Sample records for multiple gaussian functions

  1. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    NASA Astrophysics Data System (ADS)

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, D.O.

    In a previous paper Smallwood and Paez (1991) showed how to generate realizations of partially coherent stationary normal time histories with a specified cross-spectral density matrix. This procedure is generalized for the case of multiple inputs with a specified cross-spectral density function and a specified marginal probability density function (pdf) for each of the inputs. The specified pdfs are not required to be Gaussian. A zero memory nonlinear (ZMNL) function is developed for each input to transform a Gaussian or normal time history into a time history with a specified non-Gaussian distribution. The transformation functions have the property that amore » transformed time history will have nearly the same auto spectral density as the original time history. A vector of Gaussian time histories are then generated with the specified cross-spectral density matrix. These waveforms are then transformed into the required time history realizations using the ZMNL function.« less

  3. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    NASA Astrophysics Data System (ADS)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  4. Simulation and analysis of scalable non-Gaussian statistically anisotropic random functions

    NASA Astrophysics Data System (ADS)

    Riva, Monica; Panzeri, Marco; Guadagnini, Alberto; Neuman, Shlomo P.

    2015-12-01

    Many earth and environmental (as well as other) variables, Y, and their spatial or temporal increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture some key aspects of such scaling by treating Y or ΔY as standard sub-Gaussian random functions. We were however unable to reconcile two seemingly contradictory observations, namely that whereas sample frequency distributions of Y (or its logarithm) exhibit relatively mild non-Gaussian peaks and tails, those of ΔY display peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we overcame this difficulty by developing a new generalized sub-Gaussian model which captures both behaviors in a unified and consistent manner, exploring it on synthetically generated random functions in one dimension (Riva et al., 2015). Here we extend our generalized sub-Gaussian model to multiple dimensions, present an algorithm to generate corresponding random realizations of statistically isotropic or anisotropic sub-Gaussian functions and illustrate it in two dimensions. We demonstrate the accuracy of our algorithm by comparing ensemble statistics of Y and ΔY (such as, mean, variance, variogram and probability density function) with those of Monte Carlo generated realizations. We end by exploring the feasibility of estimating all relevant parameters of our model by analyzing jointly spatial moments of Y and ΔY obtained from a single realization of Y.

  5. q-Gaussian distributions and multiplicative stochastic processes for analysis of multiple financial time series

    NASA Astrophysics Data System (ADS)

    Sato, Aki-Hiro

    2010-12-01

    This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.

  6. Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.

    PubMed

    Liu, Jing; Zhou, Weidong; Juwono, Filbert H

    2017-05-08

    Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

  7. Estimating Mixture of Gaussian Processes by Kernel Smoothing

    PubMed Central

    Huang, Mian; Li, Runze; Wang, Hansheng; Yao, Weixin

    2014-01-01

    When the functional data are not homogeneous, e.g., there exist multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this paper, we propose a new estimation procedure for the Mixture of Gaussian Processes, to incorporate both functional and inhomogeneous properties of the data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However, the key difference is that smoothed structures are imposed for both the mean and covariance functions. The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas from EM algorithm, kernel regression, and functional principal component analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an analysis of a supermarket dataset. PMID:24976675

  8. Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density

    DOE PAGES

    Smallwood, David O.

    1997-01-01

    The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less

  9. Sufficient condition for a quantum state to be genuinely quantum non-Gaussian

    NASA Astrophysics Data System (ADS)

    Happ, L.; Efremov, M. A.; Nha, H.; Schleich, W. P.

    2018-02-01

    We show that the expectation value of the operator \\hat{{ \\mathcal O }}\\equiv \\exp (-c{\\hat{x}}2)+\\exp (-c{\\hat{p}}2) defined by the position and momentum operators \\hat{x} and \\hat{p} with a positive parameter c can serve as a tool to identify quantum non-Gaussian states, that is states that cannot be represented as a mixture of Gaussian states. Our condition can be readily tested employing a highly efficient homodyne detection which unlike quantum-state tomography requires the measurements of only two orthogonal quadratures. We demonstrate that our method is even able to detect quantum non-Gaussian states with positive–definite Wigner functions. This situation cannot be addressed in terms of the negativity of the phase-space distribution. Moreover, we demonstrate that our condition can characterize quantum non-Gaussianity for the class of superposition states consisting of a vacuum and integer multiples of four photons under more than 50 % signal attenuation.

  10. MAI statistics estimation and analysis in a DS-CDMA system

    NASA Astrophysics Data System (ADS)

    Alami Hassani, A.; Zouak, M.; Mrabti, M.; Abdi, F.

    2018-05-01

    A primary limitation of Direct Sequence Code Division Multiple Access DS-CDMA link performance and system capacity is multiple access interference (MAI). To examine the performance of CDMA systems in the presence of MAI, i.e., in a multiuser environment, several works assumed that the interference can be approximated by a Gaussian random variable. In this paper, we first develop a new and simple approach to characterize the MAI in a multiuser system. In addition to statistically quantifying the MAI power, the paper also proposes a statistical model for both variance and mean of the MAI for synchronous and asynchronous CDMA transmission. We show that the MAI probability density function (PDF) is Gaussian for the equal-received-energy case and validate it by computer simulations.

  11. Wigner molecules: the strong-correlation limit of the three-electron harmonium.

    PubMed

    Cioslowski, Jerzy; Pernal, Katarzyna

    2006-08-14

    At the strong-correlation limit, electronic states of the three-electron harmonium atom are described by asymptotically exact wave functions given by products of distinct Slater determinants and a common Gaussian factor that involves interelectron distances and the center-of-mass position. The Slater determinants specify the angular dependence and the permutational symmetry of the wave functions. As the confinement strength becomes infinitesimally small, the states of different spin multiplicities become degenerate, their limiting energy reflecting harmonic vibrations of the electrons about their equilibrium positions. The corresponding electron densities are given by products of angular factors and a Gaussian function centered at the radius proportional to the interelectron distance at equilibrium. Thanks to the availability of both the energy and the electron density, the strong-correlation limit of the three-electron harmonium is well suited for testing of density functionals.

  12. The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise

    NASA Astrophysics Data System (ADS)

    Guo, Qin; Sun, Zhongkui; Xu, Wei

    2016-05-01

    The anti-tumor model with correlation between multiplicative non-Gaussian noise and additive Gaussian-colored noise has been investigated in this paper. The behaviors of the stationary probability distribution demonstrate that the multiplicative non-Gaussian noise plays a dual role in the development of tumor and an appropriate additive Gaussian colored noise can lead to a minimum of the mean value of tumor cell population. The mean first passage time is calculated to quantify the effects of noises on the transition time of tumors between the stable states. An increase in both the non-Gaussian noise intensity and the departure from the Gaussian noise can accelerate the transition from the disease state to the healthy state. On the contrary, an increase in cross-correlated degree will slow down the transition. Moreover, the correlation time can enhance the stability of the disease state.

  13. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, M. L.; Liu, B.; Hu, R. H.

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less

  14. Recent advances in scalable non-Gaussian geostatistics: The generalized sub-Gaussian model

    NASA Astrophysics Data System (ADS)

    Guadagnini, Alberto; Riva, Monica; Neuman, Shlomo P.

    2018-07-01

    Geostatistical analysis has been introduced over half a century ago to allow quantifying seemingly random spatial variations in earth quantities such as rock mineral content or permeability. The traditional approach has been to view such quantities as multivariate Gaussian random functions characterized by one or a few well-defined spatial correlation scales. There is, however, mounting evidence that many spatially varying quantities exhibit non-Gaussian behavior over a multiplicity of scales. The purpose of this minireview is not to paint a broad picture of the subject and its treatment in the literature. Instead, we focus on very recent advances in the recognition and analysis of this ubiquitous phenomenon, which transcends hydrology and the Earth sciences, brought about largely by our own work. In particular, we use porosity data from a deep borehole to illustrate typical aspects of such scalable non-Gaussian behavior, describe a very recent theoretical model that (for the first time) captures all these behavioral aspects in a comprehensive manner, show how this allows generating random realizations of the quantity conditional on sampled values, point toward ways of incorporating scalable non-Gaussian behavior in hydrologic analysis, highlight the significance of doing so, and list open questions requiring further research.

  15. Unpolarized infrared emissivity with shadow from anisotropic rough sea surfaces with non-Gaussian statistics.

    PubMed

    Bourlier, Christophe

    2005-07-10

    The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.

  16. Robust Lee local statistic filter for removal of mixed multiplicative and impulse noise

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Egiazarian, Karen O.; Astola, Jaakko T.

    2004-05-01

    A robust version of Lee local statistic filter able to effectively suppress the mixed multiplicative and impulse noise in images is proposed. The performance of the proposed modification is studied for a set of test images, several values of multiplicative noise variance, Gaussian and Rayleigh probability density functions of speckle, and different characteris-tics of impulse noise. The advantages of the designed filter in comparison to the conventional Lee local statistic filter and some other filters able to cope with mixed multiplicative+impulse noise are demonstrated.

  17. Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.

    2001-01-01

    Quadrature formulas with multiple nodes, power orthogonality, and some applications of such quadratures to moment-preserving approximation by defective splines are considered. An account on power orthogonality (s- and [sigma]-orthogonal polynomials) and generalized Gaussian quadratures with multiple nodes, including stable algorithms for numerical construction of the corresponding polynomials and Cotes numbers, are given. In particular, the important case of Chebyshev weight is analyzed. Finally, some applications in moment-preserving approximation of functions by defective splines are discussed.

  18. A non-linear regression analysis program for describing electrophysiological data with multiple functions using Microsoft Excel.

    PubMed

    Brown, Angus M

    2006-04-01

    The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.

  19. Cos-Gaussian modal field of a terahertz rectangular metal waveguide filled with multiple slices of dielectric

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Cao, Qing; Zhang, Huifang; Shen, Pengcheng; Xing, Lujing

    2018-06-01

    Based on the TE01 mode of a rectangular metal waveguide and the Gaussian mode of a fiber, we propose the cos-Gaussian mode of a terahertz rectangular metal waveguide filled with multiple slices of dielectric. First, we consider a rectangular metal waveguide filled with an ideal graded-index dielectric along one direction. Furthermore, we replace the graded-index dielectric with multiple slices of dielectric according to the effective medium theory. The modal field, the effective index, and the coupling efficiency of this waveguide are investigated. It is found that the approximately linearly polarized electric field is Gaussian along one dimensionality and cosine along the other one. In addition, the low loss and high coupling efficiency with a Gaussian beam can be acquired at 0.9 THz. By optimization, the coupling efficiency could reach 88.5%.

  20. Modified Gaussian influence function of deformable mirror actuators.

    PubMed

    Huang, Linhai; Rao, Changhui; Jiang, Wenhan

    2008-01-07

    A new deformable mirror influence function based on a Gaussian function is introduced to analyze the fitting capability of a deformable mirror. The modified expressions for both azimuthal and radial directions are presented based on the analysis of the residual error between a measured influence function and a Gaussian influence function. With a simplex search method, we further compare the fitting capability of our proposed influence function to fit the data produced by a Zygo interferometer with that of a Gaussian influence function. The result indicates that the modified Gaussian influence function provides much better performance in data fitting.

  1. Semiparametric Identification of Human Arm Dynamics for Flexible Control of a Functional Electrical Stimulation Neuroprosthesis

    PubMed Central

    Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.

    2016-01-01

    We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041

  2. Comparing fixed and variable-width Gaussian networks.

    PubMed

    Kůrková, Věra; Kainen, Paul C

    2014-09-01

    The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A clustering-based fuzzy wavelet neural network model for short-term load forecasting.

    PubMed

    Kodogiannis, Vassilis S; Amina, Mahdi; Petrounias, Ilias

    2013-10-01

    Load forecasting is a critical element of power system operation, involving prediction of the future level of demand to serve as the basis for supply and demand planning. This paper presents the development of a novel clustering-based fuzzy wavelet neural network (CB-FWNN) model and validates its prediction on the short-term electric load forecasting of the Power System of the Greek Island of Crete. The proposed model is obtained from the traditional Takagi-Sugeno-Kang fuzzy system by replacing the THEN part of fuzzy rules with a "multiplication" wavelet neural network (MWNN). Multidimensional Gaussian type of activation functions have been used in the IF part of the fuzzyrules. A Fuzzy Subtractive Clustering scheme is employed as a pre-processing technique to find out the initial set and adequate number of clusters and ultimately the number of multiplication nodes in MWNN, while Gaussian Mixture Models with the Expectation Maximization algorithm are utilized for the definition of the multidimensional Gaussians. The results corresponding to the minimum and maximum power load indicate that the proposed load forecasting model provides significantly accurate forecasts, compared to conventional neural networks models.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Jayanta; Ghosh, Manas, E-mail: pcmg77@rediffmail.com

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. Inmore » case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.« less

  5. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  6. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    USGS Publications Warehouse

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood functions, improve model calibration, and reduce predictive uncertainty in other groundwater reactive transport and environmental modeling.

  7. Solution of a cauchy problem for a diffusion equation in a Hilbert space by a Feynman formula

    NASA Astrophysics Data System (ADS)

    Remizov, I. D.

    2012-07-01

    The Cauchy problem for a class of diffusion equations in a Hilbert space is studied. It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely smooth bounded cylindrical functions on the Hilbert space, and the solution is presented in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of the Cauchy problem depends continuously on the diffusion coefficient. A process reducing an approximate solution of an infinite-dimensional diffusion equation to finding a multiple integral of a real function of finitely many real variables is indicated.

  8. Statistics of Advective Stretching in Three-dimensional Incompressible Flows

    NASA Astrophysics Data System (ADS)

    Subramanian, Natarajan; Kellogg, Louise H.; Turcotte, Donald L.

    2009-09-01

    We present a method to quantify kinematic stretching in incompressible, unsteady, isoviscous, three-dimensional flows. We extend the method of Kellogg and Turcotte (J. Geophys. Res. 95:421-432, 1990) to compute the axial stretching/thinning experienced by infinitesimal ellipsoidal strain markers in arbitrary three-dimensional incompressible flows and discuss the differences between our method and the computation of Finite Time Lyapunov Exponent (FTLE). We use the cellular flow model developed in Solomon and Mezic (Nature 425:376-380, 2003) to study the statistics of stretching in a three-dimensional unsteady cellular flow. We find that the probability density function of the logarithm of normalised cumulative stretching (log S) for a globally chaotic flow, with spatially heterogeneous stretching behavior, is not Gaussian and that the coefficient of variation of the Gaussian distribution does not decrease with time as t^{-1/2} . However, it is observed that stretching becomes exponential log S˜ t and the probability density function of log S becomes Gaussian when the time dependence of the flow and its three-dimensionality are increased to make the stretching behaviour of the flow more spatially uniform. We term these behaviors weak and strong chaotic mixing respectively. We find that for strongly chaotic mixing, the coefficient of variation of the Gaussian distribution decreases with time as t^{-1/2} . This behavior is consistent with a random multiplicative stretching process.

  9. Application of multivariate Gaussian detection theory to known non-Gaussian probability density functions

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig R.; Thelen, Brian J.; Kenton, Arthur C.

    1995-06-01

    A statistical parametric multispectral sensor performance model was developed by ERIM to support mine field detection studies, multispectral sensor design/performance trade-off studies, and target detection algorithm development. The model assumes target detection algorithms and their performance models which are based on data assumed to obey multivariate Gaussian probability distribution functions (PDFs). The applicability of these algorithms and performance models can be generalized to data having non-Gaussian PDFs through the use of transforms which convert non-Gaussian data to Gaussian (or near-Gaussian) data. An example of one such transform is the Box-Cox power law transform. In practice, such a transform can be applied to non-Gaussian data prior to the introduction of a detection algorithm that is formally based on the assumption of multivariate Gaussian data. This paper presents an extension of these techniques to the case where the joint multivariate probability density function of the non-Gaussian input data is known, and where the joint estimate of the multivariate Gaussian statistics, under the Box-Cox transform, is desired. The jointly estimated multivariate Gaussian statistics can then be used to predict the performance of a target detection algorithm which has an associated Gaussian performance model.

  10. Application of a BOSS – Gaussian Interface for QM/MM Simulations of Henry and Methyl Transfer Reactions

    PubMed Central

    Vilseck, Jonah Z.; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L.

    2015-01-01

    Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with quantum mechanics alone. For several decades, semi-empirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the inter-program communication. The BOSS–Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS–Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations employing semiempirical methods. PMID:26311531

  11. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.

    PubMed

    Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli

    2016-05-01

    Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.

  12. Application of a BOSS-Gaussian interface for QM/MM simulations of Henry and methyl transfer reactions.

    PubMed

    Vilseck, Jonah Z; Kostal, Jakub; Tirado-Rives, Julian; Jorgensen, William L

    2015-10-15

    Hybrid quantum mechanics and molecular mechanics (QM/MM) computer simulations have become an indispensable tool for studying chemical and biological phenomena for systems too large to treat with QM alone. For several decades, semiempirical QM methods have been used in QM/MM simulations. However, with increased computational resources, the introduction of ab initio and density function methods into on-the-fly QM/MM simulations is being increasingly preferred. This adaptation can be accomplished with a program interface that tethers independent QM and MM software packages. This report introduces such an interface for the BOSS and Gaussian programs, featuring modification of BOSS to request QM energies and partial atomic charges from Gaussian. A customizable C-shell linker script facilitates the interprogram communication. The BOSS-Gaussian interface also provides convenient access to Charge Model 5 (CM5) partial atomic charges for multiple purposes including QM/MM studies of reactions. In this report, the BOSS-Gaussian interface is applied to a nitroaldol (Henry) reaction and two methyl transfer reactions in aqueous solution. Improved agreement with experiment is found by determining free-energy surfaces with MP2/CM5 QM/MM simulations than previously reported investigations using semiempirical methods. © 2015 Wiley Periodicals, Inc.

  13. Irradiation direction from texture

    NASA Astrophysics Data System (ADS)

    Koenderink, Jan J.; Pont, Sylvia C.

    2003-10-01

    We present a theory of image texture resulting from the shading of corrugated (three-dimensional textured) surfaces, Lambertian on the micro scale, in the domain of geometrical optics. The derivation applies to isotropic Gaussian random surfaces, under collimated illumination, in normal view. The theory predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows inferences of the direction of irradiation of the surface. Although the assumptions appear prima facie rather restrictive, even for surfaces that are not at all Gaussian, with the bidirectional reflectance distribution function far from Lambertian and vignetting and multiple scattering present, we empirically recover the direction of irradiation with an accuracy of a few degrees.

  14. On the parametrization of lateral dose profiles in proton radiation therapy.

    PubMed

    Bellinzona, V E; Ciocca, M; Embriaco, A; Fontana, A; Mairani, A; Mori, M; Parodi, K

    2015-07-01

    The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. The accuracy of the best fits was analyzed by evaluating the reduced χ(2), the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz-Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss-Rutherford function which has only 4 parameters. The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss-Rutherford function, to describe the lateral dose profiles of proton beams. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Assimilating every-30-second 100-m-mesh radar observations for convective weather: implications to non-Gaussian PDF

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.; Teramura, T.; Ruiz, J.; Kondo, K.; Lien, G. Y.

    2016-12-01

    Convective weather is known to be highly nonlinear and chaotic, and it is hard to predict their location and timing precisely. Our Big Data Assimilation (BDA) effort has been exploring to use dense and frequent observations to avoid non-Gaussian probability density function (PDF) and to apply an ensemble Kalman filter under the Gaussian error assumption. The phased array weather radar (PAWR) can observe a dense three-dimensional volume scan with 100-m range resolution and 100 elevation angles in only 30 seconds. The BDA system assimilates the PAWR reflectivity and Doppler velocity observations every 30 seconds into 100 ensemble members of storm-scale numerical weather prediction (NWP) model at 100-m grid spacing. The 30-second-update, 100-m-mesh BDA system has been quite successful in multiple case studies of local severe rainfall events. However, with 1000 ensemble members, the reduced-resolution BDA system at 1-km grid spacing showed significant non-Gaussian PDF with every-30-second updates. With a 10240-member ensemble Kalman filter with a global NWP model at 112-km grid spacing, we found roughly 1000 members satisfactory to capture the non-Gaussian error structures. With these in mind, we explore how the density of observations in space and time affects the non-Gaussianity in an ensemble Kalman filter with a simple toy model. In this presentation, we will present the most up-to-date results of the BDA research, as well as the investigation with the toy model on the non-Gaussianity with dense and frequent observations.

  16. Quadriphase DS-CDMA wireless communication systems employing the generalized detector

    NASA Astrophysics Data System (ADS)

    Tuzlukov, Vyacheslav

    2012-05-01

    Probability of bit-error Per performance of asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless communication systems employing the generalized detector (GD) constructed based on the generalized approach to signal processing in noise is analyzed. The effects of pulse shaping, quadriphase or direct sequence quadriphase shift keying (DS-QPSK) spreading, aperiodic spreading sequences are considered in DS-CDMA based on GD and compared with the coherent Neyman-Pearson receiver. An exact Per expression and several approximations: one using the characterristic function method, a simplified expression for the improved Gaussian approximation (IGA) and the simplified improved Gaussian approximation are derived. Under conditions typically satisfied in practice and even with a small number of interferers, the standard Gaussian approximation (SGA) for the multiple-access interference component of the GD statistic and Per performance is shown to be accurate. Moreover, the IGA is shown to reduce to the SGA for pulses with zero excess bandwidth. Second, the GD Per performance of quadriphase DS-CDMA is shown to be superior to that of bi-phase DS-CDMA. Numerical examples by Monte Carlo simulation are presented to illustrate the GD Per performance for square-root raised-cosine pulses and spreading factors of moderate to large values. Also, a superiority of GD employment in CDMA systems over the Neyman-Pearson receiver is demonstrated

  17. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes

    PubMed Central

    Andersson, Jesper L.R.; Sotiropoulos, Stamatios N.

    2015-01-01

    Diffusion MRI offers great potential in studying the human brain microstructure and connectivity. However, diffusion images are marred by technical problems, such as image distortions and spurious signal loss. Correcting for these problems is non-trivial and relies on having a mechanism that predicts what to expect. In this paper we describe a novel way to represent and make predictions about diffusion MRI data. It is based on a Gaussian process on one or several spheres similar to the Geostatistical method of “Kriging”. We present a choice of covariance function that allows us to accurately predict the signal even from voxels with complex fibre patterns. For multi-shell data (multiple non-zero b-values) the covariance function extends across the shells which means that data from one shell is used when making predictions for another shell. PMID:26236030

  18. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model

    NASA Technical Reports Server (NTRS)

    Sunshine, Jessica M.; Pieters, Carle M.

    1993-01-01

    The modified Gaussian model (MGM) is used to explore spectra of samples containing multiple pyroxene components as a function of modal abundance. The MGM allows spectra to be analyzed directly, without the use of actual or assumed end-member spectra and therefore holds great promise for remote applications. A series of mass fraction mixtures created from several different particle size fractions are analyzed with the MGM to quantify the properties of pyroxene mixtures as a function of both modal abundance and grain size. Band centers, band widths, and relative band strengths of absorptions from individual pyroxenes in mixture spectra are found to be largely independent of particle size. Spectral properties of both zoned and exsolved pyroxene components are resolved in exsolved samples using the MGM, and modal abundances are accurately estimated to within 5-10 percent without predetermined knowledge of the end-member spectra.

  19. Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic.

    PubMed

    Yokoyama, Jun'ichi

    2014-01-01

    After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student's t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case.

  20. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    NASA Technical Reports Server (NTRS)

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating each component weight during the nonlinear propagation stage an approximation of the true pdf can be successfully reconstructed. Particle filtering (PF) methods have gained popularity recently for solving nonlinear estimation problems due to their straightforward approach and the processing capabilities mentioned above. The basic concept behind PF is to represent any pdf as a set of random samples. As the number of samples increases, they will theoretically converge to the exact, equivalent representation of the desired pdf. When the estimated qth moment is needed, the samples are used for its construction allowing further analysis of the pdf characteristics. However, filter performance deteriorates as the dimension of the state vector increases. To overcome this problem Ref. [5] applies a marginalization technique for PF methods, decreasing complexity of the system to one linear and another nonlinear state estimation problem. The marginalization theory was originally developed by Rao and Blackwell independently. According to Ref. [6] it improves any given estimator under every convex loss function. The improvement comes from calculating a conditional expected value, often involving integrating out a supportive statistic. In other words, Rao-Blackwellization allows for smaller but separate computations to be carried out while reaching the main objective of the estimator. In the case of improving an estimator's variance, any supporting statistic can be removed and its variance determined. Next, any other information that dependents on the supporting statistic is found along with its respective variance. A new approach is developed here by utilizing the strengths of the adaptive Gaussian sum propagation in Ref. [2] and a marginalization approach used for PF methods found in Ref. [7]. In the following sections a modified filtering approach is presented based on a special state-space model within nonlinear systems to reduce the dimensionality of the optimization problem in Ref. [2]. First, the adaptive Gaussian sum propagation is explained and then the new marginalized adaptive Gaussian sum propagation is derived. Finally, an example simulation is presented.

  1. Gaussian random bridges and a geometric model for information equilibrium

    NASA Astrophysics Data System (ADS)

    Mengütürk, Levent Ali

    2018-03-01

    The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.

  2. ExGUtils: A Python Package for Statistical Analysis With the ex-Gaussian Probability Density.

    PubMed

    Moret-Tatay, Carmen; Gamermann, Daniel; Navarro-Pardo, Esperanza; Fernández de Córdoba Castellá, Pedro

    2018-01-01

    The study of reaction times and their underlying cognitive processes is an important field in Psychology. Reaction times are often modeled through the ex-Gaussian distribution, because it provides a good fit to multiple empirical data. The complexity of this distribution makes the use of computational tools an essential element. Therefore, there is a strong need for efficient and versatile computational tools for the research in this area. In this manuscript we discuss some mathematical details of the ex-Gaussian distribution and apply the ExGUtils package, a set of functions and numerical tools, programmed for python, developed for numerical analysis of data involving the ex-Gaussian probability density. In order to validate the package, we present an extensive analysis of fits obtained with it, discuss advantages and differences between the least squares and maximum likelihood methods and quantitatively evaluate the goodness of the obtained fits (which is usually an overlooked point in most literature in the area). The analysis done allows one to identify outliers in the empirical datasets and criteriously determine if there is a need for data trimming and at which points it should be done.

  3. ExGUtils: A Python Package for Statistical Analysis With the ex-Gaussian Probability Density

    PubMed Central

    Moret-Tatay, Carmen; Gamermann, Daniel; Navarro-Pardo, Esperanza; Fernández de Córdoba Castellá, Pedro

    2018-01-01

    The study of reaction times and their underlying cognitive processes is an important field in Psychology. Reaction times are often modeled through the ex-Gaussian distribution, because it provides a good fit to multiple empirical data. The complexity of this distribution makes the use of computational tools an essential element. Therefore, there is a strong need for efficient and versatile computational tools for the research in this area. In this manuscript we discuss some mathematical details of the ex-Gaussian distribution and apply the ExGUtils package, a set of functions and numerical tools, programmed for python, developed for numerical analysis of data involving the ex-Gaussian probability density. In order to validate the package, we present an extensive analysis of fits obtained with it, discuss advantages and differences between the least squares and maximum likelihood methods and quantitatively evaluate the goodness of the obtained fits (which is usually an overlooked point in most literature in the area). The analysis done allows one to identify outliers in the empirical datasets and criteriously determine if there is a need for data trimming and at which points it should be done. PMID:29765345

  4. On the performance of large Gaussian basis sets for the computation of total atomization energies

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.

    1992-01-01

    The total atomization energies of a number of molecules have been computed using an augmented coupled-cluster method and (5s4p3d2f1g) and 4s3p2d1f) atomic natural orbital (ANO) basis sets, as well as the correlation consistent valence triple zeta plus polarization (cc-pVTZ) correlation consistent valence quadrupole zeta plus polarization (cc-pVQZ) basis sets. The performance of ANO and correlation consistent basis sets is comparable throughout, although the latter can result in significant CPU time savings. Whereas the inclusion of g functions has significant effects on the computed Sigma D(e) values, chemical accuracy is still not reached for molecules involving multiple bonds. A Gaussian-1 (G) type correction lowers the error, but not much beyond the accuracy of the G1 model itself. Using separate corrections for sigma bonds, pi bonds, and valence pairs brings down the mean absolute error to less than 1 kcal/mol for the spdf basis sets, and about 0.5 kcal/mol for the spdfg basis sets. Some conclusions on the success of the Gaussian-1 and Gaussian-2 models are drawn.

  5. Toward the detection of gravitational waves under non-Gaussian noises I. Locally optimal statistic

    PubMed Central

    YOKOYAMA, Jun’ichi

    2014-01-01

    After reviewing the standard hypothesis test and the matched filter technique to identify gravitational waves under Gaussian noises, we introduce two methods to deal with non-Gaussian stationary noises. We formulate the likelihood ratio function under weakly non-Gaussian noises through the Edgeworth expansion and strongly non-Gaussian noises in terms of a new method we call Gaussian mapping where the observed marginal distribution and the two-body correlation function are fully taken into account. We then apply these two approaches to Student’s t-distribution which has a larger tails than Gaussian. It is shown that while both methods work well in the case the non-Gaussianity is small, only the latter method works well for highly non-Gaussian case. PMID:25504231

  6. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans

    NASA Astrophysics Data System (ADS)

    Jain, Varun; Biesinger, Mark C.; Linford, Matthew R.

    2018-07-01

    X-ray photoelectron spectroscopy (XPS) is arguably the most important vacuum technique for surface chemical analysis, and peak fitting is an indispensable part of XPS data analysis. Functions that have been widely explored and used in XPS peak fitting include the Gaussian, Lorentzian, Gaussian-Lorentzian sum (GLS), Gaussian-Lorentzian product (GLP), and Voigt functions, where the Voigt function is a convolution of a Gaussian and a Lorentzian function. In this article we discuss these functions from a graphical perspective. Arguments based on convolution and the Central Limit Theorem are made to justify the use of functions that are intermediate between pure Gaussians and pure Lorentzians in XPS peak fitting. Mathematical forms for the GLS and GLP functions are presented with a mixing parameter m. Plots are shown for GLS and GLP functions with mixing parameters ranging from 0 to 1. There are fundamental differences between the GLS and GLP functions. The GLS function better follows the 'wings' of the Lorentzian, while these 'wings' are suppressed in the GLP. That is, these two functions are not interchangeable. The GLS and GLP functions are compared to the Voigt function, where the GLS is shown to be a decent approximation of it. Practically, both the GLS and the GLP functions can be useful for XPS peak fitting. Examples of the uses of these functions are provided herein.

  7. A New Variational Approach for Multiplicative Noise and Blur Removal

    PubMed Central

    Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad; Sun, HongGuang

    2017-01-01

    This paper proposes a new variational model for joint multiplicative denoising and deblurring. It combines a total generalized variation filter (which has been proved to be able to reduce the blocky-effects by being aware of high-order smoothness) and shearlet transform (that effectively preserves anisotropic image features such as sharp edges, curves and so on). The new model takes the advantage of both regularizers since it is able to minimize the staircase effects while preserving sharp edges, textures and other fine image details. The existence and uniqueness of a solution to the proposed variational model is also discussed. The resulting energy functional is then solved by using alternating direction method of multipliers. Numerical experiments showing that the proposed model achieves satisfactory restoration results, both visually and quantitatively in handling the blur (motion, Gaussian, disk, and Moffat) and multiplicative noise (Gaussian, Gamma, or Rayleigh) reduction. A comparison with other recent methods in this field is provided as well. The proposed model can also be applied for restoring both single and multi-channel images contaminated with multiplicative noise, and permit cross-channel blurs when the underlying image has more than one channel. Numerical tests on color images are conducted to demonstrate the effectiveness of the proposed model. PMID:28141802

  8. Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients.

    PubMed

    Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun

    2014-01-01

    It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.

  9. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-01

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  10. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.

    PubMed

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-03

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  11. A computer program for uncertainty analysis integrating regression and Bayesian methods

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary

    2014-01-01

    This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.

  12. Sparse decomposition of seismic data and migration using Gaussian beams with nonzero initial curvature

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Yanfei

    2018-04-01

    We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.

  13. An algorithm for separation of mixed sparse and Gaussian sources

    PubMed Central

    Akkalkotkar, Ameya

    2017-01-01

    Independent component analysis (ICA) is a ubiquitous method for decomposing complex signal mixtures into a small set of statistically independent source signals. However, in cases in which the signal mixture consists of both nongaussian and Gaussian sources, the Gaussian sources will not be recoverable by ICA and will pollute estimates of the nongaussian sources. Therefore, it is desirable to have methods for mixed ICA/PCA which can separate mixtures of Gaussian and nongaussian sources. For mixtures of purely Gaussian sources, principal component analysis (PCA) can provide a basis for the Gaussian subspace. We introduce a new method for mixed ICA/PCA which we call Mixed ICA/PCA via Reproducibility Stability (MIPReSt). Our method uses a repeated estimations technique to rank sources by reproducibility, combined with decomposition of multiple subsamplings of the original data matrix. These multiple decompositions allow us to assess component stability as the size of the data matrix changes, which can be used to determinine the dimension of the nongaussian subspace in a mixture. We demonstrate the utility of MIPReSt for signal mixtures consisting of simulated sources and real-word (speech) sources, as well as mixture of unknown composition. PMID:28414814

  14. An algorithm for separation of mixed sparse and Gaussian sources.

    PubMed

    Akkalkotkar, Ameya; Brown, Kevin Scott

    2017-01-01

    Independent component analysis (ICA) is a ubiquitous method for decomposing complex signal mixtures into a small set of statistically independent source signals. However, in cases in which the signal mixture consists of both nongaussian and Gaussian sources, the Gaussian sources will not be recoverable by ICA and will pollute estimates of the nongaussian sources. Therefore, it is desirable to have methods for mixed ICA/PCA which can separate mixtures of Gaussian and nongaussian sources. For mixtures of purely Gaussian sources, principal component analysis (PCA) can provide a basis for the Gaussian subspace. We introduce a new method for mixed ICA/PCA which we call Mixed ICA/PCA via Reproducibility Stability (MIPReSt). Our method uses a repeated estimations technique to rank sources by reproducibility, combined with decomposition of multiple subsamplings of the original data matrix. These multiple decompositions allow us to assess component stability as the size of the data matrix changes, which can be used to determinine the dimension of the nongaussian subspace in a mixture. We demonstrate the utility of MIPReSt for signal mixtures consisting of simulated sources and real-word (speech) sources, as well as mixture of unknown composition.

  15. JRmGRN: Joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions.

    PubMed

    Deng, Wenping; Zhang, Kui; Liu, Sanzhen; Zhao, Patrick; Xu, Shizhong; Wei, Hairong

    2018-04-30

    Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression data from multiple tissues/conditions is very important for understanding common and tissue/condition-specific regulation. However, there are currently no computational models and methods available for directly constructing such multiple GRNs that not only share some common hub genes but also possess tissue/condition-specific regulatory edges. In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method constructs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with other methods, and both common hub genes and some conditions-specific hub genes were identified with higher accuracy and precision. JRmGRN is available as a R program from: https://github.com/wenpingd. hairong@mtu.edu. Proof of theorem, derivation of algorithm and supplementary data are available at Bioinformatics online.

  16. Probing Primordial Non-Gaussianity with Weak-lensing Minkowski Functionals

    NASA Astrophysics Data System (ADS)

    Shirasaki, Masato; Yoshida, Naoki; Hamana, Takashi; Nishimichi, Takahiro

    2012-11-01

    We study the cosmological information contained in the Minkowski functionals (MFs) of weak gravitational lensing convergence maps. We show that the MFs provide strong constraints on the local-type primordial non-Gaussianity parameter f NL. We run a set of cosmological N-body simulations and perform ray-tracing simulations of weak lensing to generate 100 independent convergence maps of a 25 deg2 field of view for f NL = -100, 0 and 100. We perform a Fisher analysis to study the degeneracy among other cosmological parameters such as the dark energy equation of state parameter w and the fluctuation amplitude σ8. We use fully nonlinear covariance matrices evaluated from 1000 ray-tracing simulations. For upcoming wide-field observations such as those from the Subaru Hyper Suprime-Cam survey with a proposed survey area of 1500 deg2, the primordial non-Gaussianity can be constrained with a level of f NL ~ 80 and w ~ 0.036 by weak-lensing MFs. If simply scaled by the effective survey area, a 20,000 deg2 lensing survey using the Large Synoptic Survey Telescope will yield constraints of f NL ~ 25 and w ~ 0.013. We show that these constraints can be further improved by a tomographic method using source galaxies in multiple redshift bins.

  17. Gaussian-input Gaussian mixture model for representing density maps and atomic models.

    PubMed

    Kawabata, Takeshi

    2018-07-01

    A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Testing for the Gaussian nature of cosmological density perturbations through the three-point temperature correlation function

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    One of the crucial aspects of density perturbations that are produced by the standard inflation scenario is that they are Gaussian where seeds produced by topological defects tend to be non-Gaussian. The three-point correlation function of the temperature anisotropy of the cosmic microwave background radiation (CBR) provides a sensitive test of this aspect of the primordial density field. In this paper, this function is calculated in the general context of various allowed non-Gaussian models. It is shown that the Cosmic Background Explorer and the forthcoming South Pole and balloon CBR anisotropy data may be able to provide a crucial test of the Gaussian nature of the perturbations.

  19. Probability density and exceedance rate functions of locally Gaussian turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1989-01-01

    A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goulianos, K.; /Rockefeller U.

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  1. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  2. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing.

    PubMed

    Leong, Siow Hoo; Ong, Seng Huat

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index.

  3. Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing

    PubMed Central

    Leong, Siow Hoo

    2017-01-01

    This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. PMID:28686634

  4. Generation of Multiple Vortex Beams with Specified Vortex Number from Lasers with Controlled Ince-Gaussian Modes

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Chun

    2008-07-01

    This study proposes a systematic method of selecting excitations of part of Ince-Gaussian modes (IGMs) and a three-lens configuration for generating multiple vortex beams with forced IGMs in the model of laser-diode (LD)-pumped solid-state lasers. Simply changing the lateral off-axis position of the tight pump beam focus on the laser crystal can produce the desired multiple optical vortex beam from the laser in a well-controlled manner using a proposed astigmatic mode converter assembled into one body with the laser cavity.

  5. Regression Models for the Analysis of Longitudinal Gaussian Data from Multiple Sources

    PubMed Central

    O’Brien, Liam M.; Fitzmaurice, Garrett M.

    2006-01-01

    We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. PMID:15726666

  6. A Dynamic Time Warping based covariance function for Gaussian Processes signature identification

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine L.; Melkumyan, Arman

    2016-11-01

    Modelling stratiform deposits requires a detailed knowledge of the stratigraphic boundaries. In Banded Iron Formation (BIF) hosted ores of the Hamersley Group in Western Australia these boundaries are often identified using marker shales. Both Gaussian Processes (GP) and Dynamic Time Warping (DTW) have been previously proposed as methods to automatically identify marker shales in natural gamma logs. However, each method has different advantages and disadvantages. We propose a DTW based covariance function for the GP that combines the flexibility of the DTW with the probabilistic framework of the GP. The three methods are tested and compared on their ability to identify two natural gamma signatures from a Marra Mamba type iron ore deposit. These tests show that while all three methods can identify boundaries, the GP with the DTW covariance function combines and balances the strengths and weaknesses of the individual methods. This method identifies more positive signatures than the GP with the standard covariance function, and has a higher accuracy for identified signatures than the DTW. The combined method can handle larger variations in the signature without requiring multiple libraries, has a probabilistic output and does not require manual cut-off selections.

  7. Autonomous detection of crowd anomalies in multiple-camera surveillance feeds

    NASA Astrophysics Data System (ADS)

    Nordlöf, Jonas; Andersson, Maria

    2016-10-01

    A novel approach for autonomous detection of anomalies in crowded environments is presented in this paper. The proposed models uses a Gaussian mixture probability hypothesis density (GM-PHD) filter as feature extractor in conjunction with different Gaussian mixture hidden Markov models (GM-HMMs). Results, based on both simulated and recorded data, indicate that this method can track and detect anomalies on-line in individual crowds through multiple camera feeds in a crowded environment.

  8. Tuning diagonal components of static linear and first nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Ghosh, Manas

    2015-07-01

    We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.

  9. Random medium model for cusping of plane waves.

    PubMed

    Li, Jia; Korotkova, Olga

    2017-09-01

    We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential's correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian's power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium's correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.

  10. The DOZZ formula from the path integral

    NASA Astrophysics Data System (ADS)

    Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent

    2018-05-01

    We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.

  11. Efficient method of evaluation for Gaussian Hartree-Fock exchange operator for Gau-PBE functional

    NASA Astrophysics Data System (ADS)

    Song, Jong-Won; Hirao, Kimihiko

    2015-07-01

    We previously developed an efficient screened hybrid functional called Gaussian-Perdew-Burke-Ernzerhof (Gau-PBE) [Song et al., J. Chem. Phys. 135, 071103 (2011)] for large molecules and extended systems, which is characterized by the usage of a Gaussian function as a modified Coulomb potential for the Hartree-Fock (HF) exchange. We found that the adoption of a Gaussian HF exchange operator considerably decreases the calculation time cost of periodic systems while improving the reproducibility of the bandgaps of semiconductors. We present a distance-based screening scheme here that is tailored for the Gaussian HF exchange integral that utilizes multipole expansion for the Gaussian two-electron integrals. We found a new multipole screening scheme helps to save the time cost for the HF exchange integration by efficiently decreasing the number of integrals of, specifically, the near field region without incurring substantial changes in total energy. In our assessment on the periodic systems of seven semiconductors, the Gau-PBE hybrid functional with a new screening scheme has 1.56 times the time cost of a pure functional while the previous Gau-PBE was 1.84 times and HSE06 was 3.34 times.

  12. Efficient method of evaluation for Gaussian Hartree-Fock exchange operator for Gau-PBE functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp

    2015-07-14

    We previously developed an efficient screened hybrid functional called Gaussian-Perdew–Burke–Ernzerhof (Gau-PBE) [Song et al., J. Chem. Phys. 135, 071103 (2011)] for large molecules and extended systems, which is characterized by the usage of a Gaussian function as a modified Coulomb potential for the Hartree-Fock (HF) exchange. We found that the adoption of a Gaussian HF exchange operator considerably decreases the calculation time cost of periodic systems while improving the reproducibility of the bandgaps of semiconductors. We present a distance-based screening scheme here that is tailored for the Gaussian HF exchange integral that utilizes multipole expansion for the Gaussian two-electron integrals.more » We found a new multipole screening scheme helps to save the time cost for the HF exchange integration by efficiently decreasing the number of integrals of, specifically, the near field region without incurring substantial changes in total energy. In our assessment on the periodic systems of seven semiconductors, the Gau-PBE hybrid functional with a new screening scheme has 1.56 times the time cost of a pure functional while the previous Gau-PBE was 1.84 times and HSE06 was 3.34 times.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, D.O.

    It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulicmore » shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.« less

  14. Theoretical analysis of non-Gaussian heterogeneity effects on subsurface flow and transport

    NASA Astrophysics Data System (ADS)

    Riva, Monica; Guadagnini, Alberto; Neuman, Shlomo P.

    2017-04-01

    Much of the stochastic groundwater literature is devoted to the analysis of flow and transport in Gaussian or multi-Gaussian log hydraulic conductivity (or transmissivity) fields, Y(x)=ln\\func K(x) (x being a position vector), characterized by one or (less frequently) a multiplicity of spatial correlation scales. Yet Y and many other variables and their (spatial or temporal) increments, ΔY, are known to be generally non-Gaussian. One common manifestation of non-Gaussianity is that whereas frequency distributions of Y often exhibit mild peaks and light tails, those of increments ΔY are generally symmetric with peaks that grow sharper, and tails that become heavier, as separation scale or lag between pairs of Y values decreases. A statistical model that captures these disparate, scale-dependent distributions of Y and ΔY in a unified and consistent manner has been recently proposed by us. This new "generalized sub-Gaussian (GSG)" model has the form Y(x)=U(x)G(x) where G(x) is (generally, but not necessarily) a multiscale Gaussian random field and U(x) is a nonnegative subordinator independent of G. The purpose of this paper is to explore analytically, in an elementary manner, lead-order effects that non-Gaussian heterogeneity described by the GSG model have on the stochastic description of flow and transport. Recognizing that perturbation expansion of hydraulic conductivity K=eY diverges when Y is sub-Gaussian, we render the expansion convergent by truncating Y's domain of definition. We then demonstrate theoretically and illustrate by way of numerical examples that, as the domain of truncation expands, (a) the variance of truncated Y (denoted by Yt) approaches that of Y and (b) the pdf (and thereby moments) of Yt increments approach those of Y increments and, as a consequence, the variogram of Yt approaches that of Y. This in turn guarantees that perturbing Kt=etY to second order in σYt (the standard deviation of Yt) yields results which approach those we obtain upon perturbing K=eY to second order in σY even as the corresponding series diverges. Our analysis is rendered mathematically tractable by considering mean-uniform steady state flow in an unbounded, two-dimensional domain of mildly heterogeneous Y with a single-scale function G having an isotropic exponential covariance. Results consist of expressions for (a) lead-order autocovariance and cross-covariance functions of hydraulic head, velocity, and advective particle displacement and (b) analogues of preasymptotic as well as asymptotic Fickian dispersion coefficients. We compare these theoretically and graphically with corresponding expressions developed in the literature for Gaussian Y. We find the former to differ from the latter by a factor k = /2 ( <> denoting ensemble expectation) and the GSG covariance of longitudinal velocity to contain an additional nugget term depending on this same factor. In the limit as Y becomes Gaussian, k reduces to one and the nugget term drops out.

  15. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    PubMed

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  16. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  17. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    NASA Astrophysics Data System (ADS)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-06-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ( E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ( E, q) as found in optical spectra and ab initio calculations of aluminum.

  18. Photoelectron Energy Loss in Al(002) Revisited: Retrieval of the Single Plasmon Loss Energy Distribution by a Fourier Transform Method

    NASA Astrophysics Data System (ADS)

    Santana, Victor Mancir da Silva; David, Denis; de Almeida, Jailton Souza; Godet, Christian

    2018-04-01

    A Fourier transform (FT) algorithm is proposed to retrieve the energy loss function (ELF) of solid surfaces from experimental X-ray photoelectron spectra. The intensity measured over a broad energy range towards lower kinetic energies results from convolution of four spectral distributions: photoemission line shape, multiple plasmon loss probability, X-ray source line structure and Gaussian broadening of the photoelectron analyzer. The FT of the measured XPS spectrum, including the zero-loss peak and all inelastic scattering mechanisms, being a mathematical function of the respective FT of X-ray source, photoemission line shape, multiple plasmon loss function, and Gaussian broadening of the photoelectron analyzer, the proposed algorithm gives straightforward access to the bulk ELF and effective dielectric function of the solid, assuming identical ELF for intrinsic and extrinsic plasmon excitations. This method is applied to aluminum single crystal Al(002) where the photoemission line shape has been computed accurately beyond the Doniach-Sunjic approximation using the Mahan-Wertheim-Citrin approach which takes into account the density of states near the Fermi level; the only adjustable parameters are the singularity index and the broadening energy D (inverse hole lifetime). After correction for surface plasmon excitations, the q-averaged bulk loss function, q , of Al(002) differs from the optical value Im[- 1 / ɛ(E, q = 0)] and is well described by the Lindhard-Mermin dispersion relation. A quality criterion of the inversion algorithm is given by the capability of observing weak interband transitions close to the zero-loss peak, namely at 0.65 and 1.65 eV in ɛ(E, q) as found in optical spectra and ab initio calculations of aluminum.

  19. Solute Concentration at a Pumping Well in Non-Gaussian Random Aquifers under Time-Varying Operational Schedules

    NASA Astrophysics Data System (ADS)

    Libera, A.; de Barros, F.; Riva, M.; Guadagnini, A.

    2016-12-01

    Managing contaminated groundwater systems is an arduous task for multiple reasons. First, subsurface hydraulic properties are heterogeneous and the high costs associated with site characterization leads to data scarcity (therefore, model predictions are uncertain). Second, it is common for water agencies to schedule groundwater extraction through a temporal sequence of pumping rates to maximize the benefits to anthropogenic activities and minimize the environmental footprint of the withdrawal operations. The temporal variability in pumping rates and aquifer heterogeneity affect dilution rates of contaminant plumes and chemical concentration breakthrough curves (BTCs) at the well. While contaminant transport under steady-state pumping is widely studied, the manner in which a given time-varying pumping schedule affects contaminant plume behavior is tackled only marginally. At the same time, most studies focus on the impact of Gaussian random hydraulic conductivity (K) fields on transport. Here, we systematically analyze the significance of the random space function (RSF) model characterizing K in the presence of distinct pumping operations on the uncertainty of the concentration BTC at the operating well. We juxtapose Monte Carlo based numerical results associated with two models: (a) a recently proposed Generalized Sub-Gaussian model which allows capturing non-Gaussian statistical scaling features of RSFs such as hydraulic conductivity, and (b) the commonly used Gaussian field approximation. Our novel results include an appraisal of the coupled effect of (a) the model employed to depict the random spatial variability of K and (b) transient flow regime, as induced by a temporally varying pumping schedule, on the concentration BTC at the operating well. We systematically quantify the sensitivity of the uncertainty in the contaminant BTC to the RSF model adopted for K (non-Gaussian or Gaussian) in the presence of diverse well pumping schedules. Results contribute to determine conditions under which any of these two key factors prevails on the other.

  20. The Harmonic Oscillator with a Gaussian Perturbation: Evaluation of the Integrals and Example Applications

    ERIC Educational Resources Information Center

    Earl, Boyd L.

    2008-01-01

    A general result for the integrals of the Gaussian function over the harmonic oscillator wavefunctions is derived using generating functions. Using this result, an example problem of a harmonic oscillator with various Gaussian perturbations is explored in order to compare the results of precise numerical solution, the variational method, and…

  1. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    NASA Technical Reports Server (NTRS)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  2. The Self-Organization of a Spoken Word

    PubMed Central

    Holden, John G.; Rajaraman, Srinivasan

    2012-01-01

    Pronunciation time probability density and hazard functions from large speeded word naming data sets were assessed for empirical patterns consistent with multiplicative and reciprocal feedback dynamics – interaction dominant dynamics. Lognormal and inverse power law distributions are associated with multiplicative and interdependent dynamics in many natural systems. Mixtures of lognormal and inverse power law distributions offered better descriptions of the participant’s distributions than the ex-Gaussian or ex-Wald – alternatives corresponding to additive, superposed, component processes. The evidence for interaction dominant dynamics suggests fundamental links between the observed coordinative synergies that support speech production and the shapes of pronunciation time distributions. PMID:22783213

  3. On the distribution of a product of N Gaussian random variables

    NASA Astrophysics Data System (ADS)

    Stojanac, Željka; Suess, Daniel; Kliesch, Martin

    2017-08-01

    The product of Gaussian random variables appears naturally in many applications in probability theory and statistics. It has been known that the distribution of a product of N such variables can be expressed in terms of a Meijer G-function. Here, we compute a similar representation for the corresponding cumulative distribution function (CDF) and provide a power-log series expansion of the CDF based on the theory of the more general Fox H-functions. Numerical computations show that for small values of the argument the CDF of products of Gaussians is well approximated by the lowest orders of this expansion. Analogous results are also shown for the absolute value as well as the square of such products of N Gaussian random variables. For the latter two settings, we also compute the moment generating functions in terms of Meijer G-functions.

  4. Multifractal analysis of time series generated by discrete Ito equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele

    2015-06-15

    In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.

  5. Annular wave packets at Dirac points in graphene and their probability-density oscillation.

    PubMed

    Luo, Ji; Valencia, Daniel; Lu, Junqiang

    2011-12-14

    Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics

  6. Stochastic transfer of polarized radiation in finite cloudy atmospheric media with reflective boundaries

    NASA Astrophysics Data System (ADS)

    Sallah, M.

    2014-03-01

    The problem of monoenergetic radiative transfer in a finite planar stochastic atmospheric medium with polarized (vector) Rayleigh scattering is proposed. The solution is presented for an arbitrary absorption and scattering cross sections. The extinction function of the medium is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. The joint probability distribution function of these Gaussian random variables is used to calculate the ensemble-averaged quantities, such as reflectivity and transmissivity, for an arbitrary correlation function. A modified Gaussian probability distribution function is also used to average the solution in order to exclude the probable negative values of the optical variable. Pomraning-Eddington approximation is used, at first, to obtain the deterministic analytical solution for both the total intensity and the difference function used to describe the polarized radiation. The problem is treated with specular reflecting boundaries and angular-dependent externally incident flux upon the medium from one side and with no flux from the other side. For the sake of comparison, two different forms of the weight function, which introduced to force the boundary conditions to be fulfilled, are used. Numerical results of the average reflectivity and average transmissivity are obtained for both Gaussian and modified Gaussian probability density functions at the different degrees of polarization.

  7. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2005-03-01

    We introduce the Ince-Gaussian series representation of the two-dimensional fractional Fourier transform in elliptical coordinates. A physical interpretation is provided in terms of field propagation in quadratic graded-index media whose eigenmodes in elliptical coordinates are derived for the first time to our knowledge. The kernel of the new series representation is expressed in terms of Ince-Gaussian functions. The equivalence among the Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian series representations is verified by establishing the relation among the three definitions.

  8. Elegant Ince-Gaussian beams in a quadratic-index medium

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Yong; Deng, Dong-Mei; Guo, Qi

    2011-09-01

    Elegant Ince—Gaussian beams, which are the exact solutions of the paraxial wave equation in a quadratic-index medium, are derived in elliptical coordinates. These kinds of beams are the alternative form of standard Ince—Gaussian beams and they display better symmetry between the Ince-polynomials and the Gaussian function in mathematics. The transverse intensity distribution and the phase of the elegant Ince—Gaussian beams are discussed.

  9. Novel transform for image description and compression with implementation by neural architectures

    NASA Astrophysics Data System (ADS)

    Ben-Arie, Jezekiel; Rao, Raghunath K.

    1991-10-01

    A general method for signal representation using nonorthogonal basis functions that are composed of Gaussians are described. The Gaussians can be combined into groups with predetermined configuration that can approximate any desired basis function. The same configuration at different scales forms a set of self-similar wavelets. The general scheme is demonstrated by representing a natural signal employing an arbitrary basis function. The basic methodology is demonstrated by two novel schemes for efficient representation of 1-D and 2- D signals using Gaussian basis functions (BFs). Special methods are required here since the Gaussian functions are nonorthogonal. The first method employs a paradigm of maximum energy reduction interlaced with the A* heuristic search. The second method uses an adaptive lattice system to find the minimum-squared error of the BFs onto the signal, and a lateral-vertical suppression network to select the most efficient representation in terms of data compression.

  10. Non-Gaussian noise-weakened stability in a foraging colony system with time delay

    NASA Astrophysics Data System (ADS)

    Dong, Xiaohui; Zeng, Chunhua; Yang, Fengzao; Guan, Lin; Xie, Qingshuang; Duan, Weilong

    2018-02-01

    In this paper, the dynamical properties in a foraging colony system with time delay and non-Gaussian noise were investigated. Using delay Fokker-Planck approach, the stationary probability distribution (SPD), the associated relaxation time (ART) and normalization correlation function (NCF) are obtained, respectively. The results show that: (i) the time delay and non-Gaussian noise can induce transition from a single peak to double peaks in the SPD, i.e., a type of bistability occurring in a foraging colony system where time delay and non-Gaussian noise not only cause transitions between stable states, but also construct the states themselves. Numerical simulations are presented and are in good agreement with the approximate theoretical results; (ii) there exists a maximum in the ART as a function of the noise intensity, this maximum for ART is identified as the characteristic of the non-Gaussian noise-weakened stability of the foraging colonies in the steady state; (iii) the ART as a function of the noise correlation time exhibits a maximum and a minimum, where the minimum for ART is identified as the signature of the non-Gaussian noise-enhanced stability of the foraging colonies; and (iv) the time delay can enhance the stability of the foraging colonies in the steady state, while the departure from Gaussian noise can weaken it, namely, the time delay and departure from Gaussian noise play opposite roles in ART or NCF.

  11. Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin

    2018-02-01

    Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.

  12. Multi-variate joint PDF for non-Gaussianities: exact formulation and generic approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verde, Licia; Jimenez, Raul; Alvarez-Gaume, Luis

    2013-06-01

    We provide an exact expression for the multi-variate joint probability distribution function of non-Gaussian fields primordially arising from local transformations of a Gaussian field. This kind of non-Gaussianity is generated in many models of inflation. We apply our expression to the non-Gaussianity estimation from Cosmic Microwave Background maps and the halo mass function where we obtain analytical expressions. We also provide analytic approximations and their range of validity. For the Cosmic Microwave Background we give a fast way to compute the PDF which is valid up to more than 7σ for f{sub NL} values (both true and sampled) not ruledmore » out by current observations, which consists of expressing the PDF as a combination of bispectrum and trispectrum of the temperature maps. The resulting expression is valid for any kind of non-Gaussianity and is not limited to the local type. The above results may serve as the basis for a fully Bayesian analysis of the non-Gaussianity parameter.« less

  13. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals.

    PubMed

    Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg

    2017-01-21

    An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.

  14. Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals

    NASA Astrophysics Data System (ADS)

    Golze, Dorothea; Benedikter, Niels; Iannuzzi, Marcella; Wilhelm, Jan; Hutter, Jürg

    2017-01-01

    An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.

  15. On the Bayesian Treed Multivariate Gaussian Process with Linear Model of Coregionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lin, Guang

    2015-02-01

    The Bayesian treed Gaussian process (BTGP) has gained popularity in recent years because it provides a straightforward mechanism for modeling non-stationary data and can alleviate computational demands by fitting models to less data. The extension of BTGP to the multivariate setting requires us to model the cross-covariance and to propose efficient algorithms that can deal with trans-dimensional MCMC moves. In this paper we extend the cross-covariance of the Bayesian treed multivariate Gaussian process (BTMGP) to that of linear model of Coregionalization (LMC) cross-covariances. Different strategies have been developed to improve the MCMC mixing and invert smaller matrices in the Bayesianmore » inference. Moreover, we compare the proposed BTMGP with existing multiple BTGP and BTMGP in test cases and multiphase flow computer experiment in a full scale regenerator of a carbon capture unit. The use of the BTMGP with LMC cross-covariance helped to predict the computer experiments relatively better than existing competitors. The proposed model has a wide variety of applications, such as computer experiments and environmental data. In the case of computer experiments we also develop an adaptive sampling strategy for the BTMGP with LMC cross-covariance function.« less

  16. Gaussian statistics of the cosmic microwave background: Correlation of temperature extrema in the COBE DMR two-year sky maps

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Hinshaw, G.; Lubin, P. M.; Smoot, G. F.

    1995-01-01

    We use the two-point correlation function of the extrema points (peaks and valleys) in the Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) 2 year sky maps as a test for non-Gaussian temperature distribution in the cosmic microwave background anisotropy. A maximum-likelihood analysis compares the DMR data to n = 1 toy models whose random-phase spherical harmonic components a(sub lm) are drawn from either Gaussian, chi-square, or log-normal parent populations. The likelihood of the 53 GHz (A+B)/2 data is greatest for the exact Gaussian model. There is less than 10% chance that the non-Gaussian models tested describe the DMR data, limited primarily by type II errors in the statistical inference. The extrema correlation function is a stronger test for this class of non-Gaussian models than topological statistics such as the genus.

  17. Multiple model cardinalized probability hypothesis density filter

    NASA Astrophysics Data System (ADS)

    Georgescu, Ramona; Willett, Peter

    2011-09-01

    The Probability Hypothesis Density (PHD) filter propagates the first-moment approximation to the multi-target Bayesian posterior distribution while the Cardinalized PHD (CPHD) filter propagates both the posterior likelihood of (an unlabeled) target state and the posterior probability mass function of the number of targets. Extensions of the PHD filter to the multiple model (MM) framework have been published and were implemented either with a Sequential Monte Carlo or a Gaussian Mixture approach. In this work, we introduce the multiple model version of the more elaborate CPHD filter. We present the derivation of the prediction and update steps of the MMCPHD particularized for the case of two target motion models and proceed to show that in the case of a single model, the new MMCPHD equations reduce to the original CPHD equations.

  18. Rightfulness of Summation Cut-Offs in the Albedo Problem with Gaussian Fluctuations of the Density of Scatterers

    NASA Astrophysics Data System (ADS)

    Selim, M. M.; Bezák, V.

    2003-06-01

    The one-dimensional version of the radiative transfer problem (i.e. the so-called rod model) is analysed with a Gaussian random extinction function (x). Then the optical length X = 0 Ldx(x) is a Gaussian random variable. The transmission and reflection coefficients, T(X) and R(X), are taken as infinite series. When these series (and also when the series representing T 2(X), T 2(X), R(X)T(X), etc.) are averaged, term by term, according to the Gaussian statistics, the series become divergent after averaging. As it was shown in a former paper by the authors (in Acta Physica Slovaca (2003)), a rectification can be managed when a `modified' Gaussian probability density function is used, equal to zero for X > 0 and proportional to the standard Gaussian probability density for X > 0. In the present paper, the authors put forward an alternative, showing that if the m.s.r. of X is sufficiently small in comparison with & $bar X$ ; , the standard Gaussian averaging is well functional provided that the summation in the series representing the variable T m-j (X)R j (X) (m = 1,2,..., j = 1,...,m) is truncated at a well-chosen finite term. The authors exemplify their analysis by some numerical calculations.

  19. Multi-criteria decision aid approach for the selection of the best compromise management scheme for ELVs: the case of Cyprus.

    PubMed

    Mergias, I; Moustakas, K; Papadopoulos, A; Loizidou, M

    2007-08-25

    Each alternative scheme for treating a vehicle at its end of life has its own consequences from a social, environmental, economic and technical point of view. Furthermore, the criteria used to determine these consequences are often contradictory and not equally important. In the presence of multiple conflicting criteria, an optimal alternative scheme never exists. A multiple-criteria decision aid (MCDA) method to aid the Decision Maker (DM) in selecting the best compromise scheme for the management of End-of-Life Vehicles (ELVs) is presented in this paper. The constitution of a set of alternatives schemes, the selection of a list of relevant criteria to evaluate these alternative schemes and the choice of an appropriate management system are also analyzed in this framework. The proposed procedure relies on the PROMETHEE method which belongs to the well-known family of multiple criteria outranking methods. For this purpose, level, linear and Gaussian functions are used as preference functions.

  20. From plane waves to local Gaussians for the simulation of correlated periodic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, George H., E-mail: george.booth@kcl.ac.uk; Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of themore » basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.« less

  1. A Concept for Measuring Electron Distribution Functions Using Collective Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Milder, A. L.; Froula, D. H.

    2017-10-01

    A.B. Langdon proposed that stable non-Maxwellian distribution functions are realized in coronal inertial confinement fusion plasmas via inverse bremsstrahlung heating. For Zvosc2 Zvosc2 vth2 > 1 , vth2 > 1 , the inverse bremsstrahlung heating rate is sufficiently fast to compete with electron-electron collisions. This process preferentially heats the subthermal electrons leading to super-Gaussian distribution functions. A method to identify the super-Gaussian order of the distribution functions in these plasmas using collective Thomson scattering will be proposed. By measuring the collective Thomson spectra over a range of angles the density, temperature and super-Gaussian order can be determined. This is accomplished by fitting non-Maxwellian distribution data with a super-Gaussian model; in order to match the density and electron temperature to within 10%, the super-Gaussian order must be varied. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms I: Revisiting Cluster-Based Inferences.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K

    2018-02-01

    In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.

  3. Parameter estimation and forecasting for multiplicative log-normal cascades.

    PubMed

    Leövey, Andrés E; Lux, Thomas

    2012-04-01

    We study the well-known multiplicative log-normal cascade process in which the multiplication of Gaussian and log normally distributed random variables yields time series with intermittent bursts of activity. Due to the nonstationarity of this process and the combinatorial nature of such a formalism, its parameters have been estimated mostly by fitting the numerical approximation of the associated non-Gaussian probability density function to empirical data, cf. Castaing et al. [Physica D 46, 177 (1990)]. More recently, alternative estimators based upon various moments have been proposed by Beck [Physica D 193, 195 (2004)] and Kiyono et al. [Phys. Rev. E 76, 041113 (2007)]. In this paper, we pursue this moment-based approach further and develop a more rigorous generalized method of moments (GMM) estimation procedure to cope with the documented difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono et al.'s procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange markets.

  4. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    PubMed

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  5. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  6. Theoretical investigation of gas-surface interactions

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1990-01-01

    A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented.

  7. SU-F-T-158: Experimental Characterization of Field Size Dependence of Dose and Lateral Beam Profiles of Scanning Proton and Carbon Ion Beams for Empirical Model in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Hsi, W; Zhao, J

    2016-06-15

    Purpose: The Gaussian model for the lateral profiles in air is crucial for an accurate treatment planning system. The field size dependence of dose and the lateral beam profiles of scanning proton and carbon ion beams are due mainly to particles undergoing multiple Coulomb scattering in the beam line components and secondary particles produced by nuclear interactions in the target, both of which depend upon the energy and species of the beam. In this work, lateral profile shape parameters were fitted to measurements of field size dependence dose at the center of field size in air. Methods: Previous studies havemore » employed empirical fits to measured profile data to significantly reduce the QA time required for measurements. From this approach to derive the weight and sigma of lateral profiles in air, empirical model formulations were simulated for three selected energies for both proton and carbon beams. Results: The 20%–80% lateral penumbras predicted by the double model for proton and single model for carbon with the error functions agreed with the measurements within 1 mm. The standard deviation between measured and fitted field size dependence of dose for empirical model in air has a maximum accuracy of 0.74% for proton with double Gaussian, and of 0.57% for carbon with single Gaussian. Conclusion: We have demonstrated that the double Gaussian model of lateral beam profiles is significantly better than the single Gaussian model for proton while a single Gaussian model is sufficient for carbon. The empirical equation may be used to double check the separately obtained model that is currently used by the planning system. The empirical model in air for dose of spot scanning proton and carbon ion beams cannot be directly used for irregular shaped patient fields, but can be to provide reference values for clinical use and quality assurance.« less

  8. Data from fitting Gaussian process models to various data sets using eight Gaussian process software packages.

    PubMed

    Erickson, Collin B; Ankenman, Bruce E; Sanchez, Susan M

    2018-06-01

    This data article provides the summary data from tests comparing various Gaussian process software packages. Each spreadsheet represents a single function or type of function using a particular input sample size. In each spreadsheet, a row gives the results for a particular replication using a single package. Within each spreadsheet there are the results from eight Gaussian process model-fitting packages on five replicates of the surface. There is also one spreadsheet comparing the results from two packages performing stochastic kriging. These data enable comparisons between the packages to determine which package will give users the best results.

  9. Consistency relations for sharp inflationary non-Gaussian features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris

    If cosmic inflation suffered tiny time-dependent deviations from the slow-roll regime, these would induce the existence of small scale-dependent features imprinted in the primordial spectra, with their shapes and sizes revealing information about the physics that produced them. Small sharp features could be suppressed at the level of the two-point correlation function, making them undetectable in the power spectrum, but could be amplified at the level of the three-point correlation function, offering us a window of opportunity to uncover them in the non-Gaussian bispectrum. In this article, we show that sharp features may be analyzed using only data coming frommore » the three point correlation function parametrizing primordial non-Gaussianity. More precisely, we show that if features appear in a particular non-Gaussian triangle configuration (e.g. equilateral, folded, squeezed), these must reappear in every other configuration according to a specific relation allowing us to correlate features across the non-Gaussian bispectrum. As a result, we offer a method to study scale-dependent features generated during inflation that depends only on data coming from measurements of non-Gaussianity, allowing us to omit data from the power spectrum.« less

  10. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  11. Rate laws of the self-induced aggregation kinetics of Brownian particles

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Sen, Monoj Kumar; Baura, Alendu; Bag, Bidhan Chandra

    2016-03-01

    In this paper we have studied the self induced aggregation kinetics of Brownian particles in the presence of both multiplicative and additive noises. In addition to the drift due to the self aggregation process, the environment may induce a drift term in the presence of a multiplicative noise. Then there would be an interplay between the two drift terms. It may account qualitatively the appearance of the different laws of aggregation process. At low strength of white multiplicative noise, the cluster number decreases as a Gaussian function of time. If the noise strength becomes appreciably large then the variation of cluster number with time is fitted well by the mono exponentially decaying function of time. For additive noise driven case, the decrease of cluster number can be described by the power law. But in case of multiplicative colored driven process, cluster number decays multi exponentially. However, we have explored how the rate constant (in the mono exponentially cluster number decaying case) depends on strength of interference of the noises and their intensity. We have also explored how the structure factor at long time depends on the strength of the cross correlation (CC) between the additive and the multiplicative noises.

  12. Feasibility study on the least square method for fitting non-Gaussian noise data

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Chen, Wen; Liang, Yingjie

    2018-02-01

    This study is to investigate the feasibility of least square method in fitting non-Gaussian noise data. We add different levels of the two typical non-Gaussian noises, Lévy and stretched Gaussian noises, to exact value of the selected functions including linear equations, polynomial and exponential equations, and the maximum absolute and the mean square errors are calculated for the different cases. Lévy and stretched Gaussian distributions have many applications in fractional and fractal calculus. It is observed that the non-Gaussian noises are less accurately fitted than the Gaussian noise, but the stretched Gaussian cases appear to perform better than the Lévy noise cases. It is stressed that the least-squares method is inapplicable to the non-Gaussian noise cases when the noise level is larger than 5%.

  13. Multiple scattering and the density distribution of a Cs MOT.

    PubMed

    Overstreet, K; Zabawa, P; Tallant, J; Schwettmann, A; Shaffer, J

    2005-11-28

    Multiple scattering is studied in a Cs magneto-optical trap (MOT). We use two Abel inversion algorithms to recover density distributions of the MOT from fluorescence images. Deviations of the density distribution from a Gaussian are attributed to multiple scattering.

  14. GAUSSIAN 76: An ab initio Molecular Orbital Program

    DOE R&D Accomplishments Database

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  15. Outlier Resistant Predictive Source Encoding for a Gaussian Stationary Nominal Source.

    DTIC Science & Technology

    1987-09-18

    breakdown point and influence function . The proposed sequence of predictive encoders attains strictly positive breakdown point and uniformly bounded... influence function , at the expense of increased mean difference-squared distortion and differential entropy, at the Gaussian nominal source.

  16. Explicitly-correlated Gaussian geminals in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Szalewicz, Krzysztof; Jeziorski, Bogumił

    2010-11-01

    Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960, Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst, Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC) equations as a system of integro-differential equations and developed techniques of solving these equations with two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r 12 correlating factor can also be employed if n-electron integrals, n > 2, are factorised with the resolution of identity. Later, this factor was replaced by more general functions f (r 12), most often by ? , usually represented as linear combinations of Gaussian functions which makes the resulting approach (called F12) a special case of the original GTG expansion. The current state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis available, but for larger systems the F12 approach is the method of choice, giving significant improvements over orbital calculations.

  17. Non-Gaussianity of Low Frequency Heart Rate Variability and Sympathetic Activation: Lack of Increases in Multiple System Atrophy and Parkinson Disease

    PubMed Central

    Kiyono, Ken; Hayano, Junichiro; Kwak, Shin; Watanabe, Eiichi; Yamamoto, Yoshiharu

    2012-01-01

    The correlates of indices of long-term ambulatory heart rate variability (HRV) of the autonomic nervous system have not been completely understood. In this study, we evaluated conventional HRV indices, obtained from the daytime (12:00–18:00) Holter recording, and a recently proposed non-Gaussianity index (λ; Kiyono et al., 2008) in 12 patients with multiple system atrophy (MSA) and 10 patients with Parkinson disease (PD), known to have varying degrees of cardiac vagal and sympathetic dysfunction. Compared with the age-matched healthy control group, the MSA patients showed significantly decreased HRV, most probably reflecting impaired vagal heart rate control, but the PD patients did not show such reduced variability. In both MSA and PD patients, the low-to-high frequency (LF/HF) ratio and the short-term fractal exponent α1, suggested to reflect the sympathovagal balance, were significantly decreased, as observed in congestive heart failure (CHF) patients with sympathetic overdrive. In contrast, the analysis of the non-Gaussianity index λ showed that a marked increase in intermittent and non-Gaussian HRV observed in the CHF patients was not observed in the MSA and PD patients with sympathetic dysfunction. These findings provide additional evidence for the relation between the non-Gaussian intermittency of HRV and increased sympathetic activity. PMID:22371705

  18. Generation of ultra-long pure magnetization needle and multiple spots by phase modulated doughnut Gaussian beam

    NASA Astrophysics Data System (ADS)

    Udhayakumar, M.; Prabakaran, K.; Rajesh, K. B.; Jaroszewicz, Z.; Belafhal, Abdelmajid; Velauthapillai, Dhayalan

    2018-06-01

    Based on vector diffraction theory and inverse Faraday effect (IFE), the light induced magnetization distribution of a tightly focused azimuthally polarized doughnut Gaussian beam superimposed with a helical phase and modulated by an optimized multi belt complex phase filter (MBCPF) is analysed numerically. It is noted that by adjusting the radii of different rings of the complex phase filter, one can achieve many novel magnetization focal distribution such as sub wavelength scale (0.29λ) and super long (52.2λ) longitudinal magnetic probe suitable for all optical magnetic recording and the formation of multiple magnetization chain with four, six and eight sub-wavelength spherical magnetization spots suitable for multiple trapping of magnetic particles are achieved.

  19. Approximate Bayesian computation in large-scale structure: constraining the galaxy-halo connection

    NASA Astrophysics Data System (ADS)

    Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Campbell, Duncan

    2017-08-01

    Standard approaches to Bayesian parameter inference in large-scale structure assume a Gaussian functional form (chi-squared form) for the likelihood. This assumption, in detail, cannot be correct. Likelihood free inferences such as approximate Bayesian computation (ABC) relax these restrictions and make inference possible without making any assumptions on the likelihood. Instead ABC relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter haloes with galaxies. Using specific implementation of ABC supplemented with population Monte Carlo importance sampling, a generative forward model using HOD and a distance metric based on galaxy number density, two-point correlation function and galaxy group multiplicity function, we constrain the HOD parameters of mock observation generated from selected 'true' HOD parameters. The parameter constraints we obtain from ABC are consistent with the 'true' HOD parameters, demonstrating that ABC can be reliably used for parameter inference in LSS. Furthermore, we compare our ABC constraints to constraints we obtain using a pseudo-likelihood function of Gaussian form with MCMC and find consistent HOD parameter constraints. Ultimately, our results suggest that ABC can and should be applied in parameter inference for LSS analyses.

  20. Coherent superposition of propagation-invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, R.; Soskind, M.; Soskind, Y. G.

    2012-10-01

    The coherent superposition of propagation-invariant laser beams represents an important beam-shaping technique, and results in new beam shapes which retain the unique property of propagation invariance. Propagation-invariant laser beam shapes depend on the order of the propagating beam, and include Hermite-Gaussian and Laguerre-Gaussian beams, as well as the recently introduced Ince-Gaussian beams which additionally depend on the beam ellipticity parameter. While the superposition of Hermite-Gaussian and Laguerre-Gaussian beams has been discussed in the past, the coherent superposition of Ince-Gaussian laser beams has not received significant attention in literature. In this paper, we present the formation of propagation-invariant laser beams based on the coherent superposition of Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian beams of different orders. We also show the resulting field distributions of the superimposed Ince-Gaussian laser beams as a function of the ellipticity parameter. By changing the beam ellipticity parameter, we compare the various shapes of the superimposed propagation-invariant laser beams transitioning from Laguerre-Gaussian beams at one ellipticity extreme to Hermite-Gaussian beams at the other extreme.

  1. Phenomenology of COMPASS data: Multiplicities and phenomenology - part II

    DOE PAGES

    Anselmino, M.; Boglione, M.; Gonzalez H., J. O.; ...

    2015-01-23

    In this study, we present some of the main features of the multidimensional COMPASS multiplicities, via our analysis using the simple Gaussian model. We briefly discuss these results in connection with azimuthal asymmetries.

  2. Tensor models, Kronecker coefficients and permutation centralizer algebras

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  3. Additivity of nonsimultaneous masking for short Gaussian-shaped sinusoids.

    PubMed

    Laback, Bernhard; Balazs, Peter; Necciari, Thibaud; Savel, Sophie; Ystad, Solvi; Meunier, Sabine; Kronland-Martinet, Richard

    2011-02-01

    The additivity of nonsimultaneous masking was studied using Gaussian-shaped tone pulses (referred to as Gaussians) as masker and target stimuli. Combinations of up to four temporally separated Gaussian maskers with an equivalent rectangular bandwidth of 600 Hz and an equivalent rectangular duration of 1.7 ms were tested. Each masker was level-adjusted to produce approximately 8 dB of masking. Excess masking (exceeding linear additivity) was generally stronger than reported in the literature for longer maskers and comparable target levels. A model incorporating a compressive input/output function, followed by a linear summation stage, underestimated excess masking when using an input/output function derived from literature data for longer maskers and comparable target levels. The data could be predicted with a more compressive input/output function. Stronger compression may be explained by assuming that the Gaussian stimuli were too short to evoke the medial olivocochlear reflex (MOCR), whereas for longer maskers tested previously the MOCR caused reduced compression. Overall, the interpretation of the data suggests strong basilar membrane compression for very short stimuli.

  4. An adaptive Hinfinity controller design for bank-to-turn missiles using ridge Gaussian neural networks.

    PubMed

    Lin, Chuan-Kai; Wang, Sheng-De

    2004-11-01

    A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.

  5. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    PubMed

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  6. On the Angular Variation of Solar Reflectance of Snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Choudhury, B. J.

    1979-01-01

    Spectral and integrated solar reflectance of nonhomogeneous snowpacks were derived assuming surface reflection of direct radiation and subsurface multiple scattering. For surface reflection, a bidirectional reflectance distribution function derived for an isotropic Gaussian faceted surface was considered and for subsurface multiple scattering, an approximate solution of the radiative transfer equation was studied. Solar radiation incident on the snowpack was decomposed into direct and atmospherically scattered radiation. Spectral attenuation coefficients of ozone, carbon dioxide, water vapor, aerosol and molecular scattering were included in the calculation of incident solar radiation. Illustrative numerical results were given for a case of North American winter atmospheric conditions. The calculated dependence of spectrally integrated directional reflectance (or albedo) on solar elevation was in qualitative agreement with available observations.

  7. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  8. Non-Gaussian shape discrimination with spectroscopic galaxy surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Joyce; Bean, Rachel, E-mail: byun@astro.cornell.edu, E-mail: rbean@astro.cornell.edu

    2015-03-01

    We consider how galaxy clustering data, from Mpc to Gpc scales, from upcoming large scale structure surveys, such as Euclid and DESI, can provide discriminating information about the bispectrum shape arising from a variety of inflationary scenarios. Through exploring in detail the weighting of shape properties in the calculation of the halo bias and halo mass function we show how they probe a broad range of configurations, beyond those in the squeezed limit, that can help distinguish between shapes with similar large scale bias behaviors. We assess the impact, on constraints for a diverse set of non-Gaussian shapes, of galaxymore » clustering information in the mildly non-linear regime, and surveys that span multiple redshifts and employ different galactic tracers of the dark matter distribution. Fisher forecasts are presented for a Euclid-like spectroscopic survey of Hα-selected emission line galaxies (ELGs), and a DESI-like survey, of luminous red galaxies (LRGs) and [O-II] doublet-selected ELGs, in combination with Planck-like CMB temperature and polarization data.While ELG samples provide better probes of shapes that are divergent in the squeezed limit, LRG constraints, centered below z<1, yield stronger constraints on shapes with scale-independent large-scale halo biases, such as the equilateral template. The ELG and LRG samples provide complementary degeneracy directions for distinguishing between different shapes. For Hα-selected galaxies, we note that recent revisions of the expected Hα luminosity function reduce the halo bias constraints on the local shape, relative to the CMB. For galaxy clustering constraints to be comparable to those from the CMB, additional information about the Gaussian galaxy bias is needed, such as can be determined from the galaxy clustering bispectrum or probing the halo power spectrum directly through weak lensing. If the Gaussian galaxy bias is constrained to better than a percent level then the LSS and CMB data could provide complementary constraints that will enable differentiation of bispectrum with distinct theoretical origins but with similar large scale, squeezed-limit properties.« less

  9. The MONET code for the evaluation of the dose in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Embriaco, A.

    2018-01-01

    The MONET is a code for the computation of the 3D dose distribution for protons in water. For the lateral profile, MONET is based on the Molière theory of multiple Coulomb scattering. To take into account also the nuclear interactions, we add to this theory a Cauchy-Lorentz function, where the two parameters are obtained by a fit to a FLUKA simulation. We have implemented the Papoulis algorithm for the passage from the projected to a 2D lateral distribution. For the longitudinal profile, we have implemented a new calculation of the energy loss that is in good agreement with simulations. The inclusion of the straggling is based on the convolution of energy loss with a Gaussian function. In order to complete the longitudinal profile, also the nuclear contributions are included using a linear parametrization. The total dose profile is calculated in a 3D mesh by evaluating at each depth the 2D lateral distributions and by scaling them at the value of the energy deposition. We have compared MONET with FLUKA in two cases: a single Gaussian beam and a lateral scan. In both cases, we have obtained a good agreement for different energies of protons in water.

  10. Finite element area and line integral transforms for generalization of aperture function and geometry in Kirchhoff scalar diffraction theory

    NASA Astrophysics Data System (ADS)

    Kraus, Hal G.

    1993-02-01

    Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.

  11. Gaussian process regression for forecasting battery state of health

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Osborne, Michael A.; Howey, David A.

    2017-07-01

    Accurately predicting the future capacity and remaining useful life of batteries is necessary to ensure reliable system operation and to minimise maintenance costs. The complex nature of battery degradation has meant that mechanistic modelling of capacity fade has thus far remained intractable; however, with the advent of cloud-connected devices, data from cells in various applications is becoming increasingly available, and the feasibility of data-driven methods for battery prognostics is increasing. Here we propose Gaussian process (GP) regression for forecasting battery state of health, and highlight various advantages of GPs over other data-driven and mechanistic approaches. GPs are a type of Bayesian non-parametric method, and hence can model complex systems whilst handling uncertainty in a principled manner. Prior information can be exploited by GPs in a variety of ways: explicit mean functions can be used if the functional form of the underlying degradation model is available, and multiple-output GPs can effectively exploit correlations between data from different cells. We demonstrate the predictive capability of GPs for short-term and long-term (remaining useful life) forecasting on a selection of capacity vs. cycle datasets from lithium-ion cells.

  12. Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver; Stieberger, Stephan

    2013-08-01

    Using the pure spinor formalism in part I (Mafra et al., preprint [1]) we compute the complete tree-level amplitude of N massless open strings and find a striking simple and compact form in terms of minimal building blocks: the full N-point amplitude is expressed by a sum over (N-3)! Yang-Mills partial subamplitudes each multiplying a multiple Gaussian hypergeometric function. While the former capture the space-time kinematics of the amplitude the latter encode the string effects. This result disguises a lot of structure linking aspects of gauge amplitudes as color and kinematics with properties of generalized Euler integrals. In this part II the structure of the multiple hypergeometric functions is analyzed in detail: their relations to monodromy equations, their minimal basis structure, and methods to determine their poles and transcendentality properties are proposed. Finally, a Gröbner basis analysis provides independent sets of rational functions in the Euler integrals. In contrast to [1] here we use momenta redefined by a factor of i. As a consequence the signs of the kinematic invariants are flipped, e.g. |→|.

  13. Effect of central obscuration on the LDR point spread function

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.

    1988-01-01

    It is well known that Gaussian apodization of an aperture reduces the sidelobe levels of its point spread function (PSF). In the limit where the standard deviation of the Gaussian function is much smaller than the diameter of the aperture, the sidelobes completely disappear. However, when Gaussian apodization is applied to the Large Deployable Reflector (LDR) array consisting of 84 hexagonal panels, it is found that the sidelobe level only decreases by about 2.5 dB. The reason for this is explained. The PSF is shown for an array consisting of 91 uniformly illuminated hexagonal apertures; this array is identical to the LDR array, except that the central hole in the LDR array is filled with seven additional panels. For comparison, the PSF of the uniformly illuminated LDR array is shown. Notice that it is already evident that the sidelobe structure of the LDR array is different from that of the full array of 91 panels. The PSF's of the same two arrays are shown, but with the illumination apodized with a Gaussian function to have 20 dB tapering at the edges of the arrays. While the sidelobes of the full array have decreased dramatically, those of the LDR array changed in structure, but stayed at almost the same level. This result is not completely surprising, since the Gaussian apodization tends to emphasize the contributions from the central portion of the array; exactly where the hole in the LDR array is located. The two most important conclusions are: the size of the central hole should be minimized, and a simple Gaussian apodization scheme to suppress the sidelobes in the PSF should not be used. A more suitable apodization scheme would be a Gaussian annular ring.

  14. Geographically weighted regression model on poverty indicator

    NASA Astrophysics Data System (ADS)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  15. Gaussian basis functions for highly oscillatory scattering wavefunctions

    NASA Astrophysics Data System (ADS)

    Mant, B. P.; Law, M. M.

    2018-04-01

    We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.

  16. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  17. The influence of non-Gaussian distribution functions on the time-dependent perpendicular transport of energetic particles

    NASA Astrophysics Data System (ADS)

    Lasuik, J.; Shalchi, A.

    2018-06-01

    In the current paper we explore the influence of the assumed particle statistics on the transport of energetic particles across a mean magnetic field. In previous work the assumption of a Gaussian distribution function was standard, although there have been known cases for which the transport is non-Gaussian. In the present work we combine a kappa distribution with the ordinary differential equation provided by the so-called unified non-linear transport theory. We then compute running perpendicular diffusion coefficients for different values of κ and turbulence configurations. We show that changing the parameter κ slightly increases or decreases the perpendicular diffusion coefficient depending on the considered turbulence configuration. Since these changes are small, we conclude that the assumed statistics is less significant in particle transport theory. The results obtained in the current paper support to use a Gaussian distribution function as usually done in particle transport theory.

  18. Parameter estimation and forecasting for multiplicative log-normal cascades

    NASA Astrophysics Data System (ADS)

    Leövey, Andrés E.; Lux, Thomas

    2012-04-01

    We study the well-known multiplicative log-normal cascade process in which the multiplication of Gaussian and log normally distributed random variables yields time series with intermittent bursts of activity. Due to the nonstationarity of this process and the combinatorial nature of such a formalism, its parameters have been estimated mostly by fitting the numerical approximation of the associated non-Gaussian probability density function to empirical data, cf. Castaing [Physica DPDNPDT0167-278910.1016/0167-2789(90)90035-N 46, 177 (1990)]. More recently, alternative estimators based upon various moments have been proposed by Beck [Physica DPDNPDT0167-278910.1016/j.physd.2004.01.020 193, 195 (2004)] and Kiyono [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.76.041113 76, 041113 (2007)]. In this paper, we pursue this moment-based approach further and develop a more rigorous generalized method of moments (GMM) estimation procedure to cope with the documented difficulties of previous methodologies. We show that even under uncertainty about the actual number of cascade steps, our methodology yields very reliable results for the estimated intermittency parameter. Employing the Levinson-Durbin algorithm for best linear forecasts, we also show that estimated parameters can be used for forecasting the evolution of the turbulent flow. We compare forecasting results from the GMM and Kiyono 's procedure via Monte Carlo simulations. We finally test the applicability of our approach by estimating the intermittency parameter and forecasting of volatility for a sample of financial data from stock and foreign exchange markets.

  19. M-estimation for robust sparse unmixing of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Toomik, Maria; Lu, Shijian; Nelson, James D. B.

    2016-10-01

    Hyperspectral unmixing methods often use a conventional least squares based lasso which assumes that the data follows the Gaussian distribution. The normality assumption is an approximation which is generally invalid for real imagery data. We consider a robust (non-Gaussian) approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers and relaxes the linearity assumption. The method consists of several appropriate penalties. We propose to use an lp norm with 0 < p < 1 in the sparse regression problem, which induces more sparsity in the results, but makes the problem non-convex. On the other hand, the problem, though non-convex, can be solved quite straightforwardly with an extensible algorithm based on iteratively reweighted least squares. To deal with the huge size of modern spectral libraries we introduce a library reduction step, similar to the multiple signal classification (MUSIC) array processing algorithm, which not only speeds up unmixing but also yields superior results. In the hyperspectral setting we extend the traditional least squares method to the robust heavy-tailed case and propose a generalised M-lasso solution. M-estimation replaces the Gaussian likelihood with a fixed function ρ(e) that restrains outliers. The M-estimate function reduces the effect of errors with large amplitudes or even assigns the outliers zero weights. Our experimental results on real hyperspectral data show that noise with large amplitudes (outliers) often exists in the data. This ability to mitigate the influence of such outliers can therefore offer greater robustness. Qualitative hyperspectral unmixing results on real hyperspectral image data corroborate the efficacy of the proposed method.

  20. Truncated Gaussians as tolerance sets

    NASA Technical Reports Server (NTRS)

    Cozman, Fabio; Krotkov, Eric

    1994-01-01

    This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.

  1. Stochastic bifurcation in a model of love with colored noise

    NASA Astrophysics Data System (ADS)

    Yue, Xiaokui; Dai, Honghua; Yuan, Jianping

    2015-07-01

    In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.

  2. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    PubMed Central

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-01-01

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202

  3. Exact Distributions of Intraclass Correlation and Cronbach's Alpha with Gaussian Data and General Covariance

    ERIC Educational Resources Information Center

    Kistner, Emily O.; Muller, Keith E.

    2004-01-01

    Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact…

  4. Detection of nonlinear transfer functions by the use of Gaussian statistics

    NASA Technical Reports Server (NTRS)

    Sheppard, J. G.

    1972-01-01

    The possibility of using on-line signal statistics to detect electronic equipment nonlinearities is discussed. The results of an investigation using Gaussian statistics are presented, and a nonlinearity test that uses ratios of the moments of a Gaussian random variable is developed and discussed. An outline for further investigation is presented.

  5. Fisher information as a generalized measure of coherence in classical and quantum optics.

    PubMed

    Luis, Alfredo

    2012-10-22

    We show that metrological resolution in the detection of small phase shifts provides a suitable generalization of the degrees of coherence and polarization. Resolution is estimated via Fisher information. Besides the standard two-beam Gaussian case, this approach provides also good results for multiple field components and nonGaussian statistics. This works equally well in quantum and classical optics.

  6. On the connectivity of the cosmic web: theory and implications for cosmology and galaxy formation

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Pogosyan, Dmitri; Pichon, Christophe

    2018-06-01

    Cosmic connectivity and multiplicity, i.e. the number of filaments globally or locally connected to a given cluster is a natural probe of the growth of structure and in particular of the nature of dark energy. It is also a critical ingredient driving the assembly history of galaxies as it controls mass and angular momentum accretion. The connectivity of the cosmic web is investigated here via the persistent skeleton. This tool identifies topologically the ridges of the cosmic landscape which allows us to investigate how the nodes of the cosmic web are connected together. When applied to Gaussian random fields corresponding to the high redshift universe, it is found that on average the nodes are connected to exactly κ = 4 neighbours in two dimensions and ˜6.1 in three dimensions. Investigating spatial dimensions up to d = 6, typical departures from a cubic lattice κ = 2d are shown to scale like the power 7/4 of the dimension. These numbers strongly depend on the height of the peaks: the higher the peak the larger the connectivity. Predictions from first principles based on peak theory are shown to reproduce well the connectivity and multiplicity of Gaussian random fields and cosmological simulations. As an illustration, connectivity is quantified in galaxy lensing convergence maps and large dark haloes catalogues. As a function of redshift and scale the mean connectivity decreases in a cosmology-dependent way. As a function of halo mass it scales like 10/3 times the log of the mass. Implications on galactic scales are discussed.

  7. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    PubMed

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  8. Current-induced instability of domain walls in cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Zhang, Zhaoyang; Pepper, Ryan A.; Mu, Congpu; Zhou, Yan; Fangohr, Hans

    2018-01-01

    We study the current-driven domain wall (DW) motion in cylindrical nanowires using micromagnetic simulations by implementing the Landau-Lifshitz-Gilbert equation with nonlocal spin-transfer torque in a finite difference micromagnetic package. We find that in the presence of DW, Gaussian wave packets (spin waves) will be generated when the charge current is suddenly applied to the system. This effect is excluded when using the local spin-transfer torque. The existence of spin waves emission indicates that transverse domain walls can not move arbitrarily fast in cylindrical nanowires although they are free from the Walker limit. We establish an upper velocity limit for DW motion by analyzing the stability of Gaussian wave packets using the local spin-transfer torque. Micromagnetic simulations show that the stable region obtained by using nonlocal spin-transfer torque is smaller than that by using its local counterpart. This limitation is essential for multiple DWs since the instability of Gaussian wave packets will break the structure of multiple DWs.

  9. Log-normal distribution from a process that is not multiplicative but is additive.

    PubMed

    Mouri, Hideaki

    2013-10-01

    The central limit theorem ensures that a sum of random variables tends to a Gaussian distribution as their total number tends to infinity. However, for a class of positive random variables, we find that the sum tends faster to a log-normal distribution. Although the sum tends eventually to a Gaussian distribution, the distribution of the sum is always close to a log-normal distribution rather than to any Gaussian distribution if the summands are numerous enough. This is in contrast to the current consensus that any log-normal distribution is due to a product of random variables, i.e., a multiplicative process, or equivalently to nonlinearity of the system. In fact, the log-normal distribution is also observable for a sum, i.e., an additive process that is typical of linear systems. We show conditions for such a sum, an analytical example, and an application to random scalar fields such as those of turbulence.

  10. A Gaussian Model-Based Probabilistic Approach for Pulse Transit Time Estimation.

    PubMed

    Jang, Dae-Geun; Park, Seung-Hun; Hahn, Minsoo

    2016-01-01

    In this paper, we propose a new probabilistic approach to pulse transit time (PTT) estimation using a Gaussian distribution model. It is motivated basically by the hypothesis that PTTs normalized by RR intervals follow the Gaussian distribution. To verify the hypothesis, we demonstrate the effects of arterial compliance on the normalized PTTs using the Moens-Korteweg equation. Furthermore, we observe a Gaussian distribution of the normalized PTTs on real data. In order to estimate the PTT using the hypothesis, we first assumed that R-waves in the electrocardiogram (ECG) can be correctly identified. The R-waves limit searching ranges to detect pulse peaks in the photoplethysmogram (PPG) and to synchronize the results with cardiac beats--i.e., the peaks of the PPG are extracted within the corresponding RR interval of the ECG as pulse peak candidates. Their probabilities of being the actual pulse peak are then calculated using a Gaussian probability function. The parameters of the Gaussian function are automatically updated when a new pulse peak is identified. This update makes the probability function adaptive to variations of cardiac cycles. Finally, the pulse peak is identified as the candidate with the highest probability. The proposed approach is tested on a database where ECG and PPG waveforms are collected simultaneously during the submaximal bicycle ergometer exercise test. The results are promising, suggesting that the method provides a simple but more accurate PTT estimation in real applications.

  11. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gaussian Boson Sampling.

    PubMed

    Hamilton, Craig S; Kruse, Regina; Sansoni, Linda; Barkhofen, Sonja; Silberhorn, Christine; Jex, Igor

    2017-10-27

    Boson sampling has emerged as a tool to explore the advantages of quantum over classical computers as it does not require universal control over the quantum system, which favors current photonic experimental platforms. Here, we introduce Gaussian Boson sampling, a classically hard-to-solve problem that uses squeezed states as a nonclassical resource. We relate the probability to measure specific photon patterns from a general Gaussian state in the Fock basis to a matrix function called the Hafnian, which answers the last remaining question of sampling from Gaussian states. Based on this result, we design Gaussian Boson sampling, a #P hard problem, using squeezed states. This demonstrates that Boson sampling from Gaussian states is possible, with significant advantages in the photon generation probability, compared to existing protocols.

  13. Stochastic inflation lattice simulations - Ultra-large scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.

    1991-01-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients, a (exp -1), small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a toy model with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.

  14. Description of an α-cluster tail in 8Be and 20Ne: Delocalization of the α cluster by quantum penetration

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2014-10-01

    We analyze the α-cluster wave functions in cluster states of ^8Be and ^{20}Ne by comparing the exact relative wave function obtained by the generator coordinate method (GCM) with various types of trial functions. For the trial functions, we adopt the fixed range shifted Gaussian of the Brink-Bloch (BB) wave function, the spherical Gaussian with the adjustable range parameter of the spherical Tohsaki-Horiuchi-Schuck-Röpke (sTHSR), the deformed Gaussian of the deformed THSR (dTHSR), and a function with the Yukawa tail (YT). The quality of the description of the exact wave function with a trial function is judged by the squared overlap between the trial function and the GCM wave function. A better result is obtained with the sTHSR wave function than the BB wave function, and further improvement can be made with the dTHSR wave function because these wave functions can describe the outer tail better. The YT wave function gives almost an equal quality to or even better quality than the dTHSR wave function, indicating that the outer tail of α-cluster states is characterized by the Yukawa-like tail rather than the Gaussian tail. In weakly bound α-cluster states with small α separation energy and the low centrifugal and Coulomb barriers, the outer tail part is the slowly damping function described well by the quantum penetration through the effective barrier. This outer tail characterizes the almost zero-energy free α gas behavior, i.e., the delocalization of the cluster.

  15. A Non-Gaussian Stock Price Model: Options, Credit and a Multi-Timescale Memory

    NASA Astrophysics Data System (ADS)

    Borland, L.

    We review a recently proposed model of stock prices, based on astatistical feedback model that results in a non-Gaussian distribution of price changes. Applications to option pricing and the pricing of debt is discussed. A generalization to account for feedback effects over multiple timescales is also presented. This model reproduces most of the stylized facts (ie statistical anomalies) observed in real financial markets.

  16. Wireless Technology

    DTIC Science & Technology

    2009-03-01

    section, we use as an illustration vehicle for the proposed GLRT schemes a packet-data DS - CDMA communication system2. At all times, the GLRT detectors...are imple- 2The combined effect of DS - CDMA multiple access interference (MAI) and AWGN is Gaussian-mixture distributed and not plain Gaussian. It is...closely to the SMI detector in (9) and outperforms all other detectors. DS - CDMA Case-study #2 Asynchronous multipath fading channel: Pilot-assisted

  17. Some Modified Integrated Squared Error Procedures for Multivariate Normal Data.

    DTIC Science & Technology

    1982-06-01

    p-dimensional Gaussian. There are a number of measures of qualitative robustness but the most important is the influence function . Most of the other...measures are derived from the influence function . The influence function is simply proportional to the score function (Huber, 1981, p. 45 ). The... influence function at the p-variate Gaussian distribution Np (UV) is as -1P IC(x; ,N) = IE&) ;-") sD=XV = (I+c) (p+2)(x-p) exp(- ! (x-p) TV-.1-)) (3.6

  18. A Systematic Approach for Understanding Slater-Gaussian Functions in Computational Chemistry

    ERIC Educational Resources Information Center

    Stewart, Brianna; Hylton, Derrick J.; Ravi, Natarajan

    2013-01-01

    A systematic way to understand the intricacies of quantum mechanical computations done by a software package known as "Gaussian" is undertaken via an undergraduate research project. These computations involve the evaluation of key parameters in a fitting procedure to express a Slater-type orbital (STO) function in terms of the linear…

  19. Leading non-Gaussian corrections for diffusion orientation distribution function.

    PubMed

    Jensen, Jens H; Helpern, Joseph A; Tabesh, Ali

    2014-02-01

    An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed from the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves on the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. 2013 John Wiley & Sons, Ltd.

  20. Leading Non-Gaussian Corrections for Diffusion Orientation Distribution Function

    PubMed Central

    Jensen, Jens H.; Helpern, Joseph A.; Tabesh, Ali

    2014-01-01

    An analytical representation of the leading non-Gaussian corrections for a class of diffusion orientation distribution functions (dODFs) is presented. This formula is constructed out of the diffusion and diffusional kurtosis tensors, both of which may be estimated with diffusional kurtosis imaging (DKI). By incorporating model-independent non-Gaussian diffusion effects, it improves upon the Gaussian approximation used in diffusion tensor imaging (DTI). This analytical representation therefore provides a natural foundation for DKI-based white matter fiber tractography, which has potential advantages over conventional DTI-based fiber tractography in generating more accurate predictions for the orientations of fiber bundles and in being able to directly resolve intra-voxel fiber crossings. The formula is illustrated with numerical simulations for a two-compartment model of fiber crossings and for human brain data. These results indicate that the inclusion of the leading non-Gaussian corrections can significantly affect fiber tractography in white matter regions, such as the centrum semiovale, where fiber crossings are common. PMID:24738143

  1. Elegant Gaussian beams for enhanced optical manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpmann, Christina, E-mail: c.alpmann@uni-muenster.de; Schöler, Christoph; Denz, Cornelia

    2015-06-15

    Generation of micro- and nanostructured complex light beams attains increasing impact in photonics and laser applications. In this contribution, we demonstrate the implementation and experimental realization of the relatively unknown, but highly versatile class of complex-valued Elegant Hermite- and Laguerre-Gaussian beams. These beams create higher trapping forces compared to standard Gaussian light fields due to their propagation changing properties. We demonstrate optical trapping and alignment of complex functional particles as nanocontainers with standard and Elegant Gaussian light beams. Elegant Gaussian beams will inspire manifold applications in optical manipulation, direct laser writing, or microscopy, where the design of the point-spread functionmore » is relevant.« less

  2. Yields of projectile fragments in sulphur-emulsion interactions at 3.7 A GeV

    NASA Astrophysics Data System (ADS)

    Kamel, S.; Osman, W.; Fayed, M.

    2017-05-01

    This work presents the basic characteristics of singly, doubly and heavily charged projectile fragments (PFs) emitted in inelastic interactions of 32S ions with photo-emulsion nuclei at Dubna energy (3.7 A GeV). Our experimental data are compared with the corresponding data for other projectiles at the same incident energy. The study of mean multiplicities of different charged PFs against the projectile mass shows a power-law relationship. The multiplicity distributions of singly and doubly charged PFs have been fitted well with a Gaussian distribution function. The yields of PFs broken up from the interactions of 32S projectile nuclei with different target nuclei are studied. The beam energy dependence in terms of the various order moments is studied as well.

  3. Stochastic control system parameter identifiability

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Herget, C. J.

    1975-01-01

    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.

  4. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions.

    PubMed

    Brown, James; Carrington, Tucker

    2015-07-28

    Although phase-space localized Gaussians are themselves poor basis functions, they can be used to effectively contract a discrete variable representation basis [A. Shimshovitz and D. J. Tannor, Phys. Rev. Lett. 109, 070402 (2012)]. This works despite the fact that elements of the Hamiltonian and overlap matrices labelled by discarded Gaussians are not small. By formulating the matrix problem as a regular (i.e., not a generalized) matrix eigenvalue problem, we show that it is possible to use an iterative eigensolver to compute vibrational energy levels in the Gaussian basis.

  5. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    PubMed

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  6. Multi-pose facial correction based on Gaussian process with combined kernel function

    NASA Astrophysics Data System (ADS)

    Shi, Shuyan; Ji, Ruirui; Zhang, Fan

    2018-04-01

    In order to improve the recognition rate of various postures, this paper proposes a method of facial correction based on Gaussian Process which build a nonlinear regression model between the front and the side face with combined kernel function. The face images with horizontal angle from -45° to +45° can be properly corrected to front faces. Finally, Support Vector Machine is employed for face recognition. Experiments on CAS PEAL R1 face database show that Gaussian process can weaken the influence of pose changes and improve the accuracy of face recognition to certain extent.

  7. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    PubMed

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  8. Two-time correlation function of an open quantum system in contact with a Gaussian reservoir

    NASA Astrophysics Data System (ADS)

    Ban, Masashi; Kitajima, Sachiko; Shibata, Fumiaki

    2018-05-01

    An exact formula of a two-time correlation function is derived for an open quantum system which interacts with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is shown that the two-time correlation function up to the first order is a good approximation to the exact one.

  9. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K

    2018-02-01

    In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; principally because the spatial autocorrelation functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.

  10. Tables Of Gaussian-Type Orbital Basis Functions

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1992-01-01

    NASA technical memorandum contains tables of estimated Hartree-Fock wave functions for atoms lithium through neon and potassium through krypton. Sets contain optimized Gaussian-type orbital exponents and coefficients, and near Hartree-Fock quality. Orbital exponents optimized by minimizing restricted Hartree-Fock energy via scaled Newton-Raphson scheme in which Hessian evaluated numerically by use of analytically determined gradients.

  11. Complete stability of delayed recurrent neural networks with Gaussian activation functions.

    PubMed

    Liu, Peng; Zeng, Zhigang; Wang, Jun

    2017-01-01

    This paper addresses the complete stability of delayed recurrent neural networks with Gaussian activation functions. By means of the geometrical properties of Gaussian function and algebraic properties of nonsingular M-matrix, some sufficient conditions are obtained to ensure that for an n-neuron neural network, there are exactly 3 k equilibrium points with 0≤k≤n, among which 2 k and 3 k -2 k equilibrium points are locally exponentially stable and unstable, respectively. Moreover, it concludes that all the states converge to one of the equilibrium points; i.e., the neural networks are completely stable. The derived conditions herein can be easily tested. Finally, a numerical example is given to illustrate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  13. An algorithm of improving speech emotional perception for hearing aid

    NASA Astrophysics Data System (ADS)

    Xi, Ji; Liang, Ruiyu; Fei, Xianju

    2017-07-01

    In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.

  14. Operational quantification of continuous-variable correlations.

    PubMed

    Rodó, Carles; Adesso, Gerardo; Sanpera, Anna

    2008-03-21

    We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.

  15. Gaussian Mixture Model of Heart Rate Variability

    PubMed Central

    Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario

    2012-01-01

    Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386

  16. Gaussian Finite Element Method for Description of Underwater Sound Diffraction

    NASA Astrophysics Data System (ADS)

    Huang, Dehua

    A new method for solving diffraction problems is presented in this dissertation. It is based on the use of Gaussian diffraction theory. The Rayleigh integral is used to prove the core of Gaussian theory: the diffraction field of a Gaussian is described by a Gaussian function. The parabolic approximation used by previous authors is not necessary to this proof. Comparison of the Gaussian beam expansion and Fourier series expansion reveals that the Gaussian expansion is a more general and more powerful technique. The method combines the Gaussian beam superposition technique (Wen and Breazeale, J. Acoust. Soc. Am. 83, 1752-1756 (1988)) and the Finite element solution to the parabolic equation (Huang, J. Acoust. Soc. Am. 84, 1405-1413 (1988)). Computer modeling shows that the new method is capable of solving for the sound field even in an inhomogeneous medium, whether the source is a Gaussian source or a distributed source. It can be used for horizontally layered interfaces or irregular interfaces. Calculated results are compared with experimental results by use of a recently designed and improved Gaussian transducer in a laboratory water tank. In addition, the power of the Gaussian Finite element method is demonstrated by comparing numerical results with experimental results from use of a piston transducer in a water tank.

  17. Measurements of refractive index and size of a spherical drop from Gaussian beam scattering in the primary rainbow region

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Sun, Hui; Shen, Jianqi; Tropea, Cameron

    2018-03-01

    The primary rainbow observed when light is scattered by a spherical drop has been exploited in the past to measure drop size and relative refractive index. However, if higher spatial resolution is required in denser drop ensembles/sprays, and to avoid then multiple drops simultaneously appearing in the measurement volume, a highly focused beam is desirable, inevitably with a Gaussian intensity profile. The present study examines the primary rainbow pattern resulting when a Gaussian beam is scattered by a spherical drop and estimates the attainable accuracy when extracting size and refractive index. The scattering is computed using generalized Lorenz-Mie theory (GLMT) and Debye series decomposition of the Gaussian beam scattering. The results of these simulations show that the measurement accuracy is dependent on both the beam waist radius and the position of the drop in the beam waist.

  18. Flexible link functions in nonparametric binary regression with Gaussian process priors.

    PubMed

    Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K

    2016-09-01

    In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.

  19. Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors

    PubMed Central

    Li, Dan; Lin, Lizhen; Dey, Dipak K.

    2015-01-01

    Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333

  20. Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models

    NASA Astrophysics Data System (ADS)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-04-01

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.

  1. Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-04-15

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simplemore » Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.« less

  2. Impact of spurious shear on cosmological parameter estimates from weak lensing observables

    DOE PAGES

    Petri, Andrea; May, Morgan; Haiman, Zoltán; ...

    2014-12-30

    We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ω m,w,σ 8) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitudemore » smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σ sys 2 ≈ 10 -7, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg 2, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.« less

  3. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  4. Exact evaluations of some Meijer G-functions and probability of all eigenvalues real for the product of two Gaussian matrices

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    2015-11-01

    We provide a proof to a recent conjecture by Forrester (2014 J. Phys. A: Math. Theor. 47 065202) regarding the algebraic and arithmetic structure of Meijer G-functions which appear in the expression for probability of all eigenvalues real for the product of two real Gaussian matrices. In the process we come across several interesting identities involving Meijer G-functions.

  5. Wavefield reconstruction inversion with a multiplicative cost function

    NASA Astrophysics Data System (ADS)

    da Silva, Nuno V.; Yao, Gang

    2018-01-01

    We present a method for the automatic estimation of the trade-off parameter in the context of wavefield reconstruction inversion (WRI). WRI formulates the inverse problem as an optimisation problem, minimising the data misfit while penalising with a wave equation constraining term. The trade-off between the two terms is balanced by a scaling factor that balances the contributions of the data-misfit term and the constraining term to the value of the objective function. If this parameter is too large then it implies penalizing for the wave equation imposing a hard constraint in the inversion. If it is too small, then this leads to a poorly constrained solution as it is essentially penalizing for the data misfit and not taking into account the physics that explains the data. This paper introduces a new approach for the formulation of WRI recasting its formulation into a multiplicative cost function. We demonstrate that the proposed method outperforms the additive cost function when the trade-off parameter is appropriately scaled in the latter, when adapting it throughout the iterations, and when the data is contaminated with Gaussian random noise. Thus this work contributes with a framework for a more automated application of WRI.

  6. Node-Based Learning of Multiple Gaussian Graphical Models

    PubMed Central

    Mohan, Karthik; London, Palma; Fazel, Maryam; Witten, Daniela; Lee, Su-In

    2014-01-01

    We consider the problem of estimating high-dimensional Gaussian graphical models corresponding to a single set of variables under several distinct conditions. This problem is motivated by the task of recovering transcriptional regulatory networks on the basis of gene expression data containing heterogeneous samples, such as different disease states, multiple species, or different developmental stages. We assume that most aspects of the conditional dependence networks are shared, but that there are some structured differences between them. Rather than assuming that similarities and differences between networks are driven by individual edges, we take a node-based approach, which in many cases provides a more intuitive interpretation of the network differences. We consider estimation under two distinct assumptions: (1) differences between the K networks are due to individual nodes that are perturbed across conditions, or (2) similarities among the K networks are due to the presence of common hub nodes that are shared across all K networks. Using a row-column overlap norm penalty function, we formulate two convex optimization problems that correspond to these two assumptions. We solve these problems using an alternating direction method of multipliers algorithm, and we derive a set of necessary and sufficient conditions that allows us to decompose the problem into independent subproblems so that our algorithm can be scaled to high-dimensional settings. Our proposal is illustrated on synthetic data, a webpage data set, and a brain cancer gene expression data set. PMID:25309137

  7. On the lorentzian versus Gaussian character of time-domain spin-echo signals from the brain as sampled by means of gradient-echoes: Implications for quantitative transverse relaxation studies.

    PubMed

    Mulkern, Robert V; Balasubramanian, Mukund; Mitsouras, Dimitrios

    2014-07-30

    To determine whether Lorentzian or Gaussian intra-voxel frequency distributions are better suited for modeling data acquired with gradient-echo sampling of single spin-echoes for the simultaneous characterization of irreversible and reversible relaxation rates. Clinical studies (e.g., of brain iron deposition) using such acquisition schemes have typically assumed Lorentzian distributions. Theoretical expressions of the time-domain spin-echo signal for intra-voxel Lorentzian and Gaussian distributions were used to fit data from a human brain scanned at both 1.5 Tesla (T) and 3T, resulting in maps of irreversible and reversible relaxation rates for each model. The relative merits of the Lorentzian versus Gaussian model were compared by means of quality of fit considerations. Lorentzian fits were equivalent to Gaussian fits primarily in regions of the brain where irreversible relaxation dominated. In the multiple brain regions where reversible relaxation effects become prominent, however, Gaussian fits were clearly superior. The widespread assumption that a Lorentzian distribution is suitable for quantitative transverse relaxation studies of the brain should be reconsidered, particularly at 3T and higher field strengths as reversible relaxation effects become more prominent. Gaussian distributions offer alternate fits of experimental data that should prove quite useful in general. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  8. Precise Determination of the Absorption Maximum in Wide Bands

    ERIC Educational Resources Information Center

    Eriksson, Karl-Hugo; And Others

    1977-01-01

    A precise method of determining absorption maxima where Gaussian functions occur is described. The method is based on a logarithmic transformation of the Gaussian equation and is suited for a mini-computer. (MR)

  9. Wavelet decomposition and radial basis function networks for system monitoring

    NASA Astrophysics Data System (ADS)

    Ikonomopoulos, A.; Endou, A.

    1998-10-01

    Two approaches are coupled to develop a novel collection of black box models for monitoring operational parameters in a complex system. The idea springs from the intention of obtaining multiple predictions for each system variable and fusing them before they are used to validate the actual measurement. The proposed architecture pairs the analytical abilities of the discrete wavelet decomposition with the computational power of radial basis function networks. Members of a wavelet family are constructed in a systematic way and chosen through a statistical selection criterion that optimizes the structure of the network. Network parameters are further optimized through a quasi-Newton algorithm. The methodology is demonstrated utilizing data obtained during two transients of the Monju fast breeder reactor. The models developed are benchmarked with respect to similar regressors based on Gaussian basis functions.

  10. 'The formula that killed Wall Street': the Gaussian copula and modelling practices in investment banking.

    PubMed

    MacKenzie, Donald; Spears, Taylor

    2014-06-01

    Drawing on documentary sources and 114 interviews with market participants, this and a companion article discuss the development and use in finance of the Gaussian copula family of models, which are employed to estimate the probability distribution of losses on a pool of loans or bonds, and which were centrally involved in the credit crisis. This article, which explores how and why the Gaussian copula family developed in the way it did, employs the concept of 'evaluation culture', a set of practices, preferences and beliefs concerning how to determine the economic value of financial instruments that is shared by members of multiple organizations. We identify an evaluation culture, dominant within the derivatives departments of investment banks, which we call the 'culture of no-arbitrage modelling', and explore its relation to the development of Gaussian copula models. The article suggests that two themes from the science and technology studies literature on models (modelling as 'impure' bricolage, and modelling as articulating with heterogeneous objectives and constraints) help elucidate the history of Gaussian copula models in finance.

  11. On the numbers of images of two stochastic gravitational lensing models

    NASA Astrophysics Data System (ADS)

    Wei, Ang

    2017-02-01

    We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.

  12. Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise

    NASA Astrophysics Data System (ADS)

    Artyushenko, V. M.; Volovach, V. I.

    2018-01-01

    We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.

  13. Weighted Feature Gaussian Kernel SVM for Emotion Recognition

    PubMed Central

    Jia, Qingxuan

    2016-01-01

    Emotion recognition with weighted feature based on facial expression is a challenging research topic and has attracted great attention in the past few years. This paper presents a novel method, utilizing subregion recognition rate to weight kernel function. First, we divide the facial expression image into some uniform subregions and calculate corresponding recognition rate and weight. Then, we get a weighted feature Gaussian kernel function and construct a classifier based on Support Vector Machine (SVM). At last, the experimental results suggest that the approach based on weighted feature Gaussian kernel function has good performance on the correct rate in emotion recognition. The experiments on the extended Cohn-Kanade (CK+) dataset show that our method has achieved encouraging recognition results compared to the state-of-the-art methods. PMID:27807443

  14. On Nonlinear Functionals of Random Spherical Eigenfunctions

    NASA Astrophysics Data System (ADS)

    Marinucci, Domenico; Wigman, Igor

    2014-05-01

    We prove central limit theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combines asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and total variation bounds for Gaussian subordinated fields. We discuss applications to geometric functionals like the defect and invariant statistics, e.g., polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.

  15. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  16. Video Shot Boundary Detection Using QR-Decomposition and Gaussian Transition Detection

    NASA Astrophysics Data System (ADS)

    Amiri, Ali; Fathy, Mahmood

    2010-12-01

    This article explores the problem of video shot boundary detection and examines a novel shot boundary detection algorithm by using QR-decomposition and modeling of gradual transitions by Gaussian functions. Specifically, the authors attend to the challenges of detecting gradual shots and extracting appropriate spatiotemporal features that affect the ability of algorithms to efficiently detect shot boundaries. The algorithm utilizes the properties of QR-decomposition and extracts a block-wise probability function that illustrates the probability of video frames to be in shot transitions. The probability function has abrupt changes in hard cut transitions, and semi-Gaussian behavior in gradual transitions. The algorithm detects these transitions by analyzing the probability function. Finally, we will report the results of the experiments using large-scale test sets provided by the TRECVID 2006, which has assessments for hard cut and gradual shot boundary detection. These results confirm the high performance of the proposed algorithm.

  17. Variational method for calculating the binding energy of the base state of an impurity D- centered on a quantum dot of GaAs-Ga1-xAlxAs

    NASA Astrophysics Data System (ADS)

    Durán-Flórez, F.; Caicedo, L. C.; Gonzalez, J. E.

    2018-04-01

    In quantum mechanics it is very difficult to obtain exact solutions, therefore, it is necessary to resort to tools and methods that facilitate the calculations of the solutions of these systems, one of these methods is the variational method that consists in proposing a wave function that depend on several parameters that are adjusted to get close to the exact solution. Authors in the past have performed calculations applying this method using exponential and Gaussian orbital functions with linear and quadratic correlation factors. In this paper, a Gaussian function with a linear correlation factor is proposed, for the calculation of the binding energy of an impurity D ‑ centered on a quantum dot of radius r, the Gaussian function is dependent on the radius of the quantum dot.

  18. Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆

    PubMed Central

    Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny

    2014-01-01

    There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702

  19. Normal form decomposition for Gaussian-to-Gaussian superoperators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Palma, Giacomo; INFN, Pisa; Mari, Andrea

    2015-05-15

    In this paper, we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non-positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms ofmore » their action on the characteristic function of the inputs. For the special case of one-mode mappings, we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix.« less

  20. Axial acoustic radiation force on a sphere in Gaussian field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Rongrong; Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn; Gong, Xiufen

    2015-10-28

    Based on the finite series method, the acoustical radiation force resulting from a Gaussian beam incident on a spherical object is investigated analytically. When the position of the particles deviating from the center of the beam, the Gaussian beam is expanded as a spherical function at the center of the particles and the expanded coefficients of the Gaussian beam is calculated. The analytical expression of the acoustic radiation force on spherical particles deviating from the Gaussian beam center is deduced. The acoustic radiation force affected by the acoustic frequency and the offset distance from the Gaussian beam center is investigated.more » Results have been presented for Gaussian beams with different wavelengths and it has been shown that the interaction of a Gaussian beam with a sphere can result in attractive axial force under specific operational conditions. Results indicate the capability of manipulating and separating spherical spheres based on their mechanical and acoustical properties, the results provided here may provide a theoretical basis for development of single-beam acoustical tweezers.« less

  1. Beam wander characteristics of flat-topped, dark hollow, cos and cosh-Gaussian, J0- and I0- Bessel Gaussian beams propagating in turbulent atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.; Baykal, Yahya; Çil, Celal Z.; Korotkova, Olga; Cai, Yangjian

    2010-02-01

    In this paper we review our work done in the evaluations of the root mean square (rms) beam wander characteristics of the flat-topped, dark hollow, cos-and cosh Gaussian, J0-Bessel Gaussian and the I0-Bessel Gaussian beams in atmospheric turbulence. Our formulation is based on the wave-treatment approach, where not only the beam sizes but the source beam profiles are taken into account as well. In this approach the first and the second statistical moments are obtained from the Rytov series under weak atmospheric turbulence conditions and the beam size are determined as a function of the propagation distance. It is found that after propagating in atmospheric turbulence, under certain conditions, the collimated flat-topped, dark hollow, cos- and cosh Gaussian, J0-Bessel Gaussian and the I0-Bessel Gaussian beams have smaller rms beam wander compared to that of the Gaussian beam. The beam wander of these beams are analyzed against the propagation distance, source spot sizes, and against specific beam parameters related to the individual beam such as the relative amplitude factors of the constituent beams, the flatness parameters, the beam orders, the displacement parameters, the width parameters, and are compared against the corresponding Gaussian beam.

  2. Mean intensity of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In the given article mean intensity of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is studied. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian beam of optical radiation. Distributions of mean intensity of a fundamental Bessel- Gaussian beam optical beam in longitudinal and transverse to a direction of propagation of optical radiation are investigated in detail. Influence of atmospheric turbulence on change of radius of the central part of a Bessel optical beam is estimated. Values of parameters at which it is possible to generate in turbulent atmosphere a nondiffracting pseudo-Bessel optical beam by means of a fundamental Bessel-Gaussian optical beam are established.

  3. A Gaussian framework for modeling effects of frequency-dependent attenuation, frequency-dependent scattering, and gating.

    PubMed

    Wear, Keith A

    2002-11-01

    For a wide range of applications in medical ultrasound, power spectra of received signals are approximately Gaussian. It has been established previously that an ultrasound beam with a Gaussian spectrum propagating through a medium with linear attenuation remains Gaussian. In this paper, Gaussian transformations are derived to model the effects of scattering (according to a power law, as is commonly applicable in soft tissues, especially over limited frequency ranges) and gating (with a Hamming window, a commonly used gate function). These approximations are shown to be quite accurate even for relatively broad band systems with fractional bandwidths approaching 100%. The theory is validated by experiments in phantoms consisting of glass particles suspended in agar.

  4. Poly-Gaussian model of randomly rough surface in rarefied gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksenova, Olga A.; Khalidov, Iskander A.

    2014-12-09

    Surface roughness is simulated by the model of non-Gaussian random process. Our results for the scattering of rarefied gas atoms from a rough surface using modified approach to the DSMC calculation of rarefied gas flow near a rough surface are developed and generalized applying the poly-Gaussian model representing probability density as the mixture of Gaussian densities. The transformation of the scattering function due to the roughness is characterized by the roughness operator. Simulating rough surface of the walls by the poly-Gaussian random field expressed as integrated Wiener process, we derive a representation of the roughness operator that can be appliedmore » in numerical DSMC methods as well as in analytical investigations.« less

  5. Tests for Gaussianity of the MAXIMA-1 cosmic microwave background map.

    PubMed

    Wu, J H; Balbi, A; Borrill, J; Ferreira, P G; Hanany, S; Jaffe, A H; Lee, A T; Rabii, B; Richards, P L; Smoot, G F; Stompor, R; Winant, C D

    2001-12-17

    Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.

  6. Matrix elements of explicitly correlated Gaussian basis functions with arbitrary angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, Tennesse; Varga, Kálmán

    2016-05-14

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with arbitrary angular momentum is presented. The calculations are checked on several excited states of three and four electron systems. The presented formalism can be used as unified framework for high accuracy calculations of properties of small atoms and molecules.

  7. Parameter estimation for slit-type scanning sensors

    NASA Technical Reports Server (NTRS)

    Fowler, J. W.; Rolfe, E. G.

    1981-01-01

    The Infrared Astronomical Satellite, scheduled for launch into a 900 km near-polar orbit in August 1982, will perform an infrared point source survey by scanning the sky with slit-type sensors. The description of position information is shown to require the use of a non-Gaussian random variable. Methods are described for deciding whether separate detections stem from a single common source, and a formulism is developed for the scan-to-scan problems of identifying multiple sightings of inertially fixed point sources for combining their individual measurements into a refined estimate. Several cases are given where the general theory yields results which are quite different from the corresponding Gaussian applications, showing that argument by Gaussian analogy would lead to error.

  8. Effects of scale-dependent non-Gaussianity on cosmological structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoVerde, Marilena; Miller, Amber; Shandera, Sarah

    2008-04-15

    The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often described by the f{sub NL} formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such models could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints on these modelsmore » achievable with forthcoming datasets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac-Born-Infeld model of brane inflation, where the scale dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions.« less

  9. Bivariate- distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems.

    PubMed

    Kota, V K B; Chavda, N D; Sahu, R

    2006-04-01

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.

  10. Anomalous and non-Gaussian diffusion in Hertzian spheres

    NASA Astrophysics Data System (ADS)

    Ouyang, Wenze; Sun, Bin; Sun, Zhiwei; Xu, Shenghua

    2018-09-01

    By means of molecular dynamics simulations, we study the non-Gaussian diffusion in the fluid of Hertzian spheres. The time dependent non-Gaussian parameter, as an indicator of the dynamic heterogeneity, is increased with the increasing of temperature. When the temperature is high enough, the dynamic heterogeneity becomes very significant, and it seems counterintuitive that the maximum of non-Gaussian parameter and the position of its peak decrease monotonically with the increasing of density. By fitting the curves of self intermediate scattering function, we find that the character relaxation time τα is surprisingly not coupled with the time τmax where the non-Gaussian parameter reaches to a maximum. The intriguing features of non-Gaussian diffusion at high enough temperatures can be associated with the weakly correlated mean-field behavior of Hertzian spheres. Especially the time τmax is nearly inversely proportional to the density at extremely high temperatures.

  11. Coherence degree of the fundamental Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this article the coherence of a fundamental Bessel-Gaussian optical beam in turbulent atmosphere is analyzed. The problem analysis is based on the solution of the equation for the transverse second-order mutual coherence function of a fundamental Bessel-Gaussian optical beam of optical radiation. The behavior of a coherence degree of a fundamental Bessel-Gaussian optical beam depending on parameters of an optical beam and characteristics of turbulent atmosphere is examined. It was revealed that at low levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam has the characteristic oscillating appearance. At high levels of fluctuations in turbulent atmosphere the coherence degree of a fundamental Bessel-Gaussian optical beam is described by an one-scale decreasing curve which in process of increase of level of fluctuations on a line of formation of a laser beam becomes closer to the same characteristic of a spherical optical wave.

  12. Coherence of the vortex Bessel-Gaussian beam in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Lukin, Igor P.

    2017-11-01

    In this paper the theoretical research of coherent properties of the vortex Bessel-Gaussian optical beams propagating in turbulent atmosphere are developed. The approach to the analysis of this problem is based on the analytical solution of the equation for the transverse second-order mutual coherence function of a field of optical radiation. The behavior of integral scale of coherence degree of vortex Bessel-Gaussian optical beams depending on parameters of an optical beam and characteristics of turbulent atmosphere is particularly considered. It is shown that the integral scale of coherence degree of a vortex Bessel-Gaussian optical beam essentially depends on value of a topological charge of a vortex optical beam. With increase in a topological charge of a vortex Bessel-Gaussian optical beam the value of integral scale of coherence degree of a vortex Bessel-Gaussian optical beam are decreased.

  13. Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Xu, Buqing; Mišta, Ladislav; Tufarelli, Tommaso; He, Qiongyi; Adesso, Gerardo

    2017-10-01

    Einstein-Podolsky-Rosen (EPR) steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited as a resource for quantum communication with one untrusted party. In particular, steering of continuous-variable Gaussian states has been extensively studied theoretically and experimentally, as a fundamental manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by suitable non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density-matrix elements of two-mode squeezed thermal Gaussian states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a simple nonlinear criterion, based on second moments of the correlation matrix constructed from pseudospin operators. This analysis reveals previously unexplored regimes where non-Gaussian measurements are shown to be more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed more compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than conventional Gaussian observables for steering detection. Finally, we investigate continuous-variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non-Gaussian measurements in characterizing quantum correlations of Gaussian and non-Gaussian states of continuous-variable quantum systems.

  14. Multiplicity and entropy scaling of medium-energy protons emitted in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Abdelsalam, A.; Kamel, S.; Hafiz, M. E.

    2015-10-01

    The behavior and the properties of medium-energy protons with kinetic energies in the range 26 - 400 MeV is derived from measurements of the particle yields and spectra in the final state of relativistic heavy-ion collisions (16O-AgBr interactions at 60 A and 200 A GeV and 32S-AgBr interactions at 3.7 A and 200 A GeV) and their interpretation in terms of the higher order moments. The multiplicity distributions have been fitted well with the Gaussian distribution function. The data are also compared with the predictions of the modified FRITIOF model, showing that the FRITIOF model does not reproduce the trend and the magnitude of the data. Measurements of the ratio of the variance to the mean show that the production of target fragments at high energies cannot be considered as a statistically independent process. However, the deviation of each multiplicity distribution from a Poisson law provides evidence for correlations. The KNO scaling behavior of two types of scaling (Koba-Nielsen-Olesen (KNO) scaling and Hegyi scaling) functions in terms of the multiplicity distribution is investigated. A simplified universal function has been used in each scaling to display the experimental data. An examination of the relationship between the entropy, the average multiplicity, and the KNO function is performed. Entropy production and subsequent scaling in nucleus-nucleus collisions are carried out by analyzing the experimental data over a wide energy range (Dubna and SPS). Interestingly, the data points corresponding to various energies overlap and fall on a single curve, indicating the presence of a kind of entropy scaling.

  15. Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.

    PubMed

    Ginzburg, D; Mann, A

    2014-03-10

    A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.

  16. Laser plasma x-ray line spectra fitted using the Pearson VII function

    NASA Astrophysics Data System (ADS)

    Michette, A. G.; Pfauntsch, S. J.

    2000-05-01

    The Pearson VII function, which is more general than the Gaussian, Lorentzian and other profiles, is used to fit the x-ray spectral lines produced in a laser-generated plasma, instead of the more usual, but computationally expensive, Voigt function. The mean full-width half-maximum of the fitted lines is 0.102+/-0.014 nm, entirely consistent with the value expected from geometrical considerations, and the fitted line profiles are generally inconsistent with being either Lorentzian or Gaussian.

  17. Linear Scaling Density Functional Calculations with Gaussian Orbitals

    NASA Technical Reports Server (NTRS)

    Scuseria, Gustavo E.

    1999-01-01

    Recent advances in linear scaling algorithms that circumvent the computational bottlenecks of large-scale electronic structure simulations make it possible to carry out density functional calculations with Gaussian orbitals on molecules containing more than 1000 atoms and 15000 basis functions using current workstations and personal computers. This paper discusses the recent theoretical developments that have led to these advances and demonstrates in a series of benchmark calculations the present capabilities of state-of-the-art computational quantum chemistry programs for the prediction of molecular structure and properties.

  18. Lower bounds to energies for cusped-gaussian wavefunctions. [hydrogen atom ground state

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.; Walsh, B. C.; Steiner, E.

    1974-01-01

    Calculations for the ground states of H, He, and Be, conducted by Steiner and Sykes (1972), show that the inclusion of a very small number of cusp functions can lead to a substantial enhancement of the quality of the Gaussian basis used in molecular wavefunction computations. The properties of the cusped-Gaussian basis are investigated by a calculation of lower bounds concerning the ground state energy of the hydrogen atom.

  19. On the theory and simulation of multiple Coulomb scattering of heavy-charged particles.

    PubMed

    Striganov, S I

    2005-01-01

    The Moliere theory of multiple Coulomb scattering is modified to take into account the difference between processes of scattering off atomic nuclei and electrons. A simple analytical expression for angular distribution of charged particles passing through a thick absorber is found. It does not assume any special form for a differential scattering cross section and has a wider range of applicability than a gaussian approximation. A well-known method to simulate multiple Coulomb scatterings is based on treating 'soft' and 'hard' collisions differently. An angular deflection in a large number of 'soft' collisions is sampled using the proposed distribution function, a small number of 'hard' collision are simulated directly. A boundary between 'hard' and 'soft' collisions is defined, providing a precise sampling of a scattering angle (1% level) and a small number of 'hard' collisions. A corresponding simulating module takes into account projectile and nucleus charged distributions and exact kinematics of a projectile-electron interaction.

  20. Propagation of Bessel-Gaussian beams through a double-apertured fractional Fourier transform optical system.

    PubMed

    Tang, Bin; Jiang, Chun; Zhu, Haibin

    2012-08-01

    Based on the scalar diffraction theory and the fact that a hard-edged aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical solution for Bessel-Gaussian (BG) beams propagating through a double-apertured fractional Fourier transform (FrFT) system is derived in the cylindrical coordinate. By using the approximate analytical formulas, the propagation properties of BG beams passing through a double-apertured FrFT optical system have been studied in detail by some typical numerical examples. The results indicate that the double-apertured FrFT optical system provides a convenient way for controlling the properties of the BG beams by properly choosing the optical parameters.

  1. Assessment of refractive index of pigments by Gaussian fitting of light backscattering data in context of the liquid immersion method.

    PubMed

    Niskanen, Ilpo; Peiponen, Kai-Erik; Räty, Jukka

    2010-05-01

    Using a multifunction spectrophotometer, the refractive index of a pigment can be estimated by measuring the backscattering of light from the pigment in immersion liquids having slightly different refractive indices. A simple theoretical Gaussian function model related to the optical path distribution is introduced that makes it possible to describe quantitatively the backscattering signal from transparent pigments using a set of only a few immersion liquids. With the aid of the data fitting by a Gaussian function, the measurement time of the refractive index of the pigment can be reduced. The backscattering measurement technique is suggested to be useful in industrial measurement environments of pigments.

  2. Non-Born-Oppenheimer calculations of the pure vibrational spectrum of HeH+.

    PubMed

    Pavanello, Michele; Bubin, Sergiy; Molski, Marcin; Adamowicz, Ludwik

    2005-09-08

    Very accurate calculations of the pure vibrational spectrum of the HeH(+) ion are reported. The method used does not assume the Born-Oppenheimer approximation, and the motion of both the electrons and the nuclei are treated on equal footing. In such an approach the vibrational motion cannot be decoupled from the motion of electrons, and thus the pure vibrational states are calculated as the states of the system with zero total angular momentum. The wave functions of the states are expanded in terms of explicitly correlated Gaussian basis functions multipled by even powers of the internuclear distance. The calculations yielded twelve bound states and corresponding eleven transition energies. Those are compared with the pure vibrational transition energies extracted from the experimental rovibrational spectrum.

  3. Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis using the density fitting and Cholesky decomposition.

    PubMed

    Čársky, Petr; Čurík, Roman; Varga, Štefan

    2012-03-21

    The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics

  4. Fuzzy Logic Controller Design for A Robot Grasping System with Different Membership Functions

    NASA Astrophysics Data System (ADS)

    Ahmad, Hamzah; Razali, Saifudin; Rusllim Mohamed, Mohd

    2013-12-01

    This paper investigates the effects of the membership function to the object grasping for a three fingered gripper system. The performance of three famously used membership functions is compared to identify their behavior in lifting a defined object shape. MATLAB Simulink and SimMechanics toolboxes are used to examine the performance. Our preliminary results proposed that the Gaussian membership function surpassed the two other membership functions; triangular and trapezoid memberships especially in the context of firmer grasping and less time consumption during operations. Therefore, Gaussian membership function could be the best solution when time consumption and firmer grasp are considered.

  5. MUSIC: MUlti-Scale Initial Conditions

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  6. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.

    PubMed

    He, Jianjun; Gu, Hong; Liu, Wenqi

    2012-01-01

    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches.

  7. Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media

    NASA Astrophysics Data System (ADS)

    Liu, Xiayin; Zhao, Daomu; Tian, Kehan; Pan, Weiqing; Zhang, Kouwen

    2018-06-01

    A new class of pulse source with correlation being modeled by the convolution operation of two legitimate temporal correlation function is proposed. Particularly, analytical formulas for the Gaussian temporally modulated multi-sinc Schell-model (MSSM) pulses generated by such pulse source propagating in dispersive media are derived. It is demonstrated that the average intensity of MSSM pulses on propagation are reshaped from flat profile or a train to a distribution with a Gaussian temporal envelope by adjusting the initial correlation width of the Gaussian pulse. The effects of the Gaussian temporal modulation on the temporal degree of coherence of the MSSM pulse are also analyzed. The results presented here show the potential of coherence modulation for pulse shaping and pulsed laser material processing.

  8. Model-independent analyses of non-Gaussianity in Planck CMB maps using Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas; France, Martin J.; Steiner, Frank

    2017-05-01

    Despite the wealth of Planck results, there are difficulties in disentangling the primordial non-Gaussianity of the Cosmic Microwave Background (CMB) from the secondary and the foreground non-Gaussianity (NG). For each of these forms of NG the lack of complete data introduces model-dependences. Aiming at detecting the NGs of the CMB temperature anisotropy δ T , while paying particular attention to a model-independent quantification of NGs, our analysis is based upon statistical and morphological univariate descriptors, respectively: the probability density function P(δ T) , related to v0, the first Minkowski Functional (MF), and the two other MFs, v1 and v2. From their analytical Gaussian predictions we build the discrepancy functions {{ Δ }k} (k  =  P, 0, 1, 2) which are applied to an ensemble of 105 CMB realization maps of the Λ CDM model and to the Planck CMB maps. In our analysis we use general Hermite expansions of the {{ Δ }k} up to the 12th order, where the coefficients are explicitly given in terms of cumulants. Assuming hierarchical ordering of the cumulants, we obtain the perturbative expansions generalizing the second order expansions of Matsubara to arbitrary order in the standard deviation {σ0} for P(δ T) and v0, where the perturbative expansion coefficients are explicitly given in terms of complete Bell polynomials. The comparison of the Hermite expansions and the perturbative expansions is performed for the Λ CDM map sample and the Planck data. We confirm the weak level of non-Gaussianity (1-2)σ of the foreground corrected masked Planck 2015 maps.

  9. Effects of blood pressure and sex on the change of wave reflection: evidence from Gaussian fitting method for radial artery pressure waveform.

    PubMed

    Liu, Chengyu; Zhao, Lina; Liu, Changchun

    2014-01-01

    An early return of the reflected component in the arterial pulse has been recognized as an important indicator of cardiovascular risk. This study aimed to determine the effects of blood pressure and sex factor on the change of wave reflection using Gaussian fitting method. One hundred and ninety subjects were enrolled. They were classified into four blood pressure categories based on the systolic blood pressures (i.e., ≤ 110, 111-120, 121-130 and ≥ 131 mmHg). Each blood pressure category was also stratified for sex factor. Electrocardiogram (ECG) and radial artery pressure waveforms (RAPW) signals were recorded for each subject. Ten consecutive pulse episodes from the RAPW signal were extracted and normalized. Each normalized pulse episode was fitted by three Gaussian functions. Both the peak position and peak height of the first and second Gaussian functions, as well as the peak position interval and peak height ratio, were used as the evaluation indices of wave reflection. Two-way ANOVA results showed that with the increased blood pressure, the peak position of the second Gaussian significantly shorten (P < 0.01), the peak height of the first Gaussian significantly decreased (P < 0.01) and the peak height of the second Gaussian significantly increased (P < 0.01), inducing the significantly decreased peak position interval and significantly increased peak height ratio (both P < 0.01). Sex factor had no significant effect on all evaluation indices (all P > 0.05). Moreover, the interaction between sex and blood pressure factors also had no significant effect on all evaluation indices (all P > 0.05). These results showed that blood pressure has significant effect on the change of wave reflection when using the recently developed Gaussian fitting method, whereas sex has no significant effect. The results also suggested that the Gaussian fitting method could be used as a new approach for assessing the arterial wave reflection.

  10. Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation.

    PubMed

    Zhou, Nan; Wang, Jian

    2018-05-23

    Bessel-Gaussian beams have distinct properties of suppressed diffraction divergence and self-reconstruction. In this paper, we propose and simulate metasurface-assisted orbital angular momentum (OAM) carrying Bessel-Gaussian laser. The laser can be regarded as a Fabry-Perot cavity formed by one partially transparent output plane mirror and the other metasurface-based reflector mirror. The gain medium of Nd:YVO 4 enables the lasing wavelength at 1064 nm with a 808 nm laser serving as the pump. The sub-wavelength structure of metasurface facilitates flexible spatial light manipulation. The compact metasurface-based reflector provides combined phase functions of an axicon and a spherical mirror. By appropriately selecting the size of output mirror and inserting mode-selection element in the laser cavity, different orders of OAM-carrying Bessel-Gaussian lasing modes are achievable. The lasing Bessel-Gaussian 0 , Bessel-Gaussian 01 + , Bessel-Gaussian 02 + and Bessel-Gaussian 03 + modes have high fidelities of ~0.889, ~0.889, ~0.881 and ~0.879, respectively. The metasurface fabrication tolerance and the dependence of threshold power and output lasing power on the length of gain medium, beam radius of pump and transmittance of output mirror are also discussed. The obtained results show successful implementation of metasurface-assisted OAM-carrying Bessel-Gaussian laser with favorable performance. The metasurface-assisted OAM-carrying Bessel-Gaussian laser may find wide OAM-enabled communication and non-communication applications.

  11. Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion

    NASA Astrophysics Data System (ADS)

    Mu, Hongqian; Wang, Muguang; Tang, Yu; Zhang, Jing; Jian, Shuisheng

    2018-03-01

    A novel scheme for the generation of FCC-compliant UWB pulse is proposed based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. The modified Gaussian quadruplet is synthesized based on linear sum of a broad Gaussian pulse and two narrow Gaussian pulses with the same pulse-width and amplitude peak. Within specific parameter range, FCC-compliant UWB with spectral power efficiency of higher than 39.9% can be achieved. In order to realize the designed waveform, a UWB generator based on spectral shaping and incoherent wavelength-to-time mapping is proposed. The spectral shaper is composed of a Gaussian filter and a programmable filter. Single-mode fiber functions as both dispersion device and transmission medium. Balanced photodetection is employed to combine linearly the broad Gaussian pulse and two narrow Gaussian pulses, and at same time to suppress pulse pedestals that result in low-frequency components. The proposed UWB generator can be reconfigured for UWB doublet by operating the programmable filter as a single-band Gaussian filter. The feasibility of proposed UWB generator is demonstrated experimentally. Measured UWB pulses match well with simulation results. FCC-compliant quadruplet with 10-dB bandwidth of 6.88-GHz, fractional bandwidth of 106.8% and power efficiency of 51% is achieved.

  12. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  13. Non-Gaussianity in a quasiclassical electronic circuit

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi J.; Hayakawa, Hisao

    2017-05-01

    We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor. Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.

  14. Second order Pseudo-gaussian shaper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beche, Jean-Francois

    2002-11-22

    The purpose of this document is to provide a calculus spreadsheet for the design of second-order pseudo-gaussian shapers. A very interesting reference is given by C.H. Mosher ''Pseudo-Gaussian Transfer Functions with Superlative Recovery'', IEEE TNS Volume 23, p. 226-228 (1976). Fred Goulding and Don Landis have studied the structure of those filters and their implementation and this document will outline the calculation leading to the relation between the coefficients of the filter. The general equation of the second order pseudo-gaussian filter is: f(t) = P{sub 0} {center_dot} e{sup -3kt} {center_dot} sin{sup 2}(kt). The parameter k is a normalization factor.

  15. Non-Gaussian PDF Modeling of Turbulent Boundary Layer Fluctuating Pressure Excitation

    NASA Technical Reports Server (NTRS)

    Steinwolf, Alexander; Rizzi, Stephen A.

    2003-01-01

    The purpose of the study is to investigate properties of the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the exterior of a supersonic transport aircraft. It is shown that fluctuating pressure PDFs differ from the Gaussian distribution even for surface conditions having no significant discontinuities. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations upstream of forward-facing step discontinuities and downstream of aft-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. Various analytical PDF distributions are used and further developed to model this behavior.

  16. Quantum non-Gaussianity and quantification of nonclassicality

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.

    2018-05-01

    The algebraic quantification of nonclassicality, which naturally arises from the quantum superposition principle, is related to properties of regular nonclassicality quasiprobabilities. The latter are obtained by non-Gaussian filtering of the Glauber-Sudarshan P function. They yield lower bounds for the degree of nonclassicality. We also derive bounds for convex combinations of Gaussian states for certifying quantum non-Gaussianity directly from the experimentally accessible nonclassicality quasiprobabilities. Other quantum-state representations, such as s -parametrized quasiprobabilities, insufficiently indicate or even fail to directly uncover detailed information on the properties of quantum states. As an example, our approach is applied to multi-photon-added squeezed vacuum states.

  17. Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method.

    PubMed

    Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki

    2017-10-20

    Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.

  18. How to model moon signals using 2-dimensional Gaussian function: Classroom activity for measuring nighttime cloud cover

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2016-12-01

    Nowadays, cameras are commonly used by students. In this study, we use this instrument to look at moon signals and relate these signals to Gaussian functions. To implement this as a classroom activity, students need computers, computer software to visualize signals, and moon images. A normalized Gaussian function is often used to represent probability density functions of normal distribution. It is described by its mean m and standard deviation s. The smaller standard deviation implies less spread from the mean. For the 2-dimensional Gaussian function, the mean can be described by coordinates (x0, y0), while the standard deviations can be described by sx and sy. In modelling moon signals obtained from sky-cameras, the position of the mean (x0, y0) is solved by locating the coordinates of the maximum signal of the moon. The two standard deviations are the mean square weighted deviation based from the sum of total pixel values of all rows/columns. If visualized in three dimensions, the 2D Gaussian function appears as a 3D bell surface (Fig. 1a). This shape is similar to the pixel value distribution of moon signals as captured by a sky-camera. An example of this is illustrated in Fig 1b taken around 22:20 (local time) of January 31, 2015. The local time is 8 hours ahead of coordinated universal time (UTC). This image is produced by a commercial camera (Canon Powershot A2300) with 1s exposure time, f-stop of f/2.8, and 5mm focal length. One has to chose a camera with high sensitivity when operated at nighttime to effectively detect these signals. Fig. 1b is obtained by converting the red-green-blue (RGB) photo to grayscale values. The grayscale values are then converted to a double data type matrix. The last conversion process is implemented for the purpose of having the same scales for both Gaussian model and pixel distribution of raw signals. Subtraction of the Gaussian model from the raw data produces a moonless image as shown in Fig. 1c. This moonless image can be used for quantifying cloud cover as captured by ordinary cameras (Gacal et al, 2016). Cloud cover can be defined as the ratio of number of pixels whose values exceeds 0.07 and the total number of pixels. In this particular image, cloud cover value is 0.67.

  19. Detecting Compartmental non-Gaussian Diffusion with Symmetrized Double-PFG MRI

    PubMed Central

    Paulsen, Jeffrey L.; Özarslan, Evren; Komlosh, Michal E.; Basser, Peter J.; Song, Yi-Qiao

    2015-01-01

    Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present Symmetrized Double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time-dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth moment (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics and act as a novel source of contrast to better resolve tissue micro-structure. PMID:26434812

  20. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    NASA Astrophysics Data System (ADS)

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.

  1. Non-Gaussian Analysis of Turbulent Boundary Layer Fluctuating Pressure on Aircraft Skin Panels

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Steinwolf, Alexander

    2005-01-01

    The purpose of the study is to investigate the probability density function (PDF) of turbulent boundary layer fluctuating pressures measured on the outer sidewall of a supersonic transport aircraft and to approximate these PDFs by analytical models. Experimental flight results show that the fluctuating pressure PDFs differ from the Gaussian distribution even for standard smooth surface conditions. The PDF tails are wider and longer than those of the Gaussian model. For pressure fluctuations in front of forward-facing step discontinuities, deviations from the Gaussian model are more significant and the PDFs become asymmetrical. There is a certain spatial pattern of the skewness and kurtosis behavior depending on the distance upstream from the step. All characteristics related to non-Gaussian behavior are highly dependent upon the distance from the step and the step height, less dependent on aircraft speed, and not dependent on the fuselage location. A Hermite polynomial transform model and a piecewise-Gaussian model fit the flight data well both for the smooth and stepped conditions. The piecewise-Gaussian approximation can be additionally regarded for convenience in usage after the model is constructed.

  2. Disappearance of Anisotropic Intermittency in Large-amplitude MHD Turbulence and Its Comparison with Small-amplitude MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua

    2018-03-01

    Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.

  3. Separation of the low-frequency atmospheric variability into non-Gaussian multidimensional sources by Independent Subspace Analysis

    NASA Astrophysics Data System (ADS)

    Pires, Carlos; Ribeiro, Andreia

    2016-04-01

    An efficient nonlinear method of statistical source separation of space-distributed non-Gaussian distributed data is proposed. The method relies in the so called Independent Subspace Analysis (ISA), being tested on a long time-series of the stream-function field of an atmospheric quasi-geostrophic 3-level model (QG3) simulating the winter's monthly variability of the Northern Hemisphere. ISA generalizes the Independent Component Analysis (ICA) by looking for multidimensional and minimally dependent, uncorrelated and non-Gaussian distributed statistical sources among the rotated projections or subspaces of the multivariate probability distribution of the leading principal components of the working field whereas ICA restrict to scalar sources. The rationale of that technique relies upon the projection pursuit technique, looking for data projections of enhanced interest. In order to accomplish the decomposition, we maximize measures of the sources' non-Gaussianity by contrast functions which are given by squares of nonlinear, cross-cumulant-based correlations involving the variables spanning the sources. Therefore sources are sought matching certain nonlinear data structures. The maximized contrast function is built in such a way that it provides the minimization of the mean square of the residuals of certain nonlinear regressions. The issuing residuals, followed by spherization, provide a new set of nonlinear variable changes that are at once uncorrelated, quasi-independent and quasi-Gaussian, representing an advantage with respect to the Independent Components (scalar sources) obtained by ICA where the non-Gaussianity is concentrated into the non-Gaussian scalar sources. The new scalar sources obtained by the above process encompass the attractor's curvature thus providing improved nonlinear model indices of the low-frequency atmospheric variability which is useful since large circulation indices are nonlinearly correlated. The non-Gaussian tested sources (dyads and triads, respectively of two and three dimensions) lead to a dense data concentration along certain curves or surfaces, nearby which the clusters' centroids of the joint probability density function tend to be located. That favors a better splitting of the QG3 atmospheric model's weather regimes: the positive and negative phases of the Arctic Oscillation and positive and negative phases of the North Atlantic Oscillation. The leading model's non-Gaussian dyad is associated to a positive correlation between: 1) the squared anomaly of the extratropical jet-stream and 2) the meridional jet-stream meandering. Triadic sources coming from maximized third-order cross cumulants between pairwise uncorrelated components reveal situations of triadic wave resonance and nonlinear triadic teleconnections, only possible thanks to joint non-Gaussianity. That kind of triadic synergies are accounted for an Information-Theoretic measure: the Interaction Information. The dominant model's triad occurs between anomalies of: 1) the North Pole anomaly pressure 2) the jet-stream intensity at the Eastern North-American boundary and 3) the jet-stream intensity at the Eastern Asian boundary. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz.

  4. Integrating multiple fitting regression and Bayes decision for cancer diagnosis with transcriptomic data from tumor-educated blood platelets.

    PubMed

    Huang, Guangzao; Yuan, Mingshun; Chen, Moliang; Li, Lei; You, Wenjie; Li, Hanjie; Cai, James J; Ji, Guoli

    2017-10-07

    The application of machine learning in cancer diagnostics has shown great promise and is of importance in clinic settings. Here we consider applying machine learning methods to transcriptomic data derived from tumor-educated platelets (TEPs) from individuals with different types of cancer. We aim to define a reliability measure for diagnostic purposes to increase the potential for facilitating personalized treatments. To this end, we present a novel classification method called MFRB (for Multiple Fitting Regression and Bayes decision), which integrates the process of multiple fitting regression (MFR) with Bayes decision theory. MFR is first used to map multidimensional features of the transcriptomic data into a one-dimensional feature. The probability density function of each class in the mapped space is then adjusted using the Gaussian probability density function. Finally, the Bayes decision theory is used to build a probabilistic classifier with the estimated probability density functions. The output of MFRB can be used to determine which class a sample belongs to, as well as to assign a reliability measure for a given class. The classical support vector machine (SVM) and probabilistic SVM (PSVM) are used to evaluate the performance of the proposed method with simulated and real TEP datasets. Our results indicate that the proposed MFRB method achieves the best performance compared to SVM and PSVM, mainly due to its strong generalization ability for limited, imbalanced, and noisy data.

  5. On the evaluation of derivatives of Gaussian integrals

    NASA Technical Reports Server (NTRS)

    Helgaker, Trygve; Taylor, Peter R.

    1992-01-01

    We show that by a suitable change of variables, the derivatives of molecular integrals over Gaussian-type functions required for analytic energy derivatives can be evaluated with significantly less computational effort than current formulations. The reduction in effort increases with the order of differentiation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra

    Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less

  7. Evolution of CMB spectral distortion anisotropies and tests of primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Dimastrogiovanni, Emanuela; Amin, Mustafa A.; Kamionkowski, Marc

    2017-04-01

    Anisotropies in distortions to the frequency spectrum of the cosmic microwave background (CMB) can be created through spatially varying heating processes in the early Universe. For instance, the dissipation of small-scale acoustic modes does create distortion anisotropies, in particular for non-Gaussian primordial perturbations. In this work, we derive approximations that allow describing the associated distortion field. We provide a systematic formulation of the problem using Fourier-space window functions, clarifying and generalizing previous approximations. Our expressions highlight the fact that the amplitudes of the spectral-distortion fluctuations induced by non-Gaussianity depend also on the homogeneous value of those distortions. Absolute measurements are thus required to obtain model-independent distortion constraints on primordial non-Gaussianity. We also include a simple description for the evolution of distortions through photon diffusion, showing that these corrections can usually be neglected. Our formulation provides a systematic framework for computing higher order correlation functions of distortions with CMB temperature anisotropies and can be extended to describe correlations with polarization anisotropies.

  8. Four tails problems for dynamical collapse theories

    NASA Astrophysics Data System (ADS)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  9. Ionospheric scintillation by a random phase screen Spectral approach

    NASA Technical Reports Server (NTRS)

    Rufenach, C. L.

    1975-01-01

    The theory developed by Briggs and Parkin, given in terms of an anisotropic gaussian correlation function, is extended to a spectral description specified as a continuous function of spatial wavenumber with an intrinsic outer scale as would be expected from a turbulent medium. Two spectral forms were selected for comparison: (1) a power-law variation in wavenumber with a constant three-dimensional index equal to 4, and (2) Gaussian spectral variation. The results are applied to the F-region ionosphere with an outer-scale wavenumber of 2 per km (approximately equal to the Fresnel wavenumber) for the power-law variation, and 0.2 per km for the Gaussian spectral variation. The power-law form with a small outer-scale wavenumber is consistent with recent F-region in-situ measurements, whereas the gaussian form is mathematically convenient and, hence, mostly used in the previous developments before the recent in-situ measurements. Some comparison with microwave scintillation in equatorial areas is made.

  10. Design and implementation of an optical Gaussian noise generator

    NASA Astrophysics Data System (ADS)

    Za~O, Leonardo; Loss, Gustavo; Coelho, Rosângela

    2009-08-01

    A design of a fast and accurate optical Gaussian noise generator is proposed and demonstrated. The noise sample generation is based on the Box-Muller algorithm. The functions implementation was performed on a high-speed Altera Stratix EP1S25 field-programmable gate array (FPGA) development kit. It enabled the generation of 150 million 16-bit noise samples per second. The Gaussian noise generator required only 7.4% of the FPGA logic elements, 1.2% of the RAM memory, 0.04% of the ROM memory, and a laser source. The optical pulses were generated by a laser source externally modulated by the data bit samples using the frequency-shift keying technique. The accuracy of the noise samples was evaluated for different sequences size and confidence intervals. The noise sample pattern was validated by the Bhattacharyya distance (Bd) and the autocorrelation function. The results showed that the proposed design of the optical Gaussian noise generator is very promising to evaluate the performance of optical communications channels with very low bit-error-rate values.

  11. Gaussian Radial Basis Function for Efficient Computation of Forest Indirect Illumination

    NASA Astrophysics Data System (ADS)

    Abbas, Fayçal; Babahenini, Mohamed Chaouki

    2018-06-01

    Global illumination of natural scenes in real time like forests is one of the most complex problems to solve, because the multiple inter-reflections between the light and material of the objects composing the scene. The major problem that arises is the problem of visibility computation. In fact, the computing of visibility is carried out for all the set of leaves visible from the center of a given leaf, given the enormous number of leaves present in a tree, this computation performed for each leaf of the tree which also reduces performance. We describe a new approach that approximates visibility queries, which precede in two steps. The first step is to generate point cloud representing the foliage. We assume that the point cloud is composed of two classes (visible, not-visible) non-linearly separable. The second step is to perform a point cloud classification by applying the Gaussian radial basis function, which measures the similarity in term of distance between each leaf and a landmark leaf. It allows approximating the visibility requests to extract the leaves that will be used to calculate the amount of indirect illumination exchanged between neighbor leaves. Our approach allows efficiently treat the light exchanges in the scene of a forest, it allows a fast computation and produces images of good visual quality, all this takes advantage of the immense power of computation of the GPU.

  12. Tensor Minkowski Functionals for random fields on the sphere

    NASA Astrophysics Data System (ADS)

    Chingangbam, Pravabati; Yogendran, K. P.; Joby, P. K.; Ganesan, Vidhya; Appleby, Stephen; Park, Changbom

    2017-12-01

    We generalize the translation invariant tensor-valued Minkowski Functionals which are defined on two-dimensional flat space to the unit sphere. We apply them to level sets of random fields. The contours enclosing boundaries of level sets of random fields give a spatial distribution of random smooth closed curves. We outline a method to compute the tensor-valued Minkowski Functionals numerically for any random field on the sphere. Then we obtain analytic expressions for the ensemble expectation values of the matrix elements for isotropic Gaussian and Rayleigh fields. The results hold on flat as well as any curved space with affine connection. We elucidate the way in which the matrix elements encode information about the Gaussian nature and statistical isotropy (or departure from isotropy) of the field. Finally, we apply the method to maps of the Galactic foreground emissions from the 2015 PLANCK data and demonstrate their high level of statistical anisotropy and departure from Gaussianity.

  13. Large-scale 3D galaxy correlation function and non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raccanelli, Alvise; Doré, Olivier; Bertacca, Daniele

    We investigate the properties of the 2-point galaxy correlation function at very large scales, including all geometric and local relativistic effects --- wide-angle effects, redshift space distortions, Doppler terms and Sachs-Wolfe type terms in the gravitational potentials. The general three-dimensional correlation function has a nonzero dipole and octupole, in addition to the even multipoles of the flat-sky limit. We study how corrections due to primordial non-Gaussianity and General Relativity affect the multipolar expansion, and we show that they are of similar magnitude (when f{sub NL} is small), so that a relativistic approach is needed. Furthermore, we look at how large-scalemore » corrections depend on the model for the growth rate in the context of modified gravity, and we discuss how a modified growth can affect the non-Gaussian signal in the multipoles.« less

  14. Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states: Non-classical and non-Gaussian properties

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Xiang; Yuan, Hong-Chun; Wang, Yan

    2014-07-01

    We investigate the nonclassical properties of arbitrary number photon annihilation-then-creation operation (AC) and creation-then-annihilation operation (CA) to the thermal state (TS), whose normalization factors are related to the polylogarithm function. Then we compare their quantum characters, such as photon number distribution, average photon number, Mandel Q-parameter, purity and the Wigner function. Because of the noncommutativity between the annihilation operator and the creation operator, the ACTS and the CATS have different nonclassical properties. It is found that nonclassical properties are exhibited more strongly after AC than after CA. In addition we also examine their non-Gaussianity. The result shows that the ACTS can present a slightly bigger non-Gaussianity than the CATS.

  15. Gaussian vs non-Gaussian turbulence: impact on wind turbine loads

    NASA Astrophysics Data System (ADS)

    Berg, J.; Mann, J.; Natarajan, A.; Patton, E. G.

    2014-12-01

    In wind energy applications the turbulent velocity field of the Atmospheric Boundary Layer (ABL) is often characterised by Gaussian probability density functions. When estimating the dynamical loads on wind turbines this has been the rule more than anything else. From numerous studies in the laboratory, in Direct Numerical Simulations, and from in-situ measurements of the ABL we know, however, that turbulence is not purely Gaussian: the smallest and fastest scales often exhibit extreme behaviour characterised by strong non-Gaussian statistics. In this contribution we want to investigate whether these non-Gaussian effects are important when determining wind turbine loads, and hence of utmost importance to the design criteria and lifetime of a wind turbine. We devise a method based on Principal Orthogonal Decomposition where non-Gaussian velocity fields generated by high-resolution pseudo-spectral Large-Eddy Simulation (LES) of the ABL are transformed so that they maintain the exact same second-order statistics including variations of the statistics with height, but are otherwise Gaussian. In that way we can investigate in isolation the question whether it is important for wind turbine loads to include non-Gaussian properties of atmospheric turbulence. As an illustration the Figure show both a non-Gaussian velocity field (left) from our LES, and its transformed Gaussian Counterpart (right). Whereas the horizontal velocity components (top) look close to identical, the vertical components (bottom) are not: the non-Gaussian case is much more fluid-like (like in a sketch by Michelangelo). The question is then: Does the wind turbine see this? Using the load simulation software HAWC2 with both the non-Gaussian and newly constructed Gaussian fields, respectively, we show that the Fatigue loads and most of the Extreme loads are unaltered when using non-Gaussian velocity fields. The turbine thus acts like a low-pass filter which average out the non-Gaussian behaviour on time scales close to and faster than the revolution time of the turbine. For a few of the Extreme load estimations there is, on the other hand, a tendency that non-Gaussian effects increase the overall dynamical load, and hence can be of importance in wind energy load estimations.

  16. An effective introduction to structural crystallography using 1D Gaussian atoms

    NASA Astrophysics Data System (ADS)

    Smith, Emily; Evans, Gwyndaf; Foadi, James

    2017-11-01

    The most important quantitative aspects of computational structural crystallography can be introduced in a satisfactory way using 1D truncated and periodic Gaussian functions to represent the atoms in a crystal lattice. This paper describes in detail and demonstrates 1D structural crystallography starting with the definition of such truncated Gaussians. The availability of the computer programme CRONE makes possible the repetition of the examples provided in the paper as well as the creation of new ones.

  17. Elegant Ince—Gaussian breathers in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Yong; Deng, Dong-Mei; Guo, Qi

    2012-06-01

    A novel class of optical breathers, called elegant Ince—Gaussian breathers, are presented in this paper. They are exact analytical solutions to Snyder and Mitchell's mode in an elliptic coordinate system, and their transverse structures are described by Ince-polynomials with complex arguments and a Gaussian function. We provide convincing evidence for the correctness of the solutions and the existence of the breathers via comparing the analytical solutions with numerical simulation of the nonlocal nonlinear Schrödinger equation.

  18. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  19. Computer modeling of multiple-channel input signals and intermodulation losses caused by nonlinear traveling wave tube amplifiers

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.

    1982-01-01

    The multiple channel input signal to a soft limiter amplifier as a traveling wave tube is represented as a finite, linear sum of Gaussian functions in the frequency domain. Linear regression is used to fit the channel shapes to a least squares residual error. Distortions in output signal, namely intermodulation products, are produced by the nonlinear gain characteristic of the amplifier and constitute the principal noise analyzed in this study. The signal to noise ratios are calculated for various input powers from saturation to 10 dB below saturation for two specific distributions of channels. A criterion for the truncation of the series expansion of the nonlinear transfer characteristic is given. It is found that he signal to noise ratios are very sensitive to the coefficients used in this expansion. Improper or incorrect truncation of the series leads to ambiguous results in the signal to noise ratios.

  20. Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements

    DOE PAGES

    Wang, Liming; Huang, Jiaji; Yuan, Xin; ...

    2015-09-17

    The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are establishedmore » based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.« less

  1. Quaternion Averaging

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov

    2007-01-01

    Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.

  2. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  3. On the robustness of the q-Gaussian family

    NASA Astrophysics Data System (ADS)

    Sicuro, Gabriele; Tempesta, Piergiulio; Rodríguez, Antonio; Tsallis, Constantino

    2015-12-01

    We introduce three deformations, called α-, β- and γ-deformation respectively, of a N-body probabilistic model, first proposed by Rodríguez et al. (2008), having q-Gaussians as N → ∞ limiting probability distributions. The proposed α- and β-deformations are asymptotically scale-invariant, whereas the γ-deformation is not. We prove that, for both α- and β-deformations, the resulting deformed triangles still have q-Gaussians as limiting distributions, with a value of q independent (dependent) on the deformation parameter in the α-case (β-case). In contrast, the γ-case, where we have used the celebrated Q-numbers and the Gauss binomial coefficients, yields other limiting probability distribution functions, outside the q-Gaussian family. These results suggest that scale-invariance might play an important role regarding the robustness of the q-Gaussian family.

  4. Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.

    PubMed

    Angom, D; Ghosh, S; Kota, V K B

    2004-01-01

    We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.

  5. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z; Terry, N; Hubbard, S S

    2013-02-12

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability distribution functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSim) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  6. Entropy-Bayesian Inversion of Time-Lapse Tomographic GPR data for Monitoring Dielectric Permittivity and Soil Moisture Variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhangshuan; Terry, Neil C.; Hubbard, Susan S.

    2013-02-22

    In this study, we evaluate the possibility of monitoring soil moisture variation using tomographic ground penetrating radar travel time data through Bayesian inversion, which is integrated with entropy memory function and pilot point concepts, as well as efficient sampling approaches. It is critical to accurately estimate soil moisture content and variations in vadose zone studies. Many studies have illustrated the promise and value of GPR tomographic data for estimating soil moisture and associated changes, however, challenges still exist in the inversion of GPR tomographic data in a manner that quantifies input and predictive uncertainty, incorporates multiple data types, handles non-uniquenessmore » and nonlinearity, and honors time-lapse tomograms collected in a series. To address these challenges, we develop a minimum relative entropy (MRE)-Bayesian based inverse modeling framework that non-subjectively defines prior probabilities, incorporates information from multiple sources, and quantifies uncertainty. The framework enables us to estimate dielectric permittivity at pilot point locations distributed within the tomogram, as well as the spatial correlation range. In the inversion framework, MRE is first used to derive prior probability density functions (pdfs) of dielectric permittivity based on prior information obtained from a straight-ray GPR inversion. The probability distributions are then sampled using a Quasi-Monte Carlo (QMC) approach, and the sample sets provide inputs to a sequential Gaussian simulation (SGSIM) algorithm that constructs a highly resolved permittivity/velocity field for evaluation with a curved-ray GPR forward model. The likelihood functions are computed as a function of misfits, and posterior pdfs are constructed using a Gaussian kernel. Inversion of subsequent time-lapse datasets combines the Bayesian estimates from the previous inversion (as a memory function) with new data. The memory function and pilot point design takes advantage of the spatial-temporal correlation of the state variables. We first apply the inversion framework to a static synthetic example and then to a time-lapse GPR tomographic dataset collected during a dynamic experiment conducted at the Hanford Site in Richland, WA. We demonstrate that the MRE-Bayesian inversion enables us to merge various data types, quantify uncertainty, evaluate nonlinear models, and produce more detailed and better resolved estimates than straight-ray based inversion; therefore, it has the potential to improve estimates of inter-wellbore dielectric permittivity and soil moisture content and to monitor their temporal dynamics more accurately.« less

  7. Short-term prediction of chaotic time series by using RBF network with regression weights.

    PubMed

    Rojas, I; Gonzalez, J; Cañas, A; Diaz, A F; Rojas, F J; Rodriguez, M

    2000-10-01

    We propose a framework for constructing and training a radial basis function (RBF) neural network. The structure of the gaussian functions is modified using a pseudo-gaussian function (PG) in which two scaling parameters sigma are introduced, which eliminates the symmetry restriction and provides the neurons in the hidden layer with greater flexibility with respect to function approximation. We propose a modified PG-BF (pseudo-gaussian basis function) network in which the regression weights are used to replace the constant weights in the output layer. For this purpose, a sequential learning algorithm is presented to adapt the structure of the network, in which it is possible to create a new hidden unit and also to detect and remove inactive units. A salient feature of the network systems is that the method used for calculating the overall output is the weighted average of the output associated with each receptive field. The superior performance of the proposed PG-BF system over the standard RBF are illustrated using the problem of short-term prediction of chaotic time series.

  8. Diffusion of Super-Gaussian Profiles

    ERIC Educational Resources Information Center

    Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.

    2007-01-01

    The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…

  9. Fresnel zone plate with apodized aperture for hard X-ray Gaussian beam optics.

    PubMed

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio; Itabashi, Seiichi; Oda, Masatoshi

    2017-05-01

    Fresnel zone plates with apodized apertures [apodization FZPs (A-FZPs)] have been developed to realise Gaussian beam optics in the hard X-ray region. The designed zone depth of A-FZPs gradually decreases from the center to peripheral regions. Such a zone structure forms a Gaussian-like smooth-shouldered aperture function which optically behaves as an apodization filter and produces a Gaussian-like focusing spot profile. Optical properties of two types of A-FZP, i.e. a circular type and a one-dimensional type, have been evaluated by using a microbeam knife-edge scan test, and have been carefully compared with those of normal FZP optics. Advantages of using A-FZPs are introduced.

  10. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase

    PubMed Central

    Lu, Kelin; Zhou, Rui

    2016-01-01

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications. PMID:27537883

  11. Sensor Fusion of Gaussian Mixtures for Ballistic Target Tracking in the Re-Entry Phase.

    PubMed

    Lu, Kelin; Zhou, Rui

    2016-08-15

    A sensor fusion methodology for the Gaussian mixtures model is proposed for ballistic target tracking with unknown ballistic coefficients. To improve the estimation accuracy, a track-to-track fusion architecture is proposed to fuse tracks provided by the local interacting multiple model filters. During the fusion process, the duplicate information is removed by considering the first order redundant information between the local tracks. With extensive simulations, we show that the proposed algorithm improves the tracking accuracy in ballistic target tracking in the re-entry phase applications.

  12. Ensemble Kalman filtering in presence of inequality constraints

    NASA Astrophysics Data System (ADS)

    van Leeuwen, P. J.

    2009-04-01

    Kalman filtering is presence of constraints is an active area of research. Based on the Gaussian assumption for the probability-density functions, it looks hard to bring in extra constraints in the formalism. On the other hand, in geophysical systems we often encounter constraints related to e.g. the underlying physics or chemistry, which are violated by the Gaussian assumption. For instance, concentrations are always non-negative, model layers have non-negative thickness, and sea-ice concentration is between 0 and 1. Several methods to bring inequality constraints into the Kalman-filter formalism have been proposed. One of them is probability density function (pdf) truncation, in which the Gaussian mass from the non-allowed part of the variables is just equally distributed over the pdf where the variables are alolwed, as proposed by Shimada et al. 1998. However, a problem with this method is that the probability that e.g. the sea-ice concentration is zero, is zero! The new method proposed here does not have this drawback. It assumes that the probability-density function is a truncated Gaussian, but the truncated mass is not distributed equally over all allowed values of the variables, but put into a delta distribution at the truncation point. This delta distribution can easily be handled with in Bayes theorem, leading to posterior probability density functions that are also truncated Gaussians with delta distributions at the truncation location. In this way a much better representation of the system is obtained, while still keeping most of the benefits of the Kalman-filter formalism. In the full Kalman filter the formalism is prohibitively expensive in large-scale systems, but efficient implementation is possible in ensemble variants of the kalman filter. Applications to low-dimensional systems and large-scale systems will be discussed.

  13. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering

    PubMed Central

    Schmidt, Nathan W.; Wong, Gerard C. L.

    2013-01-01

    Short cationic, amphipathic antimicrobial peptides are multi-functional molecules that have roles in host defense as direct microbicides and modulators of the immune response. While a general mechanism of microbicidal activity involves the selective disruption and permeabilization of cell membranes, the relationships between peptide sequence and membrane activity are still under investigation. Here, we review the diverse functions that AMPs collectively have in host defense, and show that these functions can be multiplexed with a membrane mechanism of activity derived from the generation of negative Gaussian membrane curvature. As AMPs preferentially generate this curvature in model bacterial cell membranes, the selective generation of negative Gaussian curvature provides AMPs with a broad mechanism to target microbial membranes. The amino acid constraints placed on AMPs by the geometric requirement to induce negative Gaussian curvature are consistent with known AMP sequences. This ‘saddle-splay curvature selection rule’ is not strongly restrictive so AMPs have significant compositional freedom to multiplex membrane activity with other useful functions. The observation that certain proteins involved in cellular processes which require negative Gaussian curvature contain domains with similar motifs as AMPs, suggests this rule may be applicable to other curvature-generating proteins. Since our saddle-splay curvature design rule is based upon both a mechanism of activity and the existing motifs of natural AMPs, we believe it will assist the development of synthetic antimicrobials. PMID:24778573

  14. Effect of Coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas.

    PubMed

    Gayen, Bishakhdatta; Alam, Meheboob

    2011-08-01

    From particle simulations of a sheared frictional granular gas, we show that the Coulomb friction can have dramatic effects on orientational correlation as well as on both the translational and angular velocity distribution functions even in the Boltzmann (dilute) limit. The dependence of orientational correlation on friction coefficient (μ) is found to be nonmonotonic, and the Coulomb friction plays a dual role of enhancing or diminishing the orientational correlation, depending on the value of the tangential restitution coefficient (which characterizes the roughness of particles). From the sticking limit (i.e., with no sliding contact) of rough particles, decreasing the Coulomb friction is found to reduce the density and spatial velocity correlations which, together with diminished orientational correlation for small enough μ, are responsible for the transition from non-gaussian to gaussian distribution functions in the double limit of small friction (μ→0) and nearly elastic particles (e→1). This double limit in fact corresponds to perfectly smooth particles, and hence the maxwellian (gaussian) is indeed a solution of the Boltzmann equation for a frictional granular gas in the limit of elastic collisions and zero Coulomb friction at any roughness. The high-velocity tails of both distribution functions seem to follow stretched exponentials even in the presence of Coulomb friction, and the related velocity exponents deviate strongly from a gaussian with increasing friction.

  15. Non-Gaussian bias: insights from discrete density peaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desjacques, Vincent; Riotto, Antonio; Gong, Jinn-Ouk, E-mail: Vincent.Desjacques@unige.ch, E-mail: jinn-ouk.gong@apctp.org, E-mail: Antonio.Riotto@unige.ch

    2013-09-01

    Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in which the halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastlymore » simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out that statistics of thresholded regions can be computed using the same formalism. Our results suggest that halo clustering statistics can be modelled consistently (in the sense that the Gaussian and non-Gaussian bias factors agree with peak-background split expectations) from a Lagrangian bias relation only if the latter is specified as a set of constraints imposed on the linear density field. This is clearly not the case of standard Lagrangian local bias. Therefore, one is led to consider additional variables beyond the local mass overdensity.« less

  16. Analysis of Flow and Transport in non-Gaussian Heterogeneous Formations Using a Generalized Sub-Gaussian Model

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Riva, M.; Neuman, S. P.

    2016-12-01

    Environmental quantities such as log hydraulic conductivity (or transmissivity), Y(x) = ln K(x), and their spatial (or temporal) increments, ΔY, are known to be generally non-Gaussian. Documented evidence of such behavior includes symmetry of increment distributions at all separation scales (or lags) between incremental values of Y with sharp peaks and heavy tails that decay asymptotically as lag increases. This statistical scaling occurs in porous as well as fractured media characterized by either one or a hierarchy of spatial correlation scales. In hierarchical media one observes a range of additional statistical ΔY scaling phenomena, all of which are captured comprehensibly by a novel generalized sub-Gaussian (GSG) model. In this model Y forms a mixture Y(x) = U(x) G(x) of single- or multi-scale Gaussian processes G having random variances, U being a non-negative subordinator independent of G. Elsewhere we developed ways to generate unconditional and conditional random realizations of isotropic or anisotropic GSG fields which can be embedded in numerical Monte Carlo flow and transport simulations. Here we present and discuss expressions for probability distribution functions of Y and ΔY as well as their lead statistical moments. We then focus on a simple flow setting of mean uniform steady state flow in an unbounded, two-dimensional domain, exploring ways in which non-Gaussian heterogeneity affects stochastic flow and transport descriptions. Our expressions represent (a) lead order autocovariance and cross-covariance functions of hydraulic head, velocity and advective particle displacement as well as (b) analogues of preasymptotic and asymptotic Fickian dispersion coefficients. We compare them with corresponding expressions developed in the literature for Gaussian Y.

  17. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    NASA Technical Reports Server (NTRS)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  18. Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.

    PubMed

    Tanaka, Takashi

    2017-04-15

    A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.

  19. Progress in calculating the potential energy surface of H3+.

    PubMed

    Adamowicz, Ludwik; Pavanello, Michele

    2012-11-13

    The most accurate electronic structure calculations are performed using wave function expansions in terms of basis functions explicitly dependent on the inter-electron distances. In our recent work, we use such basis functions to calculate a highly accurate potential energy surface (PES) for the H(3)(+) ion. The functions are explicitly correlated Gaussians, which include inter-electron distances in the exponent. Key to obtaining the high accuracy in the calculations has been the use of the analytical energy gradient determined with respect to the Gaussian exponential parameters in the minimization of the Rayleigh-Ritz variational energy functional. The effective elimination of linear dependences between the basis functions and the automatic adjustment of the positions of the Gaussian centres to the changing molecular geometry of the system are the keys to the success of the computational procedure. After adiabatic and relativistic corrections are added to the PES and with an effective accounting of the non-adiabatic effects in the calculation of the rotational/vibrational states, the experimental H(3)(+) rovibrational spectrum is reproduced at the 0.1 cm(-1) accuracy level up to 16,600 cm(-1) above the ground state.

  20. Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Michael

    Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less

  1. Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: two-loop approximation.

    PubMed

    Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L

    2005-01-01

    The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.

  2. A novel Gaussian-Sinc mixed basis set for electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.

    2015-08-14

    A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definablemore » and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.« less

  3. The best of both Reps—Diabatized Gaussians on adiabatic surfaces

    NASA Astrophysics Data System (ADS)

    Meek, Garrett A.; Levine, Benjamin G.

    2016-11-01

    When simulating nonadiabatic molecular dynamics, choosing an electronic representation requires consideration of well-known trade-offs. The uniqueness and spatially local couplings of the adiabatic representation come at the expense of an electronic wave function that changes discontinuously with nuclear motion and associated singularities in the nonadiabatic coupling matrix elements. The quasi-diabatic representation offers a smoothly varying wave function and finite couplings, but identification of a globally well-behaved quasi-diabatic representation is a system-specific challenge. In this work, we introduce the diabatized Gaussians on adiabatic surfaces (DGAS) approximation, a variant of the ab initio multiple spawning (AIMS) method that preserves the advantages of both electronic representations while avoiding their respective pitfalls. The DGAS wave function is expanded in a basis of vibronic functions that are continuous in both electronic and nuclear coordinates, but potentially discontinuous in time. Because the time-dependent Schrödinger equation contains only first-order derivatives with respect to time, singularities in the second-derivative nonadiabatic coupling terms (i.e., diagonal Born-Oppenheimer correction; DBOC) at conical intersections are rigorously absent, though singular time-derivative couplings remain. Interpolation of the electronic wave function allows the accurate prediction of population transfer probabilities even in the presence of the remaining singularities. We compare DGAS calculations of the dynamics of photoexcited ethene to AIMS calculations performed in the adiabatic representation, including the DBOC. The 28 fs excited state lifetime observed in DGAS simulations is considerably shorter than the 50 fs lifetime observed in the adiabatic simulations. The slower decay in the adiabatic representation is attributable to the large, repulsive DBOC in the neighborhood of conical intersections. These repulsive DBOC terms are artifacts of the discontinuities in the individual adiabatic vibronic basis functions and therefore cannot reflect the behavior of the exact molecular wave function, which must be continuous.

  4. The Laplace method for probability measures in Banach spaces

    NASA Astrophysics Data System (ADS)

    Piterbarg, V. I.; Fatalov, V. R.

    1995-12-01

    Contents §1. Introduction Chapter I. Asymptotic analysis of continual integrals in Banach space, depending on a large parameter §2. The large deviation principle and logarithmic asymptotics of continual integrals §3. Exact asymptotics of Gaussian integrals in Banach spaces: the Laplace method 3.1. The Laplace method for Gaussian integrals taken over the whole Hilbert space: isolated minimum points ([167], I) 3.2. The Laplace method for Gaussian integrals in Hilbert space: the manifold of minimum points ([167], II) 3.3. The Laplace method for Gaussian integrals in Banach space ([90], [174], [176]) 3.4. Exact asymptotics of large deviations of Gaussian norms §4. The Laplace method for distributions of sums of independent random elements with values in Banach space 4.1. The case of a non-degenerate minimum point ([137], I) 4.2. A degenerate isolated minimum point and the manifold of minimum points ([137], II) §5. Further examples 5.1. The Laplace method for the local time functional of a Markov symmetric process ([217]) 5.2. The Laplace method for diffusion processes, a finite number of non-degenerate minimum points ([116]) 5.3. Asymptotics of large deviations for Brownian motion in the Hölder norm 5.4. Non-asymptotic expansion of a strong stable law in Hilbert space ([41]) Chapter II. The double sum method - a version of the Laplace method in the space of continuous functions §6. Pickands' method of double sums 6.1. General situations 6.2. Asymptotics of the distribution of the maximum of a Gaussian stationary process 6.3. Asymptotics of the probability of a large excursion of a Gaussian non-stationary process §7. Probabilities of large deviations of trajectories of Gaussian fields 7.1. Homogeneous fields and fields with constant dispersion 7.2. Finitely many maximum points of dispersion 7.3. Manifold of maximum points of dispersion 7.4. Asymptotics of distributions of maxima of Wiener fields §8. Exact asymptotics of large deviations of the norm of Gaussian vectors and processes with values in the spaces L_k^p and l^2. Gaussian fields with the set of parameters in Hilbert space 8.1 Exact asymptotics of the distribution of the l_k^p-norm of a Gaussian finite-dimensional vector with dependent coordinates, p > 1 8.2. Exact asymptotics of probabilities of high excursions of trajectories of processes of type \\chi^2 8.3. Asymptotics of the probabilities of large deviations of Gaussian processes with a set of parameters in Hilbert space [74] 8.4. Asymptotics of distributions of maxima of the norms of l^2-valued Gaussian processes 8.5. Exact asymptotics of large deviations for the l^2-valued Ornstein-Uhlenbeck process Bibliography

  5. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.

  6. Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)].

    PubMed

    Song, Jong-Won; Hirao, Kimihiko

    2015-10-14

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.

  7. Beyond Roughness: Maximum-Likelihood Estimation of Topographic "Structure" on Venus and Elsewhere in the Solar System

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Eggers, G. L.; Lewis, K. W.; Olhede, S. C.

    2015-12-01

    What numbers "capture" topography? If stationary, white, and Gaussian: mean and variance. But "whiteness" is strong; we are led to a "baseline" over which to compute means and variances. We then have subscribed to topography as a correlated process, and to the estimation (noisy, afftected by edge effects) of the parameters of a spatial or spectral covariance function. What if the covariance function or the point process itself aren't Gaussian? What if the region under study isn't regularly shaped or sampled? How can results from differently sized patches be compared robustly? We present a spectral-domain "Whittle" maximum-likelihood procedure that circumvents these difficulties and answers the above questions. The key is the Matern form, whose parameters (variance, range, differentiability) define the shape of the covariance function (Gaussian, exponential, ..., are all special cases). We treat edge effects in simulation and in estimation. Data tapering allows for the irregular regions. We determine the estimation variance of all parameters. And the "best" estimate may not be "good enough": we test whether the "model" itself warrants rejection. We illustrate our methodology on geologically mapped patches of Venus. Surprisingly few numbers capture planetary topography. We derive them, with uncertainty bounds, we simulate "new" realizations of patches that look to the geologists exactly as if they were derived from similar processes. Our approach holds in 1, 2, and 3 spatial dimensions, and generalizes to multiple variables, e.g. when topography and gravity are being considered jointly (perhaps linked by flexural rigidity, erosion, or other surface and sub-surface modifying processes). Our results have widespread implications for the study of planetary topography in the Solar System, and are interpreted in the light of trying to derive "process" from "parameters", the end goal to assign likely formation histories for the patches under consideration. Our results should also be relevant for whomever needed to perform spatial interpolation or out-of-sample extension (e.g. kriging), machine learning and feature detection, on geological data. We present procedural details but focus on high-level results that have real-world implications for the study of Venus, Earth, other planets, and moons.

  8. Simple reaction time in 8-9-year old children environmentally exposed to PCBs.

    PubMed

    Šovčíková, Eva; Wimmerová, Soňa; Strémy, Maximilián; Kotianová, Janette; Loffredo, Christopher A; Murínová, Ľubica Palkovičová; Chovancová, Jana; Čonka, Kamil; Lancz, Kinga; Trnovec, Tomáš

    2015-12-01

    Simple reaction time (SRT) has been studied in children exposed to polychlorinated biphenyls (PCBs), with variable results. In the current work we examined SRT in 146 boys and 161 girls, aged 8.53 ± 0.65 years (mean ± SD), exposed to PCBs in the environment of eastern Slovakia. We divided the children into tertiles with regard to increasing PCB serum concentration. The mean ± SEM serum concentration of the sum of 15 PCB congeners was 191.15 ± 5.39, 419.23 ± 8.47, and 1315.12 ± 92.57 ng/g lipids in children of the first, second, and third tertiles, respectively. We created probability distribution plots for each child from their multiple trials of the SRT testing. We fitted response time distributions from all valid trials with the ex-Gaussian function, a convolution of a normal and an additional exponential function, providing estimates of three independent parameters μ, σ, and τ. μ is the mean of the normal component, σ is the standard deviation of the normal component, and τ is the mean of the exponential component. Group response time distributions were calculated using the Vincent averaging technique. A Q-Q plot comparing probability distribution of the first vs. third tertile indicated that deviation of the quantiles of the latter tertile from those of the former begins at the 40th percentile and does not show a positive acceleration. This was confirmed in comparison of the ex-Gaussian parameters of these two tertiles adjusted for sex, age, Raven IQ of the child, mother's and father's education, behavior at home and school, and BMI: the results showed that the parameters μ and τ significantly (p ≤ 0.05) increased with PCB exposure. Similar increases of the ex-Gaussian parameter τ in children suffering from ADHD have been previously reported and interpreted as intermittent attentional lapses, but were not seen in our cohort. Our study has confirmed that environmental exposure of children to PCBs is associated with prolongation of simple reaction time reflecting impairment of cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    PubMed

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman bands having unnormalized intensity/FWHM ratios lower than 200 counts/cm -1 .

  10. Novel palmprint representations for palmprint recognition

    NASA Astrophysics Data System (ADS)

    Li, Hengjian; Dong, Jiwen; Li, Jinping; Wang, Lei

    2015-02-01

    In this paper, we propose a novel palmprint recognition algorithm. Firstly, the palmprint images are represented by the anisotropic filter. The filters are built on Gaussian functions along one direction, and on second derivative of Gaussian functions in the orthogonal direction. Also, this choice is motivated by the optimal joint spatial and frequency localization of the Gaussian kernel. Therefore,they can better approximate the edge or line of palmprint images. A palmprint image is processed with a bank of anisotropic filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, subspace analysis is then applied to the feature vectors for dimension reduction as well as class separability. Experimental results on a public palmprint database show that the accuracy could be improved by the proposed novel representations, compared with Gabor.

  11. Vapor–Liquid Equilibrium and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-Spring versus Dipole Self-Consistent Field Approaches to Induced Polarization

    DOE PAGES

    Chialvo, Ariel A.; Moucka, Filip; Vlcek, Lukas; ...

    2015-03-24

    Here we implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. Moreover, for that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We also assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve againstmore » the corresponding quantities from the actual GCP water model.« less

  12. [Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].

    PubMed

    Chen, Hao; Yu, Haizhong

    2014-04-01

    Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.

  13. How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies.

    PubMed

    Jones, Kevin C; Seghal, Chandra M; Avery, Stephen

    2016-03-21

    The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic emissions.

  14. Analysis of mean seismic ground motion and its uncertainty based on the UCERF3 geologic slip rate model with uncertainty for California

    USGS Publications Warehouse

    Zeng, Yuehua

    2018-01-01

    The Uniform California Earthquake Rupture Forecast v.3 (UCERF3) model (Field et al., 2014) considers epistemic uncertainty in fault‐slip rate via the inclusion of multiple rate models based on geologic and/or geodetic data. However, these slip rates are commonly clustered about their mean value and do not reflect the broader distribution of possible rates and associated probabilities. Here, we consider both a double‐truncated 2σ Gaussian and a boxcar distribution of slip rates and use a Monte Carlo simulation to sample the entire range of the distribution for California fault‐slip rates. We compute the seismic hazard following the methodology and logic‐tree branch weights applied to the 2014 national seismic hazard model (NSHM) for the western U.S. region (Petersen et al., 2014, 2015). By applying a new approach developed in this study to the probabilistic seismic hazard analysis (PSHA) using precomputed rates of exceedance from each fault as a Green’s function, we reduce the computer time by about 10^5‐fold and apply it to the mean PSHA estimates with 1000 Monte Carlo samples of fault‐slip rates to compare with results calculated using only the mean or preferred slip rates. The difference in the mean probabilistic peak ground motion corresponding to a 2% in 50‐yr probability of exceedance is less than 1% on average over all of California for both the Gaussian and boxcar probability distributions for slip‐rate uncertainty but reaches about 18% in areas near faults compared with that calculated using the mean or preferred slip rates. The average uncertainties in 1σ peak ground‐motion level are 5.5% and 7.3% of the mean with the relative maximum uncertainties of 53% and 63% for the Gaussian and boxcar probability density function (PDF), respectively.

  15. A robust multi-kernel change detection framework for detecting leaf beetle defoliation using Landsat 7 ETM+ data

    NASA Astrophysics Data System (ADS)

    Anees, Asim; Aryal, Jagannath; O'Reilly, Małgorzata M.; Gale, Timothy J.; Wardlaw, Tim

    2016-12-01

    A robust non-parametric framework, based on multiple Radial Basic Function (RBF) kernels, is proposed in this study, for detecting land/forest cover changes using Landsat 7 ETM+ images. One of the widely used frameworks is to find change vectors (difference image) and use a supervised classifier to differentiate between change and no-change. The Bayesian Classifiers e.g. Maximum Likelihood Classifier (MLC), Naive Bayes (NB), are widely used probabilistic classifiers which assume parametric models, e.g. Gaussian function, for the class conditional distributions. However, their performance can be limited if the data set deviates from the assumed model. The proposed framework exploits the useful properties of Least Squares Probabilistic Classifier (LSPC) formulation i.e. non-parametric and probabilistic nature, to model class posterior probabilities of the difference image using a linear combination of a large number of Gaussian kernels. To this end, a simple technique, based on 10-fold cross-validation is also proposed for tuning model parameters automatically instead of selecting a (possibly) suboptimal combination from pre-specified lists of values. The proposed framework has been tested and compared with Support Vector Machine (SVM) and NB for detection of defoliation, caused by leaf beetles (Paropsisterna spp.) in Eucalyptus nitens and Eucalyptus globulus plantations of two test areas, in Tasmania, Australia, using raw bands and band combination indices of Landsat 7 ETM+. It was observed that due to multi-kernel non-parametric formulation and probabilistic nature, the LSPC outperforms parametric NB with Gaussian assumption in change detection framework, with Overall Accuracy (OA) ranging from 93.6% (κ = 0.87) to 97.4% (κ = 0.94) against 85.3% (κ = 0.69) to 93.4% (κ = 0.85), and is more robust to changing data distributions. Its performance was comparable to SVM, with added advantages of being probabilistic and capable of handling multi-class problems naturally with its original formulation.

  16. Statistics of multi-look AIRSAR imagery: A comparison of theory with measurements

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Hoppel, K. W.; Mango, S. A.

    1993-01-01

    The intensity and amplitude statistics of SAR images, such as L-Band HH for SEASAT and SIR-B, and C-Band VV for ERS-1 have been extensively investigated for various terrain, ground cover and ocean surfaces. Less well-known are the statistics between multiple channels of polarimetric of interferometric SAR's, especially for the multi-look processed data. In this paper, we investigate the probability density functions (PDF's) of phase differences, the magnitude of complex products and the amplitude ratios, between polarization channels (i.e. HH, HV, and VV) using 1-look and 4-look AIRSAR polarimetric data. Measured histograms are compared with theoretical PDF's which were recently derived based on a complex Gaussian model.

  17. Bayesian reconstruction of gravitational wave bursts using chirplets

    NASA Astrophysics Data System (ADS)

    Millhouse, Margaret; Cornish, Neil; Littenberg, Tyson

    2017-01-01

    The BayesWave algorithm has been shown to accurately reconstruct unmodeled short duration gravitational wave bursts and to distinguish between astrophysical signals and transient noise events. BayesWave does this by using a variable number of sine-Gaussian (Morlet) wavelets to reconstruct data in multiple interferometers. While the Morlet wavelets can be summed together to produce any possible waveform, there could be other wavelet functions that improve the performance. Because we expect most astrophysical gravitational wave signals to evolve in frequency, modified Morlet wavelets with linear frequency evolution - called chirplets - may better reconstruct signals with fewer wavelets. We compare the performance of BayesWave using Morlet wavelets and chirplets on a variety of simulated signals.

  18. Self-organisation of random oscillators with Lévy stable distributions

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Anderson, Johan

    2017-08-01

    A novel possibility of self-organized behaviour of stochastically driven oscillators is presented. It is shown that synchronization by Lévy stable processes is significantly more efficient than that by oscillators with Gaussian statistics. The impact of outlier events from the tail of the distribution function was examined by artificially introducing a few additional oscillators with very strong coupling strengths and it is found that remarkably even one such rare and extreme event may govern the long term behaviour of the coupled system. In addition to the multiplicative noise component, we have investigated the impact of an external additive Lévy distributed noise component on the synchronisation properties of the oscillators.

  19. Detecting compartmental non-Gaussian diffusion with symmetrized double-PFG MRI.

    PubMed

    Paulsen, Jeffrey L; Özarslan, Evren; Komlosh, Michal E; Basser, Peter J; Song, Yi-Qiao

    2015-11-01

    Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present symmetrized double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth cumulant (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics, and act as a novel source of contrast to better resolve tissue micro-structure. Copyright © 2015 John Wiley & Sons, Ltd.

  20. The Form, and Some Robustness Properties of Integrated Distance Estimators for Linear Models, Applied to Some Published Data Sets.

    DTIC Science & Technology

    1982-06-01

    observation in our framework is the pair (y,x) with x considered given. The influence function for 52 at the Gaussian distribution with mean xB and variance...3/2 - (1+22)o2 2) 1+2x\\/2 x’) 2(3-9) (1+2X) This influence function is bounded in the residual y-xS, and redescends to an asymptote greater than...version of the influence function for B at the Gaussian distribution, given the x. and x, is defined as the normalized differenceJ (see Barnett and

  1. Multi-Target Tracking Using an Improved Gaussian Mixture CPHD Filter.

    PubMed

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-11-23

    The cardinalized probability hypothesis density (CPHD) filter is an alternative approximation to the full multi-target Bayesian filter for tracking multiple targets. However, although the joint propagation of the posterior intensity and cardinality distribution in its recursion allows more reliable estimates of the target number than the PHD filter, the CPHD filter suffers from the spooky effect where there exists arbitrary PHD mass shifting in the presence of missed detections. To address this issue in the Gaussian mixture (GM) implementation of the CPHD filter, this paper presents an improved GM-CPHD filter, which incorporates a weight redistribution scheme into the filtering process to modify the updated weights of the Gaussian components when missed detections occur. In addition, an efficient gating strategy that can adaptively adjust the gate sizes according to the number of missed detections of each Gaussian component is also presented to further improve the computational efficiency of the proposed filter. Simulation results demonstrate that the proposed method offers favorable performance in terms of both estimation accuracy and robustness to clutter and detection uncertainty over the existing methods.

  2. Cosine-Gaussian Schell-model sources.

    PubMed

    Mei, Zhangrong; Korotkova, Olga

    2013-07-15

    We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.

  3. Intermittent nature of solar wind turbulence near the Earth's bow shock: phase coherence and non-Gaussianity.

    PubMed

    Koga, D; Chian, A C-L; Miranda, R A; Rempel, E L

    2007-04-01

    The link between phase coherence and non-Gaussian statistics is investigated using magnetic field data observed in the solar wind turbulence near the Earth's bow shock. The phase coherence index Cphi, which characterizes the degree of phase correlation (i.e., nonlinear wave-wave interactions) among scales, displays a behavior similar to kurtosis and reflects a departure from Gaussianity in the probability density functions of magnetic field fluctuations. This demonstrates that nonlinear interactions among scales are the origin of intermittency in the magnetic field turbulence.

  4. Multidimensional Hermite-Gaussian quadrature formulae and their application to nonlinear estimation

    NASA Technical Reports Server (NTRS)

    Mcreynolds, S. R.

    1975-01-01

    A simplified technique is proposed for calculating multidimensional Hermite-Gaussian quadratures that involves taking the square root of a matrix by the Cholesky algorithm rather than computation of the eigenvectors of the matrix. Ways of reducing the dimension, number, and order of the quadratures are set forth. If the function f(x) under the integral sign is not well approximated by a low-order algebraic expression, the order of the quadrature may be reduced by factoring f(x) into an expression that is nearly algebraic and one that is Gaussian.

  5. Statistical description of turbulent transport for flux driven toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.

    2017-06-01

    A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.

  6. Fractional Fourier transform of truncated elliptical Gaussian beams.

    PubMed

    Du, Xinyue; Zhao, Daomu

    2006-12-20

    Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.

  7. Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes.

    PubMed

    Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon

    2017-12-01

    Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.

  8. Lensing of the CMB: non-Gaussian aspects.

    PubMed

    Zaldarriaga, M

    2001-06-01

    We compute the small angle limit of the three- and four-point function of the cosmic microwave background (CMB) temperature induced by the gravitational lensing effect by the large-scale structure of the universe. We relate the non-Gaussian aspects presented in this paper with those in our previous studies of the lensing effects. We interpret the statistics proposed in previous work in terms of different configurations of the four-point function and show how they relate to the statistic that maximizes the S/N.

  9. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    PubMed Central

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  10. Phase retrieval of images using Gaussian radial bases.

    PubMed

    Trahan, Russell; Hyland, David

    2013-12-20

    Here, the possibility of a noniterative solution to the phase retrieval problem is explored. A new look is taken at the phase retrieval problem that reveals that knowledge of a diffraction pattern's frequency components is enough to recover the image without projective iterations. This occurs when the image is formed using Gaussian bases that give the convenience of a continuous Fourier transform existing in a compact form where square pixels do not. The Gaussian bases are appropriate when circular apertures are used to detect the diffraction pattern because of their optical transfer functions, as discussed briefly. An algorithm is derived that is capable of recovering an image formed by Gaussian bases from only the Fourier transform's modulus, without background constraints. A practical example is shown.

  11. Actin filaments growing against an elastic membrane: Effect of membrane tension

    NASA Astrophysics Data System (ADS)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ <μ* the system fails to reach a steady state and the membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  12. Probabilistic analysis and fatigue damage assessment of offshore mooring system due to non-Gaussian bimodal tension processes

    NASA Astrophysics Data System (ADS)

    Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng

    2017-08-01

    Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.

  13. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il; Lomakin, V., E-mail: vlomakin@eng.ucsd.edu

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii)more » furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.« less

  14. Log-amplitude variance and wave structure function: A new perspective for Gaussian beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.B.; Ricklin, J.C.; Andrews, L.C.

    1993-04-01

    Two naturally linked pairs of nondimensional parameters are identified such that either pair, together with wavelength and path length, completely specifies the diffractive propagation environment for a lowest-order paraxial Gaussian beam. Both parameter pairs are intuitive, and within the context of locally homogeneous and isotropic turbulence they reflect the long-recognized importance of the Fresnel zone size in the behavior of Rytov propagation statistics. These parameter pairs, called, respectively, the transmitter and receiver parameters, also provide a change in perspective in the analysis of optical turbulence effects on Gaussian beams by unifying a number of behavioral traits previously observed or predicted,more » and they create an environment in which the determination of limiting interrelationships between beam forms is especially simple. The fundamental nature of the parameter pairs becomes apparent in the derived analytical expressions for the log-amplitude variance and the wave structure function. These expressions verify general optical turbulence-related characteristics predicted for Gaussian beams, provide additional insights into beam-wave behavior, and are convenient tools for beam-wave analysis. 22 refs., 10 figs., 2 tabs.« less

  15. DC and analog/RF performance optimisation of source pocket dual work function TFET

    NASA Astrophysics Data System (ADS)

    Raad, Bhagwan Ram; Sharma, Dheeraj; Kondekar, Pravin; Nigam, Kaushal; Baronia, Sagar

    2017-12-01

    We investigate a systematic study of source pocket tunnel field-effect transistor (SP TFET) with dual work function of single gate material by using uniform and Gaussian doping profile in the drain region for ultra-low power high frequency high speed applications. For this, a n+ doped region is created near the source/channel junction to decrease the depletion width results in improvement of ON-state current. However, the dual work function of the double gate is used for enhancement of the device performance in terms of DC and analog/RF parameters. Further, to improve the high frequency performance of the device, Gaussian doping profile is considered in the drain region with different characteristic lengths which decreases the gate to drain capacitance and leads to drastic improvement in analog/RF figures of merit. Furthermore, the optimisation is performed with different concentrations for uniform and Gaussian drain doping profile and for various sectional length of lower work function of the gate electrode. Finally, the effect of temperature variation on the device performance is demonstrated.

  16. A Prediction Model for Functional Outcomes in Spinal Cord Disorder Patients Using Gaussian Process Regression.

    PubMed

    Lee, Sunghoon Ivan; Mortazavi, Bobak; Hoffman, Haydn A; Lu, Derek S; Li, Charles; Paak, Brian H; Garst, Jordan H; Razaghy, Mehrdad; Espinal, Marie; Park, Eunjeong; Lu, Daniel C; Sarrafzadeh, Majid

    2016-01-01

    Predicting the functional outcomes of spinal cord disorder patients after medical treatments, such as a surgical operation, has always been of great interest. Accurate posttreatment prediction is especially beneficial for clinicians, patients, care givers, and therapists. This paper introduces a prediction method for postoperative functional outcomes by a novel use of Gaussian process regression. The proposed method specifically considers the restricted value range of the target variables by modeling the Gaussian process based on a truncated Normal distribution, which significantly improves the prediction results. The prediction has been made in assistance with target tracking examinations using a highly portable and inexpensive handgrip device, which greatly contributes to the prediction performance. The proposed method has been validated through a dataset collected from a clinical cohort pilot involving 15 patients with cervical spinal cord disorder. The results show that the proposed method can accurately predict postoperative functional outcomes, Oswestry disability index and target tracking scores, based on the patient's preoperative information with a mean absolute error of 0.079 and 0.014 (out of 1.0), respectively.

  17. Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Konstanze R., E-mail: konstanze.hahn@dsf.unica.it; Cecchi, Stefano; Colombo, Luciano

    2016-05-16

    The effect of the chemical composition in Si/Ge-based superlattices on their thermal conductivity has been investigated using molecular dynamics simulations. Simulation cells of Ge/SiGe superlattices have been generated with different concentration profiles such that the Si concentration follows a step-like, a tooth-saw, a Gaussian, and a gamma-type function in direction of the heat flux. The step-like and tooth-saw profiles mimic ideally sharp interfaces, whereas Gaussian and gamma-type profiles are smooth functions imitating atomic diffusion at the interface as obtained experimentally. Symmetry effects have been investigated comparing the symmetric profiles of the step-like and the Gaussian function to the asymmetric profilesmore » of the tooth-saw and the gamma-type function. At longer sample length and similar degree of interdiffusion, the thermal conductivity is found to be lower in asymmetric profiles. Furthermore, it is found that with smooth concentration profiles where atomic diffusion at the interface takes place the thermal conductivity is higher compared to systems with atomically sharp concentration profiles.« less

  18. Realistic continuous-variable quantum teleportation with non-Gaussian resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, F.; De Siena, S.; CNR-INFM Coherentia, Napoli, Italy, and CNISM and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Baronissi, SA

    2010-01-15

    We present a comprehensive investigation of nonideal continuous-variable quantum teleportation implemented with entangled non-Gaussian resources. We discuss in a unified framework the main decoherence mechanisms, including imperfect Bell measurements and propagation of optical fields in lossy fibers, applying the formalism of the characteristic function. By exploiting appropriate displacement strategies, we compute analytically the success probability of teleportation for input coherent states and two classes of non-Gaussian entangled resources: two-mode squeezed Bell-like states (that include as particular cases photon-added and photon-subtracted de-Gaussified states), and two-mode squeezed catlike states. We discuss the optimization procedure on the free parameters of the non-Gaussian resourcesmore » at fixed values of the squeezing and of the experimental quantities determining the inefficiencies of the nonideal protocol. It is found that non-Gaussian resources enhance significantly the efficiency of teleportation and are more robust against decoherence than the corresponding Gaussian ones. Partial information on the alphabet of input states allows further significant improvement in the performance of the nonideal teleportation protocol.« less

  19. Separation of components from a scale mixture of Gaussian white noises

    NASA Astrophysics Data System (ADS)

    Vamoş, Călin; Crăciun, Maria

    2010-05-01

    The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.

  20. On the insufficiency of arbitrarily precise covariance matrices: non-Gaussian weak-lensing likelihoods

    NASA Astrophysics Data System (ADS)

    Sellentin, Elena; Heavens, Alan F.

    2018-01-01

    We investigate whether a Gaussian likelihood, as routinely assumed in the analysis of cosmological data, is supported by simulated survey data. We define test statistics, based on a novel method that first destroys Gaussian correlations in a data set, and then measures the non-Gaussian correlations that remain. This procedure flags pairs of data points that depend on each other in a non-Gaussian fashion, and thereby identifies where the assumption of a Gaussian likelihood breaks down. Using this diagnosis, we find that non-Gaussian correlations in the CFHTLenS cosmic shear correlation functions are significant. With a simple exclusion of the most contaminated data points, the posterior for s8 is shifted without broadening, but we find no significant reduction in the tension with s8 derived from Planck cosmic microwave background data. However, we also show that the one-point distributions of the correlation statistics are noticeably skewed, such that sound weak-lensing data sets are intrinsically likely to lead to a systematically low lensing amplitude being inferred. The detected non-Gaussianities get larger with increasing angular scale such that for future wide-angle surveys such as Euclid or LSST, with their very small statistical errors, the large-scale modes are expected to be increasingly affected. The shifts in posteriors may then not be negligible and we recommend that these diagnostic tests be run as part of future analyses.

  1. Q (Alpha) Function and Squeezing Effect

    NASA Technical Reports Server (NTRS)

    Yunjie, Xia; Xianghe, Kong; Kezhu, Yan; Wanping, Chen

    1996-01-01

    The relation of squeezing and Q(alpha) function is discussed in this paper. By means of Q function, the squeezing of field with gaussian Q(alpha) function or negative P(a)function is also discussed in detail.

  2. The effects of the one-step replica symmetry breaking on the Sherrington-Kirkpatrick spin glass model in the presence of random field with a joint Gaussian probability density function for the exchange interactions and random fields

    NASA Astrophysics Data System (ADS)

    Hadjiagapiou, Ioannis A.; Velonakis, Ioannis N.

    2018-07-01

    The Sherrington-Kirkpatrick Ising spin glass model, in the presence of a random magnetic field, is investigated within the framework of the one-step replica symmetry breaking. The two random variables (exchange integral interaction Jij and random magnetic field hi) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ, assuming positive and negative values. The thermodynamic properties, the three different phase diagrams and system's parameters are computed with respect to the natural parameters of the joint Gaussian probability density function at non-zero and zero temperatures. The low temperature negative entropy controversy, a result of the replica symmetry approach, has been partly remedied in the current study, leading to a less negative result. In addition, the present system possesses two successive spin glass phase transitions with characteristic temperatures.

  3. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion

    NASA Astrophysics Data System (ADS)

    Zou, Cuiming; Kou, Kit Ian

    2018-05-01

    Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.

  5. A comparative study of nonparametric methods for pattern recognition

    NASA Technical Reports Server (NTRS)

    Hahn, S. F.; Nelson, G. D.

    1972-01-01

    The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal.

  6. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    NASA Astrophysics Data System (ADS)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  7. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixing; Yang, LV; Xu, Kele

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape -more » to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.« less

  8. Gaussian windows: A tool for exploring multivariate data

    NASA Technical Reports Server (NTRS)

    Jaeckel, Louis A.

    1990-01-01

    Presented here is a method for interactively exploring a large set of quantitative multivariate data, in order to estimate the shape of the underlying density function. It is assumed that the density function is more or less smooth, but no other specific assumptions are made concerning its structure. The local structure of the data in a given region may be examined by viewing the data through a Gaussian window, whose location and shape are chosen by the user. A Gaussian window is defined by giving each data point a weight based on a multivariate Gaussian function. The weighted sample mean and sample covariance matrix are then computed, using the weights attached to the data points. These quantities are used to compute an estimate of the shape of the density function in the window region. The local structure of the data is described by a method similar to the method of principal components. By taking many such local views of the data, we can form an idea of the structure of the data set. The method is applicable in any number of dimensions. The method can be used to find and describe simple structural features such as peaks, valleys, and saddle points in the density function, and also extended structures in higher dimensions. With some practice, we can apply our geometrical intuition to these structural features in any number of dimensions, so that we can think about and describe the structure of the data. Since the computations involved are relatively simple, the method can easily be implemented on a small computer.

  9. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    PubMed

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  10. Gaussian process surrogates for failure detection: A Bayesian experimental design approach

    NASA Astrophysics Data System (ADS)

    Wang, Hongqiao; Lin, Guang; Li, Jinglai

    2016-05-01

    An important task of uncertainty quantification is to identify the probability of undesired events, in particular, system failures, caused by various sources of uncertainties. In this work we consider the construction of Gaussian process surrogates for failure detection and failure probability estimation. In particular, we consider the situation that the underlying computer models are extremely expensive, and in this setting, determining the sampling points in the state space is of essential importance. We formulate the problem as an optimal experimental design for Bayesian inferences of the limit state (i.e., the failure boundary) and propose an efficient numerical scheme to solve the resulting optimization problem. In particular, the proposed limit-state inference method is capable of determining multiple sampling points at a time, and thus it is well suited for problems where multiple computer simulations can be performed in parallel. The accuracy and performance of the proposed method is demonstrated by both academic and practical examples.

  11. Closed-Form Jensen-Renyi Divergence for Mixture of Gaussians and Applications to Group-Wise Shape Registration*

    PubMed Central

    Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C.; Beymer, David; Rangarajan, Anand

    2010-01-01

    In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions – specifically Mixture of Gaussians – estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes. PMID:20426043

  12. Closed-form Jensen-Renyi divergence for mixture of Gaussians and applications to group-wise shape registration.

    PubMed

    Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C; Beymer, David; Rangarajan, Anand

    2009-01-01

    In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions--specifically Mixture of Gaussians--estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes.

  13. Anisotropic non-gaussianity from rotational symmetry breaking excited initial states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashoorioon, Amjad; Casadio, Roberto; Dipartimento di Fisica e Astronomia, Alma Mater Università di Bologna,via Irnerio 46, 40126 Bologna

    2016-12-01

    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B|≲0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. Inmore » the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and ϵ≃0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach f{sub NL}∼30 in the preferred direction while disappearing from the correlations in the orthogonal plane.« less

  14. Multiple lobes in the far-field distribution of terahertz quantum-cascade lasers due to self-interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Röben, B., E-mail: roeben@pdi-berlin.de; Wienold, M.; Schrottke, L.

    2016-06-15

    The far-field distribution of the emission intensity of terahertz (THz) quantum-cascade lasers (QCLs) frequently exhibits multiple lobes instead of a single-lobed Gaussian distribution. We show that such multiple lobes can result from self-interference related to the typically large beam divergence of THz QCLs and the presence of an inevitable cryogenic operation environment including optical windows. We develop a quantitative model to reproduce the multiple lobes. We also demonstrate how a single-lobed far-field distribution can be achieved.

  15. Parallel Gaussian elimination of a block tridiagonal matrix using multiple microcomputers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.

    1989-01-01

    The solution of a block tridiagonal matrix using parallel processing is demonstrated. The multiprocessor system on which results were obtained and the software environment used to program that system are described. Theoretical partitioning and resource allocation for the Gaussian elimination method used to solve the matrix are discussed. The results obtained from running 1, 2 and 3 processor versions of the block tridiagonal solver are presented. The PASCAL source code for these solvers is given in the appendix, and may be transportable to other shared memory parallel processors provided that the synchronization outlines are reproduced on the target system.

  16. Strong subadditivity for log-determinant of covariance matrices and its applications

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Simon, R.

    2016-08-01

    We prove that the log-determinant of the covariance matrix obeys the strong subadditivity inequality for arbitrary tripartite states of multimode continuous variable quantum systems. This establishes general limitations on the distribution of information encoded in the second moments of canonically conjugate operators. The inequality is shown to be stronger than the conventional strong subadditivity inequality for von Neumann entropy in a class of pure tripartite Gaussian states. We finally show that such an inequality implies a strict monogamy-type constraint for joint Einstein-Podolsky-Rosen steerability of single modes by Gaussian measurements performed on multiple groups of modes.

  17. A stochastic-geometric model of soil variation in Pleistocene patterned ground

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc

    2013-04-01

    In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.

  18. Cigar-shaped quarkonia under strong magnetic field

    NASA Astrophysics Data System (ADS)

    Suzuki, Kei; Yoshida, Tetsuya

    2016-03-01

    Heavy quarkonia in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the anisotropic wave functions are expanded by a Gaussian basis in the cylindrical coordinates. Deformation of the wave functions and the mass shifts of the S-wave heavy quarkonia (ηc, J /ψ , ηc(2 S ), ψ (2 S ) and bottomonia) are examined for the wide range of external magnetic field. The spatial structure of the wave functions changes drastically as adjacent energy levels cross each other. Possible observables in heavy-ion collision experiments and future lattice QCD simulations are also discussed.

  19. Propagation properties of hollow sinh-Gaussian beams through fractional Fourier transform optical systems

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Jiang, ShengBao; Jiang, Chun; Zhu, Haibin

    2014-07-01

    A hollow sinh-Gaussian beam (HsG) is an appropriate model to describe the dark-hollow beam. Based on Collins integral formula and the fact that a hard-edged-aperture function can be expanded into a finite sum of complex Gaussian functions, the propagation properties of a HsG beam passing through fractional Fourier transform (FRFT) optical systems with and without apertures have been studied in detail by some typical numerical examples. The results obtained using the approximate analytical formula are in good agreement with those obtained using numerical integral calculation. Further, the studies indicate that the normalized intensity distribution of the HsG beam in FRFT plane is closely related with not only the fractional order but also the beam order and the truncation parameter. The FRFT optical systems provide a convenient way for laser beam shaping.

  20. A sharp interpolation between the Hölder and Gaussian Young inequalities

    NASA Astrophysics Data System (ADS)

    da Pelo, Paolo; Lanconelli, Alberto; Stan, Aurel I.

    2016-03-01

    We prove a very general sharp inequality of the Hölder-Young-type for functions defined on infinite dimensional Gaussian spaces. We begin by considering a family of commutative products for functions which interpolates between the pointwise and Wick products; this family arises naturally in the context of stochastic differential equations, through Wong-Zakai-type approximation theorems, and plays a key role in some generalizations of the Beckner-type Poincaré inequality. We then obtain a crucial integral representation for that family of products which is employed, together with a generalization of the classic Young inequality due to Lieb, to prove our main theorem. We stress that our main inequality contains as particular cases the Hölder inequality and Nelson’s hyper-contractive estimate, thus providing a unified framework for two fundamental results of the Gaussian analysis.

  1. PAREMD: A parallel program for the evaluation of momentum space properties of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Meena, Deep Raj; Gadre, Shridhar R.; Balanarayan, P.

    2018-03-01

    The present work describes a code for evaluating the electron momentum density (EMD), its moments and the associated Shannon information entropy for a multi-electron molecular system. The code works specifically for electronic wave functions obtained from traditional electronic structure packages such as GAMESS and GAUSSIAN. For the momentum space orbitals, the general expression for Gaussian basis sets in position space is analytically Fourier transformed to momentum space Gaussian basis functions. The molecular orbital coefficients of the wave function are taken as an input from the output file of the electronic structure calculation. The analytic expressions of EMD are evaluated over a fine grid and the accuracy of the code is verified by a normalization check and a numerical kinetic energy evaluation which is compared with the analytic kinetic energy given by the electronic structure package. Apart from electron momentum density, electron density in position space has also been integrated into this package. The program is written in C++ and is executed through a Shell script. It is also tuned for multicore machines with shared memory through OpenMP. The program has been tested for a variety of molecules and correlated methods such as CISD, Møller-Plesset second order (MP2) theory and density functional methods. For correlated methods, the PAREMD program uses natural spin orbitals as an input. The program has been benchmarked for a variety of Gaussian basis sets for different molecules showing a linear speedup on a parallel architecture.

  2. Multiple-quantum spin counting in magic-angle-spinning NMR via low-power symmetry-based dipolar recoupling

    NASA Astrophysics Data System (ADS)

    Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias

    2013-11-01

    By using a symmetry-based R281R28-1 double-quantum (2Q) dipolar recoupling sequence, we demonstrate high-order multiple-quantum coherence (MQC) excitation at fast magic-angle spinning (MAS) frequencies up to 34 kHz. This scheme combines several attractive features, such as a relatively high dipolar scaling factor, good compensation to rf-errors, isotropic and anisotropic chemical shifts, as well as an ultra-low radio-frequency (rf) power requirement. The latter translates into nutation frequencies below 30 kHz for MAS rates up to 60 kHz, thereby permitting rf application for very long excitation periods without risk of damaging the NMR probehead or sample, while the compensation to chemical shifts improves as the MAS rate increases. 31P MQC spin counting is demonstrated on powders of calcium hydroxyapatite (Ca5(PO4)3OH) and anhydrous sodium diphosphate (Na4P2O7), from which all even coherence orders up to 30 and 14 were detected, respectively, over the respective MAS ranges of 15-24 kHz and 20-34 kHz. The amplitude distributions among the 31P MQC orders depend on the precise nutation frequency during recoupling, despite that the highest detected order was relatively insensitive to this parameter. An observed gradual transition from a Gaussian to exponential functionality of the MQC amplitude-profile is discussed in relation to the prevailing approach to derive spin-cluster sizes by fitting the MQC amplitude-distribution to a Gaussian decay, where minor systematic deviations between the model and experimental data are frequently reported.

  3. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  4. Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc

    2018-02-01

    Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.

  5. Double Wigner distribution function of a first-order optical system with a hard-edge aperture.

    PubMed

    Pan, Weiqing

    2008-01-01

    The effect of an apertured optical system on Wigner distribution can be expressed as a superposition integral of the input Wigner distribution function and the double Wigner distribution function of the apertured optical system. By introducing a hard aperture function into a finite sum of complex Gaussian functions, the double Wigner distribution functions of a first-order optical system with a hard aperture outside and inside it are derived. As an example of application, the analytical expressions of the Wigner distribution for a Gaussian beam passing through a spatial filtering optical system with an internal hard aperture are obtained. The analytical results are also compared with the numerical integral results, and they show that the analytical results are proper and ascendant.

  6. Comparative Analysis of Membership Function on Mamdani Fuzzy Inference System for Decision Making

    NASA Astrophysics Data System (ADS)

    harliana, Putri; Rahim, Robbi

    2017-12-01

    Membership function is a curve that shows mapping the input data points into the value or degree of membership which has an interval between 0 and 1. One way to get membership value is through a function approach. There are some membership functions can be used on mamdani fuzzy inference system. They are triangular, trapezoid, singleton, sigmoid, Gaussian, etc. In this paper only discuss three membership functions, are triangular, trapezoid and Gaussian. These three membership functions will be compared to see the difference in parameter values and results obtained. For case study in this paper is admission of students at popular school. There are three variable can be used, they are students’ report, IQ score and parents’ income. Which will then be created if-then rules.

  7. Large deviations and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major item is that risk, usually thought of as one-dimensional in the conventional mean-variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramér for large deviations in this context. We first treat a simple model with a single risky asset that exemplifies the distinction between the average return and the typical return and the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe daily price variations reasonably well. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean-variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.

  8. Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2015-03-01

    Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.

  9. Automatic image equalization and contrast enhancement using Gaussian mixture modeling.

    PubMed

    Celik, Turgay; Tjahjadi, Tardi

    2012-01-01

    In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.

  10. Peelle's pertinent puzzle using the Monte Carlo technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Toshihiko; Talou, Patrick; Burr, Thomas

    2009-01-01

    We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, andmore » if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.« less

  11. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.

    PubMed

    Tang, Jian; Jiang, Xiaoliang

    2017-01-01

    Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.

  12. Addendum to foundations of multidimensional wave field signal theory: Gaussian source function

    NASA Astrophysics Data System (ADS)

    Baddour, Natalie

    2018-02-01

    Many important physical phenomena are described by wave or diffusion-wave type equations. Recent work has shown that a transform domain signal description from linear system theory can give meaningful insight to multi-dimensional wave fields. In N. Baddour [AIP Adv. 1, 022120 (2011)], certain results were derived that are mathematically useful for the inversion of multi-dimensional Fourier transforms, but more importantly provide useful insight into how source functions are related to the resulting wave field. In this short addendum to that work, it is shown that these results can be applied with a Gaussian source function, which is often useful for modelling various physical phenomena.

  13. The exact eigenfunctions and eigenvalues of a two-dimensional rigid rotor obtained using Gaussian wave packet dynamics

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Heller, E. J.

    1985-01-01

    Exact eigenfunctions for a two-dimensional rigid rotor are obtained using Gaussian wave packet dynamics. The wave functions are obtained by propagating, without approximation, an infinite set of Gaussian wave packets that collectively have the correct periodicity, being coherent states appropriate to this rotational problem. This result leads to a numerical method for the semiclassical calculation of rovibrational, molecular eigenstates. Also, a simple, almost classical, approximation to full wave packet dynamics is shown to give exact results: this leads to an a posteriori justification of the De Leon-Heller spectral quantization method.

  14. Reduced Wiener Chaos representation of random fields via basis adaptation and projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsilifis, Panagiotis, E-mail: tsilifis@usc.edu; Department of Civil Engineering, University of Southern California, Los Angeles, CA 90089; Ghanem, Roger G., E-mail: ghanem@usc.edu

    2017-07-15

    A new characterization of random fields appearing in physical models is presented that is based on their well-known Homogeneous Chaos expansions. We take advantage of the adaptation capabilities of these expansions where the core idea is to rotate the basis of the underlying Gaussian Hilbert space, in order to achieve reduced functional representations that concentrate the induced probability measure in a lower dimensional subspace. For a smooth family of rotations along the domain of interest, the uncorrelated Gaussian inputs are transformed into a Gaussian process, thus introducing a mesoscale that captures intermediate characteristics of the quantity of interest.

  15. Reduced Wiener Chaos representation of random fields via basis adaptation and projection

    NASA Astrophysics Data System (ADS)

    Tsilifis, Panagiotis; Ghanem, Roger G.

    2017-07-01

    A new characterization of random fields appearing in physical models is presented that is based on their well-known Homogeneous Chaos expansions. We take advantage of the adaptation capabilities of these expansions where the core idea is to rotate the basis of the underlying Gaussian Hilbert space, in order to achieve reduced functional representations that concentrate the induced probability measure in a lower dimensional subspace. For a smooth family of rotations along the domain of interest, the uncorrelated Gaussian inputs are transformed into a Gaussian process, thus introducing a mesoscale that captures intermediate characteristics of the quantity of interest.

  16. Gaussian statistics for palaeomagnetic vectors

    USGS Publications Warehouse

    Love, J.J.; Constable, C.G.

    2003-01-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  17. Gaussian statistics for palaeomagnetic vectors

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Constable, C. G.

    2003-03-01

    With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.

  18. Stable Lévy motion with inverse Gaussian subordinator

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Wyłomańska, A.; Gajda, J.

    2017-09-01

    In this paper we study the stable Lévy motion subordinated by the so-called inverse Gaussian process. This process extends the well known normal inverse Gaussian (NIG) process introduced by Barndorff-Nielsen, which arises by subordinating ordinary Brownian motion (with drift) with inverse Gaussian process. The NIG process found many interesting applications, especially in financial data description. We discuss here the main features of the introduced subordinated process, such as distributional properties, existence of fractional order moments and asymptotic tail behavior. We show the connection of the process with continuous time random walk. Further, the governing fractional partial differential equations for the probability density function is also obtained. Moreover, we discuss the asymptotic distribution of sample mean square displacement, the main tool in detection of anomalous diffusion phenomena (Metzler et al., 2014). In order to apply the stable Lévy motion time-changed by inverse Gaussian subordinator we propose a step-by-step procedure of parameters estimation. At the end, we show how the examined process can be useful to model financial time series.

  19. Ince Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei; Guo, Qi

    2008-07-01

    Based on the Snyder-Mitchell model that describes the beam propagation in strongly nonlocal nonlinear media, the close forms of Ince-Gaussian (IG) beams have been found. The transverse structures of the IG beams are described by the product of the Ince polynomials and the Gaussian function. Depending on the input power of the beams, the IG beams can be either a soliton state or a breather state. The IG beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian beams. The IG vortex beams can be constructed by a linear combination of the even and odd IG beams. The transverse intensity pattern of IG vortex beams consists of elliptic rings, whose number and ellipticity can be controlled, and a phase displaying a number of in-line vortices, each with a unitary topological charge. The analytical solutions of the IG beams are confirmed by the numerical simulations of the nonlocal nonlinear Schr\\rm \\ddot{o} dinger equation.

  20. Extinction time of a stochastic predator-prey model by the generalized cell mapping method

    NASA Astrophysics Data System (ADS)

    Han, Qun; Xu, Wei; Hu, Bing; Huang, Dongmei; Sun, Jian-Qiao

    2018-03-01

    The stochastic response and extinction time of a predator-prey model with Gaussian white noise excitations are studied by the generalized cell mapping (GCM) method based on the short-time Gaussian approximation (STGA). The methods for stochastic response probability density functions (PDFs) and extinction time statistics are developed. The Taylor expansion is used to deal with non-polynomial nonlinear terms of the model for deriving the moment equations with Gaussian closure, which are needed for the STGA in order to compute the one-step transition probabilities. The work is validated with direct Monte Carlo simulations. We have presented the transient responses showing the evolution from a Gaussian initial distribution to a non-Gaussian steady-state one. The effects of the model parameter and noise intensities on the steady-state PDFs are discussed. It is also found that the effects of noise intensities on the extinction time statistics are opposite to the effects on the limit probability distributions of the survival species.

  1. AUTONOMOUS GAUSSIAN DECOMPOSITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocitymore » width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.« less

  2. Bayes multiple decision functions.

    PubMed

    Wu, Wensong; Peña, Edsel A

    2013-01-01

    This paper deals with the problem of simultaneously making many ( M ) binary decisions based on one realization of a random data matrix X . M is typically large and X will usually have M rows associated with each of the M decisions to make, but for each row the data may be low dimensional. Such problems arise in many practical areas such as the biological and medical sciences, where the available dataset is from microarrays or other high-throughput technology and with the goal being to decide which among of many genes are relevant with respect to some phenotype of interest; in the engineering and reliability sciences; in astronomy; in education; and in business. A Bayesian decision-theoretic approach to this problem is implemented with the overall loss function being a cost-weighted linear combination of Type I and Type II loss functions. The class of loss functions considered allows for use of the false discovery rate (FDR), false nondiscovery rate (FNR), and missed discovery rate (MDR) in assessing the quality of decision. Through this Bayesian paradigm, the Bayes multiple decision function (BMDF) is derived and an efficient algorithm to obtain the optimal Bayes action is described. In contrast to many works in the literature where the rows of the matrix X are assumed to be stochastically independent, we allow a dependent data structure with the associations obtained through a class of frailty-induced Archimedean copulas. In particular, non-Gaussian dependent data structure, which is typical with failure-time data, can be entertained. The numerical implementation of the determination of the Bayes optimal action is facilitated through sequential Monte Carlo techniques. The theory developed could also be extended to the problem of multiple hypotheses testing, multiple classification and prediction, and high-dimensional variable selection. The proposed procedure is illustrated for the simple versus simple hypotheses setting and for the composite hypotheses setting through simulation studies. The procedure is also applied to a subset of a microarray data set from a colon cancer study.

  3. Variational Gaussian approximation for Poisson data

    NASA Astrophysics Data System (ADS)

    Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen

    2018-02-01

    The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.

  4. A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes

    NASA Astrophysics Data System (ADS)

    Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan

    This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.

  5. Sparkle model for AM1 calculation of lanthanide complexes: improved parameters for europium.

    PubMed

    Rocha, Gerd B; Freire, Ricardo O; Da Costa, Nivan B; De Sá, Gilberto F; Simas, Alfredo M

    2004-04-05

    In the present work, we sought to improve our sparkle model for the calculation of lanthanide complexes, SMLC,in various ways: (i) inclusion of the europium atomic mass, (ii) reparametrization of the model within AM1 from a new response function including all distances of the coordination polyhedron for tris(acetylacetonate)(1,10-phenanthroline) europium(III), (iii) implementation of the model in the software package MOPAC93r2, and (iv) inclusion of spherical Gaussian functions in the expression which computes the core-core repulsion energy. The parametrization results indicate that SMLC II is superior to the previous version of the model because Gaussian functions proved essential if one requires a better description of the geometries of the complexes. In order to validate our parametrization, we carried out calculations on 96 europium(III) complexes, selected from Cambridge Structural Database 2003, and compared our predicted ground state geometries with the experimental ones. Our results show that this new parametrization of the SMLC model, with the inclusion of spherical Gaussian functions in the core-core repulsion energy, is better capable of predicting the Eu-ligand distances than the previous version. The unsigned mean error for all interatomic distances Eu-L, in all 96 complexes, which, for the original SMLC is 0.3564 A, is lowered to 0.1993 A when the model was parametrized with the inclusion of two Gaussian functions. Our results also indicate that this model is more applicable to europium complexes with beta-diketone ligands. As such, we conclude that this improved model can be considered a powerful tool for the study of lanthanide complexes and their applications, such as the modeling of light conversion molecular devices.

  6. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  7. The Strategy for Time Dependent Quantum Mechanical Calculations Using a Gaussian Wave Packet Representation of the Wave Function.

    DTIC Science & Technology

    1985-01-01

    a number of problems chosen so that the risk of SHM break-down wa.s minimized. A beautiful example is the absorption coefficient of a...the aporo~ cimation We consider here the case of one normalized Gaussian, to isolate the effects of LilA from those of the neglect of the *Interaction

  8. Comparing Alternative Kernels for the Kernel Method of Test Equating: Gaussian, Logistic, and Uniform Kernels. Research Report. ETS RR-08-12

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; von Davier, Alina A.

    2008-01-01

    The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…

  9. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links.

    PubMed

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P J; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J; Ashrafi, Solyman; Molisch, Andreas F; Tur, Moshe; Willner, Alan E

    2016-03-01

    We experimentally investigate the potential of using 'self-healing' Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively.

  10. Mode-Division-Multiplexing of Multiple Bessel-Gaussian Beams Carrying Orbital-Angular-Momentum for Obstruction-Tolerant Free-Space Optical and Millimetre-Wave Communication Links

    PubMed Central

    Ahmed, Nisar; Zhao, Zhe; Li, Long; Huang, Hao; Lavery, Martin P. J.; Liao, Peicheng; Yan, Yan; Wang, Zhe; Xie, Guodong; Ren, Yongxiong; Almaiman, Ahmed; Willner, Asher J.; Ashrafi, Solyman; Molisch, Andreas F.; Tur, Moshe; Willner, Alan E.

    2016-01-01

    We experimentally investigate the potential of using ‘self-healing’ Bessel-Gaussian beams carrying orbital-angular-momentum to overcome limitations in obstructed free-space optical and 28-GHz millimetre-wave communication links. We multiplex and transmit two beams (l = +1 and +3) over 1.4 metres in both the optical and millimetre-wave domains. Each optical beam carried 50-Gbaud quadrature-phase-shift-keyed data, and each millimetre-wave beam carried 1-Gbaud 16-quadrature-amplitude-modulated data. In both types of links, opaque disks of different sizes are used to obstruct the beams at different transverse positions. We observe self-healing after the obstructions, and assess crosstalk and power penalty when data is transmitted. Moreover, we show that Bessel-Gaussian orbital-angular-momentum beams are more tolerant to obstructions than non-Bessel orbital-angular-momentum beams. For example, when obstructions that are 1 and 0.44 the size of the l = +1 beam, are placed at beam centre, optical and millimetre-wave Bessel-Gaussian beams show ~6 dB and ~8 dB reduction in crosstalk, respectively. PMID:26926068

  11. Wavelet median denoising of ultrasound images

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.

    2002-05-01

    Ultrasound images are contaminated with both additive and multiplicative noise, which is modeled by Gaussian and speckle noise respectively. Distinguishing small features such as fallopian tubes in the female genital tract in the noisy environment is problematic. A new method for noise reduction, Wavelet Median Denoising, is presented. Wavelet Median Denoising consists of performing a standard noise reduction technique, median filtering, in the wavelet domain. The new method is tested on 126 images, comprised of 9 original images each with 14 levels of Gaussian or speckle noise. Results for both separable and non-separable wavelets are evaluated, relative to soft-thresholding in the wavelet domain, using the signal-to-noise ratio and subjective assessment. The performance of Wavelet Median Denoising is comparable to that of soft-thresholding. Both methods are more successful in removing Gaussian noise than speckle noise. Wavelet Median Denoising outperforms soft-thresholding for a larger number of cases of speckle noise reduction than of Gaussian noise reduction. Noise reduction is more successful using non-separable wavelets than separable wavelets. When both methods are applied to ultrasound images obtained from a phantom of the female genital tract a small improvement is seen; however, a substantial improvement is required prior to clinical use.

  12. Dynamic heterogeneity and conditional statistics of non-Gaussian temperature fluctuations in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    He, Xiaozhou; Wang, Yin; Tong, Penger

    2018-05-01

    Non-Gaussian fluctuations with an exponential tail in their probability density function (PDF) are often observed in nonequilibrium steady states (NESSs) and one does not understand why they appear so often. Turbulent Rayleigh-Bénard convection (RBC) is an example of such a NESS, in which the measured PDF P (δ T ) of temperature fluctuations δ T in the central region of the flow has a long exponential tail. Here we show that because of the dynamic heterogeneity in RBC, the exponential PDF is generated by a convolution of a set of dynamics modes conditioned on a constant local thermal dissipation rate ɛ . The conditional PDF G (δ T |ɛ ) of δ T under a constant ɛ is found to be of Gaussian form and its variance σT2 for different values of ɛ follows an exponential distribution. The convolution of the two distribution functions gives rise to the exponential PDF P (δ T ) . This work thus provides a physical mechanism of the observed exponential distribution of δ T in RBC and also sheds light on the origin of non-Gaussian fluctuations in other NESSs.

  13. Assessment of a Three-Dimensional Line-of-Response Probability Density Function System Matrix for PET

    PubMed Central

    Yao, Rutao; Ramachandra, Ranjith M.; Mahajan, Neeraj; Rathod, Vinay; Gunasekar, Noel; Panse, Ashish; Ma, Tianyu; Jian, Yiqiang; Yan, Jianhua; Carson, Richard E.

    2012-01-01

    To achieve optimal PET image reconstruction through better system modeling, we developed a system matrix that is based on the probability density function for each line of response (LOR-PDF). The LOR-PDFs are grouped by LOR-to-detector incident angles to form a highly compact system matrix. The system matrix was implemented in the MOLAR list mode reconstruction algorithm for a small animal PET scanner. The impact of LOR-PDF on reconstructed image quality was assessed qualitatively as well as quantitatively in terms of contrast recovery coefficient (CRC) and coefficient of variance (COV), and its performance was compared with a fixed Gaussian (iso-Gaussian) line spread function. The LOR-PDFs of 3 coincidence signal emitting sources, 1) ideal positron emitter that emits perfect back-to-back γ rays (γγ) in air; 2) fluorine-18 (18F) nuclide in water; and 3) oxygen-15 (15O) nuclide in water, were derived, and assessed with simulated and experimental phantom data. The derived LOR-PDFs showed anisotropic and asymmetric characteristics dependent on LOR-detector angle, coincidence emitting source, and the medium, consistent with common PET physical principles. The comparison of the iso-Gaussian function and LOR-PDF showed that: 1) without positron range and acolinearity effects, the LOR-PDF achieved better or similar trade-offs of contrast recovery and noise for objects of 4-mm radius or larger, and this advantage extended to smaller objects (e.g. 2-mm radius sphere, 0.6-mm radius hot-rods) at higher iteration numbers; and 2) with positron range and acolinearity effects, the iso-Gaussian achieved similar or better resolution recovery depending on the significance of positron range effect. We conclude that the 3-D LOR-PDF approach is an effective method to generate an accurate and compact system matrix. However, when used directly in expectation-maximization based list-mode iterative reconstruction algorithms such as MOLAR, its superiority is not clear. For this application, using an iso-Gaussian function in MOLAR is a simple but effective technique for PET reconstruction. PMID:23032702

  14. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease. © 2016 The Author(s).

  15. Activity Detection and Retrieval for Image and Video Data with Limited Training

    DTIC Science & Technology

    2015-06-10

    applications. Here we propose two techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a... automata . For our second approach to segmentation, we employ a region based segmentation technique that is capable of handling intensity inhomogeneity...techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a mixture of Gaussian is fitted to the

  16. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.

    PubMed

    Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming

    2015-04-15

    Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.

  17. Effect of exponential density transition on self-focusing of q-Gaussian laser beam in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Valkunde, Amol T.; Vhanmore, Bandopant D.; Urunkar, Trupti U.; Gavade, Kusum M.; Patil, Sandip D.; Takale, Mansing V.

    2018-05-01

    In this work, nonlinear aspects of a high intensity q-Gaussian laser beam propagating in collisionless plasma having upward density ramp of exponential profiles is studied. We have employed the nonlinearity in dielectric function of plasma by considering ponderomotive nonlinearity. The differential equation governing the dimensionless beam width parameter is achieved by using Wentzel-Kramers-Brillouin (WKB) and paraxial approximations and solved it numerically by using Runge-Kutta fourth order method. Effect of exponential density ramp profile on self-focusing of q-Gaussian laser beam for various values of q is systematically carried out and compared with results Gaussian laser beam propagating in collisionless plasma having uniform density. It is found that exponential plasma density ramp causes the laser beam to become more focused and gives reasonably interesting results.

  18. The effect of halo nuclear density on reaction cross-section for light ion collision

    NASA Astrophysics Data System (ADS)

    Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Ismail, E.; Hosny, H.

    2015-08-01

    In the framework of the optical limit approximation (OLA), the reaction cross-section for halo nucleus — stable nucleus collision at intermediate energy, has been studied. The projectile nuclei are taken to be one-neutron halo (1NHP) and two-neutron halo (2NHP). The calculations are carried out for Gaussian-Gaussian (GG), Gaussian-Oscillator (GO), and Gaussian-2S (G2S) densities for each considered projectile. As a target, the stable nuclei in the range 4-28 of the mass number are used. An analytic expression of the phase shift function has been derived. The zero range approximation is considered in the calculations. Also, the in-medium effect is studied. The obtained results are analyzed and compared with the geometrical reaction cross-section and the available experimental data.

  19. SU-F-T-180: Evaluation of a Scintillating Screen Detector for Proton Beam QA and Acceptance Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghebremedhin, A; Taber, M; Koss, P

    2016-06-15

    Purpose: To test the performance of a commercial scintillating screen detector for acceptance testing and Quality Assurance of a proton pencil beam scanning system. Method: The detector (Lexitek DRD 400) has 40cm × 40cm field, uses a thin scintillator imaged onto a 16-bit scientific CCD with ∼0.5mm resolution. A grid target and LED illuminators are provided for spatial calibration and relative gain correction. The detector mounts to the nozzle with micron precision. Tools are provided for image processing and analysis of single or multiple Gaussian spots. Results: The bias and gain of the detector were studied to measure repeatability andmore » accuracy. Gain measurements were taken with the LED illuminators to measure repeatability and variation of the lens-CCD pair as a function with f-stop. Overall system gain was measured with a passive scattering (broad) beam whose shape is calibrated with EDR film placed in front of the scintillator. To create a large uniform field, overlapping small fields were recorded with the detector translated laterally and stitched together to cover the full field. Due to the long exposures required to obtain multiple spills of the synchrotron and very high detector sensitivity, borated polyethylene shielding was added to reduce direct radiation events hitting the CCD. Measurements with a micro ion chamber were compared to the detector’s spot profile. Software was developed to process arrays of Gaussian spots and to correct for radiation events. Conclusion: The detector background has a fixed bias, a small component linear in time, and is easily corrected. The gain correction method was validated with 2% accuracy. The detector spot profile matches the micro ion chamber data over 4 orders of magnitude. The multiple spot analyses can be easily used with plan data for measuring pencil beam uniformity and for regular QA comparison.« less

  20. EXACT DISTRIBUTIONS OF INTRACLASS CORRELATION AND CRONBACH'S ALPHA WITH GAUSSIAN DATA AND GENERAL COVARIANCE.

    PubMed

    Kistner, Emily O; Muller, Keith E

    2004-09-01

    Intraclass correlation and Cronbach's alpha are widely used to describe reliability of tests and measurements. Even with Gaussian data, exact distributions are known only for compound symmetric covariance (equal variances and equal correlations). Recently, large sample Gaussian approximations were derived for the distribution functions. New exact results allow calculating the exact distribution function and other properties of intraclass correlation and Cronbach's alpha, for Gaussian data with any covariance pattern, not just compound symmetry. Probabilities are computed in terms of the distribution function of a weighted sum of independent chi-square random variables. New F approximations for the distribution functions of intraclass correlation and Cronbach's alpha are much simpler and faster to compute than the exact forms. Assuming the covariance matrix is known, the approximations typically provide sufficient accuracy, even with as few as ten observations. Either the exact or approximate distributions may be used to create confidence intervals around an estimate of reliability. Monte Carlo simulations led to a number of conclusions. Correctly assuming that the covariance matrix is compound symmetric leads to accurate confidence intervals, as was expected from previously known results. However, assuming and estimating a general covariance matrix produces somewhat optimistically narrow confidence intervals with 10 observations. Increasing sample size to 100 gives essentially unbiased coverage. Incorrectly assuming compound symmetry leads to pessimistically large confidence intervals, with pessimism increasing with sample size. In contrast, incorrectly assuming general covariance introduces only a modest optimistic bias in small samples. Hence the new methods seem preferable for creating confidence intervals, except when compound symmetry definitely holds.

  1. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L =1

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-01

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  3. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  4. Crossing statistics of laser light scattered through a nanofluid.

    PubMed

    Arshadi Pirlar, M; Movahed, S M S; Razzaghi, D; Karimzadeh, R

    2017-09-01

    In this paper, we investigate the crossing statistics of speckle patterns formed in the Fresnel diffraction region by a laser beam scattering through a nanofluid. We extend zero-crossing statistics to assess the dynamical properties of the nanofluid. According to the joint probability density function of laser beam fluctuation and its time derivative, the theoretical frameworks for Gaussian and non-Gaussian regimes are revisited. We count the number of crossings not only at zero level but also for all available thresholds to determine the average speed of moving particles. Using a probabilistic framework in determining crossing statistics, a priori Gaussianity is not essentially considered; therefore, even in the presence of deviation from Gaussian fluctuation, this modified approach is capable of computing relevant quantities, such as mean value of speed, more precisely. Generalized total crossing, which represents the weighted summation of crossings for all thresholds to quantify small deviation from Gaussian statistics, is introduced. This criterion can also manipulate the contribution of noises and trends to infer reliable physical quantities. The characteristic time scale for having successive crossings at a given threshold is defined. In our experimental setup, we find that increasing sample temperature leads to more consistency between Gaussian and perturbative non-Gaussian predictions. The maximum number of crossings does not necessarily occur at mean level, indicating that we should take into account other levels in addition to zero level to achieve more accurate assessments.

  5. Efficient statistically accurate algorithms for the Fokker-Planck equation in large dimensions

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Majda, Andrew J.

    2018-02-01

    Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace and is therefore computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O (100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.

  6. Invariant polarimetric contrast parameters of light with Gaussian fluctuations in three dimensions.

    PubMed

    Réfrégier, Philippe; Roche, Muriel; Goudail, François

    2006-01-01

    We propose a rigorous definition of the minimal set of parameters that characterize the difference between two partially polarized states of light whose electric fields vary in three dimensions with Gaussian fluctuations. Although two such states are a priori defined by eighteen parameters, we demonstrate that the performance of processing tasks such as detection, localization, or segmentation of spatial or temporal polarization variations is uniquely determined by three scalar functions of these parameters. These functions define a "polarimetric contrast" that simplifies the analysis and the specification of processing techniques on polarimetric signals and images. This result can also be used to analyze the definition of the degree of polarization of a three-dimensional state of light with Gaussian fluctuations in comparison, with respect to its polarimetric contrast parameters, with a totally depolarized light. We show that these contrast parameters are a simple function of the degrees of polarization previously proposed by Barakat [Opt. Acta 30, 1171 (1983)] and Setälä et al. [Phys. Rev. Lett. 88, 123902 (2002)]. Finally, we analyze the dimension of the set of contrast parameters in different particular situations.

  7. Discretisation Schemes for Level Sets of Planar Gaussian Fields

    NASA Astrophysics Data System (ADS)

    Beliaev, D.; Muirhead, S.

    2018-01-01

    Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.

  8. How to calculate H3 better.

    PubMed

    Pavanello, Michele; Tung, Wei-Cheng; Adamowicz, Ludwik

    2009-11-14

    Efficient optimization of the basis set is key to achieving a very high accuracy in variational calculations of molecular systems employing basis functions that are explicitly dependent on the interelectron distances. In this work we present a method for a systematic enlargement of basis sets of explicitly correlated functions based on the iterative-complement-interaction approach developed by Nakatsuji [Phys. Rev. Lett. 93, 030403 (2004)]. We illustrate the performance of the method in the variational calculations of H(3) where we use explicitly correlated Gaussian functions with shifted centers. The total variational energy (-1.674 547 421 Hartree) and the binding energy (-15.74 cm(-1)) obtained in the calculation with 1000 Gaussians are the most accurate results to date.

  9. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  10. Propagation-invariant beams with quantum pendulum spectra: from Bessel beams to Gaussian beam-beams.

    PubMed

    Dennis, Mark R; Ring, James D

    2013-09-01

    We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.

  11. Probing the statistics of primordial fluctuations and their evolution

    NASA Technical Reports Server (NTRS)

    Gaztanaga, Enrique; Yokoyama, Jun'ichi

    1993-01-01

    The statistical distribution of fluctuations on various scales is analyzed in terms of the counts in cells of smoothed density fields, using volume-limited samples of galaxy redshift catalogs. It is shown that the distribution on large scales, with volume average of the two-point correlation function of the smoothed field less than about 0.05, is consistent with Gaussian. Statistics are shown to agree remarkably well with the negative binomial distribution, which has hierarchial correlations and a Gaussian behavior at large scales. If these observed properties correspond to the matter distribution, they suggest that our universe started with Gaussian fluctuations and evolved keeping hierarchial form.

  12. Rational-operator-based depth-from-defocus approach to scene reconstruction.

    PubMed

    Li, Ang; Staunton, Richard; Tjahjadi, Tardi

    2013-09-01

    This paper presents a rational-operator-based approach to depth from defocus (DfD) for the reconstruction of three-dimensional scenes from two-dimensional images, which enables fast DfD computation that is independent of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are based on the Gaussian point spread function (PSF) and the second based on the generalized Gaussian PSF, are considered. A novel DfD correction method is also presented to further improve the performance of the approach. Experimental results are considered for real scenes and show that both approaches outperform existing RO-based methods.

  13. Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2017-12-01

    An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.

  14. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined with FB-SA.

    PubMed

    Bourlier, Christophe; Kubické, Gildas; Déchamps, Nicolas

    2008-04-01

    A fast, exact numerical method based on the method of moments (MM) is developed to calculate the scattering from an object below a randomly rough surface. Déchamps et al. [J. Opt. Soc. Am. A23, 359 (2006)] have recently developed the PILE (propagation-inside-layer expansion) method for a stack of two one-dimensional rough interfaces separating homogeneous media. From the inversion of the impedance matrix by block (in which two impedance matrices of each interface and two coupling matrices are involved), this method allows one to calculate separately and exactly the multiple-scattering contributions inside the layer in which the inverses of the impedance matrices of each interface are involved. Our purpose here is to apply this method for an object below a rough surface. In addition, to invert a matrix of large size, the forward-backward spectral acceleration (FB-SA) approach of complexity O(N) (N is the number of unknowns on the interface) proposed by Chou and Johnson [Radio Sci.33, 1277 (1998)] is applied. The new method, PILE combined with FB-SA, is tested on perfectly conducting circular and elliptic cylinders located below a dielectric rough interface obeying a Gaussian process with Gaussian and exponential height autocorrelation functions.

  15. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy.

    PubMed

    Antonov, N V; Kostenko, M M

    2014-12-01

    The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.

  16. Measurement of inelastic cross sections for low-energy electron scattering from DNA bases.

    PubMed

    Michaud, Marc; Bazin, Marc; Sanche, Léon

    2012-01-01

    To determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Electron energy loss (EEL) spectra of DNA bases were recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra were then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes were finally obtained from computing the area under the corresponding Gaussians. The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV were reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. The CS for electronic excitations of DNA bases by LEE impact were found to lie within the 10(216) to 10(218) cm(2) range. The large value of the total ionisation CS indicated that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA.

  17. Measurement of inelastic cross sections for low-energy electron scattering from DNA bases

    PubMed Central

    Michaud, Marc; Bazin, Marc.; Sanche, Léon

    2013-01-01

    Purpose Determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Materials and methods Electron energy loss (EEL) spectra of DNA bases are recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra are then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes are finally obtained from computing the area under the corresponding Gaussians. Results The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV are reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. Conclusions The CS for electronic excitations of DNA bases by LEE impact are found to lie within the 10−16 – 10−18 cm2 range. The large value of the total ionisation CS indicates that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA. PMID:21615242

  18. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  19. Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models

    NASA Astrophysics Data System (ADS)

    Wen, Xian-Huan; Gómez-Hernández, J. Jaime

    1998-03-01

    The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.

  20. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Magnetism in all-carbon nanostructures with negative Gaussian curvature.

    PubMed

    Park, Noejung; Yoon, Mina; Berber, Savas; Ihm, Jisoon; Osawa, Eiji; Tománek, David

    2003-12-05

    We apply the ab initio spin density functional theory to study magnetism in all-carbon nanostructures. We find that particular systems, which are related to schwarzite and contain no undercoordinated carbon atoms, carry a net magnetic moment in the ground state. We postulate that, in this and other nonalternant aromatic systems with negative Gaussian curvature, unpaired spins can be introduced by sterically protected carbon radicals.

  2. Non-Gaussian effects, space-time decoupling, and mobility bifurcation in glassy hard-sphere fluids and suspensions.

    PubMed

    Saltzman, Erica J; Schweizer, Kenneth S

    2006-12-01

    Brownian trajectory simulation methods are employed to fully establish the non-Gaussian fluctuation effects predicted by our nonlinear Langevin equation theory of single particle activated dynamics in glassy hard-sphere fluids. The consequences of stochastic mobility fluctuations associated with the space-time complexities of the transient localization and barrier hopping processes have been determined. The incoherent dynamic structure factor was computed for a range of wave vectors and becomes of an increasingly non-Gaussian form for volume fractions beyond the (naive) ideal mode coupling theory (MCT) transition. The non-Gaussian parameter (NGP) amplitude increases markedly with volume fraction and is well described by a power law in the maximum restoring force of the nonequilibrium free energy profile. The time scale associated with the NGP peak becomes much smaller than the alpha relaxation time for systems characterized by significant entropic barriers. An alternate non-Gaussian parameter that probes the long time alpha relaxation process displays a different shape, peak intensity, and time scale of its maximum. However, a strong correspondence between the classic and alternate NGP amplitudes is predicted which suggests a deep connection between the early and final stages of cage escape. Strong space-time decoupling emerges at high volume fractions as indicated by a nondiffusive wave vector dependence of the relaxation time and growth of the translation-relaxation decoupling parameter. Displacement distributions exhibit non-Gaussian behavior at intermediate times, evolving into a strongly bimodal form with slow and fast subpopulations at high volume fractions. Qualitative and semiquantitative comparisons of the theoretical results with colloid experiments, ideal MCT, and multiple simulation studies are presented.

  3. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanke, Monika, E-mail: monika@fizyka.umk.pl; Palikot, Ewa, E-mail: epalikot@doktorant.umk.pl; Adamowicz, Ludwik, E-mail: ludwik@email.arizona.edu

    2016-05-07

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H{sub 2} and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.

  4. Bivariate sub-Gaussian model for stock index returns

    NASA Astrophysics Data System (ADS)

    Jabłońska-Sabuka, Matylda; Teuerle, Marek; Wyłomańska, Agnieszka

    2017-11-01

    Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others.

  5. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  6. The analysis of ensembles of moderately saturated interstellar lines

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1986-01-01

    It is shown that the combined equivalent widths for a large population of Gaussian-like interstellar line components, each with different central optical depths tau(0) and velocity dispersions b, exhibit a curve of growth (COG) which closely mimics that of a single, pure Gaussian distribution in velocity. Two parametric distributions functions for the line populations are considered: a bivariate Gaussian for tau(0) and b and a power law distribution for tau(0) combined with a Gaussian dispersion for b. First, COGs for populations having an extremely large number of nonoverlapping components are derived, and the implications are shown by focusing on the doublet-ratio analysis for a pair of lines whose f-values differ by a factor of two. The consequences of having, instead of an almost infinite number of lines, a relatively small collection of components added together for each member of a doublet are examined. The theory of how the equivalent widths grow for populations of overlapping Gaussian profiles is developed. Examples of the composite COG analysis applied to existing collections of high-resolution interstellar line data are presented.

  7. The formation of cosmic structure in a texture-seeded cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III

    1992-01-01

    The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.

  8. A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment.

    PubMed

    Xiao, Zhu; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-05-13

    In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS), is proposed, which enables vehicle state estimation (VSE) with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student's t-distribution is adopted in order to compute the probability distribution function (PDF) related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF) is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods.

  9. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  10. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-07-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  11. Inference with minimal Gibbs free energy in information field theory.

    PubMed

    Ensslin, Torsten A; Weig, Cornelius

    2010-11-01

    Non-linear and non-gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a gaussian signal with unknown spectrum, and (iii) inference of a poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-gaussian posterior.

  12. A Novel Multiple-Access Correlation-Delay-Shift-Keying

    NASA Astrophysics Data System (ADS)

    Duan, J. Y.; Jiang, G. P.; Yang, H.

    In Correlation-Delay-Shift-Keying (CDSK), the reference signal and the information-bearing signal are added together during a certain time delay. Because the reference signal is not strictly orthogonal to the information-bearing signal, the cross-correlation between the adjacent chaotic signal (Intra-signal Interference, ISI) will be introduced into the demodulation at the receiver. Therefore, the Bit-Error Ratio (BER) of CDSK is higher than that of Differential-Chaos-Shift-Keying (DCSK). To avoid the ISI component and enhance the BER performance of CDSK in multiuser scenario, Multiple-Access CDSK with No Intra-signal Interference (MA-CDSK-NII) is proposed. By constructing the repeated chaotic generator and applying the Walsh code sequence to modulate the reference signal, in MA-CDSK-NII, the ISI component will be eliminated during the demodulation. Gaussian approximation method is adopted here to obtain the exact performance analysis of MA-CDSK-NII over additive white Gaussian noise (AWGN) channel and Rayleigh multipath fading channels. Results show that, due to no ISI component and lower transmitting power, the BER performance of MA-CDSK-NII can be better than that of multiple-access CDSK and Code-Shifted Differential-Chaos-Shift-Keying (CS-DCSK).

  13. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  14. Multi-target detection and positioning in crowds using multiple camera surveillance

    NASA Astrophysics Data System (ADS)

    Huang, Jiahu; Zhu, Qiuyu; Xing, Yufeng

    2018-04-01

    In this study, we propose a pixel correspondence algorithm for positioning in crowds based on constraints on the distance between lines of sight, grayscale differences, and height in a world coordinates system. First, a Gaussian mixture model is used to obtain the background and foreground from multi-camera videos. Second, the hair and skin regions are extracted as regions of interest. Finally, the correspondences between each pixel in the region of interest are found under multiple constraints and the targets are positioned by pixel clustering. The algorithm can provide appropriate redundancy information for each target, which decreases the risk of losing targets due to a large viewing angle and wide baseline. To address the correspondence problem for multiple pixels, we construct a pixel-based correspondence model based on a similar permutation matrix, which converts the correspondence problem into a linear programming problem where a similar permutation matrix is found by minimizing an objective function. The correct pixel correspondences can be obtained by determining the optimal solution of this linear programming problem and the three-dimensional position of the targets can also be obtained by pixel clustering. Finally, we verified the algorithm with multiple cameras in experiments, which showed that the algorithm has high accuracy and robustness.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, Rafael C.; Abreu, Everton M.C.; Neto, Jorge Ananias

    Based on the relationship between thermodynamics and gravity we propose, with the aid of Verlinde's formalism, an alternative interpretation of the dynamical evolution of the Friedmann-Robertson-Walker Universe. This description takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there through non-gaussian statistical theories proposed by Tsallis and Kaniadakis. The effect of these non-gaussian statistics in the cosmological context is to change the strength of the gravitational constant. In this paper, we consider the w CDM model modified by the non-gaussian statistics and investigate the compatibility of these non-gaussian modificationmore » with the cosmological observations. In order to analyze in which extend the cosmological data constrain these non-extensive statistics, we will use type Ia supernovae, baryon acoustic oscillations, Hubble expansion rate function and the linear growth of matter density perturbations data. We show that Tsallis' statistics is favored at 1σ confidence level.« less

  16. A new method for the identification of non-Gaussian line profiles in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Van Der Marel, Roeland P.; Franx, Marijn

    1993-01-01

    A new parameterization for the line profiles of elliptical galaxies, the Gauss-Hermite series, is proposed. This approach expands the line profile as a sum of orthogonal functions which minimizes the correlations between the errors in the parameters of the fit. This method also make use of the fact that Gaussians provide good low-order fits to observed line profiles. The method yields measurements of the line strength, mean radial velocity, and the velocity dispersion as well as two extra parameters, h3 and h4, that measure asymmetric and symmetric deviations of the line profiles from a Gaussian, respectively. The new method was used to derive profiles for three elliptical galaxies which all have asymmetric line profiles on the major axis with symmetric deviations from a Gaussian. Results confirm that elliptical galaxies have complex structures due to their complex formation history.

  17. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    PubMed

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  18. Is 30-second update fast enough for convection-resolving data assimilation?

    NASA Astrophysics Data System (ADS)

    Miyoshi, Takemasa; Ruiz, Juan; Lien, Guo-Yuan; Teramura, Toshiki; Kondo, Keiichi; Maejima, Yasumitsu; Honda, Takumi; Otsuka, Shigenori

    2017-04-01

    For local severe weather forecasting at 100-m resolution with 30-minute lead time, we have been working on the "Big Data Assimilation" (BDA) effort for super-rapid 30-second cycle of an ensemble Kalman filter. We have presented two papers with the concept and case studies (Miyoshi et al. 2016, BAMS; Proceedings of the IEEE). We focus on the non-Gaussian PDF in this study. We were hoping that we could assume the Gaussian error distribution in 30-second forecasts before strong nonlinear dynamics distort the error distribution for rapidly-changing convective storms. However, using 1000 ensemble members, the reduced-resolution version of the BDA system at 1-km grid spacing with 30-second updates showed ubiquity of highly non-Gaussian PDF. Although our results so far with multiple case studies were quite successful, this gives us a doubt about our Gaussian assumption even if the data assimilation interval is short enough compared with the system's chaotic time scale. We therefore pose a question if the 30-second update is fast enough for convection-resolving data assimilation under the Gaussian assumption. To answer this question, we aim to gain combined knowledge from BDA case studies, 1000-member experiments, 30-second breeding experiments, and toy-model experiments with dense and frequent observations. In this presentation, we will show the most up-to-date results of the BDA research, and will discuss about the question if the 30-second update is fast enough for convective-scale data assimilation.

  19. False alarm reduction by the And-ing of multiple multivariate Gaussian classifiers

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2003-09-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. This paper describes a method for training several multivariate Gaussian classifiers such that their And-ing dramatically reduces false alarms while maintaining a high probability of classification. This training approach is referred to as the Focused- Training method. This work extends our 2001-2002 work where the Focused-Training method was used with three other types of classifiers: the Attractor-based K-Nearest Neighbor Neural Network (a type of radial-basis, probabilistic neural network), the Optimal Discrimination Filter Classifier (based linear discrimination theory), and the Quadratic Penalty Function Support Vector Machine (QPFSVM). Although our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to a wide range of pattern recognition and automatic target recognition (ATR) problems.

  20. Non-Gaussian Correlations between Reflected and Transmitted Intensity Patterns Emerging from Opaque Disordered Media

    NASA Astrophysics Data System (ADS)

    Starshynov, I.; Paniagua-Diaz, A. M.; Fayard, N.; Goetschy, A.; Pierrat, R.; Carminati, R.; Bertolotti, J.

    2018-04-01

    The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here, we demonstrate experimentally that the reflected and transmitted speckle patterns are robustly correlated, and we unravel all the complex and unexpected features of this fundamentally non-Gaussian and long-range correlation. In particular, we show that it is preserved even for opaque media with thickness much larger than the scattering mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of correlations between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.

  1. De-blending deep Herschel surveys: A multi-wavelength approach

    NASA Astrophysics Data System (ADS)

    Pearson, W. J.; Wang, L.; van der Tak, F. F. S.; Hurley, P. D.; Burgarella, D.; Oliver, S. J.

    2017-07-01

    Aims: Cosmological surveys in the far-infrared are known to suffer from confusion. The Bayesian de-blending tool, XID+, currently provides one of the best ways to de-confuse deep Herschel SPIRE images, using a flat flux density prior. This work is to demonstrate that existing multi-wavelength data sets can be exploited to improve XID+ by providing an informed prior, resulting in more accurate and precise extracted flux densities. Methods: Photometric data for galaxies in the COSMOS field were used to constrain spectral energy distributions (SEDs) using the fitting tool CIGALE. These SEDs were used to create Gaussian prior estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the extracted SPIRE flux densities were run through CIGALE again to allow us to compare the performance of the two priors. Inferred ALMA flux densities (FinferALMA), at 870 μm and 1250 μm, from the best fitting SEDs from the second CIGALE run were compared with measured ALMA flux densities (FmeasALMA) as an independent performance validation. Similar validations were conducted with the SED modelling and fitting tool MAGPHYS and modified black-body functions to test for model dependency. Results: We demonstrate a clear improvement in agreement between the flux densities extracted with XID+ and existing data at other wavelengths when using the new informed Gaussian prior over the original uninformed prior. The residuals between FmeasALMA and FinferALMA were calculated. For the Gaussian priors these residuals, expressed as a multiple of the ALMA error (σ), have a smaller standard deviation, 7.95σ for the Gaussian prior compared to 12.21σ for the flat prior; reduced mean, 1.83σ compared to 3.44σ; and have reduced skew to positive values, 7.97 compared to 11.50. These results were determined to not be significantly model dependent. This results in statistically more reliable SPIRE flux densities and hence statistically more reliable infrared luminosity estimates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. Direct test of the Gaussian auxiliary field ansatz in nonconserved order parameter phase ordering dynamics

    NASA Astrophysics Data System (ADS)

    Yeung, Chuck

    2018-06-01

    The assumption that the local order parameter is related to an underlying spatially smooth auxiliary field, u (r ⃗,t ) , is a common feature in theoretical approaches to non-conserved order parameter phase separation dynamics. In particular, the ansatz that u (r ⃗,t ) is a Gaussian random field leads to predictions for the decay of the autocorrelation function which are consistent with observations, but distinct from predictions using alternative theoretical approaches. In this paper, the auxiliary field is obtained directly from simulations of the time-dependent Ginzburg-Landau equation in two and three dimensions. The results show that u (r ⃗,t ) is equivalent to the distance to the nearest interface. In two dimensions, the probability distribution, P (u ) , is well approximated as Gaussian except for small values of u /L (t ) , where L (t ) is the characteristic length-scale of the patterns. The behavior of P (u ) in three dimensions is more complicated; the non-Gaussian region for small u /L (t ) is much larger than that in two dimensions but the tails of P (u ) begin to approach a Gaussian form at intermediate times. However, at later times, the tails of the probability distribution appear to decay faster than a Gaussian distribution.

  3. Spatiotemporal dynamics of Gaussian laser pulse in a multi ions plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari Milani, M. R., E-mail: mrj.milani@gmail.com

    Spatiotemporal evolutions of Gaussian laser pulse propagating through a plasma with multiple charged ions are studied, taking into account the ponderomotive nonlinearity. Coupled differential equations for beam width and pulse length parameters are established and numerically solved using paraxial ray approximation. In one-dimensional geometry, effects of laser and plasma parameters such as laser intensity, plasma density, and temperature on the longitudinal pulse compression and the laser intensity distribution are analyzed for plasmas with singly and doubly charged ions. The results demonstrate that self-compression occurs in a laser intensity range with a turning point intensity in which the self-compression process hasmore » its strongest extent. The results also show that the multiply ionized ions have different effect on the pulse compression above and below turning point intensity. Finally, three-dimensional geometry is used to analyze the simultaneous evolution of both self-focusing and self-compression of Gaussian laser pulse in such plasmas.« less

  4. Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams.

    PubMed

    Huang, Xianwei; Shi, Xiaohui; Deng, Zhixiang; Bai, Yanfeng; Fu, Xiquan

    2017-09-01

    The evolution of the ring Airy Gaussian beams with a modulated vortex in free space is numerically investigated. Compared with the unmodulated vortex, the unique property is that the beam spots first break up, and then gather. The evolution of the beams is influenced by the parameters of the vortex modulation, and the splitting phenomenon gets enhanced with multiple rings becoming light spots if the modulation depth increases. The symmetric branch pattern of the beam spots gets changed when the number of phase folds increases, and the initial modulation phase only impacts the angle of the beam spots. Moreover, a large distribution factor correlates to a hollow Gaussian vortex shape and weakens the splitting and gathering trend. By changing the initial parameters of the vortex modulation and the distribution factor, the peak intensity is greatly affected. In addition, the energy flow and the angular momentum are elucidated with the beam evolution features being confirmed.

  5. Why noise is useful in functional and neural mechanisms of interval timing?

    PubMed Central

    2013-01-01

    Background The ability to estimate durations in the seconds-to-minutes range - interval timing - is essential for survival, adaptation and its impairment leads to severe cognitive and/or motor dysfunctions. The response rate near a memorized duration has a Gaussian shape centered on the to-be-timed interval (criterion time). The width of the Gaussian-like distribution of responses increases linearly with the criterion time, i.e., interval timing obeys the scalar property. Results We presented analytical and numerical results based on the striatal beat frequency (SBF) model showing that parameter variability (noise) mimics behavioral data. A key functional block of the SBF model is the set of oscillators that provide the time base for the entire timing network. The implementation of the oscillators block as simplified phase (cosine) oscillators has the additional advantage that is analytically tractable. We also checked numerically that the scalar property emerges in the presence of memory variability by using biophysically realistic Morris-Lecar oscillators. First, we predicted analytically and tested numerically that in a noise-free SBF model the output function could be approximated by a Gaussian. However, in a noise-free SBF model the width of the Gaussian envelope is independent of the criterion time, which violates the scalar property. We showed analytically and verified numerically that small fluctuations of the memorized criterion time leads to scalar property of interval timing. Conclusions Noise is ubiquitous in the form of small fluctuations of intrinsic frequencies of the neural oscillators, the errors in recording/retrieving stored information related to criterion time, fluctuation in neurotransmitters’ concentration, etc. Our model suggests that the biological noise plays an essential functional role in the SBF interval timing. PMID:23924391

  6. A non-Gaussian option pricing model based on Kaniadakis exponential deformation

    NASA Astrophysics Data System (ADS)

    Moretto, Enrico; Pasquali, Sara; Trivellato, Barbara

    2017-09-01

    A way to make financial models effective is by letting them to represent the so called "fat tails", i.e., extreme changes in stock prices that are regarded as almost impossible by the standard Gaussian distribution. In this article, the Kaniadakis deformation of the usual exponential function is used to define a random noise source in the dynamics of price processes capable of capturing such real market phenomena.

  7. A Gaussian Mixture Model Representation of Endmember Variability in Hyperspectral Unmixing

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Rangarajan, Anand; Gader, Paul D.

    2018-05-01

    Hyperspectral unmixing while considering endmember variability is usually performed by the normal compositional model (NCM), where the endmembers for each pixel are assumed to be sampled from unimodal Gaussian distributions. However, in real applications, the distribution of a material is often not Gaussian. In this paper, we use Gaussian mixture models (GMM) to represent the endmember variability. We show, given the GMM starting premise, that the distribution of the mixed pixel (under the linear mixing model) is also a GMM (and this is shown from two perspectives). The first perspective originates from the random variable transformation and gives a conditional density function of the pixels given the abundances and GMM parameters. With proper smoothness and sparsity prior constraints on the abundances, the conditional density function leads to a standard maximum a posteriori (MAP) problem which can be solved using generalized expectation maximization. The second perspective originates from marginalizing over the endmembers in the GMM, which provides us with a foundation to solve for the endmembers at each pixel. Hence, our model can not only estimate the abundances and distribution parameters, but also the distinct endmember set for each pixel. We tested the proposed GMM on several synthetic and real datasets, and showed its potential by comparing it to current popular methods.

  8. On the statistics of biased tracers in the Effective Field Theory of Large Scale Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo

    2015-09-01

    With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS) is a novel theoretical framework that aims to develop an analytic understanding of LSS at long distances, where inhomogeneities are small. We further develop the description of biased tracers in the EFTofLSS to account for the effect of baryonic physics and primordial non-Gaussianities, finding that new bias coefficients are required. Then, restricting to dark matter with Gaussian initial conditions, we describemore » the prediction of the EFTofLSS for the one-loop halo-halo and halo-matter two-point functions, and for the tree-level halo-halo-halo, matter-halo-halo and matter-matter-halo three-point functions. Several new bias coefficients are needed in the EFTofLSS, even though their contribution at a given order can be degenerate and the same parameters contribute to multiple observables. We develop a method to reduce the number of biases to an irreducible basis, and find that, at the order at which we work, seven bias parameters are enough to describe this extremely rich set of statistics. We then compare with the output of an N-body simulation where the normalization parameter of the linear power spectrum is set to σ{sub 8} = 0.9. For the lowest mass bin, we find percent level agreement up to k≅ 0.3 h Mpc{sup −1} for the one-loop two-point functions, and up to k≅ 0.15 h Mpc{sup −1} for the tree-level three-point functions, with the k-reach decreasing with higher mass bins. This is consistent with the theoretical estimates, and suggests that the cosmological information in LSS amenable to analytical control is much more than previously believed.« less

  9. On the statistics of biased tracers in the Effective Field Theory of Large Scale Structures

    DOE PAGES

    Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo; ...

    2015-09-09

    With the completion of the Planck mission, in order to continue to gather cosmological information it has become crucial to understand the Large Scale Structures (LSS) of the universe to percent accuracy. The Effective Field Theory of LSS (EFTofLSS) is a novel theoretical framework that aims to develop an analytic understanding of LSS at long distances, where inhomogeneities are small. We further develop the description of biased tracers in the EFTofLSS to account for the effect of baryonic physics and primordial non-Gaussianities, finding that new bias coefficients are required. Then, restricting to dark matter with Gaussian initial conditions, we describemore » the prediction of the EFTofLSS for the one-loop halo-halo and halo-matter two-point functions, and for the tree-level halo-halo-halo, matter-halo-halo and matter-matter-halo three-point functions. Several new bias coefficients are needed in the EFTofLSS, even though their contribution at a given order can be degenerate and the same parameters contribute to multiple observables. We develop a method to reduce the number of biases to an irreducible basis, and find that, at the order at which we work, seven bias parameters are enough to describe this extremely rich set of statistics. We then compare with the output of an N-body simulation where the normalization parameter of the linear power spectrum is set to σ 8 = 0.9. For the lowest mass bin, we find percent level agreement up to k ≃ 0.3 h Mpc –1 for the one-loop two-point functions, and up to k ≃ 0.15 h Mpc –1 for the tree-level three-point functions, with the k-reach decreasing with higher mass bins. In conclusion, this is consistent with the theoretical estimates, and suggests that the cosmological information in LSS amenable to analytical control is much more than previously believed.« less

  10. Forward-Backward Emission of Target Evaporated Fragments at High Energy Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Ma, Tian-Li; Zhang, Dong-Hai

    The multiplicity distribution, multiplicity moments, scaled variance and entropy of target evaporated fragment emitted in forward and backward hemispheres in relativistic heavy ions induced emulsion heavy targets (AgBr) interactions are investigated. It is found that the multiplicity distribution can be fitted by the Gaussian distribution, and the fitting parameters are different between two hemispheres for all the interactions. The multiplicity moment increases with the order of the moment q, and second-order multiplicity moment is energy independent over the entire energy for all the interactions. The scaled variance is close to one for all the interactions. The entropy in forward hemisphere is greater than that in backward hemisphere for all the interactions.

  11. Performance Analysis of a New Coded TH-CDMA Scheme in Dispersive Infrared Channel with Additive Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Kenari, Masoumeh Nasiri

    2013-06-01

    We consider a time-hopping based multiple access scheme introduced in [1] for communication over dispersive infrared links, and evaluate its performance for correlator and matched filter receivers. In the investigated time-hopping code division multiple access (TH-CDMA) method, the transmitter benefits a low rate convolutional encoder. In this method, the bit interval is divided into Nc chips and the output of the encoder along with a PN sequence assigned to the user determines the position of the chip in which the optical pulse is transmitted. We evaluate the multiple access performance of the system for correlation receiver considering background noise which is modeled as White Gaussian noise due to its large intensity. For the correlation receiver, the results show that for a fixed processing gain, at high transmit power, where the multiple access interference has the dominant effect, the performance improves by the coding gain. But at low transmit power, in which the increase of coding gain leads to the decrease of the chip time, and consequently, to more corruption due to the channel dispersion, there exists an optimum value for the coding gain. However, for the matched filter, the performance always improves by the coding gain. The results show that the matched filter receiver outperforms the correlation receiver in the considered cases. Our results show that, for the same bandwidth and bit rate, the proposed system excels other multiple access techniques, like conventional CDMA and time hopping scheme.

  12. Generation of dark hollow beams by using a fractional radial Hilbert transform system

    NASA Astrophysics Data System (ADS)

    Xie, Qiansen; Zhao, Daomu

    2007-07-01

    The radial Hilbert transform has been extend to the fractional field, which could be called the fractional radial Hilbert transform (FRHT). Using edge-enhancement characteristics of this transform, we convert a Gaussian light beam into a variety of dark hollow beams (DHBs). Based on the fact that a hard-edged aperture can be expanded approximately as a finite sum of complex Gaussian functions, the analytical expression of a Gaussian beam passing through a FRHT system has been derived. As a numerical example, the properties of the DHBs with different fractional orders are illustrated graphically. The calculation results obtained by use of the analytical method and the integral method are also compared.

  13. Relativistic well-tempered Gaussian basis sets for helium through mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, S.; Matsuoka, O.

    1989-10-01

    Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.

  14. Fock expansion of multimode pure Gaussian states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cariolaro, Gianfranco; Pierobon, Gianfranco, E-mail: gianfranco.pierobon@unipd.it

    2015-12-15

    The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, asmore » shown for two-mode and three-mode Gaussian states.« less

  15. Full stellar kinematical profiles of central parts of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Vudragović, A.; Samurović, S.; Jovanović, M.

    2016-09-01

    Context. We present the largest catalog of detailed stellar kinematics of the central parts of nearby galaxies, which includes higher moments of the line-of-sight velocity distribution (LOSVD) function represented by the Gauss-Hermite series. The kinematics is measured on a sample of galaxies selected from the Arecibo Legacy Fast ALFA (Alfalfa) survey using spectroscopy from the Sloan Digital Sky Survey (SDSS DR7). Aims: The SDSS DR7 offers measurements of the LOSVD based on the assumption of a pure Gaussian shape of the broadening function caused by the combination of rotational and random motion of the stars in galaxies. We discuss the consequences of this oversimplification since the velocity dispersion, one of the measured quantities, often serves as the proxy to important modeling parameters such as the black-hole mass and the virial mass of galaxies. Methods: The publicly available pPXF code is used to calculate the full kinematical profile for the sample galaxies including higher moments of their LOSVD. Both observed and synthetic stellar libraries were used and the related template mismatch problem is discussed. Results: For the whole sample of 2180 nearby galaxies reflecting morphological distribution characteristic for the local Universe, we successfully recovered stellar kinematics of their central parts, including higher order moments of the LOSVD function, for signal-to-noise above 50. Conclusions: We show the consequences of the oversimplification of the LOSVD function with Gaussian function on the velocity dispersion for the empirical and the synthetic stellar library. For the empirical stellar library, this approximation leads to an increase in the virial mass of 13% on average, while for the synthetic library the effect is weaker, with an increase of 9% on average. Systematic erroneous estimates of the velocity dispersion comes from the use of the synthetic stellar library instead of the empirical one and is much larger than the value imposed by the use of the Gaussian function. Only after a careful analysis of the template mismatch problem does one need to address the issue of the deviation of the LOSVD from the Gaussian function. We also show that the kurtotic parameter describing symmetrical departures from the Gaussian seems to increase along the continuous morphological sequence from late- to early-type galaxies. The catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A40

  16. Broad distribution spectrum from Gaussian to power law appears in stochastic variations in RNA-seq data.

    PubMed

    Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J

    2018-05-29

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.

  17. Weighted finite impulse response filter for chromatic dispersion equalization in coherent optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui

    2018-01-01

    Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.

  18. Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.

    1996-01-01

    As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.

  19. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    PubMed

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  20. Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting

    NASA Astrophysics Data System (ADS)

    Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing

    2018-02-01

    Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.

  1. Multimodal medical image fusion by combining gradient minimization smoothing filter and non-subsampled directional filter bank

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wenbo, Mei; Huiqian, Du; Zexian, Wang

    2018-04-01

    A new algorithm was proposed for medical images fusion in this paper, which combined gradient minimization smoothing filter (GMSF) with non-sampled directional filter bank (NSDFB). In order to preserve more detail information, a multi scale edge preserving decomposition framework (MEDF) was used to decompose an image into a base image and a series of detail images. For the fusion of base images, the local Gaussian membership function is applied to construct the fusion weighted factor. For the fusion of detail images, NSDFB was applied to decompose each detail image into multiple directional sub-images that are fused by pulse coupled neural network (PCNN) respectively. The experimental results demonstrate that the proposed algorithm is superior to the compared algorithms in both visual effect and objective assessment.

  2. Matter-wave dark solitons in boxlike traps

    NASA Astrophysics Data System (ADS)

    Sciacca, M.; Barenghi, C. F.; Parker, N. G.

    2017-01-01

    Motivated by the experimental development of quasihomogeneous Bose-Einstein condensates confined in boxlike traps, we study numerically the dynamics of dark solitons in such traps at zero temperature. We consider the cases where the side walls of the box potential rise either as a power law or a Gaussian. While the soliton propagates through the homogeneous interior of the box without dissipation, it typically dissipates energy during a reflection from a wall through the emission of sound waves, causing a slight increase in the soliton's speed. We characterize this energy loss as a function of the wall parameters. Moreover, over multiple oscillations and reflections in the boxlike trap, the energy loss and speed increase of the soliton can be significant, although the decay eventually becomes stabilized when the soliton equilibrates with the ambient sound field.

  3. Determining X-ray source intensity and confidence bounds in crowded fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Primini, F. A.; Kashyap, V. L., E-mail: fap@head.cfa.harvard.edu

    We present a rigorous description of the general problem of aperture photometry in high-energy astrophysics photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior probability density function for the expected source intensity for various cases of interest, including the important cases in which both source and background apertures contain contributions from the source, and when multiple source apertures partially overlap. A Bayesian approach offers the advantages of allowing one to (1) include explicit prior information on source intensities, (2) propagate posterior distributions as priors for future observations, and (3) use Poisson likelihoods,more » making the treatment valid in the low-counts regime. Elements of this approach have been implemented in the Chandra Source Catalog.« less

  4. Invariant domain watermarking using heaviside function of order alpha and fractional Gaussian field.

    PubMed

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness.

  5. Non-Gaussian behavior in jamming / unjamming transition in dense granular materials

    NASA Astrophysics Data System (ADS)

    Atman, A. P. F.; Kolb, E.; Combe, G.; Paiva, H. A.; Martins, G. H. B.

    2013-06-01

    Experiments of penetration of a cylindrical intruder inside a bidimensional dense and disordered granular media were reported recently showing the jamming / unjamming transition. In the present work, we perform molecular dynamics simulations with the same geometry in order to assess both kinematic and static features of jamming / unjamming transition. We study the statistics of the particles velocities at the neighborhood of the intruder to evince that both experiments and simulations present the same qualitative behavior. We observe that the probability density functions (PDF) of velocities deviate from Gaussian depending on the packing fraction of the granular assembly. In order to quantify these deviations we consider a q-Gaussian (Tsallis) function to fit the PDF's. The q-value can be an indication of the presence of long range correlations along the system. We compare the fitted PDF's obtained with those obtained using the stretched exponential, and sketch some conclusions concerning the nature of the correlations along a granular confined flow.

  6. Invariant Domain Watermarking Using Heaviside Function of Order Alpha and Fractional Gaussian Field

    PubMed Central

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness. PMID:25884854

  7. Photon-number statistics in resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Lenstra, D.

    1982-12-01

    The theory of photon-number statistics in resonance fluorescence is treated, starting with the general formula for the emission probability of n photons during a given time interval T. The results fully confirm formerly obtained results by Cook that were based on the theory of atomic motion in a traveling wave. General expressions for the factorial moments are derived and explicit results for the mean and the variance are given. It is explicitly shown that the distribution function tends to a Gaussian when T becomes much larger than the natural lifetime of the excited atom. The speed of convergence towards the Gaussian is found to be typically slow, that is, the third normalized central moment (or the skewness) is proportional to T-12. However, numerical results illustrate that the overall features of the distribution function are already well represented by a Gaussian when T is larger than a few natural lifetimes only, at least if the intensity of the exciting field is not too small and its detuning is not too large.

  8. The Gaussian streaming model and convolution Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin

    2016-12-05

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less

  9. The statistics of peaks of Gaussian random fields. [cosmological density fluctuations

    NASA Technical Reports Server (NTRS)

    Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.

  10. Application of the ex-Gaussian function to the effect of the word blindness suggestion on Stroop task performance suggests no word blindness

    PubMed Central

    Parris, Benjamin A.; Dienes, Zoltan; Hodgson, Timothy L.

    2013-01-01

    The aim of the present paper was to apply the ex-Gaussian function to data reported by Parris et al. (2012) given its utility in studies involving the Stroop task. Parris et al. showed an effect of the word blindness suggestion when Response-Stimulus Interval (RSI) was 500 ms but not when it was 3500 ms. Analysis revealed that: (1) The effect of the suggestion on interference is observed in μ, supporting converging evidence indicating the suggestion operates over response competition mechanisms; and, (2) Contrary to Parris et al. an effect of the suggestion was observed in μ when RSI was 3500 ms. The reanalysis of the data from Parris et al. (2012) supports the utility of ex-Gaussian analysis in revealing effects that might otherwise be thought of as absent. We suggest that word reading itself is not suppressed by the suggestion but instead that response conflict is dealt with more effectively. PMID:24065947

  11. The Gaussian streaming model and convolution Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less

  12. Application of the ex-Gaussian function to the effect of the word blindness suggestion on Stroop task performance suggests no word blindness.

    PubMed

    Parris, Benjamin A; Dienes, Zoltan; Hodgson, Timothy L

    2013-01-01

    The aim of the present paper was to apply the ex-Gaussian function to data reported by Parris et al. (2012) given its utility in studies involving the Stroop task. Parris et al. showed an effect of the word blindness suggestion when Response-Stimulus Interval (RSI) was 500 ms but not when it was 3500 ms. Analysis revealed that: (1) The effect of the suggestion on interference is observed in μ, supporting converging evidence indicating the suggestion operates over response competition mechanisms; and, (2) Contrary to Parris et al. an effect of the suggestion was observed in μ when RSI was 3500 ms. The reanalysis of the data from Parris et al. (2012) supports the utility of ex-Gaussian analysis in revealing effects that might otherwise be thought of as absent. We suggest that word reading itself is not suppressed by the suggestion but instead that response conflict is dealt with more effectively.

  13. Recent HBT results in Au+Au and p+p collisions from PHENIX

    NASA Astrophysics Data System (ADS)

    PHENIX Collaboration; Glenn, Andrew; PHENIX Collaboration

    2009-11-01

    We present Hanbury-Brown Twiss measurements from the PHENIX experiment at RHIC for final results for charged kaon pairs from s=200 GeV Au+Au collisions and preliminary results for charged pion pairs from s=200 GeVp+p collisions. We find that for kaon pairs from Au+Au, each traditional 3D Gaussian radius shows approximately the same linear increase as a function of Npart1/3. An imaging analysis reveals a significant non-Gaussian tail for r≳10 fm. The presence of a tail for kaon pairs demonstrates that similar non-Gaussian tails observed in earlier pion measurements cannot be fully explained by decays of long-lived resonances. The preliminary analysis of pions from s=200 GeV p+p minimum biased collisions show correlations which are well suited to traditional 3D HBT radii extraction via the Bowler-Sinyukov method, and we present R, R, and R as a function of mean transverse pair mass.

  14. Improving particle filters in rainfall-runoff models: application of the resample-move step and development of the ensemble Gaussian particle filter

    NASA Astrophysics Data System (ADS)

    Plaza Guingla, D. A.; Pauwels, V. R.; De Lannoy, G. J.; Matgen, P.; Giustarini, L.; De Keyser, R.

    2012-12-01

    The objective of this work is to analyze the improvement in the performance of the particle filter by including a resample-move step or by using a modified Gaussian particle filter. Specifically, the standard particle filter structure is altered by the inclusion of the Markov chain Monte Carlo move step. The second choice adopted in this study uses the moments of an ensemble Kalman filter analysis to define the importance density function within the Gaussian particle filter structure. Both variants of the standard particle filter are used in the assimilation of densely sampled discharge records into a conceptual rainfall-runoff model. In order to quantify the obtained improvement, discharge root mean square errors are compared for different particle filters, as well as for the ensemble Kalman filter. First, a synthetic experiment is carried out. The results indicate that the performance of the standard particle filter can be improved by the inclusion of the resample-move step, but its effectiveness is limited to situations with limited particle impoverishment. The results also show that the modified Gaussian particle filter outperforms the rest of the filters. Second, a real experiment is carried out in order to validate the findings from the synthetic experiment. The addition of the resample-move step does not show a considerable improvement due to performance limitations in the standard particle filter with real data. On the other hand, when an optimal importance density function is used in the Gaussian particle filter, the results show a considerably improved performance of the particle filter.

  15. Non-Gaussian structure of B-mode polarization after delensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namikawa, Toshiya; Nagata, Ryo, E-mail: namikawa@slac.stanford.edu, E-mail: rnagata@post.kek.jp

    2015-10-01

    The B-mode polarization of the cosmic microwave background on large scales has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing and future experiments will, however, suffer from contamination due to the B-modes of non-primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of the lensing B-modes, usually referred to as delensing, will be required for further improvement of detection sensitivity of the gravitational waves. In such experiments, knowledge of statistical properties of the B-modes after delensing is indispensable to likelihood analysis particularly because the lensing B-modes are known to be non-Gaussian. Inmore » this paper, we study non-Gaussian structure of the delensed B-modes on large scales, comparing it with that of the lensing B-modes. In particular, we investigate the power spectrum correlation matrix and the probability distribution function (PDF) of the power spectrum amplitude. Assuming an experiment in which the quadratic delensing is an almost optimal method, we find that delensing reduces correlations of the lensing B-mode power spectra between different multipoles, and that the PDF of the power spectrum amplitude is well described as a normal distribution function with a variance larger than that in the case of a Gaussian field. These features are well captured by an analytic model based on the 4th order Edgeworth expansion. As a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar ratio after delensing is degraded within approximately a few percent, which depends on the multipole range included in the analysis.« less

  16. Non-Gaussian structure of B-mode polarization after delensing

    NASA Astrophysics Data System (ADS)

    Namikawa, Toshiya; Nagata, Ryo

    2015-10-01

    The B-mode polarization of the cosmic microwave background on large scales has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing and future experiments will, however, suffer from contamination due to the B-modes of non-primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of the lensing B-modes, usually referred to as delensing, will be required for further improvement of detection sensitivity of the gravitational waves. In such experiments, knowledge of statistical properties of the B-modes after delensing is indispensable to likelihood analysis particularly because the lensing B-modes are known to be non-Gaussian. In this paper, we study non-Gaussian structure of the delensed B-modes on large scales, comparing it with that of the lensing B-modes. In particular, we investigate the power spectrum correlation matrix and the probability distribution function (PDF) of the power spectrum amplitude. Assuming an experiment in which the quadratic delensing is an almost optimal method, we find that delensing reduces correlations of the lensing B-mode power spectra between different multipoles, and that the PDF of the power spectrum amplitude is well described as a normal distribution function with a variance larger than that in the case of a Gaussian field. These features are well captured by an analytic model based on the 4th order Edgeworth expansion. As a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar ratio after delensing is degraded within approximately a few percent, which depends on the multipole range included in the analysis.

  17. Non-Gaussian structure of B-mode polarization after delensing

    DOE PAGES

    Namikawa, Toshiya; Nagata, Ryo

    2015-10-01

    The B-mode polarization of the cosmic microwave background on large scales has been considered as a probe of gravitational waves from the cosmic inflation. Ongoing and future experiments will, however, suffer from contamination due to the B-modes of non-primordial origins, one of which is the lensing induced B-mode polarization. Subtraction of the lensing B-modes, usually referred to as delensing, will be required for further improvement of detection sensitivity of the gravitational waves. In such experiments, knowledge of statistical properties of the B-modes after delensing is indispensable to likelihood analysis particularly because the lensing B-modes are known to be non-Gaussian. Inmore » this paper, we study non-Gaussian structure of the delensed B-modes on large scales, comparing it with that of the lensing B-modes. In particular, we investigate the power spectrum correlation matrix and the probability distribution function (PDF) of the power spectrum amplitude. Assuming an experiment in which the quadratic delensing is an almost optimal method, we find that delensing reduces correlations of the lensing B-mode power spectra between different multipoles, and that the PDF of the power spectrum amplitude is well described as a normal distribution function with a variance larger than that in the case of a Gaussian field. These features are well captured by an analytic model based on the 4th order Edgeworth expansion. Furthermore, as a consequence of the non-Gaussianity, the constraint on the tensor-to-scalar ratio after delensing is degraded within approximately a few percent, which depends on the multipole range included in the analysis.« less

  18. The force distribution probability function for simple fluids by density functional theory.

    PubMed

    Rickayzen, G; Heyes, D M

    2013-02-28

    Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.

  19. Nonlocality of the original Einstein-Podolsky-Rosen state

    NASA Astrophysics Data System (ADS)

    Cohen, O.

    1997-11-01

    We examine the properties and behavior of the original Einstein-Podolsky-Rosen (EPR) wave function [Phys. Rev. 47, 777 (1935)] and related Gaussian-correlated wave functions. We assess the degree of entanglement of these wave functions and consider an argument of Bell [Ann. (N.Y.) Acad. Sci. 480, 263 (1986)] based on the Wigner phase-space distribution [Phys. Rev. 40, 749 (1932)], which implies that the original EPR correlations can accommodate a local hidden-variable description. We extend Bell's analysis to the related Gaussian wave functions. We then show that it is possible to identify definite nonlocal aspects for the original EPR state and related states. We describe possible experiments that would demonstrate these nonlocal features through violations of Bell inequalities. The implications of our results, and in particular their relevance for the causal interpretation of quantum mechanics, are considered.

  20. Optimal observation network design for conceptual model discrimination and uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2016-02-01

    This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.

  1. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  2. Generalized elimination of the global translation from explicitly correlated Gaussian functions

    NASA Astrophysics Data System (ADS)

    Muolo, Andrea; Mátyus, Edit; Reiher, Markus

    2018-02-01

    This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H2+={p+,p+,e- } ion and the H2 = {p+, p+, e-, e-} molecule.

  3. Generating functionals and Gaussian approximations for interruptible delay reactions

    NASA Astrophysics Data System (ADS)

    Brett, Tobias; Galla, Tobias

    2015-10-01

    We develop a generating functional description of the dynamics of non-Markovian individual-based systems in which delay reactions can be terminated before completion. This generalizes previous work in which a path-integral approach was applied to dynamics in which delay reactions complete with certainty. We construct a more widely applicable theory, and from it we derive Gaussian approximations of the dynamics, valid in the limit of large, but finite, population sizes. As an application of our theory we study predator-prey models with delay dynamics due to gestation or lag periods to reach the reproductive age. In particular, we focus on the effects of delay on noise-induced cycles.

  4. Generalized elimination of the global translation from explicitly correlated Gaussian functions.

    PubMed

    Muolo, Andrea; Mátyus, Edit; Reiher, Markus

    2018-02-28

    This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H 2 + ={p + ,p + ,e - } ion and the H 2 = {p + , p + , e - , e - } molecule.

  5. Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows

    NASA Technical Reports Server (NTRS)

    He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.

  6. A Variational Approach to Simultaneous Image Segmentation and Bias Correction.

    PubMed

    Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong

    2015-08-01

    This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.

  7. Bayesian nonparametric regression with varying residual density

    PubMed Central

    Pati, Debdeep; Dunson, David B.

    2013-01-01

    We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose priors for the residual density based on probit stick-breaking (PSB) scale mixtures and symmetrized PSB (sPSB) location-scale mixtures. Both priors restrict the residual density to be symmetric about zero, with the sPSB prior more flexible in allowing multimodal densities. We provide sufficient conditions to ensure strong posterior consistency in estimating the regression function under the sPSB prior, generalizing existing theory focused on parametric residual distributions. The PSB and sPSB priors are generalized to allow residual densities to change nonparametrically with predictors through incorporating Gaussian processes in the stick-breaking components. This leads to a robust Bayesian regression procedure that automatically down-weights outliers and influential observations in a locally-adaptive manner. Posterior computation relies on an efficient data augmentation exact block Gibbs sampler. The methods are illustrated using simulated and real data applications. PMID:24465053

  8. Digital robust active control law synthesis for large order systems using constrained optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1987-01-01

    This paper presents a direct digital control law synthesis procedure for a large order, sampled data, linear feedback system using constrained optimization techniques to meet multiple design requirements. A linear quadratic Gaussian type cost function is minimized while satisfying a set of constraints on the design loads and responses. General expressions for gradients of the cost function and constraints, with respect to the digital control law design variables are derived analytically and computed by solving a set of discrete Liapunov equations. The designer can choose the structure of the control law and the design variables, hence a stable classical control law as well as an estimator-based full or reduced order control law can be used as an initial starting point. Selected design responses can be treated as constraints instead of lumping them into the cost function. This feature can be used to modify a control law, to meet individual root mean square response limitations as well as minimum single value restrictions. Low order, robust digital control laws were synthesized for gust load alleviation of a flexible remotely piloted drone aircraft.

  9. An estimation of distribution method for infrared target detection based on Copulas

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhang, Yiqun

    2015-10-01

    Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.

  10. Hydrocarbon Reservoir Prediction Using Bi-Gaussian S Transform Based Time-Frequency Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.

    2015-12-01

    Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).

  11. Efficient Statistically Accurate Algorithms for the Fokker-Planck Equation in Large Dimensions

    NASA Astrophysics Data System (ADS)

    Chen, N.; Majda, A.

    2017-12-01

    Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method, which is based on an effective data assimilation framework, provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace. Therefore, it is computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from the traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has a significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O(100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.

  12. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.

    2011-12-15

    Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of themore » higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.« less

  13. ISIM3D: AN ANSI-C THREE-DIMENSIONAL MULTIPLE INDICATOR CONDITIONAL SIMULATION PROGRAM

    EPA Science Inventory

    The indicator conditional simulation technique provides stochastic simulations of a variable that (i) honor the initial data and (ii) can feature a richer family of spatial structures not limited by Gaussianity. he data are encoded into a series of indicators which then are used ...

  14. Exciton States in a Gaussian Confining Potential Well

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Fang; Gu, Juan

    2003-11-01

    We consider the problem of an electron-hole pair in a Gaussian confining potential well. This problem is treated within the effective-mass approximation framework using the method of numerical matrix diagonalization. The energy levels of the low-lying states are calculated as a function of the electron-hole effective mass ratio and the size of the confining potential. The project supported by National Natural Science Foundation of China under Grant No. 10275014

  15. Statistics of Stokes variables for correlated Gaussian fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.

    1994-09-01

    The joint and marginal probability distribution functions of the Stokes variables are derived for correlated Gaussian fields [an extension of D. Eliyahu, Phys. Rev. E 47, 2881 (1993)]. The statistics depend only on the first moment (averaged) Stokes variables and have a universal form for [ital S][sub 1], [ital S][sub 2], and [ital S][sub 3]. The statistics of the variables describing the Cartesian coordinates of the Poincare sphere are given also.

  16. Plasmon-mediated binding forces on gold or silver homodimer and heterodimer

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Kuo, Ting-Yu; Kuo, Mao-Kuen

    2016-02-01

    This study theoretically investigates plasmon-mediated optical binding forces, which are exerted on metal homo or heterodimers, induced by the normal illumination of a linearly polarized plane wave or Gaussian beam. Using the multiple multipole method, we analyzed the optical force in terms of Maxwell's stress tensor for various interparticle distance at some specific wavelengths. Numerical results show that for a given wavelength there are several stable equilibrium distances between two nanoparticles (NPs) of a homodimer, which are slightly shorter than some integer multiples of the wavelength in medium, such that metal dimer acts as bonded together. At these specific interparticle distances, the optical force between dimer is null and serves a restoring force, which is repulsive and attractive, respectively, as the two NPs are moving closer to and away from each other. The spring constant of the restoring force at the first stable equilibrium is always the largest, indicating that the first stable equilibrium distance is the most stable one. Moreover, the central line (orientation) of a dimer tends to be perpendicular to the polarization of light. For the cases of heterodimers, the phenomenon of stable equilibrium interparticle distance still exists, except there is an extra net photophoretic force drifting the heterodimer as one. Moreover, gradient force provided by a Gaussian beam may reduce the stability of these equilibriums, so larger NPs are preferred to stabilize a dimer under illumination of Gaussian beam. The finding may pave the way for using optical manipulation on the gold or silver colloidal self-assembly.

  17. Remote sensing data with the conditional latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh

    2009-01-01

    This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.

  18. Deep Learning Role in Early Diagnosis of Prostate Cancer

    PubMed Central

    Reda, Islam; Khalil, Ashraf; Elmogy, Mohammed; Abou El-Fetouh, Ahmed; Shalaby, Ahmed; Abou El-Ghar, Mohamed; Elmaghraby, Adel; Ghazal, Mohammed; El-Baz, Ayman

    2018-01-01

    The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. PMID:29804518

  19. Statistical testing and power analysis for brain-wide association study.

    PubMed

    Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng

    2018-04-05

    The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Gaussian process based independent analysis for temporal source separation in fMRI.

    PubMed

    Hald, Ditte Høvenhoff; Henao, Ricardo; Winther, Ole

    2017-05-15

    Functional Magnetic Resonance Imaging (fMRI) gives us a unique insight into the processes of the brain, and opens up for analyzing the functional activation patterns of the underlying sources. Task-inferred supervised learning with restrictive assumptions in the regression set-up, restricts the exploratory nature of the analysis. Fully unsupervised independent component analysis (ICA) algorithms, on the other hand, can struggle to detect clear classifiable components on single-subject data. We attribute this shortcoming to inadequate modeling of the fMRI source signals by failing to incorporate its temporal nature. fMRI source signals, biological stimuli and non-stimuli-related artifacts are all smooth over a time-scale compatible with the sampling time (TR). We therefore propose Gaussian process ICA (GPICA), which facilitates temporal dependency by the use of Gaussian process source priors. On two fMRI data sets with different sampling frequency, we show that the GPICA-inferred temporal components and associated spatial maps allow for a more definite interpretation than standard temporal ICA methods. The temporal structures of the sources are controlled by the covariance of the Gaussian process, specified by a kernel function with an interpretable and controllable temporal length scale parameter. We propose a hierarchical model specification, considering both instantaneous and convolutive mixing, and we infer source spatial maps, temporal patterns and temporal length scale parameters by Markov Chain Monte Carlo. A companion implementation made as a plug-in for SPM can be downloaded from https://github.com/dittehald/GPICA. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Diffusive dynamics of nanoparticles in ultra-confined media

    DOE PAGES

    Jacob, Jack Deodato; Conrad, Jacinta; Krishnamoorti, Ramanan; ...

    2015-08-10

    Differential dynamic microscopy (DDM) was used to investigate the diffusive dynamics of nanoparticles of diameter 200 400 nm that were strongly confined in a periodic square array of cylindrical nanoposts. The minimum distance between posts was 1.3 5 times the diameter of the nanoparticles. The image structure functions obtained from the DDM analysis were isotropic and could be fit by a stretched exponential function. The relaxation time scaled diffusively across the range of wave vectors studied, and the corresponding scalar diffusivities decreased monotonically with increased confinement. The decrease in diffusivity could be described by models for hindered diffusion that accountedmore » for steric restrictions and hydrodynamic interactions. The stretching exponent decreased linearly as the nanoparticles were increasingly confined by the posts. Altogether, these results are consistent with a picture in which strongly confined nanoparticles experience a heterogeneous spatial environment arising from hydrodynamics and volume exclusion on time scales comparable to cage escape, leading to multiple relaxation processes and Fickian but non-Gaussian diffusive dynamics.« less

  2. Dynamical analysis of relaxation luminescence in ZnS:Er3+ thin film devices

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jiang; Wu, Chen-Xu; Chen, Mou-Zhi; Huang, Mei-Chun

    2003-06-01

    The relaxation luminescence of ZnS:Er3+ thin film devices fabricated by thermal evaporation with two boats is studied. The dynamical processes of the luminescence of Er3+ in ZnS are described in terms of a resonant energy transfer model, assuming that the probability of collision excitation of injected electrons with luminescence centers is expressed as a Gaussian function. It is found that the frequency distribution depends on the Lorentzian function by considering the emission from excited states as a damped oscillator. Taking into consideration the energy storing effect of traps, an expression is obtained to describe a profile that contains multiple relaxation luminescence peaks using the convolution theorem. Fitting of experimental results shows that the relaxation characteristics of the electroluminescence are related to the carriers captured by bulk traps as well as by interface states. The numerical calculation carried out agrees well with the dynamical characteristics of relaxation luminescence obtained by experiments.

  3. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    PubMed

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.

  4. Theory and generation of conditional, scalable sub-Gaussian random fields

    NASA Astrophysics Data System (ADS)

    Panzeri, M.; Riva, M.; Guadagnini, A.; Neuman, S. P.

    2016-03-01

    Many earth and environmental (as well as a host of other) variables, Y, and their spatial (or temporal) increments, ΔY, exhibit non-Gaussian statistical scaling. Previously we were able to capture key aspects of such non-Gaussian scaling by treating Y and/or ΔY as sub-Gaussian random fields (or processes). This however left unaddressed the empirical finding that whereas sample frequency distributions of Y tend to display relatively mild non-Gaussian peaks and tails, those of ΔY often reveal peaks that grow sharper and tails that become heavier with decreasing separation distance or lag. Recently we proposed a generalized sub-Gaussian model (GSG) which resolves this apparent inconsistency between the statistical scaling behaviors of observed variables and their increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. Most importantly, we demonstrated the feasibility of estimating all parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments, ΔY. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random fields, introduce two approximate versions of this algorithm to reduce CPU time, and explore them on one and two-dimensional synthetic test cases.

  5. Understanding How Kurtosis Is Transferred from Input Acceleration to Stress Response and Its Influence on Fatigue Llife

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.; Ferguson, Neil S.; Halfpenny, Andrew

    2013-01-01

    High cycle fatigue of metals typically occurs through long term exposure to time varying loads which, although modest in amplitude, give rise to microscopic cracks that can ultimately propagate to failure. The fatigue life of a component is primarily dependent on the stress amplitude response at critical failure locations. For most vibration tests, it is common to assume a Gaussian distribution of both the input acceleration and stress response. In real life, however, it is common to experience non-Gaussian acceleration input, and this can cause the response to be non-Gaussian. Examples of non-Gaussian loads include road irregularities such as potholes in the automotive world or turbulent boundary layer pressure fluctuations for the aerospace sector or more generally wind, wave or high amplitude acoustic loads. The paper first reviews some of the methods used to generate non-Gaussian excitation signals with a given power spectral density and kurtosis. The kurtosis of the response is examined once the signal is passed through a linear time invariant system. Finally an algorithm is presented that determines the output kurtosis based upon the input kurtosis, the input power spectral density and the frequency response function of the system. The algorithm is validated using numerical simulations. Direct applications of these results include improved fatigue life estimations and a method to accelerate shaker tests by generating high kurtosis, non-Gaussian drive signals.

  6. Clustering of Multispectral Airborne Laser Scanning Data Using Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Morsy, S.; Shaker, A.; El-Rabbany, A.

    2017-09-01

    With the evolution of the LiDAR technology, multispectral airborne laser scanning systems are currently available. The first operational multispectral airborne LiDAR sensor, the Optech Titan, acquires LiDAR point clouds at three different wavelengths (1.550, 1.064, 0.532 μm), allowing the acquisition of different spectral information of land surface. Consequently, the recent studies are devoted to use the radiometric information (i.e., intensity) of the LiDAR data along with the geometric information (e.g., height) for classification purposes. In this study, a data clustering method, based on Gaussian decomposition, is presented. First, a ground filtering mechanism is applied to separate non-ground from ground points. Then, three normalized difference vegetation indices (NDVIs) are computed for both non-ground and ground points, followed by histograms construction from each NDVI. The Gaussian function model is used to decompose the histograms into a number of Gaussian components. The maximum likelihood estimate of the Gaussian components is then optimized using Expectation - Maximization algorithm. The intersection points of the adjacent Gaussian components are subsequently used as threshold values, whereas different classes can be clustered. This method is used to classify the terrain of an urban area in Oshawa, Ontario, Canada, into four main classes, namely roofs, trees, asphalt and grass. It is shown that the proposed method has achieved an overall accuracy up to 95.1 % using different NDVIs.

  7. A Nonlinear Framework of Delayed Particle Smoothing Method for Vehicle Localization under Non-Gaussian Environment

    PubMed Central

    Xiao, Zhu; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-01-01

    In this paper, a novel nonlinear framework of smoothing method, non-Gaussian delayed particle smoother (nGDPS), is proposed, which enables vehicle state estimation (VSE) with high accuracy taking into account the non-Gaussianity of the measurement and process noises. Within the proposed method, the multivariate Student’s t-distribution is adopted in order to compute the probability distribution function (PDF) related to the process and measurement noises, which are assumed to be non-Gaussian distributed. A computation approach based on Ensemble Kalman Filter (EnKF) is designed to cope with the mean and the covariance matrix of the proposal non-Gaussian distribution. A delayed Gibbs sampling algorithm, which incorporates smoothing of the sampled trajectories over a fixed-delay, is proposed to deal with the sample degeneracy of particles. The performance is investigated based on the real-world data, which is collected by low-cost on-board vehicle sensors. The comparison study based on the real-world experiments and the statistical analysis demonstrates that the proposed nGDPS has significant improvement on the vehicle state accuracy and outperforms the existing filtering and smoothing methods. PMID:27187405

  8. A neural-network based estimator to search for primordial non-Gaussianity in Planck CMB maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novaes, C.P.; Bernui, A.; Ferreira, I.S.

    2015-09-01

    We present an upgraded combined estimator, based on Minkowski Functionals and Neural Networks, with excellent performance in detecting primordial non-Gaussianity in simulated maps that also contain a weighted mixture of Galactic contaminations, besides real pixel's noise from Planck cosmic microwave background radiation data. We rigorously test the efficiency of our estimator considering several plausible scenarios for residual non-Gaussianities in the foreground-cleaned Planck maps, with the intuition to optimize the training procedure of the Neural Network to discriminate between contaminations with primordial and secondary non-Gaussian signatures. We look for constraints of primordial local non-Gaussianity at large angular scales in the foreground-cleanedmore » Planck maps. For the SMICA map we found f{sub NL} = 33 ± 23, at 1σ confidence level, in excellent agreement with the WMAP-9yr and Planck results. In addition, for the other three Planck maps we obtain similar constraints with values in the interval f{sub NL}  element of  [33, 41], concomitant with the fact that these maps manifest distinct features in reported analyses, like having different pixel's noise intensities.« less

  9. Modeling Multi-Variate Gaussian Distributions and Analysis of Higgs Boson Couplings with the ATLAS Detector

    NASA Astrophysics Data System (ADS)

    Krohn, Olivia; Armbruster, Aaron; Gao, Yongsheng; Atlas Collaboration

    2017-01-01

    Software tools developed for the purpose of modeling CERN LHC pp collision data to aid in its interpretation are presented. Some measurements are not adequately described by a Gaussian distribution; thus an interpretation assuming Gaussian uncertainties will inevitably introduce bias, necessitating analytical tools to recreate and evaluate non-Gaussian features. One example is the measurements of Higgs boson production rates in different decay channels, and the interpretation of these measurements. The ratios of data to Standard Model expectations (μ) for five arbitrary signals were modeled by building five Poisson distributions with mixed signal contributions such that the measured values of μ are correlated. Algorithms were designed to recreate probability distribution functions of μ as multi-variate Gaussians, where the standard deviation (σ) and correlation coefficients (ρ) are parametrized. There was good success with modeling 1-D likelihood contours of μ, and the multi-dimensional distributions were well modeled within 1- σ but the model began to diverge after 2- σ due to unmerited assumptions in developing ρ. Future plans to improve the algorithms and develop a user-friendly analysis package will also be discussed. NSF International Research Experiences for Students

  10. Transformation Theory, Accelerating Frames, and Two Simple Problems

    ERIC Educational Resources Information Center

    Schmid, G. Bruno

    1977-01-01

    Presents an operator which transforms quantum functions to solve problems of the stationary state wave functions for a particle and the motion and spreading of a Gaussian wave packet in uniform gravitational fields. (SL)

  11. Separation of the atmospheric variability into non-Gaussian multidimensional sources by projection pursuit techniques

    NASA Astrophysics Data System (ADS)

    Pires, Carlos A. L.; Ribeiro, Andreia F. S.

    2017-02-01

    We develop an expansion of space-distributed time series into statistically independent uncorrelated subspaces (statistical sources) of low-dimension and exhibiting enhanced non-Gaussian probability distributions with geometrically simple chosen shapes (projection pursuit rationale). The method relies upon a generalization of the principal component analysis that is optimal for Gaussian mixed signals and of the independent component analysis (ICA), optimized to split non-Gaussian scalar sources. The proposed method, supported by information theory concepts and methods, is the independent subspace analysis (ISA) that looks for multi-dimensional, intrinsically synergetic subspaces such as dyads (2D) and triads (3D), not separable by ICA. Basically, we optimize rotated variables maximizing certain nonlinear correlations (contrast functions) coming from the non-Gaussianity of the joint distribution. As a by-product, it provides nonlinear variable changes `unfolding' the subspaces into nearly Gaussian scalars of easier post-processing. Moreover, the new variables still work as nonlinear data exploratory indices of the non-Gaussian variability of the analysed climatic and geophysical fields. The method (ISA, followed by nonlinear unfolding) is tested into three datasets. The first one comes from the Lorenz'63 three-dimensional chaotic model, showing a clear separation into a non-Gaussian dyad plus an independent scalar. The second one is a mixture of propagating waves of random correlated phases in which the emergence of triadic wave resonances imprints a statistical signature in terms of a non-Gaussian non-separable triad. Finally the method is applied to the monthly variability of a high-dimensional quasi-geostrophic (QG) atmospheric model, applied to the Northern Hemispheric winter. We find that quite enhanced non-Gaussian dyads of parabolic shape, perform much better than the unrotated variables in which concerns the separation of the four model's centroid regimes (positive and negative phases of the Arctic Oscillation and of the North Atlantic Oscillation). Triads are also likely in the QG model but of weaker expression than dyads due to the imposed shape and dimension. The study emphasizes the existence of nonlinear dyadic and triadic nonlinear teleconnections.

  12. Quantifying the non-Gaussianity in the EoR 21-cm signal through bispectrum

    NASA Astrophysics Data System (ADS)

    Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh; Watkinson, Catherine A.; Bharadwaj, Somnath; Mellema, Garrelt

    2018-05-01

    The epoch of reionization (EoR) 21-cm signal is expected to be highly non-Gaussian in nature and this non-Gaussianity is also expected to evolve with the progressing state of reionization. Therefore the signal will be correlated between different Fourier modes (k). The power spectrum will not be able capture this correlation in the signal. We use a higher order estimator - the bispectrum - to quantify this evolving non-Gaussianity. We study the bispectrum using an ensemble of simulated 21-cm signal and with a large variety of k triangles. We observe two competing sources driving the non-Gaussianity in the signal: fluctuations in the neutral fraction (x_{H I}) field and fluctuations in the matter density field. We find that the non-Gaussian contribution from these two sources varies, depending on the stage of reionization and on which k modes are being studied. We show that the sign of the bispectrum works as a unique marker to identify which among these two components is driving the non-Gaussianity. We propose that the sign change in the bispectrum, when plotted as a function of triangle configuration cos θ and at a certain stage of the EoR can be used as a confirmative test for the detection of the 21-cm signal. We also propose a new consolidated way to visualize the signal evolution (with evolving \\bar{x}_{H I} or redshift), through the trajectories of the signal in a power spectrum and equilateral bispectrum i.e. P(k) - B(k, k, k) space.

  13. Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Pajer, E.; Pichon, C.; Nishimichi, T.; Codis, S.; Bernardeau, F.

    2018-03-01

    Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high- and low-density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured non-linear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from fNL = -100 to +100, they are found to agree within 2 per cent or better for densities ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h-1 down to z = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the non-linear variance σ8 and primordial skewness fNL are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.

  14. Statistics of Gaussian packets on metric and decorated graphs.

    PubMed

    Chernyshev, V L; Shafarevich, A I

    2014-01-28

    We study a semiclassical asymptotics of the Cauchy problem for a time-dependent Schrödinger equation on metric and decorated graphs with a localized initial function. A decorated graph is a topological space obtained from a graph via replacing vertices with smooth Riemannian manifolds. The main term of an asymptotic solution at an arbitrary finite time is a sum of Gaussian packets and generalized Gaussian packets (localized near a certain set of codimension one). We study the number of packets as time tends to infinity. We prove that under certain assumptions this number grows in time as a polynomial and packets fill the graph uniformly. We discuss a simple example of the opposite situation: in this case, a numerical experiment shows a subexponential growth.

  15. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  16. Absolute judgment for one- and two-dimensional stimuli embedded in Gaussian noise

    NASA Technical Reports Server (NTRS)

    Kvalseth, T. O.

    1977-01-01

    This study examines the effect on human performance of adding Gaussian noise or disturbance to the stimuli in absolute judgment tasks involving both one- and two-dimensional stimuli. For each selected stimulus value (both an X-value and a Y-value were generated in the two-dimensional case), 10 values (or 10 pairs of values in the two-dimensional case) were generated from a zero-mean Gaussian variate, added to the selected stimulus value and then served as the coordinate values for the 10 points that were displayed sequentially on a CRT. The results show that human performance, in terms of the information transmitted and rms error as functions of stimulus uncertainty, was significantly reduced as the noise variance increased.

  17. Inflation in random Gaussian landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu

    2017-05-01

    We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer frommore » potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.« less

  18. Direct Importance Estimation with Gaussian Mixture Models

    NASA Astrophysics Data System (ADS)

    Yamada, Makoto; Sugiyama, Masashi

    The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.

  19. Quantifying and Reducing Uncertainty in Correlated Multi-Area Short-Term Load Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Hou, Zhangshuan; Meng, Da

    2016-07-17

    In this study, we represent and reduce the uncertainties in short-term electric load forecasting by integrating time series analysis tools including ARIMA modeling, sequential Gaussian simulation, and principal component analysis. The approaches are mainly focusing on maintaining the inter-dependency between multiple geographically related areas. These approaches are applied onto cross-correlated load time series as well as their forecast errors. Multiple short-term prediction realizations are then generated from the reduced uncertainty ranges, which are useful for power system risk analyses.

  20. Charged particle dynamics in the presence of non-Gaussian Lévy electrostatic fluctuations

    DOE PAGES

    Del-Castillo-Negrete, Diego B.; Moradi, Sara; Anderson, Johan

    2016-09-01

    Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of -stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value ofmore » the power law decay exponents are linearly proportional to the Levy index. Furthermore, the observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account.« less

Top