)-PCR, DNA microarrays and probes are widely used. Along with these LAMP assays, Capillary Electrophoresis-Single Strand Confirmation polymorphism (CE-SSCP); Flow cytometry, FISH, Biosensors, Direct epifluorescent filter technique, nanotechnology based methods and sophisticated tools (ultrasonography, magnetic resonance

  19. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples.

    PubMed

    Vaisocherová-Lísalová, Hana; Víšová, Ivana; Ermini, Maria Laura; Špringer, Tomáš; Song, Xue Chadtová; Mrázek, Jan; Lamačová, Josefína; Scott Lynn, N; Šedivák, Petr; Homola, Jiří

    2016-06-15

    Recent outbreaks of foodborne illnesses have shown that foodborne bacterial pathogens present a significant threat to public health, resulting in an increased need for technologies capable of fast and reliable screening of food commodities. The optimal method of pathogen detection in foods should: (i) be rapid, specific, and sensitive; (ii) require minimum sample preparation; and (iii) be robust and cost-effective, thus enabling use in the field. Here we report the use of a SPR biosensor based on ultra-low fouling and functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes for the rapid and sensitive detection of bacterial pathogens in crude food samples utilizing a three-step detection assay. We studied both the surface resistance to fouling and the functional capabilities of these brushes with respect to each step of the assay, namely: (I) incubation of the sensor with crude food samples, resulting in the capture of bacteria by antibodies immobilized to the pCBAA coating, (II) binding of secondary biotinylated antibody (Ab2) to previously captured bacteria, and (III) binding of streptavidin-coated gold nanoparticles to the biotinylated Ab2 in order to enhance the sensor response. We also investigated the effects of the brush thickness on the biorecognition capabilities of the gold-grafted functionalized pCBAA coatings. We demonstrate that pCBAA-compared to standard low-fouling OEG-based alkanethiolate self-assemabled monolayers-exhibits superior surface resistance regarding both fouling from complex food samples as well as the non-specific binding of S-AuNPs. We further demonstrate that a SPR biosensor based on a pCBAA brush with a thickness as low as 20 nm was capable of detecting E. coli O157:H7 and Salmonella sp. in complex hamburger and cucumber samples with extraordinary sensitivity and specificity. The limits of detection for the two bacteria in cucumber and hamburger extracts were determined to be 57 CFU/mL and 17 CFU/mL for E. coli and 7.4 × 10

  20. The Australian bush fly (Musca vetustissima) as a potential vector in the transmission of foodborne pathogens at outdoor eateries.

    PubMed

    Vriesekoop, Frank; Shaw, Rachel

    2010-03-01

    Abstract Australian outdoor activities are often accompanied by a barbeque (BBQ) with family, friends, and guests, which are often interrupted by uninvited guests in the form of the Australian bush fly, Musca vetustissima. We investigated the bacterial loading associated with the Australian bush in three different environments: on a cattle farm, in a typical urban area (shopping center car park), and at a BBQ. The highest bacterial populations per fly were found to occur in a farm environment ( approximately 9.1 x 10(4) CFU per fly), whereas the bacterial population was lowest on flies caught in an urban environment ( approximately 1.9 x 10(4) CFU per fly). The median CFU per fly caught near a BBQ was approximately 5.0 x 10(4). Escherichia coli was the most commonly isolated potential pathogen, whereas Shigella sp. was the least common bacterial isolate that was screened. All isolated foodborne pathogens or indicator bacteria were screened for antibiotic resistance against commonly prescribed antibiotics. This revealed a very high prevalence of multidrug resistance, especially among the Salmonella and Shigella isolates of 94% and 87% resistance, respectively, against amoxicillin, roxythromycin and cefaclor.

  1. Detection of food-borne pathogens by nanoparticle technology coupled to a low-cost cell reader

    NASA Astrophysics Data System (ADS)

    Noiseux, Isabelle; Bouchard, Jean-Pierre; Gallant, Pascal; Bourqui, Pascal; Cao, Honghe; Vernon, Marci; Johnson, Roger; Chen, Shu; Mermut, Ozzy

    2010-02-01

    The detection, identification and quantification of pathogenic microorganisms at low cost are of great interest to the agro-food industry. We have developed a simple, rapid, sensitive, and specific method for detection of food-borne pathogens based on use of nanoparticles alongside a low cost fluorescence cell reader for the bioassay. The nanoparticles are coupled with antibodies that allow specific recognition of the targeted Listeria in either a liquid or food matrix. The bioconjugated nanoparticles (FNP) contain thousands of dye molecules enabling significant amplification of the fluorescent signal emitted from each bacterium. The developed fluorescence Cell Reader is an LED-based reader coupled with suitable optics and a camera that acquires high resolution images. The dedicated algorithm allowed the counting of each individual nanoparticles-fluorescent bacterial cells thus enabling highly sensitive reading. The system allows, within 1 hour, the recovery and counting of 104 to 108 cfu/mL of Listeria in pure culture. However, neither the Cell Reader nor the algorithm can differentiate between the FNPs specifically-bound to the target and the residual unbound FNPs limiting sensitivity of the system. Since FNPs are too small to be washed in the bioassay, a dual tagging approach was implemented to allow online optical separation of the fluorescent background caused by free FNPs.

  2. The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety.

    PubMed

    Alvarez-Ordóñez, Avelino; Broussolle, Véronique; Colin, Pierre; Nguyen-The, Christophe; Prieto, Miguel

    2015-11-20

    Bacteria are constantly faced to stress situations in their ecological niches, the food and the host gastrointestinal tract. The capacity to detect and respond to surrounding changes is crucial for bacterial pathogens to survive or grow in changing environments. To this purpose, cells have evolved various sophisticated networks designed to protect against stressors or repair damage caused by them. Challenges can occur during production of foods when subjected to processing, and after food ingestion when confronted with host defensive barriers. Some pathogenic bacteria have shown the capacity to develop stable resistance against extreme conditions within a defined genomic context and a limited number of generations. On the other hand, bacteria can also respond to adverse conditions in a transient manner, through the so-called stress tolerance responses. Bacterial stress tolerance responses include both structural and physiological modifications in the cell and are mediated by complex genetic regulatory machinery. Major aspects in the adaptive response are the sensing mechanisms, the characterization of cell defensive systems, such as the operation of regulatory proteins (e.g. RpoS), the induction of homeostatic and repair systems, the synthesis of shock response proteins, and the modifications of cell membranes, particularly in their fatty acid composition and physical properties. This article reviews certain strategies used by food-borne bacteria to respond to particular stresses (acid, cold stress, extreme pressure) in a permanent or transient manner and discusses the implications that such adaptive responses pose for food safety.

  3. Food-borne protozoa.

    PubMed

    Nichols, G L

    2000-01-01

    Pathogenic protozoa are commonly transmitted to food in developing countries, but food-borne outbreaks of infection are relatively rare in developed countries. The main protozoa of concern in developed countries are Toxoplasma, Cryptosporidium and Giardia, and these can be a problem in immunocompromised people. Other protozoa such as Entamoeba histolytica, Cyclospora cayetanensis and Sarcocystis can be a food-borne problem in non-industrialised countries. C. cayetanensis has emerged as a food-borne pathogen in foods imported into North America from South America. Microsporidia may be food-borne, although evidence for this is not yet available. The measures needed to prevent food-borne protozoa causing disease require clear assessments of the risks of contamination and the effectiveness of processes to inactivate them. The globalisation of food production can allow new routes of transmission, and advances in diagnostic detection methods and surveillance systems have extended the range of protozoa that may be linked to food. PMID:10885117

  4. Food-borne protozoa.

    PubMed

    Nichols, G L

    2000-01-01

    Pathogenic protozoa are commonly transmitted to food in developing countries, but food-borne outbreaks of infection are relatively rare in developed countries. The main protozoa of concern in developed countries are Toxoplasma, Cryptosporidium and Giardia, and these can be a problem in immunocompromised people. Other protozoa such as Entamoeba histolytica, Cyclospora cayetanensis and Sarcocystis can be a food-borne problem in non-industrialised countries. C. cayetanensis has emerged as a food-borne pathogen in foods imported into North America from South America. Microsporidia may be food-borne, although evidence for this is not yet available. The measures needed to prevent food-borne protozoa causing disease require clear assessments of the risks of contamination and the effectiveness of processes to inactivate them. The globalisation of food production can allow new routes of transmission, and advances in diagnostic detection methods and surveillance systems have extended the range of protozoa that may be linked to food.

  5. Comparison of individual-based modeling and population approaches for prediction of foodborne pathogens growth.

    PubMed

    Augustin, Jean-Christophe; Ferrier, Rachel; Hezard, Bernard; Lintz, Adrienne; Stahl, Valérie

    2015-02-01

    Individual-based modeling (IBM) approach combined with the microenvironment modeling of vacuum-packed cold-smoked salmon was more effective to describe the variability of the growth of a few Listeria monocytogenes cells contaminating irradiated salmon slices than the traditional population models. The IBM approach was particularly relevant to predict the absence of growth in 25% (5 among 20) of artificially contaminated cold-smoked salmon samples stored at 8 °C. These results confirmed similar observations obtained with smear soft cheese (Ferrier et al., 2013). These two different food models were used to compare the IBM/microscale and population/macroscale modeling approaches in more global exposure and risk assessment frameworks taking into account the variability and/or the uncertainty of the factors influencing the growth of L. monocytogenes. We observed that the traditional population models significantly overestimate exposure and risk estimates in comparison to IBM approach when contamination of foods occurs with a low number of cells (<100 per serving). Moreover, the exposure estimates obtained with the population model were characterized by a great uncertainty. The overestimation was mainly linked to the ability of IBM to predict no growth situations rather than the consideration of microscale environment. On the other hand, when the aim of quantitative risk assessment studies is only to assess the relative impact of changes in control measures affecting the growth of foodborne bacteria, the two modeling approach gave similar results and the simplest population approach was suitable.

  6. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection.

    PubMed

    Chen, Jing; Park, Bosoon

    2016-06-01

    Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. In efforts to improve and/or replace time-consuming and laborious "gold standards" for pathogen detection, numerous alternative rapid methods have been proposed in the past 15 years, with a trend toward incorporating nanotechnology and nanomaterials in food pathogen detection. This article is a review of the use of nanotechnology in various detection and sample preparation techniques and advancements in nanotechnology applications in food matrices. Some practical considerations in nanobioassay design are discussed, and the gaps between research status quo and market demands are identified.

  7. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection.

    PubMed

    Chen, Jing; Park, Bosoon

    2016-06-01

    Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. In efforts to improve and/or replace time-consuming and laborious "gold standards" for pathogen detection, numerous alternative rapid methods have been proposed in the past 15 years, with a trend toward incorporating nanotechnology and nanomaterials in food pathogen detection. This article is a review of the use of nanotechnology in various detection and sample preparation techniques and advancements in nanotechnology applications in food matrices. Some practical considerations in nanobioassay design are discussed, and the gaps between research status quo and market demands are identified. PMID:27296612

  8. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms.

    PubMed

    Arena, Mattia Pia; Silvain, Amandine; Normanno, Giovanni; Grieco, Francesco; Drider, Djamel; Spano, Giuseppe; Fiocco, Daniela

    2016-01-01

    . This study emphasizes the tempting use of the tested L. plantarum strains and/or their CFS as antimicrobial agents against food-borne pathogens. PMID:27148172

  9. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms

    PubMed Central

    Arena, Mattia Pia; Silvain, Amandine; Normanno, Giovanni; Grieco, Francesco; Drider, Djamel; Spano, Giuseppe; Fiocco, Daniela

    2016-01-01

    . This study emphasizes the tempting use of the tested L. plantarum strains and/or their CFS as antimicrobial agents against food-borne pathogens. PMID:27148172

  10. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms.

    PubMed

    Arena, Mattia Pia; Silvain, Amandine; Normanno, Giovanni; Grieco, Francesco; Drider, Djamel; Spano, Giuseppe; Fiocco, Daniela

    2016-01-01

    . This study emphasizes the tempting use of the tested L. plantarum strains and/or their CFS as antimicrobial agents against food-borne pathogens.

  11. Bactericidal Mechanism of Bio-oil Obtained from Fast Pyrolysis of Pinus densiflora Against Two Foodborne Pathogens, Bacillus cereus and Listeria monocytogenes.

    PubMed

    Patra, Jayanta Kumar; Hwang, Hyewon; Choi, Joon Weon; Baek, Kwang-Hyun

    2015-06-01

    Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated. BO at a concentration of 1000 μg/disc was highly active against both B. cereus (10.0-10.6 mm-inhibition zone) and L. monocytogenes (10.6-12.0-mm inhibition zone). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values of BO were 500 and 1000 μg/mL, respectively, for both pathogens. At the MIC concentration, BO exhibited an inhibitory effect on the viability of the bacterial pathogens. The mechanism of action of BO revealed its strong impairing effect on the membrane integrity of bacterial cells, which was confirmed by a marked release of 260-nm absorbing material, leakage of electrolytes and K(+) ions, and reduced capacity for osmoregulation under high salt concentration. Scanning electron microscopy clearly showed morphological alteration of the cell membrane due to the effect of BO. Overall, the results of this study suggest that BO exerts effective antibacterial potential against foodborne pathogens and can therefore potentially be used in food processing and preservation.

  12. Bactericidal Mechanism of Bio-oil Obtained from Fast Pyrolysis of Pinus densiflora Against Two Foodborne Pathogens, Bacillus cereus and Listeria monocytogenes.

    PubMed

    Patra, Jayanta Kumar; Hwang, Hyewon; Choi, Joon Weon; Baek, Kwang-Hyun

    2015-06-01

    Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated. BO at a concentration of 1000 μg/disc was highly active against both B. cereus (10.0-10.6 mm-inhibition zone) and L. monocytogenes (10.6-12.0-mm inhibition zone). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values of BO were 500 and 1000 μg/mL, respectively, for both pathogens. At the MIC concentration, BO exhibited an inhibitory effect on the viability of the bacterial pathogens. The mechanism of action of BO revealed its strong impairing effect on the membrane integrity of bacterial cells, which was confirmed by a marked release of 260-nm absorbing material, leakage of electrolytes and K(+) ions, and reduced capacity for osmoregulation under high salt concentration. Scanning electron microscopy clearly showed morphological alteration of the cell membrane due to the effect of BO. Overall, the results of this study suggest that BO exerts effective antibacterial potential against foodborne pathogens and can therefore potentially be used in food processing and preservation. PMID:25928035

  13. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. Current gold standards are specific...

  14. Interactions between food-borne pathogens and protozoa isolated from lettuce and spinach.

    PubMed

    Gourabathini, Poornima; Brandl, Maria T; Redding, Katherine S; Gunderson, John H; Berk, Sharon G

    2008-04-01

    The survival of Salmonella enterica was recently shown to increase when the bacteria were sequestered in expelled food vacuoles (vesicles) of Tetrahymena. Because fresh produce is increasingly linked to outbreaks of enteric illness, the present investigation aimed to determine the prevalence of protozoa on spinach and lettuce and to examine their interactions with S. enterica, Escherichia coli O157:H7, and Listeria monocytogenes. Glaucoma sp., Colpoda steinii, and Acanthamoeba palestinensis were cultured from store-bought spinach and lettuce and used in our study. A strain of Tetrahymena pyriformis previously isolated from spinach and a soil-borne Tetrahymena sp. were also used. Washed protozoa were allowed to graze on green fluorescent protein- or red fluorescent protein-labeled enteric pathogens. Significant differences in interactions among the various protist-enteric pathogen combinations were observed. Vesicles were produced by Glaucoma with all of the bacterial strains, although L. monocytogenes resulted in the smallest number per ciliate. Vesicle production was observed also during grazing of Tetrahymena on E. coli O157:H7 and S. enterica but not during grazing on L. monocytogenes, in vitro and on leaves. All vesicles contained intact fluorescing bacteria. In contrast, C. steinii and the amoeba did not produce vesicles from any of the enteric pathogens, nor were pathogens trapped within their cysts. Studies of the fate of E. coli O157:H7 in expelled vesicles revealed that by 4 h after addition of spinach extract, the bacteria multiplied and escaped the vesicles. The presence of protozoa on leafy vegetables and their sequestration of enteric bacteria in vesicles indicate that they may play an important role in the ecology of human pathogens on produce. PMID:18310421

  15. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction.

    PubMed

    Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming

    2013-07-17

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices.

  16. Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics.

    PubMed

    Gyawali, Rabin; Ibrahim, Salam A

    2012-07-01

    Numerous studies have been published on the antimicrobial and antioxidant properties of various plant components. However, there is relatively little information on the impact of such components on the enhancement of probiotics and production of antimicrobial compounds from these probiotics. Hence, this paper focuses on the influence of plant-derived components against pathogens, enhancement of cell viability and functionality of probiotics, and potential applications of such components in food safety and human health.

  17. Short communication: Combined antimicrobial activity of reuterin and diacetyl against foodborne pathogens.

    PubMed

    Langa, S; Martín-Cabrejas, I; Montiel, R; Landete, J M; Medina, M; Arqués, J L

    2014-10-01

    Reuterin (β-hydroxypropionialdehyde) is a broad-spectrum antimicrobial substance produced by some strains of Lactobacillus reuteri during anaerobic fermentation of glycerol. Some of these strains are able to survive and produce reuterin in cheese and yogurt when added as adjuncts to the starter. Similarly, in fermented dairy foods, other inhibitory compounds such as lactic acid and diacetyl are produced during fermentation. In this work, we studied the combined effect of reuterin and diacetyl under different pH conditions against Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes. Results from agar spot assays showed that the antimicrobial activity of reuterin-producing strains against the gram-negative bacteria tested was enhanced as the concentration of diacetyl increased to 50 mg/kg, and was higher under acidic conditions (pH 5.0) for the 3 pathogenic strains. The combination of reuterin and diacetyl had an additive effect against L. monocytogenes only at diacetyl concentrations of 50 mg/kg and pH 5.0. In addition, growth kinetics studies showed that the combination of 1 activity unit (AU)/mL of reuterin with 100mg/kg diacetyl increased the lag time of the 3 pathogens. In milk, synergistic antimicrobial activity was observed with the combination of 1 AU/mL reuterin and 50 or 100 mg/kg of diacetyl on the gram-negative strains tested, and with 1 AU/mL reuterin and 100 mg/kg of diacetyl on L. monocytogenes. The greatest inhibition of the 3 pathogens was achieved in acidified milk at pH 5.0 with reuterin (1 AU/mL) and diacetyl (100 mg/kg). Based on these results, the combination of reuterin and diacetyl in acidified dairy products could be a promising strategy to control food pathogens in these products.

  18. The Key Events Dose-Response Framework: Its Potential for Application to Foodborne Pathogenic Microorganisms

    PubMed Central

    BUCHANAN, ROBERT L.; HAVELAAR, ARIE H.; SMITH, MARY ALICE; WHITING, RICHARD C.; JULIEN, ELIZABETH

    2009-01-01

    The Key Events Dose-Response Framework (KEDRF) is an analytical approach that facilitates the use of currently available data to gain insight regarding dose-response relationships. The use of the KEDRF also helps identify critical knowledge gaps that once filled, will reduce reliance on assumptions. The present study considers how the KEDRF might be applied to pathogenic microorganisms, using fetal listeriosis resulting from maternal ingestion of food contaminated with L. monocytogenes as an initial example. Major biological events along the pathway between food ingestion and the endpoint of concern are systematically considered with regard to dose (i.e., number of organisms), pathogen factors (e.g., virulence), and protective host mechanisms (e.g., immune response or other homeostatic mechanisms). It is concluded that the KEDRF provides a useful structure for systematically evaluating the complex array of host and pathogen factors that influence the dose-response relationship. In particular, the KEDRF supports efforts to specify and quantify the sources of variability, a prerequisite to strengthening the scientific basis for food safety decision making. PMID:19690997

  19. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria.

    PubMed

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent.

  20. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria.

    PubMed

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-07-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  1. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria

    PubMed Central

    Shahbazi, Yasser

    2015-01-01

    The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf of Mentha spicata plant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, and Escherichia coli O157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%), β-bourbonene (11.23%), cis-dihydrocarveol (1.43%), trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible to M. spicata essential oil than Gram-negative bacteria. L. monocytogenes was the most sensitive of the microorganisms to the antibacterial activity of M. spicata essential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil of M. spicata plant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent. PMID:26351584

  2. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    PubMed Central

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  3. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria.

    PubMed

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-07-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products.

  4. A microfluidic-based hybrid SPR/molecular imaging biosensor for the multiplexed detection of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Zordan, Michael D.; Grafton, Meggie M. G.; Acharya, Ghanashyam; Reece, Lisa M.; Aronson, Arthur I.; Park, Kinam; Leary, James F.

    2009-02-01

    It is important to screen our food supply for pathogen contaminations. Current methods to screen for bacterial contamination involve using costly reagents such as antibodies or PCR reagents or time-costly growth in cultures. There is need for portable, real-time, multiplex pathogen detection technology that can predict the safety of food where it is produced or distributed. Surface plasmon resonance (SPR) imaging is a sensitive, label-free method that can detect the binding of an analyte to a surface due to changes in refractive index that occur upon binding. It can be used for label-free detection of the presence of potential pathogens. Simultaneous fluorescence molecular imaging on the other side of the biochip can be used to ascertain pathogen status or functional state which may affect its potential danger to humans or animals. We are designing and testing hybrid microfluidic biochips to detect multiple pathogens using a combination of SPRI and fluorescence imaging. The device consists of an array of gold spots, each functionalized with a peptide targeting a specific pathogen. This peptide biosensor array is enclosed by a PDMS microfluidic flow chamber that delivers a magnetically concentrated sample to be tested. An SPR image is taken from the bottom of the biochip. Image analysis is used to quantify the amount of pathogen (both live and dead) bound to each spot. Since PDMS is very transmissive to visible light, an epi-fluorescence image is taken from the top of the biochip. Fluorescence imaging determines the live:dead ratio of each pathogen using an inexpensive SYTO 9(R)-Propidium Iodide assay. The volume of sample that the biochip can analyze is small, so possible pathogens are pre-concentrated using immunomagnetic separation. Functionalized magnetic particles are bound to pathogens present in the sample, and a magnet is used to separate them from the bulk fluid.

  5. Analysis of a Food-Borne Fungal Pathogen Outbreak: Virulence and Genome of a Mucor circinelloides Isolate from Yogurt

    PubMed Central

    Billmyre, R. Blake; Li, Alicia; Carson, Sandra; Sykes, Sean M.; Huh, Eun Young; Mieczkowski, Piotr; Ko, Dennis C.; Cuomo, Christina A.

    2014-01-01

    ABSTRACT Food-borne pathogens are ongoing problems, and new pathogens are emerging. The impact of fungi, however, is largely underestimated. Recently, commercial yogurts contaminated with Mucor circinelloides were sold, and >200 consumers became ill with nausea, vomiting, and diarrhea. Mucoralean fungi cause the fatal fungal infection mucormycosis, whose incidence has been continuously increasing. In this study, we isolated an M. circinelloides strain from a yogurt container, and multilocus sequence typing identified the strain as Mucor circinelloides f. circinelloides. M. circinelloides f. circinelloides is the most virulent M. circinelloides subspecies and is commonly associated with human infections, whereas M. circinelloides f. lusitanicus and M. circinelloides f. griseocyanus are less common causes of infection. Whole-genome analysis of the yogurt isolate confirmed it as being close to the M. circinelloides f. circinelloides subgroup, with a higher percentage of divergence with the M. circinelloides f. lusitanicus subgroup. In mating assays, the yogurt isolate formed sexual zygospores with the (−) M. circinelloides f. circinelloides tester strain, which is congruent with its sex locus encoding SexP, the (+) mating type sex determinant. The yogurt isolate was virulent in murine and wax moth larva host systems. In a murine gastromucormycosis model, Mucor was recovered from fecal samples of infected mice for up to 10 days, indicating that Mucor can survive transit through the GI tract. In interactions with human immune cells, M. circinelloides f. lusitanicus induced proinflammatory cytokines but M. circinelloides f. circinelloides did not, which may explain the different levels of virulence in mammalian hosts. This study demonstrates that M. circinelloides can spoil food products and cause gastrointestinal illness in consumers and may pose a particular risk to immunocompromised patients. PMID:25006230

  6. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions.

    PubMed

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Anguera, Marina; Altisent, Rosa; Abadias, Maribel

    2013-04-01

    Recently, we reported that the application of the strain CPA-7 of Pseudomonas graminis, previously isolated from apple, could reduce the population of foodborne pathogens on minimally processed (MP) apples and peaches under laboratory conditions. Therefore, the objective of the present work was to find an antioxidant treatment and a packaging atmosphere condition to improve CPA-7 efficacy in reducing a cocktail of four Salmonella and five Listeria monocytogenes strains on MP apples under simulated commercial processing. The effect of CPA-7 application on apple quality and its survival to simulated gastric stress were also evaluated. Ascorbic acid (2%, w/v) and N-acetyl-l-cysteine (1%, w/v) as antioxidant treatments reduced Salmonella, L. monocytogenes and CPA-7 recovery, meanwhile no reduction was observed with NatureSeal(®) AS1 (NS, 6%, w/v). The antagonistic strain was effective on NS-treated apple wedges stored at 10 °C with or without modified atmosphere packaging (MAP). Then, in a semi-commercial assay, efficacy of CPA-7 inoculated at 10(5) and 10(7) cfu mL(-1) against Salmonella and L. monocytogenes strains on MP apples with NS and MAP and stored at 5 and 10 °C was evaluated. Although high CPA-7 concentrations/populations avoided Salmonella growth at 10 °C and lowered L. monocytogenes population increases were observed at both temperatures, the effect was not instantaneous. No effect on apple quality was detected and CPA-7 did not survived to simulated gastric stress throughout storage. Therefore, CPA-7 could avoid pathogens growth on MP apples during storage when use as part of a hurdle technology in combination with disinfection techniques, low storage temperature and MAP.

  7. Prevalence of the main food-borne pathogens in retail food under the national food surveillance system in Japan.

    PubMed

    Hara-Kudo, Y; Konuma, H; Kamata, Y; Miyahara, M; Takatori, K; Onoue, Y; Sugita-Konishi, Y; Ohnishi, T

    2013-01-01

    The National Food Surveillance System in Japan was formed in 1998 to monitor the contamination of retail foods with bacterial pathogens. Approximately 2000-3000 samples were tested annually, and the data from food categories that had more than 400 samples collected during 1998-2008 were analysed. With regard to meat, the frequency of positive samples for Salmonella in chicken for raw consumption and ground chicken was 12.7% and 33.5%, respectively. Moreover, Shiga toxin-producing Escherichia coli (STEC) O157 was found in ground meat, organ meat and processed meat, although at a low frequency (0.1%). The prevalence of Campylobacter jejuni/coli was 13.3% and 20.9% in chicken for raw consumption and ground chicken, respectively. In vegetables and fruit, Salmonella was detected in cucumber, lettuce, sprout and tomato samples at a frequency of around 0.1-0.2%. With regard to seafood, Salmonella was found in 0.5% of oysters for raw consumption. Seafood was not contaminated with STEC O157 or Shigella. Serotype Infantis was the most frequently detected serotype of Salmonella in seafood, followed by the serotypes Typhimurium, Schwarzengrund and Manhattan. In ground chicken, 72.2% of the strains were identified as the serotype Infantis. E. coli, as an indicator of food hygiene, was detected in all food categories. The results show the prevalence of the above-mentioned pathogens in the retail food supplied in Japan; further, they indicate that consumption of raw food carries the risk of contracting food-borne infections.

  8. Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods.

    PubMed

    Pattanayaiying, Rinrada; H-Kittikun, Aran; Cutter, Catherine N

    2015-08-17

    A combination of food grade compounds with edible films, used to inhibit foodborne pathogens associated with fresh or further processed muscle foods, is receiving considerable attention. In this study, pullulan films containing lauric arginate (LAE) and nisin Z (produced by Lactococcus lactis subsp. lactis I8-7-3 and isolated from catfish gut), alone or in combination, were investigated for controlling foodborne pathogens on fresh and further processed muscle foods after long-term refrigerated storage. Salmonella Typhimurium and Salmonella Enteritidis on raw turkey breast slices wrapped with a film containing LAE or the combination of LAE with nisin Z were reduced throughout the experiment, 2.5 to 4.5 log10 CFU/cm(2) and 3.5 to 5.1 log10 CFU/cm(2), respectively. Film containing a combination of LAE with nisin Z reduced Staphylococcus aureus and Listeria monocytogenes Scott A inoculated onto ham surfaces by approximately 5.53 and 5.62 log10 CFU/cm(2), respectively during refrigerated storage. Escherichia coli O157:H7, O111, and O26 also were reduced by >4 log 10CFU/cm(2) on raw beef slices after treatment with the combination film and refrigerated storage. The results obtained from this study indicate the LAE- and LAE-nisin Z-containing pullulan films displayed excellent inhibition against foodborne pathogens on fresh and further processed muscle foods.

  9. Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods.

    PubMed

    Pattanayaiying, Rinrada; H-Kittikun, Aran; Cutter, Catherine N

    2015-08-17

    A combination of food grade compounds with edible films, used to inhibit foodborne pathogens associated with fresh or further processed muscle foods, is receiving considerable attention. In this study, pullulan films containing lauric arginate (LAE) and nisin Z (produced by Lactococcus lactis subsp. lactis I8-7-3 and isolated from catfish gut), alone or in combination, were investigated for controlling foodborne pathogens on fresh and further processed muscle foods after long-term refrigerated storage. Salmonella Typhimurium and Salmonella Enteritidis on raw turkey breast slices wrapped with a film containing LAE or the combination of LAE with nisin Z were reduced throughout the experiment, 2.5 to 4.5 log10 CFU/cm(2) and 3.5 to 5.1 log10 CFU/cm(2), respectively. Film containing a combination of LAE with nisin Z reduced Staphylococcus aureus and Listeria monocytogenes Scott A inoculated onto ham surfaces by approximately 5.53 and 5.62 log10 CFU/cm(2), respectively during refrigerated storage. Escherichia coli O157:H7, O111, and O26 also were reduced by >4 log 10CFU/cm(2) on raw beef slices after treatment with the combination film and refrigerated storage. The results obtained from this study indicate the LAE- and LAE-nisin Z-containing pullulan films displayed excellent inhibition against foodborne pathogens on fresh and further processed muscle foods. PMID:26001063

  10. The sensitivity of bacterial foodborne pathogens to Croton blanchetianus Baill essential oil.

    PubMed

    do Amarante Melo, Geiseanny Fernandes; da Costa, Ana Caroliny Vieira; Garino Junior, Felício; Medeiros, Rosália Severo; Madruga, Marta Suely; Queiroga Neto, Vicente

    2013-12-01

    The aim of this study was to assess the activity of essential oil extracted from the leaves of C. blanchetianus Baill, popularly known as "marmeleiro", in inhibiting the growth and survival of pathogenic microorganisms in food by determining their survival in vitro and by observing the behaviour of Listeria monocytogenes inoculated into a food model (meat cubes) that was stored at refrigeration temperature (7 ± 1 °C) for 4 days. The results indicated a bactericidal effect against Aeromonas hydrophila and Listeria monocytogenes and bacteriostatic action against Salmonella Enteritidis. A bacteriostatic effect on meat contaminated with L. monocytogenes was found for all concentrations of essential oils tested. These results showed that essential oil from the leaves of C. blanchetianus Baill represents an alternative source of potentially natural antimicrobial agents that may be used as a food preservative.

  11. The sensitivity of bacterial foodborne pathogens to Croton blanchetianus Baill essential oil

    PubMed Central

    do Amarante Melo, Geiseanny Fernandes; da Costa, Ana Caroliny Vieira; Garino, Felício; Medeiros, Rosália Severo; Madruga, Marta Suely; Neto, Vicente Queiroga

    2013-01-01

    The aim of this study was to assess the activity of essential oil extracted from the leaves of C. blanchetianus Baill, popularly known as “marmeleiro”, in inhibiting the growth and survival of pathogenic microorganisms in food by determining their survival in vitro and by observing the behaviour of Listeria monocytogenes inoculated into a food model (meat cubes) that was stored at refrigeration temperature (7 ± 1 °C) for 4 days. The results indicated a bactericidal effect against Aeromonas hydrophila and Listeria monocytogenes and bacteriostatic action against Salmonella Enteritidis. A bacteriostatic effect on meat contaminated with L. monocytogenes was found for all concentrations of essential oils tested. These results showed that essential oil from the leaves of C. blanchetianus Baill represents an alternative source of potentially natural antimicrobial agents that may be used as a food preservative. PMID:24688510

  12. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat.

    PubMed Central

    Lewus, C B; Kaiser, A; Montville, T J

    1991-01-01

    Ten strains of bacteriocin-producing lactic acid bacteria were isolated from retail cuts of meat. These 10 strains along with 11 other bacteriocin-producing lactic acid bacteria were tested for inhibitory activity against psychotrophic pathogens, including four strains of Listeria monocytogenes, two strains of Aeromonas hydrophila, and two strains of Staphylococcus aureus. Inhibition due to acid, hydrogen peroxide, and lytic bacteriophage were excluded. The proteinaceous nature of the inhibitory substance was confirmed by demonstration of its sensitivity to proteolytic enzymes. Eight of the meat isolates had inhibitory activity against all four L. monocytogenes strains. Bacteriocin activity against L. monocytogenes was found in all of the strains obtained from other sources. Activity against A. hydrophila and S. aureus was also common. Images PMID:1908209

  13. Characterization of thin films for optical sensors of food-borne pathogens

    NASA Astrophysics Data System (ADS)

    Chanda, Rima; Irudayaraj, Joseph; Pantano, Carlo G.

    2004-12-01

    The purpose of this study is to produce a platform device with the ability to detect a variety of pathogens based upon antigen-antibody interactions. The sensor comprises a nanoporous GeSe channel waveguide fabricated on a substrate, with an intermediate cladding buffer layer [GeSe2], which is required when the substrate does not transmit at the desired λ. The light from a laser source is then coupled through a fiber and prism into the waveguide and collected with the help of a lens into a detector. The top cladding layer is a Ge28Sb12Se60 thin film in which biomolecules can be 'tethered' via functionalization of the surface. Therefore the surface chemistry of the thin film and the specificity of antibody to its antigen are important considerations. This paper will focus primarily on the surface characterization of the top cladding layer using XPS, AFM, ellipsometry, contact angle measurements and diffuse reflectance analysis.

  14. Distribution of Yersinia pestis pIP1202-like Multidrug Resistance Plasmids Among Foodborne Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic resistance in Yersinia pestis is rare and constitutes a significant threat given that antibiotics are used for both plague treatment and for prevention of human-to-human transmission. For this reason, the discovery of a multiple antimicrobial resistant (MDR) isolate of Y. pestis (strain I...

  15. Perceptions, practices, and consequences associated with foodborne pathogens and the feeding of raw meat to dogs

    PubMed Central

    Lenz, Jennifer; Joffe, Daniel; Kauffman, Michael; Zhang, Yifan; LeJeune, Jeffery

    2009-01-01

    This study explored the impact of feeding raw meat to dogs on the fecal prevalence of several enteric bacterial zoonotic pathogens. Campylobacter jejuni was isolated from 1/42 (2.6%) raw meat-fed dogs. Salmonella enterica was isolated from 2/40 (5%) of the raw meat feeds, 6/42 (14%) raw meat-fed dog feces, none of the dogs that did not receive raw meat (P = 0.001), 4/38 (10.5%) of the vacuum cleaner waste samples from households where raw meat was fed, and 2/44 (4.5%) of vacuum cleaner waste samples from households where raw meat was not fed to dogs (P = 0.41). Responses to a questionnaire probing practices and beliefs regarding raw meat feeding that was administered to dog owners demonstrated that dog owners may either not be aware or refuse to acknowledge the risks associated with raw meat-feeding; thus, they may neglect to conduct adequate intervention strategies to prevent zoonoses among themselves and their families. PMID:19721784

  16. Effect of atmospheric pressure plasma jet on the foodborne pathogens attached to commercial food containers.

    PubMed

    Kim, Hyun-Joo; Jayasena, Dinesh D; Yong, Hae In; Alahakoon, Amali U; Park, Sanghoo; Park, Jooyoung; Choe, Wonho; Jo, Cheorun

    2015-12-01

    Bacterial biofilms are associated with numerous infections and problems in the health care and food industries. The aim of this study was to evaluate the bactericidal effect of an atmospheric pressure plasma (APP) jet on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium biofilm formation on collagen casing (CC), polypropylene (PP) and polyethylene terephthalate (PET), which are widely used food container materials. The samples were treated separately with the APP jet at a 50-W input power for 5 and 10 min, and nitrogen (6 l per minute) gas combined with oxygen (10 standard cubic centimeters per minute) was used to produce the APP. The APP jet reduced the number of bacterial cells in a time-dependent manner. All pathogens attached to CC, PP, and PET were reduced by 3-4 log CFU/cm(2) by the 10-min APP treatment. The developed APP jet was effectively reduced biofilms on CC, PP, and PET.

  17. Real-Time PCR Methods for Detection of Foodborne Bacterial Pathogens in Meat and Meat Products

    NASA Astrophysics Data System (ADS)

    Hernández, Marta; Hansen, Flemming; Cook, Nigel; Rodríguez-Lázaro, David

    As a consequence of the potential hazards posed by the presence of microbial pathogens, microbiological quality control programmes are being increasingly applied throughout the meat production chain in order to minimize the risk of infection for the consumer. Classical microbiological methods to detect the presence of microorganisms, involving enrichment and isolation of presumptive colonies of bacteria on solid media, and final confirmation by biochemical and/or serological identification, although remaining the approach of choice in routine analytical laboratories, can be laborious and time consuming. The adoption of molecular techniques in microbial diagnostics has become a promising alternative approach, as they possess inherent advantages such as shorter time to results, excellent detection limits, specificity and potential for automation. Several molecular detection techniques have been devised in the last two decades, such as nucleic acid sequence-based amplification (NASBA) (Cook, 2003; Rodriguez-Lazaro, Hernandez, D’Agostino, & Cook, 2006) and loop-mediated isothermal amplification (Notomi et al., 2000), but the one which has undergone the most extensive development as a practical food analytical tool is the polymerase chain reaction (PCR) (Hoorfar & Cook, 2003; Malorny, Tassios, et al., 2003).

  18. Rapid Sample Processing for Detection of Food-Borne Pathogens via Cross-Flow Microfiltration

    PubMed Central

    Li, Xuan; Ximenes, Eduardo; Amalaradjou, Mary Anne Roshni; Vibbert, Hunter B.; Foster, Kirk; Jones, Jim; Liu, Xingya; Bhunia, Arun K.

    2013-01-01

    This paper reports an approach to enable rapid concentration and recovery of bacterial cells from aqueous chicken homogenates as a preanalytical step of detection. This approach includes biochemical pretreatment and prefiltration of food samples and development of an automated cell concentration instrument based on cross-flow microfiltration. A polysulfone hollow-fiber membrane module having a nominal pore size of 0.2 μm constitutes the core of the cell concentration instrument. The aqueous chicken homogenate samples were circulated within the cross-flow system achieving 500- to 1,000-fold concentration of inoculated Salmonella enterica serovar Enteritidis and naturally occurring microbiota with 70% recovery of viable cells as determined by plate counting and quantitative PCR (qPCR) within 35 to 45 min. These steps enabled 10 CFU/ml microorganisms in chicken homogenates or 102 CFU/g chicken to be quantified. Cleaning and sterilizing the instrument and membrane module by stepwise hydraulic and chemical cleaning (sodium hydroxide and ethanol) enabled reuse of the membrane 15 times before replacement. This approach begins to address the critical need for the food industry for detecting food pathogens within 6 h or less. PMID:24014538

  19. Effect of Iranian Ziziphus honey on growth of some foodborne pathogens

    PubMed Central

    Ekhtelat, Maryam; Ravaji, Karim; Parvari, Masood

    2016-01-01

    Background: Honey has previously been shown to have wound healing and antimicrobial properties, but this is dependent on the type of honey, geographical location, and flower from which the final product is derived. We tested the antimicrobial activity of a natural honey originating from the Ziziphus spina-christi tree, against selected strains of bacteria. Ziziphus honey among more than a 100 verities of honey is known to have the greatest value of energy and minerals in it. Materials and Methods: The aim of this study was to determine the antibacterial activity of Ziziphus honey in 10%, 20%, 30%, and 40% dilutions (v/v) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli, and Staphylococcus aureus. Viable count enumeration of the sample was investigated after 0, 24, 72, and 120 h postinoculation with any of the bacteria using pour-plate method. Results: The findings indicate that Ziziphus honey was effective against these pathogenic bacteria. In a comparative trial, antibacterial activity of Ziziphus honey was higher after 120 h incubation for each four bacteria in most dilutions. The microbial count showed 3-7.5 log reduction comparing with control after 120 h. Conclusions: Therefore, it is recommended using Ziziphus honey as a natural preservative and antibacterial agent. Also, it could potentially be used as therapeutic agents against bacterial infection particularly to the tested microorganisms. PMID:27003970

  20. Effect of atmospheric pressure plasma jet on the foodborne pathogens attached to commercial food containers.

    PubMed

    Kim, Hyun-Joo; Jayasena, Dinesh D; Yong, Hae In; Alahakoon, Amali U; Park, Sanghoo; Park, Jooyoung; Choe, Wonho; Jo, Cheorun

    2015-12-01

    Bacterial biofilms are associated with numerous infections and problems in the health care and food industries. The aim of this study was to evaluate the bactericidal effect of an atmospheric pressure plasma (APP) jet on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium biofilm formation on collagen casing (CC), polypropylene (PP) and polyethylene terephthalate (PET), which are widely used food container materials. The samples were treated separately with the APP jet at a 50-W input power for 5 and 10 min, and nitrogen (6 l per minute) gas combined with oxygen (10 standard cubic centimeters per minute) was used to produce the APP. The APP jet reduced the number of bacterial cells in a time-dependent manner. All pathogens attached to CC, PP, and PET were reduced by 3-4 log CFU/cm(2) by the 10-min APP treatment. The developed APP jet was effectively reduced biofilms on CC, PP, and PET. PMID:26604423

  1. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens.

    PubMed

    Topuz, Osman Kadir; Özvural, Emin Burçin; Zhao, Qin; Huang, Qingrong; Chikindas, Michael; Gölükçü, Muharrem

    2016-07-15

    The purpose of this research was to investigate antimicrobial effects of nano emulsions of anise oil (AO) on the survival of common food borne pathogens, Listeria monocytogenes and Escherichia coli O157:H7. Series of emulsions containing different level of anise oil as potential antimicrobial delivery systems were prepared. Antimicrobial activities of bulk anise oil and its emulsions (coarse and nano) was tested by the minimum inhibitory concentration and time kill assay. Our results showed that bulk anise oil reduced the population of E. coli O157:H7 and L. monocytogenes by 1.48 and 0.47 log cfu/ml respectively after 6 h of contact time. However, under the same condition anise oil nanoemulsion (AO75) reduced E. coli O157:H7 and L. monocytogenes count by 2.51 and 1.64 log cfu/ml, respectively. Physicochemical and microbial analyses indicated that both nano and coarse emulsions of anise oil showed better and long-term physicochemical stability and antimicrobial activity compared to bulk anise oil. PMID:26948596

  2. Sensitive detection of multiple pathogens using a single DNA probe.

    PubMed

    Nordin, Noordiana; Yusof, Nor Azah; Abdullah, Jaafar; Radu, Son; Hushiarian, Roozbeh

    2016-12-15

    A simple but promising electrochemical DNA nanosensor was designed, constructed and applied to differentiate a few food-borne pathogens. The DNA probe was initially designed to have a complementary region in Vibrio parahaemolyticus (VP) genome and to make different hybridization patterns with other selected pathogens. The sensor was based on a screen printed carbon electrode (SPCE) modified with polylactide-stabilized gold nanoparticles (PLA-AuNPs) and methylene blue (MB) was employed as the redox indicator binding better to single-stranded DNA. The immobilization and hybridization events were assessed using differential pulse voltammetry (DPV). The fabricated biosensor was able to specifically distinguish complementary, non-complementary and mismatched oligonucleotides. DNA was measured in the range of 2.0×10(-9)-2.0×10(-13)M with a detection limit of 5.3×10(-12)M. The relative standard deviation for 6 replications of DPV measurement of 0.2µM complementary DNA was 4.88%. The fabricated DNA biosensor was considered stable and portable as indicated by a recovery of more than 80% after a storage period of 6 months at 4-45°C. Cross-reactivity studies against various food-borne pathogens showed a reliably sensitive detection of VP. PMID:27414245

  3. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent foodborne pathogens.

    PubMed

    Huff, W E; Huff, G R; Rath, N C; Balog, J M; Donoghue, A M

    2005-04-01

    Bacteriophages are viruses that infect and kill bacteria. Bacteriophage do not infect animal and plant cells, which makes them a potentially safe alternative to antibiotics. We have been conducting research on the efficacy of bacteriophage to prevent and treat colibacillosis in poultry. Bacteriophages that were lytic to a non-motile, serotype 02 isolate of Escherichia coli were isolated from municipal wastewater treatment plants and poultry processing plants. This E. coli isolate is pathogenic to poultry, causing severe respiratory and systemic infections. Two bacteriophage isolates were selected for use in studies designed to determine the efficacy of these bacteriophage to prevent and treat severe colibacillosis in poultry. Colibacillosis was induced by injecting 6 x 10(4) cfu of E. coli into the thoracic air sac when birds were 1 wk of age. Initial studies demonstrated that mortality was significantly reduced from 85 to 35% when the challenge culture was mixed with equal titers of bacteriophage, and the birds were completely protected when the challenge culture was mixed with 10 pfu of bacteriophage. In subsequent studies, we have shown that an aerosol spray of bacteriophage given to birds prior to this E. coli challenge could significantly reduce mortality even when given 3 d prior to the E. coli challenge. Our research on treating colibacillosis in poultry has demonstrated that an intramuscular injection of bacteriophage given 24 or 48 h after the birds were challenged rescued the birds from this severe E. coli infection. We have demonstrated that bacteriophage can be used to prevent and treat colibacillosis in poultry and may provide an effective alternative to antibiotic use in animal production. PMID:15844825

  4. Autoinducer-2 activity of gram-negative foodborne pathogenic bacteria and its influence on biofilm formation.

    PubMed

    Yoon, Y; Sofos, J N

    2008-04-01

    This study evaluated whether autoinducer-2 (AI-2) activity would be associated with biofilm formation by Salmonella and Escherichia coli O157:H7 strains on food contact surfaces. In study I, a Salmonella Typhimurium DT104 strain and an E. coli O157:H7 strain, both AI-2 positive, were individually inoculated into 50 mL of Luria-Bertani (LB) or LB + 0.5% glucose (LBG) broth, without or with stainless steel or polypropylene (Salmonella) coupons. At 0, 14 (Salmonella), 24, 48, and 72 h of storage (25 degrees C), cells in suspension and detached cells from the coupons, obtained by vortexing, were enumerated on tryptic soy agar. In study II, a Salmonella Thompson AI-2-positive strain and an AI-2-negative strain, and an E. coli O157:H7 AI-2-positive strain and an AI-2-negative strain were inoculated into LB broth with stainless steel coupons. Cells were enumerated as in study I. In both studies, AI-2 activity was determined in cell-free supernatants. Cell numbers of S. Typhimurium DT104 on biofilms were higher (P < 0.05) in LB than those in LBG, while the E. coli O157:H7 strain showed no difference (P>or= 0.05) in biofilm cell counts between LB and LBG after storage for 72 h. Both S. Typhimurium DT104 and E. coli O157:H7 strains produced higher (P < 0.05) AI-2 activity in LBG than LB cell suspensions. Cell counts of AI-2-positive and-negative S. Thompson and E. coli O157:H7 strains were not different (P>or= 0.05) within suspensions or coupons (study II). The results indicated that, under the conditions of this study, AI-2 activity of the pathogen strains tested may not have a major influence on biofilm formation on food contact surfaces, which was similar between AI-2-positive and -negative strains.

  5. Prevalence of ten putative virulence genes in the emerging foodborne pathogen Arcobacter isolated from food products.

    PubMed

    Girbau, Cecilia; Guerra, Cristian; Martínez-Malaxetxebarria, Irati; Alonso, Rodrigo; Fernández-Astorga, Aurora

    2015-12-01

    Arcobacter spp. are considered to be emerging food- and waterborne pathogens for both humans and animals. However, their virulence mechanisms are still poorly understood. In this study the presence of ten virulence genes (cadF, ciaB, cj1349, hecA, hecB, mviN, pldA, irgA, tlyA and iroE) was assessed in a set of 47 strains of Arcobacter butzleri, 10 of Arcobacter cryaerophilus and 1 Arcobacter skirrowii strain recovered from different food products (pork, chicken, beef, milk, clams and mussels). Overall, the genes cadF, ciaB, cj1349, mviN, pldA and tlyA were detected in all A. butzleri and A. skirrowii strains. Lower detection rates were observed for irgA, iroE, hecA and hecB. The genes hecB and iroE were detected neither in A. cryaerophilus nor in A. skirrowii. The genes hecA and irgA were not detected in A. skirrowii. It was noteworthy that the genes hecA and hecB were significantly (P < 0.05) highly detected in A. butzleri strains isolated from clams compared with strains isolated from milk and chicken. Therefore, our findings underline clams as a source of A. butzleri strains with high prevalence of putative virulence genes. This could be hazardous to human health, especially because these bivalves are usually consumed raw or undercooked.

  6. Detection of Biological Pathogens Using Multiple Wireless Magnetoelastic Biosensors

    NASA Astrophysics Data System (ADS)

    Shen, Wen

    A number of recent, high-profile incidences of food-borne illness spreading through the food supply and the use of anthrax by terrorists after the September 11, 2001 attacks have demonstrated the need for new technologies that can rapidly detect the presence of biological pathogens. A bevy of biosensors show excellent detection sensitivity and specificity. However, false positive and false negative signals remain one of the primary reasons that many of these newly developed biosensors have not found application in the marketplace. The research described in this dissertation focuses on developing a free-standing magnetoelastic based bio-sensing system using a pulse method. This method allows fast detection, eliminates the bias magnetic field that is necessary in current methods, makes the system more simply and suitable for in-field detection. This system has two pairs of transformer coils, where a measurement sensor and a control sensor can be put in each pair of coils. The control sensor is used to compensate for environmental variables. The effect of pulse power on the performance of the magnetoelastic sensors in the pulse system is studied. The system is found to have excellent stability, good detection repeatability when used with multiple sensors. This research has investigated and demonstrated a multiple sensors approach. Because it will involve the simultaneous measurement of many sensors, it will significantly reduce problems encountered with false positive indications. The positioning and interference of sensors are investigated. By adding a multi-channel structure to the pulse detection system, the effect of sensor interference is minimized. The result of the repeatability test shows that the standard deviation when measuring three 1 mm magnetoelastic sensors is around 500 Hz, which is smaller than the minimum requirement for actual spores/bacteria detection. Magnetoelastic sensors immobilized with JRB7 phages and E2 phages have been used to specifically

  7. Novel Drug Targets for Food-Borne Pathogen Campylobacter jejuni: An Integrated Subtractive Genomics and Comparative Metabolic Pathway Study

    PubMed Central

    Mehla, Kusum

    2015-01-01

    Abstract Campylobacters are a major global health burden and a cause of food-borne diarrheal illness and economic loss worldwide. In developing countries, Campylobacter infections are frequent in children under age two and may be associated with mortality. In developed countries, they are a common cause of bacterial diarrhea in early adulthood. In the United States, antibiotic resistance against Campylobacter is notably increased from 13% in 1997 to nearly 25% in 2011. Novel drug targets are urgently needed but remain a daunting task to accomplish. We suggest that omics-guided drug discovery is timely and worth considering in this context. The present study employed an integrated subtractive genomics and comparative metabolic pathway analysis approach. We identified 16 unique pathways from Campylobacter when compared against H. sapiens with 326 non-redundant proteins; 115 of these were found to be essential in the Database of Essential Genes. Sixty-six proteins among these were non-homologous to the human proteome. Six membrane proteins, of which four are transporters, have been proposed as potential vaccine candidates. Screening of 66 essential non-homologous proteins against DrugBank resulted in identification of 34 proteins with drug-ability potential, many of which play critical roles in bacterial growth and survival. Out of these, eight proteins had approved drug targets available in DrugBank, the majority serving crucial roles in cell wall synthesis and energy metabolism and therefore having the potential to be utilized as drug targets. We conclude by underscoring that screening against these proteins with inhibitors may aid in future discovery of novel therapeutics against campylobacteriosis in ways that will be pathogen specific, and thus have minimal toxic effect on host. Omics-guided drug discovery and bioinformatics analyses offer the broad potential for veritable advances in global health relevant novel therapeutics. PMID:26061459

  8. Broad range evaluation of the matrix solubilization (matrix lysis) strategy for direct enumeration of foodborne pathogens by nucleic acids technologies.

    PubMed

    Mayrl, Eva; Roeder, Barbara; Mester, Patrick; Wagner, Martin; Rossmanith, Peter

    2009-06-01

    A previously published rapid (<5 h) proof-of-concept protocol for the concentration of the foodborne pathogen Listeria monocytogenes from milk, based on the solubilization of the food matrix, was further evaluated. The original protocol was modified to detect gram-negative and other gram-positive bacteria and to broaden the range of food matrices by using Lutensol instead of sodium dodecyl sulfate as the main detergent in the buffer. A new protocol using a protease and sucrose buffer was established for the analysis of meat and fish. Matrix lysis was used for dairy products, ice cream, milk, fish, meat, eggs, and blood. Solubilization of the foodstuffs resulted in bacterial pellets of reasonable size for further quantification. Using L. monocytogenes, Staphylococccus aureus, Bacillus cereus, Escherichia coli, and Salmonella Typhimurium as model organisms, microscopic analysis of the remaining bacterial pellets revealed that the recovered bacteria remained physically intact, albeit their viability was compromised. In model experiments using free DNA, the free target DNA was reduced by 5 log units. The compatibility of matrix lysis with subsequent real-time PCR analysis has been demonstrated with salmon, chicken, egg, ice cream, cheese, and blood samples that were artificially contaminated with L. monocytogenes, S. aureus, and Salmonella Typhimurium. These experiments resulted in an average recovery of 48.7% (relative standard error, 83.4%) of the inoculated bacterial cells with the real-time PCR assay. The average detection limit of the method was 7.3 CFU/ml for all examined foodstuffs and bacterial target organisms.

  9. The Use of Flagella and Motility for Plant Colonization and Fitness by Different Strains of the Foodborne Pathogen Listeria monocytogenes

    PubMed Central

    Gorski, Lisa; Duhé, Jessica M.; Flaherty, Denise

    2009-01-01

    The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases. PMID:19357783

  10. Characterization of illegal food items and identification of foodborne pathogens brought into the European Union via two major German airports.

    PubMed

    Beutlich, Janine; Hammerl, Jens Andre; Appel, Bernd; Nöckler, Karsten; Helmuth, Reiner; Jöst, Kristine; Ludwig, Marie-Luise; Hanke, Christine; Bechtold, Dirk; Mayer-Scholl, Anne

    2015-09-16

    Foods of animal origin brought illegally from third party countries into the European Community pose a risk for the introduction of diseases. This can lead to animal disease outbreaks with significant economic and social costs and subsequent severe trade restrictions. Further, disease outbreaks in humans due to illegally imported foods of animal origin have been described, yet, there are very few studies examining the potential human health impact. Passenger baggage is the most likely route by which illegal products enter a country. Therefore, the volume and geographic origin of foods of animal origin introduced illegally into Germany via the Frankfurt International Airport and Berlin-Schönefeld Airport by passenger luggage were characterized. Further, the occurrence of foodborne zoonotic bacteria such as Salmonella spp., Listeria spp., Campylobacter spp., Yersinia spp., Verocytotoxin-producing Escherichia coli (VTEC) and Brucella spp. and the microbial quality of the foods were analysed by total bacterial count. Between 2012 and 2013, a total of 663 food items were seized from 296 passengers arriving in Germany from 35 different departure countries. The majority of confiscates (51%) originated from Turkey and Russia. A selection of 474 samples was subjected to microbiological analyses. Twenty-three food products tested positive for at least one of the pathogens analysed. The majority of the contaminated foods were meat (33%) or meat products (42%), and milk products (21%). Considering that only a small fraction of arriving passengers is subjected to airport custom controls and only a small number of confiscated foods could be analysed during this study, further investigations are needed to understand the public health risks posed by illegally introduced food items.

  11. Phytochemical profiles and antimicrobial activity of aromatic Malaysian herb extracts against food-borne pathogenic and food spoilage microorganisms.

    PubMed

    Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah

    2014-04-01

    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.

  12. The use of flagella and motility for plant colonization and fitness by different strains of the foodborne pathogen Listeria monocytogenes.

    PubMed

    Gorski, Lisa; Duhé, Jessica M; Flaherty, Denise

    2009-01-01

    The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases.

  13. Effectiveness of Broad-Spectrum Chemical Produce Sanitizers against Foodborne Pathogens as In Vitro Planktonic Cells and on the Surface of Whole Cantaloupes and Watermelons.

    PubMed

    Svoboda, Amanda; Shaw, Angela; Dzubak, John; Mendonca, Aubrey; Wilson, Lester; Nair, Ajay

    2016-04-01

    Over the past few years, foodborne disease outbreaks linked to enteric pathogens present on cantaloupe and watermelon surfaces have raised concerns in the melon industry. This research evaluated the effectiveness of commercially available produce sanitizers against selected foodborne pathogens, both in cell suspensions and on the outer rind surface of melons. The sanitizers (65 and 200 ppm of chlorine, 5 and 35% hydrogen peroxide, 5 and 50 ppm of liquid chlorine dioxide, various hydrogen peroxide-acid combinations, 0.78 and 2.5% organic acids, and 300 ppm of quaternary ammonium) were tested against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella, and non-O157 Shiga toxin-producing E. coli (O26, O45, O103, O111, O121, and O145). The cell suspension study revealed the ability of all tested sanitizers to reduce all selected pathogens by 0.6 to 9.6 log CFU/ml in vitro. In the melon study, significant differences in pathogen reduction were observed between sanitizers but not between melon types. The most effective sanitizers were quaternary ammonium and hydrogen peroxide-acid combinations, with 1.0- to 2.2-log CFU/g and 1.3- to 2.8-log CFU/g reductions, respectively, for all pathogens. The other sanitizers were less effective in killing the pathogens, with reductions ranging from 0.0 to 2.8 log CFU/g depending on pathogen and sanitizer. This study provides guidance to the melon industry on the best produce sanitizers for use in implementing a broad-spectrum pathogen intervention strategy. PMID:27052854

  14. Effectiveness of Broad-Spectrum Chemical Produce Sanitizers against Foodborne Pathogens as In Vitro Planktonic Cells and on the Surface of Whole Cantaloupes and Watermelons.

    PubMed

    Svoboda, Amanda; Shaw, Angela; Dzubak, John; Mendonca, Aubrey; Wilson, Lester; Nair, Ajay

    2016-04-01

    Over the past few years, foodborne disease outbreaks linked to enteric pathogens present on cantaloupe and watermelon surfaces have raised concerns in the melon industry. This research evaluated the effectiveness of commercially available produce sanitizers against selected foodborne pathogens, both in cell suspensions and on the outer rind surface of melons. The sanitizers (65 and 200 ppm of chlorine, 5 and 35% hydrogen peroxide, 5 and 50 ppm of liquid chlorine dioxide, various hydrogen peroxide-acid combinations, 0.78 and 2.5% organic acids, and 300 ppm of quaternary ammonium) were tested against Escherichia coli O157:H7, Listeria monocytogenes, Salmonella, and non-O157 Shiga toxin-producing E. coli (O26, O45, O103, O111, O121, and O145). The cell suspension study revealed the ability of all tested sanitizers to reduce all selected pathogens by 0.6 to 9.6 log CFU/ml in vitro. In the melon study, significant differences in pathogen reduction were observed between sanitizers but not between melon types. The most effective sanitizers were quaternary ammonium and hydrogen peroxide-acid combinations, with 1.0- to 2.2-log CFU/g and 1.3- to 2.8-log CFU/g reductions, respectively, for all pathogens. The other sanitizers were less effective in killing the pathogens, with reductions ranging from 0.0 to 2.8 log CFU/g depending on pathogen and sanitizer. This study provides guidance to the melon industry on the best produce sanitizers for use in implementing a broad-spectrum pathogen intervention strategy.

  15. Analyzing indicator microorganisms, antibiotic resistant Escherichia coli, and regrowth potential of foodborne pathogens in various organic fertilizers.

    PubMed

    Miller, Cortney; Heringa, Spencer; Kim, Jinkyung; Jiang, Xiuping

    2013-06-01

    This study analyzed various organic fertilizers for indicator microorganisms, pathogens, and antibiotic-resistant Escherichia coli, and evaluated the growth potential of E. coli O157:H7 and Salmonella in fertilizers. A microbiological survey was conducted on 103 organic fertilizers from across the United States. Moisture content ranged from approximately 1% to 86.4%, and the average pH was 7.77. The total aerobic mesophiles ranged from approximately 3 to 9 log colony-forming units (CFU)/g. Enterobacteriaceae populations were in the range of <1 to approximately 7 log CFU/g, while coliform levels varied from <1 to approximately 6 log CFU/g. Thirty samples (29%) were positive for E. coli, with levels reaching approximately 6 log CFU/g. There were no confirmed positives for E. coli O157:H7, Salmonella, or Listeria monocytogenes. The majority of E. coli isolates (n=73), confirmed by glutamate decarboxylase (gad) PCR, were from group B1 (48%) and group A (32%). Resistance to 16 antibiotics was examined for 73 E. coli isolates, with 11 isolates having resistance to at least one antibiotic, 5 isolates to ≥ 2 antibiotics, and 2 isolates to ≥ 10 antibiotics. In the presence of high levels of background aerobic mesophiles, Salmonella and E. coli O157:H7 grew approximately 1 log CFU/g within 1 day of incubation in plant-based compost and fish emulsion-based compost, respectively. With low levels of background aerobic mesophiles, Salmonella grew approximately 2.6, 3.0, 3.0, and 3.2 log CFU/g in blood, bone, and feather meals and the mixed-source fertilizer, respectively, whereas E. coli O157:H7 grew approximately 4.6, 4.0, 4.0, and 4.8 log CFU/g, respectively. Our results revealed that the microbiological quality of organic fertilizers varies greatly, with some fertilizers containing antibiotic resistant E. coli and a few supporting the growth of foodborne pathogens after reintroduction into the fertilizer. PMID:23614803

  16. Analyzing indicator microorganisms, antibiotic resistant Escherichia coli, and regrowth potential of foodborne pathogens in various organic fertilizers.

    PubMed

    Miller, Cortney; Heringa, Spencer; Kim, Jinkyung; Jiang, Xiuping

    2013-06-01

    This study analyzed various organic fertilizers for indicator microorganisms, pathogens, and antibiotic-resistant Escherichia coli, and evaluated the growth potential of E. coli O157:H7 and Salmonella in fertilizers. A microbiological survey was conducted on 103 organic fertilizers from across the United States. Moisture content ranged from approximately 1% to 86.4%, and the average pH was 7.77. The total aerobic mesophiles ranged from approximately 3 to 9 log colony-forming units (CFU)/g. Enterobacteriaceae populations were in the range of <1 to approximately 7 log CFU/g, while coliform levels varied from <1 to approximately 6 log CFU/g. Thirty samples (29%) were positive for E. coli, with levels reaching approximately 6 log CFU/g. There were no confirmed positives for E. coli O157:H7, Salmonella, or Listeria monocytogenes. The majority of E. coli isolates (n=73), confirmed by glutamate decarboxylase (gad) PCR, were from group B1 (48%) and group A (32%). Resistance to 16 antibiotics was examined for 73 E. coli isolates, with 11 isolates having resistance to at least one antibiotic, 5 isolates to ≥ 2 antibiotics, and 2 isolates to ≥ 10 antibiotics. In the presence of high levels of background aerobic mesophiles, Salmonella and E. coli O157:H7 grew approximately 1 log CFU/g within 1 day of incubation in plant-based compost and fish emulsion-based compost, respectively. With low levels of background aerobic mesophiles, Salmonella grew approximately 2.6, 3.0, 3.0, and 3.2 log CFU/g in blood, bone, and feather meals and the mixed-source fertilizer, respectively, whereas E. coli O157:H7 grew approximately 4.6, 4.0, 4.0, and 4.8 log CFU/g, respectively. Our results revealed that the microbiological quality of organic fertilizers varies greatly, with some fertilizers containing antibiotic resistant E. coli and a few supporting the growth of foodborne pathogens after reintroduction into the fertilizer.

  17. Risk-based control of food-borne pathogens Listeria monocytogenes and Salmonella enterica in the Italian fermented sausages Cacciatore and Felino.

    PubMed

    Mataragas, M; Bellio, A; Rovetto, F; Astegiano, S; Decastelli, L; Cocolin, L

    2015-05-01

    Fermentation is the most important killing step during production of fermented meats to eliminate food-borne pathogens. The objective was to evaluate whether the food-borne pathogens Listeria monocytogenes and Salmonella enterica may survive during the production of two Italian fermented sausages. Sausage batter was inoculated with five strains of L. monocytogenes or S. enterica (ca. 10(5)-10(6) cfu/g) and their kinetic behavior was monitored during production. Both pathogens survived relatively well (in Cacciatore L. monocytogenes and S. enterica inactivation was ca. 0.38±0.23 and 1.10±0.24 log cfu/g, respectively; in Felino was ca. 0.39±0.25 and 1.62±0.38 log cfu/g, respectively) due to the conditions prevailing during production (slow dehydration rate, small reduction of water activity and fermentation temperature mainly below 20 °C during the first 48 h of fermentation). Quantitative analysis of data originating from challenge tests provide critical information on which combinations of the process parameters would potentially lead to better control of the pathogens. PMID:25612557

  18. Fecal Shedding of Zoonotic Food-Borne Pathogens by Wild Rodents in a Major Agricultural Region of the Central California Coast

    PubMed Central

    Kilonzo, Christopher; Li, Xunde; Vivas, Eduardo J.; Jay-Russell, Michele T.; Fernandez, Kristine L.

    2013-01-01

    Recent outbreaks of food-borne illness associated with the consumption of produce have increased concern over wildlife reservoirs of food-borne pathogens. Wild rodents are ubiquitous, and those living close to agricultural farms may pose a food safety risk should they shed zoonotic microorganisms in their feces near or on agricultural commodities. Fecal samples from wild rodents trapped on 13 agricultural farms (9 produce, 3 cow-calf operations, and 1 beef cattle feedlot) in Monterey and San Benito Counties, CA, were screened to determine the prevalence and risk factors for shedding of several food-borne pathogens. Deer mice (Peromyscus maniculatus) were the most abundant rodent species trapped (72.5%). Cryptosporidium species (26.0%) and Giardia species (24.2%) were the predominant isolates from rodent feces, followed by Salmonella enterica serovars (2.9%) and Escherichia coli O157:H7 (0.2%). Rodent trap success was significantly associated with detection of Salmonella in rodent feces, while farm type was associated with fecal shedding of Cryptosporidium and Giardia. Seasonal shedding patterns were evident, with rodents trapped during the spring and summer months being significantly less likely to be shedding Cryptosporidium oocysts than those trapped during autumn. Higher rodent species diversity tended to correlate with lower fecal microbial prevalence, and most spatiotemporal pathogen clusters involved deer mice. Rodents in the study area posed a minimal risk as environmental reservoirs of E. coli O157:H7, but they may play a role in environmental dissemination of Salmonella and protozoa. Rodent control efforts that potentially reduce biodiversity may increase pathogen shedding, possibly through promotion of intraspecific microbial transmission. PMID:23934490

  19. Foodborne Parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne infections are a significant cause of morbidity and mortality worldwide, and foodborne parasitic diseases, though not as widespread as bacterial and viral infections, are common on all continents and in most ecosystems, including arctic, temperate, and tropical regions. Certain foodborne ...

  20. Occurrence of foodborne pathogens and characterization of Staphylococcus aureus in cheese produced on farm-dairies.

    PubMed

    Rosengren, Asa; Fabricius, Ane; Guss, Bengt; Sylvén, Susanne; Lindqvist, Roland

    2010-12-15

    The objective of this study was to address knowledge gaps identified in an earlier risk assessment of Staphylococcus aureus and raw milk cheese. A survey of fresh and short-time ripened cheeses produced on farm-dairies in Sweden was conducted to investigate the occurrence and levels of S. aureus, Listeria monocytogenes and Escherichia coli, to characterize S. aureus isolates with special emphasis on enterotoxin genes, antibiotic resistance, bio-typing and genetic variation, and to collect information related to production practices. In general, the hygienic quality of farm-dairy cheeses appeared to be of an acceptable microbiological quality, e.g. L. monocytogenes and staphylococcal enterotoxin were not detected in cheese samples. However, E. coli and enterotoxigenic S. aureus were frequently found in raw milk cheeses and sometimes at levels that are of concern, especially in fresh cheese. Interestingly, levels in raw milk fresh cheese were significantly lower when starter cultures were used. Up to five S. aureus colonies per cheese, if possible, were characterized and about 70% of isolates carried one or more enterotoxin genes, most common were sec and sea. The Ovine biotype (73%) was most common among isolates from goat milk cheese and the Human biotype (60%) from cow milk cheese. Of all isolates, 39% showed decreased susceptibility to penicillin, but the proportion of isolates from cows' cheese (66%) compared to isolates from goats' cheese (27%) was significantly higher. S. aureus isolates with different properties were detected in cheese from the same farm and, sometimes even the same cheese. Isolates with the same pulsed-field gel electrophoresis (PFGE)-pattern were detected on geographically distant dairies. This indicates that multiple sources and routes of contamination are important. To improve the safety of these products efforts to raise awareness of the importance of hygiene barriers and raw milk quality as well as improved process control can be

  1. Systemic Analysis of Foodborne Disease Outbreak in Korea.

    PubMed

    Lee, Jong-Kyung; Kwak, No-Seong; Kim, Hyun Jung

    2016-02-01

    This study systemically analyzed data on the prevalence of foodborne pathogens and foodborne disease outbreaks to identify the priorities of foodborne infection risk management in Korea. Multiple correspondence analysis was applied to three variables: origin of food source, phase of food supply chain, and 12 pathogens using 358 cases from 76 original papers and official reports published in 1998-2012. In addition, correspondence analysis of two variables--place and pathogen--was conducted based on epidemiological data of 2357 foodborne outbreaks in 2002-2011 provided by the Korean Ministry of Food and Drug Safety. The results of this study revealed three distinct areas of food monitoring: (1) livestock-derived raw food contaminated with Campylobacter spp., pathogenic Escherichia coli, Salmonella spp., and Listeria monocytogenes; (2) multi-ingredient and ready-to-eat food related to Staphylococcus aureus; and (3) water associated with norovirus. Our findings emphasize the need to track the sources and contamination pathways of foodborne pathogens for more effective risk management. PMID:26863429

  2. The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens.

    PubMed

    van Dijk, Albert; Veldhuizen, Edwin J A; Kalkhove, Stefanie I C; Tjeerdsma-van Bokhoven, Johanna L M; Romijn, Roland A; Haagsman, Henk P

    2007-03-01

    Food-borne pathogens are responsible for most cases of food poisoning in developed countries and are often associated with poultry products, including chicken. Little is known about the role of beta-defensins in the chicken digestive tract and their efficacy. In this study, the expression of chicken beta-defensin gallinacin-6 (Gal-6) and its antimicrobial activity against food-borne pathogens were investigated. Reverse transcription-PCR analysis showed high expression of Gal-6 mRNA in the esophagus and crop, moderate expression in the glandular stomach, and low expression throughout the intestinal tract. Putative transcription factor binding sites for nuclear factor kappa beta, activator protein 1, and nuclear factor interleukin-6 were found in the Gal-6 gene upstream region, which suggests a possible inducible nature of the Gal-6 gene. In colony-counting assays, strong bactericidal and fungicidal activity was observed, including bactericidal activity against food-borne pathogens Campylobacter jejuni, Salmonella enterica serovar Typhimurium, Clostridium perfringens, and Escherichia coli. Treatment with 16 mug/ml synthetic Gal-6 resulted in a 3 log unit reduction in Clostridium perfringens survival within 60 min, indicating fast killing kinetics. Transmission electron microscopy examination of synthetic-Gal-6-treated Clostridium perfringens cells showed dose-dependent changes in morphology after 30 min, including intracellular granulation, cytoplasm retraction, irregular septum formation in dividing cells, and cell lysis. The high expression in the proximal digestive tract and broad antimicrobial activity suggest that chicken beta-defensin gallinacin-6 plays an important role in chicken innate host defense. PMID:17194828

  3. Biocontrol of the Food-Borne Pathogens Listeria monocytogenes and Salmonella enterica Serovar Poona on Fresh-Cut Apples with Naturally Occurring Bacterial and Yeast Antagonists

    PubMed Central

    Leverentz, Britta; Conway, William S.; Janisiewicz, Wojciech; Abadias, Maribel; Kurtzman, Cletus P.; Camp, Mary J.

    2006-01-01

    Fresh-cut apples contaminated with either Listeria monocytogenes or Salmonella enterica serovar Poona, using strains implicated in outbreaks, were treated with one of 17 antagonists originally selected for their ability to inhibit fungal postharvest decay on fruit. While most of the antagonists increased the growth of the food-borne pathogens, four of them, including Gluconobacter asaii (T1-D1), a Candida sp. (T4-E4), Discosphaerina fagi (ST1-C9), and Metschnikowia pulcherrima (T1-E2), proved effective in preventing the growth or survival of food-borne human pathogens on fresh-cut apple tissue. The contaminated apple tissue plugs were stored for up to 7 days at two different temperatures. The four antagonists survived or grew on the apple tissue at 10 or 25°C. These four antagonists reduced the Listeria monocytogenes populations and except for the Candida sp. (T4-E4), also reduced the S. enterica serovar Poona populations. The reduction was higher at 25°C than at 10°C, and the growth of the antagonists, as well as pathogens, increased at the higher temperature. PMID:16461659

  4. A rapid method for the detection of foodborne pathogens by extraction of a trace amount of DNA from raw milk based on label-free amino-modified silica-coated magnetic nanoparticles and polymerase chain reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogen...

  5. Chronic sequelae of foodborne disease.

    PubMed Central

    Lindsay, J. A.

    1997-01-01

    In the past decade the complexity of foodborne pathogens, as well as their adaptability and ability to cause acute illness, and in some cases chronic (secondary) complications, have been newly appreciated. This overview examines long-term consequences of foodborne infections and intoxications to emphasize the need for more research and education. PMID:9366595

  6. [Control of foodborne pathogens in the food industry and the environment: e.g. Campylobacter in poultry industry].

    PubMed

    Salvat, Gilles

    2012-11-01

    Foodborne zoonoses are not only a major public health concern but also have important economic implications, both for the meat industry and for public finances. The authors take as an example Campylobacter contamination of the environment and of poultry carcasses. Measures that might reduce human exposure to Campylobacter are examined for their potential efficacy.

  7. Emerging foodborne diseases.

    PubMed Central

    Altekruse, S. F.; Cohen, M. L.; Swerdlow, D. L.

    1997-01-01

    The epidemiology of foodborne diseases is rapidly changing. Recently described pathogens, such as Escherichia coli O157:H7 and the epidemic strain of Salmonella serotype Typhimurium Definitive Type 104 (which is resistant to at least five antimicrobial drugs), have become important public health problems. Well-recognized pathogens, such as Salmonella serotype Enteritidis, have increased in prevalence or become associated with new vehicles. Emergence in foodborne diseases is driven by the same forces as emergence in other infectious diseases: changes in demographic characteristics, human behavior, industry, and technology; the shift toward a global economy; microbial adaptation; and the breakdown in the public health infrastructure. Addressing emerging foodborne diseases will require more sensitive and rapid surveillance, enhanced methods of laboratory identification and subtyping, and effective prevention and control. PMID:9284372

  8. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold

    PubMed Central

    Bruno, John G.

    2014-01-01

    Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF) test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655) are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD) of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection. PMID:25437803

  9. Evaluation of different buffered peptone water (BPW) based enrichment broths for detection of Gram-negative foodborne pathogens from various food matrices.

    PubMed

    Margot, H; Zwietering, M H; Joosten, H; O'Mahony, Emer; Stephan, R

    2015-12-01

    This study evaluated the effects of changing the composition of the pre-enrichment medium buffered peptone water (BPW) on the growth of stressed and unstressed Gram-negative foodborne pathogens in a one-broth enrichment strategy. BPW supplemented with an available iron source and sodium pyruvate, along with low levels of 8-hydroxyquinoline and sodium deoxycholate (BPW-S) improved the recovery of desiccated Cronobacter spp. from powdered infant formula. Growth of Salmonella and STEC was comparable in all BPW variants tested for different food matrices. In products with high levels of Gram-negative background flora (e.g. sprouts), the target organisms could not be reliably detected by PCR in any of the BPW variants tested unless the initial level exceeded 10(3) cfu/10 g of sprouts. Based on these results we suggest BPW-S for a one-broth enrichment strategy of stressed Gram-negative foodborne pathogens from dry products. However, a one-broth enrichment strategy based on BPW variants tested in this evaluation is not recommended for produce with a high level of Gram-negative background flora due to very high detection limits. PMID:26267889

  10. Evaluation of different buffered peptone water (BPW) based enrichment broths for detection of Gram-negative foodborne pathogens from various food matrices.

    PubMed

    Margot, H; Zwietering, M H; Joosten, H; O'Mahony, Emer; Stephan, R

    2015-12-01

    This study evaluated the effects of changing the composition of the pre-enrichment medium buffered peptone water (BPW) on the growth of stressed and unstressed Gram-negative foodborne pathogens in a one-broth enrichment strategy. BPW supplemented with an available iron source and sodium pyruvate, along with low levels of 8-hydroxyquinoline and sodium deoxycholate (BPW-S) improved the recovery of desiccated Cronobacter spp. from powdered infant formula. Growth of Salmonella and STEC was comparable in all BPW variants tested for different food matrices. In products with high levels of Gram-negative background flora (e.g. sprouts), the target organisms could not be reliably detected by PCR in any of the BPW variants tested unless the initial level exceeded 10(3) cfu/10 g of sprouts. Based on these results we suggest BPW-S for a one-broth enrichment strategy of stressed Gram-negative foodborne pathogens from dry products. However, a one-broth enrichment strategy based on BPW variants tested in this evaluation is not recommended for produce with a high level of Gram-negative background flora due to very high detection limits.

  11. Selection of broilers with improved innate immune responsiveness to reduce on-farm infection by foodborne pathogens.

    PubMed

    Swaggerty, Christina L; Pevzner, Igal Y; He, Haiqi; Genovese, Kenneth J; Nisbet, David J; Kaiser, Pete; Kogut, Michael H

    2009-09-01

    Economic pressure on the modern poultry industry has directed the selection process towards fast-growing broilers that have a reduced feed conversion ratio. Selection based heavily on growth characteristics could adversely affect immune competence leaving chickens more susceptible to disease. Since the innate immune response directs the acquired immune response, efforts to select poultry with an efficient innate immune response would be beneficial. Our laboratories have been evaluating the innate immune system of two parental broiler lines to assess their capacity to protect against multiple infections. We have shown increased in vitro heterophil function corresponds with increased in vivo resistance to Gram-positive and Gram-negative bacterial infections. Additionally, there are increased mRNA expression levels of pro-inflammatory cytokines/chemokines in heterophils isolated from resistant lines compared to susceptible lines. Collectively, all data indicate there are measurable differences in innate responsiveness under genetic control. Recently, a small-scale selection trial was begun. We identified sires within a broiler population with higher and/or lower-than-average pro-inflammatory cytokine/chemokine mRNA expression levels and subsequently utilized small numbers of high-expressing and low-expressing sires to produce progeny with increased or decreased, respectively, pro-inflammatory cytokine/chemokine profiles. This novel approach should allow us to improve breeding stock by improving the overall immunological responsiveness. This will produce a line of chickens with an effective pro-inflammatory innate immune response that should improve resistance against diverse pathogens, improve responses to vaccines, and increase livability. Ongoing work from this project is providing fundamental information for the development of poultry lines that will be inherently resistant to colonization by pathogenic and food-poisoning microorganisms. Utilization of pathogen

  12. Expert elicitation as a means to attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and person-to-person transmission routes in Canada.

    PubMed

    Butler, Ainslie J; Thomas, M Kate; Pintar, Katarina D M

    2015-04-01

    Enteric illness contributes to a significant burden of illness in Canada and globally. Understanding its sources is a critical step in identifying and preventing health risks. Expert elicitation is a powerful tool, used previously, to obtain information about enteric illness source attribution where information is difficult or expensive to obtain. Thirty-one experts estimated transmission of 28 pathogens via major transmission routes (foodborne, waterborne, animal contact, person-to-person, and other) at the point of consumption. The elicitation consisted of a (snowball) recruitment phase; administration of a pre-survey to collect background information, an introductory webinar, an elicitation survey, a 1-day discussion, survey readministration, and a feedback exercise, and surveys were administered online. Experts were prompted to quantify changes in contamination at the point of entry into the kitchen versus point of consumption. Estimates were combined via triangular probability distributions, and medians and 90% credible-interval estimates were produced. Transmission was attributed primarily to food for Bacillus cereus, Clostridium perfringens, Cyclospora cayetanensis, Trichinella spp., all three Vibrio spp. categories explored, and Yersinia enterocolitica. Multisource pathogens (e.g., transmitted commonly through both water and food) such as Campylobacter spp., four Escherichia coli categories, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus were also estimated as mostly foodborne. Water was the primary pathway for Giardia spp. and Cryptosporidium spp., and person-to-person transmission dominated for six enteric viruses and Shigella spp. Consideration of the point of attribution highlighted the importance of food handling and cross-contamination in the transmission pathway. This study provides source attribution estimates of enteric illness for Canada, considering all possible transmission routes. Further research is necessary to improve our

  13. Inhibitory effect of commercial green tea and rosemary leaf powders on the growth of foodborne pathogens in laboratory media and oriental-style rice cakes.

    PubMed

    Lee, Sun-Young; Gwon, So-Young; Kim, Seung-Ju; Moon, Bo Kyung

    2009-05-01

    The antimicrobial effects of green tea and rosemary added to foods as antagonists to foodborne pathogens were determined in laboratory media and oriental-style rice cakes. The growth of each pathogen (Bacillus cereus, Salmonella Typhimurium, Enterobacter sakazakii, Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes) in tryptic soy broth or rice cake with or without addition of green tea or rosemary leaf powders before autoclaving or cooking, respectively, was investigated after inoculation. The addition of 1% green tea or rosemary produced similar results for inhibiting the growth of pathogens in tryptic soy broth. However, green tea was more effective than rosemary for inhibiting the growth of L. monocytogenes. Both botanicals had inhibitory effects against all pathogens tested in this study. Green tea was particularly effective against B. cereus, S. aureus, and L. monocytogenes, and rosemary was strongly inhibitory against B. cereus and S. aureus. The addition of 1 or 3% green tea or rosemary to rice cakes did not significantly reduce total aerobic counts; however, levels of B. cereus and S. aureus were significantly reduced in rice cakes stored for 3 days at room temperature (22 degrees C). The order of antimicrobial activities against B. cereus in rice cake was 1% rosemary < 1% green tea < 3% rosemary = 3% green tea. These results indicate that the use of natural plant materials such as green tea and rosemary could improve the microbial quality of foods in addition to their functional properties.

  14. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 5. Sources of contamination and pathogen excretion from infected persons.

    PubMed

    Todd, Ewen C D; Greig, Judy D; Bartleson, Charles A; Michaels, Barry S

    2008-12-01

    In this article, the fifth in a series reviewing the role of food workers in foodborne outbreaks, background information on the routes of infection for food workers is considered. Contamination most frequently occurs via the fecal-oral route, when pathogens are present in the feces of ill, convalescent, or otherwise colonized persons. It is difficult for managers of food operations to identify food workers who may be excreting pathogens, even when these workers report their illnesses, because workers can shed pathogens during the prodrome phase of illness or can be long-term excretors or asymptomatic carriers. Some convalescing individuals excreted Salmonella for 102 days. Exclusion policies based on stool testing have been evaluated but currently are not considered effective for reducing the risk of enteric disease. A worker may exhibit obvious signs of illness, such as vomiting, but even if the ill worker immediately leaves the work environment, residual vomitus can contaminate food, contact surfaces, and fellow workers unless the clean-up process is meticulous. Skin infections and nasopharyngeal or oropharyngeal staphylococcal or streptococcal secretions also have been linked frequently to worker-associated outbreaks. Dermatitis, rashes, and painful hand lesions may cause workers to reduce or avoid hand washing. Regardless of the origin of the contamination, pathogens are most likely to be transmitted through the hands touching a variety of surfaces, highlighting the need for effective hand hygiene and the use of barriers throughout the work shift. PMID:19244919

  15. Preliminary incidence and trends of infection with pathogens transmitted commonly through food - Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2006-2014.

    PubMed

    Crim, Stacy M; Griffin, Patricia M; Tauxe, Robert; Marder, Ellyn P; Gilliss, Debra; Cronquist, Alicia B; Cartter, Matthew; Tobin-D'Angelo, Melissa; Blythe, David; Smith, Kirk; Lathrop, Sarah; Zansky, Shelley; Cieslak, Paul R; Dunn, John; Holt, Kristin G; Wolpert, Beverly; Henao, Olga L

    2015-05-15

    Foodborne illnesses represent a substantial, yet largely preventable, health burden in the United States. In 10 U.S. geographic areas, the Foodborne Diseases Active Surveillance Network (FoodNet) monitors the incidence of laboratory-confirmed infections caused by nine pathogens transmitted commonly through food. This report summarizes preliminary 2014 data and describes changes in incidence compared with 2006-2008 and 2011-2013. In 2014, FoodNet reported 19,542 infections, 4,445 hospitalizations, and 71 deaths. The incidence of Shiga toxin-producing Escherichia coli (STEC) O157 and Salmonella enterica serotype Typhimurium infections declined in 2014 compared with 2006-2008, and the incidence of infection with Campylobacter, Vibrio, and Salmonella serotypes Infantis and Javiana was higher. Compared with 2011-2013, the incidence of STEC O157 and Salmonella Typhimurium infections was lower, and the incidence of STEC non-O157 and Salmonella serotype Infantis infections was higher in 2014. Despite ongoing food safety efforts, the incidence of many infections remains high, indicating that further prevention measures are needed to make food safer and achieve national health objectives.

  16. Potential use of DNA barcodes in regulatory science: identification of the U.S. Food and Drug Administration's "Dirty 22," contributors to the spread of foodborne pathogens.

    PubMed

    Jones, Yolanda L; Peters, Sharla M; Weland, Chris; Ivanova, Natalia V; Yancy, Haile F

    2013-01-01

    The U.S. Food, Drug, and Cosmetic Act prohibits the distribution of food that is adulterated, and the regulatory mission of the U.S. Food and Drug Administration (FDA) is to enforce this Act. FDA field laboratories have identified the 22 most common pests that contribute to the spread of foodborne disease (the "Dirty 22"). The current method of detecting filth and extraneous material (tails, legs, carcasses, etc.) is visual inspection using microscopy. Because microscopy can be time-consuming and may yield inaccurate and/or nonspecific results due to lack of expertise, an alternative method of detecting these adulterants is needed. In this study, we sequenced DNA from the 5' region of the cytochrome oxidase I gene of these 22 common pests that contribute to the spread of foodborne pathogens. Here, we describe the generation of DNA barcodes for all 22 species. To date, this is the first attempt to develop a sequence-based regulatory database and systematic primer strategy to identify these FDA-targeted species. DNA barcoding can be a powerful tool that can aid the FDA in promoting the protection and safety of the U.S. food supply.

  17. Multilocus genetic characterization of two ant vectors (Group II "Dirty 22" species) known to contaminate food and food products and spread foodborne pathogens.

    PubMed

    Sulaiman, Irshad M; Anderson, Mickey; Oi, David H; Simpson, Steven; Kerdahi, Khalil

    2012-08-01

    The U.S. Food and Drug Administration utilizes the presence of filth and extraneous materials as one of the criteria for implementing regulatory actions and assessing adulteration of food products of public health importance. Twenty-two prevalent pest species (also known as the ''Dirty 22'' species) have been considered by this agency as possible vehicles for the spread of foodborne diseases, and the presence of these species is considered an indicator of unsanitary conditions in food processing and storage facilities. In a previous study, we further categorized the Dirty 22 species into four groups: group I includes four cockroach species, group II includes two ant species, group III includes 12 fly species, and group IV includes four rodent species. Here, we describe the development of three nested PCR primer sets and multilocus genetic characterization by amplifying the small subunit rRNA, elongation factor 1-alpha, and wingless (WNT-1) genes of group II Dirty 22 ant species Monomorium pharaonis and Solenopsis molesta. These novel group II Dirty 22 species-specific nested PCR primer sets can be used when the specimens cannot be identified using conventional microscopic methods. These newly developed assays will provide correct identification of group II Dirty 22 ant species, and the information can be used in the control of foodborne pathogens.

  18. Foodborne Pathogens Recovered from Ready-to-Eat Foods from Roadside Cafeterias and Retail Outlets in Alice, Eastern Cape Province, South Africa: Public Health Implications

    PubMed Central

    Nyenje, Mirriam E.; Odjadjare, Collins E.; Tanih, Nicoline F.; Green, Ezekiel; Ndip, Roland N.

    2012-01-01

    This study assessed the microbiological quality of various ready-to-eat foods sold in Alice, South Africa. Microbiological analysis was conducted on 252 samples which included vegetables, potatoes, rice, pies, beef and chicken stew. The isolates were identified using biochemical tests and the API 20E, API 20NE and API Listeria kits; results were analyzed using the one-way-ANOVA test. Bacterial growth was present in all the food types tested; high levels of total aerobic count were observed in vegetables, 6.8 ± 0.07 followed by rice, 6.7 ± 1.7 while pies had the lowest count (2.58 ± 0.24). Organisms isolated included: Listeria spp. (22%), Enterobacter spp. (18%), Aeromonas hydrophila (12%), Klebsiella oxytoca (8%), Proteus mirabilis (6.3%), Staphylococcus aureus (3.2%) and Pseudomonas luteola (2.4%). Interestingly, Salmonella spp. and Escherichia coli were not isolated in any of the samples. There was a statistically significant difference (p < 0.05) in the prevalence of foodborne pathogens from hygienic and unhygienic cafeterias. The results indicated that most of the ready-to-eat food samples examined in this study did not meet bacteriological quality standards, therefore posing potential risks to consumers. This should draw the attention of the relevant authorities to ensure that hygienic standards are improved to curtain foodborne infections. PMID:23066386

  19. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    NASA Astrophysics Data System (ADS)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  20. Foodborne Illnesses

    MedlinePlus

    ... Some parasites and chemicals also cause foodborne illnesses. Bacteria Bacteria are tiny organisms that can cause infections of the GI tract. Not all bacteria are harmful to humans. Some harmful bacteria may ...

  1. Foodborne Illness

    MedlinePlus

    ... get sick from contaminated food. Common culprits include bacteria, parasites and viruses. Symptoms range from mild to ... cramps Nausea and vomiting Diarrhea Fever Dehydration Harmful bacteria are the most common cause of foodborne illness. ...

  2. Efficacy of Instant Hand Sanitizers against Foodborne Pathogens Compared with Hand Washing with Soap and Water in Food Preparation Settings: A Systematic Review.

    PubMed

    Foddai, Antonio C G; Grant, Irene R; Dean, Moira

    2016-06-01

    Hands can be a vector for transmitting pathogenic microorganisms to foodstuffs and drinks, and to the mouths of susceptible hosts. Hand washing is the primary barrier to prevent transmission of enteric pathogens via cross-contamination from infected persons. Conventional hand washing involves the use of water, soap, and friction to remove dirt and microorganisms. The availability of hand sanitizing products for use when water and soap are unavailable has increased in recent years. The aim of this systematic review was to collate scientific information on the efficacy of hand sanitizers compared with washing hands with soap and water for the removal of foodborne pathogens from the hands of food handlers. An extensive literature search was carried out using three electronic databases: Web of Science, Scopus, and PubMed. Twenty-eight scientific publications were ultimately included in the review. Analysis of this literature revealed various limitations in the scientific information owing to the absence of a standardized protocol for evaluating the efficacy of hand products and variation in experimental conditions. However, despite conflicting results, scientific evidence seems to support the historical skepticism about the use of waterless hand sanitizers in food preparation settings. Water and soap appear to be more effective than waterless products for removal of soil and microorganisms from hands. Alcohol-based products achieve rapid and effective inactivation of various bacteria, but their efficacy is generally lower against nonenveloped viruses. The presence of food debris significantly affects the microbial inactivation rate of hand sanitizers.

  3. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films.

    PubMed

    Ha, Jae-Won; Back, Kyeong-Hwan; Kim, Yoon-Hee; Kang, Dong-Hyun

    2016-08-01

    In this study, the efficacy of using UV-C light to inactivate sliced cheese inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and, packaged with 0.07 mm films of polyethylene terephthalate (PET), polyvinylchloride (PVC), polypropylene (PP), and polyethylene (PE) was investigated. The results show that compared with PET and PVC, PP and PE films showed significantly reduced levels of the three pathogens compared to inoculated but non-treated controls. Therefore, PP and PE films of different thicknesses (0.07 mm, 0.10 mm, and 0.13 mm) were then evaluated for pathogen reduction of inoculated sliced cheese samples. Compared with 0.10 and 0.13 mm, 0.07 mm thick PP and PE films did not show statistically significant reductions compared to non-packaged treated samples. Moreover, there were no statistically significant differences between the efficacy of PP and PE films. These results suggest that adjusted PP or PE film packaging in conjunction with UV-C radiation can be applied to control foodborne pathogens in the dairy industry.

  4. Efficacy of Instant Hand Sanitizers against Foodborne Pathogens Compared with Hand Washing with Soap and Water in Food Preparation Settings: A Systematic Review.

    PubMed

    Foddai, Antonio C G; Grant, Irene R; Dean, Moira

    2016-06-01

    Hands can be a vector for transmitting pathogenic microorganisms to foodstuffs and drinks, and to the mouths of susceptible hosts. Hand washing is the primary barrier to prevent transmission of enteric pathogens via cross-contamination from infected persons. Conventional hand washing involves the use of water, soap, and friction to remove dirt and microorganisms. The availability of hand sanitizing products for use when water and soap are unavailable has increased in recent years. The aim of this systematic review was to collate scientific information on the efficacy of hand sanitizers compared with washing hands with soap and water for the removal of foodborne pathogens from the hands of food handlers. An extensive literature search was carried out using three electronic databases: Web of Science, Scopus, and PubMed. Twenty-eight scientific publications were ultimately included in the review. Analysis of this literature revealed various limitations in the scientific information owing to the absence of a standardized protocol for evaluating the efficacy of hand products and variation in experimental conditions. However, despite conflicting results, scientific evidence seems to support the historical skepticism about the use of waterless hand sanitizers in food preparation settings. Water and soap appear to be more effective than waterless products for removal of soil and microorganisms from hands. Alcohol-based products achieve rapid and effective inactivation of various bacteria, but their efficacy is generally lower against nonenveloped viruses. The presence of food debris significantly affects the microbial inactivation rate of hand sanitizers. PMID:27296611

  5. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films.

    PubMed

    Ha, Jae-Won; Back, Kyeong-Hwan; Kim, Yoon-Hee; Kang, Dong-Hyun

    2016-08-01

    In this study, the efficacy of using UV-C light to inactivate sliced cheese inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and, packaged with 0.07 mm films of polyethylene terephthalate (PET), polyvinylchloride (PVC), polypropylene (PP), and polyethylene (PE) was investigated. The results show that compared with PET and PVC, PP and PE films showed significantly reduced levels of the three pathogens compared to inoculated but non-treated controls. Therefore, PP and PE films of different thicknesses (0.07 mm, 0.10 mm, and 0.13 mm) were then evaluated for pathogen reduction of inoculated sliced cheese samples. Compared with 0.10 and 0.13 mm, 0.07 mm thick PP and PE films did not show statistically significant reductions compared to non-packaged treated samples. Moreover, there were no statistically significant differences between the efficacy of PP and PE films. These results suggest that adjusted PP or PE film packaging in conjunction with UV-C radiation can be applied to control foodborne pathogens in the dairy industry. PMID:27052716

  6. Multiple system atrophy: pathogenic mechanisms and biomarkers.

    PubMed

    Jellinger, Kurt A; Wenning, Gregor K

    2016-06-01

    Multiple system atrophy (MSA) is a unique proteinopathy that differs from other α-synucleinopathies since the pathological process resulting from accumulation of aberrant α-synuclein (αSyn) involves the oligodendroglia rather than neurons, although both pathologies affect multiple parts of the brain, spinal cord, autonomic and peripheral nervous system. Both the etiology and pathogenesis of MSA are unknown, although animal models have provided insight into the basic molecular changes of this disorder. Accumulation of aberrant αSyn in oligodendroglial cells and preceded by relocation of p25α protein from myelin to oligodendroglia results in the formation of insoluble glial cytoplasmic inclusions that cause cell dysfunction and demise. These changes are associated with proteasomal, mitochondrial and lipid transport dysfunction, oxidative stress, reduced trophic transport, neuroinflammation and other noxious factors. Their complex interaction induces dysfunction of the oligodendroglial-myelin-axon-neuron complex, resulting in the system-specific pattern of neurodegeneration characterizing MSA as a synucleinopathy with oligodendroglio-neuronopathy. Propagation of modified toxic αSyn species from neurons to oligodendroglia by "prion-like" transfer and its spreading associated with neuronal pathways result in a multi-system involvement. No reliable biomarkers are currently available for the clinical diagnosis and prognosis of MSA. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable diagnostic biomarkers and to deliver targets for effective treatment of this hitherto incurable disorder is urgently needed.

  7. Cronobacter spp.--opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits.

    PubMed

    Jaradat, Ziad W; Al Mousa, Waseem; Elbetieha, Ahmed; Al Nabulsi, Anas; Tall, Ben D

    2014-08-01

    The genus Cronobacter consists of a diverse group of Gram-negative bacilli and comprises seven species: Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter muytjensii, Cronobacter turicensis, Cronobacter dublinensis, Cronobacter universalis and Cronobacter condimenti. Cronobacter are regarded as opportunistic pathogens, and have been implicated in newborn and infant infections, causing meningitis, necrotizing enterocolitis and bacteraemia or sepsis. Cronobacter virulence is believed to be due to multiple factors. Some strains were found to produce diarrhoea or cause significant fluid accumulation in suckling mice. Two iron acquisition systems (eitCBAD and iucABCD/iutA), Cronobacter plasminogen activator gene (cpa), a 17 kb type VI secretion system (T6SS), and a 27 kb filamentous haemagglutinin gene (fhaBC) and associated putative adhesins locus are harboured on a family of RepFIB-related plasmids (pESA3 and pCTU1), suggesting that these are common virulence plasmids; 98% of 229 tested Cronobacter strains possessed these plasmids. Even though pESA3 and pCTU1 share a common backbone composed of the repA gene and eitCBAD and iucABCD/iutA gene clusters, the presence of cpa, T6SS and FHA loci depended on species, demonstrating a strong correlation with the presence of virulence traits, plasmid type and species. Other factors were observed, in that Cronobacter form biofilms, and show unusual resistance to heat, dry and acid stress growth conditions. The outer-membrane protein A is probably one of the best-characterized virulence markers of Cronobacter. Furthermore, it was reported that Cronobacter employ phosphatidylinositide 3-kinase/Akt signalling, which activates protein kinase C-α and impairs the host cell's mitogen-activated protein kinase pathway, in order to invade cells. Cronobacter can also use immature dendritic cells and macrophages to escape the immune response. This review addresses the various virulence and environmental-adaptive characteristics

  8. Pan-European resistance monitoring programmes encompassing food-borne bacteria and target pathogens of food-producing and companion animals.

    PubMed

    de Jong, A; Thomas, V; Klein, U; Marion, H; Moyaert, H; Simjee, S; Vallé, M

    2013-05-01

    Antimicrobial resistance is a concern both for animal and human health. Veterinary programmes monitoring resistance of animal and zoonotic pathogens are therefore essential. Various European countries have implemented national surveillance programmes, particularly for zoonotic and commensal bacteria, and the European Food Safety Authority (EFSA) is compiling the data. However, harmonisation is identified as a weakness and an essential need in order to compare data across countries. Comparisons of resistance monitoring data among national programmes are hampered by differences between programmes, such as sampling and testing methodology, and different epidemiological cut-off values or clinical breakpoints. Moreover, only very few valid data are available regarding target pathogens both of farm and companion animals. The European Animal Health Study Centre (CEESA) attempts to fill these gaps. The resistance monitoring programmes of CEESA have been a collaboration of veterinary pharmaceutical companies for over a decade and include two different projects: the European Antimicrobial Susceptibility Surveillance in Animals (EASSA) programme, which collects food-borne bacteria at slaughter from healthy animals, and the pathogen programmes that collect first-intention target pathogens from acutely diseased animals. The latter comprises three subprogrammes: VetPath; MycoPath; and ComPath. All CEESA projects include uniform sample collection and bacterial identification to species level in various European Union (EU) member states. A central laboratory conducts quantitative susceptibility testing to antimicrobial agents either important in human medicine or commonly used in veterinary medicine. This 'methodology harmonisation' allows easy comparisons among EU member states and makes the CEESA programmes invaluable to address food safety and antibiotic efficacy.

  9. GeneSippr: A Rapid Whole-Genome Approach for the Identification and Characterization of Foodborne Pathogens such as Priority Shiga Toxigenic Escherichia coli

    PubMed Central

    Koziol, Adam G.; Manninger, Paul; Blais, Burton W.

    2015-01-01

    The timely identification and characterization of foodborne bacteria for risk assessment purposes is a key operation in outbreak investigations. Current methods require several days and/or provide low-resolution characterization. Here we describe a whole-genome-sequencing (WGS) approach (GeneSippr) enabling same-day identification of colony isolates recovered from investigative food samples. The identification of colonies of priority Shiga-toxigenic Escherichia coli (STEC) (i.e., serogroups O26, O45, O103, O111, O121, O145 and O157) served as a proof of concept. Genomic DNA was isolated from single colonies and sequencing was conducted on the Illumina MiSeq instrument with raw data sampling from the instrument following 4.5 hrs of sequencing. Modeling experiments indicated that datasets comprised of 21-nt reads representing approximately 4-fold coverage of the genome were sufficient to avoid significant gaps in sequence data. A novel bioinformatic pipeline was used to identify the presence of specific marker genes based on mapping of the short reads to reference sequence libraries, along with the detection of dispersed conserved genomic markers as a quality control metric to assure the validity of the analysis. STEC virulence markers were correctly identified in all isolates tested, and single colonies were identified within 9 hrs. This method has the potential to produce high-resolution characterization of STEC isolates, and whole-genome sequence data generated following the GeneSippr analysis could be used for isolate identification in place of lengthy biochemical characterization and typing methodologies. Significant advantages of this procedure include ease of adaptation to the detection of any gene marker of interest, as well as to the identification of other foodborne pathogens for which genomic markers have been defined. PMID:25860693

  10. Anti-adherence potential of Enterococcus durans cells and its cell-free supernatant on plastic and stainless steel against foodborne pathogens.

    PubMed

    Amel, Ait Meddour; Farida, Bendali; Djamila, Sadoun

    2015-07-01

    It is demonstrated that numerous bacteria are able to attach to surfaces of equipment used for food handling or processing. In this study, a strain of Enterococcus durans, originally isolated from a milking machine surface, was firstly studied for its biofilm formation potential on plastic and stainless steel supports. The strain was found to be a biofilm producer either at 25, 30 or 37 °C on polystyrene microtitre plates, with a best adherence level observed at 25 °C. En. durans showed a strong adhesion to stainless steel AISI-304. Antibacterial and anti-adherence activities of En. durans were tested against four foodborne pathogens (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853 and Listeria innocua CLIP 74915) which were shown as biofilm producers on both plastic and stainless steel. En. durans cells and cell-free culture supernatant showed a significant (P < 0.05) inhibition potential of the pathogens either on solid media or in broth co-cultures. Characterization of the antibacterial substances indicated their proteinaceous nature which assigned them most probably to bacteriocins group.

  11. Anti-adherence potential of Enterococcus durans cells and its cell-free supernatant on plastic and stainless steel against foodborne pathogens.

    PubMed

    Amel, Ait Meddour; Farida, Bendali; Djamila, Sadoun

    2015-07-01

    It is demonstrated that numerous bacteria are able to attach to surfaces of equipment used for food handling or processing. In this study, a strain of Enterococcus durans, originally isolated from a milking machine surface, was firstly studied for its biofilm formation potential on plastic and stainless steel supports. The strain was found to be a biofilm producer either at 25, 30 or 37 °C on polystyrene microtitre plates, with a best adherence level observed at 25 °C. En. durans showed a strong adhesion to stainless steel AISI-304. Antibacterial and anti-adherence activities of En. durans were tested against four foodborne pathogens (Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853 and Listeria innocua CLIP 74915) which were shown as biofilm producers on both plastic and stainless steel. En. durans cells and cell-free culture supernatant showed a significant (P < 0.05) inhibition potential of the pathogens either on solid media or in broth co-cultures. Characterization of the antibacterial substances indicated their proteinaceous nature which assigned them most probably to bacteriocins group. PMID:25466409

  12. Foodborne toxoplasmosis.

    PubMed

    Jones, Jeffrey L; Dubey, J P

    2012-09-01

    Toxoplasmosis can be due to congenital infection or acquired infection after birth and is one of the leading illnesses associated with foodborne hospitalizations and deaths. Undercooked meat, especially pork, lamb, and wild game meat, and soil contaminated with cat feces on raw fruits and vegetables are the major sources of foodborne transmission for humans. The new trend in the production of free-range organically raised meat could increase the risk of Toxoplasma gondii contamination of meat. Foodborne transmission can be prevented by production practices that reduce T. gondii in meat, adequate cooking of meat, washing of raw fruits and vegetables, prevention of cross contamination in the kitchen, and measures that decrease spread of viable oocysts into the environment.

  13. Multiple sample flow through immunomagnetic separator for concentrating pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Rotariu, Ovidiu; Ogden, Iain D.; MacRae, Marion; Udrea, Laura Elena; Strachan, Norval J. C.

    2005-06-01

    The standard method of immunomagnetic separation for isolating pathogenic bacteria from food and environmental matrices processes 1 ml volumes. Pathogens present at low levels (<0.5 pathogenic bacteria/g) will not be consistently detected by this method. Here a multiple sample flow through immunomagnetic separator has been designed and tested to process large volume samples (50 to 250 ml). Preliminary results show >97% recovery of polydisperse magnetic particles (diameter range 1 to 8 µm) containing 29-33% w/w Fe3O4 content. Between 70 and 130 times more of the pathogenic bacteria Escherichia coli O157 is recovered from PBS compared with the standard 1 ml method. Also, the recovery of E. coli O157 from beef mince homogenates, after a 4 h incubation at 42 °C, is between 80 and 180 times higher than the standard 1 ml method.

  14. Control of foodborne pathogens and soft-rot bacteria on bell pepper by three strains of bacterial antagonists.

    PubMed

    Liao, Ching-Hsing

    2009-01-01

    Forty-two representative strains of native bacteria associated with fresh peeled baby carrots were isolated and characterized. Two of these strains, identified as Pseudomonas fluorescens AG3A (Pf AG3A) and Bacillus YD1, were evaluated in conjunction with another known antagonist, P. fluorescens 2-79 (Pf 2-79), for their potential as biocontrol agents of human pathogens (Listeria monocytogenes, Yersinia enterocolitica, Salmonella enterica, and Escherichia coli O157:H7) and soft-rot bacteria (Erwinia carotovora subsp. carotovora, Pseudomonas marginalis, and Pseudomonas viridiflava). When grown on iron-deficient agar media, all three antagonists produced inhibition zones up to 25 mm in diameter against the growth of human pathogens and soft-rot bacteria. However, when grown on iron-rich agar media, only Pf 2-79 and Bacillus YD1 exhibited antimicrobial activity. Treatment of bell pepper disks with Pf 2-79 or Bacillus YD1 reduced the growth of pathogen by 1.4 to 4.1 log units, depending upon the ratio of the number of antagonist cells to pathogen cells (1:1, 10:1, 100:1, or 1,000:1). The greatest reduction was observed when 10- to 100-fold higher number of antagonists than pathogens was applied. Pf AG3A and Bacillus YD1 reduced the growth of pathogens on pepper disks at 20 degrees C but not at 10 degrees C. However, Pf 2-79 reduced the growth of L. monocytogenes and Y. enterocolitica by up to 4 log units at either 20 or 10 degrees C. Treatment of pepper disks with Pf 2-79 also reduced the incidence of soft rot induced by soft-rot bacteria by 40 to 70%. Pf 2-79 is the most effective of the three antagonists tested for control of spoilage bacteria and human pathogens on bell pepper.

  15. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium.

    PubMed

    Villamizar-Rodríguez, Germán; Fernández, Javier; Marín, Laura; Muñiz, Juan; González, Isabel; Lombó, Felipe

    2015-01-01

    Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1-4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was

  16. Multiplex detection of nine food-borne pathogens by mPCR and capillary electrophoresis after using a universal pre-enrichment medium

    PubMed Central

    Villamizar-Rodríguez, Germán; Fernández, Javier; Marín, Laura; Muñiz, Juan; González, Isabel; Lombó, Felipe

    2015-01-01

    Routine microbiological quality analyses in food samples require, in some cases, an initial incubation in pre-enrichment medium. This is necessary in order to ensure that small amounts of pathogenic strains are going to be detected. In this work, a universal pre-enrichment medium has been developed for the simultaneous growth of Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Cronobacter sakazakii, Escherichia coli, Enterobacteriaceae family (38 species, 27 genera), Listeria monocytogenes, Staphylococcus aureus, Salmonella spp. (two species, 13 strains). Growth confirmation for all these species was achieved in all cases, with excellent enrichments. This was confirmed by plating on the corresponding selective agar media for each bacterium. This GVUM universal pre-enrichment medium could be useful in food microbiological analyses, where different pathogenic bacteria must be detected after a pre-enrichment step. Following, a mPCR reaction for detection of all these pathogens was developed, after designing a set of nine oligonucleotide pairs from specific genetic targets on gDNA from each of these bacteria, covering all available strains already sequenced in GenBank for each pathogen type. The detection limits have been 1 Genome Equivalent (GE), with the exception of the Fam. Enterobacteriaceae (5 GEs). We obtained amplification for all targets (from 70 to 251 bp, depending on the bacteria type), showing the capability of this method to detect the most important industrial and sanitary food-borne pathogens from a universal pre-enrichment medium. This method includes an initial pre-enrichment step (18 h), followed by a mPCR (2 h) and a capillary electrophoresis (30 min); avoiding the tedious and long lasting growing on solid media required in traditional analysis (1–4 days, depending on the specific pathogen and verification procedure). An external testing of this method was conducted in order to compare classical and mPCR methods. This evaluation was

  17. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

  18. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Mayer-Scholl, Anne; Murugaiyan, Jayaseelan; Neumann, Jennifer; Bahn, Peter; Reckinger, Sabine; Nöckler, Karsten

    2016-01-01

    Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS) reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da) from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP) representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology. PMID:26999436

  19. Intervention technologies for food safety on minimally processed produce:Perspectives on food-borne and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Produce contamination associated with enteric pathogens such Escherichia coli O157:H7, salmonella spp., Listeria monocytogenes, Shigella and others are significant challenges to food safety. This is due to the illnesses and economic impacts resulting from the outbreaks. Innovative technologies for i...

  20. Lactic acid as a potential decontaminant of selected foodborne pathogenic bacteria in shrimp (Penaeus merguiensis de Man).

    PubMed

    Shirazinejad, Alireza; Ismail, Noryati; Bhat, Rajeev

    2010-12-01

    Fresh raw shrimps were dipped for 10, 20, and 30 min at room temperature (25°C ± 1°C) in lactic acid (LA; 1.5%, 3.0%, v/v) to evaluate their antipathogenic effects against Vibrio cholerae, Vibrio parahaemolyticus, Salmonella entreitidis, and Escherichia coli O157:H7 inoculated at a level of 10(5) CFU/g. Significant reductions in the population of all these pathogenic bacteria were recorded after dipping treatments, which were correlated to the corresponding LA concentrations and treatment time. With respect to the microbial quality, 3.0% LA treatment for 10 min was acceptable in reducing the pathogenic bacteria. Additionally, sensory evaluation results revealed a 10-min dip in 3.0% LA to be more acceptable organoleptically compared with 20 and 30 min of treatments. Results of the present study are envisaged to be useful for commercial applications for effective decontamination of shrimp.

  1. Bioprotection of ready-to-eat probiotic artichokes processed with Lactobacillus paracasei LMGP22043 against foodborne pathogens.

    PubMed

    Valerio, Francesca; Lonigro, Stella Lisa; Di Biase, Mariaelena; de Candia, Silvia; Callegari, Maria Luisa; Lavermicocca, Paola

    2013-11-01

    The survival of 3 pathogens Listeria monocytogenes ATCC19115, Salmonella enterica subsp. enterica ATCC13311, and Escherichia coli ATCC8739 was evaluated over time in ready-to-eat (RTE) artichoke products processed or not with the probiotic strain Lactobacillus paracasei LMGP22043. Both probiotic and standard products (final pH about 4.0; aw = 0.98) dressed with oil and packaged in modified atmosphere were inoculated with pathogens at a level of about 3 log CFU/g and stored at 4 ºC for 45 d. Pathogens decreased in the probiotic product in 2 descent phases, without shoulder and/or tailing as observed by fitting the models available in the GInaFit software to the experimental data. S. enterica subsp. enterica was completely inactivated after 14 and 28 d in probiotic and standard products, respectively; E. coli was inhibited in the probiotic food at day 4 (count pathogens during storage with probiotic benefits. PMID:24245894

  2. Bioprotection of ready-to-eat probiotic artichokes processed with Lactobacillus paracasei LMGP22043 against foodborne pathogens.

    PubMed

    Valerio, Francesca; Lonigro, Stella Lisa; Di Biase, Mariaelena; de Candia, Silvia; Callegari, Maria Luisa; Lavermicocca, Paola

    2013-11-01

    The survival of 3 pathogens Listeria monocytogenes ATCC19115, Salmonella enterica subsp. enterica ATCC13311, and Escherichia coli ATCC8739 was evaluated over time in ready-to-eat (RTE) artichoke products processed or not with the probiotic strain Lactobacillus paracasei LMGP22043. Both probiotic and standard products (final pH about 4.0; aw = 0.98) dressed with oil and packaged in modified atmosphere were inoculated with pathogens at a level of about 3 log CFU/g and stored at 4 ºC for 45 d. Pathogens decreased in the probiotic product in 2 descent phases, without shoulder and/or tailing as observed by fitting the models available in the GInaFit software to the experimental data. S. enterica subsp. enterica was completely inactivated after 14 and 28 d in probiotic and standard products, respectively; E. coli was inhibited in the probiotic food at day 4 (count pathogens during storage with probiotic benefits.

  3. Broad and efficient control of major foodborne pathogenic strains of Escherichia coli by mixtures of plant-produced colicins.

    PubMed

    Schulz, Steve; Stephan, Anett; Hahn, Simone; Bortesi, Luisa; Jarczowski, Franziska; Bettmann, Ulrike; Paschke, Anne-Katrin; Tusé, Daniel; Stahl, Chad H; Giritch, Anatoli; Gleba, Yuri

    2015-10-01

    Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway.

  4. Broad and efficient control of major foodborne pathogenic strains of Escherichia coli by mixtures of plant-produced colicins

    PubMed Central

    Schulz, Steve; Stephan, Anett; Hahn, Simone; Bortesi, Luisa; Jarczowski, Franziska; Bettmann, Ulrike; Paschke, Anne-Katrin; Tusé, Daniel; Stahl, Chad H.; Giritch, Anatoli; Gleba, Yuri

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway. PMID:26351689

  5. Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars in Barcelona, Spain.

    PubMed

    Navarro-Gonzalez, Nora; Casas-Díaz, Encarna; Porrero, Concepción M; Mateos, Ana; Domínguez, Lucas; Lavín, Santiago; Serrano, Emmanuel

    2013-12-27

    Wildlife is increasingly abundant in urban environments, but little is known about the zoonotic pathogens carried by these populations. Urban wild boars are of particular concern because this species is well-known as a pathogen reservoir, and thus, we studied selected zoonotic pathogens in urban wild boars in Barcelona, Spain (n=41). Salmonella enterica was found in 5.00% (95% CI 0.61-16.91) and Campylobacter coli in 4.88% (95% CI 0.6-16.53) of the animals. E. coli O157:H7 and C. jejuni were not found. Other thermophilic Campylobacter were moderately prevalent (19.51%, 95% CI 8.82-34.87). Additionally, we screened for antimicrobial resistance in indicator bacteria: resistance was most frequent in Enterococcus faecium (95% of the isolates were resistant to at least one antimicrobial agent), followed by Enterococcus faecalis (50%) and Escherichia coli (10%). For the first time resistance to linezolid in bacteria carried by wildlife is reported. These findings pose a concern for public health, and thus, further research is needed on wildlife in urban environments.

  6. Cytokine responses in birds challenged with the human food-borne pathogen Campylobacter jejuni implies a Th17 response

    PubMed Central

    Reid, William D. K.; Close, Andrew J.; Humphrey, Suzanne; Chaloner, Gemma; Lacharme-Lora, Lizeth; Rothwell, Lisa; Kaiser, Pete; Williams, Nicola J.; Humphrey, Tom J.; Wigley, Paul; Rushton, Stephen P.

    2016-01-01

    Development of process orientated understanding of cytokine interactions within the gastrointestinal tract during an immune response to pathogens requires experimentation and statistical modelling. The immune response against pathogen challenge depends on the specific threat to the host. Here, we show that broiler chickens mount a breed-dependent immune response to Campylobacter jejuni infection in the caeca by analysing experimental data using frequentist and Bayesian structural equation models (SEM). SEM provides a framework by which cytokine interdependencies, based on prior knowledge, can be tested. In both breeds important cytokines including pro-inflammatory interleukin (IL)-1β, , IL-4, IL-17A, interferon (IFN)-γ and anti-inflammatory IL-10 and transforming growth factor (TGF)-β4 were expressed post-challenge. The SEM revealed a putative regulatory pathway illustrating a T helper (Th)17 response and regulation of IL-10, which is breed-dependent. The prominence of the Th17 pathway indicates the cytokine response aims to limit the invasion or colonization of an extracellular bacterial pathogen but the time-dependent nature of the response differs between breeds. PMID:27069644

  7. Cytokine responses in birds challenged with the human food-borne pathogen Campylobacter jejuni implies a Th17 response.

    PubMed

    Reid, William D K; Close, Andrew J; Humphrey, Suzanne; Chaloner, Gemma; Lacharme-Lora, Lizeth; Rothwell, Lisa; Kaiser, Pete; Williams, Nicola J; Humphrey, Tom J; Wigley, Paul; Rushton, Stephen P

    2016-03-01

    Development of process orientated understanding of cytokine interactions within the gastrointestinal tract during an immune response to pathogens requires experimentation and statistical modelling. The immune response against pathogen challenge depends on the specific threat to the host. Here, we show that broiler chickens mount a breed-dependent immune response to Campylobacter jejuni infection in the caeca by analysing experimental data using frequentist and Bayesian structural equation models (SEM). SEM provides a framework by which cytokine interdependencies, based on prior knowledge, can be tested. In both breeds important cytokines including pro-inflammatory interleukin (IL)-1β, , IL-4, IL-17A, interferon (IFN)-γ and anti-inflammatory IL-10 and transforming growth factor (TGF)-β4 were expressed post-challenge. The SEM revealed a putative regulatory pathway illustrating a T helper (Th)17 response and regulation of IL-10, which is breed-dependent. The prominence of the Th17 pathway indicates the cytokine response aims to limit the invasion or colonization of an extracellular bacterial pathogen but the time-dependent nature of the response differs between breeds. PMID:27069644

  8. Automated analysis of food-borne pathogens using a novel microbial cell culture, sensing and classification system.

    PubMed

    Xiang, Kun; Li, Yinglei; Ford, William; Land, Walker; Schaffer, J David; Congdon, Robert; Zhang, Jing; Sadik, Omowunmi

    2016-02-21

    We hereby report the design and implementation of an Autonomous Microbial Cell Culture and Classification (AMC(3)) system for rapid detection of food pathogens. Traditional food testing methods require multistep procedures and long incubation period, and are thus prone to human error. AMC(3) introduces a "one click approach" to the detection and classification of pathogenic bacteria. Once the cultured materials are prepared, all operations are automatic. AMC(3) is an integrated sensor array platform in a microbial fuel cell system composed of a multi-potentiostat, an automated data collection system (Python program, Yocto Maxi-coupler electromechanical relay module) and a powerful classification program. The classification scheme consists of Probabilistic Neural Network (PNN), Support Vector Machines (SVM) and General Regression Neural Network (GRNN) oracle-based system. Differential Pulse Voltammetry (DPV) is performed on standard samples or unknown samples. Then, using preset feature extractions and quality control, accepted data are analyzed by the intelligent classification system. In a typical use, thirty-two extracted features were analyzed to correctly classify the following pathogens: Escherichia coli ATCC#25922, Escherichia coli ATCC#11775, and Staphylococcus epidermidis ATCC#12228. 85.4% accuracy range was recorded for unknown samples, and within a shorter time period than the industry standard of 24 hours. PMID:26818563

  9. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes

    PubMed Central

    Lieberman, Tami D.; Michel, Jean-Baptiste; Aingaran, Mythili; Potter-Bynoe, Gail; Roux, Damien; Davis, Michael R.; Skurnik, David; Leiby, Nicholas; LiPuma, John J.; Goldberg, Joanna B.; McAdam, Alexander J.; Priebe, Gregory P.; Kishony, Roy

    2011-01-01

    Bacterial pathogens evolve during the infection of their human hosts1-8, but separating adaptive and neutral mutations remains challenging9-11. Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course. PMID:22081229

  10. Effectiveness of inactivation of foodborne pathogens during simulated home pan frying of steak, hamburger or meat strips.

    PubMed

    Lahou, Evy; Wang, Xiang; De Boeck, Elien; Verguldt, Elien; Geeraerd, Annemie; Devlieghere, Frank; Uyttendaele, Mieke

    2015-08-01

    In order to evaluate the effect of simulated home pan frying of raw meat and meat preparations of different animal species on the thermal inactivation of pathogens, the heat resistance (D-value) of three strains of Campylobacter jejuni, Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes and two strains of generic E. coli was validated in BHI and adjusted BHI (i.e. pH5.6 and 1.5% NaCl) at 60°C. The D-values were obtained of the linear phase of the survivor curves created in GInaFiT, a freeware tool to fit models to experimental data. The obtained D-values corresponded to those previously published in literature and confirmed L. monocytogenes to be the most heat resistant pathogen among them. Heat treatment in adjusted BHI significantly increased heat-resistance of E. coli O157:H7 and generic E. coli. Subsequently, the thermal inactivation of L. monocytogenes, Salmonella spp., C. jejuni and E. coli O157:H7 was evaluated using a standardized procedure simulating commonly used home pan frying of various types of meat including steaks or filets, hamburgers and meat strips from various animal species such as pork, beef, chicken, lamb and some turkey, horse, kangaroo and crocodile meat. Corresponding F70-values were calculated based upon measured core time/temperature profiles. It was noted that a core temperature of 70 °C was not always achieved and, moreover, a heat treatment equivalent to 2 min at 70 °C was also not always obtained. This was in particular noted in hamburgers although the meat was visually judged well done. On several occasions, residual survivors of the initial inoculated (4 logCFU/g) food borne pathogens could be recovered either by enumeration (limit of detection 1 logCFU/g) or by the presence/absence testing per 25 g. Pan frying of hamburgers yielded the highest number of surviving pathogenic bacteria (46%), followed by well-done filets and steaks (13%) and meat strips (12%). Taking only steaks (beef, horse, kangaroo, crocodile and

  11. Effectiveness of inactivation of foodborne pathogens during simulated home pan frying of steak, hamburger or meat strips.

    PubMed

    Lahou, Evy; Wang, Xiang; De Boeck, Elien; Verguldt, Elien; Geeraerd, Annemie; Devlieghere, Frank; Uyttendaele, Mieke

    2015-08-01

    In order to evaluate the effect of simulated home pan frying of raw meat and meat preparations of different animal species on the thermal inactivation of pathogens, the heat resistance (D-value) of three strains of Campylobacter jejuni, Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes and two strains of generic E. coli was validated in BHI and adjusted BHI (i.e. pH5.6 and 1.5% NaCl) at 60°C. The D-values were obtained of the linear phase of the survivor curves created in GInaFiT, a freeware tool to fit models to experimental data. The obtained D-values corresponded to those previously published in literature and confirmed L. monocytogenes to be the most heat resistant pathogen among them. Heat treatment in adjusted BHI significantly increased heat-resistance of E. coli O157:H7 and generic E. coli. Subsequently, the thermal inactivation of L. monocytogenes, Salmonella spp., C. jejuni and E. coli O157:H7 was evaluated using a standardized procedure simulating commonly used home pan frying of various types of meat including steaks or filets, hamburgers and meat strips from various animal species such as pork, beef, chicken, lamb and some turkey, horse, kangaroo and crocodile meat. Corresponding F70-values were calculated based upon measured core time/temperature profiles. It was noted that a core temperature of 70 °C was not always achieved and, moreover, a heat treatment equivalent to 2 min at 70 °C was also not always obtained. This was in particular noted in hamburgers although the meat was visually judged well done. On several occasions, residual survivors of the initial inoculated (4 logCFU/g) food borne pathogens could be recovered either by enumeration (limit of detection 1 logCFU/g) or by the presence/absence testing per 25 g. Pan frying of hamburgers yielded the highest number of surviving pathogenic bacteria (46%), followed by well-done filets and steaks (13%) and meat strips (12%). Taking only steaks (beef, horse, kangaroo, crocodile and

  12. Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: antimicrobial and sensory screening.

    PubMed

    Gutierrez, Jorge; Rodriguez, Gabriel; Barry-Ryan, Catherine; Bourke, Paula

    2008-09-01

    The objectives of this study were to evaluate the antimicrobial activity of plant essential oils (EOs) against foodborne pathogens and key spoilage bacteria pertinent to ready-to-eat vegetables and to screen the selected EOs for sensory acceptability. The EOs basil, caraway, fennel, lemon balm, marjoram, nutmeg, oregano, parsley, rosemary, sage, and thyme were evaluated. The bacteria evaluated were Listeria spp., Staphylococcus aureus, Lactobacillus spp., Bacillus cereus, Salmonella, Enterobacter spp., Escherichia coli, and Pseudomonas spp. Quantitative antimicrobial analyses were performed using an absorbance-based microplate assay. Efficacy was compared using MIC, the half maximum inhibitory concentration, and the increase in lag phase. Generally, gram-positive bacteria were more sensitive to EOs than were gram-negative bacteria, and Listeria monocytogenes strains were among the most sensitive. Of the spoilage organisms, Pseudomonas spp. were the most resistant. Oregano and thyme EOs had the highest activity against all the tested bacteria. Marjoram and basil EOs had selectively high activity against B. cereus, Enterobacter aerogenes, E. coli, and Salmonella, and lemon balm and sage EOs had adequate activity against L. monocytogenes and S. aureus. Within bacterial species, EO efficacy was dependent on strain and in some cases the origin of the strain. On a carrot model product, basil, lemon balm, marjoram, oregano, and thyme EOs were deemed organoleptically acceptable, but only oregano and marjoram EOs were deemed acceptable for lettuce. Selected EOs may be useful as natural and safe additives for promoting the safety and quality of ready-to-eat vegetables. PMID:18810868

  13. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.

    PubMed

    Torres, M J; Petroselli, G; Daz, M; Erra-Balsells, R; Audisio, M C

    2015-06-01

    In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect. PMID:25820813

  14. Efficacy of plant essential oils against foodborne pathogens and spoilage bacteria associated with ready-to-eat vegetables: antimicrobial and sensory screening.

    PubMed

    Gutierrez, Jorge; Rodriguez, Gabriel; Barry-Ryan, Catherine; Bourke, Paula

    2008-09-01

    The objectives of this study were to evaluate the antimicrobial activity of plant essential oils (EOs) against foodborne pathogens and key spoilage bacteria pertinent to ready-to-eat vegetables and to screen the selected EOs for sensory acceptability. The EOs basil, caraway, fennel, lemon balm, marjoram, nutmeg, oregano, parsley, rosemary, sage, and thyme were evaluated. The bacteria evaluated were Listeria spp., Staphylococcus aureus, Lactobacillus spp., Bacillus cereus, Salmonella, Enterobacter spp., Escherichia coli, and Pseudomonas spp. Quantitative antimicrobial analyses were performed using an absorbance-based microplate assay. Efficacy was compared using MIC, the half maximum inhibitory concentration, and the increase in lag phase. Generally, gram-positive bacteria were more sensitive to EOs than were gram-negative bacteria, and Listeria monocytogenes strains were among the most sensitive. Of the spoilage organisms, Pseudomonas spp. were the most resistant. Oregano and thyme EOs had the highest activity against all the tested bacteria. Marjoram and basil EOs had selectively high activity against B. cereus, Enterobacter aerogenes, E. coli, and Salmonella, and lemon balm and sage EOs had adequate activity against L. monocytogenes and S. aureus. Within bacterial species, EO efficacy was dependent on strain and in some cases the origin of the strain. On a carrot model product, basil, lemon balm, marjoram, oregano, and thyme EOs were deemed organoleptically acceptable, but only oregano and marjoram EOs were deemed acceptable for lettuce. Selected EOs may be useful as natural and safe additives for promoting the safety and quality of ready-to-eat vegetables.

  15. An Investigation of the Diversity of Strains of Enteroaggregative Escherichia coli Isolated from Cases Associated with a Large Multi-Pathogen Foodborne Outbreak in the UK

    PubMed Central

    Dallman, Timothy J.; Chattaway, Marie A.; Cowley, Lauren A.; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J.; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A.; Jenkins, Claire

    2014-01-01

    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype. PMID:24844597

  16. An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK.

    PubMed

    Dallman, Timothy J; Chattaway, Marie A; Cowley, Lauren A; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A; Jenkins, Claire

    2014-01-01

    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype.

  17. An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK.

    PubMed

    Dallman, Timothy J; Chattaway, Marie A; Cowley, Lauren A; Doumith, Michel; Tewolde, Rediat; Wooldridge, David J; Underwood, Anthony; Ready, Derren; Wain, John; Foster, Kirsty; Grant, Kathie A; Jenkins, Claire

    2014-01-01

    Following a large outbreak of foodborne gastrointestinal (GI) disease, a multiplex PCR approach was used retrospectively to investigate faecal specimens from 88 of the 413 reported cases. Gene targets from a range of bacterial GI pathogens were detected, including Salmonella species, Shigella species and Shiga toxin-producing Escherichia coli, with the majority (75%) of faecal specimens being PCR positive for aggR associated with the Enteroaggregative E. coli (EAEC) group. The 20 isolates of EAEC recovered from the outbreak specimens exhibited a range of serotypes, the most frequent being O104:H4 and O131:H27. None of the EAEC isolates had the Shiga toxin (stx) genes. Multilocus sequence typing and single nucleotide polymorphism analysis of the core genome confirmed the diverse phylogeny of the strains. The analysis also revealed a close phylogenetic relationship between the EAEC O104:H4 strains in this outbreak and the strain of E. coli O104:H4 associated with a large outbreak of haemolytic ureamic syndrome in Germany in 2011. Further analysis of the EAEC plasmids, encoding the key enteroaggregative virulence genes, showed diversity with respect to FIB/FII type, gene content and genomic architecture. Known EAEC virulence genes, such as aggR, aat and aap, were present in all but one of the strains. A variety of fimbrial genes were observed, including genes encoding all five known fimbrial types, AAF/1 to AAF/V. The AAI operon was present in its entirety in 15 of the EAEC strains, absent in three and present, but incomplete, in two isolates. EAEC is known to be a diverse pathotype and this study demonstrates that a high level of diversity in strains recovered from cases associated with a single outbreak. Although the EAEC in this study did not carry the stx genes, this outbreak provides further evidence of the pathogenic potential of the EAEC O104:H4 serotype. PMID:24844597

  18. Assessment of the effect of a Salmonella enterica ser. Typhimurium culture supernatant on the single-cell lag time of foodborne pathogens.

    PubMed

    Blana, Vasiliki A; Lianou, Alexandra; Nychas, George-John E

    2015-12-23

    The objective of this study was the in vitro evaluation of the effect of a cell-free microbial supernatant, produced by a luxS-positive Salmonella enterica ser. Typhimurium strain, on the single-cell growth kinetic behavior of two strains of S. enterica (serotypes Enteritidis and Typhimurium) and a methicillin-resistant Staphylococcus aureus strain. The single-cell lag time (λ) of the pathogens was estimated in the absence and presence (20% v/v) of microbial supernatant based on optical density measurements. As demonstrated by the obtained results, the tested microbial supernatant had a strain-specific effect on the single-cell λ and its variability. Although the mean λ values were similar in the absence and presence of microbial supernatant in the case of Salmonella Enteritidis, a significant (P ≤ 0.05) reduction and increase in the mean value of this parameter in the presence of microbial supernatant were observed for Salmonella Typhimurium and St. aureus, respectively. With regard to the effect of the tested microbial supernatant on the single-cell variability of λ, similar λ distributions were obtained in its absence and presence for S. Enteritidis, while considerable differences were noted for the other two tested organisms; the coefficient of variation of λ in the absence and presence of microbial supernatant was 41.6 and 69.8% for S. Typhimurium, respectively, with the corresponding values for St. aureus being 74.0 and 56.9%. As demonstrated by the results of bioassays, the tested microbial supernatant exhibited autoinducer-2 activity, indicating a potential association of such quorum sensing compounds with the observed effects. Although preliminary in nature, the collected data provide a good basis for future research on the role of quorum sensing in the single-cell growth behavior of foodborne pathogens. PMID:26433459

  19. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures.

    PubMed

    Dutra, Virna; Silva, Ana Carla; Cabrita, Paula; Peres, Cidália; Malcata, Xavier; Brito, Luisa

    2016-01-01

    Listeria monocytogenes, Salmonella enterica and verocytotoxigenic Escherichia coli (VTEC) are amongst the most important agents responsible for food outbreaks occurring worldwide. In this work, two Lactobacillus spp. strains (LABs), Lactobacillus plantarum (LB95) and Lactobacillus paraplantarum (LB13), previously isolated from spontaneously fermenting olive brines, and two reference probiotic strains, Lactobacillus casei Shirota and Lactobacillus rhamnosus GG, were investigated for their ability to attenuate the virulence of the aforementioned pathogens using animal cell culture assays. In competitive exclusion assays, the relative percentages of adhesion and invasion of S. enterica subsp. enterica serovar Enteritidis were significantly reduced when the human HT-29 cell line was previously exposed to LB95. The relative percentage of invasion by Listeria monocytogenes was significantly reduced when HT-29 cells were previously exposed to LB95. In the cytotoxicity assays, the cell-free supernatant of the co-culture (CFSC)of VTEC with LB95 accounted for the lowest value obtained amongst the co-cultures of VTEC with LABs, and was significantly lower than the value obtained with the co-culture of VTEC with the two probiotic reference strains. The cytotoxicity of CFSC of VTEC with both LB95 and LB13 exhibited values not significantly different from the cell-free supernatant of the nonpathogenic E. coli B strain. Our results suggested that LB95 may be able to attenuate the virulence of Gram-positive and Gram-negative food-borne pathogens; together with other reported features of these strains, our data reveal their possible use in probiotic foods due to their interesting potential in preventing enteric infections in humans.

  20. Lactobacillus plantarum LB95 impairs the virulence potential of Gram-positive and Gram-negative food-borne pathogens in HT-29 and Vero cell cultures.

    PubMed

    Dutra, Virna; Silva, Ana Carla; Cabrita, Paula; Peres, Cidália; Malcata, Xavier; Brito, Luisa

    2016-01-01

    Listeria monocytogenes, Salmonella enterica and verocytotoxigenic Escherichia coli (VTEC) are amongst the most important agents responsible for food outbreaks occurring worldwide. In this work, two Lactobacillus spp. strains (LABs), Lactobacillus plantarum (LB95) and Lactobacillus paraplantarum (LB13), previously isolated from spontaneously fermenting olive brines, and two reference probiotic strains, Lactobacillus casei Shirota and Lactobacillus rhamnosus GG, were investigated for their ability to attenuate the virulence of the aforementioned pathogens using animal cell culture assays. In competitive exclusion assays, the relative percentages of adhesion and invasion of S. enterica subsp. enterica serovar Enteritidis were significantly reduced when the human HT-29 cell line was previously exposed to LB95. The relative percentage of invasion by Listeria monocytogenes was significantly reduced when HT-29 cells were previously exposed to LB95. In the cytotoxicity assays, the cell-free supernatant of the co-culture (CFSC)of VTEC with LB95 accounted for the lowest value obtained amongst the co-cultures of VTEC with LABs, and was significantly lower than the value obtained with the co-culture of VTEC with the two probiotic reference strains. The cytotoxicity of CFSC of VTEC with both LB95 and LB13 exhibited values not significantly different from the cell-free supernatant of the nonpathogenic E. coli B strain. Our results suggested that LB95 may be able to attenuate the virulence of Gram-positive and Gram-negative food-borne pathogens; together with other reported features of these strains, our data reveal their possible use in probiotic foods due to their interesting potential in preventing enteric infections in humans. PMID:26506821

  1. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway.

    PubMed

    Du, Eun Jo; Ahn, Tae Jung; Kwon, Ilmin; Lee, Ji Hye; Park, Jeong-Ho; Park, Sun Hwa; Kang, Tong Mook; Cho, Hana; Kim, Tae Jin; Kim, Hyung-Wook; Jun, Youngsoo; Lee, Hee Jae; Lee, Young Sik; Kwon, Jae Young; Kang, KyeongJin

    2016-01-01

    Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox) kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS), hypochlorous acid (HOCl) in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A) transcript spliced with exon10b (TrpA1(A)10b) that is present in a subset of midgut enteroendocrine cells (EECs) is critical for uracil-dependent defecation. TRPA1(A)10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A)10a isoform. Consistent with TrpA1's role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A)10b, thereby minimizing the chances that bacteria adapt to survive host defense systems.

  2. TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway

    PubMed Central

    Park, Jeong-Ho; Park, Sun Hwa; Kang, Tong Mook; Cho, Hana; Kim, Tae Jin; Kim, Hyung-Wook; Jun, Youngsoo; Lee, Hee Jae; Lee, Young Sik; Kwon, Jae Young; Kang, KyeongJin

    2016-01-01

    Pathogen expulsion from the gut is an important defense strategy against infection, but little is known about how interaction between the intestinal microbiome and host immunity modulates defecation. In Drosophila melanogaster, dual oxidase (Duox) kills pathogenic microbes by generating the microbicidal reactive oxygen species (ROS), hypochlorous acid (HOCl) in response to bacterially excreted uracil. The physiological function of enzymatically generated HOCl in the gut is, however, unknown aside from its anti-microbial activity. Drosophila TRPA1 is an evolutionarily conserved receptor for reactive chemicals like HOCl, but a role for this molecule in mediating responses to gut microbial content has not been described. Here we identify a molecular mechanism through which bacteria-produced uracil facilitates pathogen-clearing defecation. Ingestion of uracil increases defecation frequency, requiring the Duox pathway and TrpA1. The TrpA1(A) transcript spliced with exon10b (TrpA1(A)10b) that is present in a subset of midgut enteroendocrine cells (EECs) is critical for uracil-dependent defecation. TRPA1(A)10b heterologously expressed in Xenopus oocytes is an excellent HOCl receptor characterized with elevated sensitivity and fast activation kinetics of macroscopic HOCl-evoked currents compared to those of the alternative TRPA1(A)10a isoform. Consistent with TrpA1’s role in defecation, uracil-excreting Erwinia carotovora showed higher persistence in TrpA1-deficient guts. Taken together, our results propose that the uracil/Duox pathway promotes bacteria expulsion from the gut through the HOCl-sensitive receptor, TRPA1(A)10b, thereby minimizing the chances that bacteria adapt to survive host defense systems. PMID:26726767

  3. Tea and soybean extracts in combination with milk fermentation inhibit growth and enterocyte adherence of selected foodborne pathogens.

    PubMed

    Zhao, Danyue; Shah, Nagendra P

    2015-08-01

    This study examined the antibacterial and anti-adhesive properties of pure plant extracts (PPEs) of green tea (GT), black tea (BT) and soybean individually or in combination with milk. Fermented phenolic enriched-milk (fPEM) was prepared by combining PPEs with milk and fermented with lactic acid bacteria. Antimicrobial activity of extracts was evaluated by broth-dilution and agar diffusion assay. Anti-adhesive property of extracts was evaluated in Caco-2 cell model. Results from antibacterial tests showed that PPEs exhibited a dose-dependent growth inhibitory effect. Tea extracts were more effective in inhibiting Gram-positive bacteria while soybean extract exhibited similar effects against all pathogens tested. For fPEM, although total phenolic contents decreased compared with those in PPEs, growth inhibitory effect of fPEM containing tea extracts was greatly enhanced. All extracts showed significant inhibition against pathogen adhesion to Caco-2 cells. In particular, adhesion inhibition against Staphylococcus aureus and Listeria monocytogenes was >89% when fPEM extracts were applied.

  4. Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens.

    PubMed

    Kortman, Guus A M; Mulder, Michelle L M; Richters, Thijs J W; Shanmugam, Nanda K N; Trebicka, Estela; Boekhorst, Jos; Timmerman, Harro M; Roelofs, Rian; Wiegerinck, Erwin T; Laarakkers, Coby M; Swinkels, Dorine W; Bolhuis, Albert; Cherayil, Bobby J; Tjalsma, Harold

    2015-09-01

    Orally administrated iron is suspected to increase susceptibility to enteric infections among children in infection endemic regions. Here we investigated the effect of dietary iron on the pathology and local immune responses in intestinal infection models. Mice were held on iron-deficient, normal iron, or high iron diets and after 2 weeks they were orally challenged with the pathogen Citrobacter rodentium. Microbiome analysis by pyrosequencing revealed profound iron- and infection-induced shifts in microbiota composition. Fecal levels of the innate defensive molecules and markers of inflammation lipocalin-2 and calprotectin were not influenced by dietary iron intervention alone, but were markedly lower in mice on the iron-deficient diet after infection. Next, mice on the iron-deficient diet tended to gain more weight and to have a lower grade of colon pathology. Furthermore, survival of the nematode Caenorhabditis elegans infected with Salmonella enterica serovar Typhimurium was prolonged after iron deprivation. Together, these data show that iron limitation restricts disease pathology upon bacterial infection. However, our data also showed decreased intestinal inflammatory responses of mice fed on high iron diets. Thus additionally, our study indicates that the effects of iron on processes at the intestinal host-pathogen interface may highly depend on host iron status, immune status, and gut microbiota composition.

  5. Helicobacter pullorum isolated from fresh chicken meat: antibiotic resistance and genomic traits of an emerging foodborne pathogen.

    PubMed

    Borges, Vítor; Santos, Andrea; Correia, Cristina Belo; Saraiva, Margarida; Ménard, Armelle; Vieira, Luís; Sampaio, Daniel A; Pinheiro, Miguel; Gomes, João Paulo; Oleastro, Mónica

    2015-12-01

    Meat and meat products are important sources of human intestinal infections. We report the isolation of Helicobacter pullorum strains from chicken meat. Bacteria were isolated from 4 of the 17 analyzed fresh chicken meat samples, using a membrane filter method. MIC determination revealed that the four strains showed acquired resistance to ciprofloxacin; one was also resistant to erythromycin, and another one was resistant to tetracycline. Whole-genome sequencing of the four strains and comparative genomics revealed important genetic traits within the H. pullorum species, such as 18 highly polymorphic genes (including a putative new cytotoxin gene), plasmids, prophages, and a complete type VI secretion system (T6SS). The T6SS was found in three out of the four isolates, suggesting that it may play a role in H. pullorum pathogenicity and diversity. This study suggests that the emerging pathogen H. pullorum can be transmitted to humans by chicken meat consumption/contact and constitutes an important contribution toward a better knowledge of the genetic diversity within the H. pullorum species. In addition, some genetic traits found in the four strains provide relevant clues to how this species may promote adaptation and virulence.

  6. Low dietary iron intake restrains the intestinal inflammatory response and pathology of enteric infection by food-borne bacterial pathogens.

    PubMed

    Kortman, Guus A M; Mulder, Michelle L M; Richters, Thijs J W; Shanmugam, Nanda K N; Trebicka, Estela; Boekhorst, Jos; Timmerman, Harro M; Roelofs, Rian; Wiegerinck, Erwin T; Laarakkers, Coby M; Swinkels, Dorine W; Bolhuis, Albert; Cherayil, Bobby J; Tjalsma, Harold

    2015-09-01

    Orally administrated iron is suspected to increase susceptibility to enteric infections among children in infection endemic regions. Here we investigated the effect of dietary iron on the pathology and local immune responses in intestinal infection models. Mice were held on iron-deficient, normal iron, or high iron diets and after 2 weeks they were orally challenged with the pathogen Citrobacter rodentium. Microbiome analysis by pyrosequencing revealed profound iron- and infection-induced shifts in microbiota composition. Fecal levels of the innate defensive molecules and markers of inflammation lipocalin-2 and calprotectin were not influenced by dietary iron intervention alone, but were markedly lower in mice on the iron-deficient diet after infection. Next, mice on the iron-deficient diet tended to gain more weight and to have a lower grade of colon pathology. Furthermore, survival of the nematode Caenorhabditis elegans infected with Salmonella enterica serovar Typhimurium was prolonged after iron deprivation. Together, these data show that iron limitation restricts disease pathology upon bacterial infection. However, our data also showed decreased intestinal inflammatory responses of mice fed on high iron diets. Thus additionally, our study indicates that the effects of iron on processes at the intestinal host-pathogen interface may highly depend on host iron status, immune status, and gut microbiota composition. PMID:26046550

  7. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  8. Multiple Infections of Rodents with Zoonotic Pathogens in Austria

    PubMed Central

    Schmidt, Sabrina; Essbauer, Sandra S.; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H.; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald

    2014-01-01

    Abstract Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID

  9. Multiple infections of rodents with zoonotic pathogens in Austria.

    PubMed

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans. PMID:24915446

  10. Foodborne pathogens and microbiological characteristics of raw milk soft cheese produced and on retail sale in Brazil.

    PubMed

    Moraes, Paula Mendonça; Viçosa, Gabriela Nogueira; Yamazi, Anderson Keizo; Ortolani, Maria Beatriz Tassinari; Nero, Luís Augusto

    2009-03-01

    The consumption of raw milk soft cheeses (RMSC), which are typically manufactured in small dairy farms under unsatisfactory hygiene conditions, is common in Brazil. Due to these production characteristics, this type of cheese is a potential carrier of pathogenic microorganisms, such as Listeria monocytogenes, Salmonella, and enterotoxin-producing Staphylococcus spp. Considering these characteristics, in this work, we aimed to detect the presence of these pathogenic microorganisms in RMC and to evaluate their microbiological quality. Fifty-five samples of this product were collected from different noninspected commercial establishments and submitted to the enumeration of mesophilic aerobes (MA), total coliforms (TC), Escherichia coli, and coagulase-positive staphylococci (CPS), and detection of L. monocytogenes and Salmonella spp. All analyzed samples were negative for Salmonella spp. and L. monocytogenes. All samples presented counts of MA higher than 10(6) colony forming units/g (CFU/g; range, 3.0x10(6) to 4.0x10(9)). TC were present at levels between 1.0x10(3) and 1.8x10(8) CFU/g, and E. coli between 1.0x10(2) and 3.5x10(6) CFU/g. CPS were detected in 17 (30.9%) samples at levels higher than 10(4) CFU/g. These results confirm the poor microbiological quality of raw milk used in the manufacturing of RMC samples, and also the inadequate production conditions. Therefore, the evaluation of microbiological safety and quality of these products must be constantly reported to alert the official agencies about the significance of proper inspection.

  11. Genome-wide whole blood microRNAome and transcriptome analyses reveal miRNA-mRNA regulated host response to foodborne pathogen Salmonella infection in swine

    PubMed Central

    Bao, Hua; Kommadath, Arun; Liang, Guanxiang; Sun, Xu; Arantes, Adriano S.; Tuggle, Christopher K.; Bearson, Shawn M.D.; Plastow, Graham S.; Stothard, Paul; Guan, Le Luo

    2015-01-01

    To understand the role of miRNAs in regulating genes involved in host response to bacterial infection and shedding of foodborne pathogens, a systematic profiling of miRNAs and mRNAs from the whole blood of pigs upon Salmonella challenge was performed. A total of 62 miRNAs were differentially expressed post infection (false discovery rate <0.1). An integrative analysis of both the differentially expressed miRNAs and mRNAs using sequence-based miRNA target prediction and negative correlation of miRNA-mRNA profiles helped identify miRNA-mRNA networks that may potentially regulate host response to Salmonella infection. From these networks, miR-214 and miR-331-3p were identified as new candidates potentially associated with Salmonella infection. An miRNA seed sequence analysis suggested that these miRNAs regulate several critical immune-related genes including SLC11A1, PIGE-108A11.3 and VAV2. We showed that challenged pigs had reduced miR-214 expression and increased miR-331-3p expression in the whole blood. Furthermore, the expression of the proposed targets of miR-214 (SLC11A1 and PIGE-108A11.3) increased while that of the proposed target of miR-331-3p (VAV2) decreased following challenge (expression changes confirmed by in vitro assays). Based on these observations, we propose potential roles for miR-214 and miR-331-3p in regulation of immune responses to Salmonella infection. PMID:26227241

  12. Application of high-throughput sequencing to measure the performance of commonly used selective cultivation methods for the foodborne pathogen Campylobacter.

    PubMed

    Oakley, Brian B; Morales, Cesar A; Line, J Eric; Seal, Bruce S; Hiett, Kelli L

    2012-02-01

    Campylobacter is an important foodborne human pathogen, which has traditionally been studied using a variety of selective cultivation methods. Here we use next-generation sequencing to ask the following: (i) how selective are commonly used Campylobacter cultivation methods relative to the initial sample and (ii) how do the specificity and sensitivity of these methods compare with one another? To answer these questions, we used 16S rRNA tagged-pyrosequencing to sequence directly from a pooled fecal sample representing a c. 16,000 bird poultry flock and compared these data to exhaustive sequencing of colonies formed after plating. We compared five commonly used media [Cefex, Cape Town, modified cefoperazone charcoal deoxycholate agar (mCCDA), Campy-Line agar (CLA), and Campy-CVA agar (CVA)], two incubation atmospheres (10% CO(2), 5% O(2), 85% N(2) and 10% CO(2), 10% H(2), 80% N(2)), and two incubation temperatures (37 and 42 °C). Analysis of 404,104 total sequence reads, including 19 472 total fecal reads, revealed Campylobacter represented only a small proportion (< 0.04%) of sequences present in the feces, but 88-97% of sequences from each media type. Incubation atmosphere had little effect on recovery, but a significant difference in media specificity (more non-Campylobacter OTUs; P = 0.028) was found at 42 vs. 37 °C. The most common non-Campylobacter sequence type was Proteus, which ranged from 0.04% of sequences (mCCDA) to 10.8% (Cape Town). High-throughput sequencing provides a novel and powerful approach to measure the performance of selective media, which remain widely used for research and regulatory purposes.

  13. Antifungal effect of eugenol and carvacrol against foodborne pathogens Aspergillus carbonarius and Penicillium roqueforti in improving safety of fresh-cut watermelon

    PubMed Central

    Šimović, Mirela; Delaš, Frane; Gradvol, Vedran; Kocevski, Dragana; Pavlović, Hrvoje

    2014-01-01

    Background: Essential oil components eugenol and carvacrol (ranging between 100 and 200 ppm for carvacrol and between 250 and 750 ppm for eugenol) were tested for antifungal activity against foodborne pathogenic fungal species Aspergillus carbonarius A1102 and Penicillium roqueforti PTFKK29 in in vitro and in situ conditions. Materials and Methods: In vitro antifungal activity of eugenol and carvacrol was evaluated by macrobroth method, while watermelon Citrullus lanatus L. Sorento slices were used for antifungal assays in situ. Results: Selected components, eugenol and carvacrol showed significant inhibitory effect against tested fungi (A. carbonarius A1102 and P. roqueforti PTFKK29) in yeast extract sucrose broth, as well as in in situ conditions. The minimal inhibitory concentration (MIC) of eugenol against A. carbonarius A1102 determined by macrobroth method was 2000 ppm, while against P. roqueforti PTFKK29 determined MIC was 1000 ppm. Carvacrol inhibited growth of A. carbonarius A1102 at minimal concentration of 500 ppm, while against P. roqueforti PTFKK29, MIC was 250 ppm. The assays in real food system watermelon slices for eugenol and carvacrol show that the inhibitory effect against both selected fungal species was concentration dependent. Furthermore, our results showed that antifungal effect of carvacrol as well as eugenol applied on watermelon slices in all concentrations was a result of effective synergy between an active antifungal compound and lower incubation temperature (15°C) in inhibition of A. carbonarius A1102. Conclusion: The present study suggests that the use of eugenol and carvacrol is promising natural alternative to the use of food chemical preservatives, in order to improve safety and quality of fresh-cut and ready-to-eat fruits. PMID:26401354

  14. Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR.

    PubMed

    Fukushima, Hiroshi; Katsube, Kazunori; Hata, Yukiko; Kishi, Ryoko; Fujiwara, Satomi

    2007-01-01

    Buoyant density gradient centrifugation has been used to separate bacteria from complex food matrices, as well as to remove compounds that inhibit rapid detection methods, such as PCR, and to prevent false-positive results due to DNA originating from dead cells. Applying a principle of buoyant density gradient centrifugation, we developed a method for rapid separation and concentration following filtration and low- and high-speed centrifugation, as well as flotation and sedimentation buoyant density centrifugation, for 12 food-borne pathogens (Salmonella enterica, Escherichia coli, Yersinia enterocolitica, Campylobacter jejuni, Vibrio cholerae O139, Vibrio parahaemolyticus O3K6, Vibrio vulnificus, Providencia alcalifaciens, Aeromonas hydrophila, Bacillus cereus, Staphylococcus aureus, and Clostridium perfringens) in 13 different food homogenates. This method can be used prior to real-time quantitative PCR (RTi-qPCR) and viable-cell counting. Using this combined method, the target organisms in the food samples theoretically could be concentrated 250-fold and detected at cell concentrations as low as 10(1) to 10(3) CFU/g using the RTi-qPCR assay, and amounts as small as 10(0) to 10(1) CFU/g could be isolated using plate counting. The combined separation and concentration methods and RTi-qPCR confirmed within 3 h the presence of 10(1) to 10(2) CFU/g of Salmonella and C. jejuni directly in naturally contaminated chicken and the presence of S. aureus directly in remaining food items in a poisoning outbreak. These results illustrated the feasibility of using these assays for rapid inspection of bacterial food contamination during a real-world outbreak. PMID:17056684

  15. The Enter-net and Salm-gene databases of foodborne bacterial pathogens that cause human infections in Europe and beyond: an international collaboration in surveillance and the development of intervention strategies.

    PubMed Central

    Fisher, I. S. T.; Threlfall, E. J.

    2005-01-01

    The free movement of people and foodstuffs between countries are effective ways of distributing disease internationally. There is a requirement for a mechanism whereby data and information on potential outbreaks of foodborne pathogens can be disseminated rapidly to those who need to know. The Enter-net dedicated surveillance network provides this mechanism, complemented by the Salm-gene molecular typing network. Data on epidemiological and microbiological features on current cases, as well as background levels of infections are immediately available within the Enter-net databases. The Salm-gene network with its database of harmonized salmonella PFGE patterns from the participating European countries provides immediate, and electronically exchangeable, DNA fingerprints of outbreak strains. This prompt electronic dissemination of information regarding unusual events with international implications ensures that public health interventions can be implemented and cases of foodborne disease prevented. PMID:15724704

  16. One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation.

    PubMed

    Yin, Binfeng; Wang, Yu; Dong, Mingling; Wu, Jing; Ran, Bei; Xie, Mengxia; Joo, Sang Woo; Chen, Yiping

    2016-12-15

    A rapid and multiplexed immunosensor was developed based on a quantum dot (QD)-reverse assaying strategy (RAS) and immuno-magnetic beads (IMBs) for one-step and simultaneous detection of Escherichia coli O157: H7 and Salmonella. In a conventional QD-based immunosensor, the fluorescence signal of the "IMBs-target-QD" immunoconjugate is directly used as the assaying readout. However, the fluorescence signal is affected by IMBs due to light scattering and the "IMBs-target-QD" immunoconjugate needs multiple washing and re-suspension steps. To address these problems, we use the surplus QD-antibody conjugate as signal readout in the RAS, which prevents interference from the IMBs, increases the fluorescence signal, and avoids complex operations. Compared with conventional QD-based immunosensor, the sensitivity of QD-RSA immunosensor for detection of Escherichia coli O157: H7 has been improved fifty-fold, and whole analysis procedure can be finished within 1h. Therefore, this RSA strategy is promising for improving the performance of QD-based immunosensors and could greatly broaden their applications.

  17. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens

    PubMed Central

    Wales, Andrew D.; Davies, Robert H.

    2015-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations. PMID:27025641

  18. One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation.

    PubMed

    Yin, Binfeng; Wang, Yu; Dong, Mingling; Wu, Jing; Ran, Bei; Xie, Mengxia; Joo, Sang Woo; Chen, Yiping

    2016-12-15

    A rapid and multiplexed immunosensor was developed based on a quantum dot (QD)-reverse assaying strategy (RAS) and immuno-magnetic beads (IMBs) for one-step and simultaneous detection of Escherichia coli O157: H7 and Salmonella. In a conventional QD-based immunosensor, the fluorescence signal of the "IMBs-target-QD" immunoconjugate is directly used as the assaying readout. However, the fluorescence signal is affected by IMBs due to light scattering and the "IMBs-target-QD" immunoconjugate needs multiple washing and re-suspension steps. To address these problems, we use the surplus QD-antibody conjugate as signal readout in the RAS, which prevents interference from the IMBs, increases the fluorescence signal, and avoids complex operations. Compared with conventional QD-based immunosensor, the sensitivity of QD-RSA immunosensor for detection of Escherichia coli O157: H7 has been improved fifty-fold, and whole analysis procedure can be finished within 1h. Therefore, this RSA strategy is promising for improving the performance of QD-based immunosensors and could greatly broaden their applications. PMID:27498327

  19. Emerging food-borne zoonoses.

    PubMed

    Schlundt, J; Toyofuku, H; Jansen, J; Herbst, S A

    2004-08-01

    Diarrhoeal diseases, almost all of which are caused by food-borne or waterborne microbial pathogens, are leading causes of illness and death in less developed countries, killing an estimated 1.9 million people annually at the global level. Even in developed countries, it is estimated that up to one third of the population are affected by microbiological food-borne diseases each year. The majority of the pathogens causing this significant disease burden are now considered to be zoonotic. The occurrence of some of these zoonotic pathogens seems to have increased significantly over recent years. The factors involved in such increases have not been well studied, but they are generally agreed to include changes in animal production systems and in the food production chain. Both types of changes can cause corresponding changes in patterns of exposure to the pathogens and the susceptibility pattern of the human population. This paper will not attempt a more in-depth analysis of such factors. The authors briefly describe five of the most important emerging food-borne zoonotic pathogens: Salmonella spp., Campylobacter spp., enterohaemorrhagic Escherichia coli, Toxoplasma gondii and Cryptosporidium parvum. The paper does not include a full description of all important emerging food-borne pathogens but instead provides a description of the present situation, as regards these globally more important pathogens. In addition, the authors describe each pathogen according to the new framework of a Food and Agriculture Organization (FAO)/World Health Organization (WHO) microbiological risk assessment, which consists of hazard identification and characterisation, exposure assessment and risk characterisation. Moreover, the authors provide a brief account of attempts at risk mitigation, as well as suggestions for risk management for some of these pathogens, based on thorough international FAO/WHO risk assessments. The authors emphasise the importance of science-based programmes for

  20. Future perspectives, applications and challenges of genomic epidemiology studies for food-borne pathogens: A case study of Enterohemorrhagic Escherichia coli (EHEC) of the O157:H7 serotype

    PubMed Central

    Eppinger, Mark; Cebula, Thomas A

    2015-01-01

    The shiga-toxin (Stx)-producing human pathogen Escherichia coli serotype O157:H7 is a highly pathogenic subgroup of Stx-producing E. coli (STEC) with food-borne etiology and bovine reservoir. Each year in the U. S., approximately 100,000 patients are infected with enterohemorrhagic E. coli (EHEC) of the O157:H7 serotype. This food-borne pathogen is a global public health threat responsible for widespread outbreaks of human disease. Since its initial discovery in 1982, O157:H7 has rapidly become the dominant EHEC serotype in North America. Hospitalization rates among patients as high as 50% have been reported for severe outbreaks of human disease. Symptoms of disease can rapidly deteriorate and progress to life-threatening complications such as Hemolytic Uremic Syndrome (HUS), the leading cause of kidney failure in children, or Hemorrhagic Colitis. In depth understanding of the genomic diversity that exists among currently circulating EHEC populations has broad applications for improved molecular-guided biosurveillance, outbreak preparedness, diagnostic risk assessment, and development of alternative toxin-suppressing therapeutics. PMID:25483335

  1. Foodborne illness: is it on the rise?

    PubMed

    Nyachuba, David G

    2010-05-01

    Foodborne illness is a serious public health threat. The Centers for Disease Control and Prevention (CDC) estimates that 76 million foodborne illnesses, including 325,000 hospitalizations and 5,000 deaths, occur in the United States each year. Two recently published Foodborne Diseases Active Surveillance Network (FoodNet) reports showed that Salmonella, Campylobacter, Shigella, Cryptosporidium, and Shiga toxin Escherichia coli (STEC) O157 continue to be leading causes of both the number and incidence of laboratory-confirmed foodborne infections in the United States. According to the United States Department of Agriculture (USDA), foodborne illness costs the US economy $10-83 billion per year. Recent large foodborne outbreaks have led to claims that the number of foodborne disease outbreaks and concomitant illnesses has increased in recent years. However, a comparison of data from the CDC showed very little change in the incidence of foodborne illness caused by common pathogens between 2008 and the preceding 3 years (2005-2007). Nevertheless, despite intensified prevention efforts, foodborne illness remains a persistent problem in the United States. Food can become contaminated at any point in the farm-to-table continuum, as well as in consumers' own kitchens. Therefore, foodborne illness risk reduction and control interventions must be implemented at every step throughout the food preparation process, from farm to table. In addition, more effective food safety education programs for foodhandlers and consumers are needed. Strategies should take into account food safety-related trends including large-scale production and wide distribution of food, globalization of the food supply, eating outside of the home, emergence of new pathogens, and growing population of at-risk consumers.

  2. Analysis of trends in the full publication of papers from conference abstracts involving pre-harvest or abattoir-level interventions against foodborne pathogens.

    PubMed

    Snedeker, Kate G; Totton, Sarah C; Sargeant, Jan M

    2010-06-01

    Study results are often presented as abstracts at scientific conferences before publication as full articles in peer-reviewed journals. Given the current emphasis on evidence-based decision-making, it is vital that the peer-reviewed literature represents as broad and un-biased a selection of studies as possible. While the proportion of abstracts published as full papers in the peer-reviewed literature has been extensively studied in human healthcare, no such studies have been published in the field of food safety. The goal of this study was to estimate the proportion published and average time to publication for conference abstracts involving studies of pre-harvest or abattoir interventions to reduce foodborne pathogens. Abstracts were obtained by hand-searching available proceedings between 1995 and 2004 from 10 conferences. Included abstracts were limited to those detailing non-observational, controlled in vivo trials where outcome(s) were measured in livestock, carcasses or eggs. Data on abstract type (500 words), species, intervention, study type, sample size, number housed together and outcomes were recorded. Four databases (Agricola, CAB, Web of Science, Scholar's Portal) were searched for published papers corresponding to the conference abstracts using author and intervention/pathogen terms. Time to publication and overall median time to publication were estimated. Chi-squared, logistic regression and survival analyses were used to test for significant differences in proportion published and time to publication between variable levels. Of the 149 abstracts identified, 68 (45.6%) were published in peer-reviewed journals within 4 years. The median time to publication was 13.5 months (range: 0, 72). Abstracts shorter than 1 page were significantly more likely to be published (OR=2.2, 95% CI=1.0, 4.8), and abstracts involving pork or pigs were significantly less likely to be published that those involving poultry (OR=0.4: 0.2, 0.8). Abstracts

  3. Nonpeptidic mimics of host defense proteins as antimicrobial agents for E. coli O104:H4, campylobacter spp. and other foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Foodborne illness is a serious public health problem. According to the U.S. Food and Drug Administration Campylobacter jejuni is the leading cause of bacterial diarrheal illness in the United States, causing more disease than Shigella spp. and Salmonella spp. combined. The CDC estima...

  4. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice

    PubMed Central

    Xu, You-hai; Xu, Kui; Sun, Ying; Liou, Benjamin; Quinn, Brian; Li, Rong-hua; Xue, Ling; Zhang, Wujuan; Setchell, Kenneth D.R.; Witte, David; Grabowski, Gregory A.

    2014-01-01

    Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid β-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of β-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of β-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28–40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aβ-aggregates) in nGD. PMID:24599400

  5. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    PubMed

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages.

  6. Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine).

    PubMed

    Kim, S A; Kim, N H; Lee, S H; Hwang, I G; Rhee, M S

    2014-03-01

    Only limited information is available on the microbiological safety of fermented alcoholic beverages because it is still a common belief that such beverages do not provide a favorable environment for bacterial growth and survival. Thus, in this study, we examined the survival of major foodborne pathogens and spores in fermented alcoholic beverages. Foodborne pathogens (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus) and B. cereus spores (initial population, 3 to 4 log CFU/ml) were inoculated separately into three types of beer and refined rice wine, which were then stored at 5 and 22°C. Bacterial counts were assayed periodically for up to 28 days. Vegetative B. cereus counts decreased rapidly, whereas B. cereus spore counts remained constant (P > 0.05) for a long period of time in all beverages. Vegetative B. cereus cells formed spores in beer at 5 and 22°C, and the spores survived for long periods. Among vegetative cells, E. coli O157:H7 had the highest survival (only 1.49 to 1.56 log reduction during 28 days in beer at 5°C). Beer and refined rice wine supported microbial survival from several days to several weeks. Our results appear to contradict the common belief that pathogens cannot survive in alcoholic beverages. Long-term survival of pathogens (especially B. cereus and E. coli O157:H7) in beer and refined rice wine should be taken into consideration by the manufacturers of these beverages. This study provides basic information that should help further research into microbial survival in alcoholic beverages and increase the microbiological safety regulation of fermented alcoholic beverages. PMID:24674433

  7. Using DNA Microarrays to Detect Multiple Pathogen Threats in Water.

    SciTech Connect

    Straub, Tim M.; Quinonez-Diaz, Maria D.; Valdez, Catherine O.; Call, Douglas R.; Chandler, Darrell P.

    2004-06-01

    Currently, there is no single method to collect, process, and analyze a water sample for all pathogenic microorganisms of interest. Some of the difficulties in developing a universal method include the physical differences between the major pathogen groups (viruses, bacteria, protozoa), efficiently concentrating large volume water samples to detect low target concentrations of certain pathogen groups, removing co-concentrated inhibitors from the sample, and standardizing a culture-independent endpoint detection method. Integrating the disparate technologies into a single, universal, simple method and detection system would represent a significant advance in public health and microbiological water quality analysis. Recent advances in sample collection, on-line sample processing and purification, and DNA microarray technologies may form the basis of a universal method to detect known and emerging waterborne pathogens. This review discusses some of the challenges in developing a universal pathogen detection method, current technology that may be employed to overcome these challenges, and the remaining needs for developing an integrated pathogen detection and monitoring system for source or finished water.

  8. Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens.

    PubMed

    Dadalioglu, Itir; Evrendilek, Gulsun Akdemir

    2004-12-29

    Chemical compositions and inhibitory effects of essential oils of Turkish oregano (Origanum minutiflorum O. Schwarz & P. H. Davis), bay laurel (Laurus nobilis L.), Spanish lavender (Lavandula stoechas subsp. stoechas L.), and fennel (Foeniculum vulgare Mill.) on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, and Staphylococcus aureus were determined. After the essential oils were applied on the foodborne pathogens at doses of 0 (control), 5, 10, 20, 30, 40, 50, and 80 microL/mL, the resultant numbers of cells surviving were counted. Results revealed that all essential oils exhibited a very strong antibacterial activity against the tested bacteria (P < 0.05). Gas chromatography-mass spectrophotometry analyses revealed that carvacrol (68.23%), 1,8-cineole (60.72%), fenchone (55.79%), and trans-anethole (85.63%) were the predominant constituents in Turkish oregano, bay laurel, Spanish lavender, and fennel essential oils, respectively.

  9. Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations

    PubMed Central

    Lin, Dachuan; Chen, Kaichao; Wai-Chi Chan, Edward; Chen, Sheng

    2015-01-01

    Fluoroquinolone resistance in Salmonella has become increasingly prevalent in recent years. To probe the molecular basis of this phenomenon, the genetic and phenotypic features of fluoroquinolone resistant Salmonella strains isolated from food samples were characterized. Among the 82 Salmonella strains tested, resistance rate of the three front line antibiotics of ceftriaxone, ciprofloxacin and azithromycin was 10%, 39% and 25% respectively, which is significantly higher than that reported in other countries. Ciprofloxacin resistant strains typically exhibited cross-resistance to multiple antibiotics including ceftriaxone, primarily due to the presence of multiple PMQR genes and the blaCTX-M-65, blaCTX-M-55 blaCMY-2 and blaCMY-72 elements. The prevalence rate of the oqxAB and aac(6’)-Ib-cr genes were 91% and 75% respectively, followed by qnrS (66%), qnrB (16%) and qnrD (3%). The most common PMQR combination observable was aac(6’)-Ib-cr-oqxAB-qnrS2, which accounted for 50% of the ciprofloxacin resistant strains. Interestingly, such isolates contained either no target mutations or only a single gyrA mutation. Conjugation and hybridization experiments suggested that most PMQR genes were located either in the chromosome or a non-transferrable plasmid. To summarize, findings in this work suggested that PMQRs greatly facilitate development of fluoroquinolone resistance in Salmonella by abolishing the requirement of target gene mutations. PMID:26435519

  10. Multiple Pathogen Detection Using Biosensors: Advancements and Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advancements in biosensor research have considerably impacted clinical diagnostics for human health. Efforts in capitalizing on the sensitivity of biosensors for food pathogen detection are evident in the food safety/security research community. For practical application with foods that normally h...

  11. IFITMs restrict the replication of multiple pathogenic viruses

    PubMed Central

    Perreira, Jill M.; Chin, Christopher R.; Feeley, Eric M.; Brass, Abraham L.

    2014-01-01

    The IFITM family of proteins inhibit a growing number of pathogenic viruses, among them influenza A virus, dengue virus, hepatitis C virus, and Ebola virus. This review covers recent developments in our understanding of the IFITM’s molecular determinants, potential mechanisms of action, and impact on pathogenesis. PMID:24076421

  12. Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination.

    PubMed

    Gallimore, C I; Pipkin, C; Shrimpton, H; Green, A D; Pickford, Y; McCartney, C; Sutherland, G; Brown, D W G; Gray, J J

    2005-02-01

    An outbreak of acute gastroenteritis of suspected viral aetiology occurred in April 2003 in the British Royal Fleet Auxiliary ship (RFA) Argus deployed in the Northern Arabian Gulf. There were 37 cases amongst a crew of 400 personnel. Of 13 samples examined from cases amongst the crew, six enteric viruses were detected by reverse transcriptase polymerase chain reaction (RT-PCR). Five different viruses were identified including, three norovirus genotypes, a sapovirus and a rotavirus. No multiple infections were detected. A common food source was implicated in the outbreak and epidemiological analysis showed a statistically significant association with salad as the source of the outbreak, with a relative risk of 3.41 (95% confidence interval of 1.7-6.81) of eating salad on a particular date prior to the onset of symptoms. Faecal contamination of the salad at source was the most probable explanation for the diversity of viruses detected and characterized. PMID:15724709

  13. Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination.

    PubMed

    Gallimore, C I; Pipkin, C; Shrimpton, H; Green, A D; Pickford, Y; McCartney, C; Sutherland, G; Brown, D W G; Gray, J J

    2005-02-01

    An outbreak of acute gastroenteritis of suspected viral aetiology occurred in April 2003 in the British Royal Fleet Auxiliary ship (RFA) Argus deployed in the Northern Arabian Gulf. There were 37 cases amongst a crew of 400 personnel. Of 13 samples examined from cases amongst the crew, six enteric viruses were detected by reverse transcriptase polymerase chain reaction (RT-PCR). Five different viruses were identified including, three norovirus genotypes, a sapovirus and a rotavirus. No multiple infections were detected. A common food source was implicated in the outbreak and epidemiological analysis showed a statistically significant association with salad as the source of the outbreak, with a relative risk of 3.41 (95% confidence interval of 1.7-6.81) of eating salad on a particular date prior to the onset of symptoms. Faecal contamination of the salad at source was the most probable explanation for the diversity of viruses detected and characterized.

  14. Bacterial food-borne zoonoses.

    PubMed

    Thorns, C J

    2000-04-01

    In many countries of the world, bacterial food-borne zoonotic infections are the most common cause of human intestinal disease. Salmonella and Campylobacter account for over 90% of all reported cases of bacteria-related food poisoning world-wide. Poultry and poultry products have been incriminated in the majority of traceable food-borne illnesses caused by these bacteria, although all domestic livestock are reservoirs of infection. In contrast to the enzootic nature of most Salmonella and Campylobacter infections, Salmonella Enteritidis caused a pandemic in both poultry and humans during the latter half of the 20th Century. Salmonella Typhimurium and Campylobacter appear to be more ubiquitous in the environment, colonising a greater variety of hosts and environmental niches. Verocytotoxin-producing Escherichia coli O157 (VTEC O157) also emerged as a major food-borne zoonotic pathogen in the 1980s and 1990s. Although infection is relatively rare in humans, clinical disease is often severe, with a significant mortality rate among the young and elderly. The epidemiology of VTEC O157 is poorly understood, although ruminants, especially cattle and sheep, appear to be the major source of infection. The dissemination of S. Enteritidis along the food chain is fairly well understood, and control programmes have been developed to target key areas of poultry meat and egg production. Recent evidence indicates that these control programmes have been associated with an overall reduction of S. Enteritidis along the food chain. Unfortunately, existing controls do not appear to reduce the levels of Campylobacter and VTEC O157 infections. Future control strategies need to consider variations in the epidemiologies of food-borne zoonotic infections, and apply a quantitative risk analysis approach to ensure that the most cost-effective programmes are developed.

  15. Foodborne Disease Epidemiologist

    ERIC Educational Resources Information Center

    Sullivan, Megan

    2005-01-01

    The Centers for Disease Control and Prevention estimates that 76 million cases of foodborne illness occur in the U.S. each year; 5,000 are fatal. Most of these illnesses are caused by a variety of bacteria, viruses, and parasites and the remaining are poisonings triggered by harmful toxins or chemicals. To Jack Guzewich, a foodborne disease…

  16. Effects of irradiation dose and O(2) and CO(2) concentrations in packages on foodborne pathogenic bacteria and quality of ready-to-cook seasoned ground beef product (meatball) during refrigerated storage.

    PubMed

    Gunes, Gurbuz; Yilmaz, Neriman; Ozturk, Aylin

    2012-01-01

    Combined effects of gamma irradiation and concentrations of O(2) (0, 5, 21%) and CO(2) (0, 50%) on survival of Escherichia coli O157:H7, Salmonella enteritidis, Listeria monocytogenes, lipid oxidation, and color changes in ready-to-cook seasoned ground beef (meatball) during refrigerated storage were investigated. Ground beef seasoned with mixed spices was packaged in varying O(2) and CO(2) levels and irradiated at 2 and 4 kGy. Irradiation (4 kGy) caused about 6 Log inactivation of the inoculated pathogens. Inactivation of Salmonella was 0.9- and 0.4-Log lower in 0 and 5% O(2), respectively, compared to 21% O(2). Irradiation at 2 and 4 kGy increased thiobarbituric acid reactive substances in meatballs by 0.12 and 0.28 mg malondialdehyde kg(-1), respectively, compared to control. In reduced-O(2) packages, radiation-induced oxidation was lower, and the initial color of an irradiated sample was maintained. Packaging with 0% + 50% CO(2) or 5% O(2) + 50% CO(2) maintained the oxidative and the color quality of irradiated meatballs during 14-day refrigerated storage. MAP with 5%O(2) + 50% CO(2) combined with irradiation up to 4 kGy is suggested for refrigerated meatballs to reduce the foodborne pathogen risk and to maintain the quality.

  17. Emerging Foodborne Trematodiasis

    PubMed Central

    Utzinger, Jürg

    2005-01-01

    Foodborne trematodiasis is an emerging public health problem, particularly in Southeast Asia and the Western Pacific region. We summarize the complex life cycle of foodborne trematodes and discuss its contextual determinants. Currently, 601.0, 293.8, 91.1, and 79.8 million people are at risk for infection with Clonorchis sinensis, Paragonimus spp., Fasciola spp., and Opisthorchis spp., respectively. The relationship between diseases caused by trematodes and proximity of human habitation to suitable freshwater bodies is examined. Residents living near freshwater bodies have a 2.15-fold higher risk (95% confidence interval 1.38–3.36) for infections than persons living farther from the water. Exponential growth of aquaculture may be the most important risk factor for the emergence of foodborne trematodiasis. This is supported by reviewing aquaculture development in countries endemic for foodborne trematodiasis over the past 10–50 years. Future and sustainable control of foodborne trematodiasis is discussed. PMID:16318688

  18. Deaths due to Unknown Foodborne Agents

    PubMed Central

    2004-01-01

    This study reviews the available evidence on unknown pathogenic agents transmitted in food and examines the methods that have been used to estimate that such agents cause 3,400 deaths per year in the United States. The estimate of deaths was derived from hospital discharge and death certificate data on deaths attributed to gastroenteritis of unknown cause. Fatal illnesses due to unknown foodborne agents do not always involve gastroenteritis, and gastroenteritis may not be accurately diagnosed or reported on hospital charts or death certificates. The death estimate consequently omitted deaths from unknown foodborne agents that do not cause gastroenteritis and likely overstated the number of deaths from agents that cause gastroenteritis. Although the number of deaths from unknown foodborne agents is uncertain, the possible economic cost of these deaths is so large that increased efforts to identify the causal agents are warranted. PMID:15498153

  19. Allspice, garlic, and oregano plant essential oils in tomato films inactive the foodborne pathogens Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible films containing plant essential oils are gaining importance as potential antibacterial formulations to extend product shelf-life and reduce risk of pathogen growth on food surfaces. An evaluation of both antimicrobial and physicochemical properties of edible films is important for applicati...

  20. Allspice, garlic and oregano plant essential oils in tomato films inactivate the foodborne pathogens, Escherichia coli O157:h7, Salmonella enterica and Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Edible films containing plant essential oils arc gaining importance as potential antibacterial formulations to extend product shelf life and reduce risk of pathogen growth on food surfaces. An evaluation of both antimicrobial and physicochemical properties of edible films is important for applicatio...

  1. Allspice, cinnamon, and clove bud plant essential oils in edible apple films inactivate the foodborne pathogens Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant essential oils (EOs) are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contaminati...

  2. The survival of foodborne pathogens during domestic washing-up and subsequent transfer onto washing-up sponges, kitchen surfaces and food.

    PubMed

    Mattick, Karen; Durham, Karen; Domingue, Gil; Jørgensen, Frieda; Sen, Mithu; Schaffner, Donald W; Humphrey, Tom

    2003-08-25

    In this study, the survival of Salmonella, Campylobacter and Escherichia coli O157: H7, when exposed to a range of constant temperatures (47-60 degrees C), in hard or soft water, in the presence/absence of detergent (0-0.3%) and organic matter, and during drying, was investigated. Further experiments used a washing-up process simulation, where soiled dishes contaminated with bacteria were washed in a bowl of warm water containing detergent. In addition, this study considered the risk of bacterial transfer onto (1) sterile dishes and sponges via contaminated water, (2) kitchen surfaces wiped with a contaminated sponge, (3) items placed in direct contact with a contaminated kitchen surface, (4) food placed on a contaminated dish or (5) dishes from contaminated food. A proportion of dishes remained contaminated with all pathogen types after a typical washing-up. Water hardness did not appear to affect survival. E. coli, and to a lesser extent Salmonella, survived towel- or air-drying on dishes and after towel-drying the cloth became contaminated on every occasion, regardless of the test organism. A proportion of sterile dishes washed after contaminated dishes became contaminated with pathogens but transfer from dishes onto food was rare. Washing-up sponges frequently became contaminated with pathogens. The results of this study highlight the potential for survival and cross contamination of food borne pathogens in the kitchen environment. PMID:12878380

  3. [Pathogenic mechanisms of neuronal damage in multiple sclerosis].

    PubMed

    Flores-Alvarado, Luis Javier; Gabriel-Ortiz, Genaro; Pacheco-Mois, Fermín P; Bitzer-Quintero, K

    2015-06-01

    Multiple sclerosis is the most common cause of progressive neurological disability in young adults. This disease involves damage to the myelin sheath that normally insulates the electrical activity of nerve fibers. This leads to a wide range of symptoms as specific nerves become injured and lose their function. Epidemiological and experimental studies show that genetic alterations, antioxidant enzyme abnormalities and autoimmunity are risk factors for developing the disease. Recent evidence suggests that inflammation and oxidative stress within the central nervous system are major causes of ongoing tissue damage. Resident central nervous system cells and invading inflammatory cells release several reactive oxygen and nitrogen species which cause the histopathological features of multiple sclerosis: demyelization and axonal damage. The interplay between inflammatory and neurodegenerative processes results in an intermittent neurological disturbance followed by progressive accumulation of disability. Reductions in inflammation and oxidative stress status are important therapeutic strategies to slow or halt the disease processes. Therefore, several drugs are currently in trial in clinical practice to target this mechanism; particularly the use of supplements such as antioxidants and omega-3 polyunsaturated fatty acids, in order to improve the survival and quality of patients' lives. PMID:26299060

  4. Assessment of antimicrobial resistance transfer between lactic acid bacteria and potential foodborne pathogens using in vitro methods and mating in a food matrix.

    PubMed

    Toomey, Niamh; Monaghan, Aine; Fanning, Séamus; Bolton, Declan J

    2009-10-01

    The transferability of antimicrobial resistance from lactic acid bacteria (LAB) to potential pathogenic strains was studied using in vitro methods and mating in a food matrix. Five LAB donors containing either erythromycin or tetracycline resistance markers on transferable elements were conjugally mated with LAB (Enterococcus faecalis, Lactococcus lactis) and pathogenic strains (Listeria spp., Salmonella ssp., Staphylococcus aureus, and Escherichia coli). In vitro transfer experiments were carried out with the donors and recipients using both the filter and plate mating methods. The food matrix consisted of fermented whole milk (fermented with the LAB donors) with the pathogenic recipients added as contaminants during the production process. All transconjugants were confirmed by phenotypic and molecular methods. Erythromycin resistance transfer from LAB strains to Listeria spp. was observed using both in vitro mating methods at high transfer frequencies of up to 5.1 x 10(-4) transconjugants per recipient. Also, high frequency transfer (ranging from 2.7 x 10(-8) up to 1.1 x 10(-3) transconjugants per recipient) of both erythromycin and tetracycline-resistance was observed between LAB species using in vitro methods. No resistance transfer was observed to Salmonella spp., Staphylococcus aureus, and E. coli. The only conjugal transfer observed in the fermented milk matrix was for tetracycline resistance between two LAB strains (at a transfer frequency of 2.6 x 10(-7) transconjugants per recipients). This study demonstrates the transfer of antimicrobial resistance from LAB to Listeria spp. using in vitro methods and also the transfer of resistance between LAB species in a food matrix. It highlights the involvement of LAB as a potential source of resistance determinants that may be disseminated between LAB and pathogenic strains including Listeria spp. Furthermore, it indicates that food matrices such as fermented milks may provide a suitable environment to support gene

  5. Multiple introductions from multiple sources: invasion patterns for an important Eucalyptus leaf pathogen.

    PubMed

    Taole, Matsepo; Bihon, Wubetu; Wingfield, Brenda D; Wingfield, Michael J; Burgess, Treena I

    2015-09-01

    Many population studies on invasive plant pathogens are undertaken without knowing the center of origin of the pathogen. Most leaf pathogens of Eucalyptus originate in Australia and consequently with indigenous populations available, and it is possible to study the pathways of invasion. Teratosphaeria suttonii is a commonly occurring leaf pathogen of Eucalyptus species, naturally distributed in tropical and subtropical regions of eastern Australia where it is regarded as a minor pathogen infecting older leaves; however, repeated infections, especially in exotic plantations, can result in severe defoliation and tree deaths. Nine polymorphic microsatellite markers were used to assess the genetic structure of 11 populations of T. suttonii of which four where from within its native range in eastern Australia and the remaining seven from exotic Eucalyptus plantations. Indigenous populations exhibited high allele and haplotype diversity, predominantly clonal reproduction, high population differentiation, and low gene flow. The diversity of the invasive populations varied widely, but in general, the younger the plantation industry in a country or region, the lower the diversity of T. suttonii. Historical gene flow was from Australia, and while self-recruitment was dominant in all populations, there was evidence for contemporary gene flow, with South Africa being the most common source and Uruguay the most common sink population. This points distinctly to human activities underlying long-distance spread of this pathogen, and it highlights lessons to be learned regarding quarantine. PMID:26445668

  6. Linking multiple pathogenic pathways in Alzheimer’s disease

    PubMed Central

    Bou Khalil, Rami; Khoury, Elie; Koussa, Salam

    2016-01-01

    Alzheimer’s disease (AD) is a chronic neurodegenerative disorder presenting as progressive cognitive decline with dementia that does not, to this day, benefit from any disease-modifying drug. Multiple etiologic pathways have been explored and demonstrate promising solutions. For example, iron ion chelators, such as deferoxamine, are a potential therapeutic solution around which future studies are being directed. Another promising domain is related to thrombin inhibitors. In this minireview, a common pathophysiological pathway is suggested for the pathogenesis of AD to prove that all these mechanisms converge onto the same cascade of neuroinflammatory events. This common pathway is initiated by the presence of vascular risk factors that induce brain tissue hypoxia, which leads to endothelial cell activation. However, the ensuing hypoxia stimulates the production and release of reactive oxygen species and pro-inflammatory proteins. Furthermore, the endothelial activation may become excessive and dysfunctional in predisposed individuals, leading to thrombin activation and iron ion decompartmentalization. The oxidative stress that results from these modifications in the neurovascular unit will eventually lead to neuronal and glial cell death, ultimately leading to the development of AD. Hence, future research in this field should focus on conducting trials with combinations of potentially efficient treatments, such as the combination of intranasal deferoxamine and direct thrombin inhibitors. PMID:27354962

  7. Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products.

    PubMed

    Chahad, Ouissal Bourouni; El Bour, Monia; Calo-Mata, Pilar; Boudabous, Abdellatif; Barros-Velàzquez, Jorge

    2012-01-01

    Selection of protective cultures is relevant in order to biopreserve and improve the functional safety of food products, mainly through inhibition of spoilage and/or pathogenic bacteria. Accordingly, the present study investigated potential applications of lactic acid bacteria (LAB) in the biopreservation of fish and shellfish products. For this purpose, a collection of 84 LAB strains isolated from sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) was identified and characterized for their inhibitory activities against the most relevant seafood-spoilage and pathogenic bacteria potentially present in commercial products. The bioactive strains belonged to the genus Enterococcus and exhibited inhibition against Carnobacterium sp, Bacillus sp, Listeria monocytogenes, Aeromonas salmonicida, Aeromonas hydrophila and Vibrio anguillarum. Treatment of cell-free extracts of the LAB strains with proteases revealed the proteinaceous nature of the inhibition. Interestingly, the cell-free extracts containing bacteriocins remained 100% active after treatment up to 100 °C for 30 min or 121 °C for 15 min. Molecular analysis led to identification of the bacteriocins investigated, including enterocins A, B, L50 and P. All of these proteins demonstrated remarkable anti-Listeria activity and were found to be heat-resistant small class IIa bacteriocins. The results presented in this work open the way for potential applications of these LAB strains to the biopreservation of minimally-processed seafood products. PMID:22041547

  8. Discovery of novel biopreservation agents with inhibitory effects on growth of food-borne pathogens and their application to seafood products.

    PubMed

    Chahad, Ouissal Bourouni; El Bour, Monia; Calo-Mata, Pilar; Boudabous, Abdellatif; Barros-Velàzquez, Jorge

    2012-01-01

    Selection of protective cultures is relevant in order to biopreserve and improve the functional safety of food products, mainly through inhibition of spoilage and/or pathogenic bacteria. Accordingly, the present study investigated potential applications of lactic acid bacteria (LAB) in the biopreservation of fish and shellfish products. For this purpose, a collection of 84 LAB strains isolated from sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) was identified and characterized for their inhibitory activities against the most relevant seafood-spoilage and pathogenic bacteria potentially present in commercial products. The bioactive strains belonged to the genus Enterococcus and exhibited inhibition against Carnobacterium sp, Bacillus sp, Listeria monocytogenes, Aeromonas salmonicida, Aeromonas hydrophila and Vibrio anguillarum. Treatment of cell-free extracts of the LAB strains with proteases revealed the proteinaceous nature of the inhibition. Interestingly, the cell-free extracts containing bacteriocins remained 100% active after treatment up to 100 °C for 30 min or 121 °C for 15 min. Molecular analysis led to identification of the bacteriocins investigated, including enterocins A, B, L50 and P. All of these proteins demonstrated remarkable anti-Listeria activity and were found to be heat-resistant small class IIa bacteriocins. The results presented in this work open the way for potential applications of these LAB strains to the biopreservation of minimally-processed seafood products.

  9. Effect of white mustard essential oil on the growth of foodborne pathogens and spoilage microorganisms and the effect of food components on its efficacy.

    PubMed

    Monu, Emefa A; David, Jairus R D; Schmidt, Marcel; Davidson, P Michael

    2014-12-01

    Antimicrobial preservative compounds are added to foods to target specific pathogens and spoilage organisms. White mustard essential oil (WMEO) is an extract that contains 4-hydroxybenzyl isothiocyanate, a compound which has been demonstrated to have antimicrobial activity in limited studies. The objective of this research was to determine the in vitro antimicrobial activity of WMEO against gram-positive and gram-negative spoilage and pathogenic bacteria and determine the effect of food components on the antimicrobial activity. The bacteria Escherichia coli, Salmonella enterica serovar Enteritidis, Enterobacter aerogenes, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Lactobacillus fermentum, as well as the acid- and preservative-resistant yeast Schizosaccharomyces pombe, were evaluated. All microorganisms were inhibited by WMEO at 8.3 g/liter (equivalent to 1,000 mg/liter 4-hydroxybenzyl isothiocyanate). In general, WMEO was more effective against gram-negative than against gram-positive bacteria. Salmonella Enteritidis and S. pombe were the most sensitive, with inhibition at as low as 2.1 g/liter. The effects on growth profiles varied but included increased lag phases and lethality, indicating both bacteriostatic and bactericidal activity. Soybean oil had a negative effect on the efficacy of WMEO against L. monocytogenes, and at 5% soybean oil, the antimicrobial activity against Salmonella Enteritidis was eliminated after 48 h. Sodium caseinate at 1% also negated the antimicrobial effect of WMEO against Salmonella Enteritidis and decreased its effectiveness against L. monocytogenes. The presence of starch had no significant effect on the antimicrobial activity of WMEO against L. monocytogenes and Salmonella Enteritidis. Thus, WMEO is effective against a wide range of microorganisms and has potential to be used in foods, depending upon the target microorganism and food components present.

  10. Food-Borne Trematodiases

    PubMed Central

    Keiser, Jennifer; Utzinger, Jürg

    2009-01-01

    Summary: An estimated 750 million people are at risk of infections with food-borne trematodes, which comprise liver flukes (Clonorchis sinensis, Fasciola gigantica, Fasciola hepatica, Opisthorchis felineus, and Opisthorchis viverrini), lung flukes (Paragonimus spp.), and intestinal flukes (e.g., Echinostoma spp., Fasciolopsis buski, and the heterophyids). Food-borne trematodiases pose a significant public health and economic problem, yet these diseases are often neglected. In this review, we summarize the taxonomy, morphology, and life cycle of food-borne trematodes. Estimates of the at-risk population and number of infections, geographic distribution, history, and ecological features of the major food-borne trematodes are reviewed. We summarize clinical manifestations, patterns of infection, and current means of diagnosis, treatment, and other control options. The changing epidemiological pattern and the rapid growth of aquaculture and food distribution networks are highlighted, as these developments might be associated with an elevated risk of transmission of food-borne trematodiases. Current research needs are emphasized. PMID:19597009

  11. Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg.

    PubMed

    Lee, Dong-Hoon; Kim, Hye Rim; Chung, Han Young; Lim, Jong Gyu; Kim, Suyeon; Kim, Se Keun; Ku, Hye-Jin; Kim, Heebal; Ryu, Sangryeol; Choi, Sang Ho; Lee, Ju-Hoon

    2015-01-01

    Due to abundant contamination in various foods, the pathogenesis of Bacillus cereus has been widely studied in physiological and molecular level. B. cereus FORC_005 was isolated from a Korean side dish, soy sauce braised fish-cake with quail-egg in South Korea. While 21 complete genome sequences of B. cereus has been announced to date, this strain was completely sequenced, analyzed, and compared with other complete genome sequences of B. cereus to elucidate the distinct pathogenic features of a strain isolated in South Korea. The genomic DNA containing a circular chromosome consists of 5,349,617-bp with a GC content of 35.29 %. It was predicted to have 5170 open reading frames, 106 tRNA genes, and 42 rRNA genes. Among the predicted ORFs, 3892 ORFs were annotated to encode functional proteins (75.28 %) and 1278 ORFs were predicted to encode hypothetical proteins (748 conserved and 530 non-conserved hypothetical proteins). This genome information of B. cereus FORC_005 would extend our understanding of its pathogenesis in genomic level for efficient control of its contamination in foods and further food poisoning.

  12. Rapid and sensitive detection of foodborne pathogenic bacteria (Staphylococcus aureus) using an electrochemical DNA genomic biosensor and its application in fresh beef.

    PubMed

    Abdalhai, Mandour H; Fernandes, António Maximiano; Bashari, Mohand; Ji, Jian; He, Qian; Sun, Xiulan

    2014-12-31

    Rapid early detection of food contamination is the main key in food safety and quality control. Biosensors are emerging as a vibrant area of research, and the use of DNA biosensor recognition detectors is relatively new. In this study a genomic DNA biosensor system with a fixing and capture probe was modified by a sulfhydryl and amino group, respectively, as complementary with target DNA. After immobilization and hybridization, the following sandwich structure fixing DNA-target DNA-capture DNA-PbS NPs was formed to detect pathogenic bacteria (Staphylococuus aureus EF529607.1) by using GCE modified with (multiwalled carbon nanotubes-chitosan-bismuth) to increase the sensitivity of the electrode. The modification procedure was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The sandwich structure was dissolved in 1 M nitric acid to become accessible to the electrode, and the PbS NPs was measured in solution by differential pulse voltammetry (DPV). The results showed that the detection limit of the DNA sensor was 3.17 × 10(-14) M S. aureus using PbS NPs, whereas the result for beef samples was 1.23 ng/mL. Thus, according to the experimental results presented, the DNA biosensor exhibited high sensitivity and rapid response, and it will be useful for the food matrix.

  13. Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg.

    PubMed

    Lee, Dong-Hoon; Kim, Hye Rim; Chung, Han Young; Lim, Jong Gyu; Kim, Suyeon; Kim, Se Keun; Ku, Hye-Jin; Kim, Heebal; Ryu, Sangryeol; Choi, Sang Ho; Lee, Ju-Hoon

    2015-01-01

    Due to abundant contamination in various foods, the pathogenesis of Bacillus cereus has been widely studied in physiological and molecular level. B. cereus FORC_005 was isolated from a Korean side dish, soy sauce braised fish-cake with quail-egg in South Korea. While 21 complete genome sequences of B. cereus has been announced to date, this strain was completely sequenced, analyzed, and compared with other complete genome sequences of B. cereus to elucidate the distinct pathogenic features of a strain isolated in South Korea. The genomic DNA containing a circular chromosome consists of 5,349,617-bp with a GC content of 35.29 %. It was predicted to have 5170 open reading frames, 106 tRNA genes, and 42 rRNA genes. Among the predicted ORFs, 3892 ORFs were annotated to encode functional proteins (75.28 %) and 1278 ORFs were predicted to encode hypothetical proteins (748 conserved and 530 non-conserved hypothetical proteins). This genome information of B. cereus FORC_005 would extend our understanding of its pathogenesis in genomic level for efficient control of its contamination in foods and further food poisoning. PMID:26566422

  14. The impact of socioeconomic status on foodborne illness in high income countries: A systematic review

    PubMed Central

    Newman, K. L.; Leon, J. S.; Rebolledo, P. A.; Scallan, E.

    2015-01-01

    SUMMARY Foodborne illness is a major cause of morbidity and loss of productivity in developed nations. Though low socioeconomic status (SES) is generally associated with negative health outcomes, its impact on foodborne illness is poorly understood. We conducted a systematic review to examine the association between SES and laboratory-confirmed illness caused by eight important foodborne pathogens. We completed this systematic review using PubMed for all papers published between 1 January 1980 and 1 January 2013 that measured the association between foodborne illness and SES in highly developed countries and identified 16 studies covering 4 pathogens. The effect of SES varied across pathogens: the majority of identified studies for Campylobacter, salmonellosis, and E. coli infection showed an association between high SES and illness. The single study of listeriosis showed illness was associated with low SES. A reporting bias by SES could not be excluded. SES should be considered when targeting consumer level public health interventions for foodborne pathogens. PMID:25600652

  15. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat.

    PubMed

    Moore, John W; Herrera-Foessel, Sybil; Lan, Caixia; Schnippenkoetter, Wendelin; Ayliffe, Michael; Huerta-Espino, Julio; Lillemo, Morten; Viccars, Libby; Milne, Ricky; Periyannan, Sambasivam; Kong, Xiuying; Spielmeyer, Wolfgang; Talbot, Mark; Bariana, Harbans; Patrick, John W; Dodds, Peter; Singh, Ravi; Lagudah, Evans

    2015-12-01

    As there are numerous pathogen species that cause disease and limit yields of crops, such as wheat (Triticum aestivum), single genes that provide resistance to multiple pathogens are valuable in crop improvement. The mechanistic basis of multi-pathogen resistance is largely unknown. Here we use comparative genomics, mutagenesis and transformation to isolate the wheat Lr67 gene, which confers partial resistance to all three wheat rust pathogen species and powdery mildew. The Lr67 resistance gene encodes a predicted hexose transporter (LR67res) that differs from the susceptible form of the same protein (LR67sus) by two amino acids that are conserved in orthologous hexose transporters. Sugar uptake assays show that LR67sus, and related proteins encoded by homeoalleles, function as high-affinity glucose transporters. LR67res exerts a dominant-negative effect through heterodimerization with these functional transporters to reduce glucose uptake. Alterations in hexose transport in infected leaves may explain its ability to reduce the growth of multiple biotrophic pathogen species.

  16. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese

    PubMed Central

    Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm2, respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm2, and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm2. Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm2 for all three pathogens, with negligible generation of injured cells. PMID:26386061

  17. Growth and membrane fluidity of food-borne pathogen Listeria monocytogenes in the presence of weak acid preservatives and hydrochloric acid.

    PubMed

    Diakogiannis, Ioannis; Berberi, Anita; Siapi, Eleni; Arkoudi-Vafea, Angeliki; Giannopoulou, Lydia; Mastronicolis, Sofia K

    2013-01-01

    This study addresses a major issue in microbial food safety, the elucidation of correlations between acid stress and changes in membrane fluidity of the pathogen Listeria monocytogenes. In order to assess the possible role that membrane fluidity changes play in L. monocytogenes tolerance to antimicrobial acids (acetic, lactic, hydrochloric acid at low pH or benzoic acid at neutral pH), the growth of the bacterium and the gel-to-liquid crystalline transition temperature point (T m) of cellular lipids of each adapted culture was measured and compared with unexposed cells. The T m of extracted lipids was measured by differential scanning calorimetry. A trend of increasing T m values but not of equal extent was observed upon acid tolerance for all samples and this increase is not directly proportional to each acid antibacterial action. The smallest increase in T m value was observed in the presence of lactic acid, which presented the highest antibacterial action. In the presence of acids with high antibacterial action such as acetic, hydrochloric acid or low antibacterial action such as benzoic acid, increased T m values were measured. The T m changes of lipids were also correlated with our previous data about fatty acid changes to acid adaptation. The results imply that the fatty acid changes are not the sole adaptation mechanism for decreased membrane fluidity (increased T m). Therefore, this study indicates the importance of conducting an in-depth structural study on how acids commonly used in food systems affect the composition of individual cellular membrane lipid molecules.

  18. Chemical composition and in vitro antibacterial activity of essential oil and methanol extract of Echinophora platyloba D.C against some of food-borne pathogenic bacteria

    PubMed Central

    Hashemi, Mohammad; Ehsani, Ali; Hosseini Jazani, Nima; Aliakbarlu, Javad; Mahmoudi, Razzaqh

    2013-01-01

    Echinophora Platyloba D.C as a medicinal plant is used for preservation of foods and treatment of many diseases in different regions of Iran. The present study was undertaken to determine the chemical composition and investigation of the antibacterial effects of essential oil as well as methanol extract from aerial part of Echinophora Platyloba D.C against S. aureus, L. monocytogenes, S. Thyphimurium and E. coli. Chemical analysis using gas chromatography and mass spectrophotometry (GC/MS) showed that ocimene (26.51%), 2,3-Dimethyl-cyclohexa-1,3-diene (9.87%), alpha-pinene (7.69%) and gamma-dodecanolactone (5.66%) were dominant components of essential oil and the main constituents of methanol extract were o-Cymene (28.66%), methanol (8.50%), alpha-pinene (7.42%) and gamma-decalactone (5.20%). The essential oil showed strong antimicrobial activity against tested bacteria, whereas the methanol extract almost remained inactive against gram-negative bacteria. The most sensitive bacteria to essential oil and extract of Echinophora Platyloba D.C were L. mono-cytogenes and S. aureus. Minimum inhibitory concentration (MIC) values of essential oil against L. monocytogenes and S. aureus were 6250 and 12500 ppm, respectively. MIC of methanol extract against S. aureus and L. monocytogenes was 25000 ppm. Therefore, purifying and evaluation of antibacterial effects of the active substances of the essential oil and methanol extract of this plant for future application as antibacterial agents and food preservatives to combat pathogenic and toxigenic microorganisms is recommended. PMID:25653784

  19. Using UVC Light-Emitting Diodes at Wavelengths of 266 to 279 Nanometers To Inactivate Foodborne Pathogens and Pasteurize Sliced Cheese.

    PubMed

    Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2015-09-18

    UVC light is a widely used sterilization technology. However, UV lamps have several limitations, including low activity at refrigeration temperatures, a long warm-up time, and risk of mercury exposure. UV-type lamps only emit light at 254 nm, so as an alternative, UV light-emitting diodes (UV-LEDs) which can produce the desired wavelengths have been developed. In this study, we validated the inactivation efficacy of UV-LEDs by wavelength and compared the results to those of conventional UV lamps. Selective media inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated using UV-LEDs at 266, 270, 275, and 279 nm in the UVC spectrum at 0.1, 0.2, 0.5, and 0.7 mJ/cm(2), respectively. The radiation intensity of the UV-LEDs was about 4 μW/cm(2), and UV lamps were covered with polypropylene films to adjust the light intensity similar to those of UV-LEDs. In addition, we applied UV-LED to sliced cheese at doses of 1, 2, and 3 mJ/cm(2). Our results showed that inactivation rates after UV-LED treatment were significantly different (P < 0.05) from those of UV lamps at a similar intensity. On microbiological media, UV-LED treatments at 266 and 270 nm showed significantly different (P < 0.05) inactivation effects than other wavelength modules. For sliced cheeses, 4- to 5-log reductions occurred after treatment at 3 mJ/cm(2) for all three pathogens, with negligible generation of injured cells.

  20. Prevention of bacterial foodborne disease using nanobiotechnology

    PubMed Central

    Billington, Craig; Hudson, J Andrew; D’Sa, Elaine

    2014-01-01

    Foodborne disease is an important source of expense, morbidity, and mortality for society. Detection and control constitute significant components of the overall management of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological entities and molecules to achieve these goals. There is an emphasis on the use of organisms called bacteriophages (phages: viruses that infect bacteria), which are increasingly being used in pathogen detection and biocontrol applications. Detection of pathogens in foods by conventional techniques is time-consuming and expensive, although it can also be sensitive and accurate. Nanobiotechnology is being used to decrease detection times and cost through the development of biosensors, exploiting specific cell-recognition properties of antibodies and phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell), the very small volumes tested mean that sensitivity per sample is less compelling. An ideal detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based rapid methods, or those that detect amplified nucleic acid) it will need to focus on improving sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial cells, nanosized organisms called phages are increasingly finding favor in food safety applications. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and the typical large “burst size” resulting from phage amplification can be harnessed to produce a rapid increase in signal to facilitate detection. There are now several commercially available phages for pathogen control, and many reports in the literature demonstrate efficacy against a number of foodborne pathogens on diverse foods. As a method for control of pathogens, nanobiotechnology is therefore flourishing

  1. Predation on multiple trophic levels shapes the evolution of pathogen virulence.

    PubMed

    Friman, Ville-Petri; Lindstedt, Carita; Hiltunen, Teppo; Laakso, Jouni; Mappes, Johanna

    2009-01-01

    The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded off with bacterial virulence factors, such as motility or resource use efficiency. However, the host survival depended also on its allocation to warning signal that is used against avian predation. When infected with most virulent ancestral bacterial strain, host larvae with a small warning signal survived better than those with an effective large signal. This suggests that larval immune defence could be traded off with effective defence against bird predators. However, the signal size had no effect on larval survival when less virulent control or evolved strains were used for infection suggesting that anti-predatory defence against avian predators, might be less constrained when the invading pathogen is rather low in virulence. Our results demonstrate that predation can be important indirect driver of the evolution of both pathogen virulence and host immunity in communities with multiple species interactions. Thus, the pathogen virulence should be viewed as a result of both past evolutionary history, and current ecological interactions.

  2. In vitro assessment of the susceptibility of planktonic and attached cells of foodborne pathogens to bacteriophage p22-mediated salmonella lysates.

    PubMed

    Ahn, Juhee; Kim, Songrae; Jung, Lae-Seung; Biswas, Debabrata

    2013-12-01

    This study was designed to evaluate the lytic activity of bacteriophage P22 against Salmonella Typhimurium ATCC 19585 (Salmonella Typhimurium P22(-)) at various multiplicities of infections (MOIs), the susceptibility of preattached Salmonella cells against bacteriophage P22, and the effect of P22-mediated bacterial lysates (extracellular DNA) on the attachment ability of Listeria monocytogenes ATCC 7644 and enterohemorrhagic Escherichia coli ATCC 700927 to surfaces. The numbers of attached Salmonella Typhimurium P22(-) cells were effectively reduced to below the detection limit (1 log CFU/ml) at the fixed inoculum levels of 3 × 10(-) CFU/ml (MOI = 3.12) and 3 × 10(3) CFU/ml (MOI = 4.12) by bacteriophage P22. The attached Salmonella Typhimurium P22(-) cells remained more than 2 log CFU/ml, with increasing inoculum levels from 3 × 10(4) to 3 × 10(7) CFU/ml infected with 4 × 10(8) PFU/ml of P22. The number of preattached Salmonella Typhimurium P22(-) cells was noticeably reduced by 2.72 log in the presence of P22. The highest specific attachment ability values for Salmonella Typhimurium P22(-), Salmonella Typhimurium ATCC 23555 carrying P22 prophage (Salmonella Typhimurium P22(+)), L. monocytogenes, and enterohemorrhagic E. coli were 2.09, 1.06, 1.86, and 1.08, respectively, in the bacteriophage-mediated cell-free supernatants (CFS) containing high amounts of extracellular DNA. These results suggest that bacteriophages could potentially be used to effectively eliminate planktonic and preattached Salmonella Typhimurium P22(-) cells with increasing MOI. However, further research is needed to understand the role of bacteriophage-induced lysates in bacterial attachment, which can provide useful information for the therapeutic use of bacteriophage in the food system.

  3. Cross-Immunity and Community Structure of a Multiple-Strain Pathogen in the Tick Vector

    PubMed Central

    Jacquet, Maxime; Paillard, Lye; Rais, Olivier; Gern, Lise; Voordouw, Maarten J.

    2015-01-01

    Many vector-borne pathogens consist of multiple strains that circulate in both the vertebrate host and the arthropod vector. Characterization of the community of pathogen strains in the arthropod vector is therefore important for understanding the epidemiology of mixed vector-borne infections. Borrelia afzelii and B. garinii are two species of tick-borne bacteria that cause Lyme disease in humans. These two sympatric pathogens use the same tick, Ixodes ricinus, but are adapted to different classes of vertebrate hosts. Both Borrelia species consist of multiple strains that are classified using the highly polymorphic ospC gene. Vertebrate cross-immunity against the OspC antigen is predicted to structure the community of multiple-strain Borrelia pathogens. Borrelia isolates were cultured from field-collected I. ricinus ticks over a period spanning 11 years. The Borrelia species of each isolate was identified using a reverse line blot (RLB) assay. Deep sequencing was used to characterize the ospC communities of 190 B. afzelii isolates and 193 B. garinii isolates. Infections with multiple ospC strains were common in ticks, but vertebrate cross-immunity did not influence the strain structure in the tick vector. The pattern of genetic variation at the ospC locus suggested that vertebrate cross-immunity exerts strong selection against intermediately divergent ospC alleles. Deep sequencing found that more than 50% of our isolates contained exotic ospC alleles derived from other Borrelia species. Two alternative explanations for these exotic ospC alleles are cryptic coinfections that were not detected by the RLB assay or horizontal transfer of the ospC gene between Borrelia species. PMID:26319876

  4. In-situ detection of multiple pathogenic bacteria on food surfaces

    NASA Astrophysics Data System (ADS)

    Chai, Yating; Horikawa, Shin; Hu, Jiajia; Chen, I.-Hsuan; Hu, Jing; Barbaree, James M.; Chin, Bryan A.

    2015-05-01

    Real-time in-situ detection of pathogenic bacteria on fresh food surfaces was accomplished with phage-based magnetoelastic (ME) biosensors. The ME biosensor is constructed of a small rectangular strip of ME material that is coated with a biomolecular recognition element (phage, antibodies or proteins, etc.) that is specific to the target pathogen. This mass-sensitive ME biosensor is wirelessly actuated into mechanical resonance by an externally applied time-varying magnetic field. When the biosensor binds with target bacteria, the mass of the sensor increases, resulting in a decrease in the sensor's resonant frequency. In order to compensate for nonspecific binding, control biosensors without phage were used in this experiment. In previous research, the biosensors were measured one by one. However, the simultaneous measurement of multiple sensors was accomplished in this research, and promises to greatly shorten the analysis time for bacterial detection. Additionally, the use of multiple biosensors enables the possibility of simultaneous detection of different pathogenic bacteria. This paper presents results of experiments in which multiple phage-based ME biosensors were simultaneously monitored. The E2 phage and JRB7 phage from a landscape phage library served as the bio-recognition element that have the capability of binding specifically with Salmonella typhimurium and B. anthracis spores, respectively. Real-time in-situ detection of Salmonella typhimurium and B. anthracis spores on food surfaces are presented.

  5. Incidence of foodborne illnesses--FoodNet, 1997.

    PubMed

    1998-09-25

    Each year, millions of persons become ill from foodborne diseases, though many cases are not reported. The Foodborne Diseases Active Surveillance Network (Food-Net), the primary foodborne diseases component of CDC's Emerging Infections Program, was developed to better characterize, understand, and respond to foodborne illnesses in the United States. This report describes FoodNet surveillance data from 1997, the second year of surveillance, and compares findings with data from 1996. The findings demonstrate regional and seasonal differences in the reported incidence of certain bacterial and parasitic diseases and that substantial changes occurred in the incidence of illnesses caused by some pathogens (e.g., Vibrio and Escherichia coli O157:H7) but the overall incidence of illness caused by the seven diseases under surveillance in both years changed little.

  6. Preliminary FoodNet data on the incidence of foodborne illnesses--selected sites, United States, 2002.

    PubMed

    2003-04-18

    In the United States, an estimated 76 million persons contract foodborne illnesses each year. CDC's Emerging Infections Program Foodborne Diseases Active Surveillance Network (FoodNet) collects data on 10 foodborne diseases in nine U.S. sites. FoodNet follows trends in foodborne infections by using laboratory-based surveillance for culture-confirmed illness caused by several enteric pathogens commonly transmitted through food. This report describes preliminary surveillance data for 2002 and compares them with 1996-2001 data. The data indicate a sustained decrease in major bacterial foodborne illnesses such as Campylobacter and Listeria, indicating progress toward meeting the national health objectives of reducing the incidence of foodborne infections by 2010 (objectives 10-1a to 10-1d). However, the data do not indicate a sustained decline in other major foodborne infections such as Escherichia coli O157 and Salmonella, indicating that increased efforts are needed to reduce further the incidence of foodborne illnesses.

  7. New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis.

    PubMed

    Hoppmann, Nicola; Graetz, Christiane; Paterka, Magdalena; Poisa-Beiro, Laura; Larochelle, Catherine; Hasan, Maruf; Lill, Christina M; Zipp, Frauke; Siffrin, Volker

    2015-04-01

    Multiple sclerosis is a chronic autoimmune demyelinating disease of the central nervous system, which is thought to be triggered by environmental factors in genetically susceptible individuals leading to activation of autoreactive T lymphocytes. Large multi-centre genome-wide association studies have identified multiple genetic risk loci in multiple sclerosis. In this study, we investigated T cell transcriptomic changes in experimental autoimmune encephalomyelitis, an animal model for multiple sclerosis. We correlated these findings with the multiple sclerosis risk genes postulated by the most recent Immunochip analysis and found that multiple sclerosis susceptibility genes were significantly regulated in experimental autoimmune encephalomyelitis. Our data indicate that nine distinct genes associated with multiple sclerosis risk, Bach2, Il2ra, Irf8, Mertk, Odf3b, Plek, Rgs1, Slc30a7 and Thada, can be confirmed to be differentially regulated in pathogenic CD4(+) T cells. During the effector phase within the inflamed CNS, CD4(+) T cells undergo comprehensive transformation and we identified key transcription factors and signalling networks involved in this process. The transformation was linked to metabolic changes with the involvement of liver X receptor/retinoid X receptor signalling and cholesterol biosynthesis, which might control the T cell effector function in the central nervous system. Thus, our study confirms the involvement of multiple sclerosis risk genes in the pathophysiology of the animal model and sheds light on additional disease-relevant inflammatory networks.

  8. Techniques for rapid detection and quantification of active foodborne Staphylococcus Enterotoxin(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Staphylococcus aureus is an important bacterial pathogen and causative agent of foodborne illnesses.Staphylococcal enterotoxins(SEs)produced by this organism act upon the gastrointestinal tract and generate a superantigen immune response in low concentrations. Recent S. aureus foodborne ...

  9. Effect of marinating chicken meat with lemon, green tea, and turmeric against foodborne bacterial pathogenss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne diseases affect millions of people each year. To reduce the incidence of bacterial foodborne pathogens more effective treatment methods are needed. In this study we evaluated the effect of marinating chicken breast fillets with extracts of lemon, green tea, and turmeric against Campylob...

  10. [Food-borne botulism].

    PubMed

    Nakamura, Yuko; Sawada, Mikio; Ikeguchi, Kunihiko; Nakano, Imaharu

    2012-08-01

    Botulism is a neuroparalytic disease caused by neurotoxins produced by Clostridium botulinum, and classically presents as palsies of cranial nerves and acute descending flaccid paralysis. Food-borne botulism is the most common form of botulism, and caused by preformed neurotoxins produced by Clostridium botulinum. Electrophysiological studies play an important role in the early diagnosis. Confirmation of the diagnosis is based on the detection of botulinum toxins in the patient's serum or stool. In Japan, decades ago, botulism type E occurred, though only sporadically, almost every year, but in recent years, has dramatically decreased in frequency. Botulism is a curable disease when treated early and adequately. Differential diagnosis of cranial nerves and limb muscle palsies with rapid exacerbation should include food-borne botulism.

  11. Arcobacter: An Opportunistic Human Foodborne Pathogen?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arcobacter are gram negative, motile, aerotolerant campylobacter-like microbes which grow at 30C. The 10 described Arcobacter species are but a fraction of the total taxa, which encompass bacteria exploiting diverse ecological niches, such as seawater, oil fields, and estuaries. This physiological r...

  12. Insights into the Mechanism of Homeoviscous Adaptation to Low Temperature in Branched-Chain Fatty Acid-Containing Bacteria through Modeling FabH Kinetics from the Foodborne Pathogen Listeria monocytogenes

    PubMed Central

    Saunders, Lauren P.; Sen, Suranjana; Wilkinson, Brian J.; Gatto, Craig

    2016-01-01

    The psychrotolerant foodborne pathogen Listeria monocytogenes withstands the stress of low temperatures and can proliferate in refrigerated food. Bacteria adapt to growth at low temperatures by increasing the production of fatty acids that increase membrane fluidity. The mechanism of homeoviscous increases in unsaturated fatty acid amounts in bacteria that predominantly contain straight-chain fatty acids is relatively well understood. By contrast the analogous mechanism in branched-chain fatty acid-containing bacteria, such as L. monocytogenes, is poorly understood. L. monocytogenes grows at low temperatures by altering its membrane composition to increase membrane fluidity, primarily by decreasing the length of fatty acid chains and increasing the anteiso to iso fatty acid ratio. FabH, the initiator of fatty acid biosynthesis, has been identified as the primary determinant of membrane fatty acid composition, but the extent of this effect has not been quantified. In this study, previously determined FabH steady-state parameters and substrate concentrations were used to calculate expected fatty acid compositions at 30°C and 10°C. FabH substrates 2-methylbutyryl-CoA, isobutyryl-CoA, and isovaleryl-CoA produce the primary fatty acids in L. monocytogenes, i.e., anteiso-odd, iso-even, and iso-odd fatty acids, respectively. In vivo concentrations of CoA derivatives were measured, but not all were resolved completely. In this case, estimates were calculated from overall fatty acid composition and FabH steady-state parameters. These relative substrate concentrations were used to calculate the expected fatty acid compositions at 10°C. Our model predicted a higher level of anteiso lipids at 10°C than was observed, indicative of an additional step beyond FabH influencing fatty acid composition at low temperatures. The potential for control of low temperature growth by feeding compounds that result in the production of butyryl-CoA, the precursor of SCFAs that rigidify the

  13. Insights into the Mechanism of Homeoviscous Adaptation to Low Temperature in Branched-Chain Fatty Acid-Containing Bacteria through Modeling FabH Kinetics from the Foodborne Pathogen Listeria monocytogenes.

    PubMed

    Saunders, Lauren P; Sen, Suranjana; Wilkinson, Brian J; Gatto, Craig

    2016-01-01

    The psychrotolerant foodborne pathogen Listeria monocytogenes withstands the stress of low temperatures and can proliferate in refrigerated food. Bacteria adapt to growth at low temperatures by increasing the production of fatty acids that increase membrane fluidity. The mechanism of homeoviscous increases in unsaturated fatty acid amounts in bacteria that predominantly contain straight-chain fatty acids is relatively well understood. By contrast the analogous mechanism in branched-chain fatty acid-containing bacteria, such as L. monocytogenes, is poorly understood. L. monocytogenes grows at low temperatures by altering its membrane composition to increase membrane fluidity, primarily by decreasing the length of fatty acid chains and increasing the anteiso to iso fatty acid ratio. FabH, the initiator of fatty acid biosynthesis, has been identified as the primary determinant of membrane fatty acid composition, but the extent of this effect has not been quantified. In this study, previously determined FabH steady-state parameters and substrate concentrations were used to calculate expected fatty acid compositions at 30°C and 10°C. FabH substrates 2-methylbutyryl-CoA, isobutyryl-CoA, and isovaleryl-CoA produce the primary fatty acids in L. monocytogenes, i.e., anteiso-odd, iso-even, and iso-odd fatty acids, respectively. In vivo concentrations of CoA derivatives were measured, but not all were resolved completely. In this case, estimates were calculated from overall fatty acid composition and FabH steady-state parameters. These relative substrate concentrations were used to calculate the expected fatty acid compositions at 10°C. Our model predicted a higher level of anteiso lipids at 10°C than was observed, indicative of an additional step beyond FabH influencing fatty acid composition at low temperatures. The potential for control of low temperature growth by feeding compounds that result in the production of butyryl-CoA, the precursor of SCFAs that rigidify the

  14. Insights into the Mechanism of Homeoviscous Adaptation to Low Temperature in Branched-Chain Fatty Acid-Containing Bacteria through Modeling FabH Kinetics from the Foodborne Pathogen Listeria monocytogenes

    PubMed Central

    Saunders, Lauren P.; Sen, Suranjana; Wilkinson, Brian J.; Gatto, Craig

    2016-01-01

    The psychrotolerant foodborne pathogen Listeria monocytogenes withstands the stress of low temperatures and can proliferate in refrigerated food. Bacteria adapt to growth at low temperatures by increasing the production of fatty acids that increase membrane fluidity. The mechanism of homeoviscous increases in unsaturated fatty acid amounts in bacteria that predominantly contain straight-chain fatty acids is relatively well understood. By contrast the analogous mechanism in branched-chain fatty acid-containing bacteria, such as L. monocytogenes, is poorly understood. L. monocytogenes grows at low temperatures by altering its membrane composition to increase membrane fluidity, primarily by decreasing the length of fatty acid chains and increasing the anteiso to iso fatty acid ratio. FabH, the initiator of fatty acid biosynthesis, has been identified as the primary determinant of membrane fatty acid composition, but the extent of this effect has not been quantified. In this study, previously determined FabH steady-state parameters and substrate concentrations were used to calculate expected fatty acid compositions at 30°C and 10°C. FabH substrates 2-methylbutyryl-CoA, isobutyryl-CoA, and isovaleryl-CoA produce the primary fatty acids in L. monocytogenes, i.e., anteiso-odd, iso-even, and iso-odd fatty acids, respectively. In vivo concentrations of CoA derivatives were measured, but not all were resolved completely. In this case, estimates were calculated from overall fatty acid composition and FabH steady-state parameters. These relative substrate concentrations were used to calculate the expected fatty acid compositions at 10°C. Our model predicted a higher level of anteiso lipids at 10°C than was observed, indicative of an additional step beyond FabH influencing fatty acid composition at low temperatures. The potential for control of low temperature growth by feeding compounds that result in the production of butyryl-CoA, the precursor of SCFAs that rigidify the

  15. Foodborne disease in the new millennium: out of the frying pan and into the fire?

    PubMed

    Hall, Gillian V; D'Souza, Rennie M; Kirk, Martyn D

    About four million cases of foodborne infectious disease occur annually in Australia; new foodborne pathogens, such as enterohaemorrhagic Escherichia coli, are emerging. Climate change, combined with changes in how we produce and distribute food and how we behave as consumers, have the potential to affect foodborne disease in the coming century. Foodborne disease outbreaks are now more far-reaching (and sometimes global) due to modern mass food production and widespread food distribution. There are strong seasonal patterns for Salmonella and Campylobacter infection in Australia. Global warming may increase the incidence of infections, such as salmonellosis, and diseases caused by toxins, such as ciguatera.

  16. Antimicrobial activities of natural antimicrobial compounds against susceptible and antibiotic-resistant pathogens in the absence and presence of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to improve microbial food safety, we are studying the antimicrobial activities of different classes of natural compounds including plant essential oils, apple, grape, olive, and tea extracts, bioactive components, and seashell-derived chitosans against multiple foodborne pathogens in cu...

  17. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  18. Estimating the burden of foodborne diseases in Japan

    PubMed Central

    Kumagai, Yuko; Gilmour, Stuart; Ota, Erika; Momose, Yoshika; Onishi, Toshiro; Bilano, Ver Luanni Feliciano; Kasuga, Fumiko; Sekizaki, Tsutomu

    2015-01-01

    Abstract Objective To assess the burden posed by foodborne diseases in Japan using methods developed by the World Health Organization’s Foodborne Disease Burden Epidemiology Reference Group (FERG). Methods Expert consultation and statistics on food poisoning during 2011 were used to identify three common causes of foodborne disease in Japan: Campylobacter and Salmonella species and enterohaemorrhagic Escherichia coli (EHEC). We conducted systematic reviews of English and Japanese literature on the complications caused by these pathogens, by searching Embase, the Japan medical society abstract database and Medline. We estimated the annual incidence of acute gastroenteritis from reported surveillance data, based on estimated probabilities that an affected person would visit a physician and have gastroenteritis confirmed. We then calculated disability-adjusted life-years (DALYs) lost in 2011, using the incidence estimates along with disability weights derived from published studies. Findings In 2011, foodborne disease caused by Campylobacter species, Salmonella species and EHEC led to an estimated loss of 6099, 3145 and 463 DALYs in Japan, respectively. These estimated burdens are based on the pyramid reconstruction method; are largely due to morbidity rather than mortality; and are much higher than those indicated by routine surveillance data. Conclusion Routine surveillance data may indicate foodborne disease burdens that are much lower than the true values. Most of the burden posed by foodborne disease in Japan comes from secondary complications. The tools developed by FERG appear useful in estimating disease burdens and setting priorities in the field of food safety. PMID:26478611

  19. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  20. AOTF hyperspectral microscope imaging for foodborne bacteria detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food safety is an important public health issue worldwide. Researchers have developed many different methods for detecting foodborne pathogens; however, most technologies currently being used have limitations, in terms of speed, sensitivity and selectivity, for practical use in the food industry. Ac...

  1. Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of high hydrostatic pressure (HPP) and hydrodynamic pressure (HDP), in combination with chemical treatments, was evaluated for inactivation of foodborne viruses and non-pathogenic surrogates in a pork sausage product. Sausages were immersed in water, 100 ppm EDTA, or 2 percent lactoferrin...

  2. [Food-borne botulism].

    PubMed

    Nakamura, Yuko; Sawada, Mikio; Ikeguchi, Kunihiko; Nakano, Imaharu

    2011-09-01

    Botulism is a neuroparalytic disease caused by neurotoxins produced by Clostridium botulinum. Food-borne botulism is a kind of exotoxin-caused food intoxication. Although this disease is rarely reported in Japan now, it is a cause of great concern because of its high mortality rate, and botulism cases should be treated as a public health emergency. Botulism classically presents as acute symmetrical descending flaccid paralysis. Its diagnosis is based on the detection of botulinum toxins in the patient's serum or stool specimens. Electrophysiologic tests of such patients show reduced compound muscle action potentials (CMAPs), low amplitudes and short durations of motor unit potentials (MUPs), and mild waning in repetitive low-frequency stimulations. Single fiber electromyography (EMG) is particularly useful for the diagnosis of botulism. We report a case of food-borne botulism that we had encountered. An 83-year-old man with rapidly progressive diplopia, dysphagia, and tetraplegia was hospitalized; he required intensive care, including artificial ventilatory support. Electrophysiologic tests yielded findings compatible with botulism. We made a clinical diagnosis of food-borne botulism and administered antitoxin on the seventh disease day. The patient's motor symptoms started ameliorating several days after the antitoxin injection. Subsequently, botulinum toxin type A was detected in the patient's serum specimen by using a bioassay, and the type A gene and silent B gene were detected in his serum specimen by using polymerase chain reaction (PCR). C. botulinum was also obtained from stool culture on the 17th and 50th disease days. Botulism is a curable disease if treated early. Although it is a rare condition, it should always be considered in the differential diagnosis of patients with rapid onset of cranial nerve and limb muscle palsies.

  3. Foodborne outbreaks, Austria 2007.

    PubMed

    Much, Peter; Pichler, Juliane; Kasper, Sabine S; Allerberger, Franz

    2009-01-01

    In 2007 Austria reported a total of 438 foodborne outbreaks affecting 1715 people, including 286 hospitalized patients and one death. Salmonella spp. and Campylobacter spp. accounted for 95% of all reported outbreaks. Forty-eight (11%) of the 438 Austrian outbreaks were acquired abroad. Of the 390 domestically acquired foodborne outbreaks, bacterial infection caused 376, viruses (norovirus and 1-time hepatitis A virus) caused 11, and intoxications (Staphylococcus aureus enterotoxins, alkaloid toxins) caused two. In one outbreak the causative agent was unknown. Salmonella spp. caused 264 (70%) of the bacterial outbreaks, Campylobacter spp. caused 104 (28%), enterohemorrhagic Escherichia coli (EHEC O145:H-, O157:H-, O157:H7, O182: H49, O91:H7, ONT:H4) caused six, Shigella flexneri and Shigella sonnei each caused two. The hospitalization rates were 22% for domestically acquired infections with Salmonella spp. and 14% for Campylobacter spp. Among outbreaks where the source was known, eggs were implicated in 49%, meat products (especially poultry) in 44% and fish in 2%. The ratio of household outbreaks to general outbreaks was 82.3% to 17.7%. In 54 of the 62 general domestic outbreaks the following locations of exposure were documented: commercial food suppliers (e.g. restaurants, cafeterias) 24 times, family celebrations, nursery schools, take-aways and barbecues 22 times, nursing homes and hospitals eight times. It is likely that the relatively high number of household outbreaks reflects an insufficient level of epidemiological investigation of outbreaks in Austria. More resources may be needed for identification of individual clusters that belong to larger foodborne outbreaks exceeding district or provincial borders. PMID:19280130

  4. Advances in T Helper 17 Cell Biology: Pathogenic Role and Potential Therapy in Multiple Sclerosis

    PubMed Central

    Volpe, Elisabetta; Battistini, Luca; Borsellino, Giovanna

    2015-01-01

    The discovery of the T helper (Th) 17 lineage, involved in the protection against fungal and extracellular bacterial infections, has profoundly revolutionized our current understanding of T cell-mediated responses in autoimmune diseases, including multiple sclerosis (MS). Indeed, recent data demonstrate the pathogenic role of Th17 cells in autoimmune disorders. In particular, studies in MS and in its animal model (EAE, experimental autoimmune encephalomyelitis) have revealed a crucial role of Th17 cells in the pathogenesis of autoimmune demyelinating diseases in both mice and humans. Over the past years, several important aspects concerning Th17 cells have been elucidated, such as the factors which promote or inhibit their differentiation and the effector cytokines which mediate their responses. The identification of the features endowing Th17 cells with high pathogenicity in MS is of particular interest, and discoveries in Th17 cell biology and function could lead to the design of new strategies aimed at modulating the immune response in MS. Here, we will discuss recent advances in this field, with particular focus on the mechanisms conferring pathogenicity in MS and their potential modulation. PMID:26770017

  5. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    PubMed

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum.

  6. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    PubMed

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  7. Multiple independent transmission cycles of a tick-borne pathogen within a local host community.

    PubMed

    Jacquot, Maude; Abrial, David; Gasqui, Patrick; Bord, Severine; Marsot, Maud; Masseglia, Sébastien; Pion, Angélique; Poux, Valérie; Zilliox, Laurence; Chapuis, Jean-Louis; Vourc'h, Gwenaël; Bailly, Xavier

    2016-01-01

    Many pathogens are maintained by multiple host species and involve multiple strains with potentially different phenotypic characteristics. Disentangling transmission patterns in such systems is often challenging, yet investigating how different host species contribute to transmission is crucial to properly assess and manage disease risk. We aim to reveal transmission cycles of bacteria within the Borrelia burgdorferi species complex, which include Lyme disease agents. We characterized Borrelia genotypes found in 488 infected Ixodes ricinus nymphs collected in the Sénart Forest located near Paris (France). These genotypes were compared to those observed in three sympatric species of small mammals and network analyses reveal four independent transmission cycles. Statistical modelling shows that two cycles involving chipmunks, an introduced species, and non-sampled host species such as birds, are responsible for the majority of tick infections. In contrast, the cycle involving native bank voles only accounts for a small proportion of infected ticks. Genotypes associated with the two primary transmission cycles were isolated from Lyme disease patients, confirming the epidemiological threat posed by these strains. Our work demonstrates that combining high-throughput sequence typing with networks tools and statistical modeling is a promising approach for characterizing transmission cycles of multi-host pathogens in complex ecological settings.

  8. Multiple rare opportunistic and pathogenic fungi in persistent foot skin infection.

    PubMed

    Chan, Giek Far; Sinniah, Sivaranjini; Idris, Tengku Idzzan Nadzirah Tengku; Puad, Mohamad Safwan Ahmad; Abd Rahman, Ahmad Zuhairi

    2013-03-01

    Persistent superficial skin infection caused by multiple fungi is rarely reported. Recently, a number of fungi, both opportunistic and persistent in nature were isolated from the foot skin of a 24-year old male in Malaysia. The fungi were identified as Candida parapsilosis, Rhodotorula mucilaginosa, Phoma spp., Debaryomyces hansenii, Acremonium spp., Aureobasidium pullulans and Aspergillus spp., This is the first report on these opportunistic strains were co-isolated from a healthy individual who suffered from persistent foot skin infection which was diagnosed as athlete's foot for more than 12 years. Among the isolated fungi, C. parapsilosis has been an increasingly common cause of skin infections. R. mucilaginosa and D. hansenii were rarely reported in cases of skin infection. A. pullulans, an emerging fungal pathogen was also being isolated in this case. Interestingly, it was noted that C. parapsilosis, R. mucilaginosa, D. hansenii and A. pullulans are among the common halophiles and this suggests the association of halotolerant fungi in causing persistent superficial skin infection. This discovery will shed light on future research to explore on effective treatment for inhibition of pathogenic halophiles as well as to understand the interaction of multiple fungi in the progress of skin infection.

  9. Multiple independent transmission cycles of a tick-borne pathogen within a local host community.

    PubMed

    Jacquot, Maude; Abrial, David; Gasqui, Patrick; Bord, Severine; Marsot, Maud; Masseglia, Sébastien; Pion, Angélique; Poux, Valérie; Zilliox, Laurence; Chapuis, Jean-Louis; Vourc'h, Gwenaël; Bailly, Xavier

    2016-01-01

    Many pathogens are maintained by multiple host species and involve multiple strains with potentially different phenotypic characteristics. Disentangling transmission patterns in such systems is often challenging, yet investigating how different host species contribute to transmission is crucial to properly assess and manage disease risk. We aim to reveal transmission cycles of bacteria within the Borrelia burgdorferi species complex, which include Lyme disease agents. We characterized Borrelia genotypes found in 488 infected Ixodes ricinus nymphs collected in the Sénart Forest located near Paris (France). These genotypes were compared to those observed in three sympatric species of small mammals and network analyses reveal four independent transmission cycles. Statistical modelling shows that two cycles involving chipmunks, an introduced species, and non-sampled host species such as birds, are responsible for the majority of tick infections. In contrast, the cycle involving native bank voles only accounts for a small proportion of infected ticks. Genotypes associated with the two primary transmission cycles were isolated from Lyme disease patients, confirming the epidemiological threat posed by these strains. Our work demonstrates that combining high-throughput sequence typing with networks tools and statistical modeling is a promising approach for characterizing transmission cycles of multi-host pathogens in complex ecological settings. PMID:27498685

  10. Multiple independent transmission cycles of a tick-borne pathogen within a local host community

    PubMed Central

    Jacquot, Maude; Abrial, David; Gasqui, Patrick; Bord, Severine; Marsot, Maud; Masseglia, Sébastien; Pion, Angélique; Poux, Valérie; Zilliox, Laurence; Chapuis, Jean-Louis; Vourc’h, Gwenaël; Bailly, Xavier

    2016-01-01

    Many pathogens are maintained by multiple host species and involve multiple strains with potentially different phenotypic characteristics. Disentangling transmission patterns in such systems is often challenging, yet investigating how different host species contribute to transmission is crucial to properly assess and manage disease risk. We aim to reveal transmission cycles of bacteria within the Borrelia burgdorferi species complex, which include Lyme disease agents. We characterized Borrelia genotypes found in 488 infected Ixodes ricinus nymphs collected in the Sénart Forest located near Paris (France). These genotypes were compared to those observed in three sympatric species of small mammals and network analyses reveal four independent transmission cycles. Statistical modelling shows that two cycles involving chipmunks, an introduced species, and non-sampled host species such as birds, are responsible for the majority of tick infections. In contrast, the cycle involving native bank voles only accounts for a small proportion of infected ticks. Genotypes associated with the two primary transmission cycles were isolated from Lyme disease patients, confirming the epidemiological threat posed by these strains. Our work demonstrates that combining high-throughput sequence typing with networks tools and statistical modeling is a promising approach for characterizing transmission cycles of multi-host pathogens in complex ecological settings. PMID:27498685

  11. Draft Genome Sequence of a Pathogenic O86:H25 Sequence Type 57 Escherichia coli Strain Isolated from Poultry and Carrying 12 Acquired Antibiotic Resistance Genes.

    PubMed

    Jones-Dias, Daniela; Manageiro, Vera; Sampaio, Daniel Ataíde; Vieira, Luís; Caniça, Manuela

    2015-01-01

    Escherichia coli is a commensal bacterium that is frequently associated with multidrug-resistant zoonotic and foodborne infections. Here, we report the 5.6-Mbp draft genome sequence of an E. coli recovered from poultry, which encodes multiple acquired antibiotic resistance determinants, virulence factors, pathogenicity determinants, and mobile genetic elements. PMID:26404585

  12. Foodborne anisakiasis and allergy.

    PubMed

    Baird, Fiona J; Gasser, Robin B; Jabbar, Abdul; Lopata, Andreas L

    2014-08-01

    Human anisakiasis, a disease caused by Anisakis spp. (Nematoda), is often associated with clinical signs that are similar to those associated with bacterial or viral gastroenteritis. With the globalisation of the seafood industry, the risk of humans acquiring anisakiasis in developed countries appears to be underestimated. The importance of this disease is not only in its initial manifestation, which can often become chronic if the immune response does not eliminate the worm, but, importantly, in its subsequent sensitisation of the human patient. This sensitisation to Anisakis-derived allergens can put the patient at risk of an allergic exacerbation upon secondary exposure. This article reviews some aspects of this food-borne disease and explains its link to chronic, allergic conditions in humans. PMID:24583228

  13. Foodborne anisakiasis and allergy.

    PubMed

    Baird, Fiona J; Gasser, Robin B; Jabbar, Abdul; Lopata, Andreas L

    2014-08-01

    Human anisakiasis, a disease caused by Anisakis spp. (Nematoda), is often associated with clinical signs that are similar to those associated with bacterial or viral gastroenteritis. With the globalisation of the seafood industry, the risk of humans acquiring anisakiasis in developed countries appears to be underestimated. The importance of this disease is not only in its initial manifestation, which can often become chronic if the immune response does not eliminate the worm, but, importantly, in its subsequent sensitisation of the human patient. This sensitisation to Anisakis-derived allergens can put the patient at risk of an allergic exacerbation upon secondary exposure. This article reviews some aspects of this food-borne disease and explains its link to chronic, allergic conditions in humans.

  14. Globally invading populations of the fungal plant pathogen Verticillium dahliae are dominated by multiple divergent lineages.

    PubMed

    Short, Dylan P G; Gurung, Suraj; Gladieux, Pierre; Inderbitzin, Patrik; Atallah, Zahi K; Nigro, Franco; Li, Guoqing; Benlioglu, Seher; Subbarao, Krishna V

    2015-08-01

    The spread of aggressive fungal pathogens into previously non-endemic regions is a major threat to plant health and food security. Analyses of the spatial and genetic structure of plant pathogens offer valuable insights into their origin, dispersal mechanisms and evolution, and have been useful to develop successful disease management strategies. Here, we elucidated the genetic diversity, population structure and demographic history of worldwide invasion of the ascomycete Verticillium dahliae, a soil-borne pathogen, using a global collection of 1100 isolates from multiple plant hosts and countries. Seven well-differentiated genetic clusters were revealed through discriminant analysis of principal components (DAPC), but no strong associations between these clusters and host/geographic origin of isolates were found. Analyses of clonal evolutionary relationships among multilocus genotypes with the eBURST algorithm and analyses of genetic distances revealed that genetic clusters represented several ancient evolutionary lineages with broad geographic distribution and wide host range. Comparison of different scenarios of demographic history using approximate Bayesian computations revealed the branching order among the different genetic clusters and lineages. The different lineages may represent incipient species, and this raises questions with respect to their evolutionary origin and the factors allowing their maintenance in the same areas and same hosts without evidence of admixture between them. Based on the above findings and the biology of V. dahliae, we conclude that anthropogenic movement has played an important role in spreading V. dahliae lineages. Our findings have implications for the development of management strategies such as quarantine measures and crop resistance breeding.

  15. Foodborne illness outbreaks in Korea and Japan studied retrospectively.

    PubMed

    Lee, W C; Lee, M J; Kim, J S; Park, S Y

    2001-06-01

    The average prevalence of reported foodborne illness from 1981 to 1995 was 2.44 per 100,000 population in Korea, and 28.01 in Japan. The mean case fatality rate in Korea was 0.74% and in Japan, 0.03%. When both prevalence and case fatality rates in Korea and Japan were compared during the same period, the prevalence in Japan was much higher than that in Korea. However, the case fatality rate of patients in Korea was much higher than that in Japan. The distribution of monthly and seasonal patterns of foodborne illness outbreaks strongly indicate the outbreaks may be associated with climatic conditions, frequencies of national holidays, and vacation seasons. Comparison study indicates that the foodborne illness outbreaks in Korea most frequently involved homemade foods (47% of the total cases); in Japan, restaurants accounted for 31.3%. Foodborne illness cases of bacterial origin in Korea were 59.3% of the total and included Salmonella spp. (20.7%). Vibrio (17.4%), Staphylococcus (9.7%), pathogenic Escherichia coli (2.4%), and other species (9.1%); in Japan, 72.8% of the total cases and the majority of the bacterial foodborne illness was caused by Vibrio (32.3%), Staphylococcus (15.9%), Salmonella (14.2%), pathogenic E. coli (3.0%), and other species (7.2%). In conclusion, the outbreaks of foodborne illness in Korea and Japan may be mainly caused by improper food handling, and their occurrences may be differentiated according to food sources. PMID:11403148

  16. Norovirus and Foodborne Disease, United States, 1991–2000

    PubMed Central

    Sulka, Alana; Bulens, Sandra N.; Beard, R. Suzanne; Chaves, Sandra S.; Hammond, Roberta; Salehi, Ellen D.P.; Swanson, Ellen; Totaro, Jessica; Woron, Ray; Mead, Paul S.; Bresee, Joseph S.; Monroe, Stephan S.; Glass, Roger I.

    2005-01-01

    Efforts to prevent foodborne illness target bacterial pathogens, yet noroviruses (NoV) are suspected to be the most common cause of gastroenteritis. New molecular assays allow for better estimation of the role of NoV in foodborne illness. We analyzed 8,271 foodborne outbreaks reported to the Centers for Disease Control and Prevention from 1991 to 2000 and additional data from 6 states. The proportion of NoV-confirmed outbreaks increased from 1% in 1991 to 12% in 2000. However, from 1998 to 2000, 76% of NoV outbreaks were reported by only 11 states. In 2000, an estimated 50% of foodborne outbreaks in 6 states were attributable to NoV. NoV outbreaks were larger than bacterial outbreaks (median persons affected: 25 versus 15), and 10% of affected persons sought medical care; 1% were hospitalized. More widespread use of molecular assays will permit better estimates of the role of NoV illness and help direct efforts to control foodborne illness. PMID:15705329

  17. Characterization of foodborne Staphylococcus aureus isolates: association of toxin gene profile with genotype and food commodities in Shanghai, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus is an important clinical and foodborne pathogen. Zoonotic risk of transmission to humans highlights the need to understand the ecology of S. aureus in various foods. We characterized the genetic diversity and the distribution of 25 toxin genes in 142 foodborne Staphylococcus au...

  18. From ontology selection and semantic web to the integrated information system of food-borne diseases and food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last three decades, the rapid explosion of information and resources on human food-borne diseases and food safety has provided the ability to rapidly determine and interpret the mechanisms of survival and pathogenesis of food-borne pathogens. However, several factors have hindered effective...

  19. A large outbreak of salmonellosis associated with sandwiches contaminated with multiple bacterial pathogens purchased via an online shopping service.

    PubMed

    Wei, Sung-Hsi; Huang, Angela S; Liao, Ying-Shu; Liu, Yu-Lun; Chiou, Chien-Shun

    2014-03-01

    Food sold over the internet is an emerging business that also presents a concern with regard to food safety. A nationwide foodborne disease outbreak associated with sandwiches purchased from an online shop in July 2010 is reported. Consumers were telephone interviewed with a structured questionnaire and specimens were collected for etiological examination. A total of 886 consumers were successfully contacted and completed the questionnaires; 36.6% had become ill, with a median incubation period of 18 h (range, 6-66 h). The major symptoms included diarrhea (89.2%), abdominal pain (69.8%), fever (47.5%), headache (32.7%), and vomiting (17.3%). Microbiological laboratories isolated Salmonella enterica serovar Enteritidis, Salmonella Virchow, Staphylococcus aureus, Bacillus cereus, and enterotoxigenic Escherichia coli from the contaminated sandwiches, Salmonella Enteritidis and Salmonella Virchow from the patients, and Salmonella Enteritidis and Staphylococcus aureus from food handlers. Pulsed-field gel electrophoresis genotyping suggested a common origin of Salmonella bacteria recovered from the patients, food, and a food handler. Among the pathogens detected, the symptoms and incubation period indicated that Salmonella, likely of egg origin, was the probable causative agent of the outbreak. This outbreak illustrates the importance of meticulous hygiene practices during food preparation and temperature control during food shipment and the food safety challenges posed by online food-shopping services.

  20. A large outbreak of salmonellosis associated with sandwiches contaminated with multiple bacterial pathogens purchased via an online shopping service.

    PubMed

    Wei, Sung-Hsi; Huang, Angela S; Liao, Ying-Shu; Liu, Yu-Lun; Chiou, Chien-Shun

    2014-03-01

    Food sold over the internet is an emerging business that also presents a concern with regard to food safety. A nationwide foodborne disease outbreak associated with sandwiches purchased from an online shop in July 2010 is reported. Consumers were telephone interviewed with a structured questionnaire and specimens were collected for etiological examination. A total of 886 consumers were successfully contacted and completed the questionnaires; 36.6% had become ill, with a median incubation period of 18 h (range, 6-66 h). The major symptoms included diarrhea (89.2%), abdominal pain (69.8%), fever (47.5%), headache (32.7%), and vomiting (17.3%). Microbiological laboratories isolated Salmonella enterica serovar Enteritidis, Salmonella Virchow, Staphylococcus aureus, Bacillus cereus, and enterotoxigenic Escherichia coli from the contaminated sandwiches, Salmonella Enteritidis and Salmonella Virchow from the patients, and Salmonella Enteritidis and Staphylococcus aureus from food handlers. Pulsed-field gel electrophoresis genotyping suggested a common origin of Salmonella bacteria recovered from the patients, food, and a food handler. Among the pathogens detected, the symptoms and incubation period indicated that Salmonella, likely of egg origin, was the probable causative agent of the outbreak. This outbreak illustrates the importance of meticulous hygiene practices during food preparation and temperature control during food shipment and the food safety challenges posed by online food-shopping services. PMID:24313786

  1. The wheat Lr34 gene provides resistance against multiple fungal pathogens in barley.

    PubMed

    Risk, Joanna M; Selter, Liselotte L; Chauhan, Harsh; Krattinger, Simon G; Kumlehn, Jochen; Hensel, Goetz; Viccars, Libby A; Richardson, Terese M; Buesing, Gabriele; Troller, Anna; Lagudah, Evans S; Keller, Beat

    2013-09-01

    The Lr34 gene encodes an ABC transporter and has provided wheat with durable, broad-spectrum resistance against multiple fungal pathogens for over 100 years. Because barley does not have an Lr34 ortholog, we expressed Lr34 in barley to investigate its potential as a broad-spectrum resistance resource in another grass species. We found that introduction of the genomic Lr34 sequence confers resistance against barley leaf rust and barley powdery mildew, two pathogens specific for barley but not virulent on wheat. In addition, the barley lines showed enhanced resistance against wheat stem rust. Transformation with the Lr34 cDNA or the genomic susceptible Lr34 allele did not result in increased resistance. Unlike wheat, where Lr34-conferred resistance is associated with adult plants, the genomic Lr34 transgenic barley lines exhibited multipathogen resistance in seedlings. These transgenic barley lines also developed leaf tip necrosis (LTN) in young seedlings, which correlated with an up-regulation of senescence marker genes and several pathogenesis-related (PR) genes. In wheat, transcriptional expression of Lr34 is highest in adult plants and correlates with increased resistance and LTN affecting the last emerging leaf. The severe phenotype of transgenic Lr34 barley resulted in reduced plant growth and total grain weight. These results demonstrate that Lr34 provides enhanced multipathogen resistance early in barley plant development and implies the conservation of the substrate and mechanism of the LR34 transporter and its molecular action between wheat and barley. With controlled gene expression, the use of Lr34 may be valuable for many cereal breeding programmes, particularly given its proven durability.

  2. [New foodborne infections].

    PubMed

    Rottman, Martin; Gaillard, Jean-Louis

    2003-05-15

    The last 20 years have witnessed a profound reshaping of the spectrum of foodborne infections in industrialized countries. Food products are overall very safe, but the industrial scale and standardisation of food production have spawned spectacular epidemics, bringing into the light previously little known microorganisms such as Listeria or Escherichia coli O157:H7, the causative agent of the "hamburger disease". The recent "mad cow disease" crisis is another illustration of a food industry gone astray under the pressure of underlying economic stakes. Through unprecedented efforts from the countries involved--epitomized in France by the creation of the Agence française de sécurité sannitaire des aliments in 1999--these diseases are about to be curtailed in their epidemic form. But new dangers emerge yet with Campylobacter infections, Norovirus gastroenteritis or the spread of multi-resistant bacteria. Issues mostly unknown to the general public that are likely to be strongly publicized in the future. PMID:12846023

  3. Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains. To evaluate the genetic diversity of Lymantria dispar nucleopolyhedrovirus (LdMNPV) at the genomic level, the genomes of three isolates of...

  4. Estimating the burden of foodborne disease, South Korea, 2008-2012.

    PubMed

    Park, Myoung Su; Kim, Yong Soo; Lee, Soon Ho; Kim, Soon Han; Park, Ki Hwan; Bahk, Gyung Jin

    2015-03-01

    Estimating the actual occurrence of foodborne illness is challenging because only a small proportion of foodborne illnesses are confirmed and reported. Many studies have attempted to accurately estimate the overall number of cases of foodborne illness, but none have attempted to estimate the burden of foodborne disease in South Korea. This study used data from the Health Insurance Review and Assessment Service (HIRA), a public health surveillance system in South Korea, to calculate the number of cases and hospitalizations due to 18 specific pathogens and unspecified agents commonly transmitted through contaminated food between 2008 and 2012 in South Korea while accounting for uncertainty in the estimate. The estimated annual occurrences of foodborne illness were 336,138 (90% credible interval [CrI]: 258,379-430,740), with inpatient stays (hospitalizations), outpatient visits (foodborne disease infections), and patients' experiences (without visiting physicians) accounting for 2.3% (n=7809 [90% CrI: 7016-8616]), 14.4% (n=48,267 [90% CrI: 45,883-50,695]) and 83.3% (n=280,062 [90% CrI: 201,795-374,091]), respectively. Escherichia coli, including enterohemorrhagic E. coli, caused most illnesses, followed by nontyphoidal Salmonella spp., Staphylococcus aureus, hepatitis A virus, and norovirus. These results will be useful to food safety policymakers for the prevention and control of foodborne pathogens in South Korea.

  5. Evolution of host range in Coleosporium ipomoeae, a plant pathogen with multiple hosts.

    PubMed

    Chappell, Thomas M; Rausher, Mark D

    2016-05-10

    Plants and their pathogens coevolve locally. Previous investigations of one host-one pathogen systems have demonstrated that natural selection favors pathogen genotypes that are virulent on a broad range of host genotypes. In the present study, we examine a system consisting of one pathogen species that infects three host species in the morning glory genus Ipomoea. We show that many pathogen genotypes can infect two or three of the host species when tested on plants from nonlocal communities. By contrast, pathogen genotypes are highly host-specific, infecting only one host species, when tested on host species from the local community. This pattern indicates that within-community evolution narrows the host breadth of pathogen genotypes. Possible evolutionary mechanisms include direct selection for narrow host breadth due to costs of virulence and evolution of ipomoea resistance in the host species. PMID:27114547

  6. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens.

  7. Epidemiology of foodborne diseases: a worldwide review.

    PubMed

    Todd, E C

    1997-01-01

    the world do show some common elements. Salmonella is still the most important agent causing acute foodborne disease, with Salmonella enteritidis and S. typhimurium being of most concern. Foods of animal origin, particularly, meat and eggs, were most often implicated. Desserts, ice cream and confectionery items were products also mentioned, but some of these would have egg as a raw or incompletely cooked ingredient. Incidents most frequently occurred in homes or restaurants, and the main factors contributing to outbreaks were poor temperature control in preparing, cooking and storing food. Clostridium botulinum, Salmonella and VTEC are more frequently documented in industrialized than in developing countries. ETEC, EPEC, Shigella, Vibrio cholerae and parasites are the main scourges in developing countries, but it is uncertain how many cases are attributed to food, to water or to person-to-person transmission. The apparent decrease of S. aureus and C. perfringens outbreaks in industrialized countries may be related to improved temperature control in the kitchen. An increasing number of illnesses are international in scope, with contamination in a commercial product occurring in one country and affecting persons in several other countries, or tourists being infected abroad and possibly transmitting the pathogen to others at home. For Salmonella, a rapid alert and response coordination is being encouraged through Salm-Net and other international programs. However, unless such a network is worldwide, tracking clusters of illnesses is going to fall on the countries where the first cases occur, and some of these have very limited resources for investigation and control. It was heartening to see funds recently being allocated to foodborne disease surveillance and control in several industrialized countries, but the same commitment is required by the World Health Organization for the international community.

  8. Aryl hydrocarbon receptor knock-out exacerbates choroidal neovascularization via multiple pathogenic pathways.

    PubMed

    Choudhary, Mayur; Kazmin, Dmitri; Hu, Peng; Thomas, Russell S; McDonnell, Donald P; Malek, Goldis

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a heterodimeric transcriptional regulator with pleiotropic functions in xenobiotic metabolism and detoxification, vascular development and cancer. Herein, we report a previously undescribed role for the AhR signalling pathway in the pathogenesis of the wet, neovascular subtype of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly in the Western world. Comparative analysis of gene expression profiles of aged AhR(-/-) and wild-type (wt) mice, using high-throughput RNA sequencing, revealed differential modulation of genes belonging to several AMD-related pathogenic pathways, including inflammation, angiogenesis and extracellular matrix regulation. To investigate AhR regulation of these pathways in wet AMD, we experimentally induced choroidal neovascular lesions in AhR(-/-) mice and found that they measured significantly larger in area and volume compared to age-matched wt mice. Furthermore, these lesions displayed a higher number of ionized calcium-binding adaptor molecule 1-positive (Iba1(+) ) microglial cells and a greater amount of collagen type IV deposition, events also seen in human wet AMD pathology specimens. Consistent with our in vivo observations, AhR knock-down was sufficient to increase choroidal endothelial cell migration and tube formation in vitro. Moreover, AhR knock-down caused an increase in collagen type IV production and secretion in both retinal pigment epithelial (RPE) and choroidal endothelial cell cultures, increased expression of angiogenic and inflammatory molecules, including vascular endothelial growth factor A (VEGFA) and chemokine (C-C motif) ligand 2 (CCL2) in RPE cells, and increased expression of secreted phosphoprotein 1 (SPP1) and transforming growth factor-β1 (TGFβ1) in choroidal endothelial cells. Collectively, our findings identify AhR as a regulator of multiple pathogenic pathways in experimentally induced choroidal neovascularization, findings that

  9. Aryl hydrocarbon receptor knock-out exacerbates choroidal neovascularization via multiple pathogenic pathways

    PubMed Central

    Choudhary, Mayur; Kazmin, Dmitri; Hu, Peng; Thomas, Russell S; McDonnell, Donald P; Malek, Goldis

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a heterodimeric transcriptional regulator with pleiotropic functions in xenobiotic metabolism and detoxification, vascular development and cancer. Herein, we report a previously undescribed role for the AhR signalling pathway in the pathogenesis of the wet, neovascular subtype of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly in the Western world. Comparative analysis of gene expression profiles of aged AhR−/− and wild-type (wt) mice, using high-throughput RNA sequencing, revealed differential modulation of genes belonging to several AMD-related pathogenic pathways, including inflammation, angiogenesis and extracellular matrix regulation. To investigate AhR regulation of these pathways in wet AMD, we experimentally induced choroidal neovascular lesions in AhR−/− mice and found that they measured significantly larger in area and volume compared to age-matched wt mice. Furthermore, these lesions displayed a higher number of ionized calcium-binding adaptor molecule 1-positive (Iba1+) microglial cells and a greater amount of collagen type IV deposition, events also seen in human wet AMD pathology specimens. Consistent with our in vivo observations, AhR knock-down was sufficient to increase choroidal endothelial cell migration and tube formation in vitro. Moreover, AhR knock-down caused an increase in collagen type IV production and secretion in both retinal pigment epithelial (RPE) and choroidal endothelial cell cultures, increased expression of angiogenic and inflammatory molecules, including vascular endothelial growth factor A (VEGFA) and chemokine (C–C motif) ligand 2 (CCL2) in RPE cells, and increased expression of secreted phosphoprotein 1 (SPP1) and transforming growth factor-β1 (TGFβ1) in choroidal endothelial cells. Collectively, our findings identify AhR as a regulator of multiple pathogenic pathways in experimentally induced choroidal neovascularization, findings that

  10. Impacts of globalisation on foodborne parasites.

    PubMed

    Robertson, Lucy J; Sprong, Hein; Ortega, Ynes R; van der Giessen, Joke W B; Fayer, Ron

    2014-01-01

    Globalisation is a manmade phenomenon encompassing the spread and movement of everything, animate and inanimate, material and intangible, around the planet. The intentions of globalisation may be worthy--but may also have unintended consequences. Pathogens may also be spread, enabling their establishment in new niches and exposing new human and animal populations to infection. The plethora of foodborne parasites that could be distributed by globalisation has only recently been acknowledged and will provide challenges for clinicians, veterinarians, diagnosticians, and everyone concerned with food safety. Globalisation may also provide the resources to overcome some of these challenges. It will facilitate sharing of methods and approaches, and establishment of systems and databases that enable control of parasites entering the global food chain. PMID:24140284

  11. Impacts of globalisation on foodborne parasites.

    PubMed

    Robertson, Lucy J; Sprong, Hein; Ortega, Ynes R; van der Giessen, Joke W B; Fayer, Ron

    2014-01-01

    Globalisation is a manmade phenomenon encompassing the spread and movement of everything, animate and inanimate, material and intangible, around the planet. The intentions of globalisation may be worthy--but may also have unintended consequences. Pathogens may also be spread, enabling their establishment in new niches and exposing new human and animal populations to infection. The plethora of foodborne parasites that could be distributed by globalisation has only recently been acknowledged and will provide challenges for clinicians, veterinarians, diagnosticians, and everyone concerned with food safety. Globalisation may also provide the resources to overcome some of these challenges. It will facilitate sharing of methods and approaches, and establishment of systems and databases that enable control of parasites entering the global food chain.

  12. Emerging foodborne diseases: an evolving public health challenge.

    PubMed Central

    Tauxe, R. V.

    1997-01-01

    The epidemiology of foodborne disease is changing. New pathogens have emerged, and some have spread worldwide. Many, including Salmonella, Escherichia coli O157:H7, Campylobacter, and Yersinia enterocolitica, have reservoirs in healthy food animals, from which they spread to an increasing variety of foods. These pathogens cause millions of cases of sporadic illness and chronic complications, as well as large and challenging outbreaks over many states and nations. Improved surveillance that combines rapid subtyping methods, cluster identification, and collaborative epidemiologic investigation can identify and halt large, dispersed outbreaks. Outbreak investigations and case-control studies of sporadic cases can identify sources of infection and guide the development of specific prevention strategies. Better understanding of how pathogens persist in animal reservoirs is also critical to successful long-term prevention. In the past, the central challenge of foodborne disease lay in preventing the contamination of human food with sewage or animal manure. In the future, prevention of foodborne disease will increasingly depend on controlling contamination of feed and water consumed by the animals themselves. PMID:9366593

  13. Comparative Genomics of Multiple Strains of Pseudomonas cannabina pv. alisalensis, a Potential Model Pathogen of Both Monocots and Dicots

    PubMed Central

    Sarris, Panagiotis F.; Trantas, Emmanouil A.; Baltrus, David A.; Bull, Carolee T.; Wechter, William Patrick; Yan, Shuangchun; Ververidis, Filippos; Almeida, Nalvo F.; Jones, Corbin D.; Dangl, Jeffery L.; Panopoulos, Nickolas J.; Vinatzer, Boris A.; Goumas, Dimitrios E.

    2013-01-01

    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity. PMID:23555661

  14. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots.

    PubMed

    Sarris, Panagiotis F; Trantas, Emmanouil A; Baltrus, David A; Bull, Carolee T; Wechter, William Patrick; Yan, Shuangchun; Ververidis, Filippos; Almeida, Nalvo F; Jones, Corbin D; Dangl, Jeffery L; Panopoulos, Nickolas J; Vinatzer, Boris A; Goumas, Dimitrios E

    2013-01-01

    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal), which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs). While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.

  15. Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes.

    PubMed

    Callejón, Raquel M; Rodríguez-Naranjo, M Isabel; Ubeda, Cristina; Hornedo-Ortega, Ruth; Garcia-Parrilla, M Carmen; Troncoso, Ana M

    2015-01-01

    The consumption of fruit and vegetables continues to rise in the United States and European Union due to healthy lifestyle recommendations. Meanwhile, the rate of foodborne illness caused by the consumption of these products remains high in both regions, representing a significant public health and financial issue. This study addresses the occurrence of reported foodborne outbreaks associated with fresh fruits and vegetables consumption in the United States and European Union during the period 2004-2012, where data are available. Special attention is paid to those pathogens responsible for these outbreaks, the mechanisms of contamination, and the fresh produce vehicles involved. Norovirus is shown to be responsible for most of the produce-related outbreaks, followed by Salmonella. Norovirus is mainly linked with the consumption of salad in the United States and of berries in the European Union, as demonstrated by the Multiple Correspondence Analysis (MCA). Salmonella was the leading cause of multistate produce outbreaks in the United States and was the pathogen involved in the majority of sprouts-associated outbreaks. As is reflected in the MCA, the pattern of fresh produce outbreaks differed in the United States and European Union by the type of microorganism and the food vehicle involved.

  16. Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks.

    PubMed

    Hamilton, K A; Ahmed, W; Palmer, A; Sidhu, J P S; Hodgers, L; Toze, S; Haas, C N

    2016-10-01

    A study of six potential opportunistic pathogens (Acanthamoeba spp., Legionella spp., Legionella longbeachae, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) and an accidental human pathogen (Legionella pneumophila) in 134 roof-harvested rainwater (RHRW) tank samples was conducted using quantitative PCR (qPCR). All five opportunistic pathogens and accidental pathogen L. pneumophila were detected in rainwater tanks except Legionella longbeachae. Concentrations ranged up to 3.1×10(6) gene copies per L rainwater for Legionella spp., 9.6×10(5) gene copies per L for P. aeruginosa, 6.8×10(5) gene copies per L for M. intracellulare, 6.6×10(5) gene copies per L for Acanthamoeba spp., 1.1×10(5) gene copies per L for M. avium, and 9.8×10(3) gene copies per L for L. pneumophila. Among the organisms tested, Legionella spp. (99% tanks) were the most prevalent followed by M. intracellulare (78%). A survey of tank-owners provided data on rainwater end-uses. Fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp. were enumerated using culture-based methods, and assessed for correlations with opportunistic pathogens and L. pneumophila tested in this study. Opportunistic pathogens did not correlate well with FIB except E. coli vs. Legionella spp. (tau=0.151, P=0.009) and E. coli vs. M. intracellulare (tau=0.14, P=0.015). However, M. avium weakly correlated with both L. pneumophila (Kendall's tau=0.017, P=0.006) and M. intracellulare (tau=0.088, P=0.027), and Legionella spp. also weakly correlated with M. intracellulare (tau=0.128, P=0.028). The presence of these potential opportunistic pathogens in tank water may present health risks from both the potable and non-potable uses documented from the current survey data. PMID:27336236

  17. Public health implications of Acanthamoeba and multiple potential opportunistic pathogens in roof-harvested rainwater tanks.

    PubMed

    Hamilton, K A; Ahmed, W; Palmer, A; Sidhu, J P S; Hodgers, L; Toze, S; Haas, C N

    2016-10-01

    A study of six potential opportunistic pathogens (Acanthamoeba spp., Legionella spp., Legionella longbeachae, Pseudomonas aeruginosa, Mycobacterium avium and Mycobacterium intracellulare) and an accidental human pathogen (Legionella pneumophila) in 134 roof-harvested rainwater (RHRW) tank samples was conducted using quantitative PCR (qPCR). All five opportunistic pathogens and accidental pathogen L. pneumophila were detected in rainwater tanks except Legionella longbeachae. Concentrations ranged up to 3.1×10(6) gene copies per L rainwater for Legionella spp., 9.6×10(5) gene copies per L for P. aeruginosa, 6.8×10(5) gene copies per L for M. intracellulare, 6.6×10(5) gene copies per L for Acanthamoeba spp., 1.1×10(5) gene copies per L for M. avium, and 9.8×10(3) gene copies per L for L. pneumophila. Among the organisms tested, Legionella spp. (99% tanks) were the most prevalent followed by M. intracellulare (78%). A survey of tank-owners provided data on rainwater end-uses. Fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp. were enumerated using culture-based methods, and assessed for correlations with opportunistic pathogens and L. pneumophila tested in this study. Opportunistic pathogens did not correlate well with FIB except E. coli vs. Legionella spp. (tau=0.151, P=0.009) and E. coli vs. M. intracellulare (tau=0.14, P=0.015). However, M. avium weakly correlated with both L. pneumophila (Kendall's tau=0.017, P=0.006) and M. intracellulare (tau=0.088, P=0.027), and Legionella spp. also weakly correlated with M. intracellulare (tau=0.128, P=0.028). The presence of these potential opportunistic pathogens in tank water may present health risks from both the potable and non-potable uses documented from the current survey data.

  18. Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois.

    PubMed

    Hamer, S A; Lehrer, E; Magle, S B

    2012-08-01

    Wild birds are important in the maintenance and transmission of many zoonotic pathogens. With increasing urbanization and the resulting emergence of zoonotic diseases, it is critical to understand the relationships among birds, vectors, zoonotic pathogens, and the urban landscape. Here, we use wild birds as sentinels across a gradient of urbanization to understand the relative risk of diseases caused by three types of zoonotic pathogens: Salmonella pathogens, mosquito-borne West Nile virus (WNV) and tick-borne pathogens, including the agents of Lyme disease and human anaplasmosis. Wild birds were captured using mist nets at five sites throughout greater Chicago, Illinois, and blood, faecal and ectoparasite samples were collected for diagnostic testing. A total of 289 birds were captured across all sites. A total of 2.8% of birds harboured Ixodes scapularis--the blacklegged tick--of which 54.5% were infected with the agent of Lyme disease, and none were infected with the agent of human anaplasmosis. All infested birds were from a single site that was relatively less urban. A single bird, captured at the only field site in which supplemental bird feeding was practised within the mist netting zone, was infected with Salmonella enterica subspecies enterica. While no birds harboured WNV in their blood, 3.5% of birds were seropositive, and birds from more urban sites had higher exposure to the virus than those from less urban sites. Our results demonstrate the presence of multiple bird-borne zoonotic pathogens across a gradient of urbanization and provide an assessment of potential public health risks to the high-density human populations within the area. PMID:22353581

  19. Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois.

    PubMed

    Hamer, S A; Lehrer, E; Magle, S B

    2012-08-01

    Wild birds are important in the maintenance and transmission of many zoonotic pathogens. With increasing urbanization and the resulting emergence of zoonotic diseases, it is critical to understand the relationships among birds, vectors, zoonotic pathogens, and the urban landscape. Here, we use wild birds as sentinels across a gradient of urbanization to understan