Science.gov

Sample records for multiple gene expression

  1. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  2. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  3. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  4. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  5. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  6. Expression of DNA methylation genes in secondary progressive multiple sclerosis.

    PubMed

    Fagone, Paolo; Mangano, Katia; Di Marco, Roberto; Touil-Boukoffa, Chafia; Chikovan, Tinatin; Signorelli, Santo; Lombardo, Giuseppe A G; Patti, Francesco; Mammana, Santa; Nicoletti, Ferdinando

    2016-01-15

    Multiple sclerosis (MS) is an immunoinflammatory disease of the central nervous system that seems to be influenced by DNA methylation. We sought to explore the expression pattern of genes involved in the control of DNA methylation in Secondary Progressive (SP) MS patients' PBMCs. We have found that SP MS is characterized by a significant upregulation of two genes belonging to the MBD family genes, MBD2 and MBD4, and by a downregulation of TDG and TET3. PMID:26711572

  7. Optimizing multiple sclerosis diagnosis: gene expression and genomic association

    PubMed Central

    Gurevich, Michael; Miron, Gadi; Achiron, Anat

    2015-01-01

    Objective The diagnosis of multiple sclerosis (MS) at disease onset is sometimes masqueraded by other diagnostic options resembling MS clinically or radiologically (NonMS). In the present study we utilized findings of large-scale Genome-Wide Association Studies (GWAS) to develop a blood gene expression-based classification tool to assist in diagnosis during the first demyelinating event. Methods We have merged knowledge of 110 MS susceptibility genes gained from MS GWAS studies together with our experimental results of differential blood gene expression profiling between 80 MS and 31 NonMS patients. Multiple classification algorithms were applied to this cohort to construct a diagnostic classifier that correctly distinguished between MS and NonMS patients. Accuracy of the classifier was tested on an additional independent group of 146 patients including 121 MS and 25 NonMS patients. Results We have constructed a 42 gene-transcript expression-based MS diagnostic classifier. The overall accuracy of the classifier, as tested on an independent patient population consisting of diagnostically challenging cases including NonMS patients with positive MRI findings, achieved a correct classification rate of 76.0 ± 3.5%. Interpretation The presented diagnostic classification tool complements the existing diagnostic McDonald criteria by assisting in the accurate exclusion of other neurological diseases at presentation of the first demyelinating event suggestive of MS. PMID:25815353

  8. Inference of gene interaction networks using conserved subsequential patterns from multiple time course gene expression datasets

    PubMed Central

    2015-01-01

    Motivation Deciphering gene interaction networks (GINs) from time-course gene expression (TCGx) data is highly valuable to understand gene behaviors (e.g., activation, inhibition, time-lagged causality) at the system level. Existing methods usually use a global or local proximity measure to infer GINs from a single dataset. As the noise contained in a single data set is hardly self-resolved, the results are sometimes not reliable. Also, these proximity measurements cannot handle the co-existence of the various in vivo positive, negative and time-lagged gene interactions. Methods and results We propose to infer reliable GINs from multiple TCGx datasets using a novel conserved subsequential pattern of gene expression. A subsequential pattern is a maximal subset of genes sharing positive, negative or time-lagged correlations of one expression template on their own subsets of time points. Based on these patterns, a GIN can be built from each of the datasets. It is assumed that reliable gene interactions would be detected repeatedly. We thus use conserved gene pairs from the individual GINs of the multiple TCGx datasets to construct a reliable GIN for a species. We apply our method on six TCGx datasets related to yeast cell cycle, and validate the reliable GINs using protein interaction networks, biopathways and transcription factor-gene regulations. We also compare the reliable GINs with those GINs reconstructed by a global proximity measure Pearson correlation coefficient method from single datasets. It has been demonstrated that our reliable GINs achieve much better prediction performance especially with much higher precision. The functional enrichment analysis also suggests that gene sets in a reliable GIN are more functionally significant. Our method is especially useful to decipher GINs from multiple TCGx datasets related to less studied organisms where little knowledge is available except gene expression data. PMID:26681650

  9. Multiple Suboptimal Solutions for Prediction Rules in Gene Expression Data

    PubMed Central

    Komori, Osamu; Pritchard, Mari; Eguchi, Shinto

    2013-01-01

    This paper discusses mathematical and statistical aspects in analysis methods applied to microarray gene expressions. We focus on pattern recognition to extract informative features embedded in the data for prediction of phenotypes. It has been pointed out that there are severely difficult problems due to the unbalance in the number of observed genes compared with the number of observed subjects. We make a reanalysis of microarray gene expression published data to detect many other gene sets with almost the same performance. We conclude in the current stage that it is not possible to extract only informative genes with high performance in the all observed genes. We investigate the reason why this difficulty still exists even though there are actively proposed analysis methods and learning algorithms in statistical machine learning approaches. We focus on the mutual coherence or the absolute value of the Pearson correlations between two genes and describe the distributions of the correlation for the selected set of genes and the total set. We show that the problem of finding informative genes in high dimensional data is ill-posed and that the difficulty is closely related with the mutual coherence. PMID:23662163

  10. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis. PMID:27125224

  11. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  12. Reference genes for quantitative gene expression studies in multiple avian species.

    PubMed

    Olias, Philipp; Adam, Iris; Meyer, Anne; Scharff, Constance; Gruber, Achim D

    2014-01-01

    Quantitative real-time PCR (qPCR) rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM, YWHAZ) on different tissues of the mallard (Anas platyrhynchos), domestic chicken (Gallus gallus domesticus), common crane (Grus grus), white-tailed eagle (Haliaeetus albicilla), domestic turkey (Meleagris gallopavo f. domestica), cockatiel (Nymphicus hollandicus), Humboldt penguin (Sphenicus humboldti), ostrich (Struthio camelus) and zebra finch (Taeniopygia guttata), spanning a broad range of the phylogenetic tree of birds. Primer pairs for six to 11 genes were successfully established for each of the nine species. As a proof of principle, we analyzed expression levels of 10 candidate reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different statistical algorithms, we identified five genes (18S, PGK1, RPS7, TFRC, YWHAZ) that were stably expressed within each group and also between the singing and silent conditions, establishing them as suitable reference genes. In conclusion, the newly developed pan-avian primer set allows accurate normalization and quantification of gene expression levels in multiple avian species. PMID:24926893

  13. Multiple common variants for celiac disease influencing immune gene expression

    PubMed Central

    Dubois, Patrick CA; Trynka, Gosia; Franke, Lude; Hunt, Karen A; Romanos, Jihane; Curtotti, Alessandra; Zhernakova, Alexandra; Heap, Graham AR; Ádány, Róza; Aromaa, Arpo; Bardella, Maria Teresa; van den Berg, Leonard H; Bockett, Nicholas A; de la Concha, Emilio G.; Dema, Bárbara; Fehrmann, Rudolf SN; Fernández-Arquero, Miguel; Fiatal, Szilvia; Grandone, Elvira; Green, Peter M; Groen, Harry JM; Gwilliam, Rhian; Houwen, Roderick HJ; Hunt, Sarah E; Kaukinen, Katri; Kelleher, Dermot; Korponay-Szabo, Ilma; Kurppa, Kalle; MacMathuna, Padraic; Mäki, Markku; Mazzilli, Maria Cristina; McCann, Owen T; Mearin, M Luisa; Mein, Charles A; Mirza, Muddassar M; Mistry, Vanisha; Mora, Barbara; Morley, Katherine I; Mulder, Chris J; Murray, Joseph A; Núñez, Concepción; Oosterom, Elvira; Ophoff, Roel A; Polanco, Isabel; Peltonen, Leena; Platteel, Mathieu; Rybak, Anna; Salomaa, Veikko; Schweizer, Joachim J; Sperandeo, Maria Pia; Tack, Greetje J; Turner, Graham; Veldink, Jan H; Verbeek, Wieke HM; Weersma, Rinse K; Wolters, Victorien M; Urcelay, Elena; Cukrowska, Bozena; Greco, Luigi; Neuhausen, Susan L.; McManus, Ross; Barisani, Donatella; Deloukas, Panos; Barrett, Jeffrey C; Saavalainen, Paivi; Wijmenga, Cisca; van Heel, David A

    2010-01-01

    We performed a second-generation genome wide association study of 4,533 celiac disease cases and 10,750 controls. We genotyped 113 selected SNPs with PGWAS<10−4, and 18 SNPs from 14 known loci, in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome wide significance (Pcombined<5×10−8), most contain immune function genes (BACH2, CCR4, CD80, CIITA/SOCS1/CLEC16A, ICOSLG, ZMIZ1) with ETS1, RUNX3, THEMIS and TNFRSF14 playing key roles in thymic T cell selection. A further 13 regions had suggestive association evidence. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P<0.0028, FDR 5%) with cis gene expression. PMID:20190752

  14. In vivo imaging of clock gene expression in multiple tissues of freely moving mice.

    PubMed

    Hamada, Toshiyuki; Sutherland, Kenneth; Ishikawa, Masayori; Miyamoto, Naoki; Honma, Sato; Shirato, Hiroki; Honma, Ken-Ichi

    2016-01-01

    Clock genes are expressed throughout the body, although how they oscillate in unrestrained animals is not known. Here, we show an in vivo imaging technique that enables long-term simultaneous imaging of multiple tissues. We use dual-focal 3D tracking and signal-intensity calibration to follow gene expression in a target area. We measure circadian rhythms of clock genes in the olfactory bulb, right and left ears and cortices, and the skin. In addition, the kinetic relationship between gene expression and physiological responses to experimental cues is monitored. Under stable conditions gene expression is in phase in all tissues. In response to a long-duration light pulse, the olfactory bulb shifts faster than other tissues. In Cry1(-/-) Cry2(-/-) arrhythmic mice circadian oscillation is absent in all tissues. Thus, our system successfully tracks circadian rhythms in clock genes in multiple tissues in unrestrained mice. PMID:27285820

  15. Identifying reproducible cancer-associated highly expressed genes with important functional significances using multiple datasets

    PubMed Central

    Huang, Haiyan; Li, Xiangyu; Guo, You; Zhang, Yuncong; Deng, Xusheng; Chen, Lufei; Zhang, Jiahui; Guo, Zheng; Ao, Lu

    2016-01-01

    Identifying differentially expressed (DE) genes between cancer and normal tissues is of basic importance for studying cancer mechanisms. However, current methods, such as the commonly used Significance Analysis of Microarrays (SAM), are biased to genes with low expression levels. Recently, we proposed an algorithm, named the pairwise difference (PD) algorithm, to identify highly expressed DE genes based on reproducibility evaluation of top-ranked expression differences between paired technical replicates of cells under two experimental conditions. In this study, we extended the application of the algorithm to the identification of DE genes between two types of tissue samples (biological replicates) based on several independent datasets or sub-datasets of a dataset, by constructing multiple paired average gene expression profiles for the two types of samples. Using multiple datasets for lung and esophageal cancers, we demonstrated that PD could identify many DE genes highly expressed in both cancer and normal tissues that tended to be missed by the commonly used SAM. These highly expressed DE genes, including many housekeeping genes, were significantly enriched in many conservative pathways, such as ribosome, proteasome, phagosome and TNF signaling pathways with important functional significances in oncogenesis. PMID:27796338

  16. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions.

    PubMed

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. PMID:26609814

  17. Stochastic modeling of regulation of gene expression by multiple small RNAs

    NASA Astrophysics Data System (ADS)

    Baker, Charles; Jia, Tao; Kulkarni, Rahul V.

    2012-06-01

    A wealth of new research has highlighted the critical roles of small noncoding RNAs (sRNAs) in diverse processes, such as quorum sensing and cellular responses to stress. The pathways controlling these processes often have a central motif composed of a master regulator protein whose expression is controlled by multiple sRNAs. However, the stochastic gene expression of a single target gene regulated by multiple sRNAs is currently not well understood. To address this issue, we analyze a stochastic model of regulation of gene expression by multiple sRNAs. For this model, we derive exact analytic results for the regulated protein distribution, including compact expressions for its mean and variance. The derived results provide insights into the roles of multiple sRNAs in fine-tuning the noise in gene expression. In particular, we show that, in contrast to regulation by a single sRNA, multiple sRNAs provide a mechanism for independently controlling the mean and variance of the regulated protein distribution.

  18. Gene Expression Profiling of Multiple Leiomyomata Uteri and Matched Normal Tissue from a Single Patient

    PubMed Central

    Dimitrova, Irina K.; Richer, Jennifer K.; Rudolph, Michael C.; Spoelstra, Nicole S.; Reno, Elaine M.; Medina, Theresa M.; Bradford, Andrew P.

    2009-01-01

    Objective To identify differentially expressed genes between fibroid and adjacent normal myometrium in an identical hormonal and genetic background. Design Array analysis of 3 leiomyomata and matched adjacent normal myometrium in a single patient. Setting University of Colorado Hospital. Patient(s) A single female undergoing medically indicated hysterectomy for symptomatic fibroids. Interventions(s) mRNA isolation and microarray analysis, reverse-transcriptase polymerase chain reaction, western blotting and immunohistochemistry. Main Outcome Measure(s) Changes in mRNA and protein levels in leiomyomata and matched normal myometrium. Result(s) Expression of 197 genes was increased and 619 decreased, significantly by at least 2 fold, in leiomyomata relative to normal myometrium. Expression profiles between tumors were similar and normal myometrial samples showed minimal variation. Changes in, and variation of, expression of selected genes were confirmed in additional normal and leiomyoma samples from multiple patients. Conclusion(s) Analysis of multiple tumors from a single patient confirmed changes in expression of genes described in previous, apparently disparate, studies and identified novel targets. Gene expression profiles in leiomyomata are consistent with increased activation of mitogenic pathways and inhibition of apoptosis. Down-regulation of genes implicated in invasion and metastasis, of cancers, was observed in fibroids. This expression pattern may underlie the benign nature of uterine leiomyomata and may aid in the differential diagnosis of leiomyosarcoma. PMID:18672237

  19. Single Cell Visualization of Yeast Gene Expression Shows Correlation of Epigenetic Switching between Multiple Heterochromatic Regions through Multiple Generations

    PubMed Central

    Mano, Yasunobu; Kobayashi, Tetsuya J.; Nakayama, Jun-ichi; Uchida, Hiroyuki; Oki, Masaya

    2013-01-01

    Differences in gene expression between individual cells can be mediated by epigenetic regulation; thus, methods that enable detailed analyses of single cells are crucial to understanding this phenomenon. In this study, genomic silencing regions of Saccharomyces cerevisiae that are subject to epigenetic regulation, including the HMR, HML, and telomere regions, were investigated using a newly developed single cell analysis method. This method uses fluorescently labeled proteins to track changes in gene expression over multiple generations of a single cell. Epigenetic control of gene expression differed depending on the specific silencing region at which the reporter gene was inserted. Correlations between gene expression at the HMR-left and HMR-right regions, as well as the HMR-right and HML-right regions, were observed in the single-cell level; however, no such correlations involving the telomere region were observed. Deletion of the histone acetyltransferase GCN5 gene from a yeast strain carrying a fluorescent reporter gene at the HMR-left region reduced the frequency of changes in gene expression over a generation. The results presented here suggest that epigenetic control within an individual cell is reversible and can be achieved via regulation of histone acetyltransferase activity. PMID:23843746

  20. Stochastic Modeling of Regulation of Gene Expression by Multiple Competing Small RNAs

    NASA Astrophysics Data System (ADS)

    Baker, Charles; Jia, Tao; Kulkarni, Rahul

    2011-03-01

    A wealth of new research has highlighted the critical roles of small RNAs (sRNAs) in diverse processes such as quorum sensing and cellular responses to stress. The pathways controlling these processes often have a central motif comprised of a key protein regulated by multiple sRNAs. However, the regulation of stochastic gene expression of a single target gene by multiple sRNAs is currently not well understood. To address this issue, we analyze a stochastic model of regulation of gene expression by multiple sRNAs. For this model, we derive exact analytic results for the regulated protein distribution including compact expressions for its mean and variance. The derived results provide novel insights into the roles of multiple sRNAs in fine-tuning the noise in gene expression. In particular, we show that, in contrast to regulation by a single sRNA, multiple sRNAs provide a mechanism for independently controlling the mean and variance of the regulated protein distribution.

  1. Multiple shRNA expressions in a single plasmid vector improve RNAi against the XPA gene

    SciTech Connect

    Nagao, Akihiro; Zhao, Xia; Takegami, Tsutomu; Nakagawa, Hideaki; Matsui, Shinobu; Matsunaga, Tsukasa; Ishigaki, Yasuhito

    2008-05-30

    To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells.

  2. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis

    PubMed Central

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  3. Hybrid coexpression link similarity graph clustering for mining biological modules from multiple gene expression datasets

    PubMed Central

    2014-01-01

    Background Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. Results We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways. PMID:25221624

  4. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    PubMed

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  5. SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

    SciTech Connect

    Han, Hye-Jung; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2006-07-13

    Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.

  6. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    PubMed

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively.

  7. Impact of vitamin A supplementation on RAR gene expression in multiple sclerosis patients.

    PubMed

    Bitarafan, Sama; Harirchian, Mohammad Hossein; Sahraian, Mohammad Ali; Keramatipour, Mohammad; Beladi Moghadam, Nahid; Togha, Mansoureh; Nafissi, Shahriar; Siassi, Fereydoun; Eshraghian, Mohammad Reza; Mohammadzadeh Honarvar, Niyaz; Ansar, Hasti; Talebi, Saeed; Saboor-Yarghi, Ali Akbar

    2013-10-01

    Vitamin A and its derivatives have been shown to modulate the immune system via retinoic acid receptor (RAR). This study explored the impact of retinyl palmitate supplementation on RAR subtype gene expression in peripheral blood mononuclear cells (PBMCs) in multiple sclerosis (MS) patients. The study designed as a double-blind randomized clinical trial in which relapsing remitting multiple sclerosis patients were evaluated. Both groups received one capsule 50,000 IU vitamin D3 per 2 weeks and one intramuscular injection interferon beta-1a per week. The intervention group received one 25,000 IU retinyl palmitate capsule daily for 6 months and the placebo group received one placebo capsule daily. The PBMCs were isolated from participants and the expression level changes of RAR-α and RAR-γ genes were determined by real-time PCR. After supplementation, in the intervention group, the RAR-α gene expression level was significantly decreased compared to the placebo group (p = 0.03); however, the expression of RAR-γ gene did not significantly change (p = 0.10). These results show that vitamin A supplementation can significantly downregulate the expression of RAR-α gene in PBMCs of MS patients that suggest the presence of in vivo regulatory mechanisms for the action of vitamin A on the immune system. PMID:23955709

  8. miRNAs in multiple myeloma – a survival relevant complex regulator of gene expression

    PubMed Central

    Seckinger, Anja; MeiΔner, Tobias; Moreaux, Jérôme; Benes, Vladimir; Hillengass, Jens; Castoldi, Mirco; Zimmermann, Jürgen; Ho, Anthony D.; Jauch, Anna; Goldschmidt, Hartmut; Klein, Bernard; Hose, Dirk

    2015-01-01

    Purpose microRNAs regulate gene-expression in biological and pathophysiological processes, including multiple myeloma. Here we address i) What are the number and magnitude of changes in miRNA-expression between normal plasma cells and myeloma- or MGUS-samples, and the latter two? ii) What is the biological relevance and how does miRNA-expression impact on gene-expression? iii) Is there a prognostic significance, and what is its background? Experimental design Ninety-two purified myeloma-, MGUS-, normal plasma cell- and myeloma cell line-samples were investigated using miChip-arrays interrogating 559 human miRNAs. Impact on gene-expression was assessed by Affymetrix DNA-microarrays in two cohorts of myeloma patients (n = 677); chromosomal aberrations were assessed by iFISH, survival for 592 patients undergoing up-front high-dose chemotherapy. Results Compared to normal plasma cells, 67/559 miRNAs (12%) with fold changes of 4.6 to −3.1 are differentially expressed in myeloma-, 20 (3.6%) in MGUS-samples, and three (0.5%) between MGUS and myeloma. Expression of miRNAs is associated with proliferation, chromosomal aberrations, tumor mass, and gene expression-based risk-scores. This holds true for target-gene signatures of regulated mRNAs. miRNA-expression confers prognostic significance for event-free and overall survival, as do respective target-gene signatures. Conclusions The myeloma-miRNome confers a pattern of small changes of individual miRNAs impacting on gene-expression, biological functions, and survival. PMID:26472281

  9. SNORD116 and SNORD115 change expression of multiple genes and modify each other's activity.

    PubMed

    Falaleeva, Marina; Surface, Justin; Shen, Manli; de la Grange, Pierre; Stamm, Stefan

    2015-11-10

    The loss of two gene clusters encoding small nucleolar RNAs, SNORD115 and SNORD116 contribute to Prader-Willi syndrome (PWS), the most common syndromic form of obesity in humans. SNORD115 and SNORD116 are considered to be orphan C/D box snoRNAs (SNORDs) as they do not target rRNAs or snRNAs. SNORD115 exhibits sequence complementarity towards the serotonin receptor 2C, but SNORD116 shows no extended complementarities to known RNAs. To identify molecular targets, we performed genome-wide array analysis after overexpressing SNORD115 and SNORD116 in HEK 293T cells, either alone or together. We found that SNORD116 changes the expression of over 200 genes. SNORD116 mainly changed mRNA expression levels. Surprisingly, we found that SNORD115 changes SNORD116's influence on gene expression. In similar experiments, we compared gene expression in post-mortem hypothalamus between individuals with PWS and aged-matched controls. The synopsis of these experiments resulted in 23 genes whose expression levels were influenced by SNORD116. Together our results indicate that SNORD115 and SNORD116 influence expression levels of multiple genes and modify each other activity. PMID:26220404

  10. Identifying Candidate Genes for Type 2 Diabetes Mellitus and Obesity through Gene Expression Profiling in Multiple Tissues or Cells

    PubMed Central

    Meng, Yuhuan; Zhou, Jinghui; Zhuo, Min; Ling, Fei; Zhang, Yu; Du, Hongli; Wang, Xiaoning

    2013-01-01

    Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity. PMID:24455749

  11. Identifying candidate genes for Type 2 Diabetes Mellitus and obesity through gene expression profiling in multiple tissues or cells.

    PubMed

    Chen, Junhui; Meng, Yuhuan; Zhou, Jinghui; Zhuo, Min; Ling, Fei; Zhang, Yu; Du, Hongli; Wang, Xiaoning

    2013-01-01

    Type 2 Diabetes Mellitus (T2DM) and obesity have become increasingly prevalent in recent years. Recent studies have focused on identifying causal variations or candidate genes for obesity and T2DM via analysis of expression quantitative trait loci (eQTL) within a single tissue. T2DM and obesity are affected by comprehensive sets of genes in multiple tissues. In the current study, gene expression levels in multiple human tissues from GEO datasets were analyzed, and 21 candidate genes displaying high percentages of differential expression were filtered out. Specifically, DENND1B, LYN, MRPL30, POC1B, PRKCB, RP4-655J12.3, HIBADH, and TMBIM4 were identified from the T2DM-control study, and BCAT1, BMP2K, CSRNP2, MYNN, NCKAP5L, SAP30BP, SLC35B4, SP1, BAP1, GRB14, HSP90AB1, ITGA5, and TOMM5 were identified from the obesity-control study. The majority of these genes are known to be involved in T2DM and obesity. Therefore, analysis of gene expression in various tissues using GEO datasets may be an effective and feasible method to determine novel or causal genes associated with T2DM and obesity.

  12. Identification and Validation of Genes with Expression Patterns Inverse to Multiple Metastasis Suppressor Genes in Breast Cancer Cell Lines

    PubMed Central

    Marino, Natascia; Collins, Joshua W.; Shen, Changyu; Caplen, Natasha J.; Merchant, Anand S.; Gökmen-Polar, Yesim; Goswami, Chirayu P.; Hoshino, Takashi; Qian, Yongzhen; Sledge, George W.; Steeg, Patricia S.

    2014-01-01

    Metastasis suppressor genes (MSGs) have contributed to an understanding of regulatory pathways unique to the lethal metastatic process. When re-expressed in experimental models, MSGs block cancer spread to, and colonization of distant sites without affecting primary tumor formation. Genes have been identified with expression patterns inverse to a single MSG, and found to encode functional, druggable signaling pathways. We now hypothesize that common signaling pathways mediate the effects of multiple MSGs. By gene expression profiling of human MCF7 breast carcinoma cells expressing a scrambled siRNA or siRNAs to each of 19 validated MSGs (NME1, BRMS1, CD82, CDH1, CDH2, CDH11, CASP8, MAP2K4, MAP2K6, MAP2K7, MAPK14, GSN, ARHGDIB, AKAP12, DRG1, CD44, PEBP1, RRM1, KISS1), we identified genes whose expression was significantly opposite to at least five MSGs. Five genes were selected for further analysis: PDE5A, UGT1A, IL11RA, DNM3 and OAS1. After stable downregulation of each candidate gene in the aggressive human breast cancer cell line MDA-MB-231T, in vitro motility was significantly inhibited. Two stable clones downregulating PDE5A (phosphodiesterase 5A), enzyme involved in the regulation of cGMP-specific signaling, exhibited no difference in cell proliferation, but reduced motility by 47 and 66% compared to the empty vector-expressing cells (p=0.01 and p=0.005). In an experimental metastasis assay, two shPDE5A-MDA-MB-231T clones produced 47–62% fewer lung metastases than shRNA-scramble expressing cells (p=0.045 and p= 0.009 respectively). This study demonstrates that previously unrecognized genes are inversely related to the expression of multiple MSGs, contribute to aspects of metastasis, and may stand as novel therapeutic targets. PMID:25086928

  13. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  14. Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis.

    PubMed

    Fujiki, Y; Ito, M; Nishida, I; Watanabe, A

    2000-11-01

    We have identified many dark-inducible (din) genes that are expressed in Arabidopsis leaves kept in the dark. In the present study we addressed the question of how plant cells sense the depletion of sugars, and how sugar starvation triggers din gene expression in suspension-cultured cells of Arabidopsis. Depletion of sucrose in the medium triggered marked accumulation of din transcripts. Suppression of din gene expression by 2-deoxy-Glc, and a non-suppressive effect exerted by 3-O-methyl-Glc, suggested that sugar-repressible expression of din genes is mediated through the phosphorylation of hexose by hexokinase, as exemplified in the repression of photosynthetic genes by sugars. We have further shown that the signaling triggered by sugar starvation involves protein phosphorylation and dephosphorylation events, and have provided the first evidence that multiple pathways of protein dephosphorylation exist in sugar starvation-induced gene expression. An inhibitor of serine/threonine protein kinase, K-252a, inhibited din gene expression in sugar-depleted cells. Okadaic acid, which may preferentially inhibit type 2A protein phosphatases over type 1, enhanced the transcript levels of all din genes, except din6 and din10, under sugar starvation. Conversely, a more potent inhibitor of type 1 and 2A protein phosphatases, calyculin A, increased transcripts from din2 and din9, but decreased those from other din genes, in sugar-depleted cells. On the other hand, calyculin A, but not okadaic acid, completely inhibited the gene expression of chlorophyll a/b-binding protein under sugar starvation. These results indicate that multiple signaling pathways, mediated by different types of protein phosphatases, regulate gene expression during sugar starvation. PMID:11080291

  15. Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes

    PubMed Central

    2014-01-01

    Background Transgenic poplar (Populus × euramericana 'Guariento') plants harboring five exogenous, stress-related genes exhibit increased tolerance to multiple stresses including drought, salt, waterlogging, and insect feeding, but the complex mechanisms underlying stress tolerance in these plants have not been elucidated. Here, we analyzed the differences in the transcriptomes of the transgenic poplar line D5-20 and the non-transgenic line D5-0 using high-throughput transcriptome sequencing techniques and elucidated the functions of the differentially expressed genes using various functional annotation methods. Results We generated 11.80 Gb of sequencing data containing 63, 430, 901 sequences, with an average length of 200 bp. The processed sequences were mapped to reference genome sequences of Populus trichocarpa. An average of 62.30% and 61.48% sequences could be aligned with the reference genomes for D5-20 and D5-0, respectively. We detected 11,352 (D5-20) and 11,372 expressed genes (D5-0), 7,624 (56.61%; D5-20) and 7,453 (65.54%; D5-0) of which could be functionally annotated. A total of 782 differentially expressed genes in D5-20 were identified compared with D5-0, including 628 up-regulated and 154 down-regulated genes. In addition, 196 genes with putative functions related to stress responses were also annotated. Gene Ontology (GO) analysis revealed that 346 differentially expressed genes are mainly involved in 67 biological functions, such as DNA binding and nucleus. KEGG annotation revealed that 36 genes (21 up-regulated and 15 down-regulated) were enriched in 51 biological pathways, 9 of which are linked to glucose metabolism. KOG functional classification revealed that 475 genes were enriched in 23 types of KOG functions. Conclusion These results suggest that the transferred exogenous genes altered the expression of stress (biotic and abiotic) response genes, which were distributed in different metabolic pathways and were linked to some extent. Our

  16. Electrical Stimulation Modulates the Expression of Multiple Wound Healing Genes in Primary Human Dermal Fibroblasts.

    PubMed

    Park, Hyun Jin; Rouabhia, Mahmoud; Lavertu, Denis; Zhang, Ze

    2015-07-01

    This study profiled multiple human dermal fibroblast wound-healing genes in response to electrical stimulation (ES) by using an RT(2) profiler PCR-Array system. Primary human skin fibroblasts were seeded on heparin (HE)-bioactivated polypyrrole (PPy)/poly(l-lactic acid) (PLLA) conductive membranes, cultured, and subsequently exposed to ES of 50 or 200 mV/mm for 6 h. Following ES, the cells were used to extract RNA for gene profiling, and culture supernatants were used to measure the level of the different wound healing mediators. A total of 57 genes were affected (activated/repressed) by ES; among these, 49 were upregulated and 8 were downregulated. ES intensities at 50 and 200 mV/mm activated/repressed different genes. The ES-modulated genes are involved in cell adhesion, remodeling and spreading, cytoskeletal activity, extracellular matrix metabolism, production of inflammatory cytokines/chemokines and growth factors, as well as signal transduction. The expression of several genes was supported by protein production. Protein analyses showed that ES increased CCL7, KGF, and TIMP2, but reduced MMP2. This study demonstrated that ES modulates the expression of a variety of genes involved in the wound healing process, confirming that ES is a useful tool in regenerative medicine. PMID:25873313

  17. Preservation of gene expression ratios among multiple complex cDNAs after PCR amplification: application to differential gene expression studies.

    PubMed

    Ji, W; Cai, L; Wright, M B; Walker, G; Salgam, P; Vater, A; Lindpaintner, K

    2000-01-01

    Comparative gene expression studies are often limited by low availability of tissue and poor quality of extractable mRNA. Collective PCR amplification of minute quantities of mRNA has great potential for overcoming these limitations. However, there remains significant concern about the effects of amplification on the absolute and relative abundance of individual mRNAs that could complicate subsequent gene expression studies. To address this problem, we systematically compared the relative abundance of many specific mRNAs from complex cDNA preparations (from tissue and cultured cells) both before and after amplification by PCR. Our results demonstrated that, as expected, the absolute abundance of different mRNAs in a cDNA library is altered in an unpredictable manner by PCR amplification. However, we found that the concentration ratios of specific mRNAs among different cDNA preparations were routinely well conserved after PCR amplification. Thus, for the purpose of comparative expression studies for specific mRNAs in two (or more) complex cDNAs, PCR-amplified cDNA is equally useful as unamplified cDNA. These results provide a rigorous experimental validation and offer a theoretical treatment to support the utility of PCR amplified cDNA for differential gene expression studies. We conclude that the inherent difficulties in performing differential screening studies such as gene chip and array analyses on limited amounts of biological materials can be overcome by a PCR amplification step without compromising data quality.

  18. Improved detection of differentially expressed genes in microarray experiments through multiple scanning and image integration

    PubMed Central

    Romualdi, Chiara; Trevisan, Silvia; Celegato, Barbara; Costa, Germano; Lanfranchi, Gerolamo

    2003-01-01

    The variability of results in microarray technology is in part due to the fact that independent scans of a single hybridised microarray give spot images that are not quite the same. To solve this problem and turn it to our advantage, we introduced the approach of multiple scanning and of image integration of microarrays. To this end, we have developed specific software that creates a virtual image that statistically summarises a series of consecutive scans of a microarray. We provide evidence that the use of multiple imaging (i) enhances the detection of differentially expressed genes; (ii) increases the image homogeneity; and (iii) reveals false-positive results such as differentially expressed genes that are detected by a single scan but not confirmed by successive scanning replicates. The increase in the final number of differentially expressed genes detected in a microarray experiment with this approach is remarkable; 50% more for microarrays hybridised with targets labelled by reverse transcriptase, and 200% more for microarrays developed with the tyramide signal amplification (TSA) technique. The results have been confirmed by semi-quantitative RT–PCR tests. PMID:14627839

  19. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish.

    PubMed

    Busby, Ellen R; Mommsen, Thomas P

    2016-09-01

    In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene. PMID:26927880

  20. SHP-1 deficiency and increased inflammatory gene expression in PBMCs of multiple sclerosis patients

    PubMed Central

    Christophi, George P; Hudson, Chad A; Gruber, Ross C; Christophi, Christoforos P; Mihai, Cornelia; Mejico, Luis J; Jubelt, Burk; Massa, Paul T

    2010-01-01

    Recent studies in mice have demonstrated that the protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and demyelination in central nervous system. The present study investigates a possible similar role for SHP-1 in the human disease multiple sclerosis (MS). The levels of SHP-1 protein and mRNA in PBMCs of MS patients were significantly lower compared to normal subjects. Moreover, promoter II transcripts, expressed from one of two known promoters, were selectively deficient in MS patients. To examine functional consequences of the lower SHP-1 in PBMCs of MS patients, we measured the intracellular levels of phosphorylated STAT6 (pSTAT6). As expected, MS patients had significantly higher levels of pSTAT6. Accordingly, siRNA to SHP-1 effectively increased the levels of pSTAT6 in PBMCs of controls to levels equal to MS patients. Additionally, transduction of PBMCs with a lentiviral vector expressing SHP-1 lowered pSTAT6 levels. Finally, multiple STAT6-responsive inflammatory genes were increased in PBMCs of MS patients relative to PBMCs of normal subjects. Thus, PBMCs of MS patients display a stable deficiency of SHP-1 expression, heightened STAT6 phosphorylation, and an enhanced state of activation relevant to the mechanisms of inflammatory demyelination. PMID:18209728

  1. Heat shock protein 70-hom gene polymorphism and protein expression in multiple sclerosis.

    PubMed

    Boiocchi, C; Monti, M C; Osera, C; Mallucci, G; Pistono, C; Ferraro, O E; Nosari, G; Romani, A; Cuccia, M; Govoni, S; Pascale, A; Montomoli, C; Bergamaschi, R

    2016-09-15

    Immune-mediated and neurodegenerative mechanisms are involved in multiple sclerosis (MS). Growing evidences highlight the role of HSP70 genes in the susceptibility of some neurological diseases. In this explorative study we analyzed a polymorphism (i.e. HSP70-hom rs2227956) of the gene HSPA1L, which encodes for the protein hsp70-hom. We sequenced the polymorphism by polymerase chain reaction (PCR), in 191 MS patients and 365 healthy controls. The hsp70-hom protein expression was quantified by western blotting. We reported a strong association between rs2227956 polymorphism and MS risk, which is independent from the association with HSP70-2 rs1061581, and a significant link between hsp70-hom protein expression and MS severity. PMID:27609295

  2. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans.

    PubMed

    Zeng, Lin; Burne, Robert A

    2008-10-01

    Streptococcus mutans is particularly well adapted for high-affinity, high-capacity catabolism of multiple carbohydrate sources. S. mutansenzyme II (EII(Lev)), a fructose/mannose permease encoded by the levDEFG genes, and fruA, which encodes a hydrolase that releases fructose from fructan polymers, are transcriptionally regulated by the LevQRST four-component signal transduction system. Here, we demonstrate that: (i) levDEFGX are co-transcribed and the levE/F intergenic region is required for optimal expression of levFGX; (ii) D-mannose is a potent inducer of the levD and fruA operons; (iii) CcpA regulates levD expression in a carbohydrate-specific manner; (iv) deletion of the genes for the fructose/mannose-EII enzymes of S. mutans (manL, fruI and levD) enhances levD expression; (v) repression of the LevQRST regulon by EII enzymes depends on the presence of their substrates and requires LevR, but not LevQST; and (vi) CcpA inhibits expression of the manL and fruI genes to indirectly control the LevQRST regulon. Further, the manL, ccpA, fruI/fruCD and levD gene products differentially exert control over the cellobiose and lactose operons. Collectively, the results reveal the existence of a global regulatory network in S. mutans that governs the utilization of non-preferred carbohydrates in response to the availability and source of multiple preferred carbohydrates. PMID:18699864

  3. Reassessment of Blood Gene Expression Markers for the Prognosis of Relapsing-Remitting Multiple Sclerosis

    PubMed Central

    Hecker, Michael; Paap, Brigitte Katrin; Goertsches, Robert Hermann; Kandulski, Ole; Fatum, Christian; Koczan, Dirk; Hartung, Hans-Peter; Thiesen, Hans-Juergen; Zettl, Uwe Klaus

    2011-01-01

    Despite considerable advances in the treatment of multiple sclerosis, current drugs are only partially effective. Most patients show reduced disease activity with therapy, but still experience relapses, increasing disability, and new brain lesions. Since there are no reliable clinical or biological markers of disease progression, long-term prognosis is difficult to predict for individual patients. We identified 18 studies that suggested genes expressed in blood as predictive biomarkers. We validated the prognostic value of those genes with three different microarray data sets comprising 148 patients in total. Using these data, we tested whether the genes were significantly differentially expressed between patients with good and poor courses of the disease. Poor progression was defined by relapses and/or increase of disability during a two-year follow-up, independent of the administered therapy. Of 110 genes that have been proposed as predictive biomarkers, most could not be confirmed in our analysis. However, the G protein-coupled membrane receptor GPR3 was expressed at significantly lower levels in patients with poor disease progression in all data sets. GPR3 has therefore a high potential to be a biomarker for predicting future disease activity. In addition, we examined the IL17 cytokines and receptors in more detail and propose IL17RC as a new, promising, transcript-based biomarker candidate. Further studies are needed to better understand the roles of these receptors in multiple sclerosis and its treatment and to clarify the utility of GPR3 and IL17RC expression levels in the blood as markers of long-term prognosis. PMID:22216338

  4. Retinyl Palmitate Supplementation Modulates T-bet and Interferon Gamma Gene Expression in Multiple Sclerosis Patients.

    PubMed

    Mohammadzadeh Honarvar, Niyaz; Harirchian, Mohammad Hossein; Abdolahi, Mina; Abedi, Elahe; Bitarafan, Sama; Koohdani, Fariba; Siassi, Feridoun; Sahraian, Mohammad Ali; Chahardoli, Reza; Zareei, Mahnaz; Salehi, Eisa; Geranmehr, Maziyar; Saboor-Yaraghi, Ali Akbar

    2016-07-01

    Vitamin A derivatives such as retinoic acid may improve the impaired balance of CD4+ T cells in autoimmune and inflammatory diseases. This study is a double-blind randomized trial to evaluate the effect of vitamin A (as form of retinyl palmitate) supplementation on multiple sclerosis (MS) patients. Thirty-nine patients were enrolled and randomly assigned to two groups. Both groups were followed for 6 months. The experimental group received 25,000 IU of retinyl palmitate daily, while the control group received a placebo. Before and after the study, the expression of interferon gamma (IFN-γ) and T-bet genes was evaluated in peripheral blood mononuclear cells of patients by RT-PCR. The results showed that after 6 months of supplementation, expression of IFN-γ and T-bet was significantly decreased. These data suggest that retinyl palmitate supplementation can modulate the impaired balance of Th1 and Th2 cells and vitamin A products that may be involved in the therapeutic mechanism of vitamin A in MS patients. This study provides information regarding the decreased gene expression of IFN-γ and T-bet in MS by retinyl palmitate supplementation. PMID:27122150

  5. Multiple physical stresses induce γ-globin gene expression and fetal hemoglobin production in erythroid cells.

    PubMed

    Schaeffer, Emily K; West, Rachel J; Conine, Sarah J; Lowrey, Christopher H

    2014-04-01

    Increased fetal hemoglobin (HbF) expression is beneficial for β-hemoglobinopathy patients; however, current inducing agents do not possess the ideal combination of efficacy, safety and ease of use. Better understanding the mechanisms involved in γ-globin gene induction is critical for designing improved therapies, as no complete mechanism for any inducing agent has been identified. Given the cytotoxic nature of most known inducing drugs, we hypothesized that γ-globin is a cell stress response gene, and that induction occurs via activation of cell stress signaling pathways. We tested this hypothesis by investigating the ability of physical stresses including heat-shock (HS), UV- and X-irradiation and osmotic shock to increase γ-globin gene expression in erythroid cells. Experiments in K562 and KU812 cells showed that each of these stresses increased steady-state γ-globin mRNA levels, but only after 3-5days of treatments. HS and UV also increased γ-globin mRNA and HbF levels in differentiating primary human erythroid cells. Mechanistic studies showed that HS affects γ-globin mRNA at multiple levels, including nascent transcription and transcript stability, and that induction is dependent on neither the master regulator of the canonical HS response, HSF1, nor p38 MAPK. Inhibitor panel testing identified PI3K inhibitor LY294002 as a novel inducing agent and revealed potential roles for NFκB and VEGFR/PDGFR/Raf kinases in HS-mediated γ-globin gene induction. These findings suggest that cell stress signaling pathways play an important role in γ-globin gene induction and may provide novel targets for the pharmacologic induction of fetal hemoglobin.

  6. Gene expression profiling defines a high-risk entity of multiple myeloma.

    PubMed

    Zhan, Feng-Huang; Barlogie, Bart; John D, Shaughnessy

    2007-04-01

    Multiple myeloma (MM) is the second most common hematological malignancy and remains incurable. The marked variation in survival of patients with symptomatic myeloma ranging from few months to more than 15 years can be explained by differences in tumor mass, proliferative activity and, more recently, by cytogenetic and molecular genetic characteristics of the myeloma clone. Oligonucleotide microarray-based gene expression analysis was applied to CD138-enriched plasma cells from newly diagnosed patients with symptomatic or progressive multiple myeloma treated with melphalan-based high-dose therapy. Here we discuss recent progress made in the development of molecular-based diagnostics and prognostics for MM from Myeloma Institute for Research and Therapy of University Arkansas for Medical Sciences, where we treat more patients with myeloma than anywhere else in the world. Seven distinct entities of myeloma were elucidated by genomic profiling. Expression extremes of 70 genes from a high-risk signature profile,30% of which were derived from chromosome 1, were strongly linked to disease-related survival. CKS1B located on chromosome 1q21, responsible for promoting cell cycle progression by inducing the degradation of p27Kip1, represented a strong candidate gene related to rapid patient death and was studied in detail. The data suggest that CKS1B influences myeloma cell growth and survival through SKP2j and P27(Kip1) -dependent and independent mechanisms and that therapeutic strategies aimed at abolishing CKS1B function may hold promise for the treatment of high-risk disease for which effective therapies are currently lacking.

  7. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1.

    PubMed

    Shaughnessy, John D; Zhan, Fenghuang; Burington, Bart E; Huang, Yongsheng; Colla, Simona; Hanamura, Ichiro; Stewart, James P; Kordsmeier, Bob; Randolph, Christopher; Williams, David R; Xiao, Yan; Xu, Hongwei; Epstein, Joshua; Anaissie, Elias; Krishna, Somashekar G; Cottler-Fox, Michele; Hollmig, Klaus; Mohiuddin, Abid; Pineda-Roman, Mauricio; Tricot, Guido; van Rhee, Frits; Sawyer, Jeffrey; Alsayed, Yazan; Walker, Ronald; Zangari, Maurizio; Crowley, John; Barlogie, Bart

    2007-03-15

    To molecularly define high-risk disease, we performed microarray analysis on tumor cells from 532 newly diagnosed patients with multiple myeloma (MM) treated on 2 separate protocols. Using log-rank tests of expression quartiles, 70 genes, 30% mapping to chromosome 1 (P < .001), were linked to early disease-related death. Importantly, most up-regulated genes mapped to chromosome 1q, and down-regulated genes mapped to chromosome 1p. The ratio of mean expression levels of up-regulated to down-regulated genes defined a high-risk score present in 13% of patients with shorter durations of complete remission, event-free survival, and overall survival (training set: hazard ratio [HR], 5.16; P < .001; test cohort: HR, 4.75; P < .001). The high-risk score also was an independent predictor of outcome endpoints in multivariate analysis (P < .001) that included the International Staging System and high-risk translocations. In a comparison of paired baseline and relapse samples, the high-risk score frequency rose to 76% at relapse and predicted short postrelapse survival (P < .05). Multivariate discriminant analysis revealed that a 17-gene subset could predict outcome as well as the 70-gene model. Our data suggest that altered transcriptional regulation of genes mapping to chromosome 1 may contribute to disease progression, and that expression profiling can be used to identify high-risk disease and guide therapeutic interventions. PMID:17105813

  8. Baseline Gene Expression Signatures in Monocytes from Multiple Sclerosis Patients Treated with Interferon-beta

    PubMed Central

    Bustamante, Marta F.; Nurtdinov, Ramil N.; Río, Jordi; Montalban, Xavier; Comabella, Manuel

    2013-01-01

    Background A relatively large proportion of relapsing-remitting multiple sclerosis (RRMS) patients do not respond to interferon-beta (IFNb) treatment. In previous studies with peripheral blood mononuclear cells (PBMC), we identified a subgroup of IFNb non-responders that was characterized by a baseline over-expression of type I IFN inducible genes. Additional mechanistic experiments carried out in IFNb non-responders suggested a selective alteration of the type I IFN signaling pathway in the population of blood monocytes. Here, we aimed (i) to investigate whether the type I IFN signaling pathway is up-regulated in isolated monocytes from IFNb non-responders at baseline; and (ii) to search for additional biological pathways in this cell population that may be implicated in the response to IFNb treatment. Methods Twenty RRMS patients classified according to their clinical response to IFNb treatment and 10 healthy controls were included in the study. Monocytes were purified from PBMC obtained before treatment by cell sorting and the gene expression profiling was determined with oligonucleotide microarrays. Results and discussion Purified monocytes from IFNb non-responders were characterized by an over-expression of type I IFN responsive genes, which confirms the type I IFN signature in monocytes suggested from previous studies. Other relevant signaling pathways that were up-regulated in IFNb non-responders were related with the mitochondrial function and processes such as protein synthesis and antigen presentation, and together with the type I IFN signaling pathway, may also be playing roles in the response to IFNb. PMID:23637780

  9. Alternative promoter usage and differential expression of multiple transcripts of mouse Prkar1a gene.

    PubMed

    Banday, Abdul Rouf; Azim, Shafquat; Tabish, Mohammad

    2011-11-01

    Prkar1a gene encodes regulatory type 1 alpha subunit (RIα) of cAMP-dependent protein kinase (PKA) in mouse. The role of this gene has been implicated in Carney complex and many cancer types that suggest its involvement in physiological processes like cell cycle regulation, growth and/or proliferation. We have identified and sequenced partial cDNA clones encoding four alternatively spliced transcripts of mouse Prkar1a gene. These transcripts have alternate 5' UTR structure which results from splicing of three exons (designated as E1a, E1b, and E1c) to canonical exon 2. The designated transcripts T1, T2, T3, and T4 contain 5' UTR exons as E1c, E1a + E1b, E1a, and E1b, respectively. The transcript T1 corresponded to earlier reported transcript in GenBank. In silico study of genomic DNA sequence revealed three distinct promoter regions namely, P1, P2, and P3 upstream of the exons E1a, E1b, and E1c, respectively. P1 is non-CpG-related promoter but P2 and P3 are CpG-related promoters; however, all three are TATA less. RT-PCR analysis demonstrated the expression of all four transcripts in late postnatal stages; however, these were differentially regulated in early postnatal stages of 0.5 day, 3 day, and 15 day mice in different tissue types. Variations in expression of Prkar1a gene transcripts suggest their regulation from multiple promoters that respond to a variety of signals arising in or out of the cell in tissue and developmental stage-specific manner. PMID:21638026

  10. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration.

    PubMed

    Anastasiadou, Sofia; Knöll, Bernd

    2016-05-01

    Fingolimod (FTY720) is a new generation oral treatment for multiple sclerosis (MS). So far, FTY720 was mainly considered to target trafficking of immune cells but not brain cells such as neurons. Herein, we analyzed FTY720's potential to directly alter neuronal function. In CNS neurons, we identified a FTY720 governed gene expression response. FTY720 upregulated immediate early genes (IEGs) encoding for neuronal activity associated transcription factors such as c-Fos, FosB, Egr1 and Egr2 and induced actin cytoskeleton associated genes (actin isoforms, tropomyosin, calponin). Stimulation of primary neurons with FTY720 enhanced neurite growth and altered growth cone morphology. In accordance, FTY720 enhanced axon regeneration in mice upon facial nerve axotomy. We identified components of a FTY720 engaged signaling cascade including S1P receptors, G12/13G-proteins, RhoA-GTPases and the transcription factors SRF/MRTF. In summary, we uncovered a broader cellular and therapeutic operation mode of FTY720, suggesting beneficial FTY720 effects also on CNS neurons during MS therapy and for treatment of other neurodegenerative diseases requiring neuroprotective and neurorestorative processes. PMID:26980486

  11. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa.

    PubMed

    Li, Jimeng; Liu, Bo; Cheng, Feng; Wang, Xiaowu; Aarts, Mark G M; Wu, Jian

    2014-07-01

    Genes underlying environmental adaptability tend to be over-retained in polyploid plant species. Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation, but little is known about the differential expression of duplicated genes upon these stress conditions. Applying Tag-Seq technology to leaves of Brassica rapa grown under FeD, ZnD, ZnE or CdE conditions, with normal conditions as a control, we examined global gene expression changes and compared the expression patterns of multiple paralogs. We identified 812, 543, 331 and 447 differentially expressed genes under FeD, ZnD, ZnE and CdE conditions, respectively, in B. rapa leaves. Genes involved in regulatory networks centered on the transcription factors bHLH038 or bHLH100 were differentially expressed under (ZnE-induced) FeD. Further analysis revealed that genes associated with Zn, Fe and Cd responses tended to be over-retained in the B. rapa genome. Most of these multiple-copy genes showed the same direction of expression change under stress conditions. We conclude that the duplicated genes involved in trace element responses in B. rapa are functionally redundant, making the regulatory network more complex in B. rapa than in Arabidopsis thaliana.

  12. Phosphorylation Events in the Multiple Gene Regulator of Group A Streptococcus Significantly Influence Global Gene Expression and Virulence

    PubMed Central

    Sanson, Misu; Makthal, Nishanth; Gavagan, Maire; Cantu, Concepcion; Olsen, Randall J.; Musser, James M.

    2015-01-01

    Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis. PMID:25824840

  13. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    PubMed Central

    Herrmann, Martin M.; Barth, Silvia; Greve, Bernhard; Schumann, Kathrin M.; Bartels, Andrea

    2016-01-01

    ABSTRACT After encounter with a central nervous system (CNS)-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1) rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J) mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions. PMID:27519689

  14. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    PubMed

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species. PMID:26428313

  15. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi.

    PubMed

    Huang, Xuena; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2016-01-15

    As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species.

  16. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    PubMed Central

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Background Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Methods Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. Results The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). Conclusion We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer. PMID:17430594

  17. SOURCES OF VARIATION IN BASELINE GENE EXPRESSION LEVELS FROM TOXICOGENOMIC STUDY CONTROL ANIMALS ACROSS MULTIPLE LABORATORIES

    EPA Science Inventory

    Variations in study design are typical for toxicogenomic studies, but their impact on gene expression in control animals has not been well characterized. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Scienc...

  18. Simultaneous Non-Negative Matrix Factorization for Multiple Large Scale Gene Expression Datasets in Toxicology

    PubMed Central

    Lee, Clare M.; Mudaliar, Manikhandan A. V.; Haggart, D. R.; Wolf, C. Roland; Miele, Gino; Vass, J. Keith; Higham, Desmond J.; Crowther, Daniel

    2012-01-01

    Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because, whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for early detection of toxicity in the drug discovery process. PMID:23272042

  19. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats.

    PubMed

    Armenti, AnnMarie E; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 microg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P<0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P<0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P<0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor beta was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P<0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P<0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  20. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  1. Genetic Association and Altered Gene Expression of Mir-155 in Multiple Sclerosis Patients

    PubMed Central

    Paraboschi, Elvezia Maria; Soldà, Giulia; Gemmati, Donato; Orioli, Elisa; Zeri, Giulia; Benedetti, Maria Donata; Salviati, Alessandro; Barizzone, Nadia; Leone, Maurizio; Duga, Stefano; Asselta, Rosanna

    2011-01-01

    Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system characterized by chronic inflammation, demyelination, and axonal damage. As microRNA (miRNA)-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response, miRNA deregulation may result in defects in immune tolerance. In this frame, we sought to explore the possible involvement of miRNAs in MS pathogenesis by monitoring the differential expression of 22 immunity-related miRNAs in peripheral blood mononuclear cells of MS patients and healthy controls, by using a microbead-based technology. Three miRNAs resulted >2 folds up-regulated in MS vs controls, whereas none resulted down-regulated. Interestingly, the most up-regulated miRNA (mir-155; fold change = 3.30; P = 0.013) was previously reported to be up-regulated also in MS brain lesions. Mir-155 up-regulation was confirmed by qPCR experiments. The role of mir-155 in MS susceptibility was also investigated by genotyping four single nucleotide polymorphisms (SNPs) mapping in the mir-155 genomic region. A haplotype of three SNPs, corresponding to a 12-kb region encompassing the last exon of BIC (the B-cell Integration Cluster non-coding RNA, from which mir-155 is processed), resulted associated with the disease status (P = 0.035; OR = 1.36, 95% CI = 1.05–1.77), suggesting that this locus strongly deserves further investigations. PMID:22272099

  2. Multiple divergent haplotypes express completely distinct sets of class I MHC genes in zebrafish.

    PubMed

    McConnell, Sean C; Restaino, Anthony C; de Jong, Jill L O

    2014-03-01

    The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation. PMID:24291825

  3. An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells.

    PubMed

    Koh, Esther Y C; Ho, Steven C L; Mariati; Song, Zhiwei; Bi, Xuezhi; Bardor, Muriel; Yang, Yuansheng

    2013-01-01

    A set of mutated Encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) elements with varying strengths is generated by mutating the translation initiation codons of 10(th), 11(th), and 12(th) AUG to non-AUG triplets. They are able to control the relative expression of multiple genes over a wide range in mammalian cells in both transient and stable transfections. The relative strength of each IRES mutant remains similar in different mammalian cell lines and is not gene specific. The expressed proteins have correct molecular weights. Optimization of light chain over heavy chain expression by these IRES mutants enhances monoclonal antibody expression level and quality in stable transfections. Uses of this set of IRES mutants can be extended to other applications such as synthetic biology, investigating interactions between proteins and its complexes, cell engineering, multi-subunit protein production, gene therapy, and reprogramming of somatic cells into stem cells. PMID:24349195

  4. Temporal Gene Expression Analysis and RNA Silencing of Single and Multiple Members of Gene Family in the Lone Star Tick Amblyomma americanum.

    PubMed

    Bullard, Rebekah L; Williams, Jaclyn; Karim, Shahid

    2016-01-01

    Saliva is an integral factor in the feeding success of veterinary and medically important ticks. Therefore, the characterization of the proteins present in tick saliva is an important area of tick research. Here, we confirmed previously generated sialotranscriptome data using quantitative real-time PCR. The information obtained in this in-depth study of gene expression was used to measure the effects of metalloprotease gene silencing on tick feeding. We analyzed the temporal expression of seven housekeeping genes and 44 differentially expressed salivary molecules selected from a previously published Amblyomma americanum sialotranscriptome. Separate reference genes were selected for the salivary glands and midgut from among the seven housekeeping genes, to normalize the transcriptional expression of differentially expressed genes. The salivary gland reference gene, ubiquitin, was used to normalize the expression of 44 salivary genes. Unsurprisingly, each gene family was expressed throughout the blood meal, but the expression of specific genes differed at each time point. To further clarify the complex nature of the many proteins found in the saliva, we disrupted the translation of several members of the metalloprotease family. Intriguingly, the nucleotide sequence similarity of the reprolysin metalloprotease gene family is so homologous that a single synthesized dsRNA sequence knocked down multiple members of the family. The use of multigene knockdown yielded a more significant picture of the role of metalloproteases in tick feeding success, and changes were observed in the female engorgement weight and larval hatching success. Interestingly, the depletion of metalloprotease transcripts also reduced the total number of bacteria present in the salivary glands. These data provide insight into the expression and functions of tick salivary proteins expressed while feeding on its host. PMID:26872360

  5. Temporal Gene Expression Analysis and RNA Silencing of Single and Multiple Members of Gene Family in the Lone Star Tick Amblyomma americanum

    PubMed Central

    Karim, Shahid

    2016-01-01

    Saliva is an integral factor in the feeding success of veterinary and medically important ticks. Therefore, the characterization of the proteins present in tick saliva is an important area of tick research. Here, we confirmed previously generated sialotranscriptome data using quantitative real-time PCR. The information obtained in this in-depth study of gene expression was used to measure the effects of metalloprotease gene silencing on tick feeding. We analyzed the temporal expression of seven housekeeping genes and 44 differentially expressed salivary molecules selected from a previously published Amblyomma americanum sialotranscriptome. Separate reference genes were selected for the salivary glands and midgut from among the seven housekeeping genes, to normalize the transcriptional expression of differentially expressed genes. The salivary gland reference gene, ubiquitin, was used to normalize the expression of 44 salivary genes. Unsurprisingly, each gene family was expressed throughout the blood meal, but the expression of specific genes differed at each time point. To further clarify the complex nature of the many proteins found in the saliva, we disrupted the translation of several members of the metalloprotease family. Intriguingly, the nucleotide sequence similarity of the reprolysin metalloprotease gene family is so homologous that a single synthesized dsRNA sequence knocked down multiple members of the family. The use of multigene knockdown yielded a more significant picture of the role of metalloproteases in tick feeding success, and changes were observed in the female engorgement weight and larval hatching success. Interestingly, the depletion of metalloprotease transcripts also reduced the total number of bacteria present in the salivary glands. These data provide insight into the expression and functions of tick salivary proteins expressed while feeding on its host. PMID:26872360

  6. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways.

    PubMed Central

    Westwick, J K; Lambert, Q T; Clark, G J; Symons, M; Van Aelst, L; Pestell, R G; Der, C J

    1997-01-01

    Rac1 and RhoA are members of the Rho family of Ras-related proteins and function as regulators of actin cytoskeletal organization, gene expression, and cell cycle progression. Constitutive activation of Rac1 and RhoA causes tumorigenic transformation of NIH 3T3 cells, and their functions may be required for full Ras transformation. The effectors by which Rac1 and RhoA mediate these diverse activities, as well as the interrelationship between these events, remain poorly understood. Rac1 is distinct from RhoA in its ability to bind and activate the p65 PAK serine/threonine kinase, to induce lamellipodia and membrane ruffling, and to activate the c-Jun NH2-terminal kinase (JNK). To assess the role of PAK in Rac1 function, we identified effector domain mutants of Rac1 and Rac1-RhoA chimeric proteins that no longer bound PAK. Surprisingly, PAK binding was dispensable for Rac1-induced transformation and lamellipodium formation, as well as activation of JNK, p38, and serum response factor (SRF). However, the ability of Rac1 to bind to and activate PAK correlated with its ability to stimulate transcription from the cyclin D1 promoter. Furthermore, Rac1 activation of JNK or SRF, or induction of lamellipodia, was neither necessary nor sufficient for Rac1 transforming activity. Finally, the signaling pathways that mediate Rac1 activation of SRF or JNK were distinct from those that mediate Rac1 induction of lamellipodia. Taken together, these observations suggest that Rac1 regulates at least four distinct effector-mediated functions and that multiple pathways may contribute to Rac1-induced cellular transformation. PMID:9032259

  7. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions.

    PubMed

    Schnackenberg, B J; Saini, U T; Robinson, B L; Ali, S F; Patterson, T A

    2010-10-13

    Gamma-hydroxybutyric acid (GHB) is normally found in the brain in low concentrations and may function as a neurotransmitter, although the mechanism of action has not been completely elucidated. GHB has been used as a general anesthetic and is currently used to treat narcolepsy and alcoholism. Recreational use of GHB is primarily as a "club drug" and a "date rape drug," due to its amnesic effects. For this study, the hypothesis was that behavioral and neurochemical alterations may parallel gene expression changes in the brain after GHB administration. Adult male C57/B6N mice (n=5/group) were administered a single dose of 500 mg/kg GHB (i.p.) and were sacrificed 1, 2 and 4 h after treatment. Control mice were administered saline. Brains were removed and regionally dissected on ice. Total RNA from the hippocampus, cortex and striatum was extracted, amplified and labeled. Gene expression was evaluated using Agilent whole mouse genome 4x44K oligonucleotide microarrays. Microarray data were analyzed by ArrayTrack and differentially expressed genes (DEGs) were identified using P < or = 0.01 and a fold change > or = 1.7 as the criteria for significance. Principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that samples from each time point clustered into distinct treatment groups with respect to sacrifice time. Ingenuity pathways analysis (IPA) was used to identify involved pathways. The results show that GHB induces gene expression alterations in hundreds of genes in the hippocampus, cortex and striatum, and the number of affected genes increases throughout a 4-h time course. Many of these DEGs are involved in neurological disease, apoptosis, and oxidative stress.

  8. Bayesian Hierarchical Model for Estimating Gene Expression Intensity Using Multiple Scanned Microarrays

    PubMed Central

    2008-01-01

    We propose a method for improving the quality of signal from DNA microarrays by using several scans at varying scanner sen-sitivities. A Bayesian latent intensity model is introduced for the analysis of such data. The method improves the accuracy at which expressions can be measured in all ranges and extends the dynamic range of measured gene expression at the high end. Our method is generic and can be applied to data from any organism, for imaging with any scanner that allows varying the laser power, and for extraction with any image analysis software. Results from a self-self hybridization data set illustrate an improved precision in the estimation of the expression of genes compared to what can be achieved by applying standard methods and using only a single scan. PMID:18464926

  9. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells.

    PubMed

    Zhan, Fenghuang; Hardin, Johanna; Kordsmeier, Bob; Bumm, Klaus; Zheng, Mingzhong; Tian, Erming; Sanderson, Ralph; Yang, Yang; Wilson, Carla; Zangari, Maurizio; Anaissie, Elias; Morris, Christopher; Muwalla, Firas; van Rhee, Frits; Fassas, Athanasios; Crowley, John; Tricot, Guido; Barlogie, Bart; Shaughnessy, John

    2002-03-01

    Bone marrow plasma cells (PCs) from 74 patients with newly diagnosed multiple myeloma (MM), 5 with monoclonal gammopathy of undetermined significance (MGUS), and 31 healthy volunteers (normal PCs) were purified by CD138(+) selection. Gene expression of purified PCs and 7 MM cell lines were profiled using high-density oligonucleotide microarrays interrogating about 6800 genes. On hierarchical clustering analysis, normal and MM PCs were differentiated and 4 distinct subgroups of MM (MM1, MM2, MM3, and MM4) were identified. The expression pattern of MM1 was similar to normal PCs and MGUS, whereas MM4 was similar to MM cell lines. Clinical parameters linked to poor prognosis, abnormal karyotype (P =.002) and high serum beta(2)-microglobulin levels (P =.0005), were most prevalent in MM4. Also, genes involved in DNA metabolism and cell cycle control were overexpressed in a comparison of MM1 and MM4. In addition, using chi(2) and Wilcoxon rank sum tests, 120 novel candidate disease genes were identified that discriminate normal and malignant PCs (P <.0001); many are involved in adhesion, apoptosis, cell cycle, drug resistance, growth arrest, oncogenesis, signaling, and transcription. A total of 156 genes, including FGFR3 and CCND1, exhibited highly elevated ("spiked") expression in at least 4 of the 74 MM cases (range, 4-25 spikes). Elevated expression of these 2 genes was caused by the translocation t(4;14)(p16;q32) or t(11;14)(q13;q32). Thus, novel candidate MM disease genes have been identified using gene expression profiling and this profiling has led to the development of a gene-based classification system for MM.

  10. Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana.

    PubMed Central

    Cao, Y; Ward, J M; Kelly, W B; Ichida, A M; Gaber, R F; Anderson, J A; Uozumi, N; Schroeder, J I; Crawford, N M

    1995-01-01

    K+ channels play diverse roles in mediating K+ transport and in modulating the membrane potential in higher plant cells during growth and development. Some of the diversity in K+ channel functions may arise from the regulated expression of multiple genes encoding different K+ channel polypeptides. Here we report the isolation of a novel Arabidopsis thaliana cDNA (AKT2) that is highly homologous to the two previously identified K+ channel genes, KAT1 and AKT1. This cDNA mapped to the center of chromosome 4 by restriction fragment length polymorphism analysis and was highly expressed in leaves, whereas AKT1 was mainly expressed in roots. In addition, we show that diversity in K+ channel function may be attributable to differences in expression levels. Increasing KAT1 expression in Xenopus oocytes by polyadenylation of the KAT1 mRNA increased the current amplitude and led to higher levels of KAT1 protein, as assayed in western blots. The increase in KAT1 expression in oocytes produced shifts in the threshold potential for activation to more positive membrane potentials and decreased half-activation times. These results suggest that different levels of expression and tissue-specific expression of different K+ channel isoforms can contribute to the functional diversity of plant K+ channels. The identification of a highly expressed, leaf-specific K+ channel homolog in plants should allow further molecular characterization of K+ channel functions for physiological K+ transport processes in leaves. PMID:8552711

  11. Multiple plastid signals regulate the expression of the pea plastocyanin gene in pea and transgenic tobacco plants.

    PubMed

    Sullivan, James A; Gray, John C

    2002-12-01

    The expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. To investigate how the pea PetE gene encoding plastocyanin is regulated by plastid signals, the effects of norflurazon, lincomycin and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), specific inhibitors of plastid-located processes generating plastid signals, have been examined. RNA-gel blot analysis of 7-day-old pea and tobacco seedlings containing the pea PetE gene showed that treatment with norflurazon and lincomycin, but not DCMU, decreased the accumulation of transcripts of pea PetE and endogenous Lhcb1 genes. Analysis of chimeric PetE gene constructs in tobacco seedlings showed that an intact PetE mRNA 5' terminus and elements within the PetE coding region were required to confer sensitivity to norflurazon and lincomycin, suggesting post-transcriptional regulation. Analysis of 4-week-old tobacco plants containing chimeric PetE constructs showed that DCMU treatment decreased the accumulation of pea PetE and Lhcb1 transcripts, but had opposite effects on the transcription of the genes in nuclear run-on assays. DCMU upregulated transcription from the pea PetE promoter whereas transcription of tobacco Lhcb1 genes was decreased. These experiments provide evidence for multiple plastid signals operating at different developmental stages and affecting transcriptional and post-transcriptional processes regulating expression of the pea PetE gene.

  12. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    PubMed Central

    Li, Robert W; Li, CongJun

    2006-01-01

    Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR) = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867) with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens. PMID:16972989

  13. Monitoring gene expression in a single Xenopus oocyte using multiple cytoplasmic collections and quantitative RT-PCR.

    PubMed

    Tokmakov, Alexander A; Hashimoto, Takanori; Hasegawa, Yushi; Iguchi, Sho; Iwasaki, Tetsushi; Fukami, Yasuo

    2014-01-01

    Oocytes and eggs of the African clawed frog, Xenopus laevis, are commonly used in gene expression studies. However, monitoring transcript levels in the individual living oocytes remains challenging. To address this challenge, we used a technique based on multiple repeated collections of nanoliter volumes of cytoplasmic material from a single oocyte. Transcript quantification was performed by quantitative RT-PCR. The technique allowed monitoring of heterologous gene expression in a single oocyte without affecting its viability. We also used this approach to profile the expression of endogenous genes in living Xenopus oocytes. Although frog oocytes are traditionally viewed as a homogenous cell population, a significant degree of gene expression variation was observed among the individual oocytes. A lognormal distribution of transcript levels was revealed in the oocyte population. Finally, using this technique, we observed a dramatic decrease in the content of various cytoplasmic mRNAs in aging unfertilized eggs but not in oocytes, suggesting a link between mRNA degradation and egg apoptosis.

  14. Analysis of microRNA and Gene Expression Profiles in Multiple Sclerosis: Integrating Interaction Data to Uncover Regulatory Mechanisms

    PubMed Central

    Freiesleben, Sherry; Hecker, Michael; Zettl, Uwe Klaus; Fuellen, Georg; Taher, Leila

    2016-01-01

    MicroRNAs (miRNAs) have been reported to contribute to the pathophysiology of multiple sclerosis (MS), an inflammatory disorder of the central nervous system. Here, we propose a new consensus-based strategy to analyse and integrate miRNA and gene expression data in MS as well as other publically available data to gain a deeper understanding of the role of miRNAs in MS and to overcome the challenges posed by studies with limited patient sample sizes. We processed and analysed microarray datasets, and compared the expression of genes and miRNAs in the blood of MS patients and controls. We then used our consensus and integration approach to construct two molecular networks dysregulated in MS: a miRNA- and a gene-based network. We identified 18 differentially expressed (DE) miRNAs and 128 DE genes that may contribute to the regulatory alterations behind MS. The miRNAs were linked to immunological and neurological pathways, and we exposed let-7b-5p and miR-345-5p as promising blood-derived disease biomarkers in MS. The results suggest that DE miRNAs are more informative than DE genes in uncovering pathways potentially involved in MS. Our findings provide novel insights into the regulatory mechanisms and networks underlying MS. PMID:27694855

  15. A gene expression screen.

    PubMed Central

    Wang, Z; Brown, D D

    1991-01-01

    A gene expression screen identifies mRNAs that differ in abundance between two mRNA mixtures by a subtractive hybridization method. The two mRNA populations are converted to double-stranded cDNAs, fragmented, and ligated to linkers for polymerase chain reaction (PCR) amplification. The multiple cDNA fragments isolated from any given gene can be treated as alleles in a genetic screen. Probability analysis of the frequency with which multiple alleles are found provides an estimation of the total number of up- and down-regulated genes. We have applied this method to genes that are differentially expressed in amphibian tadpole tail tissue in the first 24 hr after thyroid hormone treatment, which ultimately induces tail resorption. We estimate that there are about 30 up-regulated genes; 16 have been isolated. Images PMID:1722336

  16. Multiple regulatory mechanisms control the expression of the Geobacillus stearothermophilus gene for extracellular xylanase.

    PubMed

    Shulami, Smadar; Shenker, Ofer; Langut, Yael; Lavid, Noa; Gat, Orit; Zaide, Galia; Zehavi, Arie; Sonenshein, Abraham L; Shoham, Yuval

    2014-09-12

    Geobacillus stearothermophilus T-6 produces a single extracellular xylanase (Xyn10A) capable of producing short, decorated xylo-oligosaccharides from the naturally branched polysaccharide, xylan. Gel retardation assays indicated that the master negative regulator, XylR, binds specifically to xylR operators in the promoters of xylose and xylan-utilization genes. This binding is efficiently prevented in vitro by xylose, the most likely molecular inducer. Expression of the extracellular xylanase is repressed in medium containing either glucose or casamino acids, suggesting that carbon catabolite repression plays a role in regulating xynA. The global transcriptional regulator CodY was shown to bind specifically to the xynA promoter region in vitro, suggesting that CodY is a repressor of xynA. The xynA gene is located next to an uncharacterized gene, xynX, that has similarity to the NIF3 (Ngg1p interacting factor 3)-like protein family. XynX binds specifically to a 72-bp fragment in the promoter region of xynA, and the expression of xynA in a xynX null mutant appeared to be higher, indicating that XynX regulates xynA. The specific activity of the extracellular xylanase increases over 50-fold during early exponential growth, suggesting cell density regulation (quorum sensing). Addition of conditioned medium to fresh and low cell density cultures resulted in high expression of xynA, indicating that a diffusible extracellular xynA density factor is present in the medium. The xynA density factor is heat-stable, sensitive to proteases, and was partially purified using reverse phase liquid chromatography. Taken together, these results suggest that xynA is regulated by quorum-sensing at low cell densities. PMID:25070894

  17. Method for assembling and expressing multiple genes in the nucleus of microalgae.

    PubMed

    Noor-Mohammadi, Samaneh; Pourmir, Azadeh; Johannes, Tyler W

    2014-03-01

    The green alga, Chlamydomonas reinhardtii, is a model organism used in the study of photosynthesis and biotechnological research. Despite its importance, a complete set of genetic tools has yet to be developed. Here, we report the development of a new method for constructing a multi-gene pathway in Saccharomyces cerevisiae and integrating the assembled pathway into the nuclear genome of C. reinhardtii. To demonstrate the use of this method, we assembled and functionally expressed up to three reporter proteins (Ble, AphVIII, and GFP) simultaneously in the nucleus of C. reinhardtii. This new molecular tool should aid efforts to engineer microalgae for biofuel and biopharmaceutical production. PMID:24129955

  18. Dataset on gene expression profiling of multiple murine hair follicle populations.

    PubMed

    Gunnarsson, Anders Patrik; Christensen, Rikke; Li, Jian; Jensen, Uffe Birk

    2016-12-01

    The murine hair follicle contains several different keratinocyte progenitor populations within its compartments. By using antibodies against CD34, Itgα6, Sca-1 and Plet-1, we have isolated eight populations and compared their Krt10 and Krt14 expressions using fluorescence microscopy. This improved panel was used in our associated article doi:10.1016/j.scr.2016.06.002 (A.P. Gunnarsson, R. Christensen, J. Li, U.B. Jensen, 2016) [1] and the present dataset describes the basic controls for the FACS. We also used imaging flow cytometry to visualize the identified populations as control. A more detailed analysis of the global gene expression profiling is presented, focusing on the pilosebaceous unit. Murine whole-mounts were stained for heat shock protein Hspa2, which is exclusively expressed by keratinocytes with low or no expression of the four selection markers (IRK). Whole-mount labeling was also conducted to visualize Krt79 and Plet-1 coexpression within the hair follicle and quantification on the distribution of Krt79 positive keratinocytes is presented. PMID:27672671

  19. Layered genetic control of DNA methylation and gene expression: a locus of multiple sclerosis in healthy individuals.

    PubMed

    Shin, Jean; Bourdon, Celine; Bernard, Manon; Wilson, Michael D; Reischl, Eva; Waldenberger, Melanie; Ruggeri, Barbara; Schumann, Gunter; Desrivieres, Sylvane; Leemans, Alexander; Abrahamowicz, Michal; Leonard, Gabriel; Richer, Louis; Bouchard, Luigi; Gaudet, Daniel; Paus, Tomas; Pausova, Zdenka

    2015-10-15

    DNA methylation may contribute to the etiology of complex genetic disorders through its impact on genome integrity and gene expression; it is modulated by DNA-sequence variants, named methylation quantitative trait loci (meQTLs). Most meQTLs influence methylation of a few CpG dinucleotides within short genomic regions (<3 kb). Here, we identified a layered genetic control of DNA methylation at numerous CpGs across a long 300 kb genomic region. This control involved a single long-range meQTL and multiple local meQTLs. The long-range meQTL explained up to 75% of variance in methylation of CpGs located over extended areas of the 300 kb region. The meQTL was identified in four samples (P = 2.8 × 10(-17), 3.1 × 10(-31), 4.0 × 10(-71) and 5.2 × 10(-199)), comprising a total of 2796 individuals. The long-range meQTL was strongly associated not only with DNA methylation but also with mRNA expression of several genes within the 300 kb region (P = 7.1 × 10(-18)-1.0 × 10(-123)). The associations of the meQTL with gene expression became attenuated when adjusted for DNA methylation (causal inference test: P = 2.4 × 10(-13)-7.1 × 10(-20)), indicating coordinated regulation of DNA methylation and gene expression. Further, the long-range meQTL was found to be in linkage disequilibrium with the most replicated locus of multiple sclerosis, a disease affecting primarily the brain white matter. In middle-aged adults free of the disease, we observed that the risk allele was associated with subtle structural properties of the brain white matter found in multiple sclerosis (P = 0.02). In summary, we identified a long-range meQTL that controls methylation and expression of several genes and may be involved in increasing brain vulnerability to multiple sclerosis.

  20. Layered genetic control of DNA methylation and gene expression: a locus of multiple sclerosis in healthy individuals

    PubMed Central

    Shin, Jean; Bourdon, Celine; Bernard, Manon; Wilson, Michael D.; Reischl, Eva; Waldenberger, Melanie; Ruggeri, Barbara; Schumann, Gunter; Desrivieres, Sylvane; Leemans, Alexander; Abrahamowicz, Michal; Leonard, Gabriel; Richer, Louis; Bouchard, Luigi; Gaudet, Daniel; Paus, Tomas; Pausova, Zdenka

    2015-01-01

    DNA methylation may contribute to the etiology of complex genetic disorders through its impact on genome integrity and gene expression; it is modulated by DNA-sequence variants, named methylation quantitative trait loci (meQTLs). Most meQTLs influence methylation of a few CpG dinucleotides within short genomic regions (<3 kb). Here, we identified a layered genetic control of DNA methylation at numerous CpGs across a long 300 kb genomic region. This control involved a single long-range meQTL and multiple local meQTLs. The long-range meQTL explained up to 75% of variance in methylation of CpGs located over extended areas of the 300 kb region. The meQTL was identified in four samples (P = 2.8 × 10−17, 3.1 × 10−31, 4.0 × 10−71 and 5.2 × 10−199), comprising a total of 2796 individuals. The long-range meQTL was strongly associated not only with DNA methylation but also with mRNA expression of several genes within the 300 kb region (P = 7.1 × 10−18–1.0 × 10−123). The associations of the meQTL with gene expression became attenuated when adjusted for DNA methylation (causal inference test: P = 2.4 × 10−13–7.1 × 10−20), indicating coordinated regulation of DNA methylation and gene expression. Further, the long-range meQTL was found to be in linkage disequilibrium with the most replicated locus of multiple sclerosis, a disease affecting primarily the brain white matter. In middle-aged adults free of the disease, we observed that the risk allele was associated with subtle structural properties of the brain white matter found in multiple sclerosis (P = 0.02). In summary, we identified a long-range meQTL that controls methylation and expression of several genes and may be involved in increasing brain vulnerability to multiple sclerosis. PMID:26220975

  1. Multiple Changes of Gene Expression and Function Reveal Genomic and Phenotypic Complexity in SLE-like Disease

    PubMed Central

    Farias, Fabiana H. G.; Bremer, Hanna D.; Hedlund, Anna; Pielberg, Gerli R.; Seppälä, Eija H.; Gustafson, Ulla; Lohi, Hannes; Carlborg, Örjan; Andersson, Göran; Hansson-Hamlin, Helene; Lindblad-Toh, Kerstin

    2015-01-01

    The complexity of clinical manifestations commonly observed in autoimmune disorders poses a major challenge to genetic studies of such diseases. Systemic lupus erythematosus (SLE) affects humans as well as other mammals, and is characterized by the presence of antinuclear antibodies (ANA) in patients’ sera and multiple disparate clinical features. Here we present evidence that particular sub-phenotypes of canine SLE-related disease, based on homogenous (ANAH) and speckled ANA (ANAS) staining pattern, and also steroid-responsive meningitis-arteritis (SRMA) are associated with different but overlapping sets of genes. In addition to association to certain MHC alleles and haplotypes, we identified 11 genes (WFDC3, HOMER2, VRK1, PTPN3, WHAMM, BANK1, AP3B2, DAPP1, LAMTOR3, DDIT4L and PPP3CA) located on five chromosomes that contain multiple risk haplotypes correlated with gene expression and disease sub-phenotypes in an intricate manner. Intriguingly, the association of BANK1 with both human and canine SLE appears to lead to similar changes in gene expression levels in both species. Our results suggest that molecular definition may help unravel the mechanisms of different clinical features common between and specific to various autoimmune disease phenotypes in dogs and humans. PMID:26057447

  2. Involvement of multiple transcription factors for metal-induced spy gene expression in Escherichia coli.

    PubMed

    Yamamoto, Kaneyoshi; Ogasawara, Hiroshi; Ishihama, Akira

    2008-01-20

    Bacteria are directly exposed to metals in environment. To maintain the intracellular metal homeostasis, Escherichia coli contain a number of gene regulation systems, each for response to a specific metal. A periplasmic protein Spy of E. coli was found to be induced upon short-exposure to copper ion in CpxAR-dependent manner. Transcription of the spy gene was also induced by long-exposure to zinc ion. This induction, however, depended on another two-component system BaeSR. Using DNase-I footprinting assay, we identified two BaeR-binding regions on the spy promoter with a direct repeat of the BaeR-box sequence, TCTNCANAA. The zinc-responsive BaeR-binding sites were separated from copper-responsive CpxR-binding site, implying that the spy promoter responds to two species of metal independently through different using sensor-response regulator systems. Since BaeSR-dependent zinc response requires longer time, the induction of spy gene transcription by external zinc may include multiple steps such as through sensing the zinc-induced envelope disorder by BaeSR.

  3. Protection and synergism by recombinant fowl pox vaccines expressing multiple genes from Marek's disease virus.

    PubMed

    Lee, Lucy E; Witter, R L; Reddy, S M; Wu, P; Yanagida, N; Yoshida, S

    2003-01-01

    Recombinant fowl poxviruses (rFPVs) were constructed to express genes from serotype 1 Marek's disease virus (MDV) coding for glycoproteins B, E, I, H, and UL32 (gB1, gE, gI, gH, and UL32). An additional rFPV was constructed to contain four MDV genes (gB1, gE, gI, and UL32). These rFPVs were evaluated for their ability to protect maternal antibody-positive chickens against challenge with highly virulent MDV isolates. The protection induced by a single rFPV/gB1 (42%) confirmed our previous finding. The protection induced by rFPV/gI (43%), rFPV/gB1UL32 (46%), rFPV/gB1gEgI (72%), and rFPV/gB1gEgIUL32 (70%) contributed to additional knowledge on MDV genes involved in protective immunity. In contrast, the rFPV containing gE, gH, or UL32 did not induce significant protection compared with turkey herpesvirus (HVT). Levels of protection by rFPV/gB1 and rFPV/gl were comparable with that of HVT. Only gB1 and gI conferred synergism in rFPV containing these two genes. Protection by both rFPV/gB1gEgI (72%) and rFPV/gB1gEgIUL32(70%) against Marek's disease was significantly enhanced compared with a single gB1 or gI gene (40%). This protective synergism between gB1 and gI in rFPVs may be the basis for better protection when bivalent vaccines between serotypes 2 and 3 were used. When rFPV/gB1gIgEUL32 + HVT were used as vaccine against Md5 challenge, the protection was significantly enhanced (94%). This synergism between rFPV/gB1gIgEUL32 and HVT indicates additional genes yet to be discovered in HVT may be responsible for the enhancement.

  4. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: A systematic expression analysis

    PubMed Central

    Hamm, Alexander; Veeck, Juergen; Bektas, Nuran; Wild, Peter J; Hartmann, Arndt; Heindrichs, Uwe; Kristiansen, Glen; Werbowetski-Ogilvie, Tamra; Del Maestro, Rolando; Knuechel, Ruth; Dahl, Edgar

    2008-01-01

    Background The inter-alpha-trypsin inhibitors (ITI) are a family of plasma protease inhibitors, assembled from a light chain – bikunin, encoded by AMBP – and five homologous heavy chains (encoded by ITIH1, ITIH2, ITIH3, ITIH4, and ITIH5), contributing to extracellular matrix stability by covalent linkage to hyaluronan. So far, ITIH molecules have been shown to play a particularly important role in inflammation and carcinogenesis. Methods We systematically investigated differential gene expression of the ITIH gene family, as well as AMBP and the interacting partner TNFAIP6 in 13 different human tumor entities (of breast, endometrium, ovary, cervix, stomach, small intestine, colon, rectum, lung, thyroid, prostate, kidney, and pancreas) using cDNA dot blot analysis (Cancer Profiling Array, CPA), semiquantitative RT-PCR and immunohistochemistry. Results We found that ITIH genes are clearly downregulated in multiple human solid tumors, including breast, colon and lung cancer. Thus, ITIH genes may represent a family of putative tumor suppressor genes that should be analyzed in greater detail in the future. For an initial detailed analysis we chose ITIH2 expression in human breast cancer. Loss of ITIH2 expression in 70% of cases (n = 50, CPA) could be confirmed by real-time PCR in an additional set of breast cancers (n = 36). Next we studied ITIH2 expression on the protein level by analyzing a comprehensive tissue micro array including 185 invasive breast cancer specimens. We found a strong correlation (p < 0.001) between ITIH2 expression and estrogen receptor (ER) expression indicating that ER may be involved in the regulation of this ECM molecule. Conclusion Altogether, this is the first systematic analysis on the differential expression of ITIH genes in human cancer, showing frequent downregulation that may be associated with initiation and/or progression of these malignancies. PMID:18226209

  5. PW1 gene/paternally expressed gene 3 (PW1/Peg3) identifies multiple adult stem and progenitor cell populations

    PubMed Central

    Besson, Vanessa; Smeriglio, Piera; Wegener, Amélie; Relaix, Frédéric; Nait Oumesmar, Brahim; Sassoon, David A.; Marazzi, Giovanna

    2011-01-01

    A variety of markers are invaluable for identifying and purifying stem/progenitor cells. Here we report the generation of a murine reporter line driven by Pw1 that reveals cycling and quiescent progenitor/stem cells in all adult tissues thus far examined, including the intestine, blood, testis, central nervous system, bone, skeletal muscle, and skin. Neurospheres generated from the adult PW1-reporter mouse show near 100% reporter-gene expression following a single passage. Furthermore, epidermal stem cells can be purified solely on the basis of reporter-gene expression. These cells are clonogenic, repopulate the epidermal stem-cell niches, and give rise to new hair follicles. Finally, we demonstrate that only PW1 reporter-expressing epidermal cells give rise to follicles that are capable of self-renewal following injury. Our data demonstrate that PW1 serves as an invaluable marker for competent self-renewing stem cells in a wide array of adult tissues, and the PW1-reporter mouse serves as a tool for rapid stem cell isolation and characterization. PMID:21709251

  6. Interferon-β treatment in multiple sclerosis attenuates inflammatory gene expression through inducible activity of the phosphatase SHP-1

    PubMed Central

    Christophi, George P.; Panos, Michael; Hudson, Chad A.; Tsikkou, Chriso; Mihai, Cornelia; Mejico, Luis J.; Jubelt, Burk; Massa, Paul T.

    2009-01-01

    Interferon-β is a current treatment for multiple sclerosis (MS). Interferon-β is thought to exert its therapeutic effects on MS by down-modulating the immune response by multiple potential pathways. Here, we document that treatment of MS patients with interferon β-1a (Rebif) results in a significant increase in the levels and function of the protein tyrosine phosphatase SHP-1 in PBMCs. SHP-1 is a crucial negative regulator of cytokine signaling, inflammatory gene expression, and CNS demyelination as evidenced in mice deficient in SHP-1. In order to examine the functional significance of SHP-1 induction in MS PBMCs, we analyzed the activity of proinflammatory signaling molecules STAT1, STAT6, and NF-κB, which are known SHP-1 targets. Interferon-β treatment in vivo resulted in decreased NF-κB and STAT6 activation and increased STAT1 activation. Further analysis in vitro showed that cultured PBMCs of MS patients and normal subjects had a significant SHP-1 induction following interferon-β treatment that correlated with decreased NF-κB and STAT6 activation. Most importantly, experimental depletion of SHP-1 in cultured PBMCs abolished the anti-inflammatory effects of interferon-β treatment, indicating that SHP-1 is a predominant mediator of interferon-β activity. In conclusion, interferon-β treatment upregulates SHP-1 expression resulting in decreased transcription factor activation and inflammatory gene expression important in MS pathogenesis. PMID:19559654

  7. Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data.

    PubMed

    Waheed, Sarah; Mitchell, Alan; Usmani, Saad; Epstein, Joshua; Yaccoby, Shmuel; Nair, Bijay; van Hemert, Rudy; Angtuaco, Edgardo; Brown, Tracy; Bartel, Twyla; McDonald, James; Anaissie, Elias; van Rhee, Frits; Crowley, John; Barlogie, Bart

    2013-01-01

    Multiple myeloma causes major morbidity resulting from osteolytic lesions that can be detected by metastatic bone surveys. Magnetic resonance imaging and positron emission tomography can detect bone marrow focal lesions long before development of osteolytic lesions. Using data from patients enrolled in Total Therapy 3 for newly diagnosed myeloma (n=303), we analyzed associations of these imaging techniques with baseline standard laboratory variables assessed before initiating treatment. Of 270 patients with complete imaging data, 245 also had gene expression profiling data. Osteolytic lesions detected on metastatic bone surveys correlated with focal lesions detected by magnetic resonance imaging and positron emission tomography, although, in two-way comparisons, focal lesion counts based on both magnetic resonance imaging and positron emission tomography tended to be greater than those based on metastatic bone survey. Higher numbers of focal lesions detected by magnetic resonance imaging and positron emission tomography were positively linked to high serum concentrations of C-reactive protein, gene-expression-profiling-defined high risk, and the proliferation molecular subgroup. Positron emission tomography focal lesion maximum standardized unit values were significantly correlated with gene-expression-profiling-defined high risk and higher numbers of focal lesions detected by positron emission tomography. Interestingly, four genes associated with high-risk disease (related to cell cycle and metabolism) were linked to counts of focal lesions detected by magnetic resonance imaging and positron emission tomography. Collectively, our results demonstrate significant associations of all three imaging techniques with tumor burden and, especially, disease aggressiveness captured by gene-expression-profiling-risk designation. (Clinicaltrials.gov identifier: NCT00081939).

  8. Similar changes of gene expression in human skeletal muscle after resistance exercise and multiple fine needle biopsies.

    PubMed

    Friedmann-Bette, Birgit; Schwartz, Fides Regina; Eckhardt, Holger; Billeter, Rudolf; Bonaterra, Gabriel; Kinscherf, Ralf

    2012-01-01

    Repeated biopsy sampling from one muscle is necessary to investigate muscular adaptation to different forms of exercise as adaptation is thought to be the result of cumulative effects of transient changes in gene expression in response to single exercise bouts. In a crossover study, we obtained four fine needle biopsies from one vastus lateralis muscle of 11 male subjects (25.9 ± 3.8 yr, 179.2 ± 4.8 cm, 76.5 ± 7.0 kg), taken before (baseline), 1, 4, and 24 h after one bout of squatting exercise performed as conventional squatting or as whole body vibration exercise. To investigate if the repeated biopsy sampling has a confounding effect on the observed changes in gene expression, four fine needle biopsies from one vastus lateralis muscle were also taken from 8 male nonexercising control subjects (24.5 ± 3.7 yr, 180.6 ± 1.2 cm, 81.2 ± 1.6 kg) at the equivalent time points. Using RT-PCR, we observed similar patterns of change in the squatting as well as in the control group for the mRNAs of interleukin 6 (IL-6), IL-6 receptor, insulin-like growth factor 1, p21, phosphofructokinase, and glucose transporter in relation to the baseline biopsy. In conclusion, multiple fine needle biopsies obtained from the same muscle region can per se influence the expression of marker genes induced by an acute bout of resistance exercise. PMID:22052872

  9. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach.

    PubMed

    Spanevello, Francesca; Calistri, Arianna; Del Vecchio, Claudia; Mantelli, Barbara; Frasson, Chiara; Basso, Giuseppe; Palù, Giorgio; Cavazzana, Marina; Parolin, Cristina

    2016-04-19

    Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4(+) T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.

  10. ss-siRNAs allele selectively inhibit ataxin-3 expression: multiple mechanisms for an alternative gene silencing strategy.

    PubMed

    Liu, Jing; Yu, Dongbo; Aiba, Yuichiro; Pendergraff, Hannah; Swayze, Eric E; Lima, Walt F; Hu, Jiaxin; Prakash, Thazha P; Corey, David R

    2013-11-01

    Single-stranded silencing RNAs (ss-siRNAs) provide an alternative approach to gene silencing. ss-siRNAs combine the simplicity and favorable biodistribution of antisense oligonucleotides with robust silencing through RNA interference (RNAi). Previous studies reported potent and allele-selective inhibition of human huntingtin expression by ss-siRNAs that target the expanded CAG repeats within the mutant allele. Mutant ataxin-3, the genetic cause of Machado-Joseph Disease, also contains an expanded CAG repeat. We demonstrate here that ss-siRNAs are allele-selective inhibitors of ataxin-3 expression and then redesign ss-siRNAs to optimize their selectivity. We find that both RNAi-related and non-RNAi-related mechanisms affect gene expression by either blocking translation or affecting alternative splicing. These results have four broad implications: (i) ss-siRNAs will not always behave similarly to analogous RNA duplexes; (ii) the sequences surrounding CAG repeats affect allele-selectivity of anti-CAG oligonucleotides; (iii) ss-siRNAs can function through multiple mechanisms and; and (iv) it is possible to use chemical modification to optimize ss-siRNA properties and improve their potential for drug discovery.

  11. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis.

    PubMed

    Börnsen, Lars; Romme Christensen, Jeppe; Ratzer, Rikke; Hedegaard, Chris; Søndergaard, Helle B; Krakauer, Martin; Hesse, Dan; Nielsen, Claus H; Sorensen, Per S; Sellebjerg, Finn

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels of interferon-β-inducible genes with an increased expression of interleukin-10 and a milder disease course in untreated multiple sclerosis patients, whereas other studies reported an association with a poor response to treatment with interferon-β. In the present study, we found that untreated multiple sclerosis patients with an increased expression of interferon-β-inducible genes in peripheral blood mononuclear cells and interferon-β-treated multiple sclerosis patients had decreased CD4+ T-cell reactivity to the autoantigen myelin basic protein ex vivo. Interferon-β-treated multiple sclerosis patients had increased IL10 and IL27 gene expression levels in monocytes in vivo. In vitro, neutralization of interleukin-10 and monocyte depletion increased CD4+ T-cell reactivity to myelin basic protein while interleukin-10, in the presence or absence of monocytes, inhibited CD4+ T-cell reactivity to myelin basic protein. Our findings suggest that spontaneous expression of interferon-β-inducible genes in peripheral blood mononuclear cells from untreated multiple sclerosis patients and treatment with interferon-β are associated with reduced myelin basic protein-induced T-cell responses. Reduced myelin basic protein-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.

  12. The yeast prion [SWI+] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression

    PubMed Central

    Du, Zhiqiang; Zhang, Ying; Li, Liming

    2016-01-01

    Summary While transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. We show here that the yeast prion [SWI+] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes, and become inactivated in [SWI+] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI+] cells, which are SDS-resistant, heritable, and curable, but become metastable after separation from [SWI+]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI+] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence differently on distinct traits through multi-level regulations, providing insights into the biological roles of prions. PMID:26711350

  13. Multiplexed optical coding nanobeads and their application in single-molecule counting analysis for multiple gene expression analysis.

    PubMed

    Li, Lu; Shen, Liping; Zhang, Xiaoqian; Shui, Lingling; Sui, Benhui; Zhang, Xiaoli; Zhao, Xiaofan; Jin, Wenrui

    2015-07-30

    A method for fabrication of multiplexed optical coding nanobeads (MOCNBs) was developed by hybridizing three types of coding DNAs labeled with different dyes (Cy5, FAM and AMCA) at precisely controlled ratios with biotinylated reporter DNA modified to magnetic streptavidin-coated nanobeads with a diameter of 300 nm. The color of the MOCNBs could be observed by overlapping three single-primary-color fluorescence images of the MOCNBs corresponding to emission of Cy5 (red), FAM (green) and AMCA (blue). The MOCNBs could be easily identified under a conventional fluorescence microscope. The MOCNBs with different colors could serve as the multiplexed optical coding labels for single-molecule counting analysis (SMCA) and be used in multi-gene expression analysis (MGEA). In the SMCA-based MGEA technique, multiple messenger RNAs (mRNAs) in cells could be simultaneously quantified through their complementary DNAs (cDNAs) by counting the bright dots with the same color corresponding to the single cDNA molecules labeled with the MOCNBs. We measured expression profiles of three genes from Lepidoptera insect Helicoverpa armigera in ∼100 HaEpi cells with and without steroid hormone inductions to demonstrate the SMCA-based MGEA technique using MOCNBs.

  14. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment.

    PubMed

    Klein, Bernard; Seckinger, Anja; Moehler, Thomas; Hose, Dirk

    2011-01-01

    This chapter focuses on two aspects of myeloma pathogenesis: (1) chromosomal aberrations and resulting changes in gene and protein expression with a special focus on growth and survival factors of malignant (and normal) plasma cells and (2) the remodeling of the bone marrow microenvironment induced by accumulating myeloma cells. We begin this chapter with a discussion of normal plasma cell generation, their survival, and a novel class of inhibitory factors. This is crucial for the understanding of multiple myeloma, as several abilities attributed to malignant plasma cells are already present in their normal counterpart, especially the production of survival factors and interaction with the bone marrow microenvironment (niche). The chapter closes with a new model of pathogenesis of myeloma.

  15. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination.

    PubMed

    Li, Lu; Wang, Xianwei; Zhang, Xiaoli; Wang, Jinxing; Jin, Wenrui

    2015-01-01

    We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3×10(-16) mol L(-1). The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of cDNAs corresponding to beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein, large, P2 mRNAs in single human breast cancer cells and 5 random synthetic DNAts are simultaneously quantified to examine the SMA and SMA-based single-cell multiple gene expression analysis. PMID:25479875

  16. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination.

    PubMed

    Li, Lu; Wang, Xianwei; Zhang, Xiaoli; Wang, Jinxing; Jin, Wenrui

    2015-01-01

    We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3×10(-16) mol L(-1). The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three types of cDNAs corresponding to beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase and ribosomal protein, large, P2 mRNAs in single human breast cancer cells and 5 random synthetic DNAts are simultaneously quantified to examine the SMA and SMA-based single-cell multiple gene expression analysis.

  17. Identification and expression profiles of multiple genes in Nile tilapia in response to bacterial infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  18. Multiple transcribed elements control expression of the Escherichia coli btuB gene.

    PubMed Central

    Franklund, C V; Kadner, R J

    1997-01-01

    Repression by vitamin B12 of the cobalamin transport protein BtuB in the outer membrane of Escherichia coli operates at both the transcriptional and translational levels and is controlled by transcribed sequences within the leader and proximal portion of the btuB coding sequence. The effects of deletions from either end of this region on repression and expression were determined with lac fusions. An element at the 5' end of the transcript and the putative attenuator within the coding sequence were required for transcriptional repression. The presence of either element caused a marked reduction in btuB-lacZ expression which was reversed by the presence of a conserved sequence element in the leader, suggesting the importance of long-range interactions in the btuB leader for expression and regulation. PMID:9190822

  19. Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach

    PubMed Central

    Spanevello, Francesca; Calistri, Arianna; Del Vecchio, Claudia; Mantelli, Barbara; Frasson, Chiara; Basso, Giuseppe; Palù, Giorgio; Cavazzana, Marina; Parolin, Cristina

    2016-01-01

    Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4+ T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application. PMID:27093170

  20. Expression of epithelial-mesenchymal transition-related genes increases with copy number in multiple cancer types.

    PubMed

    Zhao, Min; Liu, Yining; Qu, Hong

    2016-04-26

    Epithelial-mesenchymal transition (EMT) is a cellular process through which epithelial cells transform into mesenchymal cells. EMT-implicated genes initiate and promote cancer metastasis because mesenchymal cells have greater invasive and migration capacities than epithelial cells. In this pan-cancer analysis, we explored the relationship between gene expression changes and copy number variations (CNVs) for EMT-implicated genes. Based on curated 377 EMT-implicated genes from the literature, we identified 212 EMT-implicated genes associated with more frequent copy number gains (CNGs) than copy number losses (CNLs) using data from The Cancer Genome Atlas (TCGA). Then by correlating these CNV data with TCGA gene expression data, we identified 71 EMT-implicated genes with concordant CNGs and gene up-regulation in 20 or more tumor samples. Of those, 14 exhibited such concordance in over 110 tumor samples. These 14 genes were predominantly apoptosis regulators, which may implies that apoptosis is critical during EMT. Moreover, the 71 genes with concordant CNG and up-regulation were largely involved in cellular functions such as phosphorylation cascade signaling. This is the first observation of concordance between CNG and up-regulation of specific genes in hundreds of samples, which may indicate that somatic CNGs activate gene expression by increasing the gene dosage.

  1. Expression of epithelial-mesenchymal transition-related genes increases with copy number in multiple cancer types

    PubMed Central

    Qu, Hong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a cellular process through which epithelial cells transform into mesenchymal cells. EMT-implicated genes initiate and promote cancer metastasis because mesenchymal cells have greater invasive and migration capacities than epithelial cells. In this pan-cancer analysis, we explored the relationship between gene expression changes and copy number variations (CNVs) for EMT-implicated genes. Based on curated 377 EMT-implicated genes from the literature, we identified 212 EMT-implicated genes associated with more frequent copy number gains (CNGs) than copy number losses (CNLs) using data from The Cancer Genome Atlas (TCGA). Then by correlating these CNV data with TCGA gene expression data, we identified 71 EMT-implicated genes with concordant CNGs and gene up-regulation in 20 or more tumor samples. Of those, 14 exhibited such concordance in over 110 tumor samples. These 14 genes were predominantly apoptosis regulators, which may implies that apoptosis is critical during EMT. Moreover, the 71 genes with concordant CNG and up-regulation were largely involved in cellular functions such as phosphorylation cascade signaling. This is the first observation of concordance between CNG and up-regulation of specific genes in hundreds of samples, which may indicate that somatic CNGs activate gene expression by increasing the gene dosage. PMID:27029057

  2. Multiple signaling pathways regulate contractile activity‐mediated PGC‐1α gene expression and activity in skeletal muscle cells

    PubMed Central

    Zhang, Yuan; Uguccioni, Giulia; Ljubicic, Vladimir; Irrcher, Isabella; Iqbal, Sobia; Singh, Kaustabh; Ding, Shuzhe; Hood, David A.

    2014-01-01

    Abstract PGC‐1α is an important transcriptional coactivator that plays a key role in mediating mitochondrial biogenesis. Within seconds of the onset of contractile activity, a number of rapid cellular events occur that form part of the initial signaling processes involved in PGC‐1α gene regulation, such as elevations in cytoplasmic calcium, AMPK and p38 activation, and elevated ROS production. We observed that basal levels of PGC‐1α promoter activity were more sensitive to resting Ca2+ levels, compared to ROS, p38 or, AMPK signaling. Moreover, enhanced PGC‐1α transcription and post‐translational activity on DNA were a result of the activation of multiple signal transduction pathways during contractile activity of myotubes. AMPK, ROS, and Ca2+ appear to be necessary for the regulation of contractile activity‐induced PGC‐1α gene expression, governed partly through p38 MAPK and CaMKII activity. Whether these signaling pathways are arranged as a linear sequence of events, or as largely independent pathways during contractile activity, remains to be determined. PMID:24843073

  3. HUMAN PARAOXONASE-1 (PON1): GENE STRUCTURE AND EXPRESSION, PROMISCUOUS ACTIVITIES AND MULTIPLE PHYSIOLOGICAL ROLES

    PubMed Central

    Mackness, Mike; Mackness, Bharti

    2015-01-01

    Human PON1 is a HDL-associated lipolactonase capable of preventing LDL and cell membrane oxidation and is therefore considered to be atheroprotective. PON1 contributes to the antioxidative function of HDL and reductions in HDL-PON1 activity, prevalent in a wide variety of diseases with an inflammatory component, is believed to lead to dysfunctional HDL which can promote inflammation and atherosclerosis. However, PON1 is multifunctional and may contribute to other HDL functions such as in innate immunity, preventing infection by quorum sensing gram negative bacteria by destroying acyl lactone mediators of quorum sensing, and putative new roles in cancer development and the promotion of healthy ageing. In this review we explore the physiological roles of PON1 in disease development, as well as PON1 gene and protein structure, promiscuous activities and the roles of SNPs and ethnicity in determining PON1 activity. PMID:25965560

  4. A Genomewide Mutagenesis Screen Identifies Multiple Genes Contributing to Vi Capsular Expression in Salmonella enterica Serovar Typhi

    PubMed Central

    Kingsley, Robert A.; Hale, Christine; Turner, Keith; Sivaraman, Karthikeyan; Wetter, Michael; Langridge, Gemma; Dougan, Gordon

    2013-01-01

    A transposon-based, genomewide mutagenesis screen exploiting the killing activity of a lytic ViII bacteriophage was used to identify Salmonella enterica serovar Typhi genes that contribute to Vi polysaccharide capsule expression. Genes enriched in the screen included those within the viaB locus (tviABCDE and vexABCDE) as well as oxyR, barA/sirA, and yrfF, which have not previously been associated with Vi expression. The role of these genes in Vi expression was confirmed by constructing defined null mutant derivatives of S. Typhi, and these were negative for Vi expression as determined by agglutination assays with Vi-specific sera or susceptibility to Vi-targeting bacteriophages. Transcriptome analysis confirmed a reduction in expression from the viaB locus in these S. Typhi mutant derivatives and defined regulatory networks associated with Vi expression. PMID:23316043

  5. Selective decreases in T cell receptor V beta expression. Decreased expression of specific V beta families is associated with expression of multiple MHC and non-MHC gene products

    PubMed Central

    1989-01-01

    Previous reports of TCR V beta usage, studying either expression of a single V beta in a wide panel of strains (6, 7, 10, 12, 13), or expression of multiple V beta s in a very limited strain distribution (14, 15), have identified instances of clonal deletion of potentially autoreactive T cells specific for either self E alpha E beta or minor lymphocyte stimulatory (Mls) antigens. The present study has investigated the range of self antigens that can influence V beta usage by evaluating expression of 16 V beta families in 30 strains of mice. It was found that significant decreases in expression occur in at least 8 of the 16 V beta families and that dominant influences on the T cell V beta repertoire are exerted by expression of Mlsa, Mlsc, and MHC gene products. Decreased expressions of V beta 5, -11, -12, and -16 were influenced by MHC gene products. The patterns of decreased expression seen in intra-MHC recombinant strains and strains of different non-MHC background were distinct for V beta 11, -12, and -16, suggesting that different ligands are involved in the deletion of T cells expressing each of these V beta genes. Mice expressing Mlsa show decreased expression of V beta 9 as well as V beta 6. Mlsc mice lacked V beta 3 expression in those strains where the expressed MHC type was compatible with a strongly stimulatory Mlsc phenotype. V beta 7 was strongly influenced by both MHC and non-MHC products that are not yet identified. These results demonstrate that strain-specific decreases of mRNA expression occur in a major portion of the TCR repertoire. Self antigens including Mlsa, Mlsc, and E alpha E beta, as well as additional MHC and non-MHC products, appear to induce these decreases in expression in the process of eliminating self-reactive T cells from the mature T cell pool. PMID:2529341

  6. Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows.

    PubMed

    Siebert, Stefan; Robinson, Mark D; Tintori, Sophia C; Goetz, Freya; Helm, Rebecca R; Smith, Stephen A; Shaner, Nathan; Haddock, Steven H D; Dunn, Casey W

    2011-01-01

    We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through

  7. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases.

    PubMed

    Gan, Lu; O'Hanlon, Terrance P; Lai, Zhennan; Fannin, Rick; Weller, Melodie L; Rider, Lisa G; Chiorini, John A; Miller, Frederick W

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups-probands with SAID, their unaffected twins, and matched, unrelated healthy controls-using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.

  8. Photoperiod regulates multiple gene expression in the suprachiasmatic nuclei and pars tuberalis of the Siberian hamster (Phodopus sungorus).

    PubMed

    Johnston, Jonathan D; Ebling, Francis J P; Hazlerigg, David G

    2005-06-01

    Photoperiod regulates the seasonal physiology of many mammals living in temperate latitudes. Photoperiodic information is decoded by the master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus and then transduced via pineal melatonin secretion. This neurochemical signal is interpreted by tissues expressing melatonin receptors (e.g. the pituitary pars tuberalis, PT) to drive physiological changes. In this study we analysed the photoperiodic regulation of the circadian clockwork in the SCN and PT of the Siberian hamster. Female hamsters were exposed to either long or short photoperiod for 8 weeks and sampled at 2-h intervals across the 24-h cycle. In the SCN, rhythmic expression of the clock genes Per1, Per2, Cry1, Rev-erbalpha, and the clock-controlled genes arginine vasopressin (AVP) and d-element binding protein (DBP) was modulated by photoperiod. All of these E-box-containing genes tracked dawn, with earlier peak mRNA expression in long, compared to short, photoperiod. This response occurred irrespective of the presence of additional regulatory cis-elements, suggesting photoperiodic regulation of SCN gene expression through a common E-box-related mechanism. In long photoperiod, expression of Cry1 and Per1 in the PT tracked the onset and offset of melatonin secretion, respectively. However, whereas Cry1 tracked melatonin onset in short period, Per1 expression was not detectably rhythmic. We therefore propose that, in the SCN, photoperiodic regulation of clock gene expression primarily occurs via E-boxes, whereas melatonin-driven signal transduction drives the phasing of a subset of clock genes in the PT, independently of the E-box.

  9. Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women

    PubMed Central

    Niu, Tianhua; Zhou, Yu; Zhang, Lan; Zeng, Yong; Zhu, Wei; Wang, Yu-ping; Deng, Hong-wen

    2016-01-01

    Background Existing microarray studies of bone mineral density (BMD) have been critical for understanding the pathophysiology of osteoporosis, and have identified a number of candidate genes. However, these studies were limited by their relatively small sample sizes and were usually analyzed individually. Here, we propose a novel network-based meta-analysis approach that combines data across six microarray studies to identify functional modules from human protein-protein interaction (PPI) data, and highlight several differentially expressed genes (DEGs) and a functional module that may play an important role in BMD regulation in women. Methods Expression profiling studies were identified by searching PubMed, Gene Expression Omnibus (GEO) and ArrayExpress. Two meta-analysis methods were applied across different gene expression profiling studies. The first, a nonparametric Fisher’s method, combined p-values from individual experiments to identify genes with large effect sizes. The second method combined effect sizes from individual datasets into a meta-effect size to gain a higher precision of effect size estimation across all datasets. Genes with Q test’s p-values < 0.05 or I2 values > 50% were assessed by a random effects model and the remainder by a fixed effects model. Using Fisher’s combined p-values, functional modules were identified through an integrated analysis of microarray data in the context of large protein–protein interaction (PPI) networks. Two previously published meta-analysis studies of genome-wide association (GWA) datasets were used to determine whether these module genes were genetically associated with BMD. Pathway enrichment analysis was performed with a hypergeometric test. Results Six gene expression datasets were identified, which included a total of 249 (129 high BMD and 120 low BMD) female subjects. Using a network-based meta-analysis, a consensus module containing 58 genes (nodes) and 83 edges was detected. Pathway enrichment

  10. Validation of the Lung Subtyping Panel in Multiple Fresh-Frozen and Formalin-Fixed, Paraffin-Embedded Lung Tumor Gene Expression Data Sets.

    PubMed

    Faruki, Hawazin; Mayhew, Gregory M; Fan, Cheng; Wilkerson, Matthew D; Parker, Scott; Kam-Morgan, Lauren; Eisenberg, Marcia; Horten, Bruce; Hayes, D Neil; Perou, Charles M; Lai-Goldman, Myla

    2016-06-01

    Context .- A histologic classification of lung cancer subtypes is essential in guiding therapeutic management. Objective .- To complement morphology-based classification of lung tumors, a previously developed lung subtyping panel (LSP) of 57 genes was tested using multiple public fresh-frozen gene-expression data sets and a prospectively collected set of formalin-fixed, paraffin-embedded lung tumor samples. Design .- The LSP gene-expression signature was evaluated in multiple lung cancer gene-expression data sets totaling 2177 patients collected from 4 platforms: Illumina RNAseq (San Diego, California), Agilent (Santa Clara, California) and Affymetrix (Santa Clara) microarrays, and quantitative reverse transcription-polymerase chain reaction. Gene centroids were calculated for each of 3 genomic-defined subtypes: adenocarcinoma, squamous cell carcinoma, and neuroendocrine, the latter of which encompassed both small cell carcinoma and carcinoid. Classification by LSP into 3 subtypes was evaluated in both fresh-frozen and formalin-fixed, paraffin-embedded tumor samples, and agreement with the original morphology-based diagnosis was determined. Results .- The LSP-based classifications demonstrated overall agreement with the original clinical diagnosis ranging from 78% (251 of 322) to 91% (492 of 538 and 869 of 951) in the fresh-frozen public data sets and 84% (65 of 77) in the formalin-fixed, paraffin-embedded data set. The LSP performance was independent of tissue-preservation method and gene-expression platform. Secondary, blinded pathology review of formalin-fixed, paraffin-embedded samples demonstrated concordance of 82% (63 of 77) with the original morphology diagnosis. Conclusions .- The LSP gene-expression signature is a reproducible and objective method for classifying lung tumors and demonstrates good concordance with morphology-based classification across multiple data sets. The LSP panel can supplement morphologic assessment of lung cancers, particularly

  11. Temporal and spatial changes in the expression pattern of multiple red and green subtype opsin genes during zebrafish development.

    PubMed

    Takechi, Masaki; Kawamura, Shoji

    2005-04-01

    Zebrafish have two red, LWS-1 and LWS-2, and four green, RH2-1, RH2-2, RH2-3 and RH2-4, opsin genes encoding photopigments with distinct absorption spectra. Occurrence of opsin subtypes by gene duplication is characteristic of fish but little is known whether the subtypes are expressed differently in the retina, either spatially or temporally. Here we show by in situ hybridization the dynamic expression patterns of the opsin subtypes in the zebrafish retina. Expression of red type opsins is initiated with the shorter-wavelength subtype LWS-2, followed by the longer-wavelength subtype LWS-1. In the adult retina, LWS-2 was expressed in the central to dorsal area and LWS-1 in the ventral and peripheral areas. Expression patterns of green type opsins were similar to those of the red type opsins. The expression started with the shortest wavelength subtype RH2-1 followed by the longer wavelength ones, and in the adult retina, the shorter wavelength subtypes (RH2-1 and RH2-2) were expressed in the central to dorsal area and longer wavelength subtypes (RH2-3 and RH2-4) in the ventral and peripheral areas. These results provide the framework for subsequent studies of opsin gene regulation and for probing functional rationale of the developmental changes by using the power of zebrafish genetics.

  12. Identification and Expression of Multiple CYP1-like and CYP3-like Genes in the Bivalve Mollusk Mytilus edulis

    PubMed Central

    Zanette, Juliano; Jenny, Matthew J.; Goldstone, Jared V.; Parente, Thiago; Woodin, Bruce R.; Bainy, Afonso C. D.; Stegeman, John J.

    2013-01-01

    Various sequencing projects over the last several years have aided the discovery of previously uncharacterized invertebrate sequences, including new cytochrome P450 genes (CYPs). Here we present data on the identification and characterization of two CYP1-like and three CYP3-like genes from the bivalve mollusk Mytilus edulis, and assess their potential as biomarkers based on their responses to several known vertebrate aryl hydrocarbon receptor (AHR) agonists. Quantitative real-time PCR was used to measure CYP transcript levels in digestive gland, labial palps, adductor muscle, gill, foot, and different regions of the mantle. Levels of both CYP1-like genes were highest in digestive gland, whereas labial palps had the highest expression levels of the three CYP3-like genes followed by digestive gland and outer margin of the mantle. Mussels were exposed by injection to the AHR agonists, β-naphthoflavone (BNF; 25 μg.g−1), 3,3′,4,4′,5-polychlorinated biphenyl (PCB126; 2 μg.g−1), or 6-formylindolo[3,2-b]carbazole (FICZ; 0.1 μg.g−1), or to Aroclor 1254 (a mixture of PCBs; 50 μg.g−1) for 24 hours, followed by CYP expression analysis. There was no statistically significant change in expression of either of the CYP1-like genes after exposure to the various AHR agonists. The CYP3-like-1 gene was significantly up-regulated by BNF in gill tissues and the CYP3-like-2 gene was up-regulated in digestive gland by PCB126 and in gill tissue by BNF. These results suggest that distinct mechanisms of CYP gene activation could be present in M. edulis, although the importance of the CYP1-like and CYP3-like genes for xenobiotic and endogenous lipids biotransformation requires additional investigation. PMID:23277104

  13. Life-spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs

    PubMed Central

    Kuiper, Raoul V; van der Hoeven, Tessa V; Wackers, P.F.K.; Robinson, Joke; van der Horst, Gijsbertus TJ; Dollé, Martijn ET; Vijg, Jan; Breit, Timo M; Hoeijmakers, Jan HJ; van Steeg, Harry

    2013-01-01

    Summary Aging and age-related pathology is a result of a still incompletely-understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung and brain), in which we compare genome-wide gene expression profiles during chronological aging with pathological changes throughout the entire murine lifespan (13, 26, 52, 78, 104 and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs) and altered gene-sets (AGSs) were found in most organs, indicative of intra-organ generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age-predictive value, albeit with much inter- and intra-individual (organ) variation. Relating gene expression changes to pathology-related aging revealed correlated genes and gene-sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney and brain, a limited number of overlapping pathology-related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility and DNA damage. Comparison of chronological and pathology-related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology-related AGSs which were not detected in chronological aging. The many cellular processes that are only found employing aging–related pathology could provide important new insights into the progress of aging. PMID:23795901

  14. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances.

    PubMed

    Wang, Xiatian; Zeng, Jian; Li, Ying; Rong, Xiaoli; Sun, Jiutong; Sun, Tao; Li, Miao; Wang, Lianzhe; Feng, Ying; Chai, Ruihong; Chen, Mingjie; Chang, Junli; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-01-01

    The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled 10 unigenes from expressed sequence tags (ESTs) of wheat and designated them as TaWRKY44-TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA), H2O2 and gibberellin (GA). The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC), soluble sugar, proline and superoxide dismutase (SOD) content, as well as higher activities of catalase (CAT) and peroxidase (POD), but less ion leakage (IL), lower contents of malondialdehyde (MDA), and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT, and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS)-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression. PMID:26322057

  15. High throughput quantitative reverse transcription PCR assays revealing over-expression of cancer testis antigen genes in multiple myeloma stem cell-like side population cells.

    PubMed

    Wen, Jianguo; Li, Hangwen; Tao, Wenjing; Savoldo, Barbara; Foglesong, Jessica A; King, Lauren C; Zu, Youli; Chang, Chung-Che

    2014-09-01

    Multiple myeloma (MM) stem cells, proposed to be responsible for the tumourigenesis, drug resistance and recurrence of this disease, are enriched in the cancer stem cell-like side population (SP). Cancer testis antigens (CTA) are attractive targets for immunotherapy because they are widely expressed in cancers but only in limited types of normal tissues. We designed a high throughput assay, which allowed simultaneous relative quantifying expression of 90 CTA genes associated with MM. In the three MM cell lines tested, six CTA genes were over-expressed in two and LUZP4 and ODF1 were universally up-regulated in all three cell lines. Subsequent study of primary bone marrow (BM) from eight MM patients and four healthy donors revealed that 19 CTA genes were up-regulated in SP of MM compared with mature plasma cells. In contrast, only two CTA genes showed a moderate increase in SP cells of healthy BM. Furthermore, knockdown using small interfering RNA (siRNA) revealed that LUZP4 expression is required for colony-forming ability and drug resistance in MM cells. Our findings indicate that multiple CTA have unique expression profiles in MM SP, suggesting that CTA may serve as targets for immunotherapy that it specific for MM stem cells and which may lead to the long-term cure of MM.

  16. Increased inflammasome related gene expression profile in PBMC may facilitate T helper 17 cell induction in multiple sclerosis.

    PubMed

    Peelen, E; Damoiseaux, J; Muris, A-H; Knippenberg, S; Smolders, J; Hupperts, R; Thewissen, M

    2015-02-01

    The NLRP3 inflammasome is a macromolecular complex importantly involved in IL-1β processing. A role for this has been described in multiple sclerosis (MS). One mechanism by which IL-1β might be involved in MS is by inducing pathogenic Th17 cells, i.e. GM-CSF+ Th17 cells. In the present study, we show that expression of the inflammasome related genes, NLRP3, caspase-1, IL-1β and the IL-1β/IL-1Ra ratio, was increased in PBMC from MS patients compared to healthy controls (HC). However, in an in vitro inflammasome activity assay with PBMC, IL-1β protein secretion and the IL-1β/IL-1Ra protein ratio were similar in MS patients and HC. Th cells cultured in the presence of supernatant derived from LPS/ATP inflammasome activated PBMC showed increased Th17 and GM-CSF+ Th17 cell frequencies in HC and MS patients and decreased anti-inflammatory IL-10+Th cell frequency in HC compared to Th cells cultured in the presence of control supernatant. Moreover, addition of the immune modulator calcitriol to the former condition resulted in reduced frequencies of Th17 and GM-CSF+Th17 cells, and also of IL-10+ Th cells. Evidently, our data indicate that inflammasome activity can skew the Th cell population toward a more pro-inflammatory composition, an effect that might be inhibited by vitamin D, and that might be importantly involved in inflammation within the central nervous system.

  17. Altered expression of oligodendrocyte and neuronal marker genes predicts the clinical onset of autoimmune encephalomyelitis and indicates the effectiveness of multiple sclerosis-directed therapeutics.

    PubMed

    Evangelidou, Maria; Karamita, Maria; Vamvakas, Sotiris-Spyros; Szymkowski, David E; Probert, Lesley

    2014-05-01

    Experimental autoimmune encephalomyelitis (EAE) is a valuable model for studying immunopathology in multiple sclerosis (MS) and for exploring the interface between autoimmune responses and CNS tissue that ultimately leads to lesion development. In this study, we measured gene expression in mouse spinal cord during myelin oligodendrocyte gp35-55 peptide-induced EAE, using quantitative RT-PCR, to identify gene markers that monitor individual hallmark pathological processes. We defined a small panel of genes whose longitudinal expression patterns provided insight into the timing, interrelationships, and mechanisms of individual disease processes and the efficacy of therapeutics for the treatment of MS. Earliest transcriptional changes were upregulation of Il17a and sharp downregulation of neuronal and oligodendrocyte marker genes preceding clinical disease onset, whereas neuroinflammatory markers progressively increased as symptoms and tissue lesions developed. EAE-induced gene-expression changes were not altered in mice deficient in IKKβ in cells of the myeloid lineage compared with controls, but the administration of a selective inhibitor of soluble TNF to mice from the day of immunization delayed changes in the expression of innate inflammation, myelin, and neuron markers from the presymptomatic phase. Proof of principle that the gene panel shows drug screening potential was obtained using a well-established MS therapeutic, glatiramer acetate. Prophylactic treatment of mice with glatiramer acetate normalized gene marker expression, and this correlated with the level of therapeutic success. These results show that neurons and oligodendrocytes are highly sensitive to CNS-directed autoimmunity before the development of clinical symptoms and immunopathology and reveal a role for soluble TNF in mediating the earliest changes in gene expression.

  18. Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance.

    PubMed

    Basu, Supratim; Roychoudhury, Aryadeep

    2014-01-01

    The present study considered transcriptional profiles and protein expression analyses from shoot and/or root tissues under three abiotic stress conditions, namely, salinity, dehydration, and cold, as well as following exogenous abscisic acid treatment, at different time points of stress exposure in three indica rice varieties, IR-29 (salt sensitive), Pokkali, and Nonabokra (both salt tolerant). The candidate genes chosen for expression studies were HKT-1, SOS-3, NHX-1, SAPK5, SAPK7, NAC-1, Rab16A, OSBZ8, DREBP2, CRT/DREBP, WRKY24, and WRKY71, along with the candidate proteins OSBZ8, SAMDC, and GST. Gene expression profile revealed considerable differences between the salt-sensitive and salt-tolerant rice varieties, as the expression in the latter was higher even at the constitutive level, whereas it was inducible only by corresponding stress signals in IR-29. Whether in roots or shoots, the transcriptional responses to different stressors peaked following 24 h of stress/ABA exposure, and the transcript levels enhanced gradually with the period of exposure. The generality of stress responses at the transcriptional level was therefore time dependent. Heat map data also showed differential transcript abundance in the three varieties, correlating the observation with transcript profiling. In silico analysis of the upstream regions of all the genes represented the existence of conserved sequence motifs in single or multiple copies that are indispensable to abiotic stress response. Overall, the transcriptome and proteome analysis undertaken in the present study indicated that genes/proteins conferring tolerance, belonging to different functional classes, were overrepresented, thus providing novel insight into the functional basis of multiple stress tolerance in indica rice varieties. The present work will pave the way in future to select gene(s) for overexpression, so as to generate broad spectrum resistance to multiple stresses simultaneously. PMID:25110688

  19. (R,S)-dichlorprop herbicide in agricultural soil induces proliferation and expression of multiple dioxygenase-encoding genes in the indigenous microbial community.

    PubMed

    Paulin, Mélanie M; Nicolaisen, Mette H; Sørensen, Jan

    2011-06-01

    We investigated the effect of (R,S)-dichlorprop herbicide addition to soil microcosms on the degrading indigenous microbial community by targeting multiple α-ketoglutarate-dependent (α-KG) dioxygenase-encoding genes (rdpA, sdpA and tfdA group I) at both gene and transcript level. The soil microbial community responded with high growth of potential degraders as measured by the abundance of dioxygenase-encoding genes using quantitative real-time PCR (qPCR). rdpA DNA was not detectable in unamended soil but reached over 10⁶ copies g⁻¹ soil after amendment. sdpA and tfdA were both present prior to amendment at levels of ~5 × 10⁴ and ~ 10² copies g⁻¹ soil, respectively, and both reached over 10⁵copies g⁻¹ soil. While expression of all three target genes was detected during two cycles of herbicide degradation, a time-shift occurred between maximum expression of each gene. Gene diversity by denaturing gradient gel electrophoresis (DGGE) uncovered a diversity of sdpA and tfdA genes at the DNA level while rdpA remained highly conserved. However, mRNA profiles indicated that all transcribed tfdA sequences were class III genes while rdpA transcripts shared 100% identity to rdpA of Delftia acidovorans MC1 and sdpA transcripts shared 100% identity to sdpA from Sphingomonas herbicidovorans MH. This is the first report to describe expression dynamics of multiple α-KG dioxygenase-encoding genes in the indigenous microbial community as related to degradation of a phenoxypropionate herbicide in soil.

  20. Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells.

    PubMed

    Hu, Tao; Fu, Qiong; Chen, Ping; Ma, Li; Sin, Onsam; Guo, Deyin

    2009-05-14

    Recently, artificial microRNA (amiRNA) has become a promising RNA interference (RNAi) technology. Here, we describe a flexible and reliable method for constructing both single- and multi-amiRNA expression vectors. Two universal primers, together with two specific primers carrying the encoding sequence of amiRNA were designed and utilized to synthesize the functional amiRNA cassette through a one-step PCR. With appropriate restriction sites, the synthesized amiRNA cassettes can be cloned into any site of different destination vectors. Using the method, we constructed both single- and multi-amiRNA expression vectors to target three reporter genes, which code firefly luciferase (Fluc), enhanced green fluorescent protein (EGFP) and beta-galactosidase (LacZ), respectively. The expressions of three genes were all specifically inhibited by either the corresponding single- or the multi-amiRNA expression vector in 293T cells. And the RNAi efficiency of each amiRNA produced by both single- and multi-amiRNA expression vectors was comparable.

  1. Gene expression profiling of the response to interferon beta in Epstein-Barr-transformed and primary B cells of patients with multiple sclerosis.

    PubMed

    Khsheibun, Rana; Paperna, Tamar; Volkowich, Anat; Lejbkowicz, Izabella; Avidan, Nili; Miller, Ariel

    2014-01-01

    The effects of interferon-beta (IFN-β), one of the key immunotherapies used in multiple sclerosis (MS), on peripheral blood leukocytes and T cells have been extensively studied. B cells are a less abundant leukocyte type, and accordingly less is known about the B cell-specific response to IFN-β. To identify gene expression changes and pathways induced by IFN-β in B cells, we studied the in vitro response of human Epstein Barr-transformed B cells (lymphoblast cell lines-LCLs), and validated our results in primary B cells. LCLs were derived from an MS patient repository. Whole genome expression analysis identified 115 genes that were more than two-fold differentially up-regulated following IFN-β exposure, with over 50 previously unrecognized as IFN-β response genes. Pathways analysis demonstrated that IFN-β affected LCLs in a similar manner to other cell types by activating known IFN-β canonical pathways. Additionally, IFN-β increased the expression of innate immune response genes, while down-regulating many B cell receptor pathway genes and genes involved in adaptive immune responses. Novel response genes identified herein, NEXN, DDX60L, IGFBP4, and HAPLN3, B cell receptor pathway genes, CD79B and SYK, and lymphocyte activation genes, LAG3 and IL27RA, were validated as IFN-β response genes in primary B cells. In this study new IFN-β response genes were identified in B cells, with possible implications to B cell-specific functions. The study's results emphasize the applicability of LCLs for studies of human B cell drug response. The usage of LCLs from patient-based repositories may facilitate future studies of drug response in MS and other immune-mediated disorders with a B cell component.

  2. Multiple myeloma oncogene 1 (MUM1)/interferon regulatory factor 4 (IRF4) upregulates monokine induced by interferon-gamma (MIG) gene expression in B-cell malignancy.

    PubMed

    Uranishi, M; Iida, S; Sanda, T; Ishida, T; Tajima, E; Ito, M; Komatsu, H; Inagaki, H; Ueda, R

    2005-08-01

    MUM1 (multiple myeloma oncogene 1)/IRF4 (interferon regulatory factor 4) is a transcription factor that is activated as a result of t(6;14)(p25;q32) in multiple myeloma. MUM1 expression is seen in various B-cell lymphomas and predicts an unfavorable outcome in some lymphoma subtypes. To elucidate its role in B-cell malignancies, we prepared MUM1-expressing Ba/F3 cells, which proliferated until higher cellular density than the parental cells, and performed cDNA microarray analysis to identify genes whose expression is regulated by MUM1. We found that the expression of four genes including FK506-binding protein 3 (FKBP3), the monokine induced by interferon-gamma(MIG), Fas apoptotic inhibitory molecule (Faim) and Zinc-finger protein 94 was altered in the MUM1-expressing cells. We then focused on MIG since its expression was immediately upregulated by MUM1. In reporter assays, MUM1 activated the MIG promoter in cooperation with PU.1, and the interaction between MUM1 and the MIG promoter sequence was confirmed. The expression of MIG was correlated with that of MUM1 in B-CLL cell lines, and treatment with neutralizing antibodies against MIG and its receptor, CXCR3, slightly inhibited the proliferation of two MUM1-expressing lines. These results suggest that MUM1 plays roles in the progression of B-cell lymphoma/leukemia by regulating the expression of various genes including MIG. Leukemia (2005) 19, 1471-1478. doi:10.1038/sj.leu.2403833; published online 16 June 2005.

  3. Multiple promoters and targeted microRNAs direct the expressions of HMGB3 gene transcripts in dairy cattle.

    PubMed

    Li, Liming; Huang, Jinming; Ju, Zhihua; Li, Qiuling; Wang, Changfa; Qi, Chao; Zhang, Yan; Hou, Qinlei; Hang, Suqin; Zhong, Jifeng

    2013-06-01

    HMGB3 (high-mobility group box 3) is an X-linked member of a family of sequence-independent chromatin-binding proteins and functions as a universal sentinel for nucleic acid-mediated innate immune responses. The splice variant expression, promoter characterization and targeted microRNAs of the bovine HMGB3 gene were investigated to explore its expression pattern and possible regulatory mechanism. The results revealed that the expression of HMGB3 transcript variants 1 and 2 (HMGB3-TV1 and HMGB3-TV2) mRNA in the mastitis-infected mammary gland tissues was up-regulated by 8.46- and 5.31-fold respectively compared with that in healthy tissues (P < 0.05). HMGB3-TV1 was highly expressed in the mammary gland tissues, whereas HMGB3-TV2 was expressed primarily in liver. Functional analyses indicated that HMGB3 transcription is regulated by three distinct promoters - promoters 1, 2 and 3 (P1, P2 and P3) - resulting in two alternative transcripts with the same 3'-untranslated region. Promoter luciferase activity analysis suggested that the core sequences of P1 and P2 were mapped in the region of g.1535 to ~g.2076 and g.2074 to ~g.2491 respectively. The g.5880C>T SNP in P3 affected its base promoter activity, and different genotypes were associated with the bovine somatic count score. The expression of targets bovine miR-17-5p, miR-20b and miR-93 of the HMGB3 gene was down-regulated 1.56-, 1.72- and 2.94-fold respectively in mammary gland tissues as compared with that in healthy tissues (P < 0.05). The findings suggest that HMGB3 expression is under complex transcriptional and post-transcriptional control by alternate promoter usage, alternative splicing mechanism and microRNAs in dairy cattle. PMID:23206268

  4. A role of both NF-κB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells.

    PubMed

    Shen, Xianjuan; Zhu, Wencai; Zhang, Xia; Xu, Guang; Ju, Shaoqing

    2011-11-01

    B-lymphocyte stimulator (BAFF) is a recently recognized member of the tumor necrosis factor ligand family (TNF) and a potent cell-survival factor expressed in many hematopoietic cells. BAFF regulates B-cell survival, differentiation, and proliferation by binding to three TNF receptors: TACI, BCMA, and BAFF-R. The mechanism involved in BAFF-R gene expression and regulation remains elusive. In this study, we examined BAFF-R gene expression, function, and regulation in multiple myeloma (KM3) cells. It was found that BAFF-BAFF-R induced cell survival by activating NF-κB1 pathway and NF-κB2 pathway. It was also found that NF-κB was an important transcription factor involved in regulating BAFF-R expression through one NF-κB binding site in the BAFF-R promoter, suggesting that inhibiting NF-κB could decrease the expression of BAFF-R mRNA and protein, and promote activity of BAFF-R gene. Our findings indicate that both NF-κB pathways are involved in the regulation of BAFF-R gene and the NF-κB-binding site of BAFF-R may be a new therapeutic target in this disease.

  5. Expression Analysis and Binding Assays in the Chemosensory Protein Gene Family Indicate Multiple Roles in Helicoverpa armigera.

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Luo, Jun-Yu; Zhu, Jing; Cui, Jin-Jie; Dong, Shuang-Lin

    2015-05-01

    Chemosensory proteins (CSPs) have been proposed to capture and transport hydrophobic chemicals to receptors on sensory neurons. We identified and cloned 24 CSP genes to better understand the physiological function of CSPs in Helicoverpa armigera. Quantitative real-time polymerase chain reaction assays indicate that CSP genes are ubiquitously expressed in adult H. armigera tissues. Broad expression patterns in adult tissues suggest that CSPs are involved in a diverse range of cellular processes, including chemosensation as well as other functions not related to chemosensation. The H. armigera CSPs that were highly transcribed in sensory organs or pheromone glands (HarmCSPs 6, 9, 18, 19), were recombinantly expressed in bacteria to explore their function. Fluorescent competitive binding assays were used to measure the binding affinities of these CSPs against 85 plant volatiles and 4 pheromone components. HarmCSP6 displays high binding affinity for pheromone components, whereas the other three proteins do not show affinities for any of the compounds tested. HarmCSP6 is expressed in numerous cells located in or close to long sensilla trichodea on the antennae of both males and females. These results suggest that HarmCSP6 may be involved in transporting female sex pheromones in H. armigera. PMID:25893790

  6. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine.

  7. Cloning and Expression of Multiple Cytochrome P450 Genes: Induction by Fipronil in Workers of the Red Imported Fire Ant (Solenopsis invicta Buren).

    PubMed

    Zhang, Baizhong; Zhang, Lei; Cui, Rukun; Zeng, Xinnian; Gao, Xiwu

    2016-01-01

    Both exogenous and endogenous compounds can induce the expression of cytochrome P450 genes. The insect cytochrome P450 genes related to insecticide resistance are likely to be expressed as the "first line of defense" when challenged with insecticides. In this study, four cytochrome P450 genes, SinvCYP6B1, SinvCYP6A1, SinvCYP4C1, and SinvCYP4G15, were firstly isolated from workers of the red imported fire ant (Solenopsis invicta) through rapid amplification of cDNA ends (RACE) and sequenced. The fipronil induction profiles of the four cytochrome P450 genes and the two previously isolated CYP4AB1 and CYP4AB2 were characterized in workers. The results revealed that the expression of SinvCYP6B1, SinvCYP6A1, CYP4AB2, and SinvCYP4G15, increased 1.4-fold and 1.3-fold more than those of acetone control, respectively, after 24 h exposure to fipronil at concentrations of 0.25 μg mL-1 (median lethal dose) and 0.56 μg mL-1 (90% lethal dose), while no significant induction of the expression of CYP4AB1 and SinvCYP4C1 was detected. Among these genes, SinvCYP6B1 was the most significantly induced, and its maximum expression was 3.6-fold higher than that in acetone control. These results might suggest that multiple cytochrome P450 genes are co-up-regulated in workers of the fire ant through induction mechanism when challenged with fipronil. These findings indicated that cytochrome P450 genes play an important role in the detoxification of insecticides and provide a theoretical basis for the mechanisms of insecticide metabolism in the fire ant. PMID:26982576

  8. Cloning and Expression of Multiple Cytochrome P450 Genes: Induction by Fipronil in Workers of the Red Imported Fire Ant (Solenopsis invicta Buren)

    PubMed Central

    Zhang, Baizhong; Zhang, Lei; Cui, Rukun; Zeng, Xinnian; Gao, Xiwu

    2016-01-01

    Both exogenous and endogenous compounds can induce the expression of cytochrome P450 genes. The insect cytochrome P450 genes related to insecticide resistance are likely to be expressed as the “first line of defense” when challenged with insecticides. In this study, four cytochrome P450 genes, SinvCYP6B1, SinvCYP6A1, SinvCYP4C1, and SinvCYP4G15, were firstly isolated from workers of the red imported fire ant (Solenopsis invicta) through rapid amplification of cDNA ends (RACE) and sequenced. The fipronil induction profiles of the four cytochrome P450 genes and the two previously isolated CYP4AB1 and CYP4AB2 were characterized in workers. The results revealed that the expression of SinvCYP6B1, SinvCYP6A1, CYP4AB2, and SinvCYP4G15, increased 1.4-fold and 1.3-fold more than those of acetone control, respectively, after 24 h exposure to fipronil at concentrations of 0.25 μg mL−1 (median lethal dose) and 0.56 μg mL−1 (90% lethal dose), while no significant induction of the expression of CYP4AB1 and SinvCYP4C1 was detected. Among these genes, SinvCYP6B1 was the most significantly induced, and its maximum expression was 3.6-fold higher than that in acetone control. These results might suggest that multiple cytochrome P450 genes are co-up-regulated in workers of the fire ant through induction mechanism when challenged with fipronil. These findings indicated that cytochrome P450 genes play an important role in the detoxification of insecticides and provide a theoretical basis for the mechanisms of insecticide metabolism in the fire ant. PMID:26982576

  9. Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

    PubMed Central

    Liu, Lin; Tan, Lin; He, Zhenxin

    2016-01-01

    Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was determined by methylation-specific polymerase chain reaction. Automated sequencing technology was used to sequence the amplified products in order to analyze the base methylation sites. mRNA expression levels were determined using real-time fluorescent quantitative polymerase chain reaction. Results: Among the 54 MM patients, the positive methylation rates of the P15, DAPK, and SOCS1 genes were 27.78%, 18.52%, and 16.67%, respectively. The methylation results were confirmed by sequencing. The positive methylation rates of the P15, DAPK, and SOCS1 genes showed no correlation with patient gender, age, typing, staging, and grouping (P>0.05). There was no significant difference in the mRNA expression levels of the P15, DAPK, and SOCS1 genes between the MM patient group and the control group (P>0.05). Conclusions: Aberrant methylation of the P15, DAPK, and SOCS1 genes exists in MM, and these genes may play certain roles in pathogenesis of MM. There was no significant difference in mRNA expression levels between the methylated group and the non-methylated group, suggesting that these genes are regulated by other mechanisms during their transcription. PMID:27635200

  10. Feature Selection and Classification of MAQC-II Breast Cancer and Multiple Myeloma Microarray Gene Expression Data

    PubMed Central

    Liu, Qingzhong; Sung, Andrew H.; Chen, Zhongxue; Liu, Jianzhong; Huang, Xudong; Deng, Youping

    2009-01-01

    Microarray data has a high dimension of variables but available datasets usually have only a small number of samples, thereby making the study of such datasets interesting and challenging. In the task of analyzing microarray data for the purpose of, e.g., predicting gene-disease association, feature selection is very important because it provides a way to handle the high dimensionality by exploiting information redundancy induced by associations among genetic markers. Judicious feature selection in microarray data analysis can result in significant reduction of cost while maintaining or improving the classification or prediction accuracy of learning machines that are employed to sort out the datasets. In this paper, we propose a gene selection method called Recursive Feature Addition (RFA), which combines supervised learning and statistical similarity measures. We compare our method with the following gene selection methods: Support Vector Machine Recursive Feature Elimination (SVMRFE)Leave-One-Out Calculation Sequential Forward Selection (LOOCSFS)Gradient based Leave-one-out Gene Selection (GLGS) To evaluate the performance of these gene selection methods, we employ several popular learning classifiers on the MicroArray Quality Control phase II on predictive modeling (MAQC-II) breast cancer dataset and the MAQC-II multiple myeloma dataset. Experimental results show that gene selection is strictly paired with learning classifier. Overall, our approach outperforms other compared methods. The biological functional analysis based on the MAQC-II breast cancer dataset convinced us to apply our method for phenotype prediction. Additionally, learning classifiers also play important roles in the classification of microarray data and our experimental results indicate that the Nearest Mean Scale Classifier (NMSC) is a good choice due to its prediction reliability and its stability across the three performance measurements: Testing accuracy, MCC values, and AUC errors. PMID

  11. [Prokaryotic expression of vp3 gene of Muscovy duck parvovirus, and its antiserum preparation for detection of virus multiplication].

    PubMed

    Huang, Yu; Zhu, Yumin; Dong, Shijuan; Yu, Ruisong; Zhang, Yuanshu; Li, Zhen

    2015-01-01

    New epidemic broke out in recent year which was suspected to be caused by variant Muscovy duck parvovirus (MDPV). For this reason, new MDPV detection methods are needed for the new virus strains. In this study, a pair of primers were designed according to the full-length genome of MDPV strain SAAS-SHNH, which were identified in 2012, and were used to amplify the vp3 gene of MDPV by polymerase chain reaction. After being sequenced, the vp3 gene was subcloned into the prokaryotic expression vector PET28a. The recombinant plasmid was transformed into E. coli BL21 and induced with IPTG. SDS-PAGE and Western blotting analysis showed the MDPV vp3 gene was successfully expressed. After being purified by Ni2+ affinity chromatography system, the recombinant protein was used as antigen to immunize rabbits to obtain antiserum. Western blotting analysis showed that the acquired antiserum could react specifically with VP3 protein of J3D6 strain and MDPV vaccine strain. The antiserum could also be used for detection of cultured MDPV from primary duck embryo fibroblasts by immune fluorescence assay (IFA). It could be concluded that the VP3 protein and its antibody prepared in the research could be used for detection of VP3 antiserum and antigen respectively.

  12. Multiple roles for UV RESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation.

    PubMed

    Morales, Luis O; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I; Wargent, Jason J; Sipari, Nina; Strid, Åke; Lindfors, Anders V; Tegelberg, Riitta; Aphalo, Pedro J

    2013-02-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280-315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315-400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.

  13. Multiple Sclerosis Risk Variant HLA-DRB1*1501 Associates with High Expression of DRB1 Gene in Different Human Populations

    PubMed Central

    Abad-Grau, María del Mar; Fedetz, María; Izquierdo, Guillermo; Lucas, Miguel; Fernández, Óscar; Ndagire, Dorothy; Catalá-Rabasa, Antonio; Ruiz, Agustín; Gayán, Javier; Delgado, Concepción; Arnal, Carmen

    2012-01-01

    The human leukocyte antigen (HLA) DRB1*1501 has been consistently associated with multiple sclerosis (MS) in nearly all populations tested. This points to a specific antigen presentation as the pathogenic mechanism though this does not fully explain the disease association. The identification of expression quantitative trait loci (eQTL) for genes in the HLA locus poses the question of the role of gene expression in MS susceptibility. We analyzed the eQTLs in the HLA region with respect to MS-associated HLA-variants obtained from genome-wide association studies (GWAS). We found that the Tag of DRB1*1501, rs3135388 A allele, correlated with high expression of DRB1, DRB5 and DQB1 genes in a Caucasian population. In quantitative terms, the MS-risk AA genotype carriers of rs3135388 were associated with 15.7-, 5.2- and 8.3-fold higher expression of DQB1, DRB5 and DRB1, respectively, than the non-risk GG carriers. The haplotype analysis of expression-associated variants in a Spanish MS cohort revealed that high expression of DRB1 and DQB1 alone did not contribute to the disease. However, in Caucasian, Asian and African American populations, the DRB1*1501 allele was always highly expressed. In other immune related diseases such as type 1 diabetes, inflammatory bowel disease, ulcerative colitis, asthma and IgA deficiency, the best GWAS-associated HLA SNPs were also eQTLs for different HLA Class II genes. Our data suggest that the DR/DQ expression levels, together with specific structural properties of alleles, seem to be the causal effect in MS and in other immunopathologies rather than specific antigen presentation alone. PMID:22253788

  14. Identification of multiple genes and their expression profiles in four strains of Oreochromis spp. in response to Streptococcus iniae.

    PubMed

    Wang, R; Chen, M; Li, C; Li, L-P; Gan, X; Huang, J; Lei, A-Y; Xu, Z-H; Liang, W-W

    2013-02-01

    Two subtractive complementary DNA libraries were constructed from Nile tilapia Oreochromis niloticus vaccinated with formalin-killed Streptococcus iniae cells, and a further two constructed from O. niloticus infected with S. iniae. Of the 68 distinct expressed sequence tag (EST) contigs and singletons, 45 and 13 EST shared high similarities with genes of known and unknown functions, respectively. Ten EST contigs and singletons had no significant similarity to any sequences. Five putative immune-relevant genes, β2m, α-ha, mmp9, pgrn and cxcr4, were selected for quantitative reverse-transcription polymerase chain reaction in four strains of Oreochromis spp.: genetically improved farmed tilapia (O. niloticus), Oreochromis aureus, O. niloticus and O. niloticus×O. aureus, with different disease resistance following infection with S. iniae. pgrn was up-regulated more significantly in disease-resistant strains than in the susceptible. α-ha was markedly down-regulated, and no significant differences in the expression level of β2m were detected. A negative correlation was observed between the expression of mmp9 and that of cxcr4. The results provide insight into the molecular response of O. niloticus to S. iniae infection. PMID:23398064

  15. Expression of Echmr gene from Eichhornia offers multiple stress tolerance to Cd sensitive Escherichia coli Δgsh mutants.

    PubMed

    Thapa, G; Das, D; Gunupuru, L R

    2016-09-01

    The detoxification of heavy metals frequently involves conjugation to glutathione prior to compartmentalization and eflux in higher plants. We have expressed a heavy metal stress responsive (Echmr) gene from water hyacinth, which conferred tolerance to Cd sensitive Escherichia coli Δgsh mutants against heavy metals and abiotic stresses. The recombinant E. coli Δgsh mutant cells showed better growth recovery and survival than control cells under Cd (200 μM), Pb(200 μM), heat shock (50 °C), cold stress at 4 °C for 4 h, and UV-B (20 min) exposure. The enhanced expression of Echmr gene revealed by northern analysis during above stresses further advocates its role in multi-stress tolerance. Heterologous expression of EcHMR from Eichhornia rescued Cd(2+) sensitive E. coli mutants from Cd(2+) toxicity and induced better recovery post abiotic stresses. This may suggests a possible role of Echmr in Cd(II) and desiccation tolerance in plants for enhanced stress response. PMID:27457806

  16. A composite enhancer regulates p63 gene expression in epidermal morphogenesis and in keratinocyte differentiation by multiple mechanisms

    PubMed Central

    Antonini, Dario; Sirico, Anna; Aberdam, Edith; Ambrosio, Raffaele; Campanile, Carmen; Fagoonee, Sharmila; Altruda, Fiorella; Aberdam, Daniel; Brissette, Janice L.; Missero, Caterina

    2015-01-01

    p63 is a crucial regulator of epidermal development, but its transcriptional control has remained elusive. Here, we report the identification of a long-range enhancer (p63LRE) that is composed of two evolutionary conserved modules (C38 and C40), acting in concert to control tissue- and layer-specific expression of the p63 gene. Both modules are in an open and active chromatin state in human and mouse keratinocytes and in embryonic epidermis, and are strongly bound by p63. p63LRE activity is dependent on p63 expression in embryonic skin, and also in the commitment of human induced pluripotent stem cells toward an epithelial cell fate. A search for other transcription factors involved in p63LRE regulation revealed that the CAAT enhancer binding proteins Cebpa and Cebpb and the POU domain-containing protein Pou3f1 repress p63 expression during keratinocyte differentiation by binding the p63LRE enhancer. Collectively, our data indicate that p63LRE is composed of additive and partly redundant enhancer modules that act to direct robust p63 expression selectively in the basal layer of the epidermis. PMID:25567987

  17. Epigenetics and gene expression.

    PubMed

    Gibney, E R; Nolan, C M

    2010-07-01

    Transcription, translation and subsequent protein modification represent the transfer of genetic information from the archival copy of DNA to the short-lived messenger RNA, usually with subsequent production of protein. Although all cells in an organism contain essentially the same DNA, cell types and functions differ because of qualitative and quantitative differences in their gene expression. Thus, control of gene expression is at the heart of differentiation and development. Epigenetic processes, including DNA methylation, histone modification and various RNA-mediated processes, are thought to influence gene expression chiefly at the level of transcription; however, other steps in the process (for example, translation) may also be regulated epigenetically. The following paper will outline the role epigenetics is believed to have in influencing gene expression.

  18. Identification and expression profile of multiple genes in channel catfish fry 10 min after modified live Flavobacterium columnare vaccination.

    PubMed

    Pridgeon, Julia W; Klesius, Phillip H

    2010-11-15

    Using PCR-select subtractive cDNA hybridization technique, 32 expressed sequence tags (ESTs) were isolated from 96 clones of a channel catfish (Ictalurus punctatus) fry subtractive library 10min post-vaccination with a modified live Flavobacterium columnare vaccine. The transcription levels of the 32 ESTs in response to F. columnare vaccination were then evaluated by quantitative PCR (QPCR). Of the 32 ESTs, 28 were upregulated in at least one vaccinated fish. Of the 28 upregulated ESTs, 12 were consistently induced at least 2-fold higher in vaccinated fish compared to unvaccinated control fish. Of the 12 upregulated genes, three (triglyceride lipase, PIKK family atypical protein kinase, and CCR4-NOT transcription complex subunit 1) were consistently upregulated greater than 3-fold. The 12 consistently upregulated genes also included CD59, polymerase (RNA) I polypeptide C, pyrophosphatase (inorganic) 1, mannose-P-dolichol utilization defect 1, nascent polypeptide-associated complex subunit alpha, hemoglobin-beta, fetuin-B, glyoxalase domain containing 4, and putative histone H3. The 28 upregulated ESTs represent genes with putative functions in the following five major categories: (1) immune response (46%); (2) signal transduction (21%); (3) transcriptional regulation (11%); (4) cell maintenance (11%); and (5) unknown (11%).

  19. The Effect of Vitamin A Supplementation on FoxP3 and TGF-β Gene Expression in Avonex-Treated Multiple Sclerosis Patients.

    PubMed

    Saboor-Yaraghi, Ali Akbar; Harirchian, Mohammad Hossein; Mohammadzadeh Honarvar, Niyaz; Bitarafan, Sama; Abdolahi, Mina; Siassi, Feridoun; Salehi, Eisa; Sahraian, Mohammad Ali; Eshraghian, Mohammad Reza; Roostaei, Tina; Koohdani, Fariba

    2015-07-01

    Multiple sclerosis (MS) is an autoinflammatory condition of the central nervous system with impaired T helper (Th)17 and regulatory T cell (Treg) balance that is involved in disease immunopathogenesis. The vitamin A active metabolite, retinoic acid, can re-establish this imbalance through the modulation of gene expression of specific nuclear receptors including Forkhead box P3 (FoxP3). At present, few data exist on the impact of vitamin A supplementation on T cell balance. This study reports the results of a clinical trial, over a 6-month period, of 36 relapsing-remitting MS (RRMS) patients that received vitamin A (25,000 IU retinyl palmitate) or placebo (one capsule of placebo per day). Peripheral blood mononuclear cells were isolated from patients, and the expression of FoxP3 and transforming growth factor (TGF)-β gene expression was measured using real-time PCR at the beginning and end of the study. The results of this study showed that vitamin A upregulated TGF-β and FoxP3 gene expression. Therefore, vitamin A supplementation can be considered as a new approach in MS prevention and treatment. PMID:25985851

  20. Dynamics of multiple lin gene expression in Sphingomonas paucimobilis B90A in response to different hexachlorocyclohexane isomers.

    PubMed

    Suar, Mrutyunjay; van der Meer, Jan Roelof; Lawlor, Kirsten; Holliger, Christof; Lal, Rup

    2004-11-01

    Sphingomonas paucimobilis B90A is able to degrade the alpha-, beta-, gamma-, and delta-isomers of hexachlorocyclohexane (HCH). It contains the genes linA, linB, linC, linD, linE, and linR, which have been implicated in HCH degradation. In this study, dynamic expression of the lin genes was measured in chemostat-grown S. paucimobilis B90A by RNA dot blot hybridization and real-time reverse transcriptase PCR upon exposure to a pulse of different HCH isomers. Irrespective of the addition of HCH, linA, linB, and linC were all expressed constitutively. In contrast, linD and linE were induced with alpha-HCH (2 mg/liter) and gamma-HCH (7 mg/liter). A sharp increase in mRNA levels for linD and linE was observed from 10 to 45 min after the addition of alpha- or gamma-HCH. Induction of linD and linE was not detectable upon the addition of 0.7 mg of gamma-HCH per liter, although the compound was degraded by the cells. The addition of beta-HCH (5 mg/liter) or delta-HCH (20 mg/liter) did not lead to linE and linD induction, despite the fact that 50% of the compounds were degraded. This suggests that degradation of beta- and delta-HCH proceeds by a different pathway than that of alpha- and gamma-HCH.

  1. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  2. The effect of vitamin A supplementation on retinoic acid-related orphan receptor γt (RORγt) and interleukin-17 (IL-17) gene expression in Avonex-treated multiple sclerotic patients.

    PubMed

    Mohammadzadeh Honarvar, Niyaz; Harirchian, Mohammad Hossein; Koohdani, Fariba; Siassi, Feridoun; Abdolahi, Mina; Bitarafan, Sama; Salehi, Eisa; Sahraian, Mohammad Ali; Eshraghian, Mohammad Reza; Saboor-Yarghi, Ali Akbar

    2013-11-01

    The aim of this study was to investigate the role of vitamin A on RORγt and IL-17 gene expression in multiple sclerotic patients. Patients in the vitamin A group received 25,000 IU retinyl palmitate per day, while patients in the placebo group took one capsule of placebo per day for 6 months. Gene expression was measured by real-time PCR at the first and end of the study. The results of this study show that vitamin A downregulates IL-17 and RORγt gene expression. No changes in gene expression occurred in the placebo group. PMID:23868508

  3. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  4. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    PubMed

    Harrop, Thomas W R; Sztal, Tamar; Lumb, Christopher; Good, Robert T; Daborn, Phillip J; Batterham, Philip; Chung, Henry

    2014-01-01

    Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  5. Evolutionary Changes in Gene Expression, Coding Sequence and Copy-Number at the Cyp6g1 Locus Contribute to Resistance to Multiple Insecticides in Drosophila

    PubMed Central

    Harrop, Thomas W. R.; Sztal, Tamar; Lumb, Christopher; Good, Robert T.; Daborn, Phillip J.; Batterham, Philip; Chung, Henry

    2014-01-01

    Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster–D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species. PMID:24416303

  6. Molecular cloning, characterization and expression profiles of multiple leptin genes and a leptin receptor gene in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Zhang, Huixian; Chen, Huapu; Zhang, Yong; Li, Shuisheng; Lu, Danqi; Zhang, Haifa; Meng, Zining; Liu, Xiaochun; Lin, Haoran

    2013-01-15

    Leptin plays key roles in body weight regulation, energy metabolism, food intake, reproduction and immunity in mammals. However, its function in teleosts is still unclear. In the present study, two leptin genes (gLepA and gLepB) and one leptin receptor gene (gLepR) were cloned and characterized in orange-spotted grouper (Epinephelus coioides). The cDNAs of gLepA and gLepB were 671 bp and 684 bp in length, encoding for proteins of 161 amino acid (aa) and 158 aa, respectively. The three-dimensional (3D) structures modeling of gLepA and gLepB showed strong conservation of tertiary structure with that of other vertebrates. The total length of gLepR cDNA was 4242 bp, encoding a protein of 1169 aa which contained all functionally important domains conserved among vertebrate LEPR. Tissue distribution analysis showed that gLepA was highly expressed in cerebellum, liver and ovary, while gLepB mRNA abundantly in the brain regions, as well as in the ovary with some extend. The gLepR was mainly expressed in kidney, head kidney and most of brain regions. Analysis of expression profiles of gLep and gLepR genes during the embryonic stages showed that high expression of gLepR was observed in the brain vesicle stage, while neither gLepA nor gLepB mRNA was detected during different embryonic stages. Finally, fasting and refeeding experiments were carried out to investigate the possible function of leptin genes in food intake and energy metabolism, and the results showed that a significant increase of gLepA expression in the liver was induced by food deprivation in both short-term (7 days) and long-term (3 weeks) fasting and gLepA mRNA upregulation was eliminated after refeeding, while gLepB wasn't detected in the liver of grouper during fasting. No significant differences in hypothalamic leptin and leptin receptor expression were found during short-term fasting and refeeding. Hepatic expression of gLepA mRNA increased significantly 9h after a single meal. These results suggested g

  7. Gene structure and expression

    SciTech Connect

    Hawkins, J. )

    1990-01-01

    This book describes the structure of genes in molecular terms and summarizes present knowledge about how their activity is regulated. It covers a range of topics, including a review of the structure and replication of DNA, transcription and translation, prokaryotic and eukaryotic gene organization and expression, retroviruses and oncogenes. The book also includes a chapter on the methodology of DNA manipulation including sections on site-directed mutagenesis, the polymerase chain reaction, reporter genes and restriction fragment length polymorphisms. The hemoglobin gene system and the genetics of the proteins of the immune system are presented in the latter half of the book to show the structure and expression of the most well-studied systems in higher eukaryotes. The final chapter reviews the differences between prokaryotic and the eukaryotic genomes.

  8. Tissue-specific expression of the bovine aromatase-encoding gene uses multiple transcriptional start sites and alternative first exons.

    PubMed

    Fürbass, R; Kalbe, C; Vanselow, J

    1997-07-01

    Here we report on the genomic structure of the bovine aromatase cytochrome P450-encoding gene (Cyp19) and its tissue-specific transcript variants. The gene comprises at least 14 exons (1.1, 1.2a, 1.2b, 1.3,1.4, and 2-10) spanning more than 56 kilobases of genomic DNA. The coding area is confined to exons 2-10. Transcriptional start sites of Cyp19 were examined in granulosa cells, placenta, testis, adrenal gland, and brain, employing 5'-RACE (rapid amplification of complementary DNA ends) and primer extension. The analysis of 5'-RACE clones revealed six Cyp19 transcript variants that were different within their 5'-untranslated regions (5'-UTR). Yet, the coding region was identical in all clones. Although two of these 5'-UTR (the first 152 nucleotides of exon 2 and exon 1.4) are conserved among different species, four others (exons 1.1, 1.2a, 1.2b, and 1.3) did not show sequence homology to any other species. Transcription from exons 1.1 and 2 starts at several adjacent sites. In granulosa cells and placenta, but not in brain, a fraction of transcripts starting with exon 1.2a contains an additional untranslated exon, 1.2b, due to alternative splicing. Transcript variants comprising exon 1.1, 1.2a, 1.2b, or 1.3 were mainly found in the placenta, those with the 5'-UTR of exon 2 were predominant in granulosa cells, and transcripts with exon 1.4 prevailed in the brain. Estimates of Cyp19 transcript concentrations in six different tissues revealed high levels in granulosa cells and placenta, intermediate levels in testis and brain, and low levels in adrenal gland and liver. Our experiments demonstrate that six transcript variants of the bovine Cyp19 gene, including 9-11 exons, are expressed with tissue-specific preferences. These transcripts are presumably generated using five different promoter regions and tissue-specific alternative splicing. PMID:9202222

  9. Multiple viral mutations rather than host factors cause defective measles virus gene expression in a subacute sclerosing panencephalitis cell line.

    PubMed Central

    Cattaneo, R; Schmid, A; Billeter, M A; Sheppard, R D; Udem, S A

    1988-01-01

    A measles virus (MV) genome originally derived from brain cells of a subacute sclerosing panencephalitis patient expressed in IP-3-Ca cells an unstable MV matrix protein and was unable to produce virus particles. Transfection of this MV genome into other cell lines did not relieve these defects, showing that they are ultimately encoded by viral mutations. However, these defects were partially relieved in a weakly infectious virus which emerged from IP-3-Ca cells and which produced a matrix protein of intermediate stability. The sequences of several cDNAs related to the unstable and intermediately stable matrix proteins showed many differences in comparison with a stable matrix protein sequence and even appreciable heterogeneity among themselves. Nevertheless, partial restoration of matrix protein stability could be ascribed to a single additional amino acid change. From an examination of additional genes, we estimated that, on average, each MV genome in IP-3-Ca cells differs from the others in 30 to 40 of its 16,000 bases. The role of extreme variability of RNA virus genomes in persistent viral infections is discussed in the context of the pathogenesis of subacute sclerosing panencephalitis and of other human diseases of suspected viral etiology. Images PMID:3346948

  10. Integrated analysis of microRNAs, transcription factors and target genes expression discloses a specific molecular architecture of hyperdiploid multiple myeloma

    PubMed Central

    Caracciolo, Daniele; Agnelli, Luca; Neri, Antonino; Walker, Brian A.; Morgan, Gareth J.; Cannataro, Mario

    2015-01-01

    Multiple Myeloma (MM) is a malignancy characterized by the hyperdiploid (HD-MM) and the non-hyperdiploid (nHD-MM) subtypes. To shed light within the molecular architecture of these subtypes, we used a novel integromics approach. By annotated MM patient mRNA/microRNA (miRNA) datasets, we investigated mRNAs and miRNAs profiles with relation to changes in transcriptional regulators expression. We found that HD-MM displays specific gene and miRNA expression profiles, involving the Signal Transducer and Activator of Transcription (STAT)3 pathway as well as the Transforming Growth Factor–beta (TGFβ) and the transcription regulator Nuclear Protein-1 (NUPR1). Our data define specific molecular features of HD-MM that may translate in the identification of novel relevant druggable targets. PMID:26056083

  11. Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression

    PubMed Central

    Popham, Holly J. R.; Gould, Fred; Adang, Michael J.; Jurat-Fuentes, Juan Luis

    2015-01-01

    Heliothine pests such as the tobacco budworm, Heliothis virescens (F.), pose a significant threat to production of a variety of crops and ornamental plants and are models for developmental and physiological studies. The efforts to develop new control measures for H. virescens, as well as its use as a relevant biological model, are hampered by a lack of molecular resources. The present work demonstrates the utility of next-generation sequencing technologies for rapid molecular resource generation from this species for which lacks a sequenced genome. In order to amass a de novo transcriptome for this moth, transcript sequences generated from Illumina, Roche 454, and Sanger sequencing platforms were merged into a single de novo transcriptome assembly. This pooling strategy allowed a thorough sampling of transcripts produced under diverse environmental conditions, developmental stages, tissues, and infections with entomopathogens used for biological control, to provide the most complete transcriptome to date for this species. Over 138 million reads from the three platforms were assembled into the final set of 63,648 contigs. Of these, 29,978 had significant BLAST scores indicating orthologous relationships to transcripts of other insect species, with the top-hit species being the monarch butterfly (Danaus plexippus) and silkworm (Bombyx mori). Among identified H. virescens orthologs were immune effectors, signal transduction pathways, olfactory receptors, hormone biosynthetic pathways, peptide hormones and their receptors, digestive enzymes, and insecticide resistance enzymes. As an example, we demonstrate the utility of this transcriptomic resource to study gene expression profiling of larval midguts and detect transcripts of putative Bacillus thuringiensis (Bt) Cry toxin receptors. The substantial molecular resources described in this study will facilitate development of H. virescens as a relevant biological model for functional genomics and for new biological

  12. Generation of a Transcriptome in a Model Lepidopteran Pest, Heliothis virescens, Using Multiple Sequencing Strategies for Profiling Midgut Gene Expression.

    PubMed

    Perera, Omaththage P; Shelby, Kent S; Popham, Holly J R; Gould, Fred; Adang, Michael J; Jurat-Fuentes, Juan Luis

    2015-01-01

    Heliothine pests such as the tobacco budworm, Heliothis virescens (F.), pose a significant threat to production of a variety of crops and ornamental plants and are models for developmental and physiological studies. The efforts to develop new control measures for H. virescens, as well as its use as a relevant biological model, are hampered by a lack of molecular resources. The present work demonstrates the utility of next-generation sequencing technologies for rapid molecular resource generation from this species for which lacks a sequenced genome. In order to amass a de novo transcriptome for this moth, transcript sequences generated from Illumina, Roche 454, and Sanger sequencing platforms were merged into a single de novo transcriptome assembly. This pooling strategy allowed a thorough sampling of transcripts produced under diverse environmental conditions, developmental stages, tissues, and infections with entomopathogens used for biological control, to provide the most complete transcriptome to date for this species. Over 138 million reads from the three platforms were assembled into the final set of 63,648 contigs. Of these, 29,978 had significant BLAST scores indicating orthologous relationships to transcripts of other insect species, with the top-hit species being the monarch butterfly (Danaus plexippus) and silkworm (Bombyx mori). Among identified H. virescens orthologs were immune effectors, signal transduction pathways, olfactory receptors, hormone biosynthetic pathways, peptide hormones and their receptors, digestive enzymes, and insecticide resistance enzymes. As an example, we demonstrate the utility of this transcriptomic resource to study gene expression profiling of larval midguts and detect transcripts of putative Bacillus thuringiensis (Bt) Cry toxin receptors. The substantial molecular resources described in this study will facilitate development of H. virescens as a relevant biological model for functional genomics and for new biological

  13. Expression of multiple somatostatin receptor genes in AtT-20 cells. Evidence for a novel somatostatin-28 selective receptor subtype.

    PubMed

    Patel, Y C; Panetta, R; Escher, E; Greenwood, M; Srikant, C B

    1994-01-14

    The pattern of expression of somatostatin receptor (SSTR) genes and gene products in AtT-20 cells was characterized in an attempt to explain the SST-28 binding selectivity that typifies these cells. AtT-20 cells expressed multiple SSTR mRNAs. Paradoxically, this included mRNA for three of the four SST-14 selective receptors: SSTR2 ( +), SSTR1 (+), SSTR4 (+). The SST-28 selective SSTR5 was expressed as a 3.8-kilobase (kb) transcript of relatively low abundance (+) in contrast to normal mouse pituitary which displayed high levels ( ) of a 2.4-kb SSTR5 mRNA. Immunoblot analysis of solubilized membranes with an antipeptide SSTR2 antibody revealed a single SSTR2 protein of 72 +/- 2 kDa. Preincubation of AtT-20 cell membranes with SSTR2 antibody reduced 125I-[Leu8,D-Trp22,Tyr25]SST-28 binding sites by 38%. Residual binding sites exhibited a 4.9-fold increase in affinity for SST-28, a 2.6-fold decrease in affinity for SST-14, and an SST-28:SST-14 potency ratio of 40:1 compared with a potency ratio of 3.5:1 in control membranes. These results demonstrate the expression of four SSTR genes in AtT-20 cells of which SSTR2 predominates. Blockade of SSTR2 with antibody exposes high affinity SST-28 selective sites with comparable binding characteristics to those reported for cloned SSTR5. These SST-28 binding sites may arise from a SSTR5 variant encoded by a high molecular weight 3.8-kb transcript or more likely from another as yet undiscovered member of the SST-28 selective SSTR subfamily.

  14. Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha.

    PubMed

    Klabunde, J; Diesel, A; Waschk, D; Gellissen, G; Hollenberg, C P; Suckow, M

    2002-05-01

    We have investigated the methylotrophic yeast Hansenula polymorpha as a host for the co-integration and expression of multiple heterologous genes using an rDNA integration approach. The ribosomal DNA (rDNA) of H. polymorpha was found to consist of a single rDNA cluster of about 50-60 repeats of an 8-kb unit located on chromosome II. A 2.4-kb segment of H. polymorpha rDNA encompassing parts of the 25S, the complete 5S and the non-transcribed spacer region between 25S and 18S rDNA was isolated and inserted into conventional integrative H. polymorpha plasmids harboring the Saccharomyces- cerevisiae-derived URA3 gene for selection. These rDNA plasmids integrated homologously into the rDNA repeats of a H. polymorpha (odc1) host as several independent clusters. Anticipating that this mode of multiple-cluster integration could be used for the simultaneous integration of several distinct rDNA plasmids, the host strain was co-transformed with a mixture of up to three different plasmids, all bearing the same URA3 selection marker. Transformations indeed resulted in mitotically stable strains harboring one, two, or all three plasmids integrated into the rDNA. The overall copy number of the plasmids integrated did not exceed the number of rDNA repeats present in the untransformed host strain, irrespective of the number of different plasmids involved. Strains harboring different plasmids co-expressed the introduced genes, resulting in functional proteins. Thus, this approach provides a new and attractive tool for the rapid generation of recombinant strains that simultaneously co-produce several proteins in desired stoichiometric ratios. PMID:12021801

  15. Expression of Multiple Resistance Genes Enhances Tolerance to Environmental Stressors in Transgenic Poplar (Populus × euramericana ‘Guariento’)

    PubMed Central

    Su, Xiaohua; Chu, Yanguang; Li, Huan; Hou, Yingjie; Zhang, Bingyu; Huang, Qinjun; Hu, Zanmin; Huang, Rongfeng; Tian, Yingchuan

    2011-01-01

    Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana ‘Guariento’) harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional

  16. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento').

    PubMed

    Su, Xiaohua; Chu, Yanguang; Li, Huan; Hou, Yingjie; Zhang, Bingyu; Huang, Qinjun; Hu, Zanmin; Huang, Rongfeng; Tian, Yingchuan

    2011-01-01

    Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento') harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional

  17. Differential gene expression in Neurospora crassa cell types: heterogeneity and multiple copies of rRNA genes. Annual progress report, July 1981-June 1982

    SciTech Connect

    Dutta, S.K.

    1982-01-01

    The significant results obtained were as follows: (I) Multiple copies of isolated rRNA genes from N. crassa were tested for heterogeneity by rRNA: rDNA reassociation kinetics. More than 90% of rDNA copies were identical. The possible heterogeneity of a small fraction of rDNAs could not be attributed to inclusion of any tDNA sequences. (II) Two approaches to study gross differences between rRNA genes from N. crassa cell types-conidia, germinated conidia, and mycelia were undertaken. No difference was seen in either the restriction patterns nor the autoradiographs. Either gross differences between rDNAS of N. crassa cell types were not present or they were not detected by these two approaches. (III) Using similar DNA restriction analysis procedures, differences between closely related heterothallic and homothallic species of Neurospora were detected. (IV) Successful sequencing of 317 bases of the N. crassa slime mutant pMF2 clone which includes the 5.8S rDNA and it's flanking internal spacer regions was achieved. (ERB)

  18. Circular RNA of the human sphingomyelin synthase 1 gene: Multiple splice variants, evolutionary conservatism and expression in different tissues

    PubMed Central

    Filippenkov, Ivan B; Sudarkina, Olga Yu; Limborska, Svetlana A; Dergunova, Lyudmila V

    2015-01-01

    The human sphingomyelin synthase 1 gene (SGMS1) encodes an essential enzyme that is involved in the synthesis of sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Among the products of SGMS1, we found new transcripts, circular RNAs (circRNAs), that contain sequences of the gene's 5′ untranslated region (5′UTR). Some of them include the gene's coding region and fragments of introns. An analysis of the abundance of circRNAs in human tissues showed that the largest transcripts were predominantly found in different parts of the brain. circRNAs of rat and mouse sphingomyelin synthase 1 orthologous genes were detected and are highly similar to the human SGMS1 gene transcripts. A quantitative analysis of the abundance of such transcripts also revealed their elevated amount in the brain. A computational analysis of sequences of human circRNAs showed their high potential of binding microRNAs (miRNAs), including the miRNAs that form complexes with Ago proteins and the mRNA of SGMS1. We assume that the circRNAs identified here participate in the regulation of the function of the SGMS1 gene in the brain. PMID:26274505

  19. Dose-dense and less dose-intense Total Therapy 5 for gene expression profiling-defined high-risk multiple myeloma.

    PubMed

    Jethava, Y; Mitchell, A; Zangari, M; Waheed, S; Schinke, C; Thanendrarajan, S; Sawyer, J; Alapat, D; Tian, E; Stein, C; Khan, R; Heuck, C J; Petty, N; Avery, D; Steward, D; Smith, R; Bailey, C; Epstein, J; Yaccoby, S; Hoering, A; Crowley, J; Morgan, G; Barlogie, B; van Rhee, F

    2016-01-01

    Multiple myeloma (MM) is a heterogeneous disease with high-risk patients progressing rapidly despite treatment. Various definitions of high-risk MM are used and we reported that gene expression profile (GEP)-defined high risk was a major predictor of relapse. In spite of our best efforts, the majority of GEP70 high-risk patients relapse and we have noted higher relapse rates during drug-free intervals. This prompted us to explore the concept of less intense drug dosing with shorter intervals between courses with the aim of preventing inter-course relapse. Here we report the outcome of the Total Therapy 5 trial, where this concept was tested. This regimen effectively reduced early mortality and relapse but failed to improve progression-free survival and overall survival due to relapse early during maintenance. PMID:27471869

  20. Dose-dense and less dose-intense Total Therapy 5 for gene expression profiling-defined high-risk multiple myeloma

    PubMed Central

    Jethava, Y; Mitchell, A; Zangari, M; Waheed, S; Schinke, C; Thanendrarajan, S; Sawyer, J; Alapat, D; Tian, E; Stein, C; Khan, R; Heuck, C J; Petty, N; Avery, D; Steward, D; Smith, R; Bailey, C; Epstein, J; Yaccoby, S; Hoering, A; Crowley, J; Morgan, G; Barlogie, B; van Rhee, F

    2016-01-01

    Multiple myeloma (MM) is a heterogeneous disease with high-risk patients progressing rapidly despite treatment. Various definitions of high-risk MM are used and we reported that gene expression profile (GEP)-defined high risk was a major predictor of relapse. In spite of our best efforts, the majority of GEP70 high-risk patients relapse and we have noted higher relapse rates during drug-free intervals. This prompted us to explore the concept of less intense drug dosing with shorter intervals between courses with the aim of preventing inter-course relapse. Here we report the outcome of the Total Therapy 5 trial, where this concept was tested. This regimen effectively reduced early mortality and relapse but failed to improve progression-free survival and overall survival due to relapse early during maintenance. PMID:27471869

  1. Production of Multiple Transgenic Yucatan Miniature Pigs Expressing Human Complement Regulatory Factors, Human CD55, CD59, and H-Transferase Genes

    PubMed Central

    Jang, Gun-Hyuk; Jeong, Yeun-Ik; Hwang, In-Sung; Jeong, Yeon-woo; Kim, Yu-Kyung; Shin, Taeyoung; Kim, Nam-Hyung; Hyun, Sang-Hwan; Jeung, Eui-Bae; Hwang, Woo-Suk

    2013-01-01

    The present study was conducted to generate transgenic pigs coexpressing human CD55, CD59, and H-transferase (HT) using an IRES-mediated polycistronic vector. The study focused on hyperacute rejection (HAR) when considering clinical xenotransplantation as an alternative source for human organ transplants. In total, 35 transgenic cloned piglets were produced by somatic cell nuclear transfer (SCNT) and were confirmed for genomic integration of the transgenes from umbilical cord samples by PCR analysis. Eighteen swine umbilical vein endothelial cells (SUVEC) were isolated from umbilical cord veins freshly obtained from the piglets. We observed a higher expression of transgenes in the transgenic SUVEC (Tg SUVEC) compared with the human umbilical vein endothelial cells (HUVEC). Among these genes, HT and hCD59 were expressed at a higher level in the tested Tg organs compared with non-Tg control organs, but there was no difference in hCD55 expression between them. The transgenes in various organs of the Tg clones revealed organ-specific and spatial expression patterns. Using from 0 to 50% human serum solutions, we performed human complement-mediated cytolysis assays. The results showed that, overall, the Tg SUVEC tested had greater survival rates than did the non-Tg SUVEC, and the Tg SUVEC with higher HT expression levels tended to have more down-regulated α-Gal epitope expression, resulting in greater protection against cytotoxicity. By contrast, several Tg SUVEC with low CD55 expression exhibited a decreased resistance response to cytolysis. These results indicated that the levels of HT expression were inversely correlated with the levels of α-Gal epitope expression and that the combined expression of hCD55, hCD59, and HT proteins in SUVECs markedly enhances a protective response to human serum-mediated cytolysis. Taken together, these results suggest that combining a polycistronic vector system with SCNT methods provides a fast and efficient alternative for the

  2. Zerumbone suppresses phorbol ester-induced expression of multiple scavenger receptor genes in THP-1 human monocytic cells.

    PubMed

    Eguchi, Ai; Kaneko, Yuki; Murakami, Akira; Ohigashi, Hajime

    2007-04-01

    Unregulated uptake of oxidized low-density lipoproteins (ox-LDL) via macrophage scavenger receptors (SRs), such as lectin-like ox-LDL receptor-1 (LOX-1), is a key event in atherosclerosis. In the present study, we used differentiated Caco-2 cells as a model of the human small intestine to evaluate the suppressive effects of 16 traditional food items selected from Okinawa on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced LOX-1 mRNA expression in THP-1 human monocyte-like cells. Three Zingiberaceae plants, Curcuma aromatica Salisbury, Curcuma longa L., and Zingiber zerumbet Smith, markedly suppressed that expression. When added to the apical sides of Caco-2 monolayers, zerumbone, a sesquiterpene from Z. zerumbet Smith, was found to permeate into the basolateral medium as an intact structure in a time-dependent manner. alpha-Humulene, a structural analog of zerumbone lacking the alpha,beta-unsaturated carbonyl group, did not suppress LOX-1 mRNA expression, indicating that its electrophilic moiety might play pivotal roles in its activities. Further, zerumbone attenuated the expression of SR-A, SR-PSOX, and CD36, but not that of CD68 or CLA-1, leading to a blockade of DiI-acLDL uptake, while it also inhibited the transcriptional activities of activator protein-1 and nuclear factor-kappaB. Together, our results indicate that zerumbone is a potential phytochemical for regulating atherosclerosis with reasonable action mechanisms.

  3. Requirement of multiple cis-acting elements in the human cytomegalovirus major immediate-early distal enhancer for viral gene expression and replication.

    PubMed

    Meier, Jeffery L; Keller, Michael J; McCoy, James J

    2002-01-01

    We have shown previously that the human cytomegalovirus (HCMV) major immediate-early (MIE) distal enhancer is needed for MIE promoter-dependent transcription and viral replication at low multiplicities of infection (MOI). To understand how this region works, we constructed and analyzed a series of HCMVs with various distal enhancer mutations. We show that the distal enhancer is composed of at least two parts that function independently to coordinately activate MIE promoter-dependent transcription and viral replication. One such part is contained in a 47-bp segment that has consensus binding sites for CREB/ATF, SP1, and YY1. At low MOI, these working parts likely function in cis to directly activate MIE gene expression, thus allowing viral replication to ensue. Three findings support the view that these working parts are likely cis-acting elements. (i) Deletion of either part of a bisegmented distal enhancer only slightly alters MIE gene transcription and viral replication. (ii) Reversing the distal enhancer's orientation largely preserves MIE gene transcription and viral replication. (iii) Placement of stop codons at -300 or -345 in all reading frames does not impair MIE gene transcription and viral replication. Lastly, we show that these working parts are dispensable at high MOI, partly because of compensatory stimulation of MIE promoter activity and viral replication that is induced by a virion-associated component(s) present at a high viral particle/cell ratio. We conclude that the distal enhancer is a complex multicomponent cis-acting region that is required to augment both MIE promoter-dependent transcription and HCMV replication.

  4. Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits.

    PubMed

    Wen, Zhifeng; Yang, Yazhou; Zhang, Jinjin; Wang, Xiping; Singer, Stacy; Liu, Zhongchi; Yang, Yingjun; Yan, Guohua; Liu, Zongrang

    2014-09-01

    Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co-existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer-promoter and promoter-promoter interactions in transgenic plants and demonstrated that three of four flower-specific enhancer/promoters were capable of distantly activating a pollen- and stigma-specific Pps promoter (fused to the cytotoxic DT-A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen- and carpel-specific DT-A expression, thus resulting in tissue ablation in an orientation-independent manner; this activation was completely abolished by the insertion of an enhancer-blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue-specific DT-A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant-derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue-specific engineering of multiple traits using a single-vector stacking approach. Therefore, our work highlights the importance of adopting enhancer-blocking insulators in transformation vectors to minimize promoter-promoter interactions. The practical and fundamental significance of these findings will be discussed.

  5. A BMP-FGF morphogen toggle switch drives the ultrasensitive expression of multiple genes in the developing forebrain.

    PubMed

    Srinivasan, Shyam; Hu, Jia Sheng; Currle, D Spencer; Fung, Ernest S; Hayes, Wayne B; Lander, Arthur D; Monuki, Edwin S

    2014-02-01

    Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) pathways interact to generate ultrasensitivity and borders in the dorsal telencephalon. BMP and FGF signaling manipulations in explants produced border defects suggestive of cross inhibition within single cells, which was confirmed in dissociated cultures. Using mathematical modeling, we designed experiments that ruled out alternative cross inhibition mechanisms and identified a cross-inhibitory positive feedback (CIPF) mechanism, or "toggle switch", which acts upstream of transcriptional targets in dorsal telencephalic cells. CIPF explained several cellular phenomena important for border formation such as threshold tuning, ultrasensitivity, and hysteresis. CIPF explicitly links graded morphogen signaling in the telencephalon to switch-like cellular responses and has the ability to form multiple borders and scale pattern to size. These benefits may apply to other developmental systems. PMID:24550718

  6. A BMP-FGF Morphogen Toggle Switch Drives the Ultrasensitive Expression of Multiple Genes in the Developing Forebrain

    PubMed Central

    Currle, D. Spencer; Fung, Ernest S.; Hayes, Wayne B.; Lander, Arthur D.; Monuki, Edwin S.

    2014-01-01

    Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) pathways interact to generate ultrasensitivity and borders in the dorsal telencephalon. BMP and FGF signaling manipulations in explants produced border defects suggestive of cross inhibition within single cells, which was confirmed in dissociated cultures. Using mathematical modeling, we designed experiments that ruled out alternative cross inhibition mechanisms and identified a cross-inhibitory positive feedback (CIPF) mechanism, or “toggle switch”, which acts upstream of transcriptional targets in dorsal telencephalic cells. CIPF explained several cellular phenomena important for border formation such as threshold tuning, ultrasensitivity, and hysteresis. CIPF explicitly links graded morphogen signaling in the telencephalon to switch-like cellular responses and has the ability to form multiple borders and scale pattern to size. These benefits may apply to other developmental systems. PMID:24550718

  7. Multiple rod–cone and cone–rod photoreceptor transmutations in snakes: Evidence from visual opsin gene expression

    USGS Publications Warehouse

    Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.

    2016-01-01

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  8. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.

    PubMed

    Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J

    2016-01-27

    In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.

  9. RNA Sequencing Identifies Multiple Fusion Transcripts, Differentially Expressed Genes, and Reduced Expression of Immune Function Genes in BRAF (V600E) Mutant vs BRAF Wild-Type Papillary Thyroid Carcinoma

    PubMed Central

    Chindris, Ana-Maria; Asmann, Yan W.; Casler, John D.; Serie, Daniel J.; Reddi, Honey V.; Cradic, Kendall W.; Rivera, Michael; Grebe, Stefan K.; Necela, Brian M.; Eberhardt, Norman L.; Carr, Jennifer M.; McIver, Bryan; Copland, John A.; Aubrey Thompson, E.

    2014-01-01

    Context: The BRAF V600E mutation (BRAF-MUT) confers an aggressive phenotype in papillary thyroid carcinoma, but unidentified additional genomic abnormalities may be required for full phenotypic expression. Objective: RNA sequencing (RNA-Seq) was performed to identify genes differentially expressed between BRAF-MUT and BRAF wild-type (BRAF-WT) tumors and to correlate changes to patient clinical status. Design: BRAF-MUT and BRAF-WT tumors were identified in patients with T1N0 and T2–3N1 tumors evaluated in a referral medical center. Gene expression levels were determined (RNA-Seq) and fusion transcripts were detected. Multiplexed capture/detection and digital counting of mRNA transcripts (nCounter, NanoString Technologies) validated RNA-Seq data for immune system-related genes. Patients: BRAF-MUT patients included nine women, three men; nine were TNM stage I and three were stage III. Three (25%) had tumor infiltrating lymphocytes. BRAF-WT included five women, three men; all were stage I, and five (62.5%) had tumor infiltrating lymphocytes. Results: RNA-Seq identified 560 of 13 085 genes differentially expressed between BRAF-MUT and BRAF-WT tumors. Approximately 10% of these genes were related to MetaCore immune function pathways; 51 were underexpressed in BRAF-MUT tumors, whereas 4 (HLAG, CXCL14, TIMP1, IL1RAP) were overexpressed. The four most differentially overexpressed immune genes in BRAF-WT tumors (IL1B; CCL19; CCL21; CXCR4) correlated with lymphocyte infiltration. nCounter confirmed the RNA-Seq expression level data. Eleven different high-confidence fusion transcripts were detected (four interchromosomal; seven intrachromosomal) in 13 of 20 tumors. All in-frame fusions were validated by RT-PCR. Conclusion: BRAF-MUT papillary thyroid cancers have reduced expression of immune/inflammatory response genes compared with BRAF-WT tumors and correlate with lymphocyte infiltration. In contrast, HLA-G and CXCL14 are overexpressed in BRAF-MUT tumors. Sixty-five percent

  10. PathMAPA: a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arabidopsis

    PubMed Central

    Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu

    2003-01-01

    Background To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. Results We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. Conclusion PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s). PMID:14604444

  11. Nonadditive gene expression in polyploids.

    PubMed

    Yoo, Mi-Jeong; Liu, Xiaoxian; Pires, J Chris; Soltis, Pamela S; Soltis, Douglas E

    2014-01-01

    Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome. PMID:25421600

  12. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  13. Structure, chromosome location, and expression of the mouse zinc finger gene Krox-20: multiple gene products and coregulation with the proto-oncogene c-fos.

    PubMed Central

    Chavrier, P; Janssen-Timmen, U; Mattéi, M G; Zerial, M; Bravo, R; Charnay, P

    1989-01-01

    We have analyzed the structure and the regulation of Krox-20, a mouse zinc finger-encoding gene which is transiently activated following serum stimulation of quiescent fibroblast cells in culture. The gene is localized on chromosome 10, band B5, in the mouse, and the homologous human gene also maps to chromosome 10 (region q21.1 to q22.1). Alternative splicing of the 5'-most intron of the Krox-20 gene gives rise to mRNAs encoding putative zinc finger proteins with different N termini. The first exon contains a sequence element with strong similarity to the c-fos proto-oncogene serum response element (SRE). This element can functionally substitute for the c-fos SRE, and it binds the same nuclear protein. It is probably responsible for the serum induction of Krox-20, possibly in combination with a weaker SRE located in the 5'-flanking region of the gene. Our findings suggest that c-fos, Krox-20, and a number of immediate-early serum response genes are coregulated and that the SRE and its cognate protein are essential components of this regulatory pathway. Images PMID:2496302

  14. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  15. Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature.

    PubMed

    Zarka, Daniel G; Vogel, Jonathan T; Cook, Daniel; Thomashow, Michael F

    2003-10-01

    The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4 degrees C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide.

  16. Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3′ ends

    PubMed Central

    Liu, Bo; Kearns, Daniel B.; Bechhofer, David H.

    2016-01-01

    Timely turnover of RNA is an important element in the control of bacterial gene expression, but relatively few specific targets of RNA turnover regulation are known. Deletion of the Bacillus subtilis pnpA gene, encoding the major 3′ exonuclease turnover enzyme, polynucleotide phosphorylase (PNPase), was shown previously to cause a motility defect correlated with a reduced level of the 32-gene fla/che flagellar biosynthesis operon transcript. fla/che operon transcript abundance has been shown to be inhibited by an excess of the small regulatory protein, SlrA, and here we find that slrA mRNA accumulated in the pnpA-deletion mutant. Mutation of slrA was epistatic to mutation of pnpA for the motility-related phenotype. Further, Rho-dependent termination was required for PNPase turnover of slrA mRNA. When the slrA gene was provided with a Rho-independent transcription terminator, gene regulation was no longer PNPase-dependent. Thus we show that the slrA transcript is a direct target of PNPase and that regulation of RNA turnover is a major determinant of motility gene expression. The interplay of specific transcription termination and mRNA decay mechanisms suggests selection for fine-tuning of gene expression. PMID:26857544

  17. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  18. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  19. Gene expression and fractionation resistance

    PubMed Central

    2014-01-01

    Background Previous work on whole genome doubling in plants established the importance of gene functional category in provoking or suppressing duplicate gene loss, or fractionation. Other studies, particularly in Paramecium have correlated levels of gene expression with vulnerability or resistance to duplicate loss. Results Here we analyze the simultaneous effect of function category and expression in two plant data sets, rosids and asterids. Conclusion We demonstrate function category and expression level have independent effects, though expression does not play the dominant role it does in Paramecium. PMID:25573431

  20. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-01-01

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  1. The number of genes changing expression after chronic exposure to code division multiple access or frequency DMA radiofrequency radiation does not exceed the false-positive rate.

    PubMed

    Whitehead, Timothy D; Moros, Eduardo G; Brownstein, Bernard H; Roti Roti, Joseph L

    2006-09-01

    Experiments with cultured C3H 10T 1/2 cells were performed to determine if exposure to cell phone radiofrequency (RF) radiations induce changes in gene expression. Following a 24 h exposure of 5 W/kg specific adsorption rate, RNA was extracted from the exposed and sham control cells for microarray analysis on Affymetrix U74Av2 Genechips. Cells exposed to 0.68 Gy of X-rays with a 4-h recovery were used as positive controls. The number of gene expression changes induced by RF radiation was not greater than the number of false positives expected based on a sham versus sham comparison. In contrast, the X-irradiated samples showed higher numbers of probe sets changing expression level than in the sham versus sham comparison.

  2. Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity

    PubMed Central

    Regnault, Béatrice; Osorio y Fortea, José; Miao, Dongmei; Eisenbarth, George; Melanitou, Evie

    2009-01-01

    Background Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting β cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process. Methods Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed. Results The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D. Conclusion Our data strongly suggest that the immune related mechanisms

  3. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli

    SciTech Connect

    Chaurasia, Neha; Mishra, Yogesh; Rai, Lal Chand

    2008-11-07

    Phytochelatin synthase (PCS) is involved in the synthesis of phytochelatins (PCs), plays role in heavy metal detoxification. The present study describes for first time the functional expression and characterization of pcs gene of Anabaena sp. PCC 7120 in Escherichia coli in terms of offering protection against heat, salt, carbofuron (pesticide), cadmium, copper, and UV-B stress. The involvement of pcs gene in tolerance to above abiotic stresses was investigated by cloning of pcs gene in expression vector pGEX-5X-2 and its transformation in E. coli BL21 (DE3). The E. coli cells transformed with pGEX-5X-pcs showed better growth than control cells (pGEX-5X-2) under temperature (47 deg. C), NaCl (6% w/v), carbofuron (0.025 mg ml{sup -1}), CdCl{sub 2} (4 mM), CuCl{sub 2} (1 mM), and UV-B (10 min) exposure. The enhanced expression of pcs gene revealed by RT-PCR analysis under above stresses at different time intervals further advocates its role in tolerance against above abiotic stresses.

  4. The hexA gene of Erwinia carotovora encodes a LysR homologue and regulates motility and the expression of multiple virulence determinants.

    PubMed

    Harris, S J; Shih, Y L; Bentley, S D; Salmond, G P

    1998-05-01

    We have identified a gene important for the regulation of exoenzyme virulence factor synthesis in the plant pathogen Erwinia carotovora ssp. carotovora (Ecc) and virulence and motility in Erwinia carotovora ssp. atroseptica (Eca). This gene, hexA (hyperproduction of exoenzymes), is a close relative of the Erwinia chrysanthemi (Echr) gene pecT and encodes a member of the LysR family of transcriptional regulators. hexA mutants in both Ecc and Eca produce abnormally high levels of the exoenzyme virulence factors pectate lyase, cellulase and protease. In addition, Eca hexA mutants show increased expression of the fliA and fliC genes and hypermotility. Consistent with a role as a global regulator, expression of hexA from even a low-copy plasmid can suppress exoenzyme production in Ecc and Eca and motility in Eca. Production of the quorum-sensing pheromone OHHL in Ecc hexA is higher throughout the growth curve compared with the wild-type strain. Overexpression of Ecc hexA also caused widespread effects in several strains of the opportunistic human pathogen, Serratia. Low-copy hexA expression resulted in repression of exoenzyme, pigment and antibiotic production and repression of the spreading phenotype. Finally, mutations in hexA were shown to increase Ecc or Eca virulence in planta.

  5. Regulation of Neuronal Gene Expression

    NASA Astrophysics Data System (ADS)

    Thiel, Gerald; Lietz, Michael; Leichter, Michael

    Humans as multicellular organisms contain a variety of different cell types where each cell population must fulfill a distinct function in the interest of the whole organism. The molecular basis for the variations in morphology, biochemistry, molecular biology, and function of the various cell types is the cell-type specific expression of genes. These genes encode proteins necessary for executing the specialized functions of each cell type within an organism. We describe here a regulatory mechanism for the expression of neuronal genes. The zinc finger protein REST binds to the regulatory region of many neuronal genes and represses neuronal gene expression in nonneuronal tissues. A negative regulatory mechanism, involving a transcriptional repressor, seems to play an important role in establishing the neuronal phenotype.

  6. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  7. RNA-Seq of Borrelia burgdorferi in Multiple Phases of Growth Reveals Insights into the Dynamics of Gene Expression, Transcriptome Architecture, and Noncoding RNAs

    PubMed Central

    Arnold, William K.; Savage, Christina R.; Brissette, Catherine A.; Seshu, Janakiram; Livny, Jonathan; Stevenson, Brian

    2016-01-01

    Borrelia burgdorferi, the agent of Lyme disease, differentially expresses numerous genes and proteins as it cycles between mammalian hosts and tick vectors. Insights on regulatory mechanisms have been provided by earlier studies that examined B. burgdorferi gene expression patterns during cultivation. However, prior studies examined bacteria at only a single time point of cultivation, providing only a snapshot of what is likely a dynamic transcriptional program driving B. burgdorferi adaptations to changes during culture growth phases. To address that concern, we performed RNA sequencing (RNA-Seq) analysis of B. burgdorferi cultures at early-exponential, mid-exponential, and early-stationary phases of growth. We found that expression of nearly 18% of annotated B. burgdorferi genes changed significantly during culture maturation. Moreover, genome-wide mapping of the B. burgdorferi transcriptome in different growth phases enabled insight on transcript boundaries, operon structures, and identified numerous putative non-coding RNAs. These RNA-Seq data are discussed and presented as a resource for the community of researchers seeking to better understand B. burgdorferi biology and pathogenesis. PMID:27706236

  8. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri.

    PubMed

    Horn, Patrick J; Liu, Jinjie; Cocuron, Jean-Christophe; McGlew, Kathleen; Thrower, Nicholas A; Larson, Matt; Lu, Chaofu; Alonso, Ana P; Ohlrogge, John

    2016-05-01

    Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed. A number of potential evolutionary adaptations within lipid metabolism that probably enhance HFA production and accumulation in Physaria fendleri, and, in their absence, limit accumulation in transgenic tissues were revealed. These adaptations occurred in at least 20 genes within several lipid pathways from the onset of fatty acid synthesis and its regulation to the assembly of triacylglycerols. Lipid genes of Physaria fendleri appear to have co-evolved through modulation of transcriptional abundances and alterations within protein sequences. Only a handful of genes showed evidence for sequence adaptation through gene duplication. Collectively, these evolutionary changes probably occurred to minimize deleterious effects of high HFA amounts and/or to enhance accumulation for physiological advantage. These results shed light on the evolution of pathways for novel fatty acid production in seeds, help explain some of the current limitations to accumulation of HFAs in transgenic plants, and may provide improved strategies for future engineering of their production.

  9. Apoptin induces apoptosis in nude mice allograft model of human bladder cancer by altering multiple bladder tumor-associated gene expression profiles.

    PubMed

    Wang, Chunhui; Wang, Wenju; Wang, Jiansong; Zhan, Hui; Jiang, Lihong; Yan, Ruping; Hou, Zongliu; Zhu, Huirong; Yu, Lirui; Shi, Yunqiang; Ding, Mingxia; Ke, Changxing

    2013-06-01

    Bladder cancer (BC) is one of the most common human malignancies that account for major death in the world. Apoptin that is derived from chicken anemia virus (CAV) has displayed tumor-specific cytotoxic activity in a variety of human carcinomas. However, the magical function of apoptin in bladder carcinoma cell lines has not been identified yet. In our study, we delivered apoptin into bladder-originating T24, EJ, and HCV29 cell lines by adenovirus system. The selective cytotoxic effect of apoptin was determined by cell viability assay, active caspase-3 measurement, and annexin V/PI double staining. Importantly, we have examined the differential expression patterns of tumor-associated genes including Ki67, C-erbB-2, Rb, and nm23 by flow cytometry and western blot in vitro. In an animal study, apoptin was infused into animal models by AAV system, and immunohistochemistry and quantitative real-time PCR (qRT-PCR) were employed to validate results in vivo. The results indicated that apoptin could selectively induce apoptosis in bladder tumorigenic cells coupled with tumor-specific nucleus accumulation in vitro. Interestingly, apoptin could downregulate expression levels of Ki67 and C-erbB-2 and upregulate the expression of Rb both in vitro and in vivo. Moreover, the animal models treated with AAV-apoptin have shown smaller tumor volumes and displayed better prognosis than controls. In conclusion, apoptin could selectively induce apoptosis in bladder tumor cells through altering expression profiles of tumor-associated genes.

  10. Multiple regulatory mechanisms of hepatocyte growth factor expression in malignant cells with a short poly(dA) sequence in the HGF gene promoter.

    PubMed

    Sakai, Kazuko; Takeda, Masayuki; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-01-01

    Hepatocyte growth factor (HGF) expression is a poor prognostic factor in various types of cancer. Expression levels of HGF have been reported to be regulated by shorter poly(dA) sequences in the promoter region. In the present study, the poly(dA) mononucleotide tract in various types of human cancer cell lines was examined and compared with the HGF expression levels in those cells. Short deoxyadenosine repeat sequences were detected in five of the 55 cell lines used in the present study. The H69, IM95, CCK-81, Sui73 and H28 cells exhibited a truncated poly(dA) sequence in which the number of poly(dA) repeats was reduced by ≥5 bp. Two of the cell lines exhibited high HGF expression, determined by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The CCK-81, Sui73 and H28 cells with shorter poly(dA) sequences exhibited low HGF expression. The cause of the suppression of HGF expression in the CCK-81, Sui73 and H28 cells was clarified by two approaches, suppression by methylation and single nucleotide polymorphisms in the HGF gene. Exposure to 5-Aza-dC, an inhibitor of DNA methyltransferase 1, induced an increased expression of HGF in the CCK-81 cells, but not in the other cells. Single-nucleotide polymorphism (SNP) rs72525097 in intron 1 was detected in the Sui73 and H28 cells. Taken together, it was found that the defect of poly(dA) in the HGF promoter was present in various types of cancer, including lung, stomach, colorectal, pancreas and mesothelioma. The present study proposes the negative regulation mechanisms by methylation and SNP in intron 1 of HGF for HGF expression in cancer cells with short poly(dA).

  11. Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation1[W][OA

    PubMed Central

    Morales, Luis O.; Brosché, Mikael; Vainonen, Julia; Jenkins, Gareth I.; Wargent, Jason J.; Sipari, Nina; Strid, Åke; Lindfors, Anders V.; Tegelberg, Riitta; Aphalo, Pedro J.

    2013-01-01

    Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV. PMID:23250626

  12. Identification and expression profile of multiple genes in the anterior kidney of channel catfish induced by modified live Edwardsiella ictaluri vaccination.

    PubMed

    Pridgeon, Julia W; Shoemaker, Craig A; Klesius, Phillip H

    2010-04-15

    Using PCR-select subtractive cDNA hybridization technique, 57 expressed sequence tags (ESTs) were isolated from 240 clones of a modified live Edwardsiella ictaluri vaccinated vs. sham-vaccinated channel catfish anterior kidney subtractive library. The transcription levels of the 57 ESTs in response to E. ictaluri vaccination were then evaluated by quantitative PCR (QPCR). Of the 57 ESTs, 43 were induced at least 2-fold higher in all three vaccinated fish compared to unvaccinated control fish. Of the 43 upregulated genes, five were consistently upregulated greater than 10-fold, including two highly upregulated (>20-fold) glycosyltransferase and Toll-like receptor 5. The transcriptional levels of GTPase 1, coatomer protein complex zeta 1, and type II arginine deiminase were consistently induced greater than 10-fold. MHC class I alpha chain and transposase were upregulated greater than 10-fold in two of the three vaccinated fish. The 43 upregulated genes also included 19 moderately upregulated (3-10-fold) and 17 slightly upregulated (2-3-fold). Our results suggest that subtractive cDNA hybridization and QPCR are powerful cost-effective techniques to identify differentially expressed genes in response to modified live E. ictaluri vaccination.

  13. Role of Na+, K+, Cl−, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato

    PubMed Central

    Almeida, Pedro; Feron, Richard; de Boer, Gert-Jan; de Boer, Albertus H.

    2014-01-01

    One of the major abiotic stresses affecting agriculture is soil salinity, which reduces crop yield and, consequently, revenue for farmers. Although tomato is an important agricultural species, elite varieties are poor at withstanding salinity stress. Thus, a feasible way of improving yield under conditions of salinity stress is to breed for improved salt tolerance. In this study, we analysed the physiological and genetic parameters of 23 tomato accessions in order to identify possible traits to be used by plant breeders to develop more tolerant tomato varieties. Although we observed a wide range of Na+ concentrations within the leaves, stems and roots, the maintenance of growth in the presence of 100 mM NaCl did not correlate with the exclusion or accumulation of Na+. Nor could we correlate the growth with accumulation of sugars and proline or with the expression of any gene involved in the homoeostasis of Na+ in the plant. However, several significant correlations between gene expression and Na+ accumulation were observed. For instance, Na+ concentrations both in the leaves and stems were positively correlated with HKT1;2 expression in the roots, and Na+ concentration measured in the roots was positively correlated with HKT1;1 expression also in the roots. Higher and lower Na+ accumulation in the roots and leaves were significantly correlated with higher NHX3 and NHX1 expression in the roots, respectively. These results suggest that, in tomato, for a particular level of tolerance to salinity, a complex relationship between Na+ concentration in the cells and tissue tolerance defines the salinity tolerance of individual tomato accessions. In tomato it is likely that tissue and salinity tolerance work independently, making tolerance to salinity depend on their relative effects rather than on one of these mechanisms alone. PMID:24996430

  14. Nutritional regulation of gene expression.

    PubMed

    Cousins, R J

    1999-01-25

    Genes are regulated by complex arrays of response elements that influence the rate of transcription. Nutrients and hormones either act directly to influence these rates or act indirectly through specialized signaling pathways. Metabolites of vitamins A and D, fatty acids, some sterols, and zinc are among the nutrients that influence transcription directly. Components of dietary fiber may influence gene expression indirectly through changes in hormonal signaling, mechanical stimuli, and metabolites produced by the intestinal microflora. In addition, consumption of water-soluble fibers may lead to changes in gene expression mediated through indirect mechanisms that influence transcription rates. In the large intestine, short-chain fatty acids, including butyric acid, are produced by microflora. Butyric acid can indirectly influence gene expression. Some sources of fiber limit nutrient absorption, particularly of trace elements. This could have direct or indirect effects on gene expression. Identification of genes in colonic epithelial cells that are differentially regulated by dietary fiber will be an important step toward understanding the role of dietary factors in colorectal cancer progression.

  15. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  16. Multiple sex pheromone genes are expressed in the abdominal glands of the smooth newt (Lissotriton vulgaris) and Montandon's Newt (L. montandoni) (Salamandridae).

    PubMed

    Artur, Osikowski; Wiesław, Babik; Paweł, Grzmil; Jacek M, Szymura

    2008-06-01

    The smooth newt (Lissotriton "Triturus" vulgaris) and Montandon's newt (L."T." montandoni) are sister species exhibiting pronounced differences in male secondary sexual traits but nevertheless hybridizing and producing fertile hybrids in nature. Since pheromonal communication is an important aspect of the reproductive biology of urodeles, structural differentiation of peptide pheromones and their receptors may contribute to incipient reproductive isolation. The aim of the study was the identification of genes encoding putative courtship pheromone precursors in two newt species and the reconstruction of phylogenetic relationships among them. Our analyses were based on cDNA obtained from the transcripts from the abdominal glands of male newts. We identified five unique cDNA sequences encoding the putative pheromone precursors in L. vulgaris and three additional unique sequences in L. montandoni. The results indicate that in the abdominal glands of Lissotriton newts more than one pheromone-encoding gene is expressed and that these loci form a gene family. Phylogenetic analysis indicates that the divergence of at least some of these genes predates the radiation of European newts.

  17. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development

    PubMed Central

    Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J.; Fraser, Jordie; Yuen, Macaire M.S.; Keeling, Christopher I.; Bohlmann, Jörg; Huber, Dezene P.W.

    2016-01-01

    Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome. PMID:27441109

  18. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development.

    PubMed

    Robert, Jeanne A; Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J; Fraser, Jordie; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2016-01-01

    Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period-early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.

  19. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development.

    PubMed

    Robert, Jeanne A; Bonnett, Tiffany; Pitt, Caitlin; Spooner, Luke J; Fraser, Jordie; Yuen, Macaire M S; Keeling, Christopher I; Bohlmann, Jörg; Huber, Dezene P W

    2016-01-01

    Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period-early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome. PMID:27441109

  20. Rat Models of Cardiovascular Disease Demonstrate Distinctive Pulmonary Gene Expressions for Vascular Response Genes: Impact of Ozone Exposure

    EPA Science Inventory

    Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...

  1. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  2. Zipf's Law in Gene Expression

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  3. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking.

  4. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  5. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  6. Inferring gene expression dynamics via functional regression analysis

    PubMed Central

    Müller, Hans-Georg; Chiou, Jeng-Min; Leng, Xiaoyan

    2008-01-01

    Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches. PMID:18226220

  7. Multiple Genes in a Single Host: Cost-Effective Production of Bacterial Laccase (cotA), Pectate Lyase (pel), and Endoxylanase (xyl) by Simultaneous Expression and Cloning in Single Vector in E. coli

    PubMed Central

    Kumar, Sandeep; Jain, Kavish Kumar; Bhardwaj, Kailash N.; Chakraborty, Subhojit; Kuhad, Ramesh Chander

    2015-01-01

    This study attempted to reduce the enzyme production cost for exploiting lignocellulosic materials by expression of multiple genes in a single host. Genes for bacterial laccase (CotA), pectate lyase (Pel) and endoxylanase (Xyl), which hold significance in lignocellulose degradation, were cloned in pETDuet-1 vector containing two independent cloning sites (MCS). CotA and xyl genes were cloned in MCS1 and MCS 2, respectively. Pel gene was cloned by inserting complete cassette (T7 promoter, ribosome binding site, pel gene, His tag and complete gene ORF) preceded by cotA open reading frame in the MCS1. IPTG induction of CPXpDuet-1 construct in E. coli BL21(DE3) resulted in expression of all three heterologous proteins of ~65 kDa (CotA), ~45 kDa (Pel) and ~25 kDa (Xyl), confirmed by SDS-PAGE and western blotting. Significant portions of the enzymes were also found in culture supernatant (~16, ~720 and ~370 IU/ml activities of CotA, Pel and Xyl, respectively). Culture media optimization resulted in 2, 3 and 7 fold increased secretion of recombinant CotA, Pel and Xyl, respectively. Bioreactor level optimization of the recombinant cocktail expression resulted in production of 19 g/L dry cell biomass at OD600nm 74 from 1 L induced culture after 15 h of cultivation, from which 9, 627 and 1090 IU/ml secretory enzyme activities of CotA, Xyl and Pel were obtained, respectively. The cocktail was also found to increase the saccharification of orange peel in comparison to the xylanase alone. Thus, simultaneous expression as well as extra cellular secretion of these enzymes as cocktail can reduce the enzyme production cost which increases their applicability specially for exploiting lignocellulosic materials for their conversion to value added products like alcohol and animal feed. PMID:26642207

  8. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  9. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  10. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  11. Vascular gene expression: a hypothesis

    PubMed Central

    Martínez-Navarro, Angélica C.; Galván-Gordillo, Santiago V.; Xoconostle-Cázares, Beatriz; Ruiz-Medrano, Roberto

    2013-01-01

    The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a “primitive” vascular tissue (a lycophyte), as well as from others that lack a true vascular tissue (a bryophyte), and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non-vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT, and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants. PMID:23882276

  12. Coordination of plastid and nuclear gene expression.

    PubMed Central

    Gray, John C; Sullivan, James A; Wang, Jun-Hui; Jerome, Cheryl A; MacLean, Daniel

    2003-01-01

    The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis-related genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins. PMID:12594922

  13. Cytogenetic abnormalities in multiple myeloma: poor prognosis linked to concomitant detection in random and focal lesion bone marrow samples and associated with high-risk gene expression profile.

    PubMed

    Zhou, Yiming; Nair, Bijay; Shaughnessy, John D; Cartron, Marie-Astrid; Haessler, Jeff; Anaissie, Elias; van Rhee, Frits; Crowley, John; Barlogie, Bart

    2009-06-01

    The clinical significance of cytogenetic abnormalities (CA) present in randomly sampled (RS) or focal lesion (FL) bone marrow sites was examined in 419 untreated myeloma patients. Among 290 patients with gene expression profiling (GEP) data generated from RS sites, GEP-defined high-risk was present in 52% of the RS+/FL+ group but in only 9% of the remainder (P < 0.001). The RS+/FL+ constellation (18%) was an independent predictor of poor survival, also after adjusting for GEP-derived risk and TP53 status (Hazard ratio = 2.42, P = 0.004). The prevalence of high-risk myeloma in the RS+/FL+ group may reflect a dissemination-prone condition not shared by the other three groups. PMID:19344415

  14. The flow cytometry-defined light chain cytoplasmic immunoglobulin index and an associated 12-gene expression signature are independent prognostic factors in multiple myeloma.

    PubMed

    Papanikolaou, X; Alapat, D; Rosenthal, A; Stein, C; Epstein, J; Owens, R; Yaccoby, S; Johnson, S; Bailey, C; Heuck, C; Tian, E; Joiner, A; van Rhee, F; Khan, R; Zangari, M; Jethava, Y; Waheed, S; Davies, F; Morgan, G; Barlogie, B

    2015-08-01

    As part of Total Therapy (TT) 3b, baseline marrow aspirates were subjected to two-color flow cytometry of nuclear DNA content and cytoplasmic immunoglobulin (DNA/CIG) as well as plasma cell gene expression profiling (GEP). DNA/CIG-derived parameters, GEP and standard clinical variables were examined for their effects on overall survival (OS) and progression-free survival (PFS). Among DNA/CIG parameters, the percentage of the light chain-restricted (LCR) cells and their cytoplasmic immunoglobulin index (CIg) were linked to poor outcome. In the absence of GEP data, low CIg <2.8, albumin <3.5 g/dl and age ⩾65 years were significantly associated with inferior OS and PFS. When GEP information was included, low CIg survived the model along with GEP70-defined high risk and low albumin. Low CIg was linked to beta-2-microglobulin >5.5 mg/l, a percentage of LCR cells exceeding 50%, C-reactive protein ⩾8 mg/l and GEP-derived high centrosome index. Further analysis revealed an association of low CIg with 12 gene probes implicated in cell cycle regulation, differentiation and drug transportation from which a risk score was developed in TT3b that held prognostic significance also in TT3a, TT2 and HOVON trials, thus validating its general applicability. Low CIg is a powerful new prognostic variable and has identified potentially drug-able targets. PMID:25753926

  15. The flow cytometry-defined light chain cytoplasmic immunoglobulin index and an associated 12-gene expression signature are independent prognostic factors in multiple myeloma.

    PubMed

    Papanikolaou, X; Alapat, D; Rosenthal, A; Stein, C; Epstein, J; Owens, R; Yaccoby, S; Johnson, S; Bailey, C; Heuck, C; Tian, E; Joiner, A; van Rhee, F; Khan, R; Zangari, M; Jethava, Y; Waheed, S; Davies, F; Morgan, G; Barlogie, B

    2015-08-01

    As part of Total Therapy (TT) 3b, baseline marrow aspirates were subjected to two-color flow cytometry of nuclear DNA content and cytoplasmic immunoglobulin (DNA/CIG) as well as plasma cell gene expression profiling (GEP). DNA/CIG-derived parameters, GEP and standard clinical variables were examined for their effects on overall survival (OS) and progression-free survival (PFS). Among DNA/CIG parameters, the percentage of the light chain-restricted (LCR) cells and their cytoplasmic immunoglobulin index (CIg) were linked to poor outcome. In the absence of GEP data, low CIg <2.8, albumin <3.5 g/dl and age ⩾65 years were significantly associated with inferior OS and PFS. When GEP information was included, low CIg survived the model along with GEP70-defined high risk and low albumin. Low CIg was linked to beta-2-microglobulin >5.5 mg/l, a percentage of LCR cells exceeding 50%, C-reactive protein ⩾8 mg/l and GEP-derived high centrosome index. Further analysis revealed an association of low CIg with 12 gene probes implicated in cell cycle regulation, differentiation and drug transportation from which a risk score was developed in TT3b that held prognostic significance also in TT3a, TT2 and HOVON trials, thus validating its general applicability. Low CIg is a powerful new prognostic variable and has identified potentially drug-able targets.

  16. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  17. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  18. Molecular Characterization of the α-Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants

    PubMed Central

    Lind, Ulrika; Alm Rosenblad, Magnus; Wrange, Anna-Lisa; Sundell, Kristina S.; Jonsson, Per R.; André, Carl; Havenhand, Jonathan; Blomberg, Anders

    2013-01-01

    The euryhaline bay barnacle Balanus improvisus has one of the broadest salinity tolerances of any barnacle species. It is able to complete its life cycle in salinities close to freshwater (3 PSU) up to fully marine conditions (35 PSU) and is regarded as one of few truly brackish-water species. Na+/K+ ATPase (NAK) has been shown to be important for osmoregulation when marine organisms are challenged by changing salinities, and we therefore cloned and examined the expression of different NAKs from B. improvisus. We found two main gene variants, NAK1 and NAK2, which were approximately 70% identical at the protein level. The NAK1 mRNA existed in a long and short variant with the encoded proteins differing only by 27 N-terminal amino acids. This N-terminal stretch was coded for by a separate exon, and the two variants of NAK1 mRNAs appeared to be created by alternative splicing. We furthermore showed that the two NAK1 isoforms were differentially expressed in different life stages and in various tissues of adult barnacle, i.e the long isoform was predominant in cyprids and in adult cirri. In barnacle cyprid larvae that were exposed to a combination of different salinities and pCO2 levels, the expression of the long NAK1 mRNA increased relative to the short in low salinities. We suggest that the alternatively spliced long variant of the Nak1 protein might be of importance for osmoregulation in B. improvisus in low salinity conditions. PMID:24130836

  19. Cholesterol biosynthesis from lanosterol: molecular cloning, chromosomal localization, functional expression and liver-specific gene regulation of rat sterol delta8-isomerase, a cholesterogenic enzyme with multiple functions.

    PubMed Central

    Bae, S; Seong, J; Paik, Y

    2001-01-01

    Sterol Delta(8)-isomerase (SI) (EC 5.3.3.5), also known as emopamil binding protein or sigma receptor, catalyses the conversion of the 8-ene isomer into the 7-ene isomer in the cholesterol biosynthetic pathway in mammals. Recently, mutations of SI have been found to be associated with Conradi-Hünermann syndrome in humans. To investigate the in vitro and in vivo modes of molecular regulation of SI and its role in cholesterol biosynthesis in mammals, we isolated a full-length cDNA encoding rat SI. The deduced amino-acid sequence of rat SI predicts a 230-residue protein (26737 Da) with 87% and 80% amino-acid identity to mouse and human counterparts. The rat SI gene was mapped to chromosome 12q1.2 using fluorescence in situ hybridization (FISH). The biological function of the cloned rat SI cDNA was verified by overexpressing recombinant Myc-SI in Saccharomyces cerevisiae. It showed a characteristic pattern of inhibition on exposure to trans-2-[4-(1,2-diphenylbuten-1-yl)phenoxy]-N,N-dimethylethylamine (tamoxifen; IC(50)=11.2 microM) and 3beta-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A; IC(50)=4.2 microM), two well known potent inhibitors of SI. Northern-blot analysis of 3-week-old rats compared with 2-year-old rats showed that SI mRNA expression in both age groups was restricted to liver, where a 70% reduction in mRNA levels was observed in 2-year-old rats. The FISH studies revealed ubiquitous expression of SI mRNA in rat hepatocytes. The in vitro studies showed that the SI mRNA was highly suppressed by 25-hydroxycholesterol in H4IIE cells. Treatment of H4IIE cells grown in medium supplemented with fetal bovine serum with tamoxifen for 24 h resulted in a dose-dependent induction of SI mRNA, with a concomitant suppression of sterol regulatory element binding protein-1 mRNA. Interestingly, this effect was not seen in emopamil-treated cells. The in vivo experiments also indicate that both mRNA expression and enzymic activity of SI in liver were induced approx. 3

  20. Duplicate genes increase gene expression diversity within and between species.

    PubMed

    Gu, Zhenglong; Rifkin, Scott A; White, Kevin P; Li, Wen-Hsiung

    2004-06-01

    Using microarray gene expression data from several Drosophila species and strains, we show that duplicated genes, compared with single-copy genes, significantly increase gene expression diversity during development. We show further that duplicate genes tend to cause expression divergences between Drosophila species (or strains) to evolve faster than do single-copy genes. This conclusion is also supported by data from different yeast strains.

  1. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.

  2. Stochastic multiple-valued gene networks.

    PubMed

    Zhu, Peican; Han, Jie

    2014-02-01

    Among various approaches to modeling gene regulatory networks (GRNs), Boolean networks (BNs) and its probabilistic extension, probabilistic Boolean networks (PBNs), have been studied to gain insights into the dynamics of GRNs. To further exploit the simplicity of logical models, a multiple-valued network employs gene states that are not limited to binary values, thus providing a finer granularity in the modeling of GRNs. In this paper, stochastic multiple-valued networks (SMNs) are proposed for modeling the effects of noise and gene perturbation in a GRN. An SMN enables an accurate and efficient simulation of a probabilistic multiple-valued network (as an extension of a PBN). In a k-level SMN of n genes, it requires a complexity of O(nLk(n)) to compute the state transition matrix, where L is a factor related to the minimum sequence length in the SMN for achieving a desired accuracy. The use of randomly permuted stochastic sequences further increases computational efficiency and allows for a tunable tradeoff between accuracy and efficiency. The analysis of a p53-Mdm2 network and a WNT5A network shows that the proposed SMN approach is efficient in evaluating the network dynamics and steady state distribution of gene networks under random gene perturbation.

  3. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  4. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  5. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  6. The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress

    PubMed Central

    Lee, Areum; Lee, Sang Sook; Jung, Won Yong; Park, Hyun Ji; Lim, Bo Ra; Kim, Hyun-Soon; Ahn, Jun Cheul; Cho, Hye Sun

    2016-01-01

    Alternative splicing (AS) is an important molecular mechanism by which single genes can generate multiple mRNA isoforms. We reported previously that, in Oryza sativa, the cyclophilin 19-4 (OsCYP19-4.1) transcript was significantly upregulated in response to cold stress, and that transgenic plants were cold tolerant. Here we show that, under cold stress, OsCYP19-4 produces eight transcript variants by intron retention and exon skipping, resulting in production of four distinct protein isoforms. The OsCYP19-4 AS isoforms exhibited different cellular localizations in the epidermal cells: in contrast to OsCYP19-4.1, the OsCYP19-4.2 and OsCYP19-4.3 proteins were primarily targeted to guard and subsidiary cells, whereas OsCYP19-4.5, which consists largely of an endoplasmic reticulum (ER) targeting signal, was co-localized with the RFP-BiP marker in the ER. In OsCYP19-4.2, the key residues of the PPIase domain are altered; consistent with this, recombinant OsCYP19-4.2 had significantly lower PPIase activity than OsCYP19-4.1 in vitro. Specific protein-protein interactions between OsCYP19-4.2/3 and AtRCN1 were verified in yeast two-hybrid (Y2H) and bimolecular fluoresence complementation (BiFC assays), although the OsCYP19-4 isoforms could not bind each other. Based on these results, we propose that two OsCYP19-4 AS isoforms, OsCYP19-4.2 and OsCYP19-4.3, play roles linking auxin transport and cold stress via interactions with RCN1. PMID:27447607

  7. The OsCYP19-4 Gene Is Expressed as Multiple Alternatively Spliced Transcripts Encoding Isoforms with Distinct Cellular Localizations and PPIase Activities under Cold Stress.

    PubMed

    Lee, Areum; Lee, Sang Sook; Jung, Won Yong; Park, Hyun Ji; Lim, Bo Ra; Kim, Hyun-Soon; Ahn, Jun Cheul; Cho, Hye Sun

    2016-01-01

    Alternative splicing (AS) is an important molecular mechanism by which single genes can generate multiple mRNA isoforms. We reported previously that, in Oryza sativa, the cyclophilin 19-4 (OsCYP19-4.1) transcript was significantly upregulated in response to cold stress, and that transgenic plants were cold tolerant. Here we show that, under cold stress, OsCYP19-4 produces eight transcript variants by intron retention and exon skipping, resulting in production of four distinct protein isoforms. The OsCYP19-4 AS isoforms exhibited different cellular localizations in the epidermal cells: in contrast to OsCYP19-4.1, the OsCYP19-4.2 and OsCYP19-4.3 proteins were primarily targeted to guard and subsidiary cells, whereas OsCYP19-4.5, which consists largely of an endoplasmic reticulum (ER) targeting signal, was co-localized with the RFP-BiP marker in the ER. In OsCYP19-4.2, the key residues of the PPIase domain are altered; consistent with this, recombinant OsCYP19-4.2 had significantly lower PPIase activity than OsCYP19-4.1 in vitro. Specific protein-protein interactions between OsCYP19-4.2/3 and AtRCN1 were verified in yeast two-hybrid (Y2H) and bimolecular fluoresence complementation (BiFC assays), although the OsCYP19-4 isoforms could not bind each other. Based on these results, we propose that two OsCYP19-4 AS isoforms, OsCYP19-4.2 and OsCYP19-4.3, play roles linking auxin transport and cold stress via interactions with RCN1. PMID:27447607

  8. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  9. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  10. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression

    PubMed Central

    Jourdain, Alexis A.; Boehm, Erik; Maundrell, Kinsey

    2016-01-01

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized “mitochondrial RNA granules,” mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  11. Equivalent Gene Expression Profiles between Glatopa™ and Copaxone®

    PubMed Central

    D’Alessandro, Josephine S.; Duffner, Jay; Pradines, Joel; Capila, Ishan; Garofalo, Kevin; Kaundinya, Ganesh; Greenberg, Benjamin M.; Kantor, Daniel; Ganguly, Tanmoy C.

    2015-01-01

    Glatopa™ is a generic glatiramer acetate recently approved for the treatment of patients with relapsing forms of multiple sclerosis. Gene expression profiling was performed as a means to evaluate equivalence of Glatopa and Copaxone®. Microarray analysis containing 39,429 unique probes across the entire genome was performed in murine glatiramer acetate—responsive Th2-polarized T cells, a test system highly relevant to the biology of glatiramer acetate. A closely related but nonequivalent glatiramoid molecule was used as a control to establish assay sensitivity. Multiple probe-level (Student’s t-test) and sample-level (principal component analysis, multidimensional scaling, and hierarchical clustering) statistical analyses were utilized to look for differences in gene expression induced by the test articles. The analyses were conducted across all genes measured, as well as across a subset of genes that were shown to be modulated by Copaxone. The following observations were made across multiple statistical analyses: the expression of numerous genes was significantly changed by treatment with Copaxone when compared against media-only control; gene expression profiles induced by Copaxone and Glatopa were not significantly different; and gene expression profiles induced by Copaxone and the nonequivalent glatiramoid were significantly different, underscoring the sensitivity of the test system and the multiple analysis methods. Comparative analysis was also performed on sets of transcripts relevant to T-cell biology and antigen presentation, among others that are known to be modulated by glatiramer acetate. No statistically significant differences were observed between Copaxone and Glatopa in the expression levels (magnitude and direction) of these glatiramer acetate-regulated genes. In conclusion, multiple methods consistently supported equivalent gene expression profiles between Copaxone and Glatopa. PMID:26473741

  12. Equivalent Gene Expression Profiles between Glatopa™ and Copaxone®.

    PubMed

    D'Alessandro, Josephine S; Duffner, Jay; Pradines, Joel; Capila, Ishan; Garofalo, Kevin; Kaundinya, Ganesh; Greenberg, Benjamin M; Kantor, Daniel; Ganguly, Tanmoy C

    2015-01-01

    Glatopa™ is a generic glatiramer acetate recently approved for the treatment of patients with relapsing forms of multiple sclerosis. Gene expression profiling was performed as a means to evaluate equivalence of Glatopa and Copaxone®. Microarray analysis containing 39,429 unique probes across the entire genome was performed in murine glatiramer acetate--responsive Th2-polarized T cells, a test system highly relevant to the biology of glatiramer acetate. A closely related but nonequivalent glatiramoid molecule was used as a control to establish assay sensitivity. Multiple probe-level (Student's t-test) and sample-level (principal component analysis, multidimensional scaling, and hierarchical clustering) statistical analyses were utilized to look for differences in gene expression induced by the test articles. The analyses were conducted across all genes measured, as well as across a subset of genes that were shown to be modulated by Copaxone. The following observations were made across multiple statistical analyses: the expression of numerous genes was significantly changed by treatment with Copaxone when compared against media-only control; gene expression profiles induced by Copaxone and Glatopa were not significantly different; and gene expression profiles induced by Copaxone and the nonequivalent glatiramoid were significantly different, underscoring the sensitivity of the test system and the multiple analysis methods. Comparative analysis was also performed on sets of transcripts relevant to T-cell biology and antigen presentation, among others that are known to be modulated by glatiramer acetate. No statistically significant differences were observed between Copaxone and Glatopa in the expression levels (magnitude and direction) of these glatiramer acetate-regulated genes. In conclusion, multiple methods consistently supported equivalent gene expression profiles between Copaxone and Glatopa. PMID:26473741

  13. Antipsychotic Induced Gene Regulation in Multiple Brain Regions

    PubMed Central

    Girgenti, Matthew James; Nisenbaum, Laura K.; Bymaster, Franklin; Terwilliger, Rosemarie; Duman, Ronald S; Newton, Samuel Sathyanesan

    2010-01-01

    The molecular mechanism of action of antipsychotic drugs is not well understood. Their complex receptor affinity profiles indicate that their action could extend beyond dopamine receptor blockade. Single gene expression studies and high-throughput gene profiling have shown the induction of genes from several molecular classes and functional categories. Using a focused microarray approach we investigated gene regulation in rat striatum, frontal cortex and hippocampus after chronic administration of haloperidol or olanzapine. Regulated genes were validated by in-situ hybridization, realtime PCR and immunohistochemistry. Only limited overlap was observed in genes regulated by haloperidol and olanzapine. Both drugs elicited maximal gene regulation in the striatum and least in the hippocampus. Striatal gene induction by haloperidol was predominantly in neurotransmitter signaling, G-protein coupled receptors and transcription factors. Olanzapine prominently induced retinoic acid and trophic factor signaling genes in the frontal cortex. The data also revealed the induction of several genes that could be targeted in future drug development efforts. The study uncovered the induction of several novel genes, including somatostatin receptors and metabotropic glutamate receptors. The results demonstrating the regulation of multiple receptors and transcription factors suggests that both typical and atypical antipsychotics could possess a complex molecular mechanism of action. PMID:20070867

  14. Multiple Routes to Subfunctionalization and Gene Duplicate Specialization

    PubMed Central

    Proulx, Stephen R.

    2012-01-01

    Gene duplication is arguably the most significant source of new functional genetic material. A better understanding of the processes that lead to the stable incorporation of gene duplications into the genome is important both because it relates to interspecific differences in genome composition and because it can shed light on why some classes of gene are more prone to duplication than others. Typically, models of gene duplication consider the periods before duplication, during the spread and fixation of a new duplicate, and following duplication as distinct phases without a common underlying selective environment. I consider a scenario where a gene that is initially expressed in multiple contexts can undergo mutations that alter its expression profile or its functional coding sequence. The selective regime that acts on the functional output of the allele copies carried by an individual is constant. If there is a potential selective benefit to having different coding sequences expressed in each context, then, regardless of the constraints on functional variation at the single-locus gene, the waiting time until a gene duplication is incorporated goes down as population size increases. PMID:22143920

  15. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  16. High-level expression of a sweet potato sporamin gene promoter: beta-glucuronidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements.

    PubMed

    Ohta, S; Hattori, T; Morikami, A; Nakamura, K

    1991-03-01

    Genes coding for sporamin, the most abundant protein of the tuberous root of the sweet potato, are expressed at a high levels in the stems of plantlets cultured axenically on sucrose-containing medium. Their expression is also induced in leaf-petiole explants by high concentrations of sucrose. A fusion gene comprising of the 1 kb 5' upstream region of the gSPO-A1 gene coding for the A-type sporamin and the coding sequence of bacterial beta-glucuronidase (GUS) was introduced into the tobacco genome by Agrobacterium-mediated transformation. Transgenic tobacco plants cultured axenically on sucrose-containing medium expressed GUS activity predominantly in their stems. Histochemical examination of GUS activity using a chromogenic substrate showed a distinct spatial pattern of GUS staining in the stem. Strong GUS activity was detected in the internal phloem of the vascular system and at the node, especially at the base of the axillary bud. Relatively weaker GUS activity was also detected in pith parenchyma. A 5' deletion of the promoter to nucleotide -305, relative to the transcription start site, did not alter significantly the level of GUS activity or the spatial pattern of GUS staining in the stem. However, further deletions to -237 and -192 resulted in a decrease in the level of GUS activity in the stem that occurred simultaneously with the loss of GUS staining in both the internal phloem and at the base of the axillary bud. However, plants with these deletion constructs still exhibited the predominant expression pattern of GUS activity in the stem and GUS staining in the pith parenchyma cells. Deletion to -94 completely abolished the expression of GUS activity. These results indicate that a sequence between -305 and -237 contains a cis-regulatory element(s) that is required for expression of the GUS reporter gene in both the internal phloem and at the base of the axillary bud, while a sequence between -192 and -94 contains a cis-acting element(s) that is required

  17. PLEXdb: Gene expression resources for plants and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PLEXdb (Plant Expression Database), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facili...

  18. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  19. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    PubMed Central

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases. PMID:27790248

  20. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  1. Identification and validation of reference genes for gene expression studies in water buffalo.

    PubMed

    Terzi, V; Morcia, C; Spini, M; Tudisco, R; Cutrignelli, M I; Infascelli, F; Stanca, A M; Faccioli, P

    2010-06-01

    In gene expression analysis, a key step to obtain informative data from reverse transcription quantitative PCR (RT qPCR) assay is normalization, that is usually achieved by ratio to correct the abundance of the gene of interest against that of an endogenous reference gene. The finding of such reference genes, ideally expressed in a stable way in multiple tissue samples and in different experimental conditions, is a non-trivial problem. In this work, a set of genes potentially useful as reference for gene expression studies in water buffalo has been identified and evaluated. In the first step, a publicly available Bos taurus expressed sequence tags database has been downloaded from the TIGR Gene Index and mined by some simple frequency algorithms to find out which tentative consensuses are present in a remarkable number of different cDNA libraries and, consequently, are more suitable to be included in a starter set of candidate reference genes. To validate the potential of such candidates for their use as normalizers in buffalo gene expression analysis, an RT qPCR analysis has been carried out, in which the expression stability of these genes has been evaluated on a panel of buffalo tissues and organs. Our results indicate that ribosomal proteins L4 and L5 and Gek protein encoding genes can be useful as normalizers to compare gene expression levels across tissues and organs in buffalo.

  2. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  3. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.

  4. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  5. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Robbins, Charles J.; Sang, Qing-Xiang Amy

    2015-01-01

    Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis. PMID:26683658

  6. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  7. [Transcriptomes for serial analysis of gene expression].

    PubMed

    Marti, Jacques; Piquemal, David; Manchon, Laurent; Commes, Thérèse

    2002-01-01

    be stored in a unique database, facilitating whole-genome analysis of differential expression between cell types, normal and diseased samples, or samples with and without drug treatment. SAGE data are readily amenable to statistical comparisons, allowing to determine the level of confidence of the observed variations. A major limitation of SAGE is that, because each analysis is obligatory performed on the whole set of expressed genes, it can hardly be performed on multiple samples, for example in kinetics studies or to compare the effects of large numbers of drugs. To overcome this limitation, high-throughput detection of a subset of mRNAs is more rapidly performed by parallel hybridization of mRNAs on arrays of nucleic acids immobilized on solid supports. From this point of view, a SAGE platform is a powerful instrument for selecting the most informative subset of genes, assembling them to design microarrays dedicated to a specific problem and calibrating measurement by comparison with a standard cell model for which SAGE data are available. This approach is an attractive alternative to strategies based exclusively on pangenomic arrays. A very large amount of SAGE data are already available and the problem is now to extract their biological meaning. Knowledge on metabolic pathways is already organized so that its successful integration in a SAGE platform can be undertaken. For other cell components and pathways, the problem lies on the lack of controlled vocabulary to describe gene activities, starting form a clear definition of the concept of biological function itself. Progress in gene and cell ontology is expected to facilitate computer-based extraction of biological knowledge from existing and forthcoming SAGE data.

  8. Parallel Recruitment of Multiple Genes into C4 Photosynthesis

    PubMed Central

    Christin, Pascal-Antoine; Boxall, Susanna F.; Gregory, Richard; Edwards, Erika J.; Hartwell, James; Osborne, Colin P.

    2013-01-01

    During the diversification of living organisms, novel adaptive traits usually evolve through the co-option of preexisting genes. However, most enzymes are encoded by gene families, whose members vary in their expression and catalytic properties. Each may therefore differ in its suitability for recruitment into a novel function. In this work, we test for the presence of such a gene recruitment bias using the example of C4 photosynthesis, a complex trait that evolved recurrently in flowering plants as a response to atmospheric CO2 depletion. We combined the analysis of complete nuclear genomes and high-throughput transcriptome data for three grass species that evolved the C4 trait independently. For five of the seven enzymes analyzed, the same gene lineage was recruited across the independent C4 origins, despite the existence of multiple copies. The analysis of a closely related C3 grass confirmed that C4 expression patterns were not present in the C3 ancestors but were acquired during the evolutionary transition to C4 photosynthesis. The significant bias in gene recruitment indicates that some genes are more suitable for a novel function, probably because the mutations they accumulated brought them closer to the characteristics required for the new function. PMID:24179135

  9. Amplified and Homozygously Deleted Genes in Glioblastoma: Impact on Gene Expression Levels

    PubMed Central

    Crespo, Inês; Tão, Hermínio; Nieto, Ana Belen; Rebelo, Olinda; Domingues, Patrícia; Vital, Ana Luísa; Patino, Maria del Carmen; Barbosa, Marcos; Lopes, Maria Celeste; Oliveira, Catarina Resende; Orfao, Alberto; Tabernero, María Dolores

    2012-01-01

    Background Glioblastoma multiforme (GBM) displays multiple amplicons and homozygous deletions that involve relevant pathogenic genes and other genes whose role remains unknown. Methodology Single-nucleotide polymorphism (SNP)-arrays were used to determine the frequency of recurrent amplicons and homozygous deletions in GBM (n = 46), and to evaluate the impact of copy number alterations (CNA) on mRNA levels of the genes involved. Principal Findings Recurrent amplicons were detected for chromosomes 7 (50%), 12 (22%), 1 (11%), 4 (9%), 11 (4%), and 17 (4%), whereas homozygous deletions involved chromosomes 9p21 (52%) and 10q (22%). Most genes that displayed a high correlation between DNA CNA and mRNA levels were coded in the amplified chromosomes. For some amplicons the impact of DNA CNA on mRNA expression was restricted to a single gene (e.g., EGFR at 7p11.2), while for others it involved multiple genes (e.g., 11 and 5 genes at 12q14.1–q15 and 4q12, respectively). Despite homozygous del(9p21) and del(10q23.31) included multiple genes, association between these DNA CNA and RNA expression was restricted to the MTAP gene. Conclusions Overall, our results showed a high frequency of amplicons and homozygous deletions in GBM with variable impact on the expression of the genes involved, and they contributed to the identification of other potentially relevant genes. PMID:23029397

  10. [Susceptibility gene in multiple system atrophy (MSA)].

    PubMed

    Tsuji, Shoji

    2014-01-01

    To elucidate molecular bases of multiple system atrophy (MSA), we first focused on recently identified MSA multiplex families. Though linkage analyses followed by whole genome resequencing, we have identified a causative gene, COQ2, for MSA. We then conducted comprehensive nucleotide sequence analysis of COQ2 of sporadic MSA cases and controls, and found that functionally deleterious COQ2 variants confer a strong risk for developing MSA. COQ2 encodes an enzyme in the biosynthetic pathway of coenzyme Q10. Decreased synthesis of coenzyme Q10 is considered to be involved in the pathogenesis of MSA through decreased electron transport in mitochondria and increased vulnerability to oxidative stress. PMID:25672683

  11. Insulin-glycerolipid mediators and gene expression

    SciTech Connect

    Standaert, M.L.; Pollet, R.J. )

    1988-06-01

    Insulin is an anabolic polypeptide hormone with pleiotrophic effects. During the decades since the initial description by Banting and Best, the acute effects of insulin have been widely studied with particular focus on the mechanism or mechanisms of insulin activation of hexose transport and regulation of metabolic enzyme activity. However, recently there has been a major expansion of investigation to include insulin regulation of gene expression with multiple insulin-sensitive specific mRNAs now reported. In this review, we explore the involvement of insulin-induced changes in plasma membrane glycerolipid metabolism in the transmembrane signaling process required for insulin regulation of mRNA levels. Insulin increase diacylglycerol levels in insulin-responsive cells, and synthetic diacylglycerols or their phorbol ester diacylglycerol analogs, such as 4{beta}, 9{alpha}, 12{beta}, 13{alpha}, 20-pentahydroxytiglia-1,6-dien-3-one 12{beta}-myristate 13-acetate (TPA), mimic insulin regulation of ornithine decarboxylase mRNA, c-fos mRNA, and phosphoenolpyruvate carboxykinase mRNA levels. This suggests that insulin regulation of specific mRNA levels may be mediated by insulin-induced changes in phospholipid metabolism and that diacylglycerol may play a pivotal role in insulin regulation of gene expression.

  12. Comparison of Multiple Gene Assembly Methods for Metabolic Engineering

    NASA Astrophysics Data System (ADS)

    Lu, Chenfeng; Mansoorabadi, Karen; Jeffries, Thomas

    A universal, rapid DNA assembly method for efficient multigene plasmid construction is important for biological research and for optimizing gene expression in industrial microbes. Three different approaches to achieve this goal were evaluated. These included creating long complementary extensions using a uracil-DNA glycosylase technique, overlap extension polymerase chain reaction, and a SfiI-based ligation method. SfiI ligation was the only successful approach for assembling large DNA fragments that contained repeated homologous regions. In addition, the SfiI method has been improved over a similar, previous published technique so that it is more flexible and does not require polymerase chain reaction to incorporate adaptors. In the present study, Saccharomyces cerevisiae genes TAL1, TKL1, and PYK1 under control of the 6-phosphogluconate dehydrogenase promoter were successfully ligated together using multiple unique SfiI restriction sites. The desired construct was obtained 65% of the time during vector construction using four-piece ligations. The SfiI method consists of three steps: first a SfiI linker vector is constructed, whose multiple cloning site is flanked by two three-base linkers matching the neighboring SfiI linkers on SfiI digestion; second, the linkers are attached to the desired genes by cloning them into SfiI linker vectors; third, the genes flanked by the three-base linkers, are released by SfiI digestion. In the final step, genes of interest are joined together in a simple one-step ligation.

  13. Visually Relating Gene Expression and in vivo DNA Binding Data

    SciTech Connect

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  14. Profiling Gene Expression in Germinating Brassica Roots.

    PubMed

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  15. Nobiletin, a citrus flavonoid, suppresses phorbol ester-induced expression of multiple scavenger receptor genes in THP-1 human monocytic cells.

    PubMed

    Eguchi, Ai; Murakami, Akira; Ohigashi, Hajime

    2006-05-29

    Unregulated uptake of oxidized low-density lipoproteins (ox-LDL) via macrophage scavenger receptors (SRs) such as lectin-like ox-LDL receptor-1 (LOX-1) is a key event in atherosclerosis. In this study, we examined the effects of five selected food phytochemicals on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced LOX-1 mRNA expression in THP-1 human monocyte-like cells. Nobiletin, a citrus polymethoxylated flavone, markedly reduced it in dose- and time-dependent manners. It also suppressed the phosphorylation of extracellular signal-regulated protein kinase (ERK) 1/2, c-Jun NH2-terminal kinase (JNK) 1/2, and c-Jun (Ser-63), thereby inhibiting the transcriptional activity of activator protein-1. Further nobiletin attenuated expression of SR-A, SR-PSOX, CD36, and CD68, but not CLA-1, mRNA, leading to the blockade of DiI-acLDL uptake. Together, our results suggest that nobiletin is a promising phytochemical for regulating atherosclerosis with reasonable action mechanisms.

  16. Differential network analysis from cross-platform gene expression data

    PubMed Central

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  17. Differential network analysis from cross-platform gene expression data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-09-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes.

  18. A microfluidic DNA computing processor for gene expression analysis and gene drug synthesis.

    PubMed

    Zhang, Yu; Yu, Hao; Qin, Jianhua; Lin, Bingcheng

    2009-11-06

    Boolean logic performs a logical operation on one or more logic input and produces a single logic output. Here, we describe a microfluidic DNA computing processor performing Boolean logic operations for gene expression analysis and gene drug synthesis. Multiple cancer-related genes were used as input molecules. Their expression levels were identified by interacting with the computing related DNA strands, which were designed according to the sequences of cancer-related genes and the suicide gene. When all the expressions of the cancer-related genes fit in with the diagnostic criteria, positive diagnosis would be confirmed and then a complete suicide gene (gene drug) could be synthesized as an output molecule. Microfluidic chip was employed as an effective platform to realize the computing process by integrating multistep biochemical reactions involving hybridization, displacement, denaturalization, and ligation. By combining the specific design of the computing related molecules and the integrated functions of the microfluidics, the microfluidic DNA computing processor is able to analyze the multiple gene expressions simultaneously and realize the corresponding gene drug synthesis with simplicity and fast speed, which demonstrates the potential of this platform for DNA computing in biomedical applications.

  19. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  20. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  1. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development

    PubMed Central

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology. PMID:26110539

  2. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    PubMed

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology. PMID:26110539

  3. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    PubMed

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  4. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors.

  5. The gene expression signatures of melanoma progression

    PubMed Central

    Haqq, Christopher; Nosrati, Mehdi; Sudilovsky, Daniel; Crothers, Julia; Khodabakhsh, Daniel; Pulliam, Brian L.; Federman, Scot; Miller, James R.; Allen, Robert E.; Singer, Mark I.; Leong, Stanley P. L.; Ljung, Britt-Marie; Sagebiel, Richard W.; Kashani-Sabet, Mohammed

    2005-01-01

    Because of the paucity of available tissue, little information has previously been available regarding the gene expression profiles of primary melanomas. To understand the molecular basis of melanoma progression, we compared the gene expression profiles of a series of nevi, primary melanomas, and melanoma metastases. We found that metastatic melanomas exhibit two dichotomous patterns of gene expression, which unexpectedly reflect gene expression differences already apparent in comparing laser-capture microdissected radial and vertical phases of a large primary melanoma. Unsupervised hierarchical clustering accurately separated nevi and primary melanomas. Multiclass significance analysis of microarrays comparing normal skin, nevi, primary melanomas, and the two types of metastatic melanoma identified 2,602 transcripts that significantly correlated with sample class. These results suggest that melanoma pathogenesis can be understood as a series of distinct molecular events. The gene expression signatures identified here provide the basis for developing new diagnostics and targeting therapies for patients with malignant melanoma. PMID:15833814

  6. Predicting cellular growth from gene expression signatures.

    PubMed

    Airoldi, Edoardo M; Huttenhower, Curtis; Gresham, David; Lu, Charles; Caudy, Amy A; Dunham, Maitreya J; Broach, James R; Botstein, David; Troyanskaya, Olga G

    2009-01-01

    Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  7. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: interpretation in the context of global gene expression.

    PubMed

    Shaughnessy, John; Jacobson, Joth; Sawyer, Jeff; McCoy, Jason; Fassas, Athanasios; Zhan, Fenghuang; Bumm, Klaus; Epstein, Joshua; Anaissie, Elias; Jagannath, Sundar; Vesole, David; Siegel, David; Desikan, Raman; Munshi, Nikhil; Badros, Ashraf; Tian, Erming; Zangari, Maurizio; Tricot, Guido; Crowley, John; Barlogie, Bart

    2003-05-15

    Metaphase cytogenetic abnormalities (CAs), especially of chromosome 13 (CA 13), confer a grave prognosis in multiple myeloma even with tandem autotransplantations as applied in Total Therapy I, which enrolled 231 patients between 1989 and 1994. With a median follow-up of almost 9 years, the prognostic implications of all individual CAs, detected prior to treatment and at relapse, were investigated. Among all CAs and standard prognostic factors examined prior to therapy, only hypodiploidy and CA 13 (hypo-13 CA), alone or in combination, were associated with shortest event-free survival and overall survival (OS). The shortest postrelapse OS was observed with hypo-13 CA, which was newly detected in 18 of all 28 patients presenting with this abnormality at relapse. Superior prognosis was associated with the absence of any CA at both diagnosis and relapse (10-year OS, 40%). The lack of independent prognostic implications of other CAs points to a uniquely aggressive behavior of hypo-13 CA (present in 16% of patients at diagnosis). With the use of microarray data in 146 patients enrolled in Total Therapy II, overexpression of cell cycle genes distinguished CA from no CA, especially in cases of del(13) detected by interphase fluorescence in situ hybridization (FISH). FISH 13, resulting in a haploinsufficiency of RB1 and other genes mapping to chromosome 13, as well as activation of IGF1R, appears to have an amplifying effect on cell cycle gene expression, thus providing a molecular explanation for the dire outcome of patients with CA 13 compared with those with other CAs.

  8. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics

    PubMed Central

    2014-01-01

    Background De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. Results Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. Conclusions Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders. PMID:24602502

  9. The Mouse Gene Expression Database (GXD)

    PubMed Central

    Ringwald, Martin; Eppig, Janan T.; Begley, Dale A.; Corradi, John P.; McCright, Ingeborg J.; Hayamizu, Terry F.; Hill, David P.; Kadin, James A.; Richardson, Joel E.

    2001-01-01

    The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. By combining the different types of expression data, GXD aims to provide increasingly complete information about the expression profiles of genes in different mouse strains and mutants, thus enabling valuable insights into the molecular networks that underlie normal development and disease. GXD is integrated with the Mouse Genome Database (MGD). Extensive interconnections with sequence databases and with databases from other species, and the development and use of shared controlled vocabularies extend GXD’s utility for the analysis of gene expression information. GXD is accessible through the Mouse Genome Informatics web site at http://www.informatic s.jax.org/ or directly at http://www.informatics.jax.org/me nus/expression_menu.shtml. PMID:11125060

  10. Convergence in pigmentation at multiple levels: mutations, genes and function

    PubMed Central

    Manceau, Marie; Domingues, Vera S.; Linnen, Catherine R.; Rosenblum, Erica Bree; Hoekstra, Hopi E.

    2010-01-01

    Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  11. Convergence in pigmentation at multiple levels: mutations, genes and function.

    PubMed

    Manceau, Marie; Domingues, Vera S; Linnen, Catherine R; Rosenblum, Erica Bree; Hoekstra, Hopi E

    2010-08-27

    Convergence--the independent evolution of the same trait by two or more taxa--has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  12. Photosynthetic gene expression in higher plants.

    PubMed

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  13. Geometry of the Gene Expression Space of Individual Cells.

    PubMed

    Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E; Kalisky, Tomer; Alon, Uri

    2015-07-01

    There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the

  14. Geometry of the Gene Expression Space of Individual Cells

    PubMed Central

    Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E.; Kalisky, Tomer; Alon, Uri

    2015-01-01

    There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the

  15. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  16. Molecular analysis of immunoglobulin genes in multiple myeloma.

    PubMed

    Kosmas, C; Stamatopoulos, K; Stavroyianni, N; Belessi, C; Viniou, N; Yataganas, X

    1999-04-01

    The study of immunoglobulin genes in multiple myeloma over the last five years has provided important information regarding biology, ontogenetic location, disease evolution, pathogenic consequences and tumor-specific therapeutic intervention with idiotypic vaccination. Detailed analysis of V(H) genes has revealed clonal relationship between switch variants expressed by the bone marrow plasma cell and myeloma progenitors in the marrow and peripheral blood. V(H) gene usage is biased against V4-34 (encoding antibodies with cold agglutinin specificity; anti-l/i) explaining the absence of autoimmune phenomena in myeloma compared to other B-cell lymphoproliferative disorders. V(H) genes accumulate somatic hypermutations following a distribution compatible with antigen selection, but with no intraclonal heterogeneity. V(L) genes indicate a bias in usage of VkappaI family members and somatic hypermutation, in line with antigen selection, of the expressed Vkappa genes is higher than any other B-cell lymphoid disorder. A complementary imprint of antigen selection as evidenced by somatic hypermutation of either the V(H) or V(L) clonogenic genes has been observed. The absence of ongoing somatic mutations in either V(H) or V(L) genes gives rise to the notion that the cell of origin in myeloma is a post-germinal center memory B-cell. Clinical application of sensitive PCR methods in order to detect clonal immunoglobulin gene rearrangements has made relevant the monitoring and follow-up of minimal residual disease in stem cell autografts and after myeloablative therapy. The fact that surface immunoglobulin V(H) and V(L) sequences constitute unique tumor-specific antigenic determinants has stimulated investigators to devise strategies aiming to generate active specific immunity against the idiotype of malignant B-cells in myeloma by constructing vaccines based on expressed single-chain Fv fragments, DNA plasmids carrying V(H)+V(L) clonogenic genes for naked DNA vaccination, or

  17. Expression of cytokeratin confers multiple drug resistance.

    PubMed Central

    Bauman, P A; Dalton, W S; Anderson, J M; Cress, A E

    1994-01-01

    The cytokeratin network is an extensive filamentous structure in the cytoplasm whose biological function(s) is unknown. Based upon previous data showing the modification of cytokeratin by mitoxantrone, we investigated the ability of cytokeratin networks to influence the survival response of cells to chemotherapeutic agents. We have compared the survival of mouse L fibroblasts lacking cytokeratins with that of L cells transfected with cytokeratins 8 and 18 in the presence of chemotherapeutic drugs. The expression of cytokeratins 8 and 18 conferred a multiple drug resistance phenotype on cells exposed to mitoxantrone, doxorubicin, methotrexate, melphalan, Colcemid, and vincristine. The degree of drug resistance was 5-454 times that of parental cells, depending upon the agent used. Drug resistance could not be attributed to altered growth characteristics, altered drug accumulation, or an altered drug efflux in the transfected cells. Cytokeratin does not confer resistance to ionizing radiation, which damages DNA independently of intracellular transport mechanisms. These data suggest a role for cytokeratin networks in conferring a drug resistance phenotype. Images PMID:7515497

  18. Gene-expression profile comparisons distinguish seven organs of maize

    PubMed Central

    Cho, Yangrae; Fernandes, John; Kim, Soo-Hwan; Walbot, Virginia

    2002-01-01

    Background A maize array was fabricated with 5,376 unique expressed sequence tag (EST) clones sequenced from 4-day-old roots, immature ears and adult organ cDNA libraries. To elucidate organ relationships, relative mRNA levels were quantified by hybridization with embryos, three maize vegetative organs (leaf blades, leaf sheaths and roots) from multiple developmental stages, husk leaves and two types of floral organs (immature ears and silks). Results Clustering analyses of the hybridization data suggest that maize utilizes both the PEPCK and NADP-ME C4 photosynthetic routes as genes in these pathways are co-regulated. Husk RNA has a gene-expression profile more similar to floral organs than to vegetative leaves. Only 7% of the genes were highly organ specific, showing over a fourfold difference in at least one of 12 comparisons and 37% showed a two- to fourfold difference. The majority of genes were expressed in diverse organs with little difference in transcript levels. Cross-hybridization among closely related genes within multigene families could obscure tissue specificity. As a first step in elucidating individual gene-expression patterns, we show that 45-nucleotide oligo probes produce signal intensities and signal ratios comparable to PCR probes on the same matrix. Conclusions Gene-expression profile studies with cDNA microarrays provide a new molecular tool for defining plant organs and their relationships and for discovering new biological processes in silico. cDNA microarrays are insufficient for differentiating recently duplicated genes. Gene-specific oligo probes printed along with cDNA probes can query individual gene-expression profiles and gene families simultaneously. PMID:12225584

  19. Evidence of the role of tick subolesin in gene expression

    PubMed Central

    de la Fuente, José; Maritz-Olivier, Christine; Naranjo, Victoria; Ayoubi, Patricia; Nijhof, Ard M; Almazán, Consuelo; Canales, Mario; de la Lastra, José M Pérez; Galindo, Ruth C; Blouin, Edmour F; Gortazar, Christian; Jongejan, Frans; Kocan, Katherine M

    2008-01-01

    Background Subolesin is an evolutionary conserved protein that was discovered recently in Ixodes scapularis as a tick protective antigen and has a role in tick blood digestion, reproduction and development. In other organisms, subolesin orthologs may be involved in the control of developmental processes. Because of the profound effect of subolesin knockdown in ticks and other organisms, we hypothesized that subolesin plays a role in gene expression, and therefore affects multiple cellular processes. The objective of this study was to provide evidence for the role of subolesin in gene expression. Results Two subolesin-interacting proteins were identified and characterized by yeast two-hybrid screen, co-affinity purification and RNA interference (RNAi). The effect of subolesin knockdown on the tick gene expression pattern was characterized by microarray analysis and demonstrated that subolesin RNAi affects the expression of genes involved in multiple cellular pathways. The analysis of subolesin and interacting protein sequences identified regulatory motifs and predicted the presence of conserved protein kinase C (PKC) phosphorylation sites. Conclusion Collectively, these results provide evidence that subolesin plays a role in gene expression in ticks. PMID:18673577

  20. Epigenetic control of gene expression in the alcoholic brain.

    PubMed

    Ponomarev, Igor

    2013-01-01

    Chronic alcohol exposure causes widespread changes in brain gene expression in humans and animal models. Many of these contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. There is an emerging appreciation for the role of epigenetic processes in alcohol-induced changes in brain gene expression and behavior. For example, chronic alcohol exposure produces changes in DNA and histone methylation, histone acetylation, and microRNA expression that affect expression of multiple genes in various types of brain cells (i.e., neurons and glia) and contribute to brain pathology and brain plasticity associated with alcohol abuse and dependence. Drugs targeting the epigenetic "master regulators" are emerging as potential therapeutics for neurodegenerative disorders and drug addiction.

  1. Epigenetic Control of Gene Expression in the Alcoholic Brain

    PubMed Central

    Ponomarev, Igor

    2013-01-01

    Chronic alcohol exposure causes widespread changes in brain gene expression in humans and animal models. Many of these contribute to cellular adaptations that ultimately lead to behavioral tolerance and alcohol dependence. There is an emerging appreciation for the role of epigenetic processes in alcohol-induced changes in brain gene expression and behavior. For example, chronic alcohol exposure produces changes in DNA and histone methylation, histone acetylation, and microRNA expression that affect expression of multiple genes in various types of brain cells (i.e., neurons and glia) and contribute to brain pathology and brain plasticity associated with alcohol abuse and dependence. Drugs targeting the epigenetic “master regulators” are emerging as potential therapeutics for neurodegenerative disorders and drug addiction. PMID:24313166

  2. Estrogen Signaling Multiple Pathways to Impact Gene Transcription

    PubMed Central

    Marino, Maria; Galluzzo, Paola; Ascenzi, Paolo

    2006-01-01

    Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge. PMID:18369406

  3. Gene expression correlates of unexplained fatigue.

    PubMed

    Whistler, Toni; Taylor, Renee; Craddock, R Cameron; Broderick, Gordon; Klimas, Nancy; Unger, Elizabeth R

    2006-04-01

    Quantitative trait analysis (QTA) can be used to test whether the expression of a particular gene significantly correlates with some ordinal variable. To limit the number of false discoveries in the gene list, a multivariate permutation test can also be performed. The purpose of this study is to identify peripheral blood gene expression correlates of fatigue using quantitative trait analysis on gene expression data from 20,000 genes and fatigue traits measured using the multidimensional fatigue inventory (MFI). A total of 839 genes were statistically associated with fatigue measures. These mapped to biological pathways such as oxidative phosphorylation, gluconeogenesis, lipid metabolism, and several signal transduction pathways. However, more than 50% are not functionally annotated or associated with identified pathways. There is some overlap with genes implicated in other studies using differential gene expression. However, QTA allows detection of alterations that may not reach statistical significance in class comparison analyses, but which could contribute to disease pathophysiology. This study supports the use of phenotypic measures of chronic fatigue syndrome (CFS) and QTA as important for additional studies of this complex illness. Gene expression correlates of other phenotypic measures in the CFS Computational Challenge (C3) data set could be useful. Future studies of CFS should include as many precise measures of disease phenotype as is practical.

  4. Decreased Gene Expressions of Insulin Signal Molecules in Canine Hyperadrenocorticism

    PubMed Central

    NOZAWA, Satoshi; ODA, Hitomi; AKIYAMA, Ran; UEDA, Kaori; SAEKI, Kaori; SHONO, Saori; MARUYAMA, Natsuki; MURATA, Atsuki; TAZAKI, Hiroyuki; MORI, Akihiro; MOMOTA, Yutaka; AZAKAMI, Daigo; SAKO, Toshinori; ISHIOKA, Katsumi

    2014-01-01

    ABSTRACT Hyperadrenocorticism (HAC) is a common endocrine disorder in dogs, in which excess glucocorticoid causes insulin resistance. Disturbance of insulin action may be caused by multiple factors, including transcriptional modulation of insulin signal molecules which lie downstream of insulin binding to insulin receptors. In this study, gene expressions of insulin signal molecules were examined using neutrophils of the HAC dogs (the untreated dogs and the dogs which had been treated with trilostane). Insulin receptor substrate (IRS)-1, IRS-2, phosphatidylinositol 3-kinase (PI3-K), protein kinase B/Akt kinase (Akt)-2 and protein kinase C (PKC)-lambda were analyzed in the HAC dogs and compared with those from normal dogs. The IRS-1 gene expressions decreased by 37% and 35% of the control dogs in the untreated and treated groups, respectively. The IRS-2 gene expressions decreased by 61% and 72%, the PI3-K gene expressions decreased by 47% and 55%, and the Akt-2 gene expressions decreased by 45% and 56% of the control dogs, similarly. Collectively, gene expressions of insulin signal molecules are suppressed in the HAC dogs, which may partially contribute to the induction of insulin resistance. PMID:24829079

  5. Noise Minimisation in Gene Expression Switches

    PubMed Central

    Monteoliva, Diana; McCarthy, Christina B.; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators. PMID:24376783

  6. Noise minimisation in gene expression switches.

    PubMed

    Monteoliva, Diana; McCarthy, Christina B; Diambra, Luis

    2013-01-01

    Gene expression is subject to stochastic variation which leads to fluctuations in the rate of protein production. Recently, a study in yeast at a genomic scale showed that, in some cases, gene expression variability alters phenotypes while, in other cases, these remain unchanged despite fluctuations in the expression of other genes. These studies suggested that noise in gene expression is a physiologically relevant trait and, to prevent harmful stochastic variation in the expression levels of some genes, it can be subject to minimisation. However, the mechanisms for noise minimisation are still unclear. In the present work, we analysed how noise expression depends on the architecture of the cis-regulatory system, in particular on the number of regulatory binding sites. Using analytical calculations and stochastic simulations, we found that the fluctuation level in noise expression decreased with the number of regulatory sites when regulatory transcription factors interacted with only one other bound transcription factor. In contrast, we observed that there was an optimal number of binding sites when transcription factors interacted with many bound transcription factors. This finding suggested a new mechanism for preventing large fluctuations in the expression of genes which are sensitive to the concentration of regulators.

  7. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  8. Nucleosome repositioning underlies dynamic gene expression

    PubMed Central

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-01-01

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  9. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  10. Regulation of Flagellar Gene Expression in Bacteria.

    PubMed

    Osterman, I A; Dikhtyar, Yu Yu; Bogdanov, A A; Dontsova, O A; Sergiev, P V

    2015-11-01

    The flagellum of a bacterium is a supramolecular structure of extreme complexity comprising simultaneously both a unique system of protein transport and a molecular machine that enables the bacterial cell movement. The cascade of expression of genes encoding flagellar components is closely coordinated with the steps of molecular machine assembly, constituting an amazing regulatory system. Data on structure, assembly, and regulation of flagellar gene expression are summarized in this review. The regulatory mechanisms and correlation of the process of regulation of gene expression and flagellum assembly known from the literature are described. PMID:26615435

  11. Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation

    PubMed Central

    Abuisneineh, Fida; Fahrenbach, John P.; Zhang, Yuan; MacLeod, Heather; Dellefave, Lisa; Pytel, Peter; Selig, Sara; Labno, Christine M.; Reddy, Karen; Singh, Harinder; McNally, Elizabeth

    2010-01-01

    Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered. PMID:21179469

  12. Risk of Type 1 Diabetes Progression in Islet Autoantibody-Positive Children Can Be Further Stratified Using Expression Patterns of Multiple Genes Implicated in Peripheral Blood Lymphocyte Activation and Function

    PubMed Central

    Jin, Yulan; Sharma, Ashok; Bai, Shan; Davis, Colleen; Liu, Haitao; Hopkins, Diane; Barriga, Kathy

    2014-01-01

    There is tremendous scientific and clinical value to further improving the predictive power of autoantibodies because autoantibody-positive (AbP) children have heterogeneous rates of progression to clinical diabetes. This study explored the potential of gene expression profiles as biomarkers for risk stratification among 104 AbP subjects from the Diabetes Autoimmunity Study in the Young (DAISY) using a discovery data set based on microarray and a validation data set based on real-time RT-PCR. The microarray data identified 454 candidate genes with expression levels associated with various type 1 diabetes (T1D) progression rates. RT-PCR analyses of the top-27 candidate genes confirmed 5 genes (BACH2, IGLL3, EIF3A, CDC20, and TXNDC5) associated with differential progression and implicated in lymphocyte activation and function. Multivariate analyses of these five genes in the discovery and validation data sets identified and confirmed four multigene models (BI, ICE, BICE, and BITE, with each letter representing a gene) that consistently stratify high- and low-risk subsets of AbP subjects with hazard ratios >6 (P < 0.01). The results suggest that these genes may be involved in T1D pathogenesis and potentially serve as excellent gene expression biomarkers to predict the risk of progression to clinical diabetes for AbP subjects. PMID:24595351

  13. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    PubMed

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  14. Modular Analysis of Peripheral Blood Gene Expression in Rheumatoid Arthritis Captures Reproducible Gene Expression Changes in TNF Responders

    PubMed Central

    Oswald, Michaela; Curran, Mark; Lamberth, Sarah; Townsend, Robert; Hamilton, Jennifer D.; Chernoff, David N.; Carulli, John; Townsend, Michael; Weinblatt, Michael; Kern, Marlena; Pond, Cassandra; Lee, Annette; Gregersen, Peter K.

    2015-01-01

    Objective To establish whether the analysis of whole blood gene expression can be useful in predicting or monitoring response to anti-TNF therapy in RA. Methods Whole blood RNA (PAXgene) was obtained at baseline and 14 weeks on three independent cohorts with a combined total of 250 patients with rheumatoid arthritis beginning anti-TNF therapy. We employed an approach to gene expression analysis that is based on gene expression “modules”. Results Good and Moderate Responders by EULAR criteria exhibited highly significant and consistent changes in multiple gene expression modules using a hyper geometric analysis after 14 weeks of therapy. Strikingly, non responders exhibited very little change in any modules, despite exposure to TNF blockade. These patterns of change were highly consistent across all three cohorts, indicating that immunological changes after TNF treatment are specific to the combination of both drug exposure and responder status. In contrast, modular patterns of gene expression did not exhibit consistent differences between responders and non-responders at baseline in the three cohorts. Conclusions These data provide evidence that using gene expression modules related to inflammatory disease may provide a valuable method for objective monitoring of the response of RA patients who are treated with TNF inhibitors. PMID:25371395

  15. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    PubMed

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-01

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes.

  16. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  17. Expression of Polarity Genes in Human Cancer

    PubMed Central

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function. PMID:25991909

  18. Optogenetic Control of Gene Expression in Drosophila

    PubMed Central

    Chan, Yick-Bun; Alekseyenko, Olga V.; Kravitz, Edward A.

    2015-01-01

    To study the molecular mechanism of complex biological systems, it is important to be able to artificially manipulate gene expression in desired target sites with high precision. Based on the light dependent binding of cryptochrome 2 and a cryptochrome interacting bHLH protein, we developed a split lexA transcriptional activation system for use in Drosophila that allows regulation of gene expression in vivo using blue light or two-photon excitation. We show that this system offers high spatiotemporal resolution by inducing gene expression in tissues at various developmental stages. In combination with two-photon excitation, gene expression can be manipulated at precise sites in embryos, potentially offering an important tool with which to examine developmental processes. PMID:26383635

  19. Expression of polarity genes in human cancer.

    PubMed

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  20. Regulation of Gene Expression in Protozoa Parasites

    PubMed Central

    Gomez, Consuelo; Esther Ramirez, M.; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A.

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis. PMID:20204171

  1. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  2. Multiclass cancer classification based on gene expression comparison

    PubMed Central

    Yang, Sitan; Naiman, Daniel Q.

    2016-01-01

    As the complexity and heterogeneity of cancer is being increasingly appreciated through genomic analyses, microarray-based cancer classification comprising multiple discriminatory molecular markers is an emerging trend. Such multiclass classification problems pose new methodological and computational challenges for developing novel and effective statistical approaches. In this paper, we introduce a new approach for classifying multiple disease states associated with cancer based on gene expression profiles. Our method focuses on detecting small sets of genes in which the relative comparison of their expression values leads to class discrimination. For an m-class problem, the classification rule typically depends on a small number of m-gene sets, which provide transparent decision boundaries and allow for potential biological interpretations. We first test our approach on seven common gene expression datasets and compare it with popular classification methods including support vector machines and random forests. We then consider an extremely large cohort of leukemia cancer to further assess its effectiveness. In both experiments, our method yields comparable or even better results to benchmark classifiers. In addition, we demonstrate that our approach can integrate pathway analysis of gene expression to provide accurate and biological meaningful classification. PMID:24918456

  3. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.

    PubMed

    Hejblum, Boris P; Skinner, Jason; Thiébaut, Rodolphe

    2015-06-01

    Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.

  4. Hygromycin-resistance vectors for gene expression in Pichia pastoris.

    PubMed

    Yang, Junjie; Nie, Lei; Chen, Biao; Liu, Yingmiao; Kong, Yimeng; Wang, Haibin; Diao, Liuyang

    2014-04-01

    Pichia pastoris is a common host organism for heterologous protein expression and metabolic engineering. Zeocin-, G418-, nourseothricin- and blasticidin-resistance genes are the only dominant selectable markers currently available for selecting P. pastoris transformants. We describe here new P. pastoris expression vectors that confer a hygromycin resistance base on the Klebsiella pneumoniae hph gene. To demonstrate the application of the vectors for intracellular and secreted protein expression, green fluorescent protein (GFP) and human serum albumin (HSA) were cloned into the vectors and transformed into P. pastoris cells. The resulting strains expressed GFP and HSA constitutively or inducibly. The hygromycin resistance marker was also suitable for post-transformational vector amplication (PTVA) for obtaining strains with high plasmid copy numbers. A strain with multiple copies of the HSA expression cassette after PTVA had increased HSA expression compared with a strain with a single copy of the plasmid. To demonstrate compatibility of the new vectors with other vectors bearing antibiotic-resistance genes, P. pastoris was transformed with the Saccharomyces cerevisiae genes GSH1, GSH2 or SAM2 on plasmids containing genes for resistance to Zeocin, G418 or hygromycin. The resulting strain produced glutathione and S-adenosyl-L-methionine at levels approximately twice those of the parent strain. The new hygromycin-resistance vectors allow greater flexibility and potential applications in recombinant protein production and other research using P. pastoris. PMID:24822243

  5. Construction of a gene-gene interaction network with a combined score across multiple approaches.

    PubMed

    Zhang, A M; Song, H; Shen, Y H; Liu, Y

    2015-01-01

    Recent progress in computational methods for inves-tigating physical and functional gene interactions has provided new insights into the complexity of biological processes. An essential part of these methods is presented visually in the form of gene interaction networks that can be valuable in exploring the mechanisms of disease. Here, a combined network based on gene pairs with an extra layer of re-liability was constructed after converting and combining the gene pair scores using a novel algorithm across multiple approaches. Four groups of kidney cancer data sets from ArrayExpress were downloaded and analyzed to identify differentially expressed genes using a rank prod-ucts analysis tool. Gene co-expression network, protein-protein interac-tion, co-occurrence network and a combined network were constructed using empirical Bayesian meta-analysis approach, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, an odds ratio formula of the cBioPortal for Cancer Genomics and a novel rank algorithm with combined score, respectively. The topological features of these networks were then compared to evaluate their performances. The results indicated that the gene pairs and their relationship rank-ings were not uniform. The values of topological parameters, such as clustering coefficient and the fitting coefficient R(2) of interaction net-work constructed using our ranked based combination score, were much greater than the other networks. The combined network had a classic small world property which transferred information quickly and displayed great resilience to the dysfunction of low-degree hubs with high-clustering and short average path length. It also followed distinct-ly a scale-free network with a higher reliability. PMID:26125911

  6. Turning publicly available gene expression data into discoveries using gene set context analysis.

    PubMed

    Ji, Zhicheng; Vokes, Steven A; Dang, Chi V; Ji, Hongkai

    2016-01-01

    Gene Set Context Analysis (GSCA) is an open source software package to help researchers use massive amounts of publicly available gene expression data (PED) to make discoveries. Users can interactively visualize and explore gene and gene set activities in 25,000+ consistently normalized human and mouse gene expression samples representing diverse biological contexts (e.g. different cells, tissues and disease types, etc.). By providing one or multiple genes or gene sets as input and specifying a gene set activity pattern of interest, users can query the expression compendium to systematically identify biological contexts associated with the specified gene set activity pattern. In this way, researchers with new gene sets from their own experiments may discover previously unknown contexts of gene set functions and hence increase the value of their experiments. GSCA has a graphical user interface (GUI). The GUI makes the analysis convenient and customizable. Analysis results can be conveniently exported as publication quality figures and tables. GSCA is available at https://github.com/zji90/GSCA. This software significantly lowers the bar for biomedical investigators to use PED in their daily research for generating and screening hypotheses, which was previously difficult because of the complexity, heterogeneity and size of the data.

  7. Gene Positioning Effects on Expression in Eukaryotes.

    PubMed

    Nguyen, Huy Q; Bosco, Giovanni

    2015-01-01

    The packaging and organization of the genome within the eukaryotic interphase nucleus directly influence how the genes are expressed. An underappreciated aspect of genome structure is that it is highly dynamic and that the physical positioning of a gene can impart control over its transcriptional status. In this review, we assess the current knowledge of how gene positioning at different levels of genome organization can directly influence gene expression during interphase. The levels of organization discussed include chromatin looping, topologically associated domains, chromosome territories, and nuclear compartments. We discuss specific studies demonstrating that gene positioning is a dynamic and highly regulated feature of the eukaryotic genome that allows for the essential spatiotemporal regulation of genes.

  8. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  9. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  10. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  11. Mechanisms of control of gene expression

    SciTech Connect

    Cullen, B.; Gage, L.P.; Siddiqui, M.A.Q.; Skalka, A.M.; Weissbach, H.

    1987-01-01

    This book examines an array of topics on the regulation of gene expression, including an examination of DNA-protein interactions and the role of oncogene proteins in normal and abnormal cellular responses. The book focuses on the control of mRNA transcription in eykaryotes and delineates other areas including gene regulation in prokaryotes and control of stable RNA synthesis.

  12. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  13. Reading Genomes and Controlling Gene Expression

    NASA Astrophysics Data System (ADS)

    Libchaber, Albert

    2000-03-01

    Molecular recognition of DNA sequences is achieved by DNA hybridization of complementary sequences. We present various scenarios for optimization, leading to microarrays and global measurement. Gene expression can be controlled using gene constructs immobilized on a template with micron scale temperature heaters. We will discuss and present results on protein microarrays.

  14. Bayesian modeling of differential gene expression.

    PubMed

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  15. Inducible gene expression in transgenic Xenopus embryos.

    PubMed

    Wheeler, G N; Hamilton, F S; Hoppler, S

    2000-07-13

    The amphibian Xenopus laevis has been successfully used for many years as a model system for studying vertebrate development. Because of technical limitations, however, molecular investigations have mainly concentrated on early stages. We have developed a straightforward method for stage-specific induction of gene expression in transgenic Xenopus embryos [1] [2]. This method is based on the Xenopus heat shock protein 70 (Xhsp70 [3]) promoter driving the expression of desired gene products. We found that ubiquitous expression of the transgene is induced upon relatively mild heat treatment. Green fluorescent protein (GFP) was used as a marker to monitor successful induction of gene expression in transgenic embryos. We used this method to study the stage specificity of Wnt signalling function. Transient ectopic Wnt-8 expression during early neurulation was sufficient to repress anterior head development and this capacity was restricted to early stages of neurulation. By transient over-expression at different stages of development, we show that frizzled-7 disrupted morphogenesis sequentially from anterior to posterior along the dorsal axis as development proceeds. These results demonstrate that this method for inducible gene expression in transgenic Xenopus embryos will be a very powerful tool for temporal analysis of gene function and for studying molecular mechanisms of vertebrate organogenesis.

  16. Assessing Gene Expression of the Endocannabinoid System.

    PubMed

    Pucci, Mariangela; D'Addario, Claudio

    2016-01-01

    Real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR), a major development of PCR technology, is a powerful and sensitive gene analysis technique that revolutionized the field of measuring gene expression. Here, we describe in detail RNA extraction, reverse transcription (RT), and relative quantification of genes belonging to the endocannabinoid system in mouse, rat, or human samples. PMID:27245909

  17. Delivery of gene-expressing fragments using quantum dot

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Manabe, Noriyoshi; Hanada, Sanshiro; Fujioka, Kouki; Yasuhara, Masato; Kondo, Akihiko; Yamamoto, Kenji

    2009-02-01

    Gene therapy is an attractive approach to supplement a deficient gene function. Although there has been some success with specific gene delivery using various methods including viral vectors and liposomes, most of these methods have a limited efficiency or also carry a risk for oncogenesis. Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. We herein report that quantum dots (QDs) conjugated with nuclear localizing signal peptides (NLSP) successfully introduced the gene-fragments with promoter elements, which promoted the expression of the enhanced green fluorescent protein (eGFP) gene in mammalian cells. The expression of eGFP protein was observed when the QD/geneconstruct was added to the culture media. The gene-expression efficiency varied depending on multiple factors around QDs, such as 1) the reading direction of gene fragments, 2) the quantity of gene fragments attached on the surface of QD-constructs, 3) the surface electronic charges varied according to the structure of QD/gene-constructs, and 4) the particle size of QD/gene complex varied according to the structure and amounts of gene fragments. Using this QD/geneconstruct system, eGFP protein could be detected 28 days after the gene-introduction whereas the fluorescence of QDs was disappeared. This system therefore provides another method for the intracellular delivery of gene-fragments without using either viral vectors or specific liposomes. These results suggest that inappropriate treatment and disposal of QDs may still have risks to the environmental pollution including human health under certain conditions. Here we propose the further research for the immune and physiological responses in not only immune cells but also other cells, in order to clear the effect of all other nanoscale products as well as nanocrystal

  18. Transient gene expression in tobacco using Gibson assembly and the Gene Gun.

    PubMed

    Mattozzi, Matthew D; Voges, Mathias J; Silver, Pamela A; Way, Jeffrey C

    2014-04-18

    In order to target a single protein to multiple subcellular organelles, plants typically duplicate the relevant genes, and express each gene separately using complex regulatory strategies including differential promoters and/or signal sequences. Metabolic engineers and synthetic biologists interested in targeting enzymes to a particular organelle are faced with a challenge: For a protein that is to be localized to more than one organelle, the engineer must clone the same gene multiple times. This work presents a solution to this strategy: harnessing alternative splicing of mRNA. This technology takes advantage of established chloroplast and peroxisome targeting sequences and combines them into a single mRNA that is alternatively spliced. Some splice variants are sent to the chloroplast, some to the peroxisome, and some to the cytosol. Here the system is designed for multiple-organelle targeting with alternative splicing. In this work, GFP was expected to be expressed in the chloroplast, cytosol, and peroxisome by a series of rationally designed 5' mRNA tags. These tags have the potential to reduce the amount of cloning required when heterologous genes need to be expressed in multiple subcellular organelles. The constructs were designed in previous work(11), and were cloned using Gibson assembly, a ligation independent cloning method that does not require restriction enzymes. The resultant plasmids were introduced into Nicotiana benthamiana epidermal leaf cells with a modified Gene Gun protocol. Finally, transformed leaves were observed with confocal microscopy.

  19. Transient gene expression in tobacco using Gibson assembly and the Gene Gun.

    PubMed

    Mattozzi, Matthew D; Voges, Mathias J; Silver, Pamela A; Way, Jeffrey C

    2014-01-01

    In order to target a single protein to multiple subcellular organelles, plants typically duplicate the relevant genes, and express each gene separately using complex regulatory strategies including differential promoters and/or signal sequences. Metabolic engineers and synthetic biologists interested in targeting enzymes to a particular organelle are faced with a challenge: For a protein that is to be localized to more than one organelle, the engineer must clone the same gene multiple times. This work presents a solution to this strategy: harnessing alternative splicing of mRNA. This technology takes advantage of established chloroplast and peroxisome targeting sequences and combines them into a single mRNA that is alternatively spliced. Some splice variants are sent to the chloroplast, some to the peroxisome, and some to the cytosol. Here the system is designed for multiple-organelle targeting with alternative splicing. In this work, GFP was expected to be expressed in the chloroplast, cytosol, and peroxisome by a series of rationally designed 5' mRNA tags. These tags have the potential to reduce the amount of cloning required when heterologous genes need to be expressed in multiple subcellular organelles. The constructs were designed in previous work(11), and were cloned using Gibson assembly, a ligation independent cloning method that does not require restriction enzymes. The resultant plasmids were introduced into Nicotiana benthamiana epidermal leaf cells with a modified Gene Gun protocol. Finally, transformed leaves were observed with confocal microscopy. PMID:24796418

  20. Comparison of melanoblast expression patterns identifies distinct classes of genes

    PubMed Central

    Loftus, Stacie K.; Baxter, Laura L.; Buac, Kristina; Watkins-Chow, Dawn E.; Larson, Denise M.; Pavan, William J.

    2010-01-01

    Summary A full understanding of transcriptional regulation requires integration of information obtained from multiple experimental datasets. These include datasets annotating gene expression within the context of an entire organism under normal and genetically perturbed conditions. Here we describe an expression dataset annotating pigment cell-expressed genes of the developing melanocyte and RPE lineages. Expression images are annotated and available at http://research.nhgri.nih.gov/manuscripts/Loftus/March2009/. Data is also summarized in a standardized manner using a universal melanoblast scoring scale that accounts for the embryonic location of cells and regional cell density. This approach allowed us to classify 14 pigment genes into 4 groupings classified by cell lineage expression, temporal-spatial context, and differential alteration in response to altered MITF and SOX10 status. Significant differences in regional populations were also observed across inbred strain backgrounds highlighting the value of this approach to identify modifier allele influences on melanoblast number and distributions. This analysis revealed novel features of in vivo expression patterns that are not measurable by in vitro-based assays, providing data that in combination with genomic analyses will allow modeling of pigment cell gene expression in development and disease. PMID:19493314

  1. Validation of Suitable Reference Genes for Quantitative Gene Expression Analysis in Panax ginseng

    PubMed Central

    Wang, Meizhen; Lu, Shanfa

    2016-01-01

    Reverse transcription-qPCR (RT-qPCR) has become a popular method for gene expression studies. Its results require data normalization by housekeeping genes. No single gene is proved to be stably expressed under all experimental conditions. Therefore, systematic evaluation of reference genes is necessary. With the aim to identify optimum reference genes for RT-qPCR analysis of gene expression in different tissues of Panax ginseng and the seedlings grown under heat stress, we investigated the expression stability of eight candidate reference genes, including elongation factor 1-beta (EF1-β), elongation factor 1-gamma (EF1-γ), eukaryotic translation initiation factor 3G1 (IF3G1), eukaryotic translation initiation factor 3B (IF3B), actin (ACT), actin11 (ACT11), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and cyclophilin ABH-like protein (CYC), using four widely used computational programs: geNorm, Normfinder, BestKeeper, and the comparative ΔCt method. The results were then integrated using the web-based tool RefFinder. As a result, EF1-γ, IF3G1, and EF1-β were the three most stable genes in different tissues of P. ginseng, while IF3G1, ACT11, and GAPDH were the top three-ranked genes in seedlings treated with heat. Using three better reference genes alone or in combination as internal control, we examined the expression profiles of MAR, a multiple function-associated mRNA-like non-coding RNA (mlncRNA) in P. ginseng. Taken together, we recommended EF1-γ/IF3G1 and IF3G1/ACT11 as the suitable pair of reference genes for RT-qPCR analysis of gene expression in different tissues of P. ginseng and the seedlings grown under heat stress, respectively. The results serve as a foundation for future studies on P. ginseng functional genomics. PMID:26793228

  2. The core promoter: At the heart of gene expression.

    PubMed

    Danino, Yehuda M; Even, Dan; Ideses, Diana; Juven-Gershon, Tamar

    2015-08-01

    The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.

  3. The Medicago truncatula gene expression atlas web server

    PubMed Central

    2009-01-01

    Background Legumes (Leguminosae or Fabaceae) play a major role in agriculture. Transcriptomics studies in the model legume species, Medicago truncatula, are instrumental in helping to formulate hypotheses about the role of legume genes. With the rapid growth of publically available Affymetrix GeneChip Medicago Genome Array GeneChip data from a great range of tissues, cell types, growth conditions, and stress treatments, the legume research community desires an effective bioinformatics system to aid efforts to interpret the Medicago genome through functional genomics. We developed the Medicago truncatula Gene Expression Atlas (MtGEA) web server for this purpose. Description The Medicago truncatula Gene Expression Atlas (MtGEA) web server is a centralized platform for analyzing the Medicago transcriptome. Currently, the web server hosts gene expression data from 156 Affymetrix GeneChip® Medicago genome arrays in 64 different experiments, covering a broad range of developmental and environmental conditions. The server enables flexible, multifaceted analyses of transcript data and provides a range of additional information about genes, including different types of annotation and links to the genome sequence, which help users formulate hypotheses about gene function. Transcript data can be accessed using Affymetrix probe identification number, DNA sequence, gene name, functional description in natural language, GO and KEGG annotation terms, and InterPro domain number. Transcripts can also be discovered through co-expression or differential expression analysis. Flexible tools to select a subset of experiments and to visualize and compare expression profiles of multiple genes have been implemented. Data can be downloaded, in part or full, in a tabular form compatible with common analytical and visualization software. The web server will be updated on a regular basis to incorporate new gene expression data and genome annotation, and is accessible at: http://bioinfo.noble.org/gene

  4. Expression study of the Norrie disease (NDP) gene

    SciTech Connect

    Chen, Z.Y.; Battinelli, E.M.; Breakefield, X.O.

    1994-09-01

    Norrie disease is a severe X-linked recessive neurological disorder of unknown pathogenesis. Typically, Norrie disease is characterized by congenital blindness with progressive loss of hearing; over half of Norrie patients also manifest different degrees of mental retardation. The gene for Norrie disease (NDP) comprises three exons, with the first exon being untranslated. The open reading frame is confined within exons 2 and 3. The mouse NDP gene has essentially the same structure as the human. In order to determine the expression pattern of the NDP gene, RT-PCR was performed on mRNAs isolated from brain, retina, cochlea, and liver tissues of mice at different developmental stages. Transcripts were detected in all tissues at all times. This result, however, is different from the results we obtained from human tissue in which all tissues examined showed expression of the NDP gene with the exception of liver. We further analyzed the transcription initiation sites of the mouse NDP gene by random amplification of cDNA ends (RACE) method. The results showed that there are multiple transcription initiation sites associated with the expression of the NDP gene. The transcription start sites are utilized differentially in the tissues at different developmental stages. By using different intronic genomic fragments, we detected a possible second transcript which does not include the untranslated first exon. Northern analysis also revealed that there are at least two abundant transcripts associated with the NDP gene in brain. The results suggest that both multiple transcription initiation sites and different promoters may contribute to the expression of the NDP gene in different tissues during development.

  5. Modeling gene expression in time and space.

    PubMed

    Rué, Pau; Garcia-Ojalvo, Jordi

    2013-01-01

    Cell populations rarely exhibit gene-expression profiles that are homogeneous in time and space. In the temporal domain, dynamical behaviors such as oscillations and pulses of protein production pervade cell biology, underlying phenomena as diverse as circadian rhythmicity, cell cycle control, stress and damage responses, and stem-cell pluripotency. In multicellular populations, spatial heterogeneities are crucial for decision making and development, among many other functions. Cells need to exquisitely coordinate this temporal and spatial variation to survive. Although the spatiotemporal character of gene expression is challenging to quantify experimentally at the level of individual cells, it is beneficial from the modeling viewpoint, because it provides strong constraints that can be probed by theoretically analyzing mathematical models of candidate gene and protein circuits. Here, we review recent examples of temporal dynamics and spatial patterning in gene expression to show how modeling such phenomenology can help us unravel the molecular mechanisms of cellular function.

  6. Probing cell-free gene expression noise in femtoliter volumes.

    PubMed

    Karig, David K; Jung, Seung-Yong; Srijanto, Bernadeta; Collier, C Patrick; Simpson, Michael L

    2013-09-20

    Cell-free systems offer a simplified and flexible context that enables important biological reactions while removing complicating factors such as fitness, division, and mutation that are associated with living cells. However, cell-free expression in unconfined spaces is missing important elements of expression in living cells. In particular, the small volume of living cells can give rise to significant stochastic effects, which are negligible in bulk cell-free reactions. Here, we confine cell-free gene expression reactions to cell-relevant 20 fL volumes (between the volumes of Escherichia coli and Saccharomyces cerevisiae ), in polydimethylsiloxane (PDMS) containers. We demonstrate that expression efficiency varies widely among different containers, likely due to non-Poisson distribution of expression machinery at the observed scale. Previously, this phenomenon has been observed only in liposomes. In addition, we analyze gene expression noise. This analysis is facilitated by our use of cell-free systems, which allow the mapping of the measured noise properties to intrinsic noise models. In contrast, previous live cell noise analysis efforts have been complicated by multiple noise sources. Noise analysis reveals signatures of translational bursting, while noise dynamics suggest that overall cell-free expression is limited by a diminishing translation rate. In addition to offering a unique approach to understanding noise in gene circuits, our work contributes to a deeper understanding of the biophysical properties of cell-free expression systems, thus aiding efforts to harness cell-free systems for synthetic biology applications.

  7. Introduction to the Gene Expression Analysis.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  8. Thyroid-specific gene expression in chondrocytes.

    PubMed

    Endo, Toyoshi; Kobayashi, Tetsuro

    2011-12-16

    Previously, we demonstrated that Runx2 (Cbfa1/AML3), a chondrocyte-specific transcription factor, is expressed in thyroid glands of mice, where it stimulates expression of the thyroglobulin (Tg) gene. Here, we reverse transcribed thyroid transcription factor-1 (TTF-1), Pax-8, Tg, thyroid peroxidase (TPO) and Na(+)/I(-) symporter (NIS) cDNAs from mouse trachea and bronchus RNA samples, but were unable to recover these cDNAs from mouse liver RNA samples. Tg mRNA levels in trachea and bronchus were about 5.1% and 2.1% of those in thyroid glands. ATDC-5 cells, cultured chondrocytes, expressed about 30-fold more Tg mRNA than undifferentiated cells. Gel shift and Tg gene reporter assay revealed that TTF-1 stimulated Tg gene expression in these cells. These results indicate that chondrocytes turn on some aspects of the thyroid gene expression program and that TTF-1 plays important roles in Tg gene expression in chondrocyte. PMID:21945616

  9. Regulation of gene expression in human tendinopathy

    PubMed Central

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  10. Intergrin gene expression profiles of humanhepatocellular carcinoma

    PubMed Central

    Liu, Lian-Xin; Jiang, Hong-Chi; Liu, Zhi-Hua; Zhou, Jing; Zhang, Wei-Hui; Zhu, An-Long; Wang, Xiu-Qin; Wu, Min

    2002-01-01

    AIM: To investigate gene expression profiles of intergrin genes in hepatocellular carcinoma (HCC) through the usage of Atlas Human Cancer Array membranes, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Northern blot. METHODS: Hybridization of cDNA array membrane was performed with α 32P-labeled cDNA probes synthesized from RNA isolated from hepatocellular carcinoma and adjacent non-cirrhotic liver. AtlasImage, which is a software specific to array, was used to analyze the result. RT-PCR of 24 pairs specimen and Northern blot of 4 pairs specimen were used to confirm the expression pattern of some intergrin genes identified by Atlas arrays hybridization. RESULTS: Among 588 genes spotted in membrane, 17 genes were related to intergrin. Four genes were up-regulated, such as intergrin alpha8, beta1, beta7 and beta8 in HCC. Whereas there were no genes down-regulated in HCC. RT-PCR and Northern blot analysis of intergrin beta1 gene gave results consistent with cDNA array findings. CONCLUSION: Investigation of these intergrin genes should help to disclose the molecular mechanism of the cell adhesion, invasive and metastasis of HCC. A few genes are reported to have changed in HCC for the first time. The quick and high-throughout method of profiling gene expression by cDNA array provides us overview of key factors that may involved in HCC, and may find the clue of the study of HCC metastasis and molecular targets of anti-metastasis therapy. The precise relationship between the altered genes and HCC is a matter of further investigation. PMID:12174369

  11. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  12. Soybean physiology and gene expression during drought.

    PubMed

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  13. Inference of gene regulatory subnetworks from time course gene expression data

    PubMed Central

    2012-01-01

    Background Identifying gene regulatory network (GRN) from time course gene expression data has attracted more and more attentions. Due to the computational complexity, most approaches for GRN reconstruction are limited on a small number of genes and low connectivity of the underlying networks. These approaches can only identify a single network for a given set of genes. However, for a large-scale gene network, there might exist multiple potential sub-networks, in which genes are only functionally related to others in the sub-networks. Results We propose the network and community identification (NCI) method for identifying multiple subnetworks from gene expression data by incorporating community structure information into GRN inference. The proposed algorithm iteratively solves two optimization problems, and can promisingly be applied to large-scale GRNs. Furthermore, we present the efficient Block PCA method for searching communities in GRNs. Conclusions The NCI method is effective in identifying multiple subnetworks in a large-scale GRN. With the splitting algorithm, the Block PCA method shows a promosing attempt for exploring communities in a large-scale GRN. PMID:22901088

  14. Expression of GITR Enhances Multiple Myeloma Cell Sensitivity to Bortezomib.

    PubMed

    Zhao, Yinghao; Zhang, Kun; Li, Guangquan; Zhang, Xingyi; Shi, Donglei

    2015-01-01

    Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice. In conclusion, we demonstrated that GITR expression can enhance the sensitivity to Bortezomib by inhibiting Bortezomib-induced NF-κB activation.

  15. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi.

    PubMed

    Afkhami, Michelle E; Stinchcombe, John R

    2016-10-01

    While all species interact with multiple mutualists, the fitness consequences and molecular mechanisms underlying these interactions remain largely unknown. We combined factorial ecological experiments with genomewide expression analyses to examine the phenotypic and transcriptomic responses of model legume Medicago truncatula to rhizobia and mycorrhizal fungi. We found synergistic effects of these mutualists on plant performance and examined unique features of plant gene expression responses to multiple mutualists. There were genomewide signatures of mutualists and multiple mutualists on expression, with partners often affecting unique sets of genes. Mycorrhizal fungi had stronger effects on plant expression than rhizobia, with 70% of differentially expressed genes affected by fungi. Fungal and bacterial mutualists had joint effects on 10% of differentially expressed genes, including unexpected, nonadditive effects on some genes with important functions such as nutrient metabolism. For a subset of genes, interacting with multiple mutualists even led to reversals in the direction of expression (shifts from up to downregulation) compared to interacting with single mutualists. Rhizobia also affected the expression of several mycorrhizal genes, including those involved in nutrient transfer to host plants, indicating that partner species can also impact each other's molecular phenotypes. Collectively, these data illustrate the diverse molecular mechanisms and transcriptional responses associated with the synergistic benefits of multiple mutualists.

  16. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi.

    PubMed

    Afkhami, Michelle E; Stinchcombe, John R

    2016-10-01

    While all species interact with multiple mutualists, the fitness consequences and molecular mechanisms underlying these interactions remain largely unknown. We combined factorial ecological experiments with genomewide expression analyses to examine the phenotypic and transcriptomic responses of model legume Medicago truncatula to rhizobia and mycorrhizal fungi. We found synergistic effects of these mutualists on plant performance and examined unique features of plant gene expression responses to multiple mutualists. There were genomewide signatures of mutualists and multiple mutualists on expression, with partners often affecting unique sets of genes. Mycorrhizal fungi had stronger effects on plant expression than rhizobia, with 70% of differentially expressed genes affected by fungi. Fungal and bacterial mutualists had joint effects on 10% of differentially expressed genes, including unexpected, nonadditive effects on some genes with important functions such as nutrient metabolism. For a subset of genes, interacting with multiple mutualists even led to reversals in the direction of expression (shifts from up to downregulation) compared to interacting with single mutualists. Rhizobia also affected the expression of several mycorrhizal genes, including those involved in nutrient transfer to host plants, indicating that partner species can also impact each other's molecular phenotypes. Collectively, these data illustrate the diverse molecular mechanisms and transcriptional responses associated with the synergistic benefits of multiple mutualists. PMID:27543961

  17. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  18. Influence of gene copy number on self-regulated gene expression.

    PubMed

    Jędrak, Jakub; Ochab-Marcinek, Anna

    2016-11-01

    Using an analytically solvable stochastic model, we study the properties of a simple genetic circuit consisting of multiple copies of a self-regulating gene. We analyse how the variation in gene copy number and the mutations changing the auto-regulation strength affect the steady-state distribution of protein concentration. We predict that one-reporter assay, an experimental method where the extrinsic noise level is inferred from the comparison of expression variance of a single and duplicated reporter gene, may give an incorrect estimation of the extrinsic noise contribution when applied to self-regulating genes. We also show that an imperfect duplication of an auto-activated gene, changing the regulation strength of one of the copies, may lead to a hybrid, binary+graded response of these genes to external signal. The analysis of relative changes in mean gene expression before and after duplication suggests that evolutionary accumulation of gene duplications may, at a given mean burst size, non-trivially depend on the inherent noisiness of a given gene, quantified by the inverse of the maximal mean frequency of bursts. Moreover, we find that the dependence of gene expression noise on gene copy number and auto-regulation strength may qualitatively differ, e.g. in monotonicity, depending on whether the noise is measured by Fano factor or coefficient of variation. Thus, experimentally-based hypotheses linking gene expression noise and evolutionary optimisation in the context of gene copy number variation may be ambiguous as they are dependent on the particular function chosen to quantify noise. PMID:27528448

  19. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  20. [Expression and regulation of the SOST gene].

    PubMed

    Qin, Long-Juan; Ding, Da-Xia; Cui, Lu-Lu; Huang, Qing-Yang

    2013-08-01

    Sclerostin(SOST), mainly expressed in osteocytes, is a negative regulator of bone formation. Hormones PTH and E2 inhibit the expression of the SOST gene. Transcription factors Osterix, Runx2, and Mef2c promote the SOST expression, while Sirt1 negatively regulates the SOST expression. In addition, the expression of the SOST gene is regulated by epigenetic mechanisms, such as DNA methylation and microRNA. Mutations in the SOST gene, which cause sclerosteosis and Van Buchem diseases, are associated with osteoporosis. Wnt and BMP are two important signaling pathways in bone metabolic regulation. SOST can regulate osteoblastic differentiation and bone formation by binding type I/II receptors and co-receptor LRP5/6 to inhibit BMP and Wnt signaling pathways. Suppression of SOST provides a new approach for osteoporosis treatment. This review covers the structure, function and expression regulation of the SOST gene, human disease association, mechanism in the regulation of bone metabolism and prospect in clinical application.

  1. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  2. Adaptation of muscle gene expression to changes in contractile activity

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Babij, P.; Thomason, D. B.; Wong, T. S.; Morrison, P. R.

    1987-01-01

    A review of the existing literature regarding the effects of different types of physical activities on the gene expression of adult skeletal muscles leads us to conclude that each type of exercise training program has, as a result, a different phenotype, which means that there are multiple mechanisms, each producing a unique phenotype. A portion of the facts which support this position is presented and interpreted here. [Abstract translated from the original French by NASA].

  3. Changes in Gene Expression in Human Meibomian Gland Dysfunction

    PubMed Central

    Liu, Shaohui; Richards, Stephen M.; Lo, Kristine; Hatton, Mark; Fay, Aaron

    2011-01-01

    Purpose. Meibomian gland dysfunction (MGD) may be the leading cause of dry eye syndrome throughout the world. However, the precise mechanism(s) underlying the pathogenesis of this disease is unclear. This study was conducted to identify meibomian gland genes that may promote the development and/or progression of human MGD. Methods. Lid tissues were obtained from male and female MGD patients and age-matched controls after eyelid surgeries (e.g., to correct entropion or ectropion). Meibomian glands were isolated and processed for RNA extraction and the analysis of gene expression. Results. The results show that MGD is associated with significant alterations in the expression of almost 400 genes in the human meibomian gland. The levels of 197 transcripts, including those encoding various small proline-rich proteins and S100 calcium-binding proteins, are significantly increased, whereas the expression of 194 genes, such as claudin 3 and cell adhesion molecule 1, is significantly decreased. These changes, which cannot be accounted for by sex differences, are accompanied by alterations in many gene ontologies (e.g., keratinization, cell cycle, and DNA repair). The findings also show that the human meibomian gland contains several highly expressed genes that are distinct from those in an adjacent tissue (i.e., conjunctival epithelium). Conclusions. The results demonstrate that MGD is accompanied by multiple changes in gene expression in the meibomian gland. The nature of these alterations, including the upregulation of genes encoding small proline-rich proteins and S100 calcium-binding proteins, suggest that keratinization plays an important role in the pathogenesis of MGD. PMID:21372006

  4. Transcriptional regulation of human thromboxane synthase gene expression

    SciTech Connect

    Lee, K.D.; Baek, S.J.; Fleischer, T

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  5. Visual Exploration of Three-dimensional Gene Expression Using Physical Views and Linked Abstract Views

    PubMed Central

    Weber, Gunther H.; Rübel, Oliver; Huang, Min-Yu; DePace, Angela H.; Fowlkes, Charless C.; Keränen, Soile V. E.; Luengo Hendriks, Cris L.; Hagen, Hans; Knowles, David W.; Malik, Jitendra; Biggin, Mark D.; Hamann, Bernd

    2011-01-01

    During animal development, complex patterns of gene expression provide positional information within the embryo. To better understand the underlying gene regulatory networks, the Berkeley Drosophila Transcription Network Project (BDTNP) has developed methods that support quantitative computational analysis of three-dimensional (3D) gene expression in early Drosophila embryos at cellular resolution. We introduce PointCloudXplore, an interactive visualization tool that supports visual exploration of relationships between different genes’ expression using a combination of established visualization techniques. Two aspects of gene expression are of particular interest: (i) gene expression patterns defined by the spatial locations of cells expressing a gene, and (ii) relationships between the expression levels of multiple genes. PointCloudXplore provides users with two corresponding classes of data views: (i) Physical Views based on the spatial relationships of cells in the embryo, and (ii) Abstract Views that discard spatial information and plot expression levels of multiple genes with respect to each other. Cell Selectors highlight data associated with subsets of embryo cells within a View. Using linking, these selected cells can be viewed in multiple representations. We describe PCX as a 3D gene expression visualization tool and provide examples of how it has been used by BDTNP biologists to generate new hypotheses. PMID:19407353

  6. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  7. Inducible gene expression systems for plants.

    PubMed

    Borghi, Lorenzo

    2010-01-01

    Several systems for induction of transgene expression in plants have been described recently. Inducible systems were used mainly in tobacco, rice, Arabidopsis, tomato, and maize. Inducible systems offer researchers the possibility to deregulate gene expression levels at particular stages of plant development and in particular tissues of interest. The more precise temporal and spatial control, obtained by providing the transgenic plant with the appropriate chemical compound or treatment, permits to analyze also the function of those genes required for plant viability. In addition, inducible systems allow promoting local changes in gene expression levels without causing gross alterations to the whole plant development. Here, protocols will be presented to work with five different inducible systems: AlcR/AlcA (ethanol inducible); GR fusions, GVG, and pOp/LhGR (dexamethasone inducible); XVE/OlexA (beta-estradiol inducible); and heat shock induction. PMID:20734254

  8. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  9. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  10. Comparative gene expression profiling by oligonucleotide fingerprinting.

    PubMed Central

    Meier-Ewert, S; Lange, J; Gerst, H; Herwig, R; Schmitt, A; Freund, J; Elge, T; Mott, R; Herrmann, B; Lehrach, H

    1998-01-01

    The use of hybridisation of synthetic oligonucleotides to cDNAs under high stringency to characterise gene sequences has been demonstrated by a number of groups. We have used two cDNA libraries of 9 and 12 day mouse embryos (24 133 and 34 783 clones respectively) in a pilot study to characterise expressed genes by hybridisation with 110 hybridisation probes. We have identified 33 369 clusters of cDNA clones, that ranged in representation from 1 to 487 copies (0.7%). 737 were assigned to known rodent genes, and a further 13 845 showed significant homologies. A total of 404 clusters were identified as significantly differentially represented (P < 0.01) between the two cDNA libraries. This study demonstrates the utility of the fingerprinting approach for the generation of comparative gene expression profiles through the analysis of cDNAs derived from different biological materials. PMID:9547283

  11. Disease-specific classification using deconvoluted whole blood gene expression.

    PubMed

    Wang, Li; Oh, William K; Zhu, Jun

    2016-01-01

    Blood-based biomarker assays have an advantage in being minimally invasive. Diagnostic and prognostic models built on peripheral blood gene expression have been reported for various types of disease. However, most of these studies focused on only one disease type, and failed to address whether the identified gene expression signature is disease-specific or more widely applicable across diseases. We conducted a meta-analysis of 46 whole blood gene expression datasets covering a wide range of diseases and physiological conditions. Our analysis uncovered a striking overlap of signature genes shared by multiple diseases, driven by an underlying common pattern of cell component change, specifically an increase in myeloid cells and decrease in lymphocytes. These observations reveal the necessity of building disease-specific classifiers that can distinguish different disease types as well as normal controls, and highlight the importance of cell component change in deriving blood gene expression based models. We developed a new strategy to develop blood-based disease-specific models by leveraging both cell component changes and cell molecular state changes, and demonstrate its superiority using independent datasets. PMID:27596246

  12. Temporal patterns of gene expression during calyx of held development.

    PubMed

    Kolson, Douglas R; Wan, Jun; Wu, Jonathan; Dehoff, Marlin; Brandebura, Ashley N; Qian, Jiang; Mathers, Peter H; Spirou, George A

    2016-02-01

    Relating changes in gene expression to discrete developmental events remains an elusive challenge in neuroscience, in part because most neural territories are comprised of multiple cell types that mature over extended periods of time. The medial nucleus of the trapezoid body (MNTB) is an attractive vertebrate model system that contains a nearly homogeneous population of neurons, which are innervated by large glutamatergic nerve terminals called calyces of Held (CH). Key steps in maturation of CHs and MNTB neurons, including CH growth and competition, occur very quickly for most cells between postnatal days (P)2 and P6. Therefore, we characterized genome-wide changes in this system, with dense temporal sampling during the first postnatal week. We identified 541 genes whose expression changed significantly between P0-6 and clustered them into eight groups based on temporal expression profiles. Candidate genes from each of the eight profile groups were validated in separate samples by qPCR. Our tissue sample permitted comparison of known glial and neuronal transcripts and revealed that monotonically increasing or decreasing expression profiles tended to be associated with glia and neurons, respectively. Gene ontology revealed enrichment of genes involved in axon pathfinding, cell differentiation, cell adhesion and extracellular matrix. The latter category included elements of perineuronal nets, a prominent feature of MNTB neurons that is morphologically distinct by P6, when CH growth and competition are resolved onto nearly all MNTB neurons. These results provide a genetic framework for investigation of general mechanisms responsible for nerve terminal growth and maturation.

  13. Disease-specific classification using deconvoluted whole blood gene expression

    PubMed Central

    Wang, Li; Oh, William K.; Zhu, Jun

    2016-01-01

    Blood-based biomarker assays have an advantage in being minimally invasive. Diagnostic and prognostic models built on peripheral blood gene expression have been reported for various types of disease. However, most of these studies focused on only one disease type, and failed to address whether the identified gene expression signature is disease-specific or more widely applicable across diseases. We conducted a meta-analysis of 46 whole blood gene expression datasets covering a wide range of diseases and physiological conditions. Our analysis uncovered a striking overlap of signature genes shared by multiple diseases, driven by an underlying common pattern of cell component change, specifically an increase in myeloid cells and decrease in lymphocytes. These observations reveal the necessity of building disease-specific classifiers that can distinguish different disease types as well as normal controls, and highlight the importance of cell component change in deriving blood gene expression based models. We developed a new strategy to develop blood-based disease-specific models by leveraging both cell component changes and cell molecular state changes, and demonstrate its superiority using independent datasets. PMID:27596246

  14. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi

    PubMed Central

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C.; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-01-01

    Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  15. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  16. Gene expression profile of Clonorchis sinensis metacercariae.

    PubMed

    Cho, Pyo Yun; Kim, Tae Im; Whang, Seong Man; Hong, Sung-Jong

    2008-01-01

    Clonorchis sinensis develop through miracidium, sporocyst, redia, cercaria, and metacercaria stages before becoming egg-laying adult flukes. The authors undertook this analysis of gene expression profiles during developmental stages to increase our understanding of the biology of C. sinensis and of host-parasite relationships. From a C. sinensis metacercariae complementary deoxyribonucleic acid library, 419 expressed sequence tags (ESTs) of average length of 668 bp were collected and assembled into 322 genes containing 70 clusters and 252 singletons. The genes were annotated using BLAST searches and categorized into ten major functional categories. Genes expressed abundantly were those of proteases and metabolic, transcription, and translation housekeeping proteins. Genes expressed higher in C. sinensis metacercariae than in adults coded structural and cytoskeletal proteins, transcription and translation machinery proteins, and energy metabolism-related proteins. This EST information supports the notion that C. sinensis metacercariae in fish hosts have a physiology and metabolism that is quite different from that of its adult form in mammals. PMID:17924144

  17. Optogenetics for gene expression in mammalian cells.

    PubMed

    Müller, Konrad; Naumann, Sebastian; Weber, Wilfried; Zurbriggen, Matias D

    2015-02-01

    Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.

  18. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  19. Genes Expressed in Human Tumor Endothelium

    NASA Astrophysics Data System (ADS)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  20. Chromatin modifications remodel cardiac gene expression.

    PubMed

    Mathiyalagan, Prabhu; Keating, Samuel T; Du, Xiao-Jun; El-Osta, Assam

    2014-07-01

    Signalling and transcriptional control involve precise programmes of gene activation and suppression necessary for cardiovascular physiology. Deep sequencing of DNA-bound transcription factors reveals a remarkable complexity of co-activators or co-repressors that serve to alter chromatin modification and regulate gene expression. The regulated complexes characterized by genome-wide mapping implicate the recruitment and exchange of proteins with specific enzymatic activities that include roles for histone acetylation and methylation in key developmental programmes of the heart. As for transcriptional changes in response to pathological stress, co-regulatory complexes are also differentially utilized to regulate genes in cardiac disease. Members of the histone deacetylase (HDAC) family catalyse the removal of acetyl groups from proteins whose pharmacological inhibition has profound effects preventing heart failure. HDACs interact with a complex co-regulatory network of transcription factors, chromatin-remodelling complexes, and specific histone modifiers to regulate gene expression in the heart. For example, the histone methyltransferase (HMT), enhancer of zeste homolog 2 (Ezh2), is regulated by HDAC inhibition and associated with pathological cardiac hypertrophy. The challenge now is to target the activity of enzymes involved in protein modification to prevent or reverse the expression of genes implicated with cardiac hypertrophy. In this review, we discuss the role of HDACs and HMTs with a focus on chromatin modification and gene function as well as the clinical treatment of heart failure. PMID:24812277

  1. Imputing gene expression from optimally reduced probe sets

    PubMed Central

    Donner, Yoni; Feng, Ting; Benoist, Christophe; Koller, Daphne

    2012-01-01

    Measuring complete gene expression profiles for a large number of experiments is costly. We propose an approach in which a small subset of probes is selected based on a preliminary set of full expression profiles. In subsequent experiments, only the subset is measured, and the missing values are imputed. We develop several algorithms to simultaneously select probes and impute missing values, and demonstrate that these probe selection for imputation (PSI) algorithms can successfully reconstruct missing gene expression values in a wide variety of applications, as evaluated using multiple metrics of biological importance. We analyze the performance of PSI methods under varying conditions, provide guidelines for choosing the optimal method based on the experimental setting, and indicate how to estimate imputation accuracy. Finally, we apply our approach to a large-scale study of immune system variation. PMID:23064520

  2. Promoter and expression studies on an Arabidopsis thaliana dehydrin gene.

    PubMed

    Rouse, D T; Marotta, R; Parish, R W

    1996-03-01

    A genomic clone of a group 2 lea/rab/dehydrin gene from Arabidopsis thaliana, Xero2/lti30, was cloned and sequenced. Promoter-GUS fusions were introduced into plants to analyse the promoter and determine expression patterns. Using root cultures, GUS expression was found to be moderately stimulated by abscisic acid (ABA), wounding, cold and dehydration. Results with an ABA-deficient mutant suggested endogenous ABA is required for these responses. Promoter deletion studies indicated multiple cis-acting elements are involved in the induction of the gene. GUS expression occurred in desiccated seeds, in all tissues of young seedlings and in roots (with the exception of the root tip), desiccated pollen grains, trichomes and the vascular tissues of leaves and stems in mature plants.

  3. Evolving gene expression: From G to E to G x E

    PubMed Central

    Hodgins-Davis, Andrea; Townsend, Jeffrey P.

    2009-01-01

    Analyses of gene expression datasets from multiple individuals and species promise to illuminate the mode of evolution of gene expression. However, complementary complexities challenge this enterprise. Characterization of the genetic variation underlying gene expression can easily be compromised by lack of environmental control. Conversely, the breadth of conclusions from studies of environmental effects have been limited by use of single strains. Controlled studies have hinted at extensive gene-by-environment interaction. Thus, both genetics and environment are key components to models of the evolution of gene expression. We review the literature on the genetics of gene expression evolution (G), the environmental response literature (E), and the literature on gene expression as a G x E interaction to make this conceptual point. PMID:19699549

  4. Hypoxia Alters Gene Expression in the Gonads of Zebrafish (Danio Rerio) Oral Presentation

    EPA Science Inventory

    Reproduction is affected by hypoxia via direct modulation of expression of steroidogenic genes, but also via multiple indirect mechanisms involved in responding th hypoxia. The concern over the expansion of hypoxic environments has led to resurfacing of interest in understanding...

  5. Hypoxia Alters Gene Expression in the Gonads of Zebrafish (Danio rerio)

    EPA Science Inventory

    Reproduction is affected by hypoxia via direct modulation of expression of steroidogenic genes, but also via multiple indirect mechanisms involved in responding to hypoxia. The concern over the expansion of hypoxic environments has led to resurfacing of interest in understanding...

  6. Control of interferon-τ gene expression by Ets-2

    PubMed Central

    Ezashi, Toshihiko; Ealy, Alan D.; Ostrowski, Michael C.; Roberts, R. Michael

    1998-01-01

    Expression of the multiple interferon-τ (IFN-τ) genes is restricted to embryonic trophectoderm of ruminant ungulate species for a few days in early pregnancy. The promoter regions of these genes are highly conserved. A proximal (bp −91 to −69) sequence has been implicated in controlling trophoblast-specific expression. Here it was used as a target for yeast one-hybrid screening of a day 13 conceptus cDNA library. Two transcription factors of the Ets family, Ets-2 and GABPα, were identified, consistent with the observation that active ovine IFN-τ genes contain a single 10-bp Ets motif (core: GGAA) in the proximal segment, whereas three known inactive ovine genes contain a mutated core motif (TGAA). Cotransfection of a promoter- (−126 to +50) luciferase reporter construct from an active gene (bovineIFN-τ1; boIFNT1) and an Ets-2 expression plasmid in human JAr cells provided up to a 30-fold increase in reporter expression, whereas promoters from inactive genes were not transactivated. GABPα alone was ineffective and had only a ≈2-fold positive effect when coexpressed with its partner GABPβ. Other Ets-related transcription factors, which were not detected in the genetic screen, also provided a range of lesser transactivation effects. Coexpression of Ets-2 and activated Ras failed to transactivate the IFNT promoter greater than Ets-2 alone in JAr cells. The presence of Ets-2 in nuclei of embryonic trophectoderm was confirmed immunocytochemically. Together, these data suggest that Ets-2 plays a role in the transient expression of the nonvirally inducible IFNT genes. PMID:9653109

  7. A negative element involved in vimentin gene expression.

    PubMed Central

    Farrell, F X; Sax, C M; Zehner, Z E

    1990-01-01

    Vimentin is one member of the intermediate filament multigene family which exhibits both tissue- and developmental stage-specific expression. In vivo, vimentin is expressed in cells of mesenchymal origin. Previously, we identified both enhancer and promoter elements in the chicken vimentin gene which regulate gene expression in a positive manner. In this report, we have identified a 40-base-pair region at -568 base pairs between the proximal and distal enhancer elements which represses transcriptional activity. This silencer region can also repress the heterologous herpes simplex virus thymidine kinase promoter, which is comparable to the vimentin promoter. In addition, the element is able to function in a position- and orientation-independent manner, and the amount of repression is increased by multiple copies. Here we show by gel retardation assays and DNase I footprinting that this region binds a protein in nuclear extracts from HeLa cells. Southwestern (DNA-protein) blot analysis indicates this protein is approximately 95 kilodaltons in size. Moreover, protein distribution and activity mimic the expression pattern of vimentin during myogenesis, i.e., protein binding increases as vimentin gene expression decreases. The silencer region shares strong sequence similarity with 5'-flanking sequences found in both the human and hamster vimentin genes and with other characterized silencer elements, including the human immunodeficiency virus long terminal repeat, rat growth hormone, chicken lysozyme, and rat insulin genes. Thus, a negative element appears to bind a 95-kilodalton protein involved in regulating the tissue-specific expression of the chicken vimentin gene. Images PMID:2325656

  8. In Vivo Programmed Gene Expression Based on Artificial Quorum Networks

    PubMed Central

    Chu, Teng; Huang, Yajun; Hou, Mingyu; Wang, Qiyao; Xiao, Jingfan; Zhang, Yuanxing

    2015-01-01

    The quorum sensing (QS) system, as a well-functioning population-dependent gene switch, has been widely applied in many gene circuits in synthetic biology. In our work, an efficient cell density-controlled expression system (QS) was established via engineering of the Vibrio fischeri luxI-luxR quorum sensing system. In order to achieve in vivo programmed gene expression, a synthetic binary regulation circuit (araQS) was constructed by assembling multiple genetic components, including the quorum quenching protein AiiA and the arabinose promoter ParaBAD, into the QS system. In vitro expression assays verified that the araQS system was initiated only in the absence of arabinose in the medium at a high cell density. In vivo expression assays confirmed that the araQS system presented an in vivo-triggered and cell density-dependent expression pattern. Furthermore, the araQS system was demonstrated to function well in different bacteria, indicating a wide range of bacterial hosts for use. To explore its potential applications in vivo, the araQS system was used to control the production of a heterologous protective antigen in an attenuated Edwardsiella tarda strain, which successfully evoked efficient immune protection in a fish model. This work suggested that the araQS system could program bacterial expression in vivo and might have potential uses, including, but not limited to, bacterial vector vaccines. PMID:25979894

  9. Gene CATCHR--gene cloning and tagging for Caenorhabditis elegans using yeast homologous recombination: a novel approach for the analysis of gene expression.

    PubMed

    Sassi, Holly E; Renihan, Stephanie; Spence, Andrew M; Cooperstock, Ramona L

    2005-01-01

    Expression patterns of gene products provide important insights into gene function. Reporter constructs are frequently used to analyze gene expression in Caenorhabditis elegans, but the sequence context of a given gene is inevitably altered in such constructs. As a result, these transgenes may lack regulatory elements required for proper gene expression. We developed Gene Catchr, a novel method of generating reporter constructs that exploits yeast homologous recombination (YHR) to subclone and tag worm genes while preserving their local sequence context. YHR facilitates the cloning of large genomic regions, allowing the isolation of regulatory sequences in promoters, introns, untranslated regions and flanking DNA. The endogenous regulatory context of a given gene is thus preserved, producing expression patterns that are as accurate as possible. Gene Catchr is flexible: any tag can be inserted at any position without introducing extra sequence. Each step is simple and can be adapted to process multiple genes in parallel. We show that expression patterns derived from Gene Catchr transgenes are consistent with previous reports and also describe novel expression data. Mutant rescue assays demonstrate that Gene Catchr-generated transgenes are functional. Our results validate the use of Gene Catchr as a valuable tool to study spatiotemporal gene expression. PMID:16254074

  10. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGES

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  11. Differential Gene Expression in HIV-Infected Individuals Following ART

    PubMed Central

    Massanella, Marta; Singhania, Akul; Beliakova-Bethell, Nadejda; Pier, Rose; Lada, Steven; White, Cory H.; Pérez-Santiago, Josué; Blanco, Julià; Richman, Douglas D.; Little, Susan J.; Woelk, Christopher H.

    2013-01-01

    Previous studies of the effect of ART on gene expression in HIV-infected individuals have identified small numbers of modulated genes. Since these studies were underpowered or cross-sectional in design, a paired analysis of peripheral blood mononuclear cells (PBMCs), isolated before and after ART, from a robust number of HIV-infected patients (N=32) was performed. Gene expression was assayed by microarray and 4,157 differentially expressed genes (DEGs) were identified following ART using multivariate permutation tests. Pathways and Gene Ontology (GO) terms over-represented for DEGs reflected the transition from a period of active virus replication before ART to one of viral suppression (e.g., repression of JAK-STAT signaling) and possible prolonged drug exposure (e.g. oxidative phosphorylation pathway) following ART. CMYC was the DEG whose product made the greatest number of interactions at the protein level in protein interaction networks (PINs), which has implications for the increased incidence of Hodgkin’s lymphoma (HL) in HIV-infected patients. The differential expression of multiple genes was confirmed by RT-qPCR including well-known drug metabolism genes (e.g., ALOX12 and CYP2S1). Targets not confirmed by RT-qPCR (i.e., GSTM2 and RPL5) were significantly confirmed by droplet digital (ddPCR), which may represent a superior method when confirming DEGs with low fold changes. In conclusion, a paired design revealed that the number of genes modulated following ART was an order of magnitude higher than previously recognized. PMID:23933117

  12. Emerging Use of Gene Expression Microarrays in Plant Physiology

    PubMed Central

    Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry. PMID:18629133

  13. Gene expression profiling analysis of ovarian cancer

    PubMed Central

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  14. Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression

    PubMed Central

    Opazo, Juan C.; Hoffmann, Federico G.; Natarajan, Chandrasekhar; Witt, Christopher C.; Berenbrink, Michael; Storz, Jay F.

    2015-01-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the αD-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the αA-globin gene), recurrent losses of αD-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa. PMID:25502940

  15. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes.

    PubMed

    Paraboschi, Elvezia Maria; Cardamone, Giulia; Rimoldi, Valeria; Gemmati, Donato; Spreafico, Marta; Duga, Stefano; Soldà, Giulia; Asselta, Rosanna

    2015-09-30

    Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p=0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.

  16. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  17. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes.

    PubMed

    Fortunato, Sofia A V; Adamski, Marcin; Ramos, Olivia Mendivil; Leininger, Sven; Liu, Jing; Ferrier, David E K; Adamska, Maja

    2014-10-30

    Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome. PMID:25355364

  18. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    PubMed

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  19. Identification of differentially expressed genes in microarray data in a principal component space.

    PubMed

    Ospina, Luis; López-Kleine, Liliana

    2013-12-01

    Microarray experiments are often conducted in order to compare gene expression between two conditions. Tests to detected mean differential expression of genes between conditions are conducted applying correction for multiple testing. Seldom, relationships between gene expression and microarray conditions are investigated in a multivariate approach. Here we propose determining the relationship between genes and conditions using a Principal Component Analysis (PCA) space and classifying genes to one of two biological conditions based on their position relative to a direction on the PC space representing each condition.

  20. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  1. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  2. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. PMID:22882155

  3. Population-level control of gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  4. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  5. Functionalization of a protosynaptic gene expression network

    PubMed Central

    Conaco, Cecilia; Bassett, Danielle S.; Zhou, Hongjun; Arcila, Mary Luz; Degnan, Sandie M.; Degnan, Bernard M.; Kosik, Kenneth S.

    2012-01-01

    Assembly of a functioning neuronal synapse requires the precisely coordinated synthesis of many proteins. To understand the evolution of this complex cellular machine, we tracked the developmental expression patterns of a core set of conserved synaptic genes across a representative sampling of the animal kingdom. Coregulation, as measured by correlation of gene expression over development, showed a marked increase as functional nervous systems emerged. In the earliest branching animal phyla (Porifera), in which a nearly complete set of synaptic genes exists in the absence of morphological synapses, these “protosynaptic” genes displayed a lack of global coregulation although small modules of coexpressed genes are readily detectable by using network analysis techniques. These findings suggest that functional synapses evolved by exapting preexisting cellular machines, likely through some modification of regulatory circuitry. Evolutionarily ancient modules continue to operate seamlessly within the synapses of modern animals. This work shows that the application of network techniques to emerging genomic and expression data can provide insights into the evolution of complex cellular machines such as the synapse. PMID:22723359

  6. Gene Expression Commons: An Open Platform for Absolute Gene Expression Profiling

    PubMed Central

    Seita, Jun; Sahoo, Debashis; Rossi, Derrick J.; Bhattacharya, Deepta; Serwold, Thomas; Inlay, Matthew A.; Ehrlich, Lauren I. R.; Fathman, John W.; Dill, David L.; Weissman, Irving L.

    2012-01-01

    Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named “Gene Expression Commons” (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples. PMID:22815738

  7. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available. PMID:25370817

  8. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  9. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  10. Fluid Mechanics, Arterial Disease, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid mechanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  11. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  12. Fluid Mechanics, Arterial Disease, and Gene Expression.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  13. Control mechanisms of plastid gene expression

    SciTech Connect

    Gruissem, W.; Tonkyn, J.C.

    1993-12-31

    Plastid DNAs of higher plants contain approximately 150 genes that encode RNAs and proteins for genetic and photosynthetic functions of the organelle. Results published in the last few years illustrate that the spatial and temporal expression of these plastid genes is regulated, in part, at the transcriptional level, but that developmentally controlled changes in mRNA stability, translational activity, and protein phosphorylation also have an important role in the control of plastid functions. This comprehensive review summarizes and discusses the mechanisms by which regulation of gene expression is exerted at the transcriptional and post-transcriptional levels. It provides an overview of our current knowledge, but also emphasizes areas that are controversial and in which information on regulatory mechanisms is still incomplete. 455 refs., 3 figs., 3 tabs.

  14. Light regulation of gene expression in higher plants

    SciTech Connect

    Tobin, E.M.; Silverthorne, J.

    1985-01-01

    In this review areas of currently active research are considered which have demonstrated that a plant's response to light involves changes in the expression of specific genes at the level of RNA. The regulation of gene expression by phytochrome and the UV-sensitive photoreceptor have been studied most extensively at the molecular level, and this review particularly focuses on such studies in higher plants. Some of the observations made on the differences in gene expression between light-grown and dark-grown plants are also included, although the photoreceptor(s) responsible for the differences may not have been ascertained. In some of these cases, phytochrome involvement has been or may be demonstrated in later studies, while in others the observed differences may be a result of the action of other photoreceptors or of multiple light-affected processes. One such process is the development of chloroplasts, a major developmental step triggered by light in angiosperms. In addition, many of the genes whose expression is changed by light and which have been studied at a molecular level encode chloroplast proteins. 156 references.

  15. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  16. Discovery of Core Biotic Stress Responsive Genes in Arabidopsis by Weighted Gene Co-Expression Network Analysis

    PubMed Central

    Amrine, Katherine C. H.; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  17. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  18. Identification of internal reference genes for gene expression normalization between the two sexes in dioecious white Campion.

    PubMed

    Zemp, Niklaus; Minder, Aria; Widmer, Alex

    2014-01-01

    Quantitative real time (qRT)-PCR is a precise and efficient method for studying gene expression changes between two states of interest, and is frequently used for validating interesting gene expression patterns in candidate genes initially identified in genome-wide expression analyses, such as RNA-seq experiments. For an adequate normalisation of qRT-PCR data, it is essential to have reference genes available whose expression intensities are constant among the different states of interest. In this study we present and validate a catalogue of traditional and newly identified reference genes that were selected from RNA-seq data from multiple individuals from the dioecious plant Silene latifolia with the aim of studying gene expression differences between the two sexes in both reproductive and vegetative tissues. The catalogue contains more than 15 reference genes with both stable expression intensities and a range of expression intensities in flower buds and leaf tissues. These reference genes were used to normalize expression differences between reproductive and vegetative tissues in eight candidate genes with sex-biased expression. Our results suggest a trend towards a reduced sex-bias in sex-linked gene expression in vegetative tissues. In this study, we report on the systematic identification and validation of internal reference genes for adequate normalization of qRT-PCR-based analyses of gene expression differences between the two sexes in S. latifolia. We also show how RNA-seq data can be used efficiently to identify suitable reference genes in a wide diversity of species.

  19. Immunoinformatics study on highly expressed Mycobacterium tuberculosis genes during infection.

    PubMed

    Nguyen Thi, Le Thuy; Sarmiento, Maria Elena; Calero, Romel; Camacho, Frank; Reyes, Fatima; Hossain, Md Murad; Gonzalez, Gustavo Sierra; Norazmi, Mohd Nor; Acosta, Armando

    2014-09-01

    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.

  20. A new gene superfamily of pathogen-response (repat) genes in Lepidoptera: classification and expression analysis.

    PubMed

    Navarro-Cerrillo, G; Hernández-Martínez, P; Vogel, H; Ferré, J; Herrero, S

    2013-01-01

    Repat (REsponse to PAThogens) genes were first identified in the midgut of Spodoptera exigua (Lepidoptera: Noctuidae) in response to Bacillus thuringiensis and baculovirus exposure. Since then, additional repat gene homologs have been identified in different studies. In this study the comprehensive larval transcriptome from S. exigua was analyzed for the presence of novel repat-homolog sequences. These analyses revealed the presence of at least 46 repat genes in S. exigua, establishing a new gene superfamily in this species. Phylogenetic analysis and studies of conserved motifs in these hypothetical proteins have allowed their classification in two main classes, αREPAT and βREPAT. Studies on the transcriptional response of repat genes have shown that αREPAT and βREPAT differ in their sequence but also in the pattern of regulation. The αREPAT were mainly regulated in response to the Cry1Ca toxin from B. thuringiensis but not to the increase in the midgut microbiota load. In contrast, βREPAT were neither responding to Cry1Ca toxin nor to midgut microbiota. Differential expression between midgut stem cells and the whole midgut tissue was studied for the different repat genes revealing changes in the gene expression distribution between midgut stem cells and midgut tissue in response to midgut microbiota. This high diversity found in their sequence and in their expression profile suggests that REPAT proteins may be involved in multiple processes that could be of relevance for the understanding of the insect gut physiology.

  1. Investigation of Reference Genes in Vibrio parahaemolyticus for Gene Expression Analysis Using Quantitative RT-PCR

    PubMed Central

    Ma, Yue-jiao; Sun, Xiao-hong; Xu, Xiao-yan; Zhao, Yong; Pan, Ying-jie; Hwang, Cheng-An; Wu, Vivian C. H.

    2015-01-01

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize its virulence factors and understand the effect of environmental conditions on its pathogenicity. However, there is not a stable gene in V. parahaemolyticus that has been identified for use as a reference gene for qRT-PCR. This study evaluated the stability of 6 reference genes (16S rRNA, recA, rpoS, pvsA, pvuA, and gapdh) in 5 V. parahaemolyticus strains (O3:K6-clinical strain-tdh+, ATCC33846-tdh+, ATCC33847-tdh+, ATCC17802-trh+, and F13-environmental strain-tdh+) cultured at 4 different temperatures (15, 25, 37 and 42°C). Stability values were calculated using GeNorm, NormFinder, BestKeeper, and Delta CT algorithms. The results indicated that recA was the most stably expressed gene in the V. parahaemolyticus strains cultured at different temperatures. This study examined multiple V. parahaemolyticus strains and growth temperatures, hence the finding provided stronger evidence that recA can be used as a reference gene for gene expression studies in V. parahaemolyticus. PMID:26659406

  2. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  3. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  4. Identification of sample annotation errors in gene expression datasets.

    PubMed

    Lohr, Miriam; Hellwig, Birte; Edlund, Karolina; Mattsson, Johanna S M; Botling, Johan; Schmidt, Marcus; Hengstler, Jan G; Micke, Patrick; Rahnenführer, Jörg

    2015-12-01

    The comprehensive transcriptomic analysis of clinically annotated human tissue has found widespread use in oncology, cell biology, immunology, and toxicology. In cancer research, microarray-based gene expression profiling has successfully been applied to subclassify disease entities, predict therapy response, and identify cellular mechanisms. Public accessibility of raw data, together with corresponding information on clinicopathological parameters, offers the opportunity to reuse previously analyzed data and to gain statistical power by combining multiple datasets. However, results and conclusions obviously depend on the reliability of the available information. Here, we propose gene expression-based methods for identifying sample misannotations in public transcriptomic datasets. Sample mix-up can be detected by a classifier that differentiates between samples from male and female patients. Correlation analysis identifies multiple measurements of material from the same sample. The analysis of 45 datasets (including 4913 patients) revealed that erroneous sample annotation, affecting 40 % of the analyzed datasets, may be a more widespread phenomenon than previously thought. Removal of erroneously labelled samples may influence the results of the statistical evaluation in some datasets. Our methods may help to identify individual datasets that contain numerous discrepancies and could be routinely included into the statistical analysis of clinical gene expression data.

  5. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  6. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  7. Gene expression pattern in canine mammary osteosarcoma.

    PubMed

    Pawłowski, K M; Majewska, A; Szyszko, K; Dolka, I; Motyl, T; Król, M

    2011-01-01

    Canine mammary sarcomas are usually very aggressive and easily metastasize. Unfortunately the biology of this type of tumor is not well known because they are a very rare type of tumors. The aim of this study was to find differences in gene expression patterns in canine mammary osteosarcomas (malignant) versus osteomas (benign) using DNA microarrays. Our microarray experiment showed that 11 genes were up-regulated in osteosarcoma in comparison to osteoma whereas 36 genes were down-regulated. Among the up-regulated genes were: PDK1, EXT1, and EIF4H which are involved in AKT/PI3K and GLI/Hedgehog pathways. These genes play an important role in cell biology (cancer cell proliferation) and may be essential in osteosarcoma formation and development. Analyzing the down-regulated genes, the most interesting seemed to be HSPB8 and SEPP1. HSPB8 is a small heat shock protein that plays an important role in cell cycle regulation, apoptosis, and breast carcinogenesis. Also SEPP1 may play a role in carcinogenesis, as its down-regulation may induce oxidative stress possibly resulting in carcinogenesis. The preliminary results of the present study indicate that the up-regulation of three genes EXT1, EIF4H, and PDK1 may play an essential role in osteosarcoma formation, development and proliferation. In our opinion the cross-talk between GLI/Hedgehog and PI3K/AKT pathways may be a key factor to increase tumor proliferation and malignancy. PMID:21528706

  8. Pathophysiological factors affecting CAR gene expression.

    PubMed

    Pascussi, Jean Marc; Dvorák, Zdenek; Gerbal-Chaloin, Sabine; Assenat, Eric; Maurel, Patrick; Vilarem, Marie José

    2003-11-01

    The body defends itself against potentially harmful compounds, such as drugs and toxic endogenous compounds and their metabolites, by inducing the expression of enzymes and transporters involved in their metabolism and elimination. The orphan nuclear receptor CAR (NR1I3 controls phase I (CYP2B, CYP2C, CYP3A), phase II (UGT1A1), and transporter (SLC21A6, MRP2) genes involved in drug metabolism and bilirubin clearance. Constitutive androstane receptor (CAR) is activated by xenobiotics, such as phenobarbital, but also by toxic endogenous compounds such as bilirubin metabolite(s). To better understand the inter- and intravariability in drug detoxification, we studied the molecular mechanisms involved in CAR gene expression in human hepatocytes. We clearly identified CAR as a glucocorticoid receptor (GR) target gene, and we proposed the hypothesis of a signal transduction where the activation of GR plays a critical function in CAR-mediated cellular response. According to our model, chemicals or pathophysiological factors that affect GR function should decrease CAR function. To test this hypothesis, we recently investigated the effect of microtubule disrupting agents (MIAs) or proinflammatory cytokines. These compounds are well-known inhibitors of GR transactivation property. MIAs activate c-Jun N-terminal kinase (JNK), which phosphorylates and inactivates GR, whereas proinflammatory cytokines, such as IL-6 or IL1beta, induce AP-1 or NF-kB activation, respectively, leading to GR inhibition. As expected, we observed that these molecules inhibit both CAR gene expression and phenobarbital-mediated CYP gene expression in human hepatocytes. PMID:14705859

  9. Gene expression profiles in skeletal muscle after gene electrotransfer

    PubMed Central

    Hojman, Pernille; Zibert, John R; Gissel, Hanne; Eriksen, Jens; Gehl, Julie

    2007-01-01

    Background Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1) electroporation, 2) DNA injection, and 3) time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in the muscles 2 weeks

  10. The pattern of gene expression in human CD34+ stem/progenitor cells

    PubMed Central

    Zhou, Guolin; Chen, Jianjun; Lee, Sanggyu; Clark, Terry; Rowley, Janet D.; Wang, San Ming

    2001-01-01

    We have analyzed the pattern of gene expression in human primary CD34+ stem/progenitor cells. We identified 42,399 unique serial analysis of gene expression (SAGE) tags among 106,021 SAGE tags collected from 2.5 × 106 CD34+ cells purified from bone marrow. Of these unique SAGE tags, 21,546 matched known expressed sequences, including 3,687 known genes, and 20,854 were novel without a match. The SAGE tags that matched known sequences tended to be at higher levels, whereas the novel SAGE tags tended to be at lower levels. By using the generation of longer sequences from SAGE tags for gene identification (GLGI) method, we identified the correct gene for 385 of 440 high-copy SAGE tags that matched multiple genes and we generated 198 novel 3′ expressed sequence tags from 138 high-copy novel SAGE tags. We observed that many different SAGE tags were derived from the same genes, reflecting the high heterogeneity of the 3′ untranslated region in the expressed genes. We compared the quantitative relationship for genes known to be important in hematopoiesis. The qualitative identification and quantitative measure for each known gene, expressed sequence tag, and novel SAGE tag provide a base for studying normal gene expression in hematopoietic stem/progenitor cells and for studying abnormal gene expression in hematopoietic diseases. PMID:11717454

  11. Evaluation and Validation of Reference Genes for Normalization of Quantitative Real-Time PCR Based Gene Expression Studies in Peanut

    PubMed Central

    Cindhuri, Katamreddy Sri; Sharma, Kiran K.

    2013-01-01

    The quantitative real-time PCR (qPCR) based techniques have become essential for gene expression studies and high-throughput molecular characterization of transgenic events. Normalizing to reference gene in relative quantification make results from qPCR more reliable when compared to absolute quantification, but requires robust reference genes. Since, ideal reference gene should be species specific, no single internal control gene is universal for use as a reference gene across various plant developmental stages and diverse growth conditions. Here, we present validation studies of multiple stably expressed reference genes in cultivated peanut with minimal variations in temporal and spatial expression when subjected to various biotic and abiotic stresses. Stability in the expression of eight candidate reference genes including ADH3, ACT11, ATPsyn, CYP2, ELF1B, G6PD, LEC and UBC1 was compared in diverse peanut plant samples. The samples were categorized into distinct experimental sets to check the suitability of candidate genes for accurate and reliable normalization of gene expression using qPCR. Stability in expression of the references genes in eight sets of samples was determined by geNorm and NormFinder methods. While three candidate reference genes including ADH3, G6PD and ELF1B were identified to be stably expressed across experiments, LEC was observed to be the least stable, and hence must be avoided for gene expression studies in peanut. Inclusion of the former two genes gave sufficiently reliable results; nonetheless, the addition of the third reference gene ELF1B may be potentially better in a diverse set of tissue samples of peanut. PMID:24167633

  12. Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut.

    PubMed

    Reddy, Dumbala Srinivas; Bhatnagar-Mathur, Pooja; Cindhuri, Katamreddy Sri; Sharma, Kiran K

    2013-01-01

    The quantitative real-time PCR (qPCR) based techniques have become essential for gene expression studies and high-throughput molecular characterization of transgenic events. Normalizing to reference gene in relative quantification make results from qPCR more reliable when compared to absolute quantification, but requires robust reference genes. Since, ideal reference gene should be species specific, no single internal control gene is universal for use as a reference gene across various plant developmental stages and diverse growth conditions. Here, we present validation studies of multiple stably expressed reference genes in cultivated peanut with minimal variations in temporal and spatial expression when subjected to various biotic and abiotic stresses. Stability in the expression of eight candidate reference genes including ADH3, ACT11, ATPsyn, CYP2, ELF1B, G6PD, LEC and UBC1 was compared in diverse peanut plant samples. The samples were categorized into distinct experimental sets to check the suitability of candidate genes for accurate and reliable normalization of gene expression using qPCR. Stability in expression of the references genes in eight sets of samples was determined by geNorm and NormFinder methods. While three candidate reference genes including ADH3, G6PD and ELF1B were identified to be stably expressed across experiments, LEC was observed to be the least stable, and hence must be avoided for gene expression studies in peanut. Inclusion of the former two genes gave sufficiently reliable results; nonetheless, the addition of the third reference gene ELF1B may be potentially better in a diverse set of tissue samples of peanut.

  13. Decomposition of Gene Expression State Space Trajectories

    PubMed Central

    Mar, Jessica C.; Quackenbush, John

    2009-01-01

    Representing and analyzing complex networks remains a roadblock to creating dynamic network models of biological processes and pathways. The study of cell fate transitions can reveal much about the transcriptional regulatory programs that underlie these phenotypic changes and give rise to the coordinated patterns in expression changes that we observe. The application of gene expression state space trajectories to capture cell fate transitions at the genome-wide level is one approach currently used in the literature. In this paper, we analyze the gene expression dataset of Huang et al. (2005) which follows the differentiation of promyelocytes into neutrophil-like cells in the presence of inducers dimethyl sulfoxide and all-trans retinoic acid. Huang et al. (2005) build on the work of Kauffman (2004) who raised the attractor hypothesis, stating that cells exist in an expression landscape and their expression trajectories converge towards attractive sites in this landscape. We propose an alternative interpretation that explains this convergent behavior by recognizing that there are two types of processes participating in these cell fate transitions—core processes that include the specific differentiation pathways of promyelocytes to neutrophils, and transient processes that capture those pathways and responses specific to the inducer. Using functional enrichment analyses, specific biological examples and an analysis of the trajectories and their core and transient components we provide a validation of our hypothesis using the Huang et al. (2005) dataset. PMID:20041215

  14. An analysis of gene expression in PTSD implicates genes involved in the glucocorticoid receptor pathway and neural responses to stress

    PubMed Central

    Logue, Mark W.; Smith, Alicia K.; Baldwin, Clinton; Wolf, Erika J.; Guffanti, Guia; Ratanatharathorn, Andrew; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald; Binder, Elisabeth B.; Arloth, Janine; Menke, Andreas; Uddin, Monica; Wildman, Derek; Galea, Sandro; Aiello, Allison E.; Koenen, Karestan C.; Miller, Mark W.

    2015-01-01

    We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls. PMID:25867994

  15. An analysis of gene expression in PTSD implicates genes involved in the glucocorticoid receptor pathway and neural responses to stress.

    PubMed

    Logue, Mark W; Smith, Alicia K; Baldwin, Clinton; Wolf, Erika J; Guffanti, Guia; Ratanatharathorn, Andrew; Stone, Annjanette; Schichman, Steven A; Humphries, Donald; Binder, Elisabeth B; Arloth, Janine; Menke, Andreas; Uddin, Monica; Wildman, Derek; Galea, Sandro; Aiello, Allison E; Koenen, Karestan C; Miller, Mark W

    2015-07-01

    We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls. PMID:25867994

  16. Ion Channel Gene Expression in the Inner Ear

    PubMed Central

    Sokolowski, Bernd H.A.; Morton, Cynthia C.; Giersch, Anne B.S.

    2007-01-01

    The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms. Electronic supplementary material The online version of this article (doi:10.1007/s10162-007-0082-y) contains supplementary material, which is available to authorized users. PMID:17541769

  17. Changes in differential gene expression during a fatal stroke.

    PubMed

    Stone, Shelley F; Armstrong, Christopher; van Eeden, Pauline E; Arendts, Glenn; Hankey, Graeme J; Brown, Simon G A; Fatovich, Daniel M

    2016-01-01

    We present a young woman (with an identical twin sister) who arrived at the Emergency Department (ED) within 1 hour of her initial stroke symptoms. Previous microarray studies have demonstrated differential expression of multiple genes between stroke patients and healthy controls. However, for many of these studies there is a significant delay between the initial symptoms and collection of blood samples, potentially leaving the important early activators/regulators of the inflammatory response unrecognised. Blood samples were collected from the patient for an analysis of differential gene expression over time during the evolution of a fatal stroke. The time points for blood collection were ED arrival (T0) and 1, 3 and 24 hours post ED arrival (T1, T3 and T24). This was compared to her identical twin and an additional two age and sex-matched healthy controls. When compared to the controls, the patient had 12 mRNA that were significantly upregulated at T0, and no downregulated mRNA (with a cut off fold change value ±1.5). Of the 12 upregulated mRNA at T0, granzyme B demonstrated the most marked upregulation on arrival, with expression steadily declining over time, whereas S100 calcium-binding protein A12 (S100A12) gene expression increased from T0 to T24, remaining >two-fold above that in the healthy controls at T24. Other genes, such as matrix metalloproteinase 9, high mobility group box 2 and interleukin-18 receptor I were not upregulated at T0, but they demonstrated clear upregulation from T1–T3, with gene expression declining by T24. A greater understanding of the underlying immunopathological mechanisms that are involved during the evolution of ischaemic stroke may help to distinguish between patients with stroke and stroke mimics. PMID:27088144

  18. Computational analysis of gene expression space associated with metastatic cancer

    PubMed Central

    2009-01-01

    Background Prostate carcinoma is among the most common types of cancer affecting hundreds of thousands people every year. Once the metastatic form of prostate carcinoma is documented, the majority of patients die from their tumors as opposed to other causes. The key to successful treatment is in the earliest possible diagnosis, as well as understanding the molecular mechanisms of metastatic progression. A number of recent studies have identified multiple biomarkers for metastatic progression. However, most of the studies consider only direct comparison between metastatic and non-metastatic classes of samples. Results We propose an alternative concept of analysis that considers the entire multidimensional space of gene expression and identifies the partition of this space in which metastatic development is possible. To apply this concept in cancer gene expression studies we utilize a modification of high-dimension natural taxonomy algorithm FOREL. Our analysis of microarray data containing primary and metastatic cancer samples has revealed not only differentially expressed genes, but also relations between different groups of primary and metastatic cancer. Metastatic samples tend to occupy a distinct partition of gene expression space. Further pathway analysis suggests that this partition is delineated by a specific pattern of gene expression in cytoskeleton remodeling, cell adhesion and apoptosis/cell survival pathways. We compare our findings with both report of original analysis and recent studies in molecular mechanism of metastasis. Conclusion Our analysis indicates a single molecular mechanism of metastasis. The new approach does not contradict previously reported findings, but reveals important details unattainable with traditional methodology. PMID:19811690

  19. Microgravity and Immunity: Changes in Lymphocyte Gene Expression

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; Ward, N. E.; Risin, S. A.

    2006-01-01

    Earlier studies had shown that modeled and true microgravity (MG) cause multiple direct effects on human lymphocytes. MG inhibits lymphocyte locomotion, suppresses polyclonal and antigen-specific activation, affects signal transduction mechanisms, as well as activation-induced apoptosis. In this study we assessed changes in gene expression associated with lymphocyte exposure to microgravity in an attempt to identify microgravity-sensitive genes (MGSG) in general and specifically those genes that might be responsible for the functional and structural changes observed earlier. Two sets of experiments targeting different goals were conducted. In the first set, T-lymphocytes from normal donors were activated with antiCD3 and IL2 and then cultured in 1g (static) and modeled MG (MMG) conditions (Rotating Wall Vessel bioreactor) for 24 hours. This setting allowed searching for MGSG by comparison of gene expression patterns in zero and 1 g gravity. In the second set - activated T-cells after culturing for 24 hours in 1g and MMG were exposed three hours before harvesting to a secondary activation stimulus (PHA) thus triggering the apoptotic pathway. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes, were used for microarray analysis. In the first set of experiments MMG exposure resulted in altered expression of 89 genes, 10 of them were up-regulated and 79 down-regulated. In the second set, changes in expression were revealed in 85 genes, 20 were up-regulated and 65 were down-regulated. The analysis revealed that significant numbers of MGS genes are associated with signal transduction and apoptotic pathways. Interestingly, the majority of genes that responded by up- or down-regulation in the alternative sets of experiments were not the same, possibly reflecting different functional states of the examined T-lymphocyte populations. The responder genes (MGSG) might play an

  20. Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain

    PubMed Central

    2010-01-01

    Background Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods. We recently demonstrated that relative gene expression from qRT-PCR data normalized using GAPDH, ALG9 and RPL13A expression values mirrored relative expression using quantile normalization in Robust Multichip Analysis (RMA) on the Affymetrix® GeneChip® rhesus Macaque Genome Array. Having shown that qRT-PCR and Affymetrix® GeneChip® data from the same hormone replacement therapy (HRT) study yielded concordant results, we used quantile-normalized gene microarray data to identify the most stably expressed among probe sets for prospective internal reference genes across three brain regions from the HRT study and an additional study of normally menstruating rhesus macaques (cycle study). Gene selection was limited to 575 previously published human "housekeeping" genes. Twelve animals were used per study, and three brain regions were analyzed from each animal. Gene expression stabilities were determined using geNorm, NormFinder and BestKeeper software packages. Results Sequences co-annotated for ribosomal protein S27a (RPS27A), and ubiquitin were among the most stably expressed under all conditions and selection criteria used for both studies. Higher annotation quality on the human GeneChip® facilitated more targeted analysis than could be accomplished using the rhesus GeneChip®. In the cycle study, multiple

  1. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    PubMed

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  2. Towards resolving the transcription factor network controlling myelin gene expression

    PubMed Central

    Fulton, Debra L.; Denarier, Eric; Friedman, Hana C.; Wasserman, Wyeth W.; Peterson, Alan C.

    2011-01-01

    In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network. PMID:21729871

  3. Insights into SAGA function during gene expression

    PubMed Central

    Rodríguez-Navarro, Susana

    2009-01-01

    Histone modifications are a crucial source of epigenetic control. SAGA (Spt–Ada–Gcn5 acetyltransferase) is a chromatin-modifying complex that contains two distinct enzymatic activities, Gcn5 and Ubp8, through which it acetylates and deubiquitinates histone residues, respectively, thereby enforcing a pattern of modifications that is decisive in regulating gene expression. Here, I discuss the latest contributions to understanding the roles of the SAGA complex, highlighting the characterization of the SAGA-deubiquitination module, and emphasizing the functions newly ascribed to SAGA during transcription elongation and messenger-RNA export. These findings suggest that a crosstalk exists between chromatin remodelling, transcription and messenger-RNA export, which could constitute a checkpoint for accurate gene expression. I focus particularly on the new components of human SAGA, which was recently discovered and confirms the conservation of the SAGA complex throughout evolution. PMID:19609321

  4. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes.

    PubMed

    Valipour, E; Kowsari, A; Bayat, H; Banan, M; Kazeminasab, S; Mohammadparast, S; Ohadi, M

    2013-12-01

    Protein complexes that bind to 'GAGA' DNA elements are necessary to replace nucleosomes to create a local chromatin environment that facilitates a variety of site-specific regulatory responses. Three to four elements are required for the disruption of a preassembled nucleosome. We have previously identified human protein-coding gene core promoters that are composed of exceptionally long GA-repeats. The functional implication of those GA-repeats is beginning to emerge in the core promoter of the human SOX5 gene, which is involved in multiple developmental processes. In the current study, we analyze the functional implication of GA-repeats in the core promoter of two additional genes, MECOM and GABRA3, whose expression is largely limited to embryogenesis. We report a significant difference in gene expression as a result of different alleles across those core promoters in the HEK-293 cell line. Across-species homology check for the GABRA3 GA-repeats revealed that those repeats are evolutionary conserved in mouse and primates (p<1 × 10(-8)). The MECOM core promoter GA-repeats are also conserved in numerous species, of which human has the longest repeat and complexity. We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution.

  5. Identifying driver genes in cancer by triangulating gene expression, gene location, and survival data.

    PubMed

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates - or integrates - three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics.

  6. Gene expression: RNA interference in adult mice

    NASA Astrophysics Data System (ADS)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  7. Imaging gene expression in single living cells

    PubMed Central

    Shav-Tal, Yaron; Singer, Robert H.; Darzacq, Xavier

    2016-01-01

    Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time. PMID:15459666

  8. Multiclass cancer diagnosis using tumor gene expression signatures

    SciTech Connect

    Ramaswamy, S.; Tamayo, P.; Rifkin, R.; Mukherjee, S.; Yeang, C. -H.; Angelo, M.; Ladd, C.; Reich, M.; Latulippe, E.; Mesirov, J. P.; Poggio, T.; Gerald, W.; Loda, M.; Lander, E. S.; Golub, T. R.

    2001-12-11

    The optimal treatment of patients with cancer depends on establishing accurate diagnoses by using a complex combination of clinical and histopathological data. In some instances, this task is difficult or impossible because of atypical clinical presentation or histopathology. To determine whether the diagnosis of multiple common adult malignancies could be achieved purely by molecular classification, we subjected 218 tumor samples, spanning 14 common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene expression analysis. The expression levels of 16,063 genes and expressed sequence tags were used to evaluate the accuracy of a multiclass classifier based on a support vector machine algorithm. Overall classification accuracy was 78%, far exceeding the accuracy of random classification (9%). Poorly differentiated cancers resulted in low-confidence predictions and could not be accurately classified according to their tissue of origin, indicating that they are molecularly distinct entities with dramatically different gene expression patterns compared with their well differentiated counterparts. Taken together, these results demonstrate the feasibility of accurate, multiclass molecular cancer classification and suggest a strategy for future clinical implementation of molecular cancer diagnostics.

  9. Multiclass cancer diagnosis using tumor gene expression signatures

    DOE PAGES

    Ramaswamy, S.; Tamayo, P.; Rifkin, R.; Mukherjee, S.; Yeang, C. -H.; Angelo, M.; Ladd, C.; Reich, M.; Latulippe, E.; Mesirov, J. P.; et al

    2001-12-11

    The optimal treatment of patients with cancer depends on establishing accurate diagnoses by using a complex combination of clinical and histopathological data. In some instances, this task is difficult or impossible because of atypical clinical presentation or histopathology. To determine whether the diagnosis of multiple common adult malignancies could be achieved purely by molecular classification, we subjected 218 tumor samples, spanning 14 common tumor types, and 90 normal tissue samples to oligonucleotide microarray gene expression analysis. The expression levels of 16,063 genes and expressed sequence tags were used to evaluate the accuracy of a multiclass classifier based on a supportmore » vector machine algorithm. Overall classification accuracy was 78%, far exceeding the accuracy of random classification (9%). Poorly differentiated cancers resulted in low-confidence predictions and could not be accurately classified according to their tissue of origin, indicating that they are molecularly distinct entities with dramatically different gene expression patterns compared with their well differentiated counterparts. Taken together, these results demonstrate the feasibility of accurate, multiclass molecular cancer classification and suggest a strategy for future clinical implementation of molecular cancer diagnostics.« less

  10. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.

  11. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    PubMed

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  12. Expression of foreign genes in filamentous cyanobacteria

    SciTech Connect

    Kuritz, T.; Wolk, C.P. )

    1993-06-01

    Several advantages make cyanobacteria attractive hosts for biodegradative genes and possibly for other exogenous genes that have practical uses. The authors have obtained expression in Anabaena sp. strain PCC 7120 and Nostoc ellipsosporum of a dechlorination operon, fcbAB, from Arthrobacter globiformis, and have also developed a simple method for qualitative assessment of dechlorination by microorganism