Sample records for multiple fuel options

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasiblemore » to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)« less

  2. Global models for synthetic fuels planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamontagne, J.

    1983-10-01

    This study was performed to identify the set of existing global models with the best potential for use in the US Synthetic Fuels Corporation's strategic planning process, and to recommend the most appropriate model. The study was limited to global models with representations that encompass time horizons beyond the year 2000, multiple fuel forms, and significant regional detail. Potential accessibility to the Synthetic Fuels Corporation and adequate documentation were also required. Four existing models (LORENDAS, WIM, IIASA, and IEA/ORAU) were judged to be the best candidates for the SFC's use at this time; none of the models appears to bemore » ideal for the SFC's purposes. On the basis of currently available information, the most promising short-term option open to the SFC is the use of LORENDAS, with careful attention to definition of alternative energy demand scenarios. Longer-term options which deserve further study are coupling LORENDAS with an explicit model of energy demand, and modification of the IEA/ORAU model to include finer time-period definition and additional technological detail.« less

  3. Screening and Evaluation Tool (SET) Users Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pincock, Layne

    This document is the users guide to using the Screening and Evaluation Tool (SET). SET is a tool for comparing multiple fuel cycle options against a common set of criteria and metrics. It does this using standard multi-attribute utility decision analysis methods.

  4. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  5. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  6. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  7. 40 CFR 86.1413 - Fuel specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Trucks; Certification Short Test Procedures § 86.1413 Fuel specifications. (a) The test fuel to be used... section. (b) CST test fuels by option. (1) Test Option 1: Use Cold CO fuel as specified in the table in § 86.213-94. (2) Test Option 2: Use Cold CO fuel, as specified in the table in § 86.213-94; optionally...

  8. Exploration of Configuration Options for a Large Civil Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Russell, Carl; Johnson, Wayne

    2013-01-01

    Multiple compound helicopter configurations are designed using a combination of rotorcraft sizing and comprehensive analysis codes. Results from both the conceptual design phase and rotor comprehensive analysis are presented. The designs are evaluated for their suitability to a short-to-medium-haul civil transport mission carrying a payload of 90 passengers. Multiple metrics are used to determine the best configuration, with heavy emphasis placed on minimizing fuel burn.

  9. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to NRLM diesel fuel small refiners? 80.554 Section 80.554 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.554 What compliance options are available to NRLM diesel fuel small refiners? (a) Option 1: A...

  10. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to NRLM diesel fuel small refiners? 80.554 Section 80.554 Protection of Environment ENVIRONMENTAL... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.554 What compliance options are available to NRLM diesel fuel small refiners? (a) Option 1: A...

  11. A high converter concept for fuel management with blanket fuel assemblies in boiling water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Frances, N.; Timm, W.; Rossbach, D.

    2012-07-01

    Studies on the natural Uranium saving and waste reduction potential of a multiple-plant BWR system were performed. The BWR High Converter system should enable a multiple recycling of MOX fuel in current BWR plants by introducing blanket fuel assemblies and burning Uranium and MOX fuel separately. The feasibility of Uranium cores with blankets and full-MOX cores with Plutonium qualities as low as 40% were studied. The power concentration due to blanket insertion is manageable with modern fuel and acceptable values for the thermal limits and reactivity coefficients were obtained. While challenges remain, full-MOX cores also complied with the main designmore » criteria. The combination of Uranium and Plutonium burners in appropriate proportions could enable obtaining as much as 40% more energy out of Uranium ore. Moreover, a proper adjustment of blanket average stay and Plutonium qualities could lead to a system with nearly no Plutonium left for final disposal. The achievement of such goals with current light water technology makes the BWR HC concept an attractive option to improve the fuel cycle until Gen-IV designs are mature. (authors)« less

  12. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Barela, Amanda Crystal; Walkow, Walter M.

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cyclemore » Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Carmack; L. Braase; F. Goldner

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performancemore » under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.« less

  15. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less

  16. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skutnik, Steven E.

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared tomore » a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.« less

  17. United States transportation fuel economics (1975 - 1995)

    NASA Technical Reports Server (NTRS)

    Alexander, A. D., III

    1975-01-01

    The United States transportation fuel economics in terms of fuel resources options, processing alternatives, and attendant economics for the period 1975 to 1995 are evaluated. The U.S. energy resource base is reviewed, portable fuel-processing alternatives are assessed, and selected future aircraft fuel options - JP fuel, liquid methane, and liquid hydrogen - are evaluated economically. Primary emphasis is placed on evaluating future aircraft fuel options and economics to provide guidance for future strategy of NASA in the development of aviation and air transportation research and technology.

  18. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  19. Thorium Fuel Cycle Option Screening in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taiwo, Temitope A.; Kim, Taek K.; Wigeland, Roald A.

    2016-05-01

    As part of a nuclear fuel cycle Evaluation and Screening (E&S) study, a wide-range of thorium fuel cycle options were evaluated and their performance characteristics and challenges to implementation were compared to those of other nuclear fuel cycle options based on criteria specified by the Nuclear Energy Office of the U.S. Department of Energy (DOE). The evaluated nuclear fuel cycles included the once-through, limited, and continuous recycle options using critical or externally-driven nuclear energy systems. The E&S study found that the continuous recycle of 233U/Th in fuel cycles using either thermal or fast reactors is an attractive promising fuel cyclemore » option with high effective fuel resource utilization and low waste generation, but did not perform quite as well as the continuous recycle of Pu/U using a fast critical system, which was identified as one of the most promising fuel cycle options in the E&S study. This is because compared to their uranium counterparts the thorium-based systems tended to have higher radioactivity in the short term (about 100 years post irradiation) because of differences in the fission product yield curves, and in the long term (100,000 years post irradiation) because of the decay of 233U and daughters, and because of higher mass flow rates due to lower discharge burnups. Some of the thorium-based systems also require enriched uranium support, which tends to be detrimental to resource utilization and waste generation metrics. Finally, similar to the need for developing recycle fuel fabrication, fuels separations and fast reactors for the most promising options using Pu/U recycle, the future thorium-based fuel cycle options with continuous recycle would also require such capabilities, although their deployment challenges are expected to be higher since such facilities have not been developed in the past to a comparable level of maturity for Th-based systems.« less

  20. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  1. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.552 What compliance options are available to motor vehicle diesel fuel...

  2. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.552 What compliance options are available to motor vehicle diesel fuel...

  3. Examination of commercial aviation operational energy conservation strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Forty-seven fuel conservation strategies are identified for commercial aviation and the fuel saving potential, costs, constraints, and current implementation levels of these options are examined. This assessment is based on a comprehensive review of published data and discussions with representatives from industry and government. Analyses were performed to quantify the fuel saving potential of each option, and to assess the fuel savings achieved to date by the airline industry. Those options requiring further government support for option implementation were identified, rated, and ranked in accordance with a rating methodology developed in the study. Finally, recommendations are made for future governmentmore » efforts in the area of fuel conservation in commercial aviation.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooker, A.; Gonder, J.; Lopp, S.

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution ofmore » importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.« less

  5. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.

  6. 77 FR 19278 - Informational Meeting on Nuclear Fuel Cycle Options

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... DEPARTMENT OF ENERGY Informational Meeting on Nuclear Fuel Cycle Options AGENCY: Office of Fuel Cycle Technologies, Office of Nuclear Energy, Department of Energy. ACTION: Notice of meeting. SUMMARY: The Office of Fuel Cycle Technologies will be hosting a one- day informational meeting at the Argonne...

  7. Proposal for conversion of end use equipment and service from AC to DC for enhanced benefits from photovoltaics and fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, F.

    1998-07-01

    The need to produce electricity either more fuel efficiently or without need for consuming fuel is well recognized. Fuel cells are typically suggested for higher efficiency and photovoltaics can produce electricity directly from the sun. However, both of these devices produce direct current which is not compatible with the existing ac power system. The typical options of installing AC to DC inverters and the dedication of this DC generation to DC loads and storage are costly and inefficient. Thus, the author suggests it would be better in terms of energy conservation and public policy to convert end use service tomore » DC for direct compatibility with this DC generation, as a first step toward conversion to a new and better type of electric power system that can be described as a solid state power electronics based multiple voltage DC power system.« less

  8. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Sik; Lin, C. S.; Hader, J. S.

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the dischargedmore » fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements« less

  9. A Specific Long-Term Plan for Management of U.S. Nuclear Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Salomon

    2006-07-01

    A specific plan consisting of six different steps is proposed to accelerate and improve the long-term management of U.S. Light Water Reactor (LWR) spent nuclear fuel. The first step is to construct additional, centralized, engineered (dry cask) spent fuel facilities to have a backup solution to Yucca Mountain (YM) delays or lack of capacity. The second step is to restart the development of the Integral Fast Reactor (IFR), in a burner mode, because of its inherent safety characteristics and its extensive past development in contrast to Acceleration Driven Systems (ADS). The IFR and an improved non-proliferation version of its pyro-processingmore » technology can burn the plutonium (Pu) and minor actinides (MA) obtained by reprocessing LWR spent fuel. The remaining IFR and LWR fission products will be treated for storage at YM. The radiotoxicity of that high level waste (HLW) will fall below that of natural uranium in less than one thousand years. Due to anticipated increased capital, maintenance, and research costs for IFR, the third step is to reduce the required number of IFRs and their potential delays by implementing multiple recycles of Pu and Neptunium (Np) MA in LWR. That strategy is to use an advanced separation process, UREX+, and the MIX Pu option where the role and degradation of Pu is limited by uranium enrichment. UREX+ will decrease proliferation risks by avoiding Pu separation while the MIX fuel will lead to an equilibrium fuel recycle mode in LWR which will reduce U. S. Pu inventory and deliver much smaller volumes of less radioactive HLW to YM. In both steps two and three, Research and Development (R and D) is to emphasize the demonstration of multiple fuel reprocessing and fabrication, while improving HLW treatment, increasing proliferation resistance, and reducing losses of fissile material. The fourth step is to license and construct YM because it is needed for the disposal of defense wastes and the HLW to be generated under the proposed plan. The fifth step consists of developing a risk informed methodology to assess the various options available for disposition of LWR spent fuel and to select among them. The sixth step is to modify the current U. S. infrastructure and to create a climate to increase the utilization of uranium and the sustainability of nuclear generated electricity. (author)« less

  10. Mini-MITEE: Ultra Small, Ultra Light NTP Engines for Robotic Science and Manned Exploration Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John

    2006-01-01

    A compact, ultra lightweight Nuclear Thermal Propulsion (NTP) engine design is described with the capability to carry out a wide range of unique and important robotic science missions that are not possible using chemical or Nuclear Electric Propulsion (NEP). The MITEE (MInature ReacTor EnginE) reactor uses hydrogeneous moderator, such as solid lithium-7 hydride, and high temperature cermet tungsten/UO2 nuclear fuel. The reactor is configured as a modular pressure tube assembly, with each pressure tube containing an outer annual shell of moderator with an inner annular region of W/UO2 cermet fuel sheets. H2 propellant flows radially inwards through the moderator and fuel regions, exiting at ~3000 K into a central channel that leads to a nozzle at the end of the pressure tube. Power density in the fuel region is 10 to 20 megawatts per liter, depending on design, producing a thrust output on the order of 15,000 Newtons and an Isp of ~1000 seconds. 3D Monte Carlo neutronic analyses are described for MITEE reactors utilizing various fissile fuel options (U-235, U-233, and Am242m) and moderators (7LiH and BeH2). Reactor mass ranges from a maximum of 100 kg for the 7LiH/U-235 option to a minimum of 28 kg for the BeH2/Am-242 m option. Pure thrust only and bi-modal (thrust plus electric power generation) MITEE designs are described. Potential unique robotic science missions enabled by the MITEE engine are described, including landing on Europa and exploring the ice sheet interior with return of samples to Earth, hopping to and exploring multiple sites on Mars, unlimited ramjet flight in the atmospheres of Jupiter, Saturn, Uranus, and Neptune and landing on, and sample return from Pluto.

  11. Mini-MITEE: Ultra Small, Ultra Light NTP Engines for Robotic Science and Manned Exploration Missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, James; Maise, George; Paniagua, John

    2006-01-20

    A compact, ultra lightweight Nuclear Thermal Propulsion (NTP) engine design is described with the capability to carry out a wide range of unique and important robotic science missions that are not possible using chemical or Nuclear Electric Propulsion (NEP). The MITEE (MInature ReacTor EnginE) reactor uses hydrogeneous moderator, such as solid lithium-7 hydride, and high temperature cermet tungsten/UO2 nuclear fuel. The reactor is configured as a modular pressure tube assembly, with each pressure tube containing an outer annual shell of moderator with an inner annular region of W/UO2 cermet fuel sheets. H2 propellant flows radially inwards through the moderator andmore » fuel regions, exiting at {approx}3000 K into a central channel that leads to a nozzle at the end of the pressure tube. Power density in the fuel region is 10 to 20 megawatts per liter, depending on design, producing a thrust output on the order of 15,000 Newtons and an Isp of {approx}1000 seconds. 3D Monte Carlo neutronic analyses are described for MITEE reactors utilizing various fissile fuel options (U-235, U-233, and Am242m) and moderators (7LiH and BeH2). Reactor mass ranges from a maximum of 100 kg for the 7LiH/U-235 option to a minimum of 28 kg for the BeH2/Am-242 m option. Pure thrust only and bi-modal (thrust plus electric power generation) MITEE designs are described. Potential unique robotic science missions enabled by the MITEE engine are described, including landing on Europa and exploring the ice sheet interior with return of samples to Earth, hopping to and exploring multiple sites on Mars, unlimited ramjet flight in the atmospheres of Jupiter, Saturn, Uranus, and Neptune and landing on, and sample return from Pluto.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E.

    The U.S. Department of Energy’s (DOE’s) Used Fuel Disposition Campaign (UFDC) Program has transported high-burnup nuclear sister fuel rods from a commercial nuclear power plant for purposes of evaluation and testing. The evaluation and testing of high-burnup used nuclear fuel is integral to DOE initiatives to collect information useful in determining the integrity of fuel cladding for future safe transportation of the fuel, and for determining the effects of aging, on the integrity of UNF subjected to extended storage and subsequent transportation. The UFDC Program, in collaboration with the U.S. Nuclear Regulatory Commission and the commercial nuclear industry, has obtainedmore » individual used nuclear fuel rods for testing. The rods have been received at Oak Ridge National Laboratory (ORNL) for both separate effects testing (SET) and small-scale testing (SST). To meet the research objectives, testing on multiple 6 inch fuel rod pins cut from the rods at ORNL will be performed at Pacific Northwest National Laboratory (PNNL). Up to 10 rod equivalents will be shipped. Options were evaluated for multiple shipments using the 10-160B (based on 4.5 rod equivalents) and a single shipment using the NAC-LWT. Based on the original INL/Virginia Power transfer agreement, the rods are assumed to 152 inches in length with a 0.374-inch diameter. This report provides a preliminary content evaluation for use of the 10-160B and NAC-LWT for transporting those fuel rod pins from ORNL to PNNL. This report documents the acceptability of using these packagings to transport the fuel segments from ORNL to PNNL based on the following evaluations: enrichment, A2 evaluation, Pu-239 FGE evaluation, heat load, shielding (both gamma and neutron), and content weight/structural evaluation.« less

  13. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.

    PubMed

    Lin, Jiefeng; Babbitt, Callie W; Trabold, Thomas A

    2013-01-01

    A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power. These inputs feed into an LCA that compares energy consumption and greenhouse gas emissions of different fuel pathways. Results show that compressed natural gas from municipal solid wastes is an optimal bio-fuel option for SOFC-APU applications in New York State. However, this methodology can be regionalized within the U.S. or internationally to account for different fuel feedstock options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Comparative analyses of spent nuclear fuel transport modal options: Transport options under existing site constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.

    1989-08-01

    The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.

  15. PNNL Aviation Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  16. An analysis of international nuclear fuel supply options

    NASA Astrophysics Data System (ADS)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.

  17. Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, D.; Taiwo, T. A.; Kim, T. K.

    2010-10-01

    The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluatemore » the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.« less

  18. Shungnak Energy Configuration Options.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David Martin; Eddy, John P.

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency,more » alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.« less

  19. Thermal Analysis of a TREAT Fuel Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papadias, Dionissios; Wright, Arthur E.

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  20. Coordinated platooning with multiple speeds

    DOE PAGES

    Luo, Fengqiao; Larson, Jeffrey; Munson, Todd

    2018-03-22

    In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on themore » time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.« less

  1. Coordinated platooning with multiple speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Fengqiao; Larson, Jeffrey; Munson, Todd

    In a platoon, vehicles travel one after another with small intervehicle distances; trailing vehicles in a platoon save fuel because they experience less aerodynamic drag. This work presents a coordinated platooning model with multiple speed options that integrates scheduling, routing, speed selection, and platoon formation/dissolution in a mixed-integer linear program that minimizes the total fuel consumed by a set of vehicles while traveling between their respective origins and destinations. The performance of this model is numerically tested on a grid network and the Chicago-area highway network. We find that the fuel-savings factor of a multivehicle system significantly depends on themore » time each vehicle is allowed to stay in the network; this time affects vehicles’ available speed choices, possible routes, and the amount of time for coordinating platoon formation. For problem instances with a large number of vehicles, we propose and test a heuristic decomposed approach that applies a clustering algorithm to partition the set of vehicles and then routes each group separately. When the set of vehicles is large and the available computational time is small, the decomposed approach finds significantly better solutions than does the full model.« less

  2. High-temperature Gas Reactor (HTGR)

    NASA Astrophysics Data System (ADS)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  3. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, A.D.

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective andmore » immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed.« less

  4. 26 CFR 1.612-4 - Charges to capital and to expense in case of oil and gas wells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... expense. This option applies to all expenditures made by an operator for wages, fuel, repairs, hauling... applies are, all amounts paid for labor, fuel, repairs, hauling, and supplies, or any of them, which are... themselves do not have a salvage value. For the purpose of this option, labor, fuel, repairs, hauling...

  5. 26 CFR 1.612-4 - Charges to capital and to expense in case of oil and gas wells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... expense. This option applies to all expenditures made by an operator for wages, fuel, repairs, hauling... applies are, all amounts paid for labor, fuel, repairs, hauling, and supplies, or any of them, which are... themselves do not have a salvage value. For the purpose of this option, labor, fuel, repairs, hauling...

  6. 26 CFR 1.612-4 - Charges to capital and to expense in case of oil and gas wells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... expense. This option applies to all expenditures made by an operator for wages, fuel, repairs, hauling... applies are, all amounts paid for labor, fuel, repairs, hauling, and supplies, or any of them, which are... themselves do not have a salvage value. For the purpose of this option, labor, fuel, repairs, hauling...

  7. PNNL Aviation Biofuels

    ScienceCinema

    Plaza, John; Holladay, John; Hallen, Rich

    2018-06-06

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  8. Fuel quality-processing study. Volume 2: Literature survey

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.

    1981-01-01

    The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

  9. Life cycle assessment of automobile/fuel options.

    PubMed

    MacLean, Heather L; Lave, Lester B

    2003-12-01

    We examine the possibilities for a "greener" car that would use less material and fuel, be less polluting, and would have a well-managed end-of-life. Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. Any redesign to make these vehicles greener requires consumer acceptance. Consumer desires for large, powerful vehicles have been the major stumbling block in achieving a "green car". The other major barrier is inherent contradictions among social goals such as fuel economy, safety, low emissions of pollutants, and low emissions of greenhouse gases, which has led to conflicting regulations such as emissions regulations blocking sales of direct injection diesels in California, which would save fuel. In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid electric, and hydrogen fuel cells], we find no option dominates the others on all dimensions. The principles of green design developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A) and the use of a life cycle approach provide insights on the key sustainability issues associated with the various options.

  10. Extended duration orbiter study: CO2 removal and water recovery

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.

  11. Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties

    NASA Astrophysics Data System (ADS)

    Gharieh, Kaveh; Jafari, Mohsen A.; Guo, Qizhong

    2015-11-01

    In this article, we present a compound real option model for investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 (MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. Therefore the expansion option includes investment in hydrogen compression, storage and dispensing (CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work extends current state of investment modeling within the context of hydrogen tri-generation by considering: (i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-generation is considered, which results in realistic saving estimation.

  12. Rapid Response R&D for the Propulsion Directorate. Delivery Order 0019: Advanced Alternative Energy Technologies, Subtask: Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: Fischer-Tropsch Based SPK-1 Case Study

    DTIC Science & Technology

    2011-09-01

    carry finished jet fuel from the CBTL facility. The pipeline connects the CBTL facility to a petroleum refinery located in Wood River, Illinois...Under Option 1, all the blended jet fuel is transported via pipeline from the refinery in Wood River to Chicago’s O’Hare airport. Under Option 2...shipping F-T jet fuel to a refinery in Wood River, Illinois (near St. Louis, Missouri) for blending and final transport of the blended jet fuel to

  13. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics

    PubMed Central

    Puchalska, Patrycja; Crawford, Peter A.

    2017-01-01

    Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states, and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, recent observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations. PMID:28178565

  14. 40 CFR 80.534 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.534 [Reserved] ...

  15. An Analysis of Fuel Cell Options for an All-electric Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2007-01-01

    A study was conducted to assess the performance characteristics of both PEM and SOFC-based fuel cell systems for an all-electric high altitude, long endurance Unmanned Aerial Vehicle (UAV). Primary and hybrid systems were considered. Fuel options include methane, hydrogen, and jet fuel. Excel-based models were used to calculate component mass as a function of power level and mission duration. Total system mass and stored volume as a function of mission duration for an aircraft operating at 65 kft altitude were determined and compared.

  16. 10 CFR 490.307 - Option for Electric Utilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Option for Electric Utilities. 490.307 Section 490.307 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... motor vehicles, the following percentages of new light duty motor vehicles acquired shall be alternative...

  17. 10 CFR 490.307 - Option for Electric Utilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Option for Electric Utilities. 490.307 Section 490.307 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Alternative Fuel... motor vehicles, the following percentages of new light duty motor vehicles acquired shall be alternative...

  18. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Kraus, E. F.; Vanabkoude, J. C.

    1976-01-01

    The fuel saving potential and cost effectiveness of numerous operational and technical options proposed for reducing the fuel consumption of the U.S. commercial airline fleet was examined and compared. The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs and airline profits when implemented in the U.S. domestic and international airline fleets was determined. A forecast estimate was made of the potential fuel savings achievable in the U.S. scheduled air transportation system. Specifically, the means for reducing the jet fuel consumption of the U.S. scheduled airlines in domestic and international passenger operations were investigated. A design analysis was made of two turboprop aircraft as possible fuel conserving derivatives of the DC-9-30.

  19. Design Evolution Study - Aging Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. McDaniel

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential agingmore » location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new subsurface area (high cost); surface aging in the complete waste package (risk to the waste package and impact on the Waste Handling Facility); and aging in the stainless steel liner (impact on the waste package design and new high risk operations added to the waste packaging process). The selection of a design basis for aging will be made in conjunction with the other design re-evaluation studies.« less

  20. Advanced Fuels Campaign FY 2014 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori; May, W. Edgar

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less

  1. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Fariz Abdul; Lee, John C.; Franceschini, Fausto

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning themore » legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties, ideally suits the objectives and constraints of the heterogeneous assemblies. However, significant technological advancements must be made before nitride fuels can be employed in an LWR: its water resistance needs to be improved and a viable technology to enrich N in N-15 must be devised. Moreover, for the nitride heterogeneous configurations examined in this study, the enhancement in TRU burning performance is achieved not only by replacing oxide with nitride fuel, but also by increasing the fuel rod size. This latter modification, allowed by the high thermal conductivity of nitride fuel, leads however to a very tight lattice, which may challenge reactor coolant pumps and assembly hold-down mechanisms, the former through an increase in core pressure drop and the latter through an increase in assembly lift-off forces. To alleviate these issues, while still achieving the large fuel-to-moderator ratios resulting from using tight lattices, wire wraps could be used in place of grid spacers. For tight lattices, typical grid spacers are hard to manufacture and their replacement with wire wraps is known to allow for a pressure drop reduction by at least 2 times. The studies, while certainly very preliminary, provide a starting point to devise an optimum strategy for TRU transmutation in Th-based PWR fuel. The viability of the scheme proposed depends on the timely phasing in of the associated technologies, with proper lead time and to solve the many challenges. These challenges are certainly substantial, and make the current once-through U-based scheme pursued in the US by far a more practical (and cheaper) option. However, when compared to other transmutation schemes, the proposed one has arguably similar challenges and unknowns with potentially bigger rewards. (authors)« less

  2. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are NRLM diesel fuel credits used... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536 How...

  3. 40 CFR 80.536 - How are NRLM diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits used... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.536 How...

  4. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are NRLM diesel fuel credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.535 How are NRLM diesel...

  5. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80...

  6. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531 How...

  7. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are NRLM diesel fuel credits... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.535 How are NRLM diesel...

  8. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.531 How...

  9. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80...

  10. 40 CFR 63.7541 - How do I demonstrate continuous compliance under the emission averaging provision?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... solid fuel boilers participating in the emissions averaging option as determined in § 63.7522(f) and (g... this section. (i) For each existing solid fuel boiler participating in the emissions averaging option... below the applicable limit. (ii) For each group of boilers participating in the emissions averaging...

  11. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  12. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  13. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  14. 40 CFR 86.1231-96 - Vehicle preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as described... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and...

  15. FY2013 Progress Report for Fuel & Lubricant Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2014-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  16. 40 CFR 80.537-80.539 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....537-80.539 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option §§ 80.537-80.539 [Reserved] Geographic Phase...

  17. FY2014 Fuel & Lubricant Technologies Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stork, Kevin

    2016-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  18. Fuel cell adventures. Dynamics of a technological community in a quasi-market of technological options

    NASA Astrophysics Data System (ADS)

    Schaeffer, G. J.; Uyterlinde, M. A.

    In this paper some insights from a social science perspective in the dynamics of the fuel cell community will be provided. An important concept used in the analysis is that of a `quasi'-market of technological options. The strategic choices of actors for certain technological options can be regarded as analogous to choices of consumers made on a market. A scientometric research approach has been used to investigate the aggregate effects of this and other variations of strategic behaviour. These concepts and analyses are shown to be helpful in answering questions such as why fuel cells are so popular today whereas they have not always been, and why preferences for different types of fuel cells shift over time. At the end of the paper the relevance of these kind of analyses for technology forecasting and management practices is briefly discussed.

  19. Air quality management in China: issues, challenges, and options.

    PubMed

    Wang, Shuxiao; Hao, Jiming

    2012-01-01

    This article analyzed the control progress and current status of air quality, identified the major air pollution issues and challenges in future, proposed the long-term air pollution control targets, and suggested the options for better air quality in China. With the continuing growth of economy in the next 10-15 years, China will face a more severe situation of energy consumption, electricity generation and vehicle population leading to increase in multiple pollutant emissions. Controlling regional air pollution especially fine particles and ozone, as well as lowering carbon emissions from fossil fuel consumption will be a big challenge for the country. To protect public health and the eco-system, the ambient air quality in all Chinese cities shall attain the national ambient air quality standards (NAAQS) and ambient air quality guideline values set by the World Health Organization (WHO). To achieve the air quality targets, the emissions of SO2, NOx, PM10, and volatile organic compounds (VOC) should decrease by 60%, 40%, 50%, and 40%, respectively, on the basis of that in 2005. A comprehensive control policy focusing on multiple pollutants and emission sources at both the local and regional levels was proposed to mitigate the regional air pollution issue in China. The options include development of clean energy resources, promotion of clean and efficient coal use, enhancement of vehicle pollution control, implementation of synchronous control of multiple pollutants including SO2, NOx, VOC, and PM emissions, joint prevention and control of regional air pollution, and application of climate friendly air pollution control measures.

  20. Methane Hydrates: More Than a Viable Aviation Fuel Feedstock Option

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    Demand for hydrocarbon fuels is steadily increasing, and greenhouse gas emissions continue to rise unabated with the energy demand. Alternate fuels will be coming on line to meet that demand. This report examines the recovering of methane from methane hydrates for fuel to meet this demand rather than permitting its natural release into the environment, which will be detrimental to the planet. Some background on the nature, vast sizes, and stability of sedimentary and permafrost formations of hydrates are discussed. A few examples of the severe problems associated with methane recovery from these hydrates are presented along with the potential impact on the environment and coastal waters. Future availability of methane from hydrates may become an attractive option for aviation fueling, and so future aircraft design associated with methane fueling is considered.

  1. Developing management options for longleaf communities of the gulf coastal plain

    Treesearch

    Kenneth W. Outcalt

    2003-01-01

    Choosing treatments to reduce fuel loads and readjust structure and composition in longleaf communities of the Gulf Coastal Plains region is difficult because benefits and costs of possible treatment combinations are not fully known. The objective of this research project is to develop management options to reduce fuels and restore the ecosystem that are economically...

  2. What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Kay L.; Gonzales, John

    2017-10-17

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factorsmore » to consider when pursuing a conversion, retrofit, or repower option.« less

  3. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States.

    PubMed

    Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q

    2013-10-02

    The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.

  4. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States

    PubMed Central

    2013-01-01

    Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA’s Renewable Fuel Standard program. PMID:24088388

  5. Fuel alcohol: some economic complexities in Brazil and in the United States. Energy in developing countries series: Discussion Paper D-73G. [Monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, S.; Ramsay, W.

    1982-01-01

    Two related papers (one by each author) examine some of the problems and point out some complexities that must be taken into account in evaluating the alcohol option. Islam notes particularly Brazil's dilemma in relinquishing its domination of world sugar markets in favor of fuel-alcohol programs that will offer more resilience to future oil shocks. Ramsay stresses the practicability of alcohol for fuel import replacement compared to other synthetic fuels; he prefers the alcohol-from-grain option, especially when considered within the context of government incentives and availability of idle land. 24 references. (DCK)

  6. 40 CFR 80.167 - Confirmatory testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...

  7. 40 CFR 80.167 - Confirmatory testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...

  8. 40 CFR 80.167 - Confirmatory testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...

  9. 40 CFR 80.167 - Confirmatory testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.167 Confirmatory testing. EPA may test a... national, PADD, or fuel-specific options will generally entail a single vehicle test using the procedures detailed in § 80.165. The test fuel(s) used in conducting confirmatory certification testing will contain...

  10. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ...EPA is streamlining the process by which manufacturers of clean alternative fuel conversion systems may demonstrate compliance with vehicle and engine emissions requirements. Specifically, EPA is revising the regulatory criteria for gaining an exemption from the Clean Air Act prohibition against tampering for the conversion of vehicles and engines to operate on a clean alternative fuel. This final rule creates additional compliance options beyond certification that protect manufacturers of clean alternative fuel conversion systems against a tampering violation, depending on the age of the vehicle or engine to be converted. The new options alleviate some economic and procedural impediments to clean alternative fuel conversions while maintaining environmental safeguards to ensure that acceptable emission levels from converted vehicles are sustained.

  11. Radiation exposure and performance of multiple burn LEO-GEO orbit transfer trajectories

    NASA Technical Reports Server (NTRS)

    Gorland, S. H.

    1985-01-01

    Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple burn orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g acceleration, cryogenic hydrogen-oxygen chemical prpulsion system to a continuous burn, 0.001 g acceleration, hydrogen fueled resistojet propulsion system with a trip time of 60 days.

  12. Analysis of Technological Innovation and Environmental Performance Improvement in Aviation Sector

    PubMed Central

    Lee, Joosung; Mo, Jeonghoon

    2011-01-01

    The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector—aircraft manufacturers and airlines—has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation’s lifecycle environmental impact if they can achieve sufficient economies of scale. PMID:22016716

  13. Analysis of technological innovation and environmental performance improvement in aviation sector.

    PubMed

    Lee, Joosung; Mo, Jeonghoon

    2011-09-01

    The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector-aircraft manufacturers and airlines-has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation's lifecycle environmental impact if they can achieve sufficient economies of scale.

  14. Alternate-Fuel Vehicles and Their Application in Schools.

    ERIC Educational Resources Information Center

    Taggart, Chip

    1991-01-01

    Alternative fuels are becoming increasingly attractive from environmental, energy independence, and economic perspectives. Addresses the following topics: (1) federal and state legislation; (2) alternative fuels and their attributes; (3) practical experience with alternative-fuel vehicles in pupil transportation; and (4) options for school…

  15. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  16. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle diesel...

  17. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  18. Managing forest structure and fire hazard--a tool for planners.

    Treesearch

    M.C. Johnson; D.L. Peterson; C.L. Raymond

    2006-01-01

    Fire planners and other resource managers need to examine a range of potential fuel and vegetation treatments to select options that will lead to desired outcomes for fire hazard and natural resource conditions. A new approach to this issue integrates concepts and tools from silviculture and fuel science to quantify outcomes for a large number of treatment options in...

  19. $500 Crude Oil and Its Repressions on Marine Corps TACAIR And the USMC - The Most Energy Dependent Service

    DTIC Science & Technology

    2008-01-01

    130, etc), the option to re-engine or place winglets on the wings of TACAIR aircraft does not exist. Bio-fuel is not an option for aviation35 and...TACAIR aircraft can not use alternative fuels, re-engine their aircraft, install winglets , or adjust their sortie lengths in an effort to reduce jet

  20. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    NASA Astrophysics Data System (ADS)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  1. Electric Power System Technology Options for Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2005-01-01

    In 2004, the President announced a 'Vision for Space Exploration' that is bold and forward-thinking, yet practical and responsible. The vision explores answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA's technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat power generation technology option and the overall lunar surface mission. For rover power, more than 20 technology options were down-selected to radioisotope Stirling, liquid lithium-ion battery, PEM RFC, or primary fuel cell options. The author discusses various conclusions that can be drawn from the findings of this surface power technologies evaluation.

  2. 48 CFR 52.222-43 - Fair Labor Standards Act and Service Contract Act-Price Adjustment (Multiple Year and Option...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Service Contract Act-Price Adjustment (Multiple Year and Option Contracts). 52.222-43 Section 52... Standards Act and Service Contract Act—Price Adjustment (Multiple Year and Option Contracts). As prescribed...—Price Adjustment (Multiple Year and Option Contracts) (SEP 2009) (a) This clause applies to both...

  3. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William; Harris, Aaron P.

    2013-01-01

    A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle,more » powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.« less

  4. Fuels planning: science synthesis and integration; economic uses fact sheet 04: My Fuel Treatment Planner

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    In the face of rapidly changing public and political attitudes toward fire and fuel planning, one thing remains constant: the fuel planner is ultimately responsible for making decisions on the land. This fact sheet discusses the options for fuel treatments, and the need, development, and use of the MS Excel-based tool, My Fuel Treatment Planner.

  5. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  6. An Approach for Assessing Development and Deployment Risks in the DOE Fuel Cycle Options Evaluation and Screening Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehin, Jess C; Oakley, Brian; Worrall, Andrew

    2015-01-01

    Abstract One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy R&D Roadmap is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (E&S) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen the E&S study included nine criteria including Developmentmore » and Deployment Risk (D&DR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the D&DR criterion, and is presented here. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this D&DR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U-233 recycle.« less

  7. Alternative Fuels in Transportation : Workforce needs and opportunities in support of reducing reliance on petroleum fuels

    DOT National Transportation Integrated Search

    2016-01-01

    An overreliance on foreign oil and the negative impacts of using petroleum fuels on the worlds climate have prompted energy policies that support the diversification of transport fuels and aggressive work to transition to non-petroleum options. Th...

  8. Alternative Fuels Data Center: Flexible Fuel Vehicle Availability

    Science.gov Websites

    options for converting vehicles to run on E85 and other ethanol-gasoline blends. Pre-Owned Vehicles Learn about buying and selling pre-owned alternative fuel and advanced vehicles. Learn More Interested in

  9. A User’s Guide to the PLTEMP/ANL Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, A. P.; Kalimullah, M.; Feldman, E. E.

    2016-07-25

    PLTEMP/ANL V4.2 is a program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of codes originally used for plate temperatures, hence “PLTEMP”, developed at Argonne National Laboratory over several decades. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each withmore » its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates or tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as onset-of-nucleate boiling ratio(ONBR), departure from nucleate boiling ratio (DNBR), and onset of flow instability ratio (OFIR). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst’s time.« less

  10. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  11. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  12. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  13. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  14. 40 CFR 86.131-96 - Vehicle preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Heavy-Duty Vehicles; Test Procedures § 86.131-96 Vehicle preparation. (a) For gasoline- and methanol-fueled vehicles prepare the fuel tank(s) for recording the temperature of the prescribed test fuel, as... optional during the running loss test. If vapor temperature is not measured, fuel tank pressure need not be...

  15. Transportation fuels for the 21st century

    EPA Science Inventory

    As we enter the 21st century, policymakers face complex decisions regarding options for meeting the demand for transportation fuels. There is now a broad scientific consensus that the burning of fossil fuels has been contributing to climate change, and the transportation sector i...

  16. Alternative fuel options and costs for use in Kansas and surrounding states

    DOT National Transportation Integrated Search

    1998-09-01

    To meet state and federal mandates, state fleets, federal fleets, and fuel provider fleets must acquire alternatively fueled vehicles (AFVs). The Kansas House Bill 95-2161 exceeds the federal energy policy act regulations for state fleets. AFVs inclu...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, K.; Gonzales, J.

    Many fleet managers have opted to incorporate alternative fuels and advanced vehicles into their lineup. Original equipment manufacturers (OEMs) offer a variety of choices, and there are additional options offered by aftermarket companies. There are also a myriad of ways that existing vehicles can be modified to utilize alternative fuels and other advanced technologies. Vehicle conversions and retrofit packages, along with engine repower options, can offer an ideal way to lower vehicle operating costs. This can result in long term return on investment, in addition to helping fleet managers achieve emissions and environmental goals. This report summarizes the various factorsmore » to consider when pursuing a conversion, retrofit, or repower option.« less

  18. Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Randy L; Harrison, Thomas J

    IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical ofmore » commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.« less

  19. Direct carbon fuel cell and stack designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorte, Raymond J.; Oh, Tae-Sik

    Disclosed are novel configurations of Direct Carbon Fuel Cells (DCFCs), which optionally comprise a liquid anode. The liquid anode comprises a molten salt/metal, preferably Sb, and a fuel, which has significant elemental carbon content (coal, bio-mass, etc.). The supply of fuel is continuously replenished in the anode. In addition, a stack configuration is suggested where combining a large number of planar or tubular fuel elements.

  20. Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission

    Treesearch

    Tiago M. Oliveira; Ana M. G. Barros; Alan A. Ager; Paulo M. Fernandes

    2016-01-01

    Wildfires pose complex challenges to policymakers and fire agencies. Fuel break networks and area-wide fuel treatments are risk-management options to reduce losses from large fires. Two fuel management scenarios covering 3% of the fire-prone Algarve region of Portugal and differing in the intensity of treatment in 120-m wide fuel breaks were examined and compared with...

  1. Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven J. Piet

    2012-07-01

    The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historicalmore » survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.« less

  2. Status of advanced fuel candidates for Sodium Fast Reactor within the Generation IV International Forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Delage; J. Carmack; C. B. Lee

    2013-10-01

    The main challenge for fuels for future Sodium Fast Reactor systems is the development and qualification of a nuclear fuel sub-assembly which meets the Generation IV International Forum goals. The Advanced Fuel project investigates high burn-up minor actinide bearing fuels as well as claddings and wrappers to withstand high neutron doses and temperatures. The R&D outcome of national and collaborative programs has been collected and shared between the AF project members in order to review the capability of sub-assembly material and fuel candidates, to identify the issues and select the viable options. Based on historical experience and knowledge, both oxidemore » and metal fuels emerge as primary options to meet the performance and the reliability goals of Generation IV SFR systems. There is a significant positive experience on carbide fuels but major issues remain to be overcome: strong in-pile swelling, atmosphere required for fabrication as well as Pu and Am losses. The irradiation performance database for nitride fuels is limited with longer term R&D activities still required. The promising core material candidates are Ferritic/Martensitic (F/M) and Oxide Dispersed Strengthened (ODS) steels.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  4. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE PAGES

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  5. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand

    NASA Astrophysics Data System (ADS)

    Srisiriwat, A.; Pirom, W.

    2017-10-01

    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  6. Multi-level multi-criteria analysis of alternative fuels for waste collection vehicles in the United States.

    PubMed

    Maimoun, Mousa; Madani, Kaveh; Reinhart, Debra

    2016-04-15

    Historically, the U.S. waste collection fleet was dominated by diesel-fueled waste collection vehicles (WCVs); the growing need for sustainable waste collection has urged decision makers to incorporate economically efficient alternative fuels, while mitigating environmental impacts. The pros and cons of alternative fuels complicate the decisions making process, calling for a comprehensive study that assesses the multiple factors involved. Multi-criteria decision analysis (MCDA) methods allow decision makers to select the best alternatives with respect to selection criteria. In this study, two MCDA methods, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Simple Additive Weighting (SAW), were used to rank fuel alternatives for the U.S. waste collection industry with respect to a multi-level environmental and financial decision matrix. The environmental criteria consisted of life-cycle emissions, tail-pipe emissions, water footprint (WFP), and power density, while the financial criteria comprised of vehicle cost, fuel price, fuel price stability, and fueling station availability. The overall analysis showed that conventional diesel is still the best option, followed by hydraulic-hybrid WCVs, landfill gas (LFG) sourced natural gas, fossil natural gas, and biodiesel. The elimination of the WFP and power density criteria from the environmental criteria ranked biodiesel 100 (BD100) as an environmentally better alternative compared to other fossil fuels (diesel and natural gas). This result showed that considering the WFP and power density as environmental criteria can make a difference in the decision process. The elimination of the fueling station and fuel price stability criteria from the decision matrix ranked fossil natural gas second after LFG-sourced natural gas. This scenario was found to represent the status quo of the waste collection industry. A sensitivity analysis for the status quo scenario showed the overall ranking of diesel and fossil natural gas to be more sensitive to changing fuel prices as compared to other alternatives. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    DOEpatents

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  8. Analysis Of Technology Options To Reduce The Fuel Consumption Of Idling Trucks

    DOT National Transportation Integrated Search

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm...

  9. TRANSPORTATION FUEL FROM CELLULOSIC BIOMASS: A COMPARATIVE ASSESSMENT OF ETHANOL AND METHANOL OPTIONS

    EPA Science Inventory

    Future sources of renewable fuel energy will be needed to supplement or displace petroleum. Biomass can be converted to ethanol or methanol, either having good properties as motor fuel, but distinctly different production technology. Those technologies are compared in terms of ...

  10. Self-Organizing Hierarchical Particle Swarm Optimization with Time-Varying Acceleration Coefficients for Economic Dispatch with Valve Point Effects and Multifuel Options

    NASA Astrophysics Data System (ADS)

    Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc

    2011-06-01

    This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.

  11. The effect of salvage logging on surface fuel loads and fuel moisture in beetle-infested lodgepole pine forests

    Treesearch

    Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker

    2017-01-01

    Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...

  12. Impact of aviation non-CO₂ combustion effects on the environmental feasibility of alternative jet fuels.

    PubMed

    Stratton, Russell W; Wolfe, Philip J; Hileman, James I

    2011-12-15

    Alternative fuels represent a potential option for reducing the climate impacts of the aviation sector. The climate impacts of alternatives fuel are traditionally considered as a ratio of life cycle greenhouse gas (GHG) emissions to those of the displaced petroleum product; however, this ignores the climate impacts of the non-CO(2) combustion effects from aircraft in the upper atmosphere. The results of this study show that including non-CO(2) combustion emissions and effects in the life cycle of a Synthetic Paraffinic Kerosene (SPK) fuel can lead to a decrease in the relative merit of the SPK fuel relative to conventional jet fuel. For example, an SPK fuel option with zero life cycle GHG emissions would offer a 100% reduction in GHG emissions but only a 48% reduction in actual climate impact using a 100-year time window and the nominal climate modeling assumption set outlined herein. Therefore, climate change mitigation policies for aviation that rely exclusively on relative well-to-wake life cycle GHG emissions as a proxy for aviation climate impact may overestimate the benefit of alternative fuel use on the global climate system.

  13. 40 CFR 86.140-94 - Exhaust sample analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-cycle and methanol-fueled, natural gas-fueled and liquefied petroleum gas-fueled (if non-heated FID option is used) diesel vehicle HC: (1) Zero the analyzers and obtain a stable zero reading. Recheck after...: (1) Zero HFID analyzer and obtain a stable zero reading. (2) Introduce span gas and set instrument...

  14. 40 CFR 86.140-94 - Exhaust sample analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle and methanol-fueled, natural gas-fueled and liquefied petroleum gas-fueled (if non-heated FID option is used) diesel vehicle HC: (1) Zero the analyzers and obtain a stable zero reading. Recheck after...: (1) Zero HFID analyzer and obtain a stable zero reading. (2) Introduce span gas and set instrument...

  15. ADOPT: Automotive Deployment Options Projection Tool | Transportation

    Science.gov Websites

    new model options by combining high-selling powertrains and high-selling vehicle platforms. NREL has . Screenshot of the ADOPT user interface, with two simulation scenario options (low tech and high tech emissions. Biomass Market Dynamics Supporting the Large-Scale Deployment of High-Octane Fuel Production in

  16. Integrated photovoltaics in nickel cadmium battery electric vehicles.

    DOT National Transportation Integrated Search

    2008-12-01

    This research report presents Connecticut Department of Transportations (ConnDOTs) : evaluation of preproduction prototype nickel-cadmium (NiCd) battery-powered electric : vehicles (BEVs) as an alternative-fuel (alt-fuel) option for local trips...

  17. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  18. Design Options for the High-Foot Ignition Capsule Series on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Ma, T.; Pak, A. E.; Park, H.-S.; Salmonson, J. D.; Weber, C. R.; Zimmerman, G. B.; Olson, R. E.; Kline, J. L.; Leeper, R. J.

    2015-11-01

    Several options exist for improving implosion performance in the High-Foot series of ignition capsules on NIF. One option is to modify the fill tube used to supply DT to the capsule. Simulations indicate that a gold-coated glass tube may reduce implosion hydro effects and allow fielding a larger diameter tube capable of supporting the capsule, eliminating the need for the nominal tent support. A second option adds a fourth shock to the implosion history. According to simulation, this extra shock improves fuel confinement and capsule performance. A third option studies the feasibility of holding the DT fuel in liquid form in a foam layer inside the shell. This ``wetted foam'' concept, advanced by Olson, has existed for several years and may allow some control over the convergence of the capsule during implosion. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. All of the above: When multiple correct response options enhance the testing effect.

    PubMed

    Bishara, Anthony J; Lanzo, Lauren A

    2015-01-01

    Previous research has shown that multiple choice tests often improve memory retention. However, the presence of incorrect lures often attenuates this memory benefit. The current research examined the effects of "all of the above" (AOTA) options. When such options are correct, no incorrect lures are present. In the first three experiments, a correct AOTA option on an initial test led to a larger memory benefit than no test and standard multiple choice test conditions. The benefits of a correct AOTA option occurred even without feedback on the initial test; for both 5-minute and 48-hour retention delays; and for both cued recall and multiple choice final test formats. In the final experiment, an AOTA question led to better memory retention than did a control condition that had identical timing and exposure to response options. However, the benefits relative to this control condition were similar regardless of the type of multiple choice test (AOTA or not). Results suggest that retrieval contributes to multiple choice testing effects. However, the extra testing effect from a correct AOTA option, rather than being due to more retrieval, might be due simply to more exposure to correct information.

  20. Adaptation of the Electra Radio to Support Multiple Receive Channels

    NASA Technical Reports Server (NTRS)

    Satorius, Edgar H.; Shah, Biren N.; Bruvold, Kristoffer N.; Bell, David J.

    2011-01-01

    Proposed future Mars missions plan communication between multiple assets (rovers). This paper presents the results of a study carried out to assess the potential adaptation of the Electra radio to a multi-channel transceiver. The basic concept is a Frequency Division multiplexing (FDM) communications scheme wherein different receiver architectures are examined. Options considered include: (1) multiple IF slices, A/D and FPGAs each programmed with an Electra baseband modem; (2) common IF but multiple A/Ds and FPGAs and (3) common IF, single A/D and single or multiple FPGAs programmed to accommodate the FDM signals. These options represent the usual tradeoff between analog and digital complexity. Given the space application, a common IF is preferable; however, multiple users present dynamic range challenges (e.g., near-far constraints) that would favor multiple IF slices (Option 1). Vice versa, with a common IF and multiple A/Ds (Option 2), individual AGC control of the A/Ds would be an important consideration. Option 3 would require a common AGC control strategy and would entail multiple digital down conversion paths within the FPGA. In this paper, both FDM parameters as well as the different Electra design options will be examined. In particular, signal channel spacing as a function of user data rates and transmit powers will be evaluated. In addition, tradeoffs between the different Electra design options will be presented with the ultimate goal of defining an augmented Electra radio architecture for potential future missions.

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Puneet; Casey, Dan

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion enginemore » shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).« less

  2. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  3. Nuclear Energy Policy

    DTIC Science & Technology

    2008-01-28

    2007. Requires commercial nuclear power plants to transfer spent fuel from pools to dry storage casks and then convey title to the Secretary of Energy...far more economical options for reducing fossil fuel use .15 (For more on federal incentives and the economics of nuclear power, see CRS Report RL33442...uranium enrichment, spent fuel recycling (also called reprocessing), and other fuel cycle facilities that could be used to produce nuclear weapons

  4. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  6. Alternative Fuels Data Center: Natural Gas Vehicle Availability

    Science.gov Websites

    options for converting conventional vehicles to run on natural gas. Pre-Owned Vehicles Learn about buying and selling pre-owned alternative fuel and advanced technology vehicles. More Information For more

  7. 40 CFR 80.163 - Detergent certification options.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rate shown to be needed in the designated test fuel in order to meet the deposit control performance... test requirements and standards specified in § 80.165 using test fuels that conform to the requirements... paragraph (a)(1) of this section, except that, pursuant to § 80.164(a)(2)(ii), the certification test fuel...

  8. 40 CFR 80.163 - Detergent certification options.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rate shown to be needed in the designated test fuel in order to meet the deposit control performance... test requirements and standards specified in § 80.165 using test fuels that conform to the requirements... paragraph (a)(1) of this section, except that, pursuant to § 80.164(a)(2)(ii), the certification test fuel...

  9. 40 CFR 80.163 - Detergent certification options.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rate shown to be needed in the designated test fuel in order to meet the deposit control performance... test requirements and standards specified in § 80.165 using test fuels that conform to the requirements... paragraph (a)(1) of this section, except that, pursuant to § 80.164(a)(2)(ii), the certification test fuel...

  10. 40 CFR 80.163 - Detergent certification options.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rate shown to be needed in the designated test fuel in order to meet the deposit control performance... test requirements and standards specified in § 80.165 using test fuels that conform to the requirements... paragraph (a)(1) of this section, except that, pursuant to § 80.164(a)(2)(ii), the certification test fuel...

  11. Guide to fuel treatments in dry forests of the Western United States: assessing forest structure and fire hazard.

    Treesearch

    Morris C. Johnson; David L. Peterson; Crystal L. Raymond

    2007-01-01

    Guide to Fuel Treatments analyzes a range of fuel treatments for representative dry forest stands in the Western United States with overstories dominated by ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and pinyon pine (Pinus edulis). Six silvicultural options (no thinning; thinning...

  12. Winter grazing decreases wildfire risk, severity, and behavior in semi-arid sagebrush rangelands

    USDA-ARS?s Scientific Manuscript database

    Wildfires are an ecological and economic risk for many semi-arid rangelands which has resulted in increased pressure for pre-suppression management of fuels. In rangelands, fuel management treatment options are limited by costs. We evaluated winter grazing as a tool to manage fuels and alter fire ...

  13. Space debris, asteroids and satellite orbits; Proceedings of the Fourth and Thirteenth Workshops, Graz, Austria, June 25-July 7, 1984

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Gruen, E.; Sehnal, L.

    1985-01-01

    The workshops covered a variety of topics relevant to the identification, characterization and monitoring of near-earth solar system debris. Attention was given to man-made and naturally occurring microparticles, their hazards to present and future spacecraft, and ground- and space-based techniques for tracking both large and small debris. The studies are extended to solid fuel particulates in circular space. Asteroid rendezvous missions are discussed, including propulsion and instrumentation options, the possibility of encountering asteroids during Hohman transfer flights to Venus and/or Mars, and the benefits of multiple encounters by one spacecraft. Finally, equipment and analytical models for generating precise satellite orbits are reviewed.

  14. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less

  15. Adaptive function allocation reduces performance costs of static automation

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja; Mouloua, Mustapha; Molloy, Robert; Hilburn, Brian

    1993-01-01

    Adaptive automation offers the option of flexible function allocation between the pilot and on-board computer systems. One of the important claims for the superiority of adaptive over static automation is that such systems do not suffer from some of the drawbacks associated with conventional function allocation. Several experiments designed to test this claim are reported in this article. The efficacy of adaptive function allocation was examined using a laboratory flight-simulation task involving multiple functions of tracking, fuel-management, and systems monitoring. The results show that monitoring inefficiency represents one of the performance costs of static automation. Adaptive function allocation can reduce the performance cost associated with long-term static automation.

  16. 40 CFR 86.1863-07 - Optional chassis certification for diesel vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... superseding sections. (c) Diesel vehicles optionally certified under this section may be tested using the test fuels, sampling systems, or analytical systems specified for diesel engines in subpart N of this part or...

  17. 40 CFR 86.1863-07 - Optional chassis certification for diesel vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... superseding sections. (c) Diesel vehicles optionally certified under this section may be tested using the test fuels, sampling systems, or analytical systems specified for diesel engines in subpart N of this part or...

  18. Some unconventional approaches to the exploration of Mars

    NASA Astrophysics Data System (ADS)

    French, J. R.

    1991-02-01

    The topics of space transport to Mars, and surface transport and surface operations on Mars are discussed in detail and new options for accomplishing these activities are presented. The question of maximizing the return on the investment in a Mars mission is addressed. One way to accomplish this is through reduction of propellant requirements by increasing the performance of the rocket engine, while another option is to make use of nuclear fuel. A technique discussed in detail would provide a means to manufacture fuel from Martian resources for both the return trip and for Mars surface exploration. Options for Mars surface transport include battery and nuclear powered rovers, solar powered automobiles, and either battery, nuclear or Mars-generated-propellant-powered aircraft specially designed to explore the Martian surface. The advantages and disadvantages of each of these options are considered, and the usefulness of a manned aircraft for both exploration and surface operational functions is discussed.

  19. Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigeland, Roald Arnold

    2015-05-01

    The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that theremore » was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to the decision-making process.« less

  20. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    PubMed

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  1. Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems

    Science.gov Websites

    equipment includes an overfill protection device, a leak detection device, shear valves, fill and vapor caps protection, leak detection, shear valves, fill and vapor caps, adaptors, containment sumps, and all

  2. Production of renewable diesel fuel from biologically based feedstocks.

    DOT National Transportation Integrated Search

    2014-09-01

    Renewable diesel is an emerging option to achieve the goal set by the Federal Renewable Fuel Standard of displacing 20% of our nations petroleum consumption with : renewable alternatives by 2022. It involves converting readily available vegetable ...

  3. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimentalmore » study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.« less

  4. An Integrated Fuel Depletion Calculator for Fuel Cycle Options Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Erich; Scopatz, Anthony

    2016-04-25

    Bright-lite is a reactor modeling software developed at the University of Texas Austin to expand upon the work done with the Bright [1] reactor modeling software. Originally, bright-lite was designed to function as a standalone reactor modeling software. However, this aim was refocused t couple bright-lite with the Cyclus fuel cycle simulator [2] to make it a module for the fuel cycle simulator.

  5. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE PAGES

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; ...

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 10 5 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight latticemore » heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  6. Airline energy conservation options : summary options

    DOT National Transportation Integrated Search

    1973-07-27

    In late May, 1973 the task of determining and evaluating measures for conserving fuel consumed by the airline industry was undertaken. This task was a part of the larger effort conducted by the Transportation Systems Center to determine measures that...

  7. Hydrogen Analysis with the Sandia ParaChoice Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Rebecca Sobel; West, Todd H.

    2017-07-01

    In the coming decades, light-duty vehicle options and their supporting infrastructure must undergo significant transformations to achieve aggressive national targets for reducing petroleum consumption and lowering greenhouse gas emissions. FCEVs, battery and hybrid electric vehicles, and biofuels are among the promising advanced technology options. This project examines the market penetration of FCEVs in a range of market segments, and in different energy, technology, and policy futures. Analyses are conducted in the context of varying hydrogen production and distribution pathways, as well as public infrastructure availability, fuel (gasoline, ethanol, hydrogen) and electricity costs, vehicle costs and fuel economies to better understandmore » under what conditions, and for which market segments, FCEVs can best compete with battery electric and other alternative fuel vehicles.« less

  8. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Science.gov Websites

    charging infrastructure. **Totals by States indicate the total number of stations for all fuel types combined. Individual stations are counted multiple times if the station offers multiple types of fuel. For

  9. Alternative Fuels Data Center: Municipality with a Mission: Georgia Fleet

    Science.gov Websites

    different alternative fuels, based on mission needs, with the goal of saving money, reducing its combined. The vehicles have logged more than 90,000 problem-free miles and are projected to save the options before investing any time and money in new fuels and technologies. He directed Curtis to the

  10. Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States

    Treesearch

    Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar

    2012-01-01

    Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, Jon; Hayes, Steven; Walters, L. C.

    This document explores startup fuel options for a proposed test/demonstration fast reactor. The fuel options considered are the metallic fuels U-Zr and U-Pu-Zr and the ceramic fuels UO 2 and UO 2-PuO 2 (MOX). Attributes of the candidate fuel choices considered were feedstock availability, fabrication feasibility, rough order of magnitude cost and schedule, and the existing irradiation performance database. The reactor-grade plutonium bearing fuels (U-Pu-Zr and MOX) were eliminated from consideration as the initial startup fuels because the availability and isotopics of domestic plutonium feedstock is uncertain. There are international sources of reactor grade plutonium feedstock but isotopics and availabilitymore » are also uncertain. Weapons grade plutonium is the only possible source of Pu feedstock in sufficient quantities needed to fuel a startup core. Currently, the available U.S. source of (excess) weapons-grade plutonium is designated for irradiation in commercial light water reactors (LWR) to a level that would preclude diversion. Weapons-grade plutonium also contains a significant concentration of gallium. Gallium presents a potential issue for both the fabrication of MOX fuel as well as possible performance issues for metallic fuel. Also, the construction of a fuel fabrication line for plutonium fuels, with or without a line to remove gallium, is expected to be considerably more expensive than for uranium fuels. In the case of U-Pu-Zr, a relatively small number of fuel pins have been irradiated to high burnup, and in no case has a full assembly been irradiated to high burnup without disassembly and re-constitution. For MOX fuel, the irradiation database from the Fast Flux Test Facility (FFTF) is extensive. If a significant source of either weapons-grade or reactor-grade Pu became available (i.e., from an international source), a startup core based on Pu could be reconsidered.« less

  12. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinkman, Norman; Wang, Michael; Weber, Trudy

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  13. Fuel-reduction treatments with a gyrotrac GT-25

    Treesearch

    Dana Mitchell

    2005-01-01

    Land managers in urban areas are turning to mulching equipment as a tool for managing their timberlands. Prescribed burning to reduce fire risk may not be an option, due to smoke management concerns and the level of current fuel loading.

  14. Ceramics: Durability and radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramicsmore » apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.« less

  15. Performance evaluation of two-stage fuel cycle from SFR to PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, T.; Hoffman, E.A.; Kim, T.K.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with anmore » average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)« less

  16. Alternative Fuels Data Center

    Science.gov Websites

    Natural Gas and Propane Tax Effective January 1, 2019, propane, compressed natural gas (CNG), and liquefied natural gas (LNG) will be subject to an excise tax at a rate of $0.04 per gasoline gallon equivalent (GGE), plus a $0.01 ninth-cent fuel tax, a $0.01 local option fuel tax, and an additional variable

  17. Mechanical mid-story reduction treatments for forest fuel management

    Treesearch

    B. Rummer; K. Outcalt; D. Brockway

    2002-01-01

    There are many forest stands where exclusion of fire or lack of management has led to dense understorys and fuel accumulation. Generally, the least expensive treatment is to introduce a regime of prescribed fire as a surrogate for natural forest fire processes in these stands. However, in some cases prescribed fire is not an option. For example, heavy fuel loadings may...

  18. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  19. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  20. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  1. 40 CFR Appendix G to Part 75 - Determination of CO2 Emissions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C.W.; Giraud, K.M.

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantagesmore » include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)« less

  3. Integrating Fuel Treatments into Comprehensive Ecosystem Management

    Treesearch

    Kevin Hyde; Greg Jones; Robin Silverstein; Keith Stockmann; Dan Loeffler

    2006-01-01

    To plan fuel treatments in the context of comprehensive ecosystem management, forest managers must meet multiple-use and environmental objectives, address administrative and budget constraints, and reconcile performance measures from multiple policy directives. We demonstrate a multiple criteria approach to measuring success of fuel treatments used in the Butte North...

  4. Non-Patient-Based Clinical Licensure Examination for Dentistry in Minnesota: Significance of Decision and Description of Process.

    PubMed

    Mills, Eric A

    2016-06-01

    In recent years in the United States, there has been heightened interest in offering clinical licensure examination (CLE) alternatives to the live patient-based method in dentistry. Fueled by ethical concerns of faculty members at the University of Minnesota School of Dentistry, the state of Minnesota's Board of Dentistry approved a motion in 2009 to provide two CLE options to the school's future predoctoral graduates: a patient-based one, administered by the Central Regional Dental Testing Service, and a non-patient-based one administered by the National Dental Examining Board of Canada (NDEB). The validity of the NDEB written exam and objective structured clinical exam (OSCE) has been verified in a multi-year study. Via five-option, one-best-answer, multiple-choice questions in the written exam and extended match questions with up to 15 answer options in the station-based OSCE, competent candidates are distinguished from those who are incompetent in their didactic knowledge and clinical critical thinking and judgment across all dental disciplines. The action had the additional effects of furthering participation of Minnesota Board of Dentistry members in the University of Minnesota School of Dentistry's competency-based curriculum, of involving the school's faculty in NDEB item development workshops, and, beginning in 2018, of no longer permitting the patient-based CLE option on site. The aim of this article is to describe how this change came about and its effects.

  5. Advanced Fuel Cycles for Fusion Reactors: Passive Safety and Zero-Waste Options

    NASA Astrophysics Data System (ADS)

    Zucchetti, Massimo; Sugiyama, Linda E.

    2006-05-01

    Nuclear fusion is seen as a much ''cleaner'' energy source than fission. Most of the studies and experiments on nuclear fusion are currently devoted to the Deuterium-Tritium (DT) fuel cycle, since it is the easiest way to reach ignition. The recent stress on safety by the world's community has stimulated the research on other fuel cycles than the DT one, based on 'advanced' reactions, such as the Deuterium-Helium-3 (DHe) one. These reactions pose problems, such as the availability of 3He and the attainment of the higher plasma parameters that are required for burning. However, they have many advantages, like for instance the very low neutron activation, while it is unnecessary to breed and fuel tritium. The extrapolation of Ignitor technologies towards a larger and more powerful experiment using advanced fuel cycles (Candor) has been studied. Results show that Candor does reach the passive safety and zero-waste option. A fusion power reactor based on the DHe cycle could be the ultimate response to the environmental requirements for future nuclear power plants.

  6. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes

    PubMed Central

    Chandrasekhar, Kuppam; Lee, Yong-Jik; Lee, Dong-Woo

    2015-01-01

    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications. PMID:25874756

  7. Biohydrogen production: strategies to improve process efficiency through microbial routes.

    PubMed

    Chandrasekhar, Kuppam; Lee, Yong-Jik; Lee, Dong-Woo

    2015-04-14

    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.

  8. 40 CFR 86.1801-12 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1801-12 Applicability. (a) Applicability. Except as otherwise... passenger vehicles, and Otto-cycle complete heavy-duty vehicles, including multi-fueled, alternative fueled... Otto-cycle heavy-duty vehicles. (c) Optional applicability. (1) [Reserved] (2) A manufacturer may...

  9. Beyond Demonstration: The Role of Fuel Cells in DoD’s Energy Strategy

    DTIC Science & Technology

    2011-10-19

    to consider fuel cell power. Increase awareness of unmanned vehicle designers, provid- ers, and operators about fuel cell systems as an option for...UAV to assist in the disaster relief and recovery efforts following the March 2011 earthquake and resulting tsunami off the eastern coast of Japan... Daiichi nuclear plant. The Global 34 CHAPTER 6 BEYOND DEMONSTRATION: THE ROLE OF FUEL CELLS IN DoD’S ENERGY STRATEGY Hawk was also used for

  10. Guide to alternative fuel vehicle incentives and laws: September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, C.; O'Connor, K.

    1998-12-22

    This guide provides information in support of the National Clean Cities Program, which will assist one in becoming better informed about the choices and options surrounding the use of alternative fuels and the purchase of alternative fuel vehicles. The information printed in this guide is current as of September 15, 1998. For recent additions or more up-to-date information, check the Alternative Fuels Data Center Web site at http://www.afdc.doe.gov

  11. Fuel Cells: A Real Option for Unmanned Aerial Vehicles Propulsion

    PubMed Central

    2014-01-01

    The possibility of implementing fuel cell technology in Unmanned Aerial Vehicle (UAV) propulsion systems is considered. Potential advantages of the Proton Exchange Membrane or Polymer Electrolyte Membrane (PEMFC) and Direct Methanol Fuel Cells (DMFC), their fuels (hydrogen and methanol), and their storage systems are revised from technical and environmental standpoints. Some operating commercial applications are described. Main constraints for these kinds of fuel cells are analyzed in order to elucidate the viability of future developments. Since the low power density is the main problem of fuel cells, hybridization with electric batteries, necessary in most cases, is also explored. PMID:24600326

  12. Analysis of fuel cycle strategies and U.S. transition scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigeland, Roald; Taiwo, Temitope A.

    2016-10-17

    The nuclear fuel cycle Evaluation and Screening (E&S) study that was completed in October 2014 [1] enabled the identification of four fuel cycle groups that are considered most promising based on a set of nine evaluation criteria: (a) six benefit criteria of Nuclear Waste Management, Proliferation Risk, Nuclear Material Security Risk, Safety, Environmental Impact, Resource Utilization, and (b) three challenge criteria of Development and Deployment Risk, Institutional Issues, Financial Risk and Economics. The E&S study was conducted at a level of analysis that is "technology- neutral," that is, without consideration of specific technologies, but using the fundamental physics characteristics ofmore » each part of the fuel cycle. The study focused on the fuel cycle performance benefits at the fuel cycle equilibrium state, with only limited consideration of transition and deployment impacts. Common characteristics of the four most promising fuel cycle options include continuous recycle of all U/Pu or U/TRU, the use of fast-spectrum reactors, and no use of uranium enrichment once fuel cycle equilibrium has been established. The high-level wastes are mainly from processing of irradiated fuel, and there would be no disposal of any spent fuel. Building on the findings of the E&S study, additional studies have been conducted in the last two years following the information exchange meeting, the 13th IEMPT, which was held in Seoul, the Republic of Korea in 2014. Insights are presented from the recent studies on the benefits and challenges of recycling minor actinides, and transition considerations to some of the most promising fuel cycle options.« less

  13. New developments and prospects on COSI, the simulation software for fuel cycle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.

    2013-07-01

    COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aimmore » in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.« less

  14. Market segmentation for multiple option healthcare delivery systems--an application of cluster analysis.

    PubMed

    Jarboe, G R; Gates, R H; McDaniel, C D

    1990-01-01

    Healthcare providers of multiple option plans may be confronted with special market segmentation problems. This study demonstrates how cluster analysis may be used for discovering distinct patterns of preference for multiple option plans. The availability of metric, as opposed to categorical or ordinal, data provides the ability to use sophisticated analysis techniques which may be superior to frequency distributions and cross-tabulations in revealing preference patterns.

  15. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  16. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  17. An overview of US energy options: Supply- and demand-side history and prospects

    NASA Technical Reports Server (NTRS)

    Hirshberg, A. S.

    1977-01-01

    An overview was provided of nonsolar energy policy options available to the United States until solar energy conversion and utilization devices can produce power at a cost competitive with that obtained from fossil fuels. The economics of the development of new fossil fuel sources and of mandatory conservation measures in energy usage were clarified in the context of the historic annual rate of increase in U.S. energy demand. An attempt was made to compare the costs and relative efficiencies of energy obtainable from various sources by correlating the many confusing measurement units in current use.

  18. Geographic considerations for fire management in the Eastern United States: geomorphology and topography, soils, and climate

    Treesearch

    Barton D. Clinton; James M. Vose; Erika C. Cohen

    2012-01-01

    Across the Eastern United States, there is on average an estimated 36 MT ha–1 (16 tons ac–1) of dead woody fuel (Chojnacky and others 2004). Variations in fuel type, size, and flammability make the selection of treatment options critical for effective fuels management. The region is a complex landscape characterized by...

  19. Northeast Heating Fuel Market The, Assessment and Options

    EIA Publications

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  20. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  1. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    EIA Publications

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  2. Cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. Volume 2: Market and economic analyses

    NASA Technical Reports Server (NTRS)

    Vanabkoude, J. C.

    1976-01-01

    The impact of the most promising fuel conserving options on fuel consumption, passenger demand, operating costs, and airline profits when implemented into the U.S. domestic and international airline fleets is assessed. The potential fuel savings achievable in the U.S. scheduled air transportation system over the forecast period, 1973-1990, are estimated.

  3. High-Performance Multi-Fuel AMTEC Power System

    DTIC Science & Technology

    2000-12-01

    AMTEC technology has demonstrated thermal to electric conversion efficiencies and power densities which make it an attractive option for meso-scaic...power generation. This report details development of an integrated, logistics-fueled, 500 W AMTEC power supply. The development targeted 2O% AMTEC ...cylindrical multi-tube/single cell AMTEC configuration with effective management of alkali metal flow; scaling down and integrating a multi-fuel micro-combustor

  4. Nuclear Power’s Role in Generating Electricity

    DTIC Science & Technology

    2008-05-01

    and Without EPAct Incentives 9 2-1. Historical Volatility in Fuel Prices 20 2-2. Carbon Dioxide Emissions of Base-Load Technologies for Generating...options using that fuel would operate at their maximum capacity factor.CBO 20 NUCLEAR POWER’S ROLE IN GENERATING ELECTRICITY CBOFigure 2-1. Historical ... Volatility in Fuel Prices (Percentage change) Source: Congressional Budget Office based on data from the Energy Information Administration (EIA

  5. Fuels and fire in land-management planning: Part 3. Costs and losses for management options.

    Treesearch

    Wayne G. Maxwell; David V. Sandberg; Franklin R. Ward

    1983-01-01

    An approach is illustrated for computing expected costs of fire protection; fuel treatment; fire suppression; damage values; and percent of area lost to wildfire for a management or rotation cycle. Input is derived from Part 1, a method for collecting and classifying the total fuel complex, and Part 2, a method for appraising and rating probable fire behavior. This...

  6. Military markets for solar thermal electric power systems

    NASA Technical Reports Server (NTRS)

    Hauger, J. S.

    1980-01-01

    The Department of Defense maintains an inventory of over 1,800 MW of engine-generators 15 KW and larger, with an estimated procurement rate of over 140 MW/year. Nearly the entire requirement could be met by advanced heat engines of the types being developed as point-focussing, distributed receiver power plants. A conceptual system consisting of a heat engine which efficiently burns liquid fossil or synthetic fuels, with a 'solarization kit' for conversion to hybrid solar operation could meet existing DOD requirements for new systems which are quieter, lighter, and multi-fueled. An estimated 24 percent (33 MW/year) or more could operationally benefit from the solar option. Baseline cost projections indicate levelized energy cost goals of 210 to 120 mills/KWh (15 to 1000 KW systems). Fuel cost escalation is the major factor affecting the value of the solar option. A baseline calculation for fuel at $0.59/gal in spring, 1979, escalating at 8 percent above general inflation indicates a value of $2700/KWe for a solarization kit.

  7. Comparison between three option, four option and five option multiple choice question tests for quality parameters: A randomized study.

    PubMed

    Vegada, Bhavisha; Shukla, Apexa; Khilnani, Ajeetkumar; Charan, Jaykaran; Desai, Chetna

    2016-01-01

    Most of the academic teachers use four or five options per item of multiple choice question (MCQ) test as formative and summative assessment. Optimal number of options in MCQ item is a matter of considerable debate among academic teachers of various educational fields. There is a scarcity of the published literature regarding the optimum number of option in each item of MCQ in the field of medical education. To compare three options, four options, and five options MCQs test for the quality parameters - reliability, validity, item analysis, distracter analysis, and time analysis. Participants were 3 rd semester M.B.B.S. students. Students were divided randomly into three groups. Each group was given one set of MCQ test out of three options, four options, and five option randomly. Following the marking of the multiple choice tests, the participants' option selections were analyzed and comparisons were conducted of the mean marks, mean time, validity, reliability and facility value, discrimination index, point biserial value, distracter analysis of three different option formats. Students score more ( P = 0.000) and took less time ( P = 0.009) for the completion of three options as compared to four options and five options groups. Facility value was more ( P = 0.004) in three options group as compared to four and five options groups. There was no significant difference between three groups for the validity, reliability, and item discrimination. Nonfunctioning distracters were more in the four and five options group as compared to three option group. Assessment based on three option MCQs is can be preferred over four option and five option MCQs.

  8. Net radiative forcing from widespread deployment of photovoltaics.

    PubMed

    Nemet, Gregory F

    2009-03-15

    If photovoltaics (PV) are to contribute significantly to stabilizing the climate, they will need to be deployed on the scale of multiple terawatts. Installation of that much PV would cover substantial portions of the Earth's surface with dark-colored, sunlight-absorbing panels, reducing the Earth's albedo. How much radiative forcing would result from this change in land use? How does this amount compare to the radiative forcing avoided by substituting PV for fossil fuels? This analysis uses a series of simple equations to compare the two effects and finds that substitution dominates; the avoided radiative forcing due to substitution of PV for fossil fuels is approximately 30 times largerthan the forcing due to albedo modification. Sensitivity analysis, including discounting of future costs and benefits, identifies unfavorable yet plausible configurations in which the albedo effect substantially reduces the climatic benefits of PV. The value of PV as a climate mitigation option depends on how it is deployed, not just how much it is deployed--efficiency of PV systems and the carbon intensity of the substituted energy are particularly important

  9. Merits of flywheels for spacecraft energy storage

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  10. Techno-economic analysis of fuel cell auxiliary power units as alternative to idling

    NASA Astrophysics Data System (ADS)

    Jain, Semant; Chen, Hsieh-Yeh; Schwank, Johannes

    This paper presents a techno-economic analysis of fuel-cell-based auxiliary power units (APUs), with emphasis on applications in the trucking industry and the military. The APU system is intended to reduce the need for discretionary idling of diesel engines or gas turbines. The analysis considers the options for on-board fuel processing of diesel and compares the two leading fuel cell contenders for automotive APU applications: proton exchange membrane fuel cell and solid oxide fuel cell. As options for on-board diesel reforming, partial oxidation and auto-thermal reforming are considered. Finally, using estimated and projected efficiency data, fuel consumption patterns, capital investment, and operating costs of fuel-cell APUs, an economic evaluation of diesel-based APUs is presented, with emphasis on break-even periods as a function of fuel cost, investment cost, idling time, and idling efficiency. The analysis shows that within the range of parameters studied, there are many conditions where deployment of an SOFC-based APU is economically viable. Our analysis indicates that at an APU system cost of 100 kW -1, the economic break-even period is within 1 year for almost the entire range of conditions. At 500 kW -1 investment cost, a 2-year break-even period is possible except for the lowest end of the fuel consumption range considered. However, if the APU investment cost is 3000 kW -1, break-even would only be possible at the highest fuel consumption scenarios. For Abram tanks, even at typical land delivered fuel costs, a 2-year break-even period is possible for APU investment costs as high as 1100 kW -1.

  11. Development of planar solid oxide fuel cells for power generation applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minh, N.Q.

    1996-04-01

    Planar solid oxide fuel cells (SOFCs) are presently being developed for a variety of electric power generation application. The planar design offers simple cell geometry, high power density, and multiple fabrication and gas manifolding options. Planar SOFC technology has received much attention recently, and significant progress has been made in this area. Recent effort at AlliedSignal has focused on the development of high-performance, lightweight planar SOFCs, having thin-electrolyte films, that can be operated efficiently at reduced temperatures (< 1000{degrees}C). The advantages of reduced-temperature operation include wider material choice (including use of metallic interconnects), expected longer cell life, reduced thermal stress,more » improved reliability, and reduced fuel cell cost. The key aspect in the development of thin-film SIFCs is to incorporate the thin electrolyte layer into the desired structure of cells in a manner that yields the required characteristics. AlliedSignal has developed a simple and cost-effective method based on tape calendering for the fabrication of thin-electrolyte SOFCs. Thin-electrolyte cells made by tape calendering have shown extraordinary performance, e.g., producing more than 500mW/cm{sup 2} at 700{degrees}C and 800mW/cm{sup 2} at 800{degrees}C with hydrogen as fuel and air is oxidant. thin-electrolyte single cells have been incorporated into a compliant metallic stack structure and operated at reduced and operated at reduced-temperature conditions.« less

  12. Net energy analysis: Powerful tool for selecting electric power options

    NASA Astrophysics Data System (ADS)

    Baron, S.

    A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.

  13. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...EPA is issuing a proposed rule to amend the diesel sulfur regulations to allow refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at retail facilities. This rule also proposes to amend the gasoline benzene regulations to allow disqualified small refiners the same opportunity to generate gasoline benzene credits as that afforded to non-small refiners.

  14. Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach

    NASA Astrophysics Data System (ADS)

    Passerini, Stefano

    For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test the robustness of the conclusions presented in the MIT Fuel Cycle Study. These conclusions are found to still hold, even when considering alternative technologies and different sets of simulation assumptions. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. Optimization metrics of interest for different stakeholders in the fuel cycle (economics, fuel resource utilization, high level waste, transuranics/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then successfully used to arrive at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify non-inferior solutions according to Pareto's dominance approach to optimization. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  15. Options for refuelling hydrogen fuel cell vehicles in Italy

    NASA Astrophysics Data System (ADS)

    Mercuri, R.; Bauen, A.; Hart, D.

    Hydrogen fuel cell vehicle (H 2 FCV) trials are taking place in a number of cities around the world. In Italy, Milan and Turin are the first to have demonstration projects involving hydrogen-fuelled vehicles, in part to satisfy increasing consumer demand for improved environmental performance. The Italian transport plan specifically highlights the potential for FCVs to enter into the marketplace from around 2005. A scenario for FCV penetration into Italy, developed using projected costs for FCV and hydrogen fuel, suggests that by 2015, 2 million Italian cars could be powered by fuel cells. By 2030, 60% of the parc could be FCVs. To develop an infrastructure to supply these vehicles, a variety of options is considered. Large-scale steam reforming, on-site reforming and electrolysis options are analysed, with hydrogen delivered both in liquid and gaseous form. Assuming mature technologies, with over 10,000 units produced, on-site steam reforming provides the most economic hydrogen supply to the consumer, at US 2.6/kg. However, in the early stages of the infrastructure development there is a clear opportunity for on-site electrolysis and for production of hydrogen at centralised facilities, with delivery in the form of liquid hydrogen. This enables additional flexibility, as the hydrogen may also be used for fuel refining or for local power generation. In the current Italian context, energy companies could have a significant role to play in developing a hydrogen infrastructure. The use of hydrogen FCVs can substantially reduce emissions of regulated pollutants and greenhouse gases. Using externality costs for regulated pollutants, it is estimated that the use of hydrogen fuel cell buses in place of 5% of diesel buses in Milan could avoid US 2 million per year in health costs. The addition of even very low externality costs to fuel prices makes the use of untaxed hydrogen in buses and cars, which is slightly more expensive for the motorist than untaxed gasoline or diesel, competitive on a social cost basis.

  16. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, A.; Smith, R.; Hill, D.

    2009-08-15

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found tomore » be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.« less

  17. Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    2010-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less

  18. Status of French reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballagny, A.

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (exceptmore » if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.« less

  19. Design of a fuel element for a lead-cooled fast reactor

    NASA Astrophysics Data System (ADS)

    Sobolev, V.; Malambu, E.; Abderrahim, H. Aït

    2009-03-01

    The options of a lead-cooled fast reactor (LFR) of the fourth generation (GEN-IV) reactor with the electric power of 600 MW are investigated in the ELSY Project. The fuel selection, design and optimization are important steps of the project. Three types of fuel are considered as candidates: highly enriched Pu-U mixed oxide (MOX) fuel for the first core, the MOX containing between 2.5% and 5.0% of the minor actinides (MA) for next core and Pu-U-MA nitride fuel as an advanced option. Reference fuel rods with claddings made of T91 ferrite-martensitic steel and two alternative fuel assembly designs (one uses a closed hexagonal wrapper and the other is an open square variant without wrapper) have been assessed. This study focuses on the core variant with the closed hexagonal fuel assemblies. Based on the neutronic parameters provided by Monte-Carlo modeling with MCNP5 and ALEPH codes, simulations have been carried out to assess the long-term thermal-mechanical behaviour of the hottest fuel rods. A modified version of the fuel performance code FEMAXI-SCK-1, adapted for fast neutron spectrum, new fuels, cladding materials and coolant, was utilized for these calculations. The obtained results show that the fuel rods can withstand more than four effective full power years under the normal operation conditions without pellet-cladding mechanical interaction (PCMI). In a variant with solid fuel pellets, a mild PCMI can appear during the fifth year, however, it remains at an acceptable level up to the end of operation when the peak fuel pellet burnup ∼80 MW d kg-1 of heavy metal (HM) and the maximum clad damage of about 82 displacements per atom (dpa) are reached. Annular pellets permit to delay PCMI for about 1 year. Based on the results of this simulation, further steps are envisioned for the optimization of the fuel rod design, aiming at achieving the fuel burnup of 100 MW d kg-1 of HM.

  20. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation;more » and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).« less

  1. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    NASA Astrophysics Data System (ADS)

    Powers, Jeffrey J.

    2011-12-01

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

  2. Analysis of the Future Effects of the Fuel Shortage and Increased Small Car Usage Upon Traffic Deaths and Injuries

    DOT National Transportation Integrated Search

    1976-01-01

    The Automotive Energy Efficiency Project is concerned with the examination of technological options for improving the fuel efficiency of highway vehicles. This examination includes an analysis of the effects of existing and proposed mandated standard...

  3. Alternative Fuels Data Center: E85 Codes and Standards

    Science.gov Websites

    Development Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & ; Incentives Ethanol Codes, Standards, and Safety The U.S. Environmental Protection Agency's (EPA) Office of -Gasoline Blends. The Occupational Safety and Health Administration (OSHA) regulates some fuel-dispensing

  4. Alternative Fuels Data Center: Publications

    Science.gov Websites

    , advanced vehicles, and regulated fleets. Keyword Category Search more search options close × Filter by Journal Articles & Abstracts Newsletters Presentations Reports Choose one or more categories to search Propane Vehicles Diesel Vehicles Fuel Economy Idle Reduction Vehicle Conversions Search Latest Additions

  5. User's guide [Chapter 3

    Treesearch

    Nicholas L. Crookston; Donald C. E. Robinson; Sarah J. Beukema

    2003-01-01

    The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. This chapter presents the model's options, provides annotated examples, describes the outputs, and describes how to use and apply the model.

  6. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or crewed missions. There are potential options for either modifying existing facilities or constructing new ground test facilities. At least three potential options exist for reducing (or eliminating) the release of radioactivity into the environment during ground testing. These include fully containing the NTP exhaust during the ground test, scrubbing the exhaust, or utilizing an existing borehole at the Nevada National Security Site (NNSS) to filter the exhaust. Finally, the project is considering the potential for an early flight demonstration of an engine very similar to one that could be used to support human Mars or other ambitious missions. The flight demonstration could be an important step towards the eventual utilization of NTP.

  7. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  8. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  9. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  10. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to minimize emissions from startup, shutdown, and malfunction events. 270.235 Section 270.235... from startup, shutdown, and malfunction events. (a) Facilities with existing permits—(1) Revisions to... from startup, shutdown, and malfunction events under any of the following options when requesting...

  11. Flexible ceramic gasket for SOFC generator

    DOEpatents

    Zafred, Paolo [Murrysville, PA; Prevish, Thomas [Trafford, PA

    2009-02-03

    A solid oxide fuel cell generator (10) contains stacks of hollow axially elongated fuel cells (36) having an open top end (37), an oxidant inlet plenum (52), a feed fuel plenum (11), a combustion chamber (94) for combusting reacted oxidant/spent fuel; and, optionally, a fuel recirculation chamber (106) below the combustion chamber (94), where the fuel recirculation chamber (94) is in part defined by semi-porous fuel cell positioning gasket (108), all within an outer generator enclosure (8), wherein the fuel cell gasket (108) has a laminate structure comprising at least a compliant fibrous mat support layer and a strong, yet flexible woven layer, which may contain catalytic particles facing the combustion chamber, where the catalyst, if used, is effective to further oxidize exhaust fuel and protect the open top end (37) of the fuel cells.

  12. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, John

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  13. Tactical Fuel and Energy Strategy for The Future Modular Force

    DTIC Science & Technology

    2009-05-18

    product of the anaerobic digestion (decomposition without oxygen) of organic matter such as animal manure , sewage, and municipal solid waste. It is...supplement petroleum-based fuels and thereby decrease petroleum-based fuel requirements. The Army can stage itself through additional and increased R&D...Energy situation and to begin to develop flexible options and recommend choices and investments that will yield a balanced strategy. At this stage

  14. Fuels planning: science synthesis and integration; environmental consequences fact sheet 06: wildland fire use: the "other" treatment option

    Treesearch

    Anne Black

    2004-01-01

    Fire suppression has reduced acres burned to an average of 2 million acres a year. An unfortunate result of this has been the accumulation of even more above-normal fuel loads in many areas. This paper discusses (1) the important ecological role of fire, (2) using fire as a fuels treatment, and (2) the benefits and risks of fire.

  15. High time for a change: psychometric analysis of multiple-choice questions in nursing.

    PubMed

    Redmond, Sandra P; Hartigan-Rogers, Jackie A; Cobbett, Shelley

    2012-11-26

    Nurse educators teach students to develop an informed nursing practice but can educators claim the same grounding in the available evidence when formulating multiple-choice assessment tools to evaluate student learning? Multiple-choice questions are a popular assessment format within nursing education. While widely accepted as a credible format to assess student knowledge across disciplines, debate exists among educators regarding the number of options necessary to adequately test cognitive reasoning and optimal discrimination between student abilities. The purpose of this quasi-experimental between groups study was to examine the psychometric properties of three option multiple-choice questions when compared to the more traditional four option questions. Data analysis revealed that there were no statistically significant differences in the item discrimination, difficulty or the mean examination scores when multiple-choice test questions were administered with three versus four option answer choices. This study provides additional guidance for nurse educators to assist in improving multiple-choice question writing and test design.

  16. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A.

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueledmore » cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)« less

  17. The Fascinating Story of Fossil Fuels

    ERIC Educational Resources Information Center

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  18. DIFFERENTIATING PASSENGER VEHICLES BY FUEL ECONOMY: STRATEGIC INCENTIVES AND THE COST-EFFECTIVENESS OF TRADABLE CAFE STANDARDS

    EPA Science Inventory

    The welfare and distributional effects of alternative fuel economy regulations will be compared, including an increase in existing CAFE standards, allowing for tradable credits, and implementing other design options in a trading scheme, such as sliding standards based on ve...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportationmore » of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites; Although there are common aspects, each site has some unique features and/or conditions; Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel; Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin; Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less

  20. Impact of the deployment schedule of fast breeding reactors in the frame of French act for nuclear materials and radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Mer, J.; Garzenne, C.; Lemasson, D.

    In the frame of the French Act of June 28, 2006 on 'a sustainable management of nuclear materials and radioactive waste' EDF R and D assesses various research scenarios of transition between the actual French fleet and a Generation IV fleet with a closed fuel cycle where plutonium is multi-recycled. The basic scenarios simulate a deployment of 60 GWe of Sodium-cooled Fast Reactors (SFRs) in two steps: one third from 2040 to 2050 and the rest from 2080 to 2100 (scenarios 2040). These research scenarios assume that SFR technology will be ready for industrial deployment in 2040. One of themore » many sensitivity analyses that EDF, as a nuclear power plant operator, must evaluate is the impact of a delay of SFR technology in terms of uranium consumptions, plutonium needs and fuel cycle utilities gauging. The sensitivity scenarios use the same assumptions as scenarios 2040 but they simulate a different transition phase: SFRs are deployed in one step between 2080 and 2110 (scenarios 2080). As the French Act states to conduct research on minor actinides (MA) management, we studied different options for 2040 and 2080 scenarios: no MA transmutation, americium transmutation in heterogeneous mode based on americium Bearing Blankets (AmBB) in SFRs and all MA transmutation in heterogeneous mode based on MA Bearing Blankets (MABB). Moreover, we studied multiple parameters that could impact the deployment of these reactors (SFR load factor, increase of the use of MOX in Light Water Reactors, increase of the cooling time in spent nuclear fuel storage...). Each scenario has been computed with the EDF R and D fuel cycle simulation code TIRELIRE-STRATEGIE and optimized to meet various fuel cycle constraints such as using the reprocessing facility with long period of constant capacity, keeping the temporary stored mass of plutonium and MA under imposed limits, recycling older assemblies first... These research scenarios show that the transition from the current PWR fleet to an equivalent fleet of Generation IV SFR can follow different courses. The design of SFR-V2B that we used in our studies needs a high inventory of plutonium resulting in tension on this resource. Several options can be used in order to loosen this tension: our results lead to favour the use of axial breeding blanket in SFR. Load factor of upcoming reactors has to be regarded with attention as it has a high impact on plutonium resource for a given production of electricity. The deployment of SFRs beginning in 2080 instead of 2040 following the scenarios we described creates higher tensions on reprocessing capacity, separated plutonium storage and spent fuel storage. In the frame of the French Act, we studied minor actinides transmutation. The flux of MA in all fuel cycle plants is really high, which will lead to decay heat, a and neutron emission related problems. In terms of reduction of MA inventories, the deployment of MA transmutation cycle must not delay the installation of SFRs. The plutonium production in MABB and AmBB does not allow reducing the use of axial breeding blankets. The impact of MA or Am transmutation over the high level waste disposal is more important if the SFRs are deployed later. Transmutation option (americium or all MA) does not have a significant impact on the number of canister produced nor on its long-term thermal properties. (authors)« less

  1. Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephs, J.M.

    1980-12-31

    A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison ismore » made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion fission hybrid reactor which serves as fuel producer for several PWR reactors. The storage option is found to be most favorable; however, even this option represents a significant economic impact due to radioactivity of 0.074 mills/kW-h which amounts to $4 x 10/sup 9/ over a 30 year period assuming a 200 gigawatt supply of electrical power.« less

  2. Enhancing the properties of Fischer-Tropsch fuel produced from syngas over Co/SiO2 catalyst: Lubricity and Calorific Value

    NASA Astrophysics Data System (ADS)

    Doustdar, O.; Wyszynski, M. L.; Mahmoudi, H.; Tsolakis, A.

    2016-09-01

    Bio-fuel produced from renewable sources is considered the most viable alternatives for the replacement of mineral diesel fuel in compression ignition engines. There are several options for biomass derived fuels production involving chemical, biological and thermochemical processes. One of the best options is Fischer Tropsch Synthesis, which has an extensive history of gasoline and diesel production from coal and natural gas. FTS fuel could be one of the best solutions to the fuel emission due to its high quality. FTS experiments were carried out in 16 different operation conditions. Mini structured vertical downdraft fixed bed reactor was used for the FTS. Instead of Biomass gasification, a simulated N2 -rich syngas cylinder of, 33% H2 and 50% N2 was used. FT fuels products were analyzed in GCMS to find the hydrocarbon distributions of FT fuel. Calorific value and lubricity of liquid FT product were measured and compared with commercial diesel fuel. Lubricity has become an important quality, particularly for biodiesel, due to higher pressures in new diesel fuel injection (DFI) technology which demands better lubrication from the fuel and calorific value which is amount of energy released in combustion paly very important role in CI engines. Results show that prepared FT fuel has desirable properties and it complies with standard values. FT samples lubricities as measured by ASTM D6079 standard vary from 286μm (HFRR scar diameter) to 417μm which are less than limit of 520μm. Net Calorific value for FT fuels vary from 9.89 MJ/kg to 43.29 MJ/kg, with six of the samples less than EN 14213 limit of 35MJ/kg. Effect of reaction condition on FT fuel properties was investigated which illustrates that in higher pressure Fischer-Tropsch reaction condition liquid product has better properties.

  3. 17 CFR 240.19c-5 - Governing the multiple listing of options on national securities exchanges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of options on national securities exchanges. 240.19c-5 Section 240.19c-5 Commodity and Securities... of Exchange Members § 240.19c-5 Governing the multiple listing of options on national securities exchanges. (a) The rules of each national securities exchange that provides a trading market in standardized...

  4. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Xcel Energy Xcel Energy offers two rate options to qualified residential customers for charging PEVs. The Electric Vehicle (EV) Rate and the Time -of-Day Plan are optional and require a separate meter. For rate information, including how to qualify

  5. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Technology (MACT) Standards § 270.235 Options for incinerators, cement kilns, lightweight aggregate kilns... malfunction plan, design, and operating history. (2) Retain or add these permit requirements to the permit to... information including the source's startup, shutdown, and malfunction plan, design, and operating history; and...

  6. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  7. Dual-fuel propulsion - Why it works, possible engines, and results of vehicle studies. [on earth-to-orbit Space Shuttle flights

    NASA Technical Reports Server (NTRS)

    Martin, J. A.; Wilhite, A. W.

    1979-01-01

    The reasons why dual-fuel propulsion works are discussed. Various engine options are discussed, and vehicle mass and cost results are presented for earth-to-orbit vehicles. The results indicate that dual-fuel propulsion is attractive, particularly with the dual-expander engine. A unique orbit-transfer vehicle is described which uses dual-fuel propulsion. One Space Shuttle flight and one flight of a heavy-lift Shuttle derivative are used for each orbit-transfer vehicle flight, and the payload capability is quite attractive.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARTONE, ERIK

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  9. Engine for the next-generation launcher

    NASA Astrophysics Data System (ADS)

    Beichel, Rudi; Grey, Jerry

    1995-05-01

    The proposed dual-fuel/dual-expansion engine for the Reusable Launch Vehicle (RLV) could solve the vehicle's need for a high-performance, lightweight, low-cost, maintainable engine. The features that make dual-fuel/dual-expansion engine a prime candidate for RLV include oxygen-rich combustion, high-pressure staged-combustion cycle and dual-fuel operation. Cost-reducing, reliability-enhancing innovations such as the elimination of regenerative cooling, elimination of gimbaling and replacement of kerosene-based hydrocarbon fuel by subcooled propane have also made the this type of engine an attractive option.

  10. Screening of advanced cladding materials and UN-U3Si5 fuel

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Todosow, Michael; Cuadra, Arantxa

    2015-07-01

    In the aftermath of Fukushima, a focus of the DOE-NE Advanced Fuels Campaign has been the development of advanced nuclear fuel and cladding options with the potential for improved performance in an accident. Uranium dioxide (UO2) fuels with various advanced cladding materials were analyzed to provide a reference for cladding performance impacts. For advanced cladding options with UO2 fuel, most of the cladding materials have some reactivity and discharge burn-up penalty (in GWd/t). Silicon carbide is one exception in that the reactor physics performance is predicted to be very similar to zirconium alloy cladding. Most candidate claddings performed similar to UO2-Zr fuel-cladding in terms of safety coefficients. The clear exception is that Mo-based materials were identified as potentially challenging from a reactor physics perspective due to high resonance absorption. This paper also includes evaluation of UN-U3Si5 fuels with Kanthal AF or APMT cladding. The objective of the U3Si5 phase in the UN-U3Si5 fuel concept is to shield the nitride phase from water. It was shown that UN-U3Si5 fuels with Kanthal AF or APMT cladding have similar reactor physics and fuel management performance over a wide parameter space of phase fractions when compared to UO2-Zr fuel-cladding. There will be a marginal penalty in discharge burn-up (in GWd/t) and the sensitivity to 14N content in UN ceramic composites is high. Analysis of the rim effect due to self-shielding in the fuel shows that the UN-based ceramic fuels are not expected to have significantly different relative burn-up distributions at discharge relative to the UO2 reference fuel. However, the overall harder spectrum in the UN ceramic composite fuels increases transuranic build-up, which will increase long-term activity in a once-thru fuel cycle but is expected to be a significant advantage in a fuel cycle with continuous recycling of transuranic material. It is recognized that the fuel and cladding properties assumed in these assessments are preliminary, and that additional data are necessary for these materials, most significantly under irradiation.

  11. Measuring the Multiplication of Spent Fuel Assemblies – It’s easier than you think!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, Stephen Joseph

    This is a set of eight slides which advertise how easy it can be to measure the multiplication of a spent fuel assembly. A robust (fission chambers), rapid (under 15 minutes), direct (multiplication is measured, not photons from fission fragments) measurement of multiplication is possible.

  12. 40 CFR 75.19 - Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Optional SO 2, NO X, and CO 2... Provisions § 75.19 Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units. (a...) Determination of SO 2, NO X, and CO 2 emission rates. (i) If the unit combusts only natural gas and/or fuel oil...

  13. 40 CFR 75.19 - Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Optional SO 2, NO X, and CO 2... Provisions § 75.19 Optional SO 2, NO X, and CO 2 emissions calculation for low mass emissions (LME) units. (a...) Determination of SO 2, NO X, and CO 2 emission rates. (i) If the unit combusts only natural gas and/or fuel oil...

  14. Rail Shock and Vibration Pre-Test Modeling of a Used Nuclear Fuel Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Steven B.; Klymyshyn, Nicholas A.; Jensen, Philip J.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste (HLW). The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and HLW generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC is responsible for addressing issues regarding the long-term or extendedmore » storage (ES) of UNF and its subsequent transportation. Available information is not sufficient to determine the ability of ES UNF, including high-burnup fuel, to withstand shock and vibration forces that could occur when the UNF is shipped by rail from nuclear power plant sites to a storage or disposal facility. There are three major gaps in the available information – 1) the forces that UNF assemblies would be subjected to when transported by rail, 2) the mechanical characteristics of fuel rod cladding, which is an essential structure for controlling the geometry of the UNF, a safety related feature, and 3) modeling methodologies to evaluate multiple possible degradation or damage mechanisms over the UNF lifetime. In order to address the first gap, options for tests to determine the physical response of surrogate UNF assemblies subjected to shock and vibration forces that are expected to be experienced during normal conditions of transportation (NCT) by rail must be identified and evaluated. The objective of the rail shock and vibration tests is to obtain data that will help researchers understand the mechanical loads that ES UNF assemblies would be subjected to under normal conditions of transportation and to fortify the computer modeling that will be necessary to evaluate the impact those loads may have on the integrity of the UNF assembly. The shock and vibration testing along with computer modeling is a vital part of research to achieve closure of a gap in information related to the ability of ES UNF to maintain its safety function when subjected to NCT. In support of this effort, preliminary structural dynamics modeling is presented herein. The modeling investigates the rigidity of a hypothetical cask and cradle structure by comparing it to a monolithic concrete mass. The concrete mass represents a practical option for achieving the necessary cask and cradle mass on a flatbed railcar, but this comparative modeling study investigates whether or not the dynamic loads transmitted through a monolithic concrete configuration are adequately representative of a realistic cask and cradle system. This modeling highlights the need for rail testing by reporting the phenomenon of structural transmissibility. As shown herein, this structural transmissibility can cause an amplification of shock and vibration loads through the structure, which could potentially lead to accelerated mechanical degradation of UNF under NCT.« less

  15. A review on technological options of waste to energy for effective management of municipal solid waste.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Life Cycle Assessment of landfill biogas management: sensitivity to diffuse and combustion air emissions.

    PubMed

    Beylot, Antoine; Villeneuve, Jacques; Bellenfant, Gaël

    2013-02-01

    GOAL AND SCOPE: The life cycle inventory of landfill emissions is a key point in Life Cycle Assessment (LCA) of waste management options and is highly subject to discussion. Result sensitivity to data inventory is accounted for through the implementation of scenarios that help examine how waste landfilling should be modeled in LCA. Four landfill biogas management options are environmentally evaluated in a Life Cycle Assessment perspective: (1) no biogas management (open dump), conventional landfill with (2) flaring, (3) combined heat and power (CHP) production in an internal combustion engine and (4) biogas upgrading for use as a fuel in buses. Average, maximum and minimum literature values are considered both for combustion emission factors in flares and engines and for trace pollutant concentrations in biogas. Biogas upgrading for use as a fuel in buses appears as the most relevant option with respect to most non-toxic impact categories and ecotoxicity, when considering average values for trace gas concentrations and combustion emission factors. Biogas combustion in an engine for CHP production shows the best performances in terms of climate change, but generates significantly higher photochemical oxidant formation and marine eutrophication impact potentials than flaring or biogas upgrading for use as a fuel in buses. However the calculated environmental impact potentials of landfill biogas management options depend largely on the trace gas concentrations implemented in the model. The use of average or extreme values reported in the literature significantly modifies the impact potential of a given scenario (up to two orders of magnitude for open dumps with respect to human toxicity). This should be taken into account when comparing landfilling with other waste management options. Also, the actual performances of a landfill top cover (in terms of oxidation rates) and combustion technology (in terms of emission factors) appear as key parameters affecting the ranking of biogas management options. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Are We There Yet? Alternative Fuels for School Buses

    ERIC Educational Resources Information Center

    Lea, Dennis; Carter, Deborah

    2009-01-01

    America's annual oil consumption continues to increase and is projected to continue the upward spiral into the foreseeable future. Alternative-fuel options are available that are not only cheaper in some cases on an energy-equivalent basis but are also more environmentally friendly. Education leaders need to be concerned with both these facts.…

  18. Alternative fuels study : a report to Congress on policy options for increasing the use of alternative fuels in transit vehicles, December 2006.

    DOT National Transportation Integrated Search

    2006-12-01

    This report presents the results of a study required by Section 3016(c) of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). That section directed the Secretary of Transportation to conduct a study...

  19. 78 FR 71731 - 2014 Standards for the Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... of E85 Consumption c. Proposed Projection of E85 Consumption in 2014 d. Estimating Total Ethanol Consumption in 2014 2. Estimating Availability of Non-Ethanol Renewable Fuel Volumes a. Non-Ethanol Cellulosic... Biofuel c. Option 3: Availability, Growth, and Limits on Ethanol Consumption D. Summary of Proposed Volume...

  20. 40 CFR 80.164 - Certification test fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification option in § 80.163(a)(1)(iii) are contained in § 80.177. (1) Quantitative specifications for the... compositional data must be collected only from samples of premium gasoline. (ii) The fuel composition survey... and that all survey data must have been collected within three years of the date the certification...

  1. In the Hot Seat--Analyzing Your Heating Options

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    When winter rolls around, keeping yourself and your home warm is of the utmost importance. Heating your home seems like a simple subject to tackle, but there are many heating systems available, requiring different fuels, installations, and costs. The various fuel types and their environmental footprints will be the focus of this month's column.…

  2. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Markovich

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part ofmore » the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.« less

  3. Do Sequentially-Presented Answer Options Prevent the Use of Testwiseness Cues on Continuing Medical Education Tests?

    ERIC Educational Resources Information Center

    Willing, Sonja; Ostapczuk, Martin; Musch, Jochen

    2015-01-01

    Testwiseness--that is, the ability to find subtle cues towards the solution by the simultaneous comparison of the available answer options--threatens the validity of multiple-choice (MC) tests. Discrete-option multiple-choice (DOMC) has recently been proposed as a computerized alternative testing format for MC tests, and presumably allows for a…

  4. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, Jeffrey James

    2011-11-30

    This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importancemore » of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MW th, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.« less

  5. Evaluation of five guidelines for option development in multiple-choice item-writing.

    PubMed

    Martínez, Rafael J; Moreno, Rafael; Martín, Irene; Trigo, M Eva

    2009-05-01

    This paper evaluates certain guidelines for writing multiple-choice test items. The analysis of the responses of 5013 subjects to 630 items from 21 university classroom achievement tests suggests that an option should not differ in terms of heterogeneous content because such error has a slight but harmful effect on item discrimination. This also occurs with the "None of the above" option when it is the correct one. In contrast, results do not show the supposedly negative effects of a different-length option, the use of specific determiners, or the use of the "All of the above" option, which not only decreases difficulty but also improves discrimination when it is the correct option.

  6. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: Amore » Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.« less

  7. Effects of California's Climate Policy in Facilitating CCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, Elizabeth

    California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less

  8. Effects of California's Climate Policy in Facilitating CCUS

    DOE PAGES

    Burton, Elizabeth

    2014-12-31

    California is at the forefront of addressing the challenges involved in redesigning its energy infrastructure to meet 2050 GHG reduction goals, but CCUS commercialization lags in California as it does elsewhere. It is unclear why this is the case given the state’s forefront position in aggressive climate change policy. The intent of this paper is to examine the factors that may explain why CCUS has not advanced as rapidly as other GHG emissions mitigation technologies in California and identify ways by which CCUS commercialization may be advanced in the context of California’s future energy infrastructure. CCUS has application to reducemore » GHG emissions from the power, industrial and transportation sectors in the state. Efficiency, use of renewable energy or nuclear generation to replace fossil fuels, use of lower or no-net-carbon feedstocks (such as biomass), and use of CCUS on fossil fuel generation are the main options, but California has fewer options for making the deep cuts in CO 2 emissions within the electricity sector to meet 2050 goals. California is already the most efficient of all 50 states as measured by electricity use per capita, and, while further efficiency measures can reduce per capita consumption, increasing population is still driving electricity demand upwards. A 1976 law prevents building any new nuclear plants until a federal high-level nuclear waste repository is approved. Most all in-state electricity generation already comes from natural gas; although California does plan to eliminate electricity imports from out-of-state coal-fired generation. Thus, the two options with greatest potential to reduce in-state power sector CO 2 emissions are replacing fossil with renewable generation or employing CCUS on natural gas power plants. Although some scenarios call on California to transition its electricity sector to 100 percent renewables, it is unclear how practical this approach is given the intermittency of renewable generation, mismatches between peak generation times and demand times, and the rate of progress in developing technologies for large-scale power storage. Vehicles must be electrified or move to biofuels or zero-carbon fuels in order to decarbonize the transportation sector. These options transfer the carbon footprint of transportation to other sectors: the power sector in the case of electric vehicles and the industrial and agricultural sectors in the case of biofuels or zero-carbon fuels. Thus, the underlying presumption to achieve overall carbon reductions is that the electricity used by vehicles does not raise the carbon emissions of the power sector: biofuel feedstock growth, harvest, and processing uses low carbon energy or production of fuels from fossil feedstocks employs CCUS. This results in future transportation sector energy derived solely from renewables, biomass, or fossil fuel point sources utilizing CCUS. In the industrial sector, the largest contributors to GHG emissions are transportation fuel refineries and cement plants. Emissions from refineries come from on-site power generation and hydrogen plants; while fuel mixes can be changed to reduce the GHG emissions from processing and renewable sources can be used to generate power, total decarbonization requires use of CCUS. Similarly, for cement plants, power generation may use carbon-free feedstocks instead of fossil fuels, but CO 2 emissions associated with the manufacture of cement products must be dealt with through CCUS. Of course, another option for these facilities is the purchase of offsets to create a zero-emissions plant.« less

  9. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2010-03-29

    246 of H.R. 2647 would require DOD to submit to the congressional defense committees a study on the use of thorium -liquid fueled nuclear reactors ...Congressional Research Service 19 SEC. 246. STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES. (a) Study Required- The Secretary of Defense and...the Chairman of the Joint Chiefs of Staff shall jointly carry out a study on the use of thorium -liquid fueled nuclear reactors for naval power

  10. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2009-12-23

    congressional defense committees a study on the use of thorium -liquid fueled nuclear reactors for Navy surface ships. The text of Section 246 is as follows...carry out a study on the use of thorium -liquid fueled nuclear reactors for naval power needs pursuant to section 1012, of the National Defense...force— (1) compare and contrast thorium -liquid fueled reactor concept to the 2005 Quick Look, 2006 Navy Alternative Propulsion Study, and the navy CG

  11. Navy Nuclear-Powered Surface Ships: Background, Issues, and Options for Congress

    DTIC Science & Technology

    2009-07-17

    thorium -liquid fueled nuclear reactors for Navy surface ships. Section 1012 of the FY2010 defense authorization bill (S. 1390) as reported by the Senate...to the congressional defense committees a study on the use of thorium -liquid fueled nuclear reactors for Navy surface ships. The text of Section...STUDY ON THORIUM -LIQUID FUELED REACTORS FOR NAVAL FORCES. (a) Study Required- The Secretary of Defense and the Chairman of the Joint Chiefs of Staff

  12. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    NASA Astrophysics Data System (ADS)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  13. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill, Ralph

    2008-05-15

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the usemore » of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.« less

  14. Effects of fuel-injector design on ultra-lean combustion performance

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Emissions data were obtained for six fuel injector configurations tested with ultra lean combustion. Fuel injectors included three multiple source designs and three configurations using a single air assist injector. Only the multiple source fuel injectors provided acceptable emissions. Values of 16g CO/kg fuel, 1.9g HC/kg fuel, and 19.g NO2/kg fuel were obtained for the combustion temperature range of 1450 to 1700 K for both a high blockage 19 source injector and a low blockage 41 source injector. It was shown that high fuel injector pressure drop may not be required to achieve low emissions performance at high inlet air temperature when the fuel is well dispersed in the airstream.

  15. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    NASA Technical Reports Server (NTRS)

    Tacina, K. M.; Hicks, Y. R.

    2017-01-01

    The combustion dynamics of multiple 7-point lean direct injection (LDI) combustor configurations are compared. LDI is a fuel-lean combustor concept for aero gas turbine engines in which multiple small fuel-air mixers replace one traditionally-sized fuel-air mixer. This 7-point LDI configuration has a circular cross section, with a center (pilot) fuel-air mixer surrounded by six outer (main) fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle, which varies with the configuration. Testing was done in a 5-atm flame tube with inlet air temperatures from 600 to 800 F and equivalence ratios from 0.4 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section.

  16. 5 CFR 870.705 - Amount and election of Option B and Option C.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Amount and election of Option B and Option C. 870.705 Section 870.705 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED... Compensationers § 870.705 Amount and election of Option B and Option C. (a) The number of multiples of Option B...

  17. Does the Position of Response Options in Multiple-Choice Tests Matter?

    ERIC Educational Resources Information Center

    Hohensinn, Christine; Baghaei, Purya

    2017-01-01

    In large scale multiple-choice (MC) tests alternate forms of a test may be developed to prevent cheating by changing the order of items or by changing the position of the response options. The assumption is that since the content of the test forms are the same the order of items or the positions of the response options do not have any effect on…

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projectsmore » where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.« less

  19. Comparing Item Performance on Three- Versus Four-Option Multiple Choice Questions in a Veterinary Toxicology Course.

    PubMed

    Royal, Kenneth; Dorman, David

    2018-06-09

    The number of answer options is an important element of multiple-choice questions (MCQs). Many MCQs contain four or more options despite the limited literature suggesting that there is little to no benefit beyond three options. The purpose of this study was to evaluate item performance on 3-option versus 4-option MCQs used in a core curriculum course in veterinary toxicology at a large veterinary medical school in the United States. A quasi-experimental, crossover design was used in which students in each class were randomly assigned to take one of two versions (A or B) of two major exams. Both the 3-option and 4-option MCQs resulted in similar psychometric properties. The findings of our study support earlier research in other medical disciplines and settings that likewise concluded there was no significant change in the psychometric properties of three option MCQs when compared to the traditional MCQs with four or more options.

  20. Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance Remotely- Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.; Tornabene, Robert T.; Jurns, John M.; Guynn, Mark D.; Tomsik, Thomas M.; VanOverbeke, Thomas J.

    2009-01-01

    Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.

  1. Preliminary review of biomass energy options in Costa Rica and the national alcohol fuel program. Summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.L.

    1981-01-30

    For an agricultural, oil-importing country such as Costa Rica, the use of biomass as a source of transportation fuels is a topic of great interest. This analysis is intended to assist the Costa Rican government and USAID/CR to identify possible biomass energy projects. While emphasis is on technologies for converting biomass into liquid fuels, agronomic issues and alternative energy options are also explored. Costa Rica plans to build six facilities for converting biomass (primarily sugarcane, supplemented by molasses, cassava, and banana wastes) to hydrous ethanol. The following issues relating to biomass conversion technologies are identified: use of hydroelectrically powered drivesmore » in sugarcane processing to allow use of bagasse as a fuel; possible sources and costs of energy for converting starch crops like cassava to ethanol; the optimal method for treating stillage; and the feasibility of using fermentation reactors. No definitive recommendation on the scale of ethanol production is made due to the lack of an environmental impact assessment. Finally, with regard to nonalcohol renewable energy, several ideas warrant consideration: electrically powered mass transit; electric cars; vehicle-mounted gasifiers operating on wood chips or pelletized fuels produced from excess bagasse; anaerobic digestion of animal manure and other agricultural wastes; and energy recovery from municipal solid wastes.« less

  2. Fire management and carbon sequestration in Pine Barren Forests

    Treesearch

    Kenneth L. Clark; Nicholas Skowronski; Michael Gallagher

    2015-01-01

    Prescribed burning is the major viable option that land managers have for reducing hazardous fuels and ensuring the regeneration of fire-dependent species in a cost-effective manner in Pine Barren ecosystems. Fuels management activities are directly linked to carbon (C) storage and rates of C sequestration by forests. To evaluate the effects of prescribed burning on...

  3. 77 FR 24385 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Regional Haze

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Maine's low sulfur fuel oil legislation, 38 MRSA Sec. 603-A, sub-Sec. 2(A), and to incorporate this... technology option of new Low NO X Burners with modified over-fire air (NLNB/MOFA) plus selective non... unreasonable. Comment: NPS commented that the analysis of lower sulfur fuel oil for Verso Androscoggin Power...

  4. Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction

    Science.gov Websites

    vehicle's regular heat-transfer system and are mounted in the engine compartment. The heater draws gasoline or diesel from the fuel tank to heat the vehicle's coolant and pumps the heated coolant through the starts. Waste-Heat Recovery Systems Another option for keeping a vehicle warm is an energy recovery

  5. 40 CFR 80.1342 - What compliance options are available to small refiners under this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline... which it will produce compliant gasoline. (2)(i) Defer meeting the standard specified in § 80.1230(b... produce compliant gasoline. (b) Any refiner that makes an election under paragraphs (a)(1) or (a)(2) of...

  6. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  7. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  8. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  9. Combustor cap having non-round outlets for mixing tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Boardman, Gregory Allen; McConnaughhay, Johnie Franklin

    2016-12-27

    A system includes a a combustor cap configured to be coupled to a plurality of mixing tubes of a multi-tube fuel nozzle, wherein each mixing tube of the plurality of mixing tubes is configured to mix air and fuel to form an air-fuel mixture. The combustor cap includes multiple nozzles integrated within the combustor cap. Each nozzle of the multiple nozzles is coupled to a respective mixing tube of the multiple mixing tubes. In addition, each nozzle of the multiple nozzles includes a first end and a second end. The first end is coupled to the respective mixing tube ofmore » the multiple mixing tubes. The second end defines a non-round outlet for the air-fuel mixture. Each nozzle of the multiple nozzles includes an inner surface having first and second portions, the first portion radially diverges along an axial direction from the first end to the second end, and the second portion radially converges along the axial direction from the first end to the second end.« less

  10. Fixed or mixed: a comparison of three, four and mixed-option multiple-choice tests in a Fetal Surveillance Education Program

    PubMed Central

    2013-01-01

    Background Despite the widespread use of multiple-choice assessments in medical education assessment, current practice and published advice concerning the number of response options remains equivocal. This article describes an empirical study contrasting the quality of three 60 item multiple-choice test forms within the Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG) Fetal Surveillance Education Program (FSEP). The three forms are described below. Methods The first form featured four response options per item. The second form featured three response options, having removed the least functioning option from each item in the four-option counterpart. The third test form was constructed by retaining the best performing version of each item from the first two test forms. It contained both three and four option items. Results Psychometric and educational factors were taken into account in formulating an approach to test construction for the FSEP. The four-option test performed better than the three-option test overall, but some items were improved by the removal of options. The mixed-option test demonstrated better measurement properties than the fixed-option tests, and has become the preferred test format in the FSEP program. The criteria used were reliability, errors of measurement and fit to the item response model. Conclusions The position taken is that decisions about the number of response options be made at the item level, with plausible options being added to complete each item on both psychometric and educational grounds rather than complying with a uniform policy. The point is to construct the better performing item in providing the best psychometric and educational information. PMID:23453056

  11. Fixed or mixed: a comparison of three, four and mixed-option multiple-choice tests in a Fetal Surveillance Education Program.

    PubMed

    Zoanetti, Nathan; Beaves, Mark; Griffin, Patrick; Wallace, Euan M

    2013-03-04

    Despite the widespread use of multiple-choice assessments in medical education assessment, current practice and published advice concerning the number of response options remains equivocal. This article describes an empirical study contrasting the quality of three 60 item multiple-choice test forms within the Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG) Fetal Surveillance Education Program (FSEP). The three forms are described below. The first form featured four response options per item. The second form featured three response options, having removed the least functioning option from each item in the four-option counterpart. The third test form was constructed by retaining the best performing version of each item from the first two test forms. It contained both three and four option items. Psychometric and educational factors were taken into account in formulating an approach to test construction for the FSEP. The four-option test performed better than the three-option test overall, but some items were improved by the removal of options. The mixed-option test demonstrated better measurement properties than the fixed-option tests, and has become the preferred test format in the FSEP program. The criteria used were reliability, errors of measurement and fit to the item response model. The position taken is that decisions about the number of response options be made at the item level, with plausible options being added to complete each item on both psychometric and educational grounds rather than complying with a uniform policy. The point is to construct the better performing item in providing the best psychometric and educational information.

  12. The Northeast heating fuel market: Assessment and options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over themore » next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.« less

  13. Essays in renewable energy and emissions trading

    NASA Astrophysics Data System (ADS)

    Kneifel, Joshua D.

    Environmental issues have become a key political issue over the past forty years and has resulted in the enactment of many different environmental policies. The three essays in this dissertation add to the literature of renewable energy policies and sulfur dioxide emissions trading. The first essay ascertains which state policies are accelerating deployment of non-hydropower renewable electricity generation capacity into a states electric power industry. As would be expected, policies that lead to significant increases in actual renewable capacity in that state either set a Renewables Portfolio Standard with a certain level of required renewable capacity or use Clean Energy Funds to directly fund utility-scale renewable capacity construction. A surprising result is that Required Green Power Options, a policy that merely requires all utilities in a state to offer the option for consumers to purchase renewable energy at a premium rate, has a sizable impact on non-hydro renewable capacity in that state. The second essay studies the theoretical impacts fuel contract constraints have on an electricity generating unit's compliance costs of meeting the emissions compliance restrictions set by Phase I of the Title IV SO2 Emissions Trading Program. Fuel contract constraints restrict a utility's degrees of freedom in coal purchasing options, which can lead to the use of a more expensive compliance option and higher compliance costs. The third essay analytically and empirically shows how fuel contract constraints impact the emissions allowance market and total electric power industry compliance costs. This paper uses generating unit-level simulations to replicate results from previous studies and show that fuel contracts appear to explain a large portion (65%) of the previously unexplained compliance cost simulations. Also, my study considers a more appropriate plant-level decisions for compliance choices by analytically analyzing the plant level decision-making process to show how cost-minimization at the more complex plant level may deviate from cost-minimization at the generating unit level.

  14. 48 CFR 317.207 - Exercise of options.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Exercise of options. 317... METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Options 317.207 Exercise of options. (h) Before exercising an option for a subsequent performance period/additional quantity under a multiple-year contract...

  15. Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia

    DTIC Science & Technology

    2002-04-01

    fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of

  16. The LANDFIRE Total Fuel Change Tool (ToFuΔ) user’s guide

    USGS Publications Warehouse

    Smail, Tobin; Martin, Charley; Napoli, Jim

    2011-01-01

    LANDFIRE fuel data were originally developed from coarse-scale existing vegetation type, existing vegetation cover, existing vegetation height, and biophysical setting layers. Fire and fuel specialists from across the country provided input to the original LANDFIRE National (LF_1.0.0) fuel layers to help calibrate fuel characteristics on a more localized scale. The LANDFIRE Total Fuel Change Tool (ToFu∆) was developed from this calibration process. Vegetation is subject to constant change – and fuels are therefore also dynamic, necessitating a systematic method for reflecting changes spatially so that fire behavior can be accurately accessed. ToFuΔ allows local experts to quickly produce maps that spatially display any proposed fuel characteristics changes. ToFu∆ works through a Microsoft Access database to produce spatial results in ArcMap based on rule sets devised by the user that take into account the existing vegetation type (EVT), existing vegetation cover (EVC), existing vegetation height (EVH), and biophysical setting (BpS) from the LANDFIRE grid data. There are also options within ToFu∆ to add discrete variables in grid format through use of the wildcard option and for subdividing specific areas for different fuel characteristic assignments through the BpS grid. The ToFu∆ user determines the size of the area for assessment by defining a Management Unit, or “MU.” User-defined rule sets made up of EVT, EVC, EVH, and BpS layers, as well as any wildcard selections, are used to change or refine fuel characteristics within the MU. Once these changes have been made to the fuel characteristics, new grids are created for fire behavior analysis or planning. These grids represent the most common ToFu∆ output. ToFuΔ is currently under development and will continue to be updated in the future. The current beta version (0.12), released in March 2011, is compatible with Windows 7 and will be the last release until the fall of 2011.

  17. AHTR Mechanical, Structural, and Neutronic Preconceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, V.K.; Holcomb, D.E.; Peretz, F.J.

    2012-09-15

    This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual levelmore » of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents as well as multiple levels of radioactive material containment. Key building design elements include (1) below grade siting to minimize vulnerability to aircraft impact, (2) multiple natural circulation decay heat rejection chimneys, (3) seismic base isolation, and (4) decay heat powered back-up electricity generation.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in themore » thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.« less

  19. Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg (Abraham); Joyner, Claude R.

    2015-01-01

    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 seconds - a 100% increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's AES program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the "Lead Fuel" option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During FY'14, a preliminary DDT&E plan and schedule for NTP development was outlined by GRC, DOE and industry that involved significant system-level demonstration projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 klbf thrust class, were considered. Both engine options used GC fuel and a "common" fuel element (FE) design. The small approximately 7.5 klbf "criticality-limited" engine produces approximately 157 megawatts of thermal power (MWt) and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 klbf Small Nuclear Rocket Engine (SNRE), developed by LANL at the end of the Rover program, produces approximately 367 MWt and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35 inch (approximately 89 cm) long FE, the SNRE's larger diameter core contains approximately 300 more FEs needed to produce an additional 210 MWt of power. To reduce the cost of the FTD mission, a simple "1-burn" lunar flyby mission was considered to reduce the LH2 propellant loading, the stage size and complexity. Use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10B-2 engine and Delta Cryogenic Second Stage) was also maximized to further aid affordability. This paper examines the pros and cons of using these two small engine options, including their potential to support future human exploration missions to the Moon, near Earth asteroids, and Mars, and recommends a preferred size. It also provides a preliminary assessment of the key activities, development options, and schedule required to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.

  20. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.

  1. Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, Amanda M.; Adami, Susan R.; Casella, Amanda

    With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less

  2. Energy supply and demand in California

    NASA Technical Reports Server (NTRS)

    Griffith, E. D.

    1978-01-01

    The author expresses his views on future energy demand on the west coast of the United States and how that energy demand translates into demand for major fuels. He identifies the major uncertainties in determining what future demands may be. The major supply options that are available to meet projected demands and the policy implications that flow from these options are discussed.

  3. Economic competitiveness of fuel cell onsite integrated energy systems

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  4. Colorectal cancer screening: The role of the noninvasive options.

    PubMed

    Dickerson, Lisa; Varcak, Susan Combs

    2016-09-01

    Recommended screening options for colorectal cancer are divided into noninvasive stool-based options, and invasive procedure-based options. Because multiple screening strategies are effective, efforts to reduce deaths from colorectal cancer should focus on maximizing the number of patients who are screened. This article reviews noninvasive stool-based screening options.

  5. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    PubMed

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  6. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

    DOE PAGES

    Peris, David; Moriarty, Ryan V.; Alexander, William G.; ...

    2017-03-27

    Here, lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker’s yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In othermore » industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research.« less

  7. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peris, David; Moriarty, Ryan V.; Alexander, William G.

    Here, lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker’s yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In othermore » industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research.« less

  8. The Future of Low-Carbon Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Yang, Christopher; Yeh, Sonia

    2011-11-01

    Petroleum fuel uses make up essentially all of transportation fuel usage today and will continue to dominate transportation fuel usage well into future without any major policy changes. This chapter focuses on low-carbon transportation fuels, specifically, biofuels, electricity and hydrogen, that are emerging options to displace petroleum based fuels. The transition to cleaner, lower carbon fuel sources will need significant technology advancement, and sustained coordination efforts among the vehicle and fuel industry and policymakers/regulators over long period of time in order to overcome market barriers, consumer acceptance, and externalities of imported oil. We discuss the unique infrastructure challenges, and compare resource, technology, economics and transitional issues for each of these fuels. While each fuel type has important technical and implementation challenges to overcome (including vehicle technologies) in order to contribute a large fraction of our total fuel demand, it is important to note that a portfolio approach will give us the best chance of meeting stringent environmental and energy security goals for a sustainable transportation future.

  9. Reactor-based management of used nuclear fuel: assessment of major options.

    PubMed

    Finck, Phillip J; Wigeland, Roald A; Hill, Robert N

    2011-01-01

    This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society

  10. Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G.; Werner, J.; Weitzberg, A.; Joyner, C. R.

    2015-01-01

    In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included Foundational Technology Development followed by system-level Technology Demonstrations The ongoing NTP project, funded by NASAs Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:(1) Fuel element fabrication and non-nuclear validation testing of heritage fuel options;(2) Engine conceptual design;(3) Mission analysis and engine requirements definition;(4) Identification of affordable options for ground testing; and(5) Formulation of an affordable and sustainable NTP development program Performance parameters for Point of Departure designs for a small criticality-limited and full size 25 klbf-class engine were developed during FYs 13-14 using heritage fuel element designs for both RoverNERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a leader-follower down selection between GC and cermet fuel was required An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel In FY14, a preliminary development schedule DDTE plan was produced by GRC, DOE industry for the AES program. Assumptions, considerations and key task activities are presented here Two small (7.5 and 16.5 klbf) engine sizes were considered for ground and flight technology demonstration within a 10-year timeframe; their ability to support future human exploration missions was also examined and a recommendation on a preferred size is provided.

  11. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power plant sites was performed. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: Characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory A description of the on-site infrastructure at the shutdown sitesmore » An evaluation of the near-site transportation infrastructure and transportation experience at the shutdown sites An evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. The primary sources for the inventory of SNF and GTCC waste were the U.S. Department of Energy (DOE) spent nuclear fuel inventory database, industry publications such as StoreFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of on-site infrastructure and near-site transportation infrastructure and experience included information collected during site visits, information provided by managers at the shutdown sites, Facility Interface Data Sheets compiled for DOE in 2005, Services Planning Documents prepared for DOE in 1993 and 1994, industry publications such as Radwaste Solutions, and Google Earth. State staff, State Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative have participated in nine of the shutdown site visits. Every shutdown site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 13 shutdown sites use designs from 4 different suppliers involving 11 different (horizontal and vertical) dry storage systems that would require the use of 9 different transportation cask designs to remove the SNF and GTCC waste from the shutdown sites. Although some changes to transportation certificates of compliance will be required, the SNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in dual purpose dry storage canisters that can be transported, including a small amount of high-burnup fuel. Most sites indicated that 2-3 years of advance time would be required for its preparations before shipments could begin. Some sites could be ready in less time. As additional sites such as Fort Calhoun, Clinton, Quad Cities, Pilgrim, Oyster Creek, and Diablo Canyon shut down, these sites will be included in updates to the evaluation.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  13. 40 CFR Appendix D to Part 75 - Optional SO2 Emissions Data Protocol for Gas-Fired and Oil-Fired Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... one-quarter extension of the deadline for the next fuel flowmeter system accuracy test may be claimed... protocol no later than 45 days after the completion of all certification tests. 2. Procedure 2.1Fuel... applicable): by design (orifice, nozzle, and venturi-type flowmeters, only) or by measurement under...

  14. 40 CFR Appendix D to Part 75 - Optional SO2 Emissions Data Protocol for Gas-Fired and Oil-Fired Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... one-quarter extension of the deadline for the next fuel flowmeter system accuracy test may be claimed... protocol no later than 45 days after the completion of all certification tests. 2. Procedure 2.1Fuel... applicable): by design (orifice, nozzle, and venturi-type flowmeters, only) or by measurement under...

  15. 40 CFR Appendix D to Part 75 - Optional SO2 Emissions Data Protocol for Gas-Fired and Oil-Fired Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... one-quarter extension of the deadline for the next fuel flowmeter system accuracy test may be claimed... protocol no later than 45 days after the completion of all certification tests. 2. Procedure 2.1Fuel... applicable): by design (orifice, nozzle, and venturi-type flowmeters, only) or by measurement under...

  16. Spatial analysis of fuel treatment options for chaparral on the Angeles national forest

    Treesearch

    G. Jones; J. Chew; R. Silverstein; C. Stalling; J. Sullivan; J. Troutwine; D. Weise; D. Garwood

    2008-01-01

    Spatial fuel treatment schedules were developed for the chaparral vegetation type on the Angeles National Forest using the Multi-resource Analysis and Geographic Information System (MAGIS). Schedules varied by the priority given to various wildland urban interface areas and the general forest, as well as by the number of acres treated per decade. The effectiveness of...

  17. Direct disposal of spent fuel: developing solutions tailored to Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Hideki; McKinley, Ian G

    2013-07-01

    With the past Government policy of 100% reprocessing in Japan now open to discussion, options for direct disposal of spent fuel (SF) are now being considered in Japan. The need to move rapidly ahead in developing spent fuel management concepts is closely related to the ongoing debate on the future of nuclear power in Japan and the desire to understand the true costs of the entire life cycle of different options. Different scenarios for future nuclear power - and associated decisions on extent of reprocessing - will give rise to quite different inventories of SF with different disposal challenges. Althoughmore » much work has been carried out spent fuel disposal within other national programmes, the potential for mining the international knowledge base is limited by the boundary conditions for disposal in Japan. Indeed, with a volunteer approach to siting, no major salt deposits and few undisturbed sediments, high tectonic activity, relatively corrosive groundwater and no deserts, it is evident that a tailored solution is needed. Nevertheless, valuable lessons can be learned from projects carried out worldwide, if focus is placed on basic principles rather than implementation details. (authors)« less

  18. Evaluation of Proposed Solutions to Global Warming, Air Pollution, and Energy Security

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2008-12-01

    This study reviews and ranks major proposed solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition. Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-E85 and cellulosic E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85. Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge. Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs. Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs. Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs. Tier 4 includes corn- and cellulosic-E85. Wind-BEVs ranked first in six out of 11 categories, including the two most important, mortality and climate damage reduction. Although HFCVs are less efficient than BEVs, wind- HFCVs ranked second among all combinations. Tier 2 options provide significant benefits and are recommended. Tier 3 options are less desirable. However, hydroelectricity, which was ranked ahead of coal- CCS and nuclear with respect to climate and health, is an excellent load balancer, thus strongly recommended. The Tier-4 combinations (cellulosic- and corn-E85) were ranked lowest overall and with respect to climate, air pollution, land use, wildlife damage, and chemical waste. Cellulosic-E85 ranked lower than corn-E85 overall, primarily due to its potentially larger land footprint based on recent data and its higher upstream air pollution emissions than corn-E85. Whereas cellulosic-E85 may cause the greatest average human mortality, nuclear-BEVs cause the greatest upper-limit mortality risk due to the expansion of plutonium separation and uranium enrichment in nuclear energy facilities worldwide. Wind-BEVs and CSP-BEVs cause the least mortality. The footprint area of wind-BEVs is 2-6 orders of magnitude less than that of any other option. Because of their low footprint and pollution, wind-BEVs cause the least wildlife loss. The largest consumer of water is corn-E85. The smallest are wind-, tidal-, and wave-BEVs. In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to power electricity for BEVs and HFCVs and for general use in the residential, industrial, and commercial sectors will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit, and the biofuel options provide little or no benefit and greater negative impacts.

  19. Impact of minor actinide recycling on sustainable fuel cycle options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled whilemore » in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.« less

  20. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  1. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  2. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  3. Automatic, Multiple Assessment Options in Undergraduate Meteorology Education

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.

    2017-01-01

    Since 2008, automatic, multiple assessment options have been utilised in selected undergraduate meteorology courses at the University of Wisconsin--Milwaukee. Motivated by a desire to reduce stress among students, the assessment methodology includes examination-heavy and homework-heavy alternatives, differing by an adjustable 15% of the overall…

  4. An Investigation of Aggregation in Synergistic Solvent Extraction Systems

    NASA Astrophysics Data System (ADS)

    Jackson, Andy Steven

    With an increasing focus on anthropogenic climate change, nuclear reactors present an attractive option for base load power generation with regard to air pollution and carbon emissions, especially when compared with traditional fossil fuel based options. However, used nuclear fuel (UNF) is highly radiotoxic and contains minor actinides (americium and curium) which remain more radiotoxic than natural uranium ore for hundreds of thousands of years, presenting a challenge for long-term storage . Advanced nuclear fuel recycling can reduce this required storage time to thousands of years by removing the highly radiotoxic minor actinides. Many advanced separation schemes have been proposed to achieve this separation but none have been implemented to date. A key feature among many proposed schemes is the use of more than one extraction reagent in a single extraction phase, which can lead to the phenomenon known as "synergism" in which the extraction efficiency for a combination of the reagents is greater than that of the individual extractants alone. This feature is not well understood for many systems and a comprehensive picture of the mechanism behind synergism does not exist. There are several proposed mechanisms for synergism though none have been used to model multiple extraction systems. This work examines several proposed advanced extractant combinations which exhibit synergism: 2-bromodecanoic acid (BDA) with 2,2':6',2"-terpyridine (TERPY), tri-n-butylphosphine oxide (TPBO) with 2-thenoyltrifluoro acetone (HTTA), and dinonylnaphthalene sulfonic acid (HDNNS) with 5,8-diethyl-7-hydroxy-dodecan-6-oxime (LIX). We examine two proposed synergistic mechanisms involving and attempt to verify the ability of these mechanisms to predict the extraction behavior of the chosen systems. These are a reverse micellar catalyzed extraction model and a mixed complex formation model. Neither was able to effectively predict the synergistic behavior of the systems. We further examine these systems for the presence of large reverse micellar aggregates and thermodynamic signatures of aggregation. Behaviors differed widely from system to system, suggesting the possibility of more than one mechanism being responsible for similar observed extraction trends.

  5. Psychometrics of Multiple Choice Questions with Non-Functioning Distracters: Implications to Medical Education.

    PubMed

    Deepak, Kishore K; Al-Umran, Khalid Umran; AI-Sheikh, Mona H; Dkoli, B V; Al-Rubaish, Abdullah

    2015-01-01

    The functionality of distracters in a multiple choice question plays a very important role. We examined the frequency and impact of functioning and non-functioning distracters on psychometric properties of 5-option items in clinical disciplines. We analyzed item statistics of 1115 multiple choice questions from 15 summative assessments of undergraduate medical students and classified the items into five groups by their number of non-functioning distracters. We analyzed the effect of varying degree of non-functionality ranging from 0 to 4, on test reliability, difficulty index, discrimination index and point biserial correlation. The non-functionality of distracters inversely affected the test reliability and quality of items in a predictable manner. The non-functioning distracters made the items easier and lowered the discrimination index significantly. Three non-functional distracters in a 5-option MCQ significantly affected all psychometric properties (p < 0.5). The corrected point biserial correlation revealed that the items with 3 functional options were psychometrically as effective as 5-option items. Our study reveals that a multiple choice question with 3 functional options provides lower most limit of item format that has adequate psychometric property. The test containing items with less number of functioning options have significantly lower reliability. The distracter function analysis and revision of nonfunctioning distracters can serve as important methods to improve the psychometrics and reliability of assessment.

  6. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Frank; Hwan Seo Park; Yung Zun Cho

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration betweenmore » US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.« less

  7. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Alfonsi; Gilles Youinou; Sonat Sen

    2013-02-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less

  8. LWR First Recycle of TRU with Thorium Oxide for Transmutation and Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Alfonsi; Gilles Youinou

    2012-07-01

    Thorium has been considered as an option to uranium-based fuel, based on considerations of resource utilization (thorium is approximately three times more plentiful than uranium) and as a result of concerns about proliferation and waste management (e.g. reduced production of plutonium, etc.). Since the average composition of natural Thorium is dominated (100%) by the fertile isotope Th-232, Thorium is only useful as a resource for breeding new fissile materials, in this case U-233. Consequently a certain amount of fissile material must be present at the start-up of the reactor in order to guarantee its operation. The thorium fuel can bemore » used in both once-through and recycle options, and in both fast and thermal spectrum systems. The present study has been aimed by the necessity of investigating the option of using reprocessed plutonium/TRU, from a once-through reference LEU scenario (50 GWd/ tIHM), mixed with natural thorium and the need of collect data (mass fractions, cross-sections etc.) for this particular fuel cycle scenario. As previously pointed out, the fissile plutonium is needed to guarantee the operation of the reactor. Four different scenarios have been considered: • Thorium – recycled Plutonium; • Thorium – recycled Plutonium/Neptunium; • Thorium – recycled Plutonium/Neptunium/Americium; • Thorium – recycled Transuranic. The calculations have been performed with SCALE6.1-TRITON.« less

  9. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    NASA Astrophysics Data System (ADS)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  10. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hourly SO2 mass emissions under this section. Alternatively, for fuel oil combustion, a lower, fuel... (or ozone season) prior to the year of the test (g H2O/g air). Ho = Observed humidity ratio during the test run (g H2O/g air). Tr = Average annual atmospheric temperature (or average ozone season...

  11. A comprehensive guide to fuel management practices for dry mixed conifer forests in the northwestern United States: Prescribed fire

    Treesearch

    Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist

    2014-01-01

    Fire has had a profound historical role in shaping dry mixed conifer forests in the western United States. However, the uncertainty and complexity of prescribed fires raises the question “Is fire always the best option for treating fuels?” The decision to use prescribed fire is dependent upon several factors.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.

  13. Financing Strategies For A Nuclear Fuel Cycle Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Shropshire; Sharon Chandler

    2006-07-01

    To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due tomore » government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.« less

  14. Modeling Incorrect Responses to Multiple-Choice Items with Multilinear Formula Score Theory.

    ERIC Educational Resources Information Center

    Drasgow, Fritz; And Others

    This paper addresses the information revealed in incorrect option selection on multiple choice items. Multilinear Formula Scoring (MFS), a theory providing methods for solving psychological measurement problems of long standing, is first used to estimate option characteristic curves for the Armed Services Vocational Aptitude Battery Arithmetic…

  15. Synthetic fuels for ground transportation with special emphasis on hydrogen

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1975-01-01

    The role of various synthetic fuels, for ground transportation in the United States, was examined for the near term (by 1985) and the longer term applications (1985-2000 and beyond 2000). Feasible options include synthetic oil, methanol, electric propulsion, and hydrogen. It is concluded that (1) the competition during the next 50 years will be for the fuels of all types, rather than among the fuels; (2) extensive domestic oil and gas exploration should be initiated concurrent with the development of several alternate fuels and related ancillaries; and (3) hydrogen, as an automotive fuel, seems to be equivalent to gasoline for optimum fuel to air mixtures. As a pollution free, high energy density fuel, hydrogen deserves consideration as the logical replacement for the hydrocarbons. Several research and development requirements, essential for the implementation of hydrogen economy for ground transportation, were identified. Extensive engineering development and testing activities should be initiated to establish hydrogen as the future automotive fuel, followed by demonstration projects and concerted efforts at public education.

  16. Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1983-01-01

    Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.

  17. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  18. Used fuel rail shock and vibration testing options analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.

    2014-09-25

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data thatmore » are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.« less

  19. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) compositesmore » are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.« less

  20. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrovic, Bojan; Maldonado, Ivan

    2016-04-14

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed onmore » December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.« less

  1. Renewable Energy Feasibility Study Leading to Development of the Native Spirit Solar Energy Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carolyn Stewart; Tracey LeBeau

    2008-01-31

    DOE-funded renewable energy feasibility study conducted by Red Mountain Tribal Energy on behalf of the Southwest Tribal Energy Consortium (SWTEC). During the course of the study, SWTEC members considered multiple options for the organization structure, selected a proposed organization structure, and drafted a Memorandum of Understanding for the SWTEC organization. High-level resource assessments for SWTEC members were completed; surveys were developed and completed to determine each member’s interest in multiple participation options, including on-reservation projects. With the survey inputs in mind, multiple energy project options were identified and evaluated on a high-level basis. That process led to a narrowing ofmore » the field of technology options to solar generation, specifically, utility-scale Concentrating Solar-Powered Generation projects, with a specific, tentative project location identified at the Fort Mojave Indian Reservation -- the Native Spirit Solar Energy Facility.« less

  2. Fuel Cells: Power System Option for Space Research

    NASA Astrophysics Data System (ADS)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power requiring missions is well established, as exemplified in Apollo and Space Shuttles, use in low power missions for science probes/rovers form a relatively newer area. Low power small fuel cells of this class are expected to bring in lot of operational convenience and freedom on onboard / extra terrestrial environment. Technological improvisations in the area, especially with regard to miniaturisation, and extra capabilities that the system offers, make it a strong candidate. The paper outlines features of fuel cells power systems, different types and their potential application scenarios, in the present context. It elucidates the extra capabilities and advantages, due to fuel cells, for different missions. Specific case analyses are also included.

  3. In-situ propellant rocket engines for Mars missions ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When contemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in situ propellants. But 95 pct of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant combination is a candidate for a Martian in situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  4. In-situ propellant rocket engines for Mars mission ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When comtemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the Earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in-situ propellants. But 95 pct. of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant conbination is a candidate for a Martian in-situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  5. Space station systems analysis study. Part 1, volume 1: Executive study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.

  6. Assessing Multiple Choice Question (MCQ) Tests--A Mathematical Perspective

    ERIC Educational Resources Information Center

    Scharf, Eric M.; Baldwin, Lynne P.

    2007-01-01

    The reasoning behind popular methods for analysing the raw data generated by multiple choice question (MCQ) tests is not always appreciated, occasionally with disastrous results. This article discusses and analyses three options for processing the raw data produced by MCQ tests. The article shows that one extreme option is not to penalize a…

  7. Preparing Students for Multiple Options beyond High School. Best Practices Newsletter

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2015

    2015-01-01

    Too often school leaders, teachers and counselors invest their energies into preparing students for college. In today's society, that's not enough. Students must be prepared for multiple options after high school including gainful employment. This newsletter looks at ways schools can ensure more students are college and career-ready by creating…

  8. Thermionic nuclear reactor with internal heat distribution and multiple duct cooling

    DOEpatents

    Fisher, C.R.; Perry, L.W. Jr.

    1975-11-01

    A Thermionic Nuclear Reactor is described having multiple ribbon-like coolant ducts passing through the core, intertwined among the thermionic fuel elements to provide independent cooling paths. Heat pipes are disposed in the core between and adjacent to the thermionic fuel elements and the ribbon ducting, for the purpose of more uniformly distributing the heat of fission among the thermionic fuel elements and the ducts.

  9. Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

    DTIC Science & Technology

    2013-05-01

    multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have

  10. Technical and economic assessment of different options for minor actinide transmutation: the French case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.

    Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place inmore » the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.« less

  11. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  12. U.S. and South Korean Cooperation in the World Nuclear Energy Market: Major Policy Considerations

    DTIC Science & Technology

    2010-01-21

    a laboratory-scale research program on reprocessing spent fuel with an advanced pyroprocessing technique. However, the level of consensus over the... pyroprocessing option among government agencies, Korean electric utilities, and the public remains uncertain. The current U.S.-Korea 123 agreement...permission. KAERI’s pyroprocessing technology would partially separate plutonium and uranium from spent fuel, but the United States has not allowed the

  13. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the boiler at a normal or conservatively high excess oxygen level in conjunction with these tests....2Substitute 1.25 times the highest NOX emission rate from the baseline correlation tests for the fuel (or fuel... potential NOX emission rate (MER) (as defined in § 72.2 of this chapter) for each unit operating hour...

  14. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the boiler at a normal or conservatively high excess oxygen level in conjunction with these tests....2Substitute 1.25 times the highest NOX emission rate from the baseline correlation tests for the fuel (or fuel... potential NOX emission rate (MER) (as defined in § 72.2 of this chapter) for each unit operating hour...

  15. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, James W.

    1998-01-01

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  16. Learn About SmartWay Verified Aerodynamic Devices

    EPA Pesticide Factsheets

    Installing EPA-verified aerodynamic technologies on your trailer can help fleet and truck owners save fuel. Options include gap reducers, skirts, or tails and can be installed individually or in combination.

  17. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE PAGES

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    2018-02-26

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  18. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  19. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    PubMed

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  20. Experimental evaluation of two premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R.

    1976-01-01

    A premixing-prevaporizing fuel system to be used with a catalytic combustor was evaluated for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using jet A fuel. Two types of air blast injectors were tested, a splash groove injector and a multiple jet cross stream injector. Air swirlers with vane angles of 15 deg and 30 deg were used to improve the spatial fuel distribution in a 12 cm diameter tubular rig. Distribution and vaporization measurements were made 35.5 cm downstream of the injector. The spatial fuel distribution was nearly uniform with the multiple jet contrastream injector and the splash-groove injector with a 30 deg air swirler. The vaporization was nearly 100 percent at an inlet air temperature of 600 K, and at 800 K inlet air temperature fuel oxidation reactions were observed. The total pressure loss was less than 0.5 percent of the total pressure for the multiple jet cross stream injector and the splash groove injector (without air swirler) and less than 1 percent for the splash groove with a 30 deg air swirler.

  1. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  2. Mapping fuels at multiple scales: landscape application of the fuel characteristic classification system.

    Treesearch

    D. McKenzie; C.L. Raymond; L.-K.B. Kellogg; R.A. Norheim; A.G. Andreu; A.C. Bayard; K.E. Kopper; E. Elman

    2007-01-01

    Fuel mapping is a complex and often multidisciplinary process, involving remote sensing, ground-based validation, statistical modeling, and knowledge-based systems. The scale and resolution of fuel mapping depend both on objectives and availability of spatial data layers. We demonstrate use of the Fuel Characteristic Classification System (FCCS) for fuel mapping at two...

  3. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  4. A solar fuels roadmap for Australia - study outcomes

    NASA Astrophysics Data System (ADS)

    Hinkley, James T.; McNaughton, Robbie K.; Hayward, Jennifer A.; Lovegrove, Keith

    2017-06-01

    This paper summarises the key findings and recommendations of a 3.5 year study into the research, development and demonstration priorities to establish a solar fuels industry in Australia. While Australia has one of the best solar resources in the world, it also has an abundance of conventional fuels such as coal and natural gas. The country is heavily dependent on fossil fuels for its primary energy supply and international trade, and is seeking pathways to reduce emissions intensity. While renewable electricity will be able to displace fossil fuels in the electricity sector, this only addresses about 16% of energy consumption by end use. Concentrating solar fuels (CSF) are produced either in full or in part from concentrated solar energy, and can provide either complete or partial reduction of the CO2 emissions associated with energy consumption. Our study reviewed the various potential solar thermal technology pathways and feedstocks available to produce a range of CSF products such as hydrogen, ammonia, methanol and synthetic gasoline or diesel. We conducted what we believe to be the broadest and most sophisticated evaluation of the many options to identify those that are most prospective, including an evaluation of the expected final fuel costs. The study identified the following opportunities for CSF: • Australia: substitution of imported liquid fuels (gasoline and diesel) with synthetic CSF options would provide fuel security through the utilization of domestic resources. Ammonia is also a potentially attractive CSF product as it is produced in large quantities for fertilisers and explosives. • Export markets: Australia has significant trading relationships with many Asian countries in the energy domain, and CSF fuels could provide a long term future to enable such relationships to continue - or grow - in a carbon constrained world. Japan in particular is considering how to transition to a hydrogen economy, and could be a customer for CSF hydrogen or possibly ammonia as a hydrogen carrier or future fuel.The project recommended that Australia continue to develop a range of CSF technologies to provide a pathway to progressive decarbonisation. In the short to medium term, solar fossil hybrids can produce conventional fuels at costs comparable to crude oil derived counterparts (at ˜100 barrel). In the longer term, redox cycles have the potential to provide CO2 neutral fuels from solar energy alone.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power reactor sites was conducted. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: (1) characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory, (2) a description of the on-site infrastructure and conditionsmore » relevant to transportation of SNF and GTCC waste, (3) an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing SNF and GTCC waste, including identification of gaps in information, and (4) an evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. Every site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less

  6. Options for the Navy’s Future Fleet

    DTIC Science & Technology

    2006-05-01

    capability than most of those options by other than for inflation, how big and how capable can the most measures of capability. But even under the Navy’s...The most prominent of those vessels are fast combat support ships, which operate with carrier strike groups to resupply them with fuel, dry Supply...categories of ships-submarines and large surface Similarly, the ship construction schedule for large surface combatants-are responsible for most of the

  7. The utilization of solar energy to help meet our nation's energy needs

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.

    1973-01-01

    The nation's energy needs, domestic energy resources, and possible future energy resources are briefly discussed in this paper. Three potential solutions, coal, nuclear and solar are compared as to benefits and problems. The paper primarily discusses the options available in using solar energy as a natural energy resource. These options are discussed under the generation of electricity, heating and cooling of buildings, and the production of clean fuel.

  8. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrelmore » of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).« less

  9. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  10. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  11. The "None of the Above" Option in Multiple-Choice Testing: An Experimental Study

    ERIC Educational Resources Information Center

    DiBattista, David; Sinnige-Egger, Jo-Anne; Fortuna, Glenda

    2014-01-01

    The authors assessed the effects of using "none of the above" as an option in a 40-item, general-knowledge multiple-choice test administered to undergraduate students. Examinees who selected "none of the above" were given an incentive to write the correct answer to the question posed. Using "none of the above" as the…

  12. Format of Options in Multiple Choice Test vis-a-vis Test Performance

    ERIC Educational Resources Information Center

    Bendulo, Hermabeth O.; Tibus, Erlinda D.; Bande, Rhodora A.; Oyzon, Voltaire Q.; Milla, Norberto E.; Macalinao, Myrna L.

    2017-01-01

    Testing or evaluation in an educational context is primarily used to measure or evaluate and authenticate the academic readiness, learning advancement, acquisition of skills, or instructional needs of learners. This study tried to determine whether the varied combinations of arrangements of options and letter cases in a Multiple-Choice Test (MCT)…

  13. Multiple laser pulse ignition method and apparatus

    DOEpatents

    Early, J.W.

    1998-05-26

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

  14. Performance of a peroxide-based cetane improvement additive in different diesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, M.K.; Jacobs, D.C.; Liotta, F.J. Jr.

    The implementation of stringent diesel engine emissions regulations is growing worldwide. The use of high cetane diesel fuels is a cost-effective option that can be used to reduce engine emissions. A direct comparison of heavy-duty diesel engine emissions for three different low sulfur diesel fuels treated with di-t-butyl peroxide and 2-ethylhexyl nitrate, at the same cetane level, was evaluated. Both the peroxide and the nitrate cetane improvement additive significantly reduced all regulated and unregulated emissions including the oxides of nitrogen (NOx) emission. Di-t-butyl peroxide shows a small advantage over ethylhexyl nitrate in reducing NOx in all the three fuels. Compatibilitymore » of the peroxide and the nitrate additives, when mixed in a fuel blend, has been demonstrated by cetane response and engine emissions for the fuel blend. 13 refs., 2 figs., 9 tabs.« less

  15. Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system

    NASA Technical Reports Server (NTRS)

    Coykendall, R. E.; Curry, J. K.; Domke, A. E.; Madsen, S. E.

    1976-01-01

    Economic studies were conducted for three general fuel conserving options: (1) improving fuel consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22% from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops.

  16. Alternative Fuels Data Center: Biodiesel Equipment Options

    Science.gov Websites

    , particularly higher blends, have a solvent affect and will "clean out" and absorb contamination left , and vents. There is equipment compatible with higher level biodiesel blends for all these equipment

  17. Spacecraft active thermal control subsystem design and operation considerations

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.

    1986-01-01

    Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.

  18. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W [Lake Matthews, CA; Scott, Paul B [Northridge, CA; Park, Chan Seung [Yorba Linda, CA

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  19. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  20. Conclusions and Recommendations Regarding the Deep Sea Hybrid Power Systems Initial Study

    DTIC Science & Technology

    2010-06-01

    proton-exchange membrane fuel cells ( PEMFC ) powered with hydrogen and oxygen, similar to that used on proven subsurface vessels; (2) fuel-cells...AND STORAGE OPTIONS CONSIDERED FOR INITIAL STUDY NO. NOMENCLATURE DESCRIPTION 1 PWR Nuclear Reactor + Battery 2 FC1 PEMFC + Line for surface O2...Wellhead Gas + Reformer + Battery 3 FC2 PEMFC + Stored O2 + Wellhead Gas + Reformer + Battery 4 SV1 PEMFC + Submersible Vehicle for O2 Transport

  1. Safe harbor: protecting ports with shipboard fuel cells.

    PubMed

    Taylor, David A

    2006-04-01

    With five of the largest harbors in the United States, California is beginning to take steps to manage the large amounts of pollution generated by these bustling centers of transport and commerce. One option for reducing diesel emissions is the use of fuel cells, which run cleaner than diesel and other internal combustion engines. Other technologies being explored by harbor officials are diesel-electric hybrid and gas turbine locomotives for moving freight within port complexes.

  2. A Survey of Power Source Options for a Compact Battery Charger for Soldier Applications

    DTIC Science & Technology

    2008-12-01

    virtually any flammable liquid could be used as a fuel. Research on linear engines, enabled by developments in power control and linear electrical...the use of atmospheric oxygen. Molten carbonate and phosphoric acid fuel cells use hot corrosive liquid electrolytes and are best applied to...cells using DuPont’s NAFION membranes began at General Electric and Ballard Industries in the early 1980s. NAFION is a fluoropolymer with

  3. Alternative Fuels Data Center: Propane Vehicle Emissions

    Science.gov Websites

    compared to conventional gasoline and diesel fuel. When used as a vehicle fuel, propane can offer life , processing, manufacturing, distribution, use, and disposal or recycling. When comparing fuels, a life cycle GREET model estimates the life cycle petroleum use and GHG emissions for multiple fuels. When this model

  4. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MaClean, H.L.; Lave, L.B.

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases couldmore » be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.« less

  5. Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol

    NASA Astrophysics Data System (ADS)

    Pourhashem, Ghasideh; Adler, Paul R.; McAloon, Andrew J.; Spatari, Sabrina

    2013-06-01

    Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (-25 to -2 g CO2e MJ-1), substituting coal with lignin is second lowest (4-32 g CO2e MJ-1), and onsite power generation is highest (36-41 g CO2e MJ-1). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin-land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin-land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value (50-100/dry Mg) for nutrient and soil carbon replacement in agricultural soils, and potentially economy of scale residue collection prices at higher collection volumes associated with low SOC loss, the lignin-land amendment option is economically and environmentally preferable, with the lowest GHG abatement costs relative to gasoline among the three lignin co-product options we consider.

  6. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    NASA Astrophysics Data System (ADS)

    Alekseev, P. N.; Bobrov, E. A.; Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-01

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U-Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium-plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: 235U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or 233U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  7. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, P. N.; Bobrov, E. A., E-mail: evgeniybobrov89@rambler.ru; Chibinyaev, A. V.

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no usemore » of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.« less

  8. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    NASA Astrophysics Data System (ADS)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  9. An assessment of advanced technology for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Moore, N.

    1983-01-01

    The potential of advanced fuel utilization and energy conversion technologies to enhance the outlook for the increased use of industrial cogeneration was assessed. The attributes of advanced cogeneration systems that served as the basis for the assessment included their fuel flexibility and potential for low emissions, efficiency of fuel or energy utilization, capital equipment and operating costs, and state of technological development. Over thirty advanced cogeneration systems were evaluated. These cogeneration system options were based on Rankine cycle, gas turbine engine, reciprocating engine, Stirling engine, and fuel cell energy conversion systems. The alternatives for fuel utilization included atmospheric and pressurized fluidized bed combustors, gasifiers, conventional combustion systems, alternative energy sources, and waste heat recovery. Two advanced cogeneration systems with mid-term (3 to 5 year) potential were found to offer low emissions, multi-fuel capability, and a low cost of producing electricity. Both advanced cogeneration systems are based on conventional gas turbine engine/exhaust heat recovery technology; however, they incorporate advanced fuel utilization systems.

  10. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzolino, Raffaello, E-mail: raffaello.cozzolino@unicusano.it; Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor,more » two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.« less

  11. Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.

    2008-07-15

    IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicidemore » was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)« less

  12. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  13. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuelmore » type(s), power source(s), and related information.« less

  14. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuelmore » type(s), power source(s), and related information.« less

  15. OPTIM: Computer program to generate a vertical profile which minimizes aircraft fuel burn or direct operating cost. User's guide

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.

  16. Biofuels as an Alternative Energy Source for Aviation-A Survey

    NASA Technical Reports Server (NTRS)

    McDowellBomani, Bilal M.; Bulzan, Dan L.; Centeno-Gomez, Diana I.; Hendricks, Robert C.

    2009-01-01

    The use of biofuels has been gaining in popularity over the past few years because of their ability to reduce the dependence on fossil fuels. As a renewable energy source, biofuels can be a viable option for sustaining long-term energy needs if they are managed efficiently. We investigate past, present, and possible future biofuel alternatives currently being researched and applied around the world. More specifically, we investigate the use of ethanol, cellulosic ethanol, biodiesel (palm oil, algae, and halophytes), and synthetic fuel blends that can potentially be used as fuels for aviation and nonaerospace applications. We also investigate the processing of biomass via gasification, hydrolysis, and anaerobic digestion as a way to extract fuel oil from alternative biofuels sources.

  17. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Stennis Space Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert partmore » or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less

  18. A Method for Imputing Response Options for Missing Data on Multiple-Choice Assessments

    ERIC Educational Resources Information Center

    Wolkowitz, Amanda A.; Skorupski, William P.

    2013-01-01

    When missing values are present in item response data, there are a number of ways one might impute a correct or incorrect response to a multiple-choice item. There are significantly fewer methods for imputing the actual response option an examinee may have provided if he or she had not omitted the item either purposely or accidentally. This…

  19. 40 CFR Appendix I to Part 75... - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false [Reserved] I Appendix I to Part 75-Optional F-Factor/Fuel Flow Method Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Flow Method [Reserved] ...

  20. 40 CFR Appendix I to Part 75... - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false [Reserved] I Appendix I to Part 75-Optional F-Factor/Fuel Flow Method Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Flow Method [Reserved] ...

  1. 40 CFR Appendix I to Part 75... - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false [Reserved] I Appendix I to Part 75-Optional F-Factor/Fuel Flow Method Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Flow Method [Reserved] ...

  2. 40 CFR Appendix I to Part 75... - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false [Reserved] I Appendix I to Part 75-Optional F-Factor/Fuel Flow Method Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Flow Method [Reserved] ...

  3. 40 CFR Appendix I to Part 75... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false [Reserved] I Appendix I to Part 75-Optional F-Factor/Fuel Flow Method Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Flow Method [Reserved] ...

  4. EPA Finalizes Voluntary Quality Assurance Plan for Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    The rule finalizes a voluntary third-party quality assurance program option for RINs that regulated parties may exercise as a supplement to the “buyer beware” liability as prescribed under existing regulations.

  5. The influence of multiple goals on driving behavior: the case of safety, time saving, and fuel saving.

    PubMed

    Dogan, Ebru; Steg, Linda; Delhomme, Patricia

    2011-09-01

    Due to the innate complexity of the task drivers have to manage multiple goals while driving and the importance of certain goals may vary over time leading to priority being given to different goals depending on the circumstances. This study aimed to investigate drivers' behavioral regulation while managing multiple goals during driving. To do so participants drove on urban and rural roads in a driving simulator while trying to manage fuel saving and time saving goals, besides the safety goals that are always present during driving. A between-subjects design was used with one group of drivers managing two goals (safety and fuel saving) and another group managing three goals (safety, fuel saving, and time saving) while driving. Participants were provided continuous feedback on the fuel saving goal via a meter on the dashboard. The results indicate that even when a fuel saving or time saving goal is salient, safety goals are still given highest priority when interactions with other road users take place and when interacting with a traffic light. Additionally, performance on the fuel saving goal diminished for the group that had to manage fuel saving and time saving together. The theoretical implications for a goal hierarchy in driving tasks and practical implications for eco-driving are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    PubMed Central

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  7. ATR Spent Fuel Options Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage,more » and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing options for fulfilling the capability gap. This management options analysis is not an alternatives analysis as defined by DOE Order 413.3B; rather, it is an evaluation of near-term, mid term and long-term actions needed to fulfill the capability gap. The actions are described in sufficient detail to inform stakeholders and DOE decision makers regarding a potential path forward. The recommended path forward will inform Fiscal Year 2019 budget formulation, support potential National Environmental Policy Act (NEPA) analyses, and may or may not include capital asset projects.« less

  8. A Decision Support Framework for Feasibility Analysis of International Space Station (ISS) Research Capability Enhancing Options

    NASA Technical Reports Server (NTRS)

    Ortiz, James N.; Scott,Kelly; Smith, Harold

    2004-01-01

    The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.

  9. Multi-mesh gear dynamics program evaluation and enhancements

    NASA Technical Reports Server (NTRS)

    Boyd, L. S.; Pike, J.

    1985-01-01

    A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good.

  10. Greenhouse gas emission reduction: A case study of Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, P.; Munasinghe, M.

    1995-12-31

    In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less

  11. Global change - Geoengineering and space exploration

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Geoengineering options and alternatives are proposed for mitigating the effects of global climate change and depletion of the ozone layer. Geoengineering options were discussed by the National Academy of Science Panel on the Policy Implications of Greenhouse Warming. Several of the ideas conveyed in their published report are space-based or depend on space systems for implementation. Among the geoengineering options using space that are discussed include the use of space power systems as an alternative to fossil fuels for generating electricity, the use of lunar He-3 to aid in the development of fusion energy, and the establishment of a lunar power system for solar energy conversion and electric power beaming back to earth. Other geoengineering options are discussed. They include the space-based modulation of hurricane forces and two space-based approaches in dealing with ozone layer depletion. The engineering challenges and policy implementation issues are discussed for these geongineering options.

  12. 75 FR 6750 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Change Relating to Options for Which the Premium and Exercise Price Are Expressed as a Multiple of the... Rules to accommodate options for which the premium and exercise price are expressed on other than a per... (definition of ``Aggregate Exercise Price'') and OCC Rule 805(d)(2) to accommodate options for which the...

  13. 40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... assemblies as aggregated systems that include multiple sections of fuel line with connectors and fittings. For example, you may certify fuel lines for portable marine fuel tanks as assemblies of fuel hose, primer bulbs, and self-sealing end connections. The length of such an assembly must not be longer than a...

  14. 40 CFR 1060.102 - What permeation emission control requirements apply for fuel lines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... assemblies as aggregated systems that include multiple sections of fuel line with connectors and fittings. For example, you may certify fuel lines for portable marine fuel tanks as assemblies of fuel hose, primer bulbs, and self-sealing end connections. The length of such an assembly must not be longer than a...

  15. User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern

    2011-07-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as amore » tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education versions work with the number of reactor types of 3 or less. For more reactor types, the Executive version is currently required. The input files are Excel2003 format (xls). The output files are macro-enabled Excel2007 format (xlsm). VISION 3.4 was designed with more flexibility than previous versions, which were structured for only three reactor types - LWRs that can use only uranium oxide (UOX) fuel, LWRs that can use multiple fuel types (LWR MF), and fast reactors. One could not have, for example, two types of fast reactors concurrently. The new version allows 10 reactor types and any user-defined uranium-plutonium fuel is allowed. (Thorium-based fuels can be input but several features of the model would not work.) The user identifies (by year) the primary fuel to be used for each reactor type. The user can identify for each primary fuel a contingent fuel to use if the primary fuel is not available, e.g., a reactor designated as using mixed oxide fuel (MOX) would have UOX as the contingent fuel. Another example is that a fast reactor using recycled transuranic (TRU) material can be designated as either having or not having appropriately enriched uranium oxide as a contingent fuel. Because of the need to study evolution in recycling and separation strategies, the user can now select the recycling strategy and separation technology, by year.« less

  16. Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument

    NASA Astrophysics Data System (ADS)

    Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; Menlove, Howard O.; Flaska, Marek; Pozzi, Sara A.

    2017-07-01

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrument that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.

  17. Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less

  18. Fresh Fuel Measurements With the Differential Die-Away Self-Interrogation Instrument

    DOE PAGES

    Trahan, Alexis C.; Belian, Anthony P.; Swinhoe, Martyn T.; ...

    2017-01-05

    The purpose of the Next Generation Safeguards Initiative (NGSI)-Spent Fuel (SF) Project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. Thus the NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: 1) verify the initial enrichment, burnup, and cooling time of facility declaration; 2) detect the diversion or replacement of pins; 3) estimate the plutonium mass; 4) estimate decay heat; and 5) determine the reactivity of spent fuel assemblies. The differential die-away self-interrogation (DDSI) instrument is one instrumentmore » that was assessed for years regarding its feasibility for robust, timely verification of spent fuel assemblies. The instrument was recently built and was tested using fresh fuel assemblies in a variety of configurations, including varying enrichment, neutron absorber content, and symmetry. The early die-away method, a multiplication determination method developed in simulation space, was successfully tested on the fresh fuel assembly data and determined multiplication with a root-mean-square (RMS) error of 2.9%. The experimental results were compared with MCNP simulations of the instrument as well. Low multiplication assemblies had agreement with an average RMS error of 0.2% in the singles count rate (i.e., total neutrons detected per second) and 3.4% in the doubles count rates (i.e., neutrons detected in coincidence per second). High-multiplication assemblies had agreement with an average RMS error of 4.1% in the singles and 13.3% in the doubles count rates.« less

  19. Using Priced Options to Solve the Exposure Problem in Sequential Auctions

    NASA Astrophysics Data System (ADS)

    Mous, Lonneke; Robu, Valentin; La Poutré, Han

    This paper studies the benefits of using priced options for solving the exposure problem that bidders with valuation synergies face when participating in multiple, sequential auctions. We consider a model in which complementary-valued items are auctioned sequentially by different sellers, who have the choice of either selling their good directly or through a priced option, after fixing its exercise price. We analyze this model from a decision-theoretic perspective and we show, for a setting where the competition is formed by local bidders, that using options can increase the expected profit for both buyers and sellers. Furthermore, we derive the equations that provide minimum and maximum bounds between which a synergy buyer's bids should fall in order for both sides to have an incentive to use the options mechanism. Next, we perform an experimental analysis of a market in which multiple synergy bidders are active simultaneously.

  20. Affordable Development and Demonstration of a Small Nuclear Thermal Rocket (NTR) Engine and Stage: How Small Is Big Enough?

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg, Abraham; Joyner, Claude R.

    2016-01-01

    The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 specific impulse - a 100 percent increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's Advanced Exploration Systems (AES) program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the Lead Fuel option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During fiscal year (FY) 2014, a preliminary Design Development Test and Evaluation (DDT&E) plan and schedule for NTP development was outlined by the NASA Glenn Research Center (GRC), Department of Energy (DOE) and industry that involved significant system-level demonstration projects that included Ground Technology Demonstration (GTD) tests at the Nevada National Security Site (NNSS), followed by a Flight Technology Demonstration (FTD) mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 kilopound-force thrust class, were considered. Both engine options used GC fuel and a common fuel element (FE) design. The small approximately 7.5 kilopound-force criticality-limited engine produces approximately157 thermal megawatts and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 kilopound-force Small Nuclear Rocket Engine (SNRE), developed by Los Alamos National Laboratory (LANL) at the end of the Rover program, produces approximately 367 thermal megawatts and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35-inch (approximately 89-centimeters) -long FE, the SNRE's larger diameter core contains approximately 300 more FEs needed to produce an additional 210 thermal megawatts of power. To reduce the cost of the FTD mission, a simple one-burn lunar flyby mission was considered to reduce the liquid hydrogen (LH2) propellant loading, the stage size and complexity. Use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10B-2 engine and Delta Cryogenic Second Stage) was also maximized to further aid affordability. This paper examines the pros and cons of using these two small engine options, including their potential to support future human exploration missions to the Moon, near Earth asteroids (NEA), and Mars, and recommends a preferred size. It also provides a preliminary assessment of the key activities, development options, and schedule required to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.

  1. Propulsion Options for the HI SPOT Long Endurance Drone Airship

    DTIC Science & Technology

    1979-09-15

    Carnot Stirling Ranklne Entropy Entropy Entropy Temper- ature ’iconst P ’Ccost V Coat P 01 1 ___PConsit V Cnt V C:)nst P Diesel Otto Brayton Entropy...ignition) and Brayton (gas turbine) systems. All of these are within a few percentage points of efficiency, though the Brayton engine is generally less...fuel consumption. The ultimate lightweight engine is the gas turbine, or Brayton cycle engine. However, while good specific fuel consumption can be

  2. Production of Jet Fuels from Coal Derived Liquids. Volume 10. Jet Fuels Production By-Products, Utility and Sulfur Emissions Control Integration Study

    DTIC Science & Technology

    1989-06-01

    FLUE GAS DESULFURIZATION EVALUATION A-1/A-2 3-1. 3 BOILER STACK EMISSION CONTROL WITH...Appendices A - BACT Flue Gas Desulfurization Evaluation B - BACT Off- Gas Refrigeration Evaluation v LIST OF FIGURES Figure Page 1. Material Balance for...2. Desulfurize the flue gases from the Riley boilers when firing with high sulfur oils or lignite. Options in this category include commercial wet

  3. Reestablishing Open Rotor as an Option for Significant Fuel Burn Improvements

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecma and GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. Current test status is presented as well as future scheduled testing which includes the FAA/CLEEN test entry. Pre-test predictions show that Open Rotors have the potential for revolutionary fuel burn savings.

  4. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.

  5. Future Fuels

    DTIC Science & Technology

    2006-04-01

    relevant to TWV is focused on permanent magnet motors , often wheel mounted. Wound rotor motors provide substantially different design and control...options than permanent magnet motors , at the expense of additional cooling requirements. Their benefits include higher peak torque and less sensitivity

  6. MNA of Metals and In Situ Bioremediation

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is a frequently applied remediation option for organic contaminants in groundwater, especially fuel hydrocarbons and chlorinated compounds. Current lines of research examine whether or not MNA is more broadly applicable to inorganic contaminan...

  7. Selected Technical and Economic Comparisons of Synfuel Options

    DOT National Transportation Integrated Search

    1981-04-01

    This study is a comparative technical and economic assessment of selected synfuel technologies. It contains papers written for Office of Technology Assessment (OTA) to assist in preparation of the report "Increased Automobile Fuel Efficiency and Synt...

  8. A Polymer Optical Fiber Fuel Level Sensor: Application to Paramotoring and Powered Paragliding

    PubMed Central

    Montero, David Sánchez; Lallana, Pedro Contreras; Vázquez, Carmen

    2012-01-01

    A low-cost intensity-based polymer optical fiber (POF) sensor for fuel level measurements in paramotoring and powered paragliding is presented, exploiting the advantages of the optical fiber sensing technology. Experimental results demonstrate that the best option can be performed by stripping the fiber at the desired discrete points to measure the fuel level as well as with a gauge-shape fiber bending. The prototype has a good linearity, better than 4% full scale (F.S.), and sensitivity around 0.5 V per bend are obtained. Hysteresis due to residual fluid at the sensing points is found to be less than 9% F.S. PMID:22778637

  9. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  10. Beyond Fossil Fuels: Options and Challenges

    NASA Astrophysics Data System (ADS)

    Thompson, Levi T.

    2007-05-01

    Securing our nation’s energy supply is arguably the most important challenge we face. The source and amount of energy that is available impacts nearly every aspect of our lives including our mobility, health and welfare. Presently, the U.S. depends heavily on foreign energy resources. For example, in 2006, nearly 60 percent of the crude oil consumed in the U.S. was imported; approximately one-quarter of this oil comes from the Persian Gulf. With growing demands from emerging economies, declining environmental quality and potential for global conflict, there is a pressing need to develop a more sustainable energy strategy. This presentation will review options for a sustainable energy economy including the use of hydrogen and fuel cells, and describe some of the key challenges To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.A1.2

  11. Feasibility of a small central cogenerated energy facility: Energy management memorandum

    NASA Astrophysics Data System (ADS)

    Porter, R. N.

    1982-10-01

    The thermal economic feasibility of a small cogenerated energy facility designed to serve several industries in the Stockyards area was investigated. Cogeneration options included two dual fuel diesels and two gas turbines, all with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired boiler cases, also low sulphur coal and municipal refuse. For coal and refuse, the option of steam only without cogeneration was also assessed. The fired boiler cogeneration systems employed back pressure steam turbines. The refuse fired cases utilized electrical capacities, 8500 to 52,400 lbm/hr and 0 to 9.9 MW (e), respectively. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which was displaced was sold to Commonwealth Edison Company under PURPA (Public Utility Regulatory Policies Act). The facility was operated by a mutually owned corporation formed by the cogenerated power users.

  12. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  13. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result ofmore » the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  14. Nuclear Power in Space

    DOE R&D Accomplishments Database

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  15. Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Katja; Sands, Ronald D.

    2009-01-05

    In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less

  16. Village energy system dynamics of an isolated rural West African village

    NASA Astrophysics Data System (ADS)

    Johnson, Nathan Gregory

    This thesis examines the detailed energy system dynamics of an isolated rural agricultural village in West Africa. Every family lives on subsistence agriculture and there is no access to the electric grid. The study is based on a planning visit followed by three one-month studies in different seasons of a one-year period. Methods and findings are presented in three parts: (1) the overall dynamics of village energy supply and use for a one-year period, (2) the factors that influence fuel use for domestic cookstove applications, and (3) an assessment of the costs and benefits of various energy options for meeting domestic cooking needs. Wood and electricity account for 94% and less than 1% of village energy supply, respectively, yet both provide vital needs--cooked meals, hot water, warmth, clean water, lighting, and power for small electronics. The need for small-scale electricity is so great that the 21,000 disposable batteries purchased each year account for 65% of all domestic energy expenditures. Three-quarters of the annual village wood supply is burned within domestic cooking stoves. Multiple regression analysis was used to identify six factors that significantly impacted cooking energy use. These included the cookstove application, family size, total mass of wet and dry ingredients, mass of dry ingredients, use of burning embers as an igniter, and the number of fires used during a cooking event. Analysis indicated that cookstove type may affect fuel consumption but the effect was not statistically significant. Strong evidence was found of "stove stacking" in which improved stoves are used as additional cooking resources rather than a replacement for existing stoves. Sixty combinations of domestic cooking options were compared based on program cost and expected reduction in fuelwood use. Annualized capital costs ranged from zero to US$3,130 per year for reductions in wood use between 10.0% and 86.8% of the 234 metric tons of fuelwood used annually for cooking.

  17. Alternative Fuels Data Center

    Science.gov Websites

    , retailers must post the exact percentage of ethanol concentration, rounded to the nearest multiple of 10 (1) post the exact percentage of ethanol concentration, (2) post the percentage rounded to the nearest multiple of 10, or (3) post notice that the fuel contains 51% to 83% ethanol. Electric vehicle

  18. Performance of a multiple venturi fuel-air preparation system. [fuel injection for gas turbines

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1979-01-01

    Spatial fuel-air distributions, degree of vaporization, and pressure drop were measured 16.5 cm downstream of the fuel injection plane of a multiple Venturi tube fuel injector. Tests were performed in a 12 cm tubular duct. Test conditions were: a pressure of 0.3 MPa, inlet air temperature from 400 to 800K, air velocities of 10 and 20 m/s, and fuel-air ratios of 0.010 and 0.020. The fuel was Diesel #2. Spatial fuel-air distributions were within + or - 20 percent of the mean at inlet air temperatures above 450K. At an inlet air temperature of 400K, the fuel-air distribution was measured when a 50 percent blockage plate was placed 9.2 cm upstream of the fuel injection plane to distort the inlet air velocity fuel injection plane to distort the inlet air velocity profile. Vaporization of the fuel was 50 percent complete at an inlet air temperature of 400K and the percentage increased linearly with temperature to complete vaporization at 600K. The pressure drop was 3 percent at the design point which was three times greater than the designed value and the single tube experiment value. No autoignition or flashback was observed at the conditions tested.

  19. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  20. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  1. Liquid-fueled SOFC power sources for transportation

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  2. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.

  3. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.

  4. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and themore » production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.« less

  5. Integrated process modeling for the laser inertial fusion energy (LIFE) generation system

    NASA Astrophysics Data System (ADS)

    Meier, W. R.; Anklam, T. M.; Erlandson, A. C.; Miles, R. R.; Simon, A. J.; Sawicki, R.; Storm, E.

    2010-08-01

    A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to "burn" spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

  6. American power conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less

  7. 75 FR 26121 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...EPA is issuing a direct final rule to amend the diesel sulfur regulations to allow refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at retail facilities. This alternative defense consists of a comprehensive program of quality assurance sampling and testing that would cover all participating companies that produce and/or distribute highway diesel fuel if certain other conditions are met. The sampling and testing program would be carried out by an independent surveyor. The program would be conducted pursuant to a survey plan approved by EPA that is designed to achieve the same objectives as the current regulatory quality assurance requirement. This rule also amends the gasoline benzene regulations to allow disqualified small refiners the same opportunity to generate gasoline benzene credits as that afforded to non-small refiners.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Billy D.; Akhil, Abbas Ali

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a costmore » perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.« less

  9. Revised Point of Departure Design Options for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Fittje, James E.; Borowski, Stanley K.; Schnitzler, Bruce

    2015-01-01

    In an effort to further refine potential point of departure nuclear thermal rocket engine designs, four proposed engine designs representing two thrust classes and utilizing two different fuel matrix types are designed and analyzed from both a neutronics and thermodynamic cycle perspective. Two of these nuclear rocket engine designs employ a tungsten and uranium dioxide cermet (ceramic-metal) fuel with a prismatic geometry based on the ANL-200 and the GE-710, while the other two designs utilize uranium-zirconium-carbide in a graphite composite fuel and a prismatic fuel element geometry developed during the Rover/NERVA Programs. Two engines are analyzed for each fuel type, a small criticality limited design and a 111 kN (25 klbf) thrust class engine design, which has been the focus of numerous manned mission studies, including NASA's Design Reference Architecture 5.0. slightly higher T/W ratios, but they required substantially more 235U.

  10. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for United States Coast Guard Headquarters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    2015-05-01

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which the United States Coast Guard Headquarters (USCG HQ)more » could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less

  12. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    PubMed

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  13. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less

  14. Results of a diesel multiple unit fuel tank blunt impact test

    DOT National Transportation Integrated Search

    2017-04-04

    The Federal Railroad Administrations Office of Research and Development is conducting research into passenger locomotive fuel tank crashworthiness. A series of impact tests is being conducted to measure fuel tank deformation under two types of dyn...

  15. Thermochemical reactor systems and methods

    DOEpatents

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  16. Environmental Assessment of Biofuel Options

    EPA Science Inventory

    The EPA Office of Transportation and Air Quality is responsible for administering the Second Renewable Fuels Standard under the Energy Independence and Security Act of 2007. The progress of these efforts and the associated environmental impacts are assessed in the Triennial Biof...

  17. An improved car-following model with multiple preceding cars' velocity fluctuation feedback

    NASA Astrophysics Data System (ADS)

    Guo, Lantian; Zhao, Xiangmo; Yu, Shaowei; Li, Xiuhai; Shi, Zhongke

    2017-04-01

    In order to explore and evaluate the effects of velocity variation trend of multiple preceding cars used in the Cooperative Adaptive Cruise Control (CACC) strategy on the dynamic characteristic, fuel economy and emission of the corresponding traffic flow, we conduct a study as follows: firstly, with the real-time car-following (CF) data, the close relationship between multiple preceding cars' velocity fluctuation feedback and the host car's behaviors is explored, the evaluation results clearly show that multiple preceding cars' velocity fluctuation with different time window-width are highly correlated to the host car's acceleration/deceleration. Then, a microscopic traffic flow model is proposed to evaluate the effects of multiple preceding cars' velocity fluctuation feedback in the CACC strategy on the traffic flow evolution process. Finally, numerical simulations on fuel economy and exhaust emission of the traffic flow are also implemented by utilizing VT-micro model. Simulation results prove that considering multiple preceding cars' velocity fluctuation feedback in the control strategy of the CACC system can improve roadway traffic mobility, fuel economy and exhaust emission performance.

  18. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less

  19. Study of cost/benefit tradeoffs for reducing the energy consumption of the commercial air transportation system. [Advanced turboprop introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coykendall, R.E.; Curry, J.K.; Domke, A.E.

    1976-06-01

    Economic studies were conducted for three general fuel-conserving options: (1) improving fuel-consumption characteristics of existing aircraft via retrofit modifications; (2) introducing fuel-efficient derivations of existing production aircraft and/or introducing fuel efficient, current state-of-the-art new aircraft; and (3) introducing an advanced state-of-the-art turboprop airplane. These studies were designed to produce an optimum airline fleet mix for the years 1980, 1985 and 1990. The fleet selected accommodated a normal growth market by introducing somewhat larger aircraft while solving for maximum departure frequencies and a minimum load factor corresponding to a 15% investment hurdle rate. Fuel burnt per available-seat-mile flown would drop 22%more » from 1980 to 1990 due to the use of more fuel efficient aircraft designs, larger average aircraft size, and increased seating density. An inflight survey was taken to determine air traveler attitudes towards a new generation of advanced turboprops. (Author) (GRA)« less

  20. A life cycle assessment of options for producing synthetic fuel via pyrolysis.

    PubMed

    Vienescu, D N; Wang, J; Le Gresley, A; Nixon, J D

    2018-02-01

    The aim of this study was to investigate the sustainability of producing synthetic fuels from biomass using thermochemical processing and different upgrading pathways. Life cycle assessment (LCA) models consisting of biomass collection, transportation, pre-treatment, pyrolysis and upgrading stages were developed. To reveal the environmental impacts associated with greater post-processing to achieve higher quality fuels, six different bio-oil upgrading scenarios were analysed and included esterification, ketonisation, hydrotreating and hydrocracking. Furthermore, to take into account the possible ranges in LCA inventory data, expected, optimistic and pessimistic values for producing and upgrading pyrolysis oils were evaluated. We found that the expected carbon dioxide equivalent emissions could be as high as 6000 gCO 2e /kg of upgraded fuel, which is greater than the emissions arising from the use of diesel fuel. Other environmental impacts occurring from the fuel production process are outlined, such as resource depletion, acidification and eutrophication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell in combined heat and power applications

    NASA Astrophysics Data System (ADS)

    Abraham, F.; Dincer, I.

    2015-12-01

    This paper presents a comprehensive steady state modelling and thermodynamic analysis of Direct Urea Solid Oxide Fuel Cell integrated with Gas Turbine power cycle (DU-SOFC/GT). The use of urea as direct fuel mitigates public health and safety risks associated with the use of hydrogen and ammonia. The integration scheme in this study covers both oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Parametric case studies are carried out to investigate the effects of design and operating parameters on the overall performance of the system. The results reveal that the fuel cell exhibited the highest level of exergy destruction among other system components. Furthermore, the SOFC-O based system offers better overall performance than that with the SOFC-H option mainly due to the detrimental reverse water-gas shift reaction at the SOFC anode as well as the unique configuration of the system.

  2. Coal-Based Fuel-Cell Powerplants

    NASA Technical Reports Server (NTRS)

    Ferral, J. F.; Pappano, A. W.; Jennings, C. N.

    1986-01-01

    Report assesses advanced technologyy design alternatives for integrated coal-gasifier/fuel-cell powerplants. Various gasifier, cleanup, and fuelcell options evaluated. Evaluation includes adjustments to assumed performances and costs of proposed technologies where required. Analysis identifies uncertainties remaining in designs and most promising alternatives and research and development required to develop these technologies. Bulk of report summary and detailed analysis of six major conceptual designs and variations of each. All designs for plant that uses Illinois No. 6 coal and produces 675 MW of net power.

  3. Electromechanical Power for NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2005-01-01

    NASA has a wide range of missions that require electrochemical power sources. These needs are met with a variety of options that include primary and secondary cells and batteries, fuel cells, and regenerative fuel cells. This presentation wil cover an overview of NASA missions and requirements for electrochemical power sources and investigate the synergy and diversity that exist between NASA's requirements and those for military tactical power sources. Current development programs at GRC and other NASA centers, aimed at meeting NASA's future requirements will also be discussed.

  4. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  5. Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas

    NASA Astrophysics Data System (ADS)

    Stempien, J. P.; Chan, S. H.

    2017-02-01

    Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.

  6. To Show or Not to Show: The Effects of Item Stems and Answer Options on Performance on a Multiple-Choice Listening Comprehension Test

    ERIC Educational Resources Information Center

    Yanagawa, Kozo; Green, Anthony

    2008-01-01

    The purpose of this study is to examine whether the choice between three multiple-choice listening comprehension test formats results in any difference in listening comprehension test performance. The three formats entail (a) allowing test takers to preview both the question stem and answer options prior to listening; (b) allowing test takers to…

  7. Resolving future fire management conflicts using multicriteria decision making.

    PubMed

    Driscoll, Don A; Bode, Michael; Bradstock, Ross A; Keith, David A; Penman, Trent D; Price, Owen F

    2016-02-01

    Management strategies to reduce the risks to human life and property from wildfire commonly involve burning native vegetation. However, planned burning can conflict with other societal objectives such as human health and biodiversity conservation. These conflicts are likely to intensify as fire regimes change under future climates and as growing human populations encroach farther into fire-prone ecosystems. Decisions about managing fire risks are therefore complex and warrant more sophisticated approaches than are typically used. We applied a multicriteria decision making approach (MCDA) with the potential to improve fire management outcomes to the case of a highly populated, biodiverse, and flammable wildland-urban interface. We considered the effects of 22 planned burning options on 8 objectives: house protection, maximizing water quality, minimizing carbon emissions and impacts on human health, and minimizing declines of 5 distinct species types. The MCDA identified a small number of management options (burning forest adjacent to houses) that performed well for most objectives, but not for one species type (arboreal mammal) or for water quality. Although MCDA made the conflict between objectives explicit, resolution of the problem depended on the weighting assigned to each objective. Additive weighting of criteria traded off the arboreal mammal and water quality objectives for other objectives. Multiplicative weighting identified scenarios that avoided poor outcomes for any objective, which is important for avoiding potentially irreversible biodiversity losses. To distinguish reliably among management options, future work should focus on reducing uncertainty in outcomes across a range of objectives. Considering management actions that have more predictable outcomes than landscape fuel management will be important. We found that, where data were adequate, an MCDA can support decision making in the complex and often conflicted area of fire management. © 2015 Society for Conservation Biology.

  8. Method and system for vehicle refueling

    DOEpatents

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  9. Method and system for vehicle refueling

    DOEpatents

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  10. Nature of collective decision-making by simple yes/no decision units.

    PubMed

    Hasegawa, Eisuke; Mizumoto, Nobuaki; Kobayashi, Kazuya; Dobata, Shigeto; Yoshimura, Jin; Watanabe, Saori; Murakami, Yuuka; Matsuura, Kenji

    2017-10-31

    The study of collective decision-making spans various fields such as brain and behavioural sciences, economics, management sciences, and artificial intelligence. Despite these interdisciplinary applications, little is known regarding how a group of simple 'yes/no' units, such as neurons in the brain, can select the best option among multiple options. One prerequisite for achieving such correct choices by the brain is correct evaluation of relative option quality, which enables a collective decision maker to efficiently choose the best option. Here, we applied a sensory discrimination mechanism using yes/no units with differential thresholds to a model for making a collective choice among multiple options. The performance corresponding to the correct choice was shown to be affected by various parameters. High performance can be achieved by tuning the threshold distribution with the options' quality distribution. The number of yes/no units allocated to each option and its variability profoundly affects performance. When this variability is large, a quorum decision becomes superior to a majority decision under some conditions. The general features of this collective decision-making by a group of simple yes/no units revealed in this study suggest that this mechanism may be useful in applications across various fields.

  11. Regulation of Memory Accuracy with Multiple Answers: The Plurality Option

    ERIC Educational Resources Information Center

    Luna, Karlos; Higham, Philip A.; Martin-Luengo, Beatriz

    2011-01-01

    We report two experiments that investigated the regulation of memory accuracy with a new regulatory mechanism: the plurality option. This mechanism is closely related to the grain-size option but involves control over the number of alternatives contained in an answer rather than the quantitative boundaries of a single answer. Participants were…

  12. Liquid fuels from coal: analysis of a partial transition from oil to coal; light liquids in Zimbabwe's liquid fuels base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maya, R.S.

    1986-01-01

    This study assesses the feasibility of a coal based light liquids program as a way to localize forces that determine the flow of oil into the Zimbabwean economy. Methods in End-use Energy Analysis and Econometrics in which the utilization of petroleum energy is related to economic and industrial activity are used to gain insight into the structure and behavior of petroleum utilization in that country and to forecast future requirements of this resource. The feasibility of coal liquefaction as a substitute for imported oil is assessed by the use of engineering economics in which the technical economics of competing oilmore » supply technologies are analyzed and the best option is selected. Coal conversion technologies are numerous but all except the Fischer-Trosch indirect coal liquefaction technology are deficient in reliability as commercial ventures. The Fischer-Tropsch process by coincidence better matches Zimbabwe's product configuration than the less commercially advanced technologies. Using present value analysis to compare the coal liquefaction and the import option indicates that it is better to continue importing oil than to resort to a coal base for a portion of the oil supplies. An extended analysis taking special consideration of the risk and uncertainty factors characteristic of Zimbabwe's oil supply system indicates that the coal option is better than the import option. The relative infancy of the coal liquefaction industry and the possibility that activities responsible for the risk and uncertainty in the oil supply system will be removed in the future, however, make the adoption of the coal option an unusually risky undertaking.« less

  13. Ethanol content concerns in motor gasoline (mogas) in aviation in comparison to aviation gasoline (avgas)

    NASA Astrophysics Data System (ADS)

    Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.

    2018-05-01

    Mogas has been an alternative to leaded fuel since 1964 when Experimental Aircraft Association (EAA) began testing on it. However, in order for mogas to be used in aircraft engines and air frame modification, approval via the Supplemental Type Certificate (STC) authorization from Federal Aviation Administration (FAA) is mandatory. Cessna on 01.06.2010 evaluated alternative fuels with ethanol based fuels approved by FAA STCs for use in some single engine airplanes. However, Cessna’s tests discovered that ethanol based gasoline cannot be viewed as an option to 100LL avgas. The test likewise proposed that operational safety might be in jeopardy if usage of these fuels containing ethanol is continued. Cessna outlined a few problems in MOGAS; MOGAS needs fuel flow increase of 40% compared to AVGAS, MOGAS fuel is incompatible with some fuel system components, possible hazardous influence of electric fuel pumps by adding internal wear causing unexpected spark generation, MOGAS is incompatible with some fuel gauging systems and cause be able to incorrect fuel amount signs on the indicator, dissolve large amounts of water at conditions down to -77°F, impeding detection and removal of water from the fuel system, possible blockage of fuel filters and fuel flow and possible heavy losses from evaporation. This paper reviews concerns when using MOGAS in aircraft.

  14. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less

  15. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  16. Evaluation of a sustainable remediation option: beneficial reuse of petroleum-contaminated sediment as an energy source.

    PubMed

    Sasivongpakdi, Adison; Lee, Joo-Youp; Bharadwaj, Hari; Keener, Tim C; Barth, Edwin F; Clark, Patrick J; Bujalski, Nicole M; Yeardley, Roger B

    2012-11-01

    The characteristics of petroleum-contaminated sediment (PCS) have been evaluated to assess whether the practice of its beneficial reuse as a sole or supplemental energy source is sustainable relative to other sediment remediation options such as monitored natural recovery (MNR), capping, or off-site disposal. Some of these remediation options for PCS are energy-intensive and/or require land utilization. The energy and compositional analysis results indicate a low carbon content (15-17%(wt)) and corresponding low energy values of 5,200 kJ/kg (2,200 Btu/lb) to 5,600 kJ/kg (2,400 Btu/lb). However, given other decision-making criteria, the sediment may contain enough value to be added as a supplemental fuel given that it is normally considered a waste product and is readily available. The thermogravimetric profiles obtained under both combustion and pyrolytic conditions showed that the sulfur contents were comparable to typical low sulfur bituminous or lignite coals found in the United States, and most of the volatiles could be vaporized below 750 degrees C. The heavy metal concentrations determined before and after combustion of the PCS indicated that further engineering controls may be required for mercury, arsenic, and lead. Due to the potential for reduction of public health and environmental threats, potential economic savings, and conservation of natural resources (petroleum and land), removal of PCS by dredging and beneficial reuse as a supplemental fuel clearly has merit to be considered as a sustainable remediation option.

  17. Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers

    NASA Technical Reports Server (NTRS)

    Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.

    2013-01-01

    Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.

  18. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.

  19. Modeling fuel treatment leverage: Encounter rates, risk reduction, and suppression cost impacts

    Treesearch

    Matthew P. Thompson; Karin L. Riley; Dan Loeffler; Jessica R. Haas

    2017-01-01

    The primary theme of this study is the cost-effectiveness of fuel treatments at multiple scales of investment. We focused on the nexus of fuel management and suppression response planning, designing spatial fuel treatment strategies to incorporate landscape features that provide control opportunities that are relevant to fire operations. Our analysis explored the...

  20. Fuel loading following fuel-reduction treatments and impacts from natural disturbances

    Treesearch

    Ross J. Phillips; Thomas A. Waldrop

    2013-01-01

    A long-term study of fuel-reduction treatments (mechanical fuel removal, prescribed burning, and the combination of mechanical treatment and burning) was begun in 2000 and 2001 for sites located in the Piedmont of South Carolina and the Southern Appalachian Mountains of North Carolina, respectively. During this time multiple natural disturbances [southern pine beetle...

  1. Techno-Economic Analysis of Camelina-Derived Hydroprocessed Renewable Jet Fuel and its Implications on the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    Although the aviation industry contributes toward global economic growth via transportation of passengers and cargo, the increasing demand for air transportation causes concern due to the corresponding increase in aircraft engine exhaust emissions. Use of alternative fuels is one pathway that has been explored for reducing emissions in the aviation industry. Hydroprocessed renewable jet (HRJ) (also known as Hydroprocessed Esters and Fatty Acids - HEFA) fuels have been approved for blending with traditional jet fuel up to 50% by volume to be used as drop-in fuels. However, limited information exists on the economic viability of these fuels. While techno-economic studies have been conducted on the HRJ production process using soybean oil, different vegetable oils possess different hydrocarbon structures that affect the yield of HRJ fuels. This study involves the techno-economic analysis of producing Camelina-derived HRJ fuel using the option of hydro-deoxygenation (HDO). The hydrodeoxygenation option requires extra hydrogen and hence affects the overall cost of HRJ fuel production. Similar studies have been conducted on the production of Camelina-derived HRJ fuels using the same path of hydrodeoxygenation with minor contributions from both decarbonylation and decarboxylation reactions. This study, however, employs the UOP Honeywell procedure using the hydrodeoxygenation chemical reaction to estimate the breakeven price of Camelina-derived HRJ fuel. In addition, the study treats the cultivation of Camelina oilseeds, extraction of oilseeds, and the conversion of HRJ fuel as separate entities. The production of Camelina oilseed, Camelina oil, and finally Camelina-derived HRJ fuel is modeled in order to estimate the breakeven price of the fuel. In addition, the information obtained from the techno-economic analysis is used to assess the breakeven carbon price. All costs are analyzed based on 2016 US dollars. The breakeven price of Camelina oilseeds is found to be 228.71 per MT assuming a yield of 2.3 MT/hectare and oilseed oil content of 35%. The nameplate capacities of the extraction and HRJ process facilities are 3000 MT/day and 378 MML per year respectively. Based on these assumptions, the breakeven price of Camelina oil for a centralized extraction facility is found to be 0.35 per liter for a 20-year operating plant, and 0.34/liter for a 30-year operating plant. The option of producing Jet A and diesel are each explored for plants operating for 20 years or 30 years. An additional scenario of investing in a hydrogen plant on site is explored. The deterministic breakeven price of HRJ fuel produced from plants that operate for 20 years is found to be 0.87 per liter for facilities using commercial hydrogen, and 1.01 per liter for facilities using self-produced hydrogen. If the plant operates for 30 years, the breakeven price of HRJ is found to be 0.85 per liter for a facility that uses utility hydrogen, and 0.99 per liter for a facility that uses self-produced hydrogen. Sensitivity analysis indicates that if the HRJ facility invests in hydrogen plant, the final breakeven price will range from 0.87 to 1.44 per liter while for the facility that uses commercial hydrogen, the breakeven price of HRJ fuel will be between 0.75 and 1.26 per liter. Investors have to pay at least additional 0.02 of capital investment cost per liter of HRJ fuel if they want to maximize the production of HRJ fuel instead of Hydroprocessed Renewable Diesel (HRD) fuel. The penalty for investing in a hydrogen plant on site ranges between 0.13 and 0.15 of capital cost per liter of fuel produced depending on the main fuel being produced and the duration of operation of the plant. Finally, the breakeven price of carbon is calculated by taking into account the difference between the calculated breakeven price of HRJ fuels and the five-year average of Jet A fuel. The range of breakeven carbon price is found to be between 109.63 and 177.53 per MT of CO2e. The results of this study serve as a preliminary assessment for investors who are interested in pursuing production of this fuel type. While the breakeven prices of the fuels may provide information to the potential investors, the breakeven carbon prices are also useful for exploring other policies regarding the establishment of aviation biofuels.

  2. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  3. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    NASA Astrophysics Data System (ADS)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  4. Time-Series Analysis: Assessing the Effects of Multiple Educational Interventions in a Small-Enrollment Course

    NASA Astrophysics Data System (ADS)

    Warren, Aaron R.

    2009-11-01

    Time-series designs are an alternative to pretest-posttest methods that are able to identify and measure the impacts of multiple educational interventions, even for small student populations. Here, we use an instrument employing standard multiple-choice conceptual questions to collect data from students at regular intervals. The questions are modified by asking students to distribute 100 Confidence Points among the options in order to indicate the perceived likelihood of each answer option being the correct one. Tracking the class-averaged ratings for each option produces a set of time-series. ARIMA (autoregressive integrated moving average) analysis is then used to test for, and measure, changes in each series. In particular, it is possible to discern which educational interventions produce significant changes in class performance. Cluster analysis can also identify groups of students whose ratings evolve in similar ways. A brief overview of our methods and an example are presented.

  5. An Overview of Stationary Fuel Cell Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle ormore » rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.« less

  6. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Treesearch

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  7. Assessing risks to multiple resources affected by wildfire and forest management using an integrated probabilistic framework

    Treesearch

    Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani

    2010-01-01

    The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...

  8. An integral nuclear power and propulsion system concept

    NASA Astrophysics Data System (ADS)

    Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William

    An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.

  9. Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Armstrong, Elizabeth S.

    1991-01-01

    One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.

  10. Process configuration of Liquid-nitrogen Energy Storage System (LESS) for maximum turnaround efficiency

    NASA Astrophysics Data System (ADS)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2017-12-01

    Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.

  11. Economic implications of incorporating emission controls to mitigate air pollutants emitted from a modeled hydrocarbon-fuel biorefinery in the United States

    DOE PAGES

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan; ...

    2016-07-15

    The implementation of the US Renewable Fuel Standard is expected to increase the construction and operation of new biofuel facilities. Allowing this industry to grow without adversely affecting air quality is an important sustainability goal sought by multiple stakeholders. However, little is known about how the emission controls potentially required to comply with air quality regulations might impact biorefinery cost and deployment strategies such as siting and sizing. In this study, we use a baseline design for a lignocellulosic hydrocarbon biofuel production process to assess how the integration of emission controls impacts the minimum fuel selling price (MFSP) of themore » biofuel produced. We evaluate the change in MFSP for two cases as compared to the baseline design by incorporating (i) emission controls that ensure compliance with applicable federal air regulations and (ii) advanced control options that could be used to achieve potential best available control technology (BACT) emission limits. Our results indicate that compliance with federal air regulations can be achieved with minimal impact on biofuel cost (~$0.02 per gasoline gallon equivalent (GGE) higher than the baseline price of $5.10 GGE -1). However, if air emissions must be further reduced to meet potential BACT emission limits, the cost could increase nontrivially. For example, the MFSP could increase to $5.50 GGE -1 by adopting advanced emission controls to meet potential boiler BACT limits. Finally, given tradeoffs among emission control costs, permitting requirements, and economies of scale, these results could help inform decisions about biorefinery siting and sizing and mitigate risks associated with air permitting.« less

  12. Booster propulsion/vehicle impact study, 2

    NASA Technical Reports Server (NTRS)

    Johnson, P.; Satterthwaite, S.; Carson, C.; Schnackel, J.

    1988-01-01

    This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel.

  13. 75 FR 80084 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing and Immediate Effectiveness of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-21

    ... futures or options or derivatives on the foregoing in this subparagraph (b); or (c) CBOE Volatility Index...) interest rate futures or options or derivatives on the foregoing; or (c) CBOE VIX futures. NYSE Arca... (multiple or inverse) performance of an index or indexes of futures contracts or options or derivatives on...

  14. 5 CFR 870.506 - Optional insurance: Cancelling a waiver.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Optional insurance: Cancelling a waiver. (a) When there is a change in family circumstances (see § 870.503(b)(3)). (1) An employee may cancel a waiver of Options A, B, and C due to a change in family... may increase the number of multiples, upon his or her marriage or divorce, upon a spouse's death, or...

  15. 5 CFR 870.506 - Optional insurance: Cancelling a waiver.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Optional insurance: Cancelling a waiver. (a) When there is a change in family circumstances (see § 870.503(b)(3)). (1) An employee may cancel a waiver of Options A, B, and C due to a change in family... may increase the number of multiples, upon his or her marriage or divorce, upon a spouse's death, or...

  16. 5 CFR 870.506 - Optional insurance: Cancelling a waiver.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Optional insurance: Cancelling a waiver. (a) When there is a change in family circumstances (see § 870.503(b)(3)). (1) An employee may cancel a waiver of Options A, B, and C due to a change in family... may increase the number of multiples, upon his or her marriage or divorce, upon a spouse's death, or...

  17. 5 CFR 870.506 - Optional insurance: Cancelling a waiver.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Optional insurance: Cancelling a waiver. (a) When there is a change in family circumstances (see § 870.503(b)(3)). (1) An employee may cancel a waiver of Options A, B, and C due to a change in family... may increase the number of multiples, upon his or her marriage or divorce, upon a spouse's death, or...

  18. 78 FR 14872 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Participants request multiple mnemonics for purposes of accounting for trading activity. The Exchange bills per...; options directory messages to relay basic option symbol and contract information for options traded on the... order, the orders will execute. Non-matching orders are added to the limit order book, a database of...

  19. ADS Model in the TIRELIRE-STRATEGIE Fuel Cycle Simulation Code Application to Minor Actinides Transmutation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzenne, Claude; Massara, Simone; Tetart, Philippe

    2006-07-01

    Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less

  20. Life cycle design metrics for energy generation technologies: Method, data, and case study

    NASA Astrophysics Data System (ADS)

    Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah

    A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.

Top