Science.gov

Sample records for multiple gene networks

  1. Stochastic multiple-valued gene networks.

    PubMed

    Zhu, Peican; Han, Jie

    2014-02-01

    Among various approaches to modeling gene regulatory networks (GRNs), Boolean networks (BNs) and its probabilistic extension, probabilistic Boolean networks (PBNs), have been studied to gain insights into the dynamics of GRNs. To further exploit the simplicity of logical models, a multiple-valued network employs gene states that are not limited to binary values, thus providing a finer granularity in the modeling of GRNs. In this paper, stochastic multiple-valued networks (SMNs) are proposed for modeling the effects of noise and gene perturbation in a GRN. An SMN enables an accurate and efficient simulation of a probabilistic multiple-valued network (as an extension of a PBN). In a k-level SMN of n genes, it requires a complexity of O(nLk(n)) to compute the state transition matrix, where L is a factor related to the minimum sequence length in the SMN for achieving a desired accuracy. The use of randomly permuted stochastic sequences further increases computational efficiency and allows for a tunable tradeoff between accuracy and efficiency. The analysis of a p53-Mdm2 network and a WNT5A network shows that the proposed SMN approach is efficient in evaluating the network dynamics and steady state distribution of gene networks under random gene perturbation.

  2. Construction of a gene-gene interaction network with a combined score across multiple approaches.

    PubMed

    Zhang, A M; Song, H; Shen, Y H; Liu, Y

    2015-01-01

    Recent progress in computational methods for inves-tigating physical and functional gene interactions has provided new insights into the complexity of biological processes. An essential part of these methods is presented visually in the form of gene interaction networks that can be valuable in exploring the mechanisms of disease. Here, a combined network based on gene pairs with an extra layer of re-liability was constructed after converting and combining the gene pair scores using a novel algorithm across multiple approaches. Four groups of kidney cancer data sets from ArrayExpress were downloaded and analyzed to identify differentially expressed genes using a rank prod-ucts analysis tool. Gene co-expression network, protein-protein interac-tion, co-occurrence network and a combined network were constructed using empirical Bayesian meta-analysis approach, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, an odds ratio formula of the cBioPortal for Cancer Genomics and a novel rank algorithm with combined score, respectively. The topological features of these networks were then compared to evaluate their performances. The results indicated that the gene pairs and their relationship rank-ings were not uniform. The values of topological parameters, such as clustering coefficient and the fitting coefficient R(2) of interaction net-work constructed using our ranked based combination score, were much greater than the other networks. The combined network had a classic small world property which transferred information quickly and displayed great resilience to the dysfunction of low-degree hubs with high-clustering and short average path length. It also followed distinct-ly a scale-free network with a higher reliability. PMID:26125911

  3. Inference of gene interaction networks using conserved subsequential patterns from multiple time course gene expression datasets

    PubMed Central

    2015-01-01

    Motivation Deciphering gene interaction networks (GINs) from time-course gene expression (TCGx) data is highly valuable to understand gene behaviors (e.g., activation, inhibition, time-lagged causality) at the system level. Existing methods usually use a global or local proximity measure to infer GINs from a single dataset. As the noise contained in a single data set is hardly self-resolved, the results are sometimes not reliable. Also, these proximity measurements cannot handle the co-existence of the various in vivo positive, negative and time-lagged gene interactions. Methods and results We propose to infer reliable GINs from multiple TCGx datasets using a novel conserved subsequential pattern of gene expression. A subsequential pattern is a maximal subset of genes sharing positive, negative or time-lagged correlations of one expression template on their own subsets of time points. Based on these patterns, a GIN can be built from each of the datasets. It is assumed that reliable gene interactions would be detected repeatedly. We thus use conserved gene pairs from the individual GINs of the multiple TCGx datasets to construct a reliable GIN for a species. We apply our method on six TCGx datasets related to yeast cell cycle, and validate the reliable GINs using protein interaction networks, biopathways and transcription factor-gene regulations. We also compare the reliable GINs with those GINs reconstructed by a global proximity measure Pearson correlation coefficient method from single datasets. It has been demonstrated that our reliable GINs achieve much better prediction performance especially with much higher precision. The functional enrichment analysis also suggests that gene sets in a reliable GIN are more functionally significant. Our method is especially useful to decipher GINs from multiple TCGx datasets related to less studied organisms where little knowledge is available except gene expression data. PMID:26681650

  4. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients

    PubMed Central

    Cotterell, James; Sharpe, James

    2010-01-01

    The interpretation of morphogen gradients is a pivotal concept in developmental biology, and several mechanisms have been proposed to explain how gene regulatory networks (GRNs) achieve concentration-dependent responses. However, the number of different mechanisms that may exist for cells to interpret morphogens, and the importance of design features such as feedback or local cell–cell communication, is unclear. A complete understanding of such systems will require going beyond a case-by-case analysis of real morphogen interpretation mechanisms and mapping out a complete GRN ‘design space.' Here, we generate a first atlas of design space for GRNs capable of patterning a homogeneous field of cells into discrete gene expression domains by interpreting a fixed morphogen gradient. We uncover multiple very distinct mechanisms distributed discretely across the atlas, thereby expanding the repertoire of morphogen interpretation network motifs. Analyzing this diverse collection of mechanisms also allows us to predict that local cell–cell communication will rarely be responsible for the basic dose-dependent response of morphogen interpretation networks. PMID:21045819

  5. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    PubMed

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  6. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis

    PubMed Central

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  7. Gene and Network Analysis of Common Variants Reveals Novel Associations in Multiple Complex Diseases

    PubMed Central

    Nakka, Priyanka; Raphael, Benjamin J.; Ramachandran, Sohini

    2016-01-01

    Genome-wide association (GWA) studies typically lack power to detect genotypes significantly associated with complex diseases, where different causal mutations of small effect may be present across cases. A common, tractable approach for identifying genomic elements associated with complex traits is to evaluate combinations of variants in known pathways or gene sets with shared biological function. Such gene-set analyses require the computation of gene-level P-values or gene scores; these gene scores are also useful when generating hypotheses for experimental validation. However, commonly used methods for generating GWA gene scores are computationally inefficient, biased by gene length, imprecise, or have low true positive rate (TPR) at low false positive rates (FPR), leading to erroneous hypotheses for functional validation. Here we introduce a new method, PEGASUS, for analytically calculating gene scores. PEGASUS produces gene scores with as much as 10 orders of magnitude higher numerical precision than competing methods. In simulation, PEGASUS outperforms existing methods, achieving up to 30% higher TPR when the FPR is fixed at 1%. We use gene scores from PEGASUS as input to HotNet2 to identify networks of interacting genes associated with multiple complex diseases and traits; this is the first application of HotNet2 to common variation. In ulcerative colitis and waist–hip ratio, we discover networks that include genes previously associated with these phenotypes, as well as novel candidate genes. In contrast, existing methods fail to identify these networks. We also identify networks for attention-deficit/hyperactivity disorder, in which GWA studies have yet to identify any significant SNPs. PMID:27489002

  8. Gene-Disease Interaction Retrieval from Multiple Sources: A Network Based Method

    PubMed Central

    Huang, Lan; Wang, Yan

    2016-01-01

    The number of gene-related databases has been growing largely along with the research on genes of bioinformatics. Those databases are filled with various gene functions, pathways, interactions, and so forth, while much biomedical knowledge about human diseases is stored as text in all kinds of literatures. Researchers have developed many methods to extract structured biomedical knowledge. Some study and improve text mining algorithms to achieve efficiency in order to cover as many data sources as possible, while some build open source database to accept individual submissions in order to achieve accuracy. This paper combines both efforts and biomedical ontologies to build an interaction network of multiple biomedical ontologies, which guarantees its robustness as well as its wide coverage of biomedical publications. Upon the network, we accomplish an algorithm which discovers paths between concept pairs and shows potential relations. PMID:27478829

  9. Gene-Disease Interaction Retrieval from Multiple Sources: A Network Based Method.

    PubMed

    Huang, Lan; Wang, Ye; Wang, Yan; Bai, Tian

    2016-01-01

    The number of gene-related databases has been growing largely along with the research on genes of bioinformatics. Those databases are filled with various gene functions, pathways, interactions, and so forth, while much biomedical knowledge about human diseases is stored as text in all kinds of literatures. Researchers have developed many methods to extract structured biomedical knowledge. Some study and improve text mining algorithms to achieve efficiency in order to cover as many data sources as possible, while some build open source database to accept individual submissions in order to achieve accuracy. This paper combines both efforts and biomedical ontologies to build an interaction network of multiple biomedical ontologies, which guarantees its robustness as well as its wide coverage of biomedical publications. Upon the network, we accomplish an algorithm which discovers paths between concept pairs and shows potential relations. PMID:27478829

  10. Gene regulatory network inference using fused LASSO on multiple data sets.

    PubMed

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M O; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-02-11

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions.

  11. Gene regulatory network inference using fused LASSO on multiple data sets

    PubMed Central

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M. O.; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-01-01

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions. PMID:26864687

  12. Bottom-up GGM algorithm for constructing multiple layered hierarchical gene regulatory networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multilayered hierarchical gene regulatory networks (ML-hGRNs) are very important for understanding genetics regulation of biological pathways. However, there are currently no computational algorithms available for directly building ML-hGRNs that regulate biological pathways. A bottom-up graphic Gaus...

  13. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis.

    PubMed

    March, H Nikki; Rust, Alistair G; Wright, Nicholas A; ten Hoeve, Jelle; de Ridder, Jeroen; Eldridge, Matthew; van der Weyden, Louise; Berns, Anton; Gadiot, Jules; Uren, Anthony; Kemp, Richard; Arends, Mark J; Wessels, Lodewyk F A; Winton, Douglas J; Adams, David J

    2011-12-01

    The evolution of colorectal cancer suggests the involvement of many genes. To identify new drivers of intestinal cancer, we performed insertional mutagenesis using the Sleeping Beauty transposon system in mice carrying germline or somatic Apc mutations. By analyzing common insertion sites (CISs) isolated from 446 tumors, we identified many hundreds of candidate cancer drivers. Comparison to human data sets suggested that 234 CIS-targeted genes are also dysregulated in human colorectal cancers. In addition, we found 183 CIS-containing genes that are candidate Wnt targets and showed that 20 CISs-containing genes are newly discovered modifiers of canonical Wnt signaling. We also identified mutations associated with a subset of tumors containing an expanded number of Paneth cells, a hallmark of deregulated Wnt signaling, and genes associated with more severe dysplasia included those encoding members of the FGF signaling cascade. Some 70 genes had co-occurrence of CIS pairs, clustering into 38 sub-networks that may regulate tumor development. PMID:22057237

  14. ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks

    PubMed Central

    Wang, Panwen; Qin, Jing; Qin, Yiming; Zhu, Yun; Wang, Lily Yan; Li, Mulin Jun; Zhang, Michael Q.; Wang, Junwen

    2015-01-01

    Transcription factors (TFs) play an important role in gene regulation. The interconnections among TFs, chromatin interactions, epigenetic marks and cis-regulatory elements form a complex gene transcription apparatus. Our previous work, ChIP-Array, combined TF binding and transcriptome data to construct gene regulatory networks (GRNs). Here we present an enhanced version, ChIP-Array 2, to integrate additional types of omics data including long-range chromatin interaction, open chromatin region and histone modification data to dissect more comprehensive GRNs involving diverse regulatory components. Moreover, we substantially extended our motif database for human, mouse, rat, fruit fly, worm, yeast and Arabidopsis, and curated large amount of omics data for users to select as input or backend support. With ChIP-Array 2, we compiled a library containing regulatory networks of 18 TFs/chromatin modifiers in mouse embryonic stem cell (mESC). The web server and the mESC library are publicly free and accessible athttp://jjwanglab.org/chip-array. PMID:25916854

  15. Multiple-Ring Digital Communication Network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  16. Inferring Polymorphism-Induced Regulatory Gene Networks Active in Human Lymphocyte Cell Lines by Weighted Linear Mixed Model Analysis of Multiple RNA-Seq Datasets

    PubMed Central

    Zhang, Wensheng; Edwards, Andrea; Flemington, Erik K.; Zhang, Kun

    2013-01-01

    Single-nucleotide polymorphisms (SNPs) contribute to the between-individual expression variation of many genes. A regulatory (trait-associated) SNP is usually located near or within a (host) gene, possibly influencing the gene’s transcription or/and post-transcriptional modification. But its targets may also include genes that are physically farther away from it. A heuristic explanation of such multiple-target interferences is that the host gene transfers the SNP genotypic effects to the distant gene(s) by a transcriptional or signaling cascade. These connections between the host genes (regulators) and the distant genes (targets) make the genetic analysis of gene expression traits a promising approach for identifying unknown regulatory relationships. In this study, through a mixed model analysis of multi-source digital expression profiling for 140 human lymphocyte cell lines (LCLs) and the genotypes distributed by the international HapMap project, we identified 45 thousands of potential SNP-induced regulatory relationships among genes (the significance level for the underlying associations between expression traits and SNP genotypes was set at FDR < 0.01). We grouped the identified relationships into four classes (paradigms) according to the two different mechanisms by which the regulatory SNPs affect their cis- and trans- regulated genes, modifying mRNA level or altering transcript splicing patterns. We further organized the relationships in each class into a set of network modules with the cis- regulated genes as hubs. We found that the target genes in a network module were often characterized by significant functional similarity, and the distributions of the target genes in three out of the four networks roughly resemble a power-law, a typical pattern of gene networks obtained from mutation experiments. By two case studies, we also demonstrated that significant biological insights can be inferred from the identified network modules. PMID:24205334

  17. ToppCluster: a multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems.

    PubMed

    Kaimal, Vivek; Bardes, Eric E; Tabar, Scott C; Jegga, Anil G; Aronow, Bruce J

    2010-07-01

    ToppCluster is a web server application that leverages a powerful enrichment analysis and underlying data environment for comparative analyses of multiple gene lists. It generates heatmaps or connectivity networks that reveal functional features shared or specific to multiple gene lists. ToppCluster uses hypergeometric tests to obtain list-specific feature enrichment P-values for currently 17 categories of annotations of human-ortholog genes, and provides user-selectable cutoffs and multiple testing correction methods to control false discovery. Each nameable gene list represents a column input to a resulting matrix whose rows are overrepresented features, and individual cells per-list P-values and corresponding genes per feature. ToppCluster provides users with choices of tabular outputs, hierarchical clustering and heatmap generation, or the ability to interactively select features from the functional enrichment matrix to be transformed into XGMML or GEXF network format documents for use in Cytoscape or Gephi applications, respectively. Here, as example, we demonstrate the ability of ToppCluster to enable identification of list-specific phenotypic and regulatory element features (both cis-elements and 3'UTR microRNA binding sites) among tissue-specific gene lists. ToppCluster's functionalities enable the identification of specialized biological functions and regulatory networks and systems biology-based dissection of biological states. ToppCluster can be accessed freely at http://toppcluster.cchmc.org.

  18. Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women

    PubMed Central

    Niu, Tianhua; Zhou, Yu; Zhang, Lan; Zeng, Yong; Zhu, Wei; Wang, Yu-ping; Deng, Hong-wen

    2016-01-01

    Background Existing microarray studies of bone mineral density (BMD) have been critical for understanding the pathophysiology of osteoporosis, and have identified a number of candidate genes. However, these studies were limited by their relatively small sample sizes and were usually analyzed individually. Here, we propose a novel network-based meta-analysis approach that combines data across six microarray studies to identify functional modules from human protein-protein interaction (PPI) data, and highlight several differentially expressed genes (DEGs) and a functional module that may play an important role in BMD regulation in women. Methods Expression profiling studies were identified by searching PubMed, Gene Expression Omnibus (GEO) and ArrayExpress. Two meta-analysis methods were applied across different gene expression profiling studies. The first, a nonparametric Fisher’s method, combined p-values from individual experiments to identify genes with large effect sizes. The second method combined effect sizes from individual datasets into a meta-effect size to gain a higher precision of effect size estimation across all datasets. Genes with Q test’s p-values < 0.05 or I2 values > 50% were assessed by a random effects model and the remainder by a fixed effects model. Using Fisher’s combined p-values, functional modules were identified through an integrated analysis of microarray data in the context of large protein–protein interaction (PPI) networks. Two previously published meta-analysis studies of genome-wide association (GWA) datasets were used to determine whether these module genes were genetically associated with BMD. Pathway enrichment analysis was performed with a hypergeometric test. Results Six gene expression datasets were identified, which included a total of 249 (129 high BMD and 120 low BMD) female subjects. Using a network-based meta-analysis, a consensus module containing 58 genes (nodes) and 83 edges was detected. Pathway enrichment

  19. Multiple Horizontal Gene Transfer Events and Domain Fusions Have Created Novel Regulatory and Metabolic Networks in the Oomycete Genome

    PubMed Central

    Morris, Paul Francis; Schlosser, Laura Rose; Onasch, Katherine Diane; Wittenschlaeger, Tom; Austin, Ryan; Provart, Nicholas

    2009-01-01

    Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these metabolic pathways and

  20. Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers.

    PubMed

    Plouhinec, Jean-Louis; Roche, Daniel D; Pegoraro, Caterina; Figueiredo, Ana Leonor; Maczkowiak, Frédérique; Brunet, Lisa J; Milet, Cécile; Vert, Jean-Philippe; Pollet, Nicolas; Harland, Richard M; Monsoro-Burq, Anne H

    2014-02-15

    Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.

  1. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  2. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1994-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  3. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment.

    PubMed

    Klein, Bernard; Seckinger, Anja; Moehler, Thomas; Hose, Dirk

    2011-01-01

    This chapter focuses on two aspects of myeloma pathogenesis: (1) chromosomal aberrations and resulting changes in gene and protein expression with a special focus on growth and survival factors of malignant (and normal) plasma cells and (2) the remodeling of the bone marrow microenvironment induced by accumulating myeloma cells. We begin this chapter with a discussion of normal plasma cell generation, their survival, and a novel class of inhibitory factors. This is crucial for the understanding of multiple myeloma, as several abilities attributed to malignant plasma cells are already present in their normal counterpart, especially the production of survival factors and interaction with the bone marrow microenvironment (niche). The chapter closes with a new model of pathogenesis of myeloma.

  4. Computation in gene networks

    NASA Astrophysics Data System (ADS)

    Ben-Hur, Asa; Siegelmann, Hava T.

    2004-03-01

    Genetic regulatory networks have the complex task of controlling all aspects of life. Using a model of gene expression by piecewise linear differential equations we show that this process can be considered as a process of computation. This is demonstrated by showing that this model can simulate memory bounded Turing machines. The simulation is robust with respect to perturbations of the system, an important property for both analog computers and biological systems. Robustness is achieved using a condition that ensures that the model equations, that are generally chaotic, follow a predictable dynamics.

  5. Multiple access mass storage network

    SciTech Connect

    Wentz, D.L. Jr.

    1980-01-01

    The Multi-Access Storage Subnetwork (MASS) is the latest addition to the Octopus computer network at Lawrence Livermore Laboratory. The subnetwork provides shared mass storage for the Laboratory's multiple-host computer configuration. A Control Data Corp. 38500 Mass Storage facility is interfaces by MASS to the large, scientific worker computers to provide an on-line capacity of 1 trillion bits of user-accessible data. The MASS architecture offers a very high performance approach to the management of large data storage, as well as a high degree of reliability needed for operation in the Laboratory's timesharing environment. MASS combines state-of-the-art digital hardware with an innovative system philosophy. The key LLL design features of the subnetwork that contribute to the high performance include the following: a data transmission scheme that provides a 40-Mbit/s channel over distances of up to 1000 ft, a large metal-oxide-semiconductor (MOS) memory buffer controlled by a 24-port memory multiplexer with an aggregate data rate of 280 Mbit/s, and a set of high-speed microprocessor-based controllers driving the commercial mass storage units. Reliability of the system is provided by a completely redundant network, including two control minicomputer systems. Also enhancing reliability is error detection and correction in the MOS memory. A hardware-generated checksum is carried with each file throughout the entire network to ensure integrity of user files. 6 figures, 1 table.

  6. Functional Module Analysis for Gene Coexpression Networks with Network Integration

    PubMed Central

    Zhang, Shuqin; Zhao, Hongyu

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with 3 complete subgraphs, and 11 modules with 2 complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally. PMID:26451826

  7. Phenotypic switching in gene regulatory networks.

    PubMed

    Thomas, Philipp; Popović, Nikola; Grima, Ramon

    2014-05-13

    Noise in gene expression can lead to reversible phenotypic switching. Several experimental studies have shown that the abundance distributions of proteins in a population of isogenic cells may display multiple distinct maxima. Each of these maxima may be associated with a subpopulation of a particular phenotype, the quantification of which is important for understanding cellular decision-making. Here, we devise a methodology which allows us to quantify multimodal gene expression distributions and single-cell power spectra in gene regulatory networks. Extending the commonly used linear noise approximation, we rigorously show that, in the limit of slow promoter dynamics, these distributions can be systematically approximated as a mixture of Gaussian components in a wide class of networks. The resulting closed-form approximation provides a practical tool for studying complex nonlinear gene regulatory networks that have thus far been amenable only to stochastic simulation. We demonstrate the applicability of our approach in a number of genetic networks, uncovering previously unidentified dynamical characteristics associated with phenotypic switching. Specifically, we elucidate how the interplay of transcriptional and translational regulation can be exploited to control the multimodality of gene expression distributions in two-promoter networks. We demonstrate how phenotypic switching leads to birhythmical expression in a genetic oscillator, and to hysteresis in phenotypic induction, thus highlighting the ability of regulatory networks to retain memory. PMID:24782538

  8. Integrating multiple networks for protein function prediction

    PubMed Central

    2015-01-01

    Background High throughput techniques produce multiple functional association networks. Integrating these networks can enhance the accuracy of protein function prediction. Many algorithms have been introduced to generate a composite network, which is obtained as a weighted sum of individual networks. The weight assigned to an individual network reflects its benefit towards the protein functional annotation inference. A classifier is then trained on the composite network for predicting protein functions. However, since these techniques model the optimization of the composite network and the prediction tasks as separate objectives, the resulting composite network is not necessarily optimal for the follow-up protein function prediction. Results We address this issue by modeling the optimization of the composite network and the prediction problems within a unified objective function. In particular, we use a kernel target alignment technique and the loss function of a network based classifier to jointly adjust the weights assigned to the individual networks. We show that the proposed method, called MNet, can achieve a performance that is superior (with respect to different evaluation criteria) to related techniques using the multiple networks of four example species (yeast, human, mouse, and fly) annotated with thousands (or hundreds) of GO terms. Conclusion MNet can effectively integrate multiple networks for protein function prediction and is robust to the input parameters. Supplementary data is available at https://sites.google.com/site/guoxian85/home/mnet. The Matlab code of MNet is available upon request. PMID:25707434

  9. Differential network analysis from cross-platform gene expression data

    PubMed Central

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  10. Differential network analysis from cross-platform gene expression data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-09-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes.

  11. Measuring multiple evolution mechanisms of complex networks.

    PubMed

    Zhang, Qian-Ming; Xu, Xiao-Ke; Zhu, Yu-Xiao; Zhou, Tao

    2015-01-01

    Numerous concise models such as preferential attachment have been put forward to reveal the evolution mechanisms of real-world networks, which show that real-world networks are usually jointly driven by a hybrid mechanism of multiplex features instead of a single pure mechanism. To get an accurate simulation for real networks, some researchers proposed a few hybrid models by mixing multiple evolution mechanisms. Nevertheless, how a hybrid mechanism of multiplex features jointly influence the network evolution is not very clear. In this study, we introduce two methods (link prediction and likelihood analysis) to measure multiple evolution mechanisms of complex networks. Through tremendous experiments on artificial networks, which can be controlled to follow multiple mechanisms with different weights, we find the method based on likelihood analysis performs much better and gives very accurate estimations. At last, we apply this method to some real-world networks which are from different domains (including technology networks and social networks) and different countries (e.g., USA and China), to see how popularity and clustering co-evolve. We find most of them are affected by both popularity and clustering, but with quite different weights.

  12. Measuring multiple evolution mechanisms of complex networks

    PubMed Central

    Zhang, Qian-Ming; Xu, Xiao-Ke; Zhu, Yu-Xiao; Zhou, Tao

    2015-01-01

    Numerous concise models such as preferential attachment have been put forward to reveal the evolution mechanisms of real-world networks, which show that real-world networks are usually jointly driven by a hybrid mechanism of multiplex features instead of a single pure mechanism. To get an accurate simulation for real networks, some researchers proposed a few hybrid models by mixing multiple evolution mechanisms. Nevertheless, how a hybrid mechanism of multiplex features jointly influence the network evolution is not very clear. In this study, we introduce two methods (link prediction and likelihood analysis) to measure multiple evolution mechanisms of complex networks. Through tremendous experiments on artificial networks, which can be controlled to follow multiple mechanisms with different weights, we find the method based on likelihood analysis performs much better and gives very accurate estimations. At last, we apply this method to some real-world networks which are from different domains (including technology networks and social networks) and different countries (e.g., USA and China), to see how popularity and clustering co-evolve. We find most of them are affected by both popularity and clustering, but with quite different weights. PMID:26065382

  13. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network.

    PubMed

    Smith, Frank W; Angelini, David R; Gaudio, Matthew S; Jockusch, Elizabeth L

    2014-03-01

    The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.

  14. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network

    PubMed Central

    Smith, Frank W.; Angelini, David R.; Gaudio, Matthew; Jockusch, Elizabeth L.

    2014-01-01

    The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b. PMID:24617987

  15. Diversity Performance Analysis on Multiple HAP Networks.

    PubMed

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  16. Diversity Performance Analysis on Multiple HAP Networks

    PubMed Central

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  17. Preferential attachment in multiple trade networks.

    PubMed

    Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano

    2014-08-01

    In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.

  18. Preferential attachment in multiple trade networks

    NASA Astrophysics Data System (ADS)

    Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano

    2014-08-01

    In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.

  19. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  20. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks. PMID:27326708

  1. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks.

  2. Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis.

    PubMed

    Hellberg, Sandra; Eklund, Daniel; Gawel, Danuta R; Köpsén, Mattias; Zhang, Huan; Nestor, Colm E; Kockum, Ingrid; Olsson, Tomas; Skogh, Thomas; Kastbom, Alf; Sjöwall, Christopher; Vrethem, Magnus; Håkansson, Irene; Benson, Mikael; Jenmalm, Maria C; Gustafsson, Mika; Ernerudh, Jan

    2016-09-13

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS and has a varying disease course as well as variable response to treatment. Biomarkers may therefore aid personalized treatment. We tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating our findings with genome-wide association studies, we constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in cerebrospinal fluid and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after 2 years and distinguish low and high responders to treatment in two additional, independent cohorts. While further validation is needed in larger cohorts prior to clinical implementation, we have uncovered a set of potentially promising biomarkers. PMID:27626663

  3. Gene networks and liar paradoxes.

    PubMed

    Isalan, Mark

    2009-10-01

    Network motifs are small patterns of connections, found over-represented in gene regulatory networks. An example is the negative feedback loop (e.g. factor A represses itself). This opposes its own state so that when 'on' it tends towards 'off' - and vice versa. Here, we argue that such self-opposition, if considered dimensionlessly, is analogous to the liar paradox: 'This statement is false'. When 'true' it implies 'false' - and vice versa. Such logical constructs have provided philosophical consternation for over 2000 years. Extending the analogy, other network topologies give strikingly varying outputs over different dimensions. For example, the motif 'A activates B and A. B inhibits A' can give switches or oscillators with time only, or can lead to Turing-type patterns with both space and time (spots, stripes or waves). It is argued here that the dimensionless form reduces to a variant of 'The following statement is true. The preceding statement is false'. Thus, merely having a static topological description of a gene network can lead to a liar paradox. Network diagrams are only snapshots of dynamic biological processes and apparent paradoxes can reveal important biological mechanisms that are far from paradoxical when considered explicitly in time and space. PMID:19722183

  4. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  5. A Bistatic Multiple-Doppler Radar Network.

    NASA Astrophysics Data System (ADS)

    Wurman, Joshua; Heckman, Stanley; Boccippio, Dennis

    1993-12-01

    A multiple-Doppler radar network can be constructed using only one, traditional, transmitting pencil-beam radar and one or more passive, low-gain, nontransmitting receivers at remote sites. Radiation scattered from the pencil beam of the transmitting radar as it penetrates weather targets can be detected at the receive-only sites as well as at the active transmitter. The Doppler shifts of the radiation received at all the sites can be used to construct two- and three-dimensional wind fields in a manner similar to that used with traditional Doppler radar networks.There are unique scientific advantages to a bistatic multiple-Doppler network: 1) all radial velocity measurements from individual resolution volumes are collected simultaneously since there is only one source of radiation; 2) the intensity of the obliquely scattered radiation can be compared to Rayleigh scattering predictions and used for hail detection; 3) rapid scanning of localized weather phenomena can be aided by elimination of the need to scan with multiple radars.This type of multiple-Doppler radar network also has significant economic advantages. Passive sites contain no high-voltage transmitting equipment or large rotating antennas. They require no operators and much less maintenance. We estimate initial investment costs, and subsequent operational and maintenance costs are less than one-thirtieth that of conventional radars.There are shortcomings particular to these types of networks: 1) passive, low-gain, receiving sites are more sensitive to contamination from transmitter sidelobes and to secondary scattering from weather echoes; 2) low-gain receiving sites are less sensitive to weak weather echoes; 3) Cartesian (u, v, w) wind fields derived from bistatic network data exhibit about twice the expected error as those constructed from data from traditional monostatic networks containing equal numbers of radars. Multiple scattering and sidelobe contamination levels are acceptable in most situations

  6. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  7. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  8. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  9. Tools and Models for Integrating Multiple Cellular Networks

    SciTech Connect

    Gerstein, Mark

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  10. Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering

    PubMed Central

    Aibar, Sara; Fontanillo, Celia; Droste, Conrad; De Las Rivas, Javier

    2015-01-01

    Summary: Functional Gene Networks (FGNet) is an R/Bioconductor package that generates gene networks derived from the results of functional enrichment analysis (FEA) and annotation clustering. The sets of genes enriched with specific biological terms (obtained from a FEA platform) are transformed into a network by establishing links between genes based on common functional annotations and common clusters. The network provides a new view of FEA results revealing gene modules with similar functions and genes that are related to multiple functions. In addition to building the functional network, FGNet analyses the similarity between the groups of genes and provides a distance heatmap and a bipartite network of functionally overlapping genes. The application includes an interface to directly perform FEA queries using different external tools: DAVID, GeneTerm Linker, TopGO or GAGE; and a graphical interface to facilitate the use. Availability and implementation: FGNet is available in Bioconductor, including a tutorial. URL: http://bioconductor.org/packages/release/bioc/html/FGNet.html Contact: jrivas@usal.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25600944

  11. Evolving Robust Gene Regulatory Networks

    PubMed Central

    Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi

    2015-01-01

    Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055

  12. Systems Approaches to Identifying Gene Regulatory Networks in Plants

    PubMed Central

    Long, Terri A.; Brady, Siobhan M.; Benfey, Philip N.

    2009-01-01

    Complex gene regulatory networks are composed of genes, noncoding RNAs, proteins, metabolites, and signaling components. The availability of genome-wide mutagenesis libraries; large-scale transcriptome, proteome, and metabalome data sets; and new high-throughput methods that uncover protein interactions underscores the need for mathematical modeling techniques that better enable scientists to synthesize these large amounts of information and to understand the properties of these biological systems. Systems biology approaches can allow researchers to move beyond a reductionist approach and to both integrate and comprehend the interactions of multiple components within these systems. Descriptive and mathematical models for gene regulatory networks can reveal emergent properties of these plant systems. This review highlights methods that researchers are using to obtain large-scale data sets, and examples of gene regulatory networks modeled with these data. Emergent properties revealed by the use of these network models and perspectives on the future of systems biology are discussed. PMID:18616425

  13. GINI: From ISH Images to Gene Interaction Networks

    PubMed Central

    Puniyani, Kriti; Xing, Eric P.

    2013-01-01

    Accurate inference of molecular and functional interactions among genes, especially in multicellular organisms such as Drosophila, often requires statistical analysis of correlations not only between the magnitudes of gene expressions, but also between their temporal-spatial patterns. The ISH (in-situ-hybridization)-based gene expression micro-imaging technology offers an effective approach to perform large-scale spatial-temporal profiling of whole-body mRNA abundance. However, analytical tools for discovering gene interactions from such data remain an open challenge due to various reasons, including difficulties in extracting canonical representations of gene activities from images, and in inference of statistically meaningful networks from such representations. In this paper, we present GINI, a machine learning system for inferring gene interaction networks from Drosophila embryonic ISH images. GINI builds on a computer-vision-inspired vector-space representation of the spatial pattern of gene expression in ISH images, enabled by our recently developed system; and a new multi-instance-kernel algorithm that learns a sparse Markov network model, in which, every gene (i.e., node) in the network is represented by a vector-valued spatial pattern rather than a scalar-valued gene intensity as in conventional approaches such as a Gaussian graphical model. By capturing the notion of spatial similarity of gene expression, and at the same time properly taking into account the presence of multiple images per gene via multi-instance kernels, GINI is well-positioned to infer statistically sound, and biologically meaningful gene interaction networks from image data. Using both synthetic data and a small manually curated data set, we demonstrate the effectiveness of our approach in network building. Furthermore, we report results on a large publicly available collection of Drosophila embryonic ISH images from the Berkeley Drosophila Genome Project, where GINI makes novel and

  14. Multiple network interface core apparatus and method

    DOEpatents

    Underwood, Keith D.; Hemmert, Karl Scott

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  15. Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks

    PubMed Central

    Haibe-Kains, Benjamin; Olsen, Catharina; Djebbari, Amira; Bontempi, Gianluca; Correll, Mick; Bouton, Christopher; Quackenbush, John

    2012-01-01

    Genomics provided us with an unprecedented quantity of data on the genes that are activated or repressed in a wide range of phenotypes. We have increasingly come to recognize that defining the networks and pathways underlying these phenotypes requires both the integration of multiple data types and the development of advanced computational methods to infer relationships between the genes and to estimate the predictive power of the networks through which they interact. To address these issues we have developed Predictive Networks (PN), a flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these ‘known’ interactions together with gene expression data to infer robust gene networks. The PN web application is accessible from http://predictivenetworks.org. The PN code base is freely available at https://sourceforge.net/projects/predictivenets/. PMID:22096235

  16. Learning About Gene Regulatory Networks From Gene Deletion Experiments

    PubMed Central

    Brazma, Alvis

    2002-01-01

    Gene regulatory networks are a major focus of interest in molecular biology. A crucial question is how complex regulatory systems are encoded and controlled by the genome. Three recent publications have raised the question of what can be learned about gene regulatory networks from microarray experiments on gene deletion mutants. Using this indirect approach, topological features such as connectivity and modularity have been studied. PMID:18629255

  17. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  18. [Susceptibility gene in multiple system atrophy (MSA)].

    PubMed

    Tsuji, Shoji

    2014-01-01

    To elucidate molecular bases of multiple system atrophy (MSA), we first focused on recently identified MSA multiplex families. Though linkage analyses followed by whole genome resequencing, we have identified a causative gene, COQ2, for MSA. We then conducted comprehensive nucleotide sequence analysis of COQ2 of sporadic MSA cases and controls, and found that functionally deleterious COQ2 variants confer a strong risk for developing MSA. COQ2 encodes an enzyme in the biosynthetic pathway of coenzyme Q10. Decreased synthesis of coenzyme Q10 is considered to be involved in the pathogenesis of MSA through decreased electron transport in mitochondria and increased vulnerability to oxidative stress. PMID:25672683

  19. Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

    PubMed Central

    Guo, Nancy Lan; Wan, Ying-Wooi

    2014-01-01

    Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson’s correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson’s correlation networks when evaluated with MSigDB database. PMID:25392692

  20. Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.

    PubMed

    Mirzaei, Sajad; Wu, Yufeng

    2016-01-01

    Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets. PMID:27295640

  1. Towards resolving the transcription factor network controlling myelin gene expression

    PubMed Central

    Fulton, Debra L.; Denarier, Eric; Friedman, Hana C.; Wasserman, Wyeth W.; Peterson, Alan C.

    2011-01-01

    In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network. PMID:21729871

  2. Network Topology Reveals Key Cardiovascular Disease Genes

    PubMed Central

    Stojković, Neda; Radak, Djordje; Pržulj, Nataša

    2013-01-01

    The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and “driver genes.” We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies “key” genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs. PMID:23977067

  3. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  4. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  5. Accurate multiple network alignment through context-sensitive random walk

    PubMed Central

    2015-01-01

    Background Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. Results In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. Conclusions Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods. PMID:25707987

  6. Autonomous Boolean modeling of gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua; Sun, Mengyang; Cheng, Xianrui

    2014-03-01

    In cases where the dynamical properties of gene regulatory networks are important, a faithful model must include three key features: a network topology; a functional response of each element to its inputs; and timing information about the transmission of signals across network links. Autonomous Boolean network (ABN) models are efficient representations of these elements and are amenable to analysis. We present an ABN model of the gene regulatory network governing cell fate specification in the early sea urchin embryo, which must generate three bands of distinct tissue types after several cell divisions, beginning from an initial condition with only two distinct cell types. Analysis of the spatial patterning problem and the dynamics of a network constructed from available experimental results reveals that a simple mechanism is at work in this case. Supported by NSF Grant DMS-10-68602

  7. An Algorithm for Constructing Parsimonious Hybridization Networks with Multiple Phylogenetic Trees

    PubMed Central

    2013-01-01

    Abstract A phylogenetic network is a model for reticulate evolution. A hybridization network is one type of phylogenetic network for a set of discordant gene trees and “displays” each gene tree. A central computational problem on hybridization networks is: given a set of gene trees, reconstruct the minimum (i.e., most parsimonious) hybridization network that displays each given gene tree. This problem is known to be NP-hard, and existing approaches for this problem are either heuristics or making simplifying assumptions (e.g., work with only two input trees or assume some topological properties). In this article, we develop an exact algorithm (called PIRNC) for inferring the minimum hybridization networks from multiple gene trees. The PIRNC algorithm does not rely on structural assumptions (e.g., the so-called galled networks). To the best of our knowledge, PIRNC is the first exact algorithm implemented for this formulation. When the number of reticulation events is relatively small (say, four or fewer), PIRNC runs reasonably efficient even for moderately large datasets. For building more complex networks, we also develop a heuristic version of PIRNC called PIRNCH. Simulation shows that PIRNCH usually produces networks with fewer reticulation events than those by an existing method. PIRNC and PIRNCH have been implemented as part of the software package called PIRN and is available online. PMID:24093230

  8. CyLineUp: A Cytoscape app for visualizing data in network small multiples.

    PubMed

    Costa, Maria Cecília D; Slijkhuis, Thijs; Ligterink, Wilco; Hilhorst, Henk W M; de Ridder, Dick; Nijveen, Harm

    2016-01-01

    CyLineUp is a Cytoscape 3 app for the projection of high-throughput measurement data from multiple experiments/samples on a network or pathway map using "small multiples". This visualization method allows for easy comparison of different experiments in the context of the network or pathway. The user can import various kinds of measurement data and select any appropriate Cytoscape network or WikiPathways pathway map. CyLineUp creates small multiples by replicating the loaded network as many times as there are experiments/samples (e.g. time points, stress conditions, tissues, etc.). The measurement data for each experiment are then mapped onto the nodes (genes, proteins etc.) of the corresponding network using a color gradient. Each step of creating the visualization can be customized to the user's needs. The results can be exported as a high quality vector image. PMID:27347378

  9. CyLineUp: A Cytoscape app for visualizing data in network small multiples.

    PubMed

    Costa, Maria Cecília D; Slijkhuis, Thijs; Ligterink, Wilco; Hilhorst, Henk W M; de Ridder, Dick; Nijveen, Harm

    2016-01-01

    CyLineUp is a Cytoscape 3 app for the projection of high-throughput measurement data from multiple experiments/samples on a network or pathway map using "small multiples". This visualization method allows for easy comparison of different experiments in the context of the network or pathway. The user can import various kinds of measurement data and select any appropriate Cytoscape network or WikiPathways pathway map. CyLineUp creates small multiples by replicating the loaded network as many times as there are experiments/samples (e.g. time points, stress conditions, tissues, etc.). The measurement data for each experiment are then mapped onto the nodes (genes, proteins etc.) of the corresponding network using a color gradient. Each step of creating the visualization can be customized to the user's needs. The results can be exported as a high quality vector image.

  10. Network Completion for Static Gene Expression Data

    PubMed Central

    Nakajima, Natsu

    2014-01-01

    We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data. PMID:24826192

  11. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  12. Inference of Gene Regulatory Network Based on Local Bayesian Networks

    PubMed Central

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan

    2016-01-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  13. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...

  14. Network-dosage compensation topologies as recurrent network motifs in natural gene networks

    PubMed Central

    2014-01-01

    Background Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations. Results Here, we determine the necessary conditions for generalized N-component gene networks to be network-dosage compensated and show that the compensation mechanism can robustly operate over large ranges of gene expression levels. Furthermore, we show that the conditions that are necessary for network-dosage compensation are also sufficient. Finally, using genome-wide protein-DNA and protein-protein interaction data, we search the yeast genome for the abundance of specific dosage-compensation motifs and show that a substantial percentage of the natural networks identified contain at least one dosage-compensation motif. Conclusions Our results strengthen the hypothesis that the special network topologies that are necessary for network-dosage compensation may be recurrent network motifs in eukaryotic genomes and therefore may be an important design principle in gene network assembly in cells. PMID:24929807

  15. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  16. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.

  17. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  18. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  19. CyLineUp: A Cytoscape app for visualizing data in network small multiples

    PubMed Central

    Ligterink, Wilco; Hilhorst, Henk W.M.; de Ridder, Dick; Nijveen, Harm

    2016-01-01

    CyLineUp is a Cytoscape 3 app for the projection of high-throughput measurement data from multiple experiments/samples on a network or pathway map using “small multiples”. This visualization method allows for easy comparison of different experiments in the context of the network or pathway. The user can import various kinds of measurement data and select any appropriate Cytoscape network or WikiPathways pathway map. CyLineUp creates small multiples by replicating the loaded network as many times as there are experiments/samples (e.g. time points, stress conditions, tissues, etc.). The measurement data for each experiment are then mapped onto the nodes (genes, proteins etc.) of the corresponding network using a color gradient. Each step of creating the visualization can be customized to the user’s needs. The results can be exported as a high quality vector image. PMID:27347378

  20. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    PubMed Central

    Chen, Bor-Sen; Chang, Yu-Te

    2008-01-01

    Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S) fuzzy time-delay model and linear matrix inequalities (LMIs) technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises. PMID:19038029

  1. Multiplicative interaction in network meta-analysis.

    PubMed

    Piepho, Hans-Peter; Madden, Laurence V; Williams, Emlyn R

    2015-02-20

    Meta-analysis of a set of clinical trials is usually conducted using a linear predictor with additive effects representing treatments and trials. Additivity is a strong assumption. In this paper, we consider models for two or more treatments that involve multiplicative terms for interaction between treatment and trial. Multiplicative models provide information on the sensitivity of each treatment effect relative to the trial effect. In developing these models, we make use of a two-way analysis-of-variance approach to meta-analysis and consider fixed or random trial effects. It is shown using two examples that models with multiplicative terms may fit better than purely additive models and provide insight into the nature of the trial effect. We also show how to model inconsistency using multiplicative terms.

  2. Multiple image sensor data fusion through artificial neural networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With multisensor data fusion technology, the data from multiple sensors are fused in order to make a more accurate estimation of the environment through measurement, processing and analysis. Artificial neural networks are the computational models that mimic biological neural networks. With high per...

  3. Gene interaction network analysis suggests differences between high and low doses of acetaminophen

    SciTech Connect

    Toyoshiba, Hiroyoshi . E-mail: toyoshiba.hiroyoshi@nies.go.jp; Sone, Hideko; Yamanaka, Takeharu; Parham, Frederick M.; Irwin, Richard D.; Boorman, Gary A.; Portier, Christopher J.

    2006-09-15

    Bayesian networks for quantifying linkages between genes were applied to detect differences in gene expression interaction networks between multiple doses of acetaminophen at multiple time points. Seventeen (17) genes were selected from the gene expression profiles from livers of rats orally exposed to 50, 150 and 1500 mg/kg acetaminophen (APAP) at 6, 24 and 48 h after exposure using a variety of statistical and bioinformatics approaches. The selected genes are related to three biological categories: apoptosis, oxidative stress and other. Gene interaction networks between all 17 genes were identified for the nine dose-time observation points by the TAO-Gen algorithm. Using k-means clustering analysis, the estimated nine networks could be clustered into two consensus networks, the first consisting of the low and middle dose groups, and the second consisting of the high dose. The analysis suggests that the networks could be segregated by doses and were consistent in structure over time of observation within grouped doses. The consensus networks were quantified to calculate the probability distribution for the strength of the linkage between genes connected in the networks. The quantifying analysis showed that, at lower doses, the genes related to the oxidative stress signaling pathway did not interact with the apoptosis-related genes. In contrast, the high-dose network demonstrated significant interactions between the oxidative stress genes and the apoptosis genes and also demonstrated a different network between genes in the oxidative stress pathway. The approaches shown here could provide predictive information to understand high- versus low-dose mechanisms of toxicity.

  4. Applications of neural networks for gene finding.

    PubMed

    Sherriff, A; Ott, J

    2001-01-01

    A basic description of artificial neural networks is given and applications of neural nets to problems in human gene mapping are discussed. Specifically, three data types are considered: (1) affected sibpair data for nonparametric linkage analysis, (2) case-control data for disequilibrium analysis based on genetic markers, and (3) family data with trait and marker phenotypes and possibly environmental effects.

  5. Generation of oscillating gene regulatory network motifs

    NASA Astrophysics Data System (ADS)

    van Dorp, M.; Lannoo, B.; Carlon, E.

    2013-07-01

    Using an improved version of an evolutionary algorithm originally proposed by François and Hakim [Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0304532101 101, 580 (2004)], we generated small gene regulatory networks in which the concentration of a target protein oscillates in time. These networks may serve as candidates for oscillatory modules to be found in larger regulatory networks and protein interaction networks. The algorithm was run for 105 times to produce a large set of oscillating modules, which were systematically classified and analyzed. The robustness of the oscillations against variations of the kinetic rates was also determined, to filter out the least robust cases. Furthermore, we show that the set of evolved networks can serve as a database of models whose behavior can be compared to experimentally observed oscillations. The algorithm found three smallest (core) oscillators in which nonlinearities and number of components are minimal. Two of those are two-gene modules: the mixed feedback loop, already discussed in the literature, and an autorepressed gene coupled with a heterodimer. The third one is a single gene module which is competitively regulated by a monomer and a dimer. The evolutionary algorithm also generated larger oscillating networks, which are in part extensions of the three core modules and in part genuinely new modules. The latter includes oscillators which do not rely on feedback induced by transcription factors, but are purely of post-transcriptional type. Analysis of post-transcriptional mechanisms of oscillation may provide useful information for circadian clock research, as recent experiments showed that circadian rhythms are maintained even in the absence of transcription.

  6. Discovery of Core Biotic Stress Responsive Genes in Arabidopsis by Weighted Gene Co-Expression Network Analysis

    PubMed Central

    Amrine, Katherine C. H.; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  7. Increasing feasibility of optimal gene network estimation.

    PubMed

    Hansen, Annika; Ott, Sascha; Koentges, Georgy

    2004-01-01

    Disentangling networks of regulation of gene expression is a major challenge in the field of computational biology. Harvesting the information contained in microarray data sets is a promising approach towards this challenge. We propose an algorithm for the optimal estimation of Bayesian networks from microarray data, which reduces the CPU time and memory consumption of previous algorithms. We prove that the space complexity can be reduced from O(n(2) x 2(n)) to O(2(n)), and that the expected calculation time can be reduced from O(n(2) x 2(n)) to O(n x 2(n)), where n is the number of genes. We make intrinsic use of a limitation of the maximal number of regulators of each gene, which has biological as well as statistical justifications. The improvements are significant for some applications in research.

  8. Multiple equilibrium states for blood flow in microvascular networks

    NASA Astrophysics Data System (ADS)

    Pollock-Muskin, Halley; Diehl, Cecilia; Mohamed, Nora; Karst, Nathan; Geddes, John; Storey, Brian

    2015-11-01

    When blood flows through a vessel bifurcation at the microvascular scale, the hematocrits in the downstream daughter vessels are generally not equal. This phenomenon, known as plasma skimming, can cause heterogeneity in the distribution of red blood cells inside a vessel network. Using established models for plasma skimming, we investigate the equilibrium states in a microvascular network with simple topologies. We find that even simple networks can have multiple equilibrium states for the flow rates and distributions of red blood cells inside the network for fixed inlet conditions. In a ladder network, we find that for certain inlet conditions the network can have 2N observable equilibrium states where N is the number of rungs in the ladder. For ladders with even just a few rungs, the complex equilibrium curves make it seemingly impossible to set the internal state of the network by controlling the inlet flows. Microfluidic experiments are being used to confirm the model predictions.

  9. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  10. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  11. Methods for monitoring multiple gene expression

    SciTech Connect

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  12. Construction of coffee transcriptome networks based on gene annotation semantics.

    PubMed

    Castillo, Luis F; Galeano, Narmer; Isaza, Gustavo A; Gaitán, Alvaro

    2012-07-24

    Gene annotation is a process that encompasses multiple approaches on the analysis of nucleic acids or protein sequences in order to assign structural and functional characteristics to gene models. When thousands of gene models are being described in an organism genome, construction and visualization of gene networks impose novel challenges in the understanding of complex expression patterns and the generation of new knowledge in genomics research. In order to take advantage of accumulated text data after conventional gene sequence analysis, this work applied semantics in combination with visualization tools to build transcriptome networks from a set of coffee gene annotations. A set of selected coffee transcriptome sequences, chosen by the quality of the sequence comparison reported by Basic Local Alignment Search Tool (BLAST) and Interproscan, were filtered out by coverage, identity, length of the query, and e-values. Meanwhile, term descriptors for molecular biology and biochemistry were obtained along the Wordnet dictionary in order to construct a Resource Description Framework (RDF) using Ruby scripts and Methontology to find associations between concepts. Relationships between sequence annotations and semantic concepts were graphically represented through a total of 6845 oriented vectors, which were reduced to 745 non-redundant associations. A large gene network connecting transcripts by way of relational concepts was created where detailed connections remain to be validated for biological significance based on current biochemical and genetics frameworks. Besides reusing text information in the generation of gene connections and for data mining purposes, this tool development opens the possibility to visualize complex and abundant transcriptome data, and triggers the formulation of new hypotheses in metabolic pathways analysis.

  13. Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network.

    PubMed

    To, Cuong Chieu; Vohradsky, Jiri

    2010-09-01

    Inference of the topology of gene regulatory networks from experimental data is one of the primary challenges of systems biology. In an example of a genetic network of cyclins in the yeast cell cycle, we analyzed static genome-wide location data together with microarray kinetic measurements using a recurrent neural network-based model of gene expression and a newly developed, unbiased algorithm based on evolutionary programming principles. The modeling and simulation of gene expression dynamics identified cyclin genetic networks that were active during the cell cycle. We document that because there is inherent experimental variation, it is not possible to identify a single genetic network, only a set of equivalent networks with the same probability of occurrence. Analysis of these networks showed that each target gene was controlled by only a few regulators and that the control was robust. These results led to the reformulation of the cyclin genetic network in the yeast cell cycle as previously published. The analysis shows that with the methodologies that are currently available, it is not possible to predict only one genetic network; rather, we must work with the hypothesis of multiple, equivalent networks. Chromatin immunoprecipitation (ChIP)-on-chip experiments are not sufficient to predict the functional networks that are active during an investigated process. Such predictions must be considered as only potential, and their actual realization during particular cellular processes must be identified by incorporating both kinetic and other types of data.

  14. Gene regulatory networks and the underlying biology of developmental toxicity

    EPA Science Inventory

    Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...

  15. A gene regulatory network armature for T-lymphocyte specification

    SciTech Connect

    Fung, Elizabeth-sharon

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  16. Integration of molecular network data reconstructs Gene Ontology

    PubMed Central

    Gligorijević, Vladimir; Janjić, Vuk; Pržulj, Nataša

    2014-01-01

    Motivation: Recently, a shift was made from using Gene Ontology (GO) to evaluate molecular network data to using these data to construct and evaluate GO. Dutkowski et al. provide the first evidence that a large part of GO can be reconstructed solely from topologies of molecular networks. Motivated by this work, we develop a novel data integration framework that integrates multiple types of molecular network data to reconstruct and update GO. We ask how much of GO can be recovered by integrating various molecular interaction data. Results: We introduce a computational framework for integration of various biological networks using penalized non-negative matrix tri-factorization (PNMTF). It takes all network data in a matrix form and performs simultaneous clustering of genes and GO terms, inducing new relations between genes and GO terms (annotations) and between GO terms themselves. To improve the accuracy of our predicted relations, we extend the integration methodology to include additional topological information represented as the similarity in wiring around non-interacting genes. Surprisingly, by integrating topologies of bakers’ yeasts protein–protein interaction, genetic interaction (GI) and co-expression networks, our method reports as related 96% of GO terms that are directly related in GO. The inclusion of the wiring similarity of non-interacting genes contributes 6% to this large GO term association capture. Furthermore, we use our method to infer new relationships between GO terms solely from the topologies of these networks and validate 44% of our predictions in the literature. In addition, our integration method reproduces 48% of cellular component, 41% of molecular function and 41% of biological process GO terms, outperforming the previous method in the former two domains of GO. Finally, we predict new GO annotations of yeast genes and validate our predictions through GIs profiling. Availability and implementation: Supplementary Tables of new GO

  17. Evolution of the mammalian embryonic pluripotency gene regulatory network.

    PubMed

    Fernandez-Tresguerres, Beatriz; Cañon, Susana; Rayon, Teresa; Pernaute, Barbara; Crespo, Miguel; Torroja, Carlos; Manzanares, Miguel

    2010-11-16

    Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events.

  18. Hybrid stochastic simplifications for multiscale gene networks

    PubMed Central

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-01-01

    Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554

  19. Multiple networks in soft materials: polycontinuity

    NASA Astrophysics Data System (ADS)

    Hyde, Stephen

    2015-03-01

    Bicontinuous network phases contain a pair of interwoven labyrinths. Analogous patterns with 3,4, .., 8, .., 54,... labyrinths are readily constructed via 2d hyperbolic geometry. Some of these have been realised in synthetic materials, from mesoporous silicates and lyotropic liquid crystals to metal-organic frameworks. We stumbled on polycontinuous forms while exploring 2d hyperbolic geometry. The only known tricontinuous phase found to date in mesoscale self-assembled materials was described via 2d non-euclidean geometry many years before its discovery. This example demonstrates the relevance of regular patterns in non-euclidean 2d spaces to self-assembled morphologies in actual materials. One route to explicit ground-up design of mesoscale polycontinuous phases is via star-shaped molecules with immiscible arms, such as Y-shaped ``polyphiles.'' Some results of theoretical geometric modelling, simulation and experimental formulation of lyotropic LC mesophases with polyphiles will be discussed.

  20. Functionalization of a protosynaptic gene expression network

    PubMed Central

    Conaco, Cecilia; Bassett, Danielle S.; Zhou, Hongjun; Arcila, Mary Luz; Degnan, Sandie M.; Degnan, Bernard M.; Kosik, Kenneth S.

    2012-01-01

    Assembly of a functioning neuronal synapse requires the precisely coordinated synthesis of many proteins. To understand the evolution of this complex cellular machine, we tracked the developmental expression patterns of a core set of conserved synaptic genes across a representative sampling of the animal kingdom. Coregulation, as measured by correlation of gene expression over development, showed a marked increase as functional nervous systems emerged. In the earliest branching animal phyla (Porifera), in which a nearly complete set of synaptic genes exists in the absence of morphological synapses, these “protosynaptic” genes displayed a lack of global coregulation although small modules of coexpressed genes are readily detectable by using network analysis techniques. These findings suggest that functional synapses evolved by exapting preexisting cellular machines, likely through some modification of regulatory circuitry. Evolutionarily ancient modules continue to operate seamlessly within the synapses of modern animals. This work shows that the application of network techniques to emerging genomic and expression data can provide insights into the evolution of complex cellular machines such as the synapse. PMID:22723359

  1. Ethanol modulation of gene networks: implications for alcoholism.

    PubMed

    Farris, Sean P; Miles, Michael F

    2012-01-01

    Alcoholism is a complex disease caused by a confluence of environmental and genetic factors influencing multiple brain pathways to produce a variety of behavioral sequelae, including addiction. Genetic factors contribute to over 50% of the risk for alcoholism and recent evidence points to a large number of genes with small effect sizes as the likely molecular basis for this disease. Recent progress in genomics (microarrays or RNA-Seq) and genetics has led to the identification of a large number of potential candidate genes influencing ethanol behaviors or alcoholism itself. To organize this complex information, investigators have begun to focus on the contribution of gene networks, rather than individual genes, for various ethanol-induced behaviors in animal models or behavioral endophenotypes comprising alcoholism. This chapter reviews some of the methods used for constructing gene networks from genomic data and some of the recent progress made in applying such approaches to the study of the neurobiology of ethanol. We show that rapid technology development in gathering genomic data, together with sophisticated experimental design and a growing collection of analysis tools are producing novel insights for understanding the molecular basis of alcoholism and that such approaches promise new opportunities for therapeutic development.

  2. Efficient Quantum Transmission in Multiple-Source Networks

    PubMed Central

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590

  3. Efficient Quantum Transmission in Multiple-Source Networks

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  4. Engineering stability in gene networks by autoregulation

    NASA Astrophysics Data System (ADS)

    Becskei, Attila; Serrano, Luis

    2000-06-01

    The genetic and biochemical networks which underlie such things as homeostasis in metabolism and the developmental programs of living cells, must withstand considerable variations and random perturbations of biochemical parameters. These occur as transient changes in, for example, transcription, translation, and RNA and protein degradation. The intensity and duration of these perturbations differ between cells in a population. The unique state of cells, and thus the diversity in a population, is owing to the different environmental stimuli the individual cells experience and the inherent stochastic nature of biochemical processes (for example, refs 5 and 6). It has been proposed, but not demonstrated, that autoregulatory, negative feedback loops in gene circuits provide stability, thereby limiting the range over which the concentrations of network components fluctuate. Here we have designed and constructed simple gene circuits consisting of a regulator and transcriptional repressor modules in Escherichia coli and we show the gain of stability produced by negative feedback.

  5. Disease gene prioritization using network and feature.

    PubMed

    Xie, Bingqing; Agam, Gady; Balasubramanian, Sandhya; Xu, Jinbo; Gilliam, T Conrad; Maltsev, Natalia; Börnigen, Daniela

    2015-04-01

    Identifying high-confidence candidate genes that are causative for disease phenotypes, from the large lists of variations produced by high-throughput genomics, can be both time-consuming and costly. The development of novel computational approaches, utilizing existing biological knowledge for the prioritization of such candidate genes, can improve the efficiency and accuracy of the biomedical data analysis. It can also reduce the cost of such studies by avoiding experimental validations of irrelevant candidates. In this study, we address this challenge by proposing a novel gene prioritization approach that ranks promising candidate genes that are likely to be involved in a disease or phenotype under study. This algorithm is based on the modified conditional random field (CRF) model that simultaneously makes use of both gene annotations and gene interactions, while preserving their original representation. We validated our approach on two independent disease benchmark studies by ranking candidate genes using network and feature information. Our results showed both high area under the curve (AUC) value (0.86), and more importantly high partial AUC (pAUC) value (0.1296), and revealed higher accuracy and precision at the top predictions as compared with other well-performed gene prioritization tools, such as Endeavour (AUC-0.82, pAUC-0.083) and PINTA (AUC-0.76, pAUC-0.066). We were able to detect more target genes (9/18/19/27) on top positions (1/5/10/20) compared to Endeavour (3/11/14/23) and PINTA (6/10/13/18). To demonstrate its usability, we applied our method to a case study for the prediction of molecular mechanisms contributing to intellectual disability and autism. Our approach was able to correctly recover genes related to both disorders and provide suggestions for possible additional candidates based on their rankings and functional annotations. PMID:25844670

  6. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  7. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery.

  8. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  9. Gene Regulatory Networks Elucidating Huanglongbing Disease Mechanisms

    PubMed Central

    Martinelli, Federico; Reagan, Russell L.; Uratsu, Sandra L.; Phu, My L.; Albrecht, Ute; Zhao, Weixiang; Davis, Cristina E.; Bowman, Kim D.; Dandekar, Abhaya M.

    2013-01-01

    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein – protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur. PMID:24086326

  10. Gene networks controlling early cerebral cortex arealization.

    PubMed

    Mallamaci, Antonello; Stoykova, Anastassia

    2006-02-01

    Early thalamus-independent steps in the process of cortical arealization take place on the basis of information intrinsic to the cortical primordium, as proposed by Rakic in his classical protomap hypothesis [Rakic, P. (1988)Science, 241, 170-176]. These steps depend on a dense network of molecular interactions, involving genes encoding for diffusible ligands which are released around the borders of the cortical field, and transcription factor genes which are expressed in graded ways throughout this field. In recent years, several labs worldwide have put considerable effort into identifying members of this network and disentangling its topology. In this respect, a considerable amount of knowledge has accumulated and a first, provisional description of the network can be delineated. The aim of this review is to provide an organic synthesis of our current knowledge of molecular genetics of early cortical arealization, i.e. to summarise the mechanisms by which secreted ligands and graded transcription factor genes elaborate positional information and trigger the activation of distinctive area-specific morphogenetic programs.

  11. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER

    PubMed Central

    Moore, Gerald D.; Sinclair, Donald A.; Grigliatti, Thomas A.

    1983-01-01

    The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression. PMID:17246163

  12. Wisdom of crowds for robust gene network inference.

    PubMed

    Marbach, Daniel; Costello, James C; Küffner, Robert; Vega, Nicole M; Prill, Robert J; Camacho, Diogo M; Allison, Kyle R; Kellis, Manolis; Collins, James J; Stolovitzky, Gustavo

    2012-07-15

    Reconstructing gene regulatory networks from high-throughput data is a long-standing challenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we performed a comprehensive blind assessment of over 30 network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico microarray data. We characterize the performance, data requirements and inherent biases of different inference approaches, and we provide guidelines for algorithm application and development. We observed that no single inference method performs optimally across all data sets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse data sets. We thereby constructed high-confidence networks for E. coli and S. aureus, each comprising ~1,700 transcriptional interactions at a precision of ~50%. We experimentally tested 53 previously unobserved regulatory interactions in E. coli, of which 23 (43%) were supported. Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks.

  13. Wisdom of crowds for robust gene network inference.

    PubMed

    Marbach, Daniel; Costello, James C; Küffner, Robert; Vega, Nicole M; Prill, Robert J; Camacho, Diogo M; Allison, Kyle R; Kellis, Manolis; Collins, James J; Stolovitzky, Gustavo

    2012-08-01

    Reconstructing gene regulatory networks from high-throughput data is a long-standing challenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we performed a comprehensive blind assessment of over 30 network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico microarray data. We characterize the performance, data requirements and inherent biases of different inference approaches, and we provide guidelines for algorithm application and development. We observed that no single inference method performs optimally across all data sets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse data sets. We thereby constructed high-confidence networks for E. coli and S. aureus, each comprising ~1,700 transcriptional interactions at a precision of ~50%. We experimentally tested 53 previously unobserved regulatory interactions in E. coli, of which 23 (43%) were supported. Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks. PMID:22796662

  14. TEMPI: probabilistic modeling time-evolving differential PPI networks with multiPle information

    PubMed Central

    Kim, Yongsoo; Jang, Jin-Hyeok; Choi, Seungjin; Hwang, Daehee

    2014-01-01

    Motivation: Time-evolving differential protein–protein interaction (PPI) networks are essential to understand serial activation of differentially regulated (up- or downregulated) cellular processes (DRPs) and their interplays over time. Despite developments in the network inference, current methods are still limited in identifying temporal transition of structures of PPI networks, DRPs associated with the structural transition and the interplays among the DRPs over time. Results: Here, we present a probabilistic model for estimating Time-Evolving differential PPI networks with MultiPle Information (TEMPI). This model describes probabilistic relationships among network structures, time-course gene expression data and Gene Ontology biological processes (GOBPs). By maximizing the likelihood of the probabilistic model, TEMPI estimates jointly the time-evolving differential PPI networks (TDNs) describing temporal transition of PPI network structures together with serial activation of DRPs associated with transiting networks. This joint estimation enables us to interpret the TDNs in terms of temporal transition of the DRPs. To demonstrate the utility of TEMPI, we applied it to two time-course datasets. TEMPI identified the TDNs that correctly delineated temporal transition of DRPs and time-dependent associations between the DRPs. These TDNs provide hypotheses for mechanisms underlying serial activation of key DRPs and their temporal associations. Availability and implementation: Source code and sample data files are available at http://sbm.postech.ac.kr/tempi/sources.zip. Contact: seungjin@postech.ac.kr or dhwang@dgist.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25161233

  15. A novel interacting multiple model based network intrusion detection scheme

    NASA Astrophysics Data System (ADS)

    Xin, Ruichi; Venkatasubramanian, Vijay; Leung, Henry

    2006-04-01

    In today's information age, information and network security are of primary importance to any organization. Network intrusion is a serious threat to security of computers and data networks. In internet protocol (IP) based network, intrusions originate in different kinds of packets/messages contained in the open system interconnection (OSI) layer 3 or higher layers. Network intrusion detection and prevention systems observe the layer 3 packets (or layer 4 to 7 messages) to screen for intrusions and security threats. Signature based methods use a pre-existing database that document intrusion patterns as perceived in the layer 3 to 7 protocol traffics and match the incoming traffic for potential intrusion attacks. Alternately, network traffic data can be modeled and any huge anomaly from the established traffic pattern can be detected as network intrusion. The latter method, also known as anomaly based detection is gaining popularity for its versatility in learning new patterns and discovering new attacks. It is apparent that for a reliable performance, an accurate model of the network data needs to be established. In this paper, we illustrate using collected data that network traffic is seldom stationary. We propose the use of multiple models to accurately represent the traffic data. The improvement in reliability of the proposed model is verified by measuring the detection and false alarm rates on several datasets.

  16. Pathway-based network analysis of myeloma tumors: monoclonal gammopathy of unknown significance, smoldering multiple myeloma, and multiple myeloma.

    PubMed

    Dong, L; Chen, C Y; Ning, B; Xu, D L; Gao, J H; Wang, L L; Yan, S Y; Cheng, S

    2015-01-01

    Although many studies have been carried out on monoclonal gammopathy of unknown significances (MGUS), smoldering multiple myeloma (SMM), and multiple myeloma (MM), their classification and underlying pathogenesis are far from elucidated. To discover the relationships among MGUS, SMM, and MM at the transcriptome level, differentially expressed genes in MGUS, SMM, and MM were identified by the rank product method, and then co-expression networks were constructed by integrating the data. Finally, a pathway-network was constructed based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, and the relationships between the pathways were identified. The results indicated that there were 55, 78, and 138 pathways involved in the myeloma tumor developmental stages of MGUS, SMM, and MM, respectively. The biological processes identified therein were found to have a close relationship with the immune system. Processes and pathways related to the abnormal activity of DNA and RNA were also present in SMM and MM. Six common pathways were found in the whole process of myeloma tumor development. Nine pathways were shown to participate in the progression of MGUS to SMM, and prostate cancer was the sole pathway that was involved only in MGUS and MM. Pathway-network analysis might provide a new indicator for the developmental stage diagnosis of myeloma tumors. PMID:26345890

  17. A fast and high performance multiple data integration algorithm for identifying human disease genes

    PubMed Central

    2015-01-01

    Background Integrating multiple data sources is indispensable in improving disease gene identification. It is not only due to the fact that disease genes associated with similar genetic diseases tend to lie close with each other in various biological networks, but also due to the fact that gene-disease associations are complex. Although various algorithms have been proposed to identify disease genes, their prediction performances and the computational time still should be further improved. Results In this study, we propose a fast and high performance multiple data integration algorithm for identifying human disease genes. A posterior probability of each candidate gene associated with individual diseases is calculated by using a Bayesian analysis method and a binary logistic regression model. Two prior probability estimation strategies and two feature vector construction methods are developed to test the performance of the proposed algorithm. Conclusions The proposed algorithm is not only generated predictions with high AUC scores, but also runs very fast. When only a single PPI network is employed, the AUC score is 0.769 by using F2 as feature vectors. The average running time for each leave-one-out experiment is only around 1.5 seconds. When three biological networks are integrated, the AUC score using F3 as feature vectors increases to 0.830, and the average running time for each leave-one-out experiment takes only about 12.54 seconds. It is better than many existing algorithms. PMID:26399620

  18. Gene co-citation networks associated with worker sterility in honey bees

    PubMed Central

    2014-01-01

    Background The evolution of reproductive self-sacrifice is well understood from kin theory, yet our understanding of how actual genes influence the expression of reproductive altruism is only beginning to take shape. As a model in the molecular study of social behaviour, the honey bee Apis mellifera has yielded hundreds of genes associated in their expression with differences in reproductive status of females, including genes directly associated with sterility, yet there has not been an attempt to link these candidates into functional networks that explain how workers regulate sterility in the presence of queen pheromone. In this study we use available microarray data and a co-citation analysis to describe what gene interactions might regulate a worker’s response to ovary suppressing queen pheromone. Results We reconstructed a total of nine gene networks that vary in size and gene composition, but that are significantly enriched for genes of reproductive function. The networks identify, for the first time, which candidate microarray genes are of functional importance, as evidenced by their degree of connectivity to other genes within each of the inferred networks. Our study identifies single genes of interest related to oogenesis, including eggless, and further implicates pathways related to insulin, ecdysteroid, and dopamine signaling as potentially important to reproductive decision making in honey bees. Conclusions The networks derived here appear to be variable in gene composition, hub gene identity, and the overall interactions they describe. One interpretation is that workers use different networks to control personal reproduction via ovary activation, perhaps as a function of age or environmental circumstance. Alternatively, the multiple networks inferred here may represent segments of the larger, single network that remains unknown in its entirety. The networks generated here are provisional but do offer a new multi-gene framework for understanding how

  19. GENES REGULATED BY CALORIC RESTRICTION HAVE UNIQUE ROLES WITHIN TRANSCRIPTIONAL NETWORKS

    PubMed Central

    Swindell, William R.

    2009-01-01

    Caloric restriction (CR) has received much interest as an intervention that delays age-related disease and increases lifespan. Whole-genome microarrays have been used to identify specific genes underlying these effects, and in mice, this has led to the identification of genes with expression responses to CR that are shared across multiple tissue types. Such CR-regulated genes represent strong candidates for future investigation, but have been understood only as a list, without regard to their broader role within transcriptional networks. In this study, co-expression and network properties of CR-regulated genes were investigated using data generated by more than 600 Affymetrix microarrays. This analysis identified groups of co-expressed genes and regulatory factors associated with the mammalian CR response, and uncovered surprising network properties of CR-regulated genes. Genes downregulated by CR were highly connected and located in dense network regions. In contrast, CR-upregulated genes were weakly connected and positioned in sparse network regions. Some network properties were mirrored by CR-regulated genes from invertebrate models, suggesting an evolutionary basis for the observed patterns. These findings contribute to a systems-level picture of how CR influences transcription within mammalian cells, and point towards a comprehensive understanding of CR in terms of its influence on biological networks. PMID:18634819

  20. Multiple-membership multiple-classification models for social network and group dependences

    PubMed Central

    Tranmer, Mark; Steel, David; Browne, William J

    2014-01-01

    The social network literature on network dependences has largely ignored other sources of dependence, such as the school that a student attends, or the area in which an individual lives. The multilevel modelling literature on school and area dependences has, in turn, largely ignored social networks. To bridge this divide, a multiple-membership multiple-classification modelling approach for jointly investigating social network and group dependences is presented. This allows social network and group dependences on individual responses to be investigated and compared. The approach is used to analyse a subsample of the Adolescent Health Study data set from the USA, where the response variable of interest is individual level educational attainment, and the three individual level covariates are sex, ethnic group and age. Individual, network, school and area dependences are accounted for in the analysis. The network dependences can be accounted for by including the network as a classification in the model, using various network configurations, such as ego-nets and cliques. The results suggest that ignoring the network affects the estimates of variation for the classifications that are included in the random part of the model (school, area and individual), as well as having some influence on the point estimates and standard errors of the estimates of regression coefficients for covariates in the fixed part of the model. From a substantive perspective, this approach provides a flexible and practical way of investigating variation in an individual level response due to social network dependences, and estimating the share of variation of an individual response for network, school and area classifications. PMID:25598585

  1. Expression of DNA methylation genes in secondary progressive multiple sclerosis.

    PubMed

    Fagone, Paolo; Mangano, Katia; Di Marco, Roberto; Touil-Boukoffa, Chafia; Chikovan, Tinatin; Signorelli, Santo; Lombardo, Giuseppe A G; Patti, Francesco; Mammana, Santa; Nicoletti, Ferdinando

    2016-01-15

    Multiple sclerosis (MS) is an immunoinflammatory disease of the central nervous system that seems to be influenced by DNA methylation. We sought to explore the expression pattern of genes involved in the control of DNA methylation in Secondary Progressive (SP) MS patients' PBMCs. We have found that SP MS is characterized by a significant upregulation of two genes belonging to the MBD family genes, MBD2 and MBD4, and by a downregulation of TDG and TET3. PMID:26711572

  2. Business Computer Network--A "Gateway" to Multiple Databanks.

    ERIC Educational Resources Information Center

    O'Leary, Mick

    1985-01-01

    Business Computer Network (BCN) employs automatic calling and logon, multiple database access, disk search capture, and search assistance interfaces to provide single access to 15 online services. Telecommunications software (SuperScout) used to reach BCN and participating online services offers storage and message options and is accompanied by…

  3. Identifying node role in social network based on multiple indicators.

    PubMed

    Huang, Shaobin; Lv, Tianyang; Zhang, Xizhe; Yang, Yange; Zheng, Weimin; Wen, Chao

    2014-01-01

    It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn't comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined according to the difference between its indicators' relationship with the statistical correlation of the overall network. Based on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform quite well in evaluating the importance of nodes and in identifying the node role.

  4. Sensitive dependence on initial conditions in gene networks

    NASA Astrophysics Data System (ADS)

    Machina, A.; Edwards, R.; van den Driessche, P.

    2013-06-01

    Active regulation in gene networks poses mathematical challenges that have led to conflicting approaches to analysis. Competing regulation that keeps concentrations of some transcription factors at or near threshold values leads to so-called singular dynamics when steeply sigmoidal interactions are approximated by step functions. An extension, due to Artstein and coauthors, of the classical singular perturbation approach was suggested as an appropriate way to handle the complex situation where non-trivial dynamics, such as a limit cycle, of fast variables occur in switching domains. This non-trivial behaviour can occur when a gene regulates multiple other genes at the same threshold. Here, it is shown that it is possible for nonuniqueness to arise in such a system in the case of limiting step-function interactions. This nonuniqueness is reminiscent of but not identical to the nonuniqueness of Filippov solutions. More realistic gene network models have sigmoidal interactions, however, and in the example considered here, it is shown numerically that the corresponding phenomenon in smooth systems is a sensitivity to initial conditions that leads in the limit to densely interwoven basins of attraction of different fixed point attractors.

  5. Prediction of disease-gene-drug relationships following a differential network analysis.

    PubMed

    Zickenrott, S; Angarica, V E; Upadhyaya, B B; del Sol, A

    2016-01-01

    Great efforts are being devoted to get a deeper understanding of disease-related dysregulations, which is central for introducing novel and more effective therapeutics in the clinics. However, most human diseases are highly multifactorial at the molecular level, involving dysregulation of multiple genes and interactions in gene regulatory networks. This issue hinders the elucidation of disease mechanism, including the identification of disease-causing genes and regulatory interactions. Most of current network-based approaches for the study of disease mechanisms do not take into account significant differences in gene regulatory network topology between healthy and disease phenotypes. Moreover, these approaches are not able to efficiently guide database search for connections between drugs, genes and diseases. We propose a differential network-based methodology for identifying candidate target genes and chemical compounds for reverting disease phenotypes. Our method relies on transcriptomics data to reconstruct gene regulatory networks corresponding to healthy and disease states separately. Further, it identifies candidate genes essential for triggering the reversion of the disease phenotype based on network stability determinants underlying differential gene expression. In addition, our method selects and ranks chemical compounds targeting these genes, which could be used as therapeutic interventions for complex diseases.

  6. Multiple component networks support working memory in prefrontal cortex.

    PubMed

    Markowitz, David A; Curtis, Clayton E; Pesaran, Bijan

    2015-09-01

    Lateral prefrontal cortex (PFC) is regarded as the hub of the brain's working memory (WM) system, but it remains unclear whether WM is supported by a single distributed network or multiple specialized network components in this region. To investigate this problem, we recorded from neurons in PFC while monkeys made delayed eye movements guided by memory or vision. We show that neuronal responses during these tasks map to three anatomically specific modes of persistent activity. The first two modes encode early and late forms of information storage, whereas the third mode encodes response preparation. Neurons that reflect these modes are concentrated at different anatomical locations in PFC and exhibit distinct patterns of coordinated firing rates and spike timing during WM, consistent with distinct networks. These findings support multiple component models of WM and consequently predict distinct failures that could contribute to neurologic dysfunction. PMID:26283366

  7. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    PubMed Central

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple

  8. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    PubMed

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led

  9. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  10. Paper-based Synthetic Gene Networks

    PubMed Central

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  11. Integration of biological networks and gene expression data using Cytoscape.

    PubMed

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.

  12. Chaotic motifs in gene regulatory networks.

    PubMed

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  13. Identification of Hub Genes Related to the Recovery Phase of Irradiation Injury by Microarray and Integrated Gene Network Analysis

    PubMed Central

    Zhang, Jing; Yang, Yue; Wang, Yin; Zhang, Jinyuan; Wang, Zejian; Yin, Ming; Shen, Xudong

    2011-01-01

    Background Irradiation commonly causes long-term bone marrow injury charactertized by defective HSC self-renewal and a decrease in HSC reserve. However, the effect of high-dose IR on global gene expression during bone marrow recovery remains unknown. Methodology Microarray analysis was used to identify differentially expressed genes that are likely to be critical for bone marrow recovery. Multiple bioinformatics analyses were conducted to identify key hub genes, pathways and biological processes. Principal Findings 1) We identified 1302 differentially expressed genes in murine bone marrow at 3, 7, 11 and 21 days after irradiation. Eleven of these genes are known to be HSC self-renewal associated genes, including Adipoq, Ccl3, Ccnd1, Ccnd2, Cdkn1a, Cxcl12, Junb, Pten, Tal1, Thy1 and Tnf; 2) These 1302 differentially expressed genes function in multiple biological processes of immunity, including hematopoiesis and response to stimuli, and cellular processes including cell proliferation, differentiation, adhesion and signaling; 3) Dynamic Gene Network analysis identified a subgroup of 25 core genes that participate in immune response, regulation of transcription and nucleosome assembly; 4) A comparison of our data with known irradiation-related genes extracted from literature showed 42 genes that matched the results of our microarray analysis, thus demonstrated consistency between studies; 5) Protein-protein interaction network and pathway analyses indicated several essential protein-protein interactions and signaling pathways, including focal adhesion and several immune-related signaling pathways. Conclusions Comparisons to other gene array datasets indicate that global gene expression profiles of irradiation damaged bone marrow show significant differences between injury and recovery phases. Our data suggest that immune response (including hematopoiesis) can be considered as a critical biological process in bone marrow recovery. Several critical hub genes that are

  14. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization

    PubMed Central

    Shim, Jung Eun; Hwang, Sohyun; Lee, Insuk

    2015-01-01

    A network-based approach has proven useful for the identification of novel genes associated with complex phenotypes, including human diseases. Because network-based gene prioritization algorithms are based on propagating information of known phenotype-associated genes through networks, the pathway structure of each phenotype might significantly affect the effectiveness of algorithms. We systematically compared two popular network algorithms with distinct mechanisms – direct neighborhood which propagates information to only direct network neighbors, and network diffusion which diffuses information throughout the entire network – in prioritization of genes for worm and human phenotypes. Previous studies reported that network diffusion generally outperforms direct neighborhood for human diseases. Although prioritization power is generally measured for all ranked genes, only the top candidates are significant for subsequent functional analysis. We found that high prioritizing power of a network algorithm for all genes cannot guarantee successful prioritization of top ranked candidates for a given phenotype. Indeed, the majority of the phenotypes that were more efficiently prioritized by network diffusion showed higher prioritizing power for top candidates by direct neighborhood. We also found that connectivity among pathway genes for each phenotype largely determines which network algorithm is more effective, suggesting that the network algorithm used for each phenotype should be chosen with consideration of pathway gene connectivity. PMID:26091506

  15. Threshold-limited spreading in social networks with multiple initiators.

    PubMed

    Singh, P; Sreenivasan, S; Szymanski, B K; Korniss, G

    2013-01-01

    A classical model for social-influence-driven opinion change is the threshold model. Here we study cascades of opinion change driven by threshold model dynamics in the case where multiple initiators trigger the cascade, and where all nodes possess the same adoption threshold ϕ. Specifically, using empirical and stylized models of social networks, we study cascade size as a function of the initiator fraction p. We find that even for arbitrarily high value of ϕ, there exists a critical initiator fraction pc(ϕ) beyond which the cascade becomes global. Network structure, in particular clustering, plays a significant role in this scenario. Similarly to the case of single-node or single-clique initiators studied previously, we observe that community structure within the network facilitates opinion spread to a larger extent than a homogeneous random network. Finally, we study the efficacy of different initiator selection strategies on the size of the cascade and the cascade window.

  16. Modular composition of gene transcription networks.

    PubMed

    Gyorgy, Andras; Del Vecchio, Domitilla

    2014-03-01

    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

  17. Multiple Episodes of Convergence in Genes of the Dim Light Vision Pathway in Bats

    PubMed Central

    Shen, Yong-Yi; Lim, Burton K.; Liu, He-Qun; Liu, Jie; Irwin, David M.; Zhang, Ya-Ping

    2012-01-01

    The molecular basis of the evolution of phenotypic characters is very complex and is poorly understood with few examples documenting the roles of multiple genes. Considering that a single gene cannot fully explain the convergence of phenotypic characters, we choose to study the convergent evolution of rod vision in two divergent bats from a network perspective. The Old World fruit bats (Pteropodidae) are non-echolocating and have binocular vision, whereas the sheath-tailed bats (Emballonuridae) are echolocating and have monocular vision; however, they both have relatively large eyes and rely more on rod vision to find food and navigate in the night. We found that the genes CRX, which plays an essential role in the differentiation of photoreceptor cells, SAG, which is involved in the desensitization of the photoactivated transduction cascade, and the photoreceptor gene RH, which is directly responsible for the perception of dim light, have undergone parallel sequence evolution in two divergent lineages of bats with larger eyes (Pteropodidae and Emballonuroidea). The multiple convergent events in the network of genes essential for rod vision is a rare phenomenon that illustrates the importance of investigating pathways and networks in the evolution of the molecular basis of phenotypic convergence. PMID:22509324

  18. Gene identification and analysis: an application of neural network-based information fusion

    SciTech Connect

    Matis, S.; Xu, Y.; Shah, M.B.; Mural, R.J.; Einstein, J.R.; Uberbacher, E.C.

    1996-10-01

    Identifying genes within large regions of uncharacterized DNA is a difficult undertaking and is currently the focus of many research efforts. We describe a gene localization and modeling system called GRAIL. GRAIL is a multiple sensor-neural network based system. It localizes genes in anonymous DNA sequence by recognizing gene features related to protein-coding slice sites, and then combines the recognized features using a neural network system. Localized coding regions are then optimally parsed into a gene mode. RNA polymerase II promoters can also be predicted. Through years of extensive testing, GRAIL consistently localizes about 90 percent of coding portions of test genes with a false positive rate of about 10 percent. A number of genes for major genetic diseases have been located through the use of GRAIL, and over 1000 research laboratories worldwide use GRAIL on regular bases for localization of genes on their newly sequenced DNA.

  19. Biomarker Gene Signature Discovery Integrating Network Knowledge

    PubMed Central

    Cun, Yupeng; Fröhlich, Holger

    2012-01-01

    Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches. PMID:24832044

  20. Synthetic gene networks in plant systems.

    PubMed

    Junker, Astrid; Junker, Björn H

    2012-01-01

    Synthetic biology methods are routinely applied in the plant field as in other eukaryotic model systems. Several synthetic components have been developed in plants and an increasing number of studies report on the assembly into functional synthetic genetic circuits. This chapter gives an overview of the existing plant genetic networks and describes in detail the application of two systems for inducible gene expression. The ethanol-inducible system relies on the ethanol-responsive interaction of the AlcA transcriptional activator and the AlcR receptor resulting in the transcription of the gene of interest (GOI). In comparison, the translational fusion of GOI and the glucocorticoid receptor (GR) domain leads to the dexamethasone-dependent nuclear translocation of the GOI::GR protein. This chapter contains detailed protocols for the application of both systems in the model plants potato and Arabidopsis, respectively.

  1. Normal aging modulates prefrontoparietal networks underlying multiple memory processes

    PubMed Central

    Sambataro, Fabio; Safrin, Martin; Lemaitre, Herve S.; Steele, Sonya U.; Das, Saumitra B.; Callicott, Joseph H; Weinberger, Daniel R.; Mattay, Venkata S.

    2012-01-01

    Functional decline of brain regions underlying memory processing represents a hallmark of cognitive aging. Although a rich literature documents age-related differences in several memory domains, the effect of aging on networks that underlie multiple memory processes has been relatively unexplored. Here we used functional magnetic resonance imaging during working memory and incidental episodic encoding memory to investigate patterns of age-related differences in activity and functional covariance patterns common across multiple memory domains. Relative to younger subjects, older subjects showed increased activation in left dorso-lateral prefrontal cortex along with decreased deactivation in the posterior cingulate. Older subjects showed greater functional covariance during both memory tasks in a set of regions that included a positive prefronto-parietal-occipital networkas well as a negative network that spanned the default mode regions. These findings suggest that the memory process-invariant recruitment of brain regions within prefronto-parietal-occipital network increases with aging.Our results are in line with the dedifferentiation hypothesis of neurocognitive aging, thereby suggesting a decreased specialization of the brain networks supporting different memory networks. PMID:22909094

  2. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.

    PubMed

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-03-29

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  3. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis

    PubMed Central

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-01-01

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the “recycling” of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  4. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.

    PubMed

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-03-29

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance.

  5. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    PubMed Central

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J.

    2015-01-01

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  6. Antipsychotic Induced Gene Regulation in Multiple Brain Regions

    PubMed Central

    Girgenti, Matthew James; Nisenbaum, Laura K.; Bymaster, Franklin; Terwilliger, Rosemarie; Duman, Ronald S; Newton, Samuel Sathyanesan

    2010-01-01

    The molecular mechanism of action of antipsychotic drugs is not well understood. Their complex receptor affinity profiles indicate that their action could extend beyond dopamine receptor blockade. Single gene expression studies and high-throughput gene profiling have shown the induction of genes from several molecular classes and functional categories. Using a focused microarray approach we investigated gene regulation in rat striatum, frontal cortex and hippocampus after chronic administration of haloperidol or olanzapine. Regulated genes were validated by in-situ hybridization, realtime PCR and immunohistochemistry. Only limited overlap was observed in genes regulated by haloperidol and olanzapine. Both drugs elicited maximal gene regulation in the striatum and least in the hippocampus. Striatal gene induction by haloperidol was predominantly in neurotransmitter signaling, G-protein coupled receptors and transcription factors. Olanzapine prominently induced retinoic acid and trophic factor signaling genes in the frontal cortex. The data also revealed the induction of several genes that could be targeted in future drug development efforts. The study uncovered the induction of several novel genes, including somatostatin receptors and metabotropic glutamate receptors. The results demonstrating the regulation of multiple receptors and transcription factors suggests that both typical and atypical antipsychotics could possess a complex molecular mechanism of action. PMID:20070867

  7. Neuropeptide Y receptor gene y6: multiple deaths or resurrections?

    PubMed

    Starbäck, P; Wraith, A; Eriksson, H; Larhammar, D

    2000-10-14

    The neuropeptide Y family of G-protein-coupled receptors consists of five cloned members in mammals. Four genes give rise to functional receptors in all mammals investigated. The y6 gene is a pseudogene in human and pig and is absent in rat, but generates a functional receptor in rabbit and mouse and probably in the collared peccary (Pecari tajacu), a distant relative of the pig family. We report here that the guinea pig y6 gene has a highly distorted nucleotide sequence with multiple frame-shift mutations. One evolutionary scenario may suggest that y6 was inactivated before the divergence of the mammalian orders and subsequently resurrected in some lineages. However, the pseudogene mutations seem to be distinct in human, pig, and guinea pig, arguing for separate inactivation events. In either case, the y6 gene has a quite unusual evolutionary history with multiple independent deaths or resurrections.

  8. Using qualitative probability in reverse-engineering gene regulatory networks.

    PubMed

    Ibrahim, Zina M; Ngom, Alioune; Tawfik, Ahmed Y

    2011-01-01

    This paper demonstrates the use of qualitative probabilistic networks (QPNs) to aid Dynamic Bayesian Networks (DBNs) in the process of learning the structure of gene regulatory networks from microarray gene expression data. We present a study which shows that QPNs define monotonic relations that are capable of identifying regulatory interactions in a manner that is less susceptible to the many sources of uncertainty that surround gene expression data. Moreover, we construct a model that maps the regulatory interactions of genetic networks to QPN constructs and show its capability in providing a set of candidate regulators for target genes, which is subsequently used to establish a prior structure that the DBN learning algorithm can use and which 1) distinguishes spurious correlations from true regulations, 2) enables the discovery of sets of coregulators of target genes, and 3) results in a more efficient construction of gene regulatory networks. The model is compared to the existing literature using the known gene regulatory interactions of Drosophila Melanogaster.

  9. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks

    PubMed Central

    Blatti, Charles; Sinha, Saurabh

    2016-01-01

    Motivation: Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or ‘properties’ such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene–gene or gene–property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. Results: We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. Availability and Implementation: DRaWR was implemented as

  10. High speed polling protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by transmitting a poll-answering informational message and by relaying the polling message to other adjacent remote nodes.

  11. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data.

    PubMed

    Xia, Jianguo; Gill, Erin E; Hancock, Robert E W

    2015-06-01

    Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain insights into underlying biological processes. The complicated nature of such analyses requires both advanced statistics and innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. NetworkAnalyst (http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical procedures with state-of-the-art data visualization techniques, NetworkAnalyst allows researchers to easily navigate large complex gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation of new biological hypotheses. This protocol provides a step-wise description of how to effectively use NetworkAnalyst to perform network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. NetworkAnalyst is designed to be accessible to biologists rather than to specialist bioinformaticians. The complete protocol can be executed in ∼1.5 h. Compared with other similar web-based tools, NetworkAnalyst offers a unique visual analytics experience that enables data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. All of these analysis methods provide the user with supporting statistical and functional evidence.

  12. Cancer classification based on gene expression using neural networks.

    PubMed

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  13. Multiple-View Object Recognition in Smart Camera Networks

    NASA Astrophysics Data System (ADS)

    Yang, Allen Y.; Maji, Subhransu; Christoudias, C. Mario; Darrell, Trevor; Malik, Jitendra; Sastry, S. Shankar

    We study object recognition in low-power, low-bandwidth smart camera networks. The ability to perform robust object recognition is crucial for applications such as visual surveillance to track and identify objects of interest, and overcome visual nuisances such as occlusion and pose variations between multiple camera views. To accommodate limited bandwidth between the cameras and the base-station computer, the method utilizes the available computational power on the smart sensors to locally extract SIFT-type image features to represent individual camera views. We show that between a network of cameras, high-dimensional SIFT histograms exhibit a joint sparse pattern corresponding to a set of shared features in 3-D. Such joint sparse patterns can be explicitly exploited to encode the distributed signal via random projections. At the network station, multiple decoding schemes are studied to simultaneously recover the multiple-view object features based on a distributed compressive sensing theory. The system has been implemented on the Berkeley CITRIC smart camera platform. The efficacy of the algorithm is validated through extensive simulation and experiment.

  14. How to identify essential genes from molecular networks?

    PubMed Central

    del Rio, Gabriel; Koschützki, Dirk; Coello, Gerardo

    2009-01-01

    Background The prediction of essential genes from molecular networks is a way to test the understanding of essentiality in the context of what is known about the network. However, the current knowledge on molecular network structures is incomplete yet, and consequently the strategies aimed to predict essential genes are prone to uncertain predictions. We propose that simultaneously evaluating different network structures and different algorithms representing gene essentiality (centrality measures) may identify essential genes in networks in a reliable fashion. Results By simultaneously analyzing 16 different centrality measures on 18 different reconstructed metabolic networks for Saccharomyces cerevisiae, we show that no single centrality measure identifies essential genes from these networks in a statistically significant way; however, the combination of at least 2 centrality measures achieves a reliable prediction of most but not all of the essential genes. No improvement is achieved in the prediction of essential genes when 3 or 4 centrality measures were combined. Conclusion The method reported here describes a reliable procedure to predict essential genes from molecular networks. Our results show that essential genes may be predicted only by combining centrality measures, revealing the complex nature of the function of essential genes. PMID:19822021

  15. A multiple-responsive self-healing supramolecular polymer gel network based on multiple orthogonal interactions.

    PubMed

    Zhan, Jiayi; Zhang, Mingming; Zhou, Mi; Liu, Bin; Chen, Dong; Liu, Yuanyuan; Chen, Qianqian; Qiu, Huayu; Yin, Shouchun

    2014-08-01

    Supramolecular polymer networks have attracted considerable attention not only due to their topological importance but also because they can show some fantastic properties such as stimuli-responsiveness and self-healing. Although various supramolecular networks are constructed by supramolecular chemists based on different non-covalent interactions, supramolecular polymer networks based on multiple orthogonal interactions are still rare. Here, a supramolecular polymer network is presented on the basis of the host-guest interactions between dibenzo-24-crown-8 (DB24C8) and dibenzylammonium salts (DBAS), the metal-ligand coordination interactions between terpyridine and Zn(OTf)2 , and between 1,2,3-triazole and PdCl2 (PhCN)2 . The topology of the networks can be easily tuned from monomer to main-chain supramolecular polymer and then to the supramolecular networks. This process is well studied by various characterization methods such as (1) H NMR, UV-vis, DOSY, viscosity, and rheological measurements. More importantly, a supramolecular gel is obtained at high concentrations of the supramolecular networks, which demonstrates both stimuli-responsiveness and self-healing properties. PMID:24943122

  16. Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty.

    PubMed

    Grieb, Melanie; Burkovski, Andre; Sträng, J Eric; Kraus, Johann M; Groß, Alexander; Palm, Günther; Kühl, Michael; Kestler, Hans A

    2015-01-01

    Gene interactions in cells can be represented by gene regulatory networks. A Boolean network models gene interactions according to rules where gene expression is represented by binary values (on / off or {1, 0}). In reality, however, the gene's state can have multiple values due to biological properties. Furthermore, the noisy nature of the experimental design results in uncertainty about a state of the gene. Here we present a new Boolean network paradigm to allow intermediate values on the interval [0, 1]. As in the Boolean network, fixed points or attractors of such a model correspond to biological phenotypes or states. We use our new extension of the Boolean network paradigm to model gene expression in first and second heart field lineages which are cardiac progenitor cell populations involved in early vertebrate heart development. By this we are able to predict additional biological phenotypes that the Boolean model alone is not able to identify without utilizing additional biological knowledge. The additional phenotypes predicted by the model were confirmed by published biological experiments. Furthermore, the new method predicts gene expression propensities for modelled but yet to be analyzed genes.

  17. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  18. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  19. GENIES: gene network inference engine based on supervised analysis.

    PubMed

    Kotera, Masaaki; Yamanishi, Yoshihiro; Moriya, Yuki; Kanehisa, Minoru; Goto, Susumu

    2012-07-01

    Gene network inference engine based on supervised analysis (GENIES) is a web server to predict unknown part of gene network from various types of genome-wide data in the framework of supervised network inference. The originality of GENIES lies in the construction of a predictive model using partially known network information and in the integration of heterogeneous data with kernel methods. The GENIES server accepts any 'profiles' of genes or proteins (e.g. gene expression profiles, protein subcellular localization profiles and phylogenetic profiles) or pre-calculated gene-gene similarity matrices (or 'kernels') in the tab-delimited file format. As a training data set to learn a predictive model, the users can choose either known molecular network information in the KEGG PATHWAY database or their own gene network data. The user can also select an algorithm of supervised network inference, choose various parameters in the method, and control the weights of heterogeneous data integration. The server provides the list of newly predicted gene pairs, maps the predicted gene pairs onto the associated pathway diagrams in KEGG PATHWAY and indicates candidate genes for missing enzymes in organism-specific metabolic pathways. GENIES (http://www.genome.jp/tools/genies/) is publicly available as one of the genome analysis tools in GenomeNet.

  20. A powerful latent variable method for detecting and characterizing gene-based gene-gene interaction on multiple quantitative traits

    PubMed Central

    2013-01-01

    Background On thinking quantitatively of complex diseases, there are at least three statistical strategies for analyzing the gene-gene interaction: SNP by SNP interaction on single trait, gene-gene (each can involve multiple SNPs) interaction on single trait and gene-gene interaction on multiple traits. The third one is the most general in dissecting the genetic mechanism underlying complex diseases underpinning multiple quantitative traits. In this paper, we developed a novel statistic for this strategy through modifying the Partial Least Squares Path Modeling (PLSPM), called mPLSPM statistic. Results Simulation studies indicated that mPLSPM statistic was powerful and outperformed the principal component analysis (PCA) based linear regression method. Application to real data in the EPIC-Norfolk GWAS sub-cohort showed suggestive interaction (γ) between TMEM18 gene and BDNF gene on two composite body shape scores (γ = 0.047 and γ = 0.058, with P = 0.021, P = 0.005), and BMI (γ = 0.043, P = 0.034). This suggested these scores (synthetically latent traits) were more suitable to capture the obesity related genetic interaction effect between genes compared to single trait. Conclusions The proposed novel mPLSPM statistic is a valid and powerful gene-based method for detecting gene-gene interaction on multiple quantitative phenotypes. PMID:24059907

  1. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L.

    PubMed

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development.

  2. MicroRNAs and deregulated gene expression networks in neurodegeneration.

    PubMed

    Sonntag, Kai-Christian

    2010-06-18

    Neurodegeneration is characterized by the progressive loss of neuronal cell types in the nervous system. Although the main cause of cell dysfunction and death in many neurodegenerative diseases is not known, there is increasing evidence that their demise is a result of a combination of genetic and environmental factors which affect key signaling pathways in cell function. This view is supported by recent observations that disease-compromised cells in late-stage neurodegeneration exhibit profound dysregulation of gene expression. MicroRNAs (miRNAs) introduce a novel concept of regulatory control over gene expression and there is increasing evidence that they play a profound role in neuronal cell identity as well as multiple aspects of disease pathogenesis. Here, we review the molecular properties of brain cells derived from patients with neurodegenerative diseases, and discuss how deregulated miRNA/mRNA expression networks could be a mechanism in neurodegeneration. In addition, we emphasize that the dysfunction of these regulatory networks might overlap between different cell systems and suggest that miRNA functions might be common between neurodegeneration and other disease entities.

  3. Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty

    PubMed Central

    Kraus, Johann M.; Groß, Alexander; Palm, Günther; Kühl, Michael; Kestler, Hans A.

    2015-01-01

    Gene interactions in cells can be represented by gene regulatory networks. A Boolean network models gene interactions according to rules where gene expression is represented by binary values (on / off or {1, 0}). In reality, however, the gene’s state can have multiple values due to biological properties. Furthermore, the noisy nature of the experimental design results in uncertainty about a state of the gene. Here we present a new Boolean network paradigm to allow intermediate values on the interval [0, 1]. As in the Boolean network, fixed points or attractors of such a model correspond to biological phenotypes or states. We use our new extension of the Boolean network paradigm to model gene expression in first and second heart field lineages which are cardiac progenitor cell populations involved in early vertebrate heart development. By this we are able to predict additional biological phenotypes that the Boolean model alone is not able to identify without utilizing additional biological knowledge. The additional phenotypes predicted by the model were confirmed by published biological experiments. Furthermore, the new method predicts gene expression propensities for modelled but yet to be analyzed genes. PMID:26207376

  4. A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization

    PubMed Central

    Li, Jianhua; Lin, Xiaoyan; Teng, Yueyang; Qi, Shouliang; Xiao, Dayu; Zhang, Jianying; Kang, Yan

    2016-01-01

    Identification of disease-causing genes is a fundamental challenge for human health studies. The phenotypic similarity among diseases may reflect the interactions at the molecular level, and phenotype comparison can be used to predict disease candidate genes. Online Mendelian Inheritance in Man (OMIM) is a database of human genetic diseases and related genes that has become an authoritative source of disease phenotypes. However, disease phenotypes have been described by free text; thus, standardization of phenotypic descriptions is needed before diseases can be compared. Several disease phenotype networks have been established in OMIM using different standardization methods. Two of these networks are important for phenotypic similarity analysis: the first and most commonly used network (mimMiner) is standardized by medical subject heading, and the other network (resnikHPO) is the first to be standardized by human phenotype ontology. This paper comprehensively evaluates for the first time the accuracy of these two networks in gene prioritization based on protein–protein interactions using large-scale, leave-one-out cross-validation experiments. The results show that both networks can effectively prioritize disease-causing genes, and the approach that relates two diseases using a logistic function improves prioritization performance. Tanimoto, one of four methods for normalizing resnikHPO, generates a symmetric network and it performs similarly to mimMiner. Furthermore, an integration of these two networks outperforms either network alone in gene prioritization, indicating that these two disease networks are complementary. PMID:27415759

  5. Exhaustive Search for Fuzzy Gene Networks from Microarray Data

    SciTech Connect

    Sokhansanj, B A; Fitch, J P; Quong, J N; Quong, A A

    2003-07-07

    Recent technological advances in high-throughput data collection allow for the study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are required to interpret large and complex data sets. Rationally designed system perturbations (e.g. gene knock-outs, metabolite removal, etc) can be used to iteratively refine hypothetical models, leading to a modeling-experiment cycle for high-throughput biological system analysis. We use fuzzy logic gene network models because they have greater resolution than Boolean logic models and do not require the precise parameter measurement needed for chemical kinetics-based modeling. The fuzzy gene network approach is tested by exhaustive search for network models describing cyclin gene interactions in yeast cell cycle microarray data, with preliminary success in recovering interactions predicted by previous biological knowledge and other analysis techniques. Our goal is to further develop this method in combination with experiments we are performing on bacterial regulatory networks.

  6. Multiple Independent Oscillatory Networks in the Degenerating Retina.

    PubMed

    Euler, Thomas; Schubert, Timm

    2015-01-01

    During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina's first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O'Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self

  7. The Effects of Gene Recruitment on the Evolvability and Robustness of Pattern-Forming Gene Networks

    NASA Astrophysics Data System (ADS)

    Spirov, Alexander V.; Holloway, David M.

    Gene recruitment or co-option is defined as the placement of a new gene under a foreign regulatory system. Such re-arrangement of pre-existing regulatory networks can lead to an increase in genomic complexity. This reorganization is recognized as a major driving force in evolution. We simulated the evolution of gene networks by means of the Genetic Algorithms (GA) technique. We used standard GA methods of point mutation and multi-point crossover, as well as our own operators for introducing or withdrawing new genes on the network. The starting point for our computer evolutionary experiments was a 4-gene dynamic model representing the real genetic network controlling segmentation in the fruit fly Drosophila. Model output was fit to experimentally observed gene expression patterns in the early fly embryo. We compared this to output for networks with more and less genes, and with variation in maternal regulatory input. We found that the mutation operator, together with the gene introduction procedure, was sufficient for recruiting new genes into pre-existing networks. Reinforcement of the evolutionary search by crossover operators facilitates this recruitment, but is not necessary. Gene recruitment causes outgrowth of an evolving network, resulting in redundancy, in the sense that the number of genes goes up, as well as the regulatory interactions on the original genes. The recruited genes can have uniform or patterned expressions, many of which recapitulate gene patterns seen in flies, including genes which are not explicitly put in our model. Recruitment of new genes can affect the evolvability of networks (in general, their ability to produce the variation to facilitate adaptive evolution). We see this in particular with a 2-gene subnetwork. To study robustness, we have subjected the networks to experimental levels of variability in maternal regulatory patterns. The majority of networks are not robust to these perturbations. However, a significant subset of the

  8. Optimized routing strategy for complex network with multiple priorities

    NASA Astrophysics Data System (ADS)

    Li, Shi-Bao; Sun, Zong-Xing; Liu, Jian-Hang; Chen, Hai-Hua

    2016-08-01

    Different loads in the network require distinct QoS standard, while present routing strategies for complex networks ignored this fact. To solve this problem, we designed a routing strategy RS-MP with multiple priorities by which packets are classified into privileged-packets and common-packets. In RS-MP, privileged-packets route by the Shortest Path Algorithm, and do not need to queue up. Common-packets’ routes are determined by a new factor BJ max of the network. The BJ max stands for the largest betweenness centrality. By minimizing BJ max, the throughout capacity of the network can be maximized. The simulation results show that RS-MP can guarantee privileged-packets with the shortest path length and smallest delay, and maximized throughout capacity for common packets in the no-congestion state. Project supported by the Fundamental Research Funds for the Central University, China (Grant Nos. 24720152047A and 15CX05025A), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014FM017), the Science and Technology Development Plan of Huangdao District, Qingdao, China (Grant No. 2014-1-45).

  9. On the robustness of complex heterogeneous gene expression networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M

    2005-04-01

    We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.

  10. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to

  11. Railway network design with multiple project stages and time sequencing

    NASA Astrophysics Data System (ADS)

    Kuby, Michael; Xu, Zhongyi; Xie, Xiaodong

    This paper presents a spatial decision support system for network design problems in which different kinds of projects can be built in stages over time. It was developed by the World Bank and China's Ministry of Railways to plan investment strategies for China's overburdened railway system. We first present a mixed-integer program for the single-period network design problem with project choices such as single or multiple tracks and/or electrification with economies of scale. Then, because such projects can be built all at once or in stages, we developed a heuristic backwards time sequencing procedure with a cost adjustment factor to solve the ``project staging'' problem. Other innovations include a preloading routine; coordinated modeling of arcs, paths, and corridors; and a custom-built GIS.

  12. Functional-network-based gene set analysis using gene-ontology.

    PubMed

    Chang, Billy; Kustra, Rafal; Tian, Weidong

    2013-01-01

    To account for the functional non-equivalence among a set of genes within a biological pathway when performing gene set analysis, we introduce GOGANPA, a network-based gene set analysis method, which up-weights genes with functions relevant to the gene set of interest. The genes are weighted according to its degree within a genome-scale functional network constructed using the functional annotations available from the gene ontology database. By benchmarking GOGANPA using a well-studied P53 data set and three breast cancer data sets, we will demonstrate the power and reproducibility of our proposed method over traditional unweighted approaches and a competing network-based approach that involves a complex integrated network. GOGANPA's sole reliance on gene ontology further allows GOGANPA to be widely applicable to the analysis of any gene-ontology-annotated genome. PMID:23418449

  13. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis.

    PubMed

    Scott, Robert E; Ghule, Prachi N; Stein, Janet L; Stein, Gary S

    2015-10-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint is associated with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats, and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes, and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose, and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with P = e(-13) to e(-36) . Cell cycle expression networks show species, sex and tissue variability, and they are enriched in mRNA transcripts associated with mitosis, many of which are associated with chromosomal instability. PMID:25808367

  14. Next generation communications satellites: multiple access and network studies

    NASA Technical Reports Server (NTRS)

    Meadows, H. E.; Schwartz, M.; Stern, T. E.; Ganguly, S.; Kraimeche, B.; Matsuo, K.; Gopal, I.

    1982-01-01

    Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed.

  15. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  16. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes

    PubMed Central

    Lieberman, Tami D.; Michel, Jean-Baptiste; Aingaran, Mythili; Potter-Bynoe, Gail; Roux, Damien; Davis, Michael R.; Skurnik, David; Leiby, Nicholas; LiPuma, John J.; Goldberg, Joanna B.; McAdam, Alexander J.; Priebe, Gregory P.; Kishony, Roy

    2011-01-01

    Bacterial pathogens evolve during the infection of their human hosts1-8, but separating adaptive and neutral mutations remains challenging9-11. Here, we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple patients. We conducted a retrospective study of a Burkholderia dolosa outbreak among people with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired non-synonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes illuminate the genetic basis of important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition, and implicate oxygen-dependent gene regulation as paramount in lung infections. Several genes have not been previously implicated in pathogenesis, suggesting new therapeutic targets. The identification of parallel molecular evolution suggests key selection forces acting on pathogens within humans and can help predict and prepare for their future evolutionary course. PMID:22081229

  17. Comparison of Multiple Gene Assembly Methods for Metabolic Engineering

    NASA Astrophysics Data System (ADS)

    Lu, Chenfeng; Mansoorabadi, Karen; Jeffries, Thomas

    A universal, rapid DNA assembly method for efficient multigene plasmid construction is important for biological research and for optimizing gene expression in industrial microbes. Three different approaches to achieve this goal were evaluated. These included creating long complementary extensions using a uracil-DNA glycosylase technique, overlap extension polymerase chain reaction, and a SfiI-based ligation method. SfiI ligation was the only successful approach for assembling large DNA fragments that contained repeated homologous regions. In addition, the SfiI method has been improved over a similar, previous published technique so that it is more flexible and does not require polymerase chain reaction to incorporate adaptors. In the present study, Saccharomyces cerevisiae genes TAL1, TKL1, and PYK1 under control of the 6-phosphogluconate dehydrogenase promoter were successfully ligated together using multiple unique SfiI restriction sites. The desired construct was obtained 65% of the time during vector construction using four-piece ligations. The SfiI method consists of three steps: first a SfiI linker vector is constructed, whose multiple cloning site is flanked by two three-base linkers matching the neighboring SfiI linkers on SfiI digestion; second, the linkers are attached to the desired genes by cloning them into SfiI linker vectors; third, the genes flanked by the three-base linkers, are released by SfiI digestion. In the final step, genes of interest are joined together in a simple one-step ligation.

  18. Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer

    PubMed Central

    Zhang, Yun-Xia

    2016-01-01

    Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC) using a network-based strategy and to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic genes (seed genes) and differentially expressed genes (DEGs) between CC and normal controls. Subsequently, cluster analysis was performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal controls. From the pathogenic network, 2 intensely connected clusters were extracted, and a total of 52 candidate genes were detected under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate genes MMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion. Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe that our results can provide theoretical guidelines for future clinical application. PMID:27034707

  19. Multiple Routes to Subfunctionalization and Gene Duplicate Specialization

    PubMed Central

    Proulx, Stephen R.

    2012-01-01

    Gene duplication is arguably the most significant source of new functional genetic material. A better understanding of the processes that lead to the stable incorporation of gene duplications into the genome is important both because it relates to interspecific differences in genome composition and because it can shed light on why some classes of gene are more prone to duplication than others. Typically, models of gene duplication consider the periods before duplication, during the spread and fixation of a new duplicate, and following duplication as distinct phases without a common underlying selective environment. I consider a scenario where a gene that is initially expressed in multiple contexts can undergo mutations that alter its expression profile or its functional coding sequence. The selective regime that acts on the functional output of the allele copies carried by an individual is constant. If there is a potential selective benefit to having different coding sequences expressed in each context, then, regardless of the constraints on functional variation at the single-locus gene, the waiting time until a gene duplication is incorporated goes down as population size increases. PMID:22143920

  20. Implicit methods for qualitative modeling of gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; De Micheli, Giovanni; Xenarios, Ioannis

    2012-01-01

    Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.

  1. How multiple social networks affect user awareness: The information diffusion process in multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming

    2015-10-01

    The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.

  2. A study of multiple access schemes in satellite control network

    NASA Astrophysics Data System (ADS)

    Mo, Zijian; Wang, Zhonghai; Xiang, Xingyu; Wang, Gang; Chen, Genshe; Nguyen, Tien; Pham, Khanh; Blasch, Erik

    2016-05-01

    Satellite Control Networks (SCN) have provided launch control for space lift vehicles; tracking, telemetry and commanding (TTC) for on-orbit satellites; and, test support for space experiments since the 1960s. Currently, SCNs encounter a new challenge: how to maintain the high reliability of services when sharing the spectrum with emerging commercial services. To achieve this goal, the capability of multiple satellites reception is deserved as an update/modernization of SCN in the future. In this paper, we conducts an investigation of multiple access techniques in SCN scenario, e.g., frequency division multiple access (FDMA) and coded division multiple access (CDMA). First, we introduce two upgrade options of SCN based on FDMA and CDMA techniques. Correspondingly, we also provide their performance analysis, especially the system improvement in spectrum efficiency and interference mitigation. Finally, to determine the optimum upgrade option, this work uses CRISP, i.e., Cost, Risk, Installation, Supportability and Performance, as the baseline approach for a comprehensive trade study of these two options. Extensive numerical and simulation results are presented to illustrate the theoretical development.

  3. Global multiple protein-protein interaction network alignment by combining pairwise network alignments

    PubMed Central

    2015-01-01

    Background A wealth of protein interaction data has become available in recent years, creating an urgent need for powerful analysis techniques. In this context, the problem of finding biologically meaningful correspondences between different protein-protein interaction networks (PPIN) is of particular interest. The PPIN of a species can be compared with that of other species through the process of PPIN alignment. Such an alignment can provide insight into basic problems like species evolution and network component function determination, as well as translational problems such as target identification and elucidation of mechanisms of disease spread. Furthermore, multiple PPINs can be aligned simultaneously, expanding the analytical implications of the result. While there are several pairwise network alignment algorithms, few methods are capable of multiple network alignment. Results We propose SMAL, a MNA algorithm based on the philosophy of scaffold-based alignment. SMAL is capable of converting results from any global pairwise alignment algorithms into a MNA in linear time. Using this method, we have built multiple network alignments based on combining pairwise alignments from a number of publicly available (pairwise) network aligners. We tested SMAL using PPINs of eight species derived from the IntAct repository and employed a number of measures to evaluate performance. Additionally, as part of our experimental investigations, we compared the effectiveness of SMAL while aligning up to eight input PPINs, and examined the effect of scaffold network choice on the alignments. Conclusions A key advantage of SMAL lies in its ability to create MNAs through the use of pairwise network aligners for which native MNA implementations do not exist. Experiments indicate that the performance of SMAL was comparable to that of the native MNA implementation of established methods such as IsoRankN and SMETANA. However, in terms of computational time, SMAL was significantly faster

  4. Noise reduction facilitated by dosage compensation in gene networks

    PubMed Central

    Peng, Weilin; Song, Ruijie; Acar, Murat

    2016-01-01

    Genetic noise together with genome duplication and volume changes during cell cycle are significant contributors to cell-to-cell heterogeneity. How can cells buffer the effects of these unavoidable epigenetic and genetic variations on phenotypes that are sensitive to such variations? Here we show that a simple network motif that is essential for network-dosage compensation can reduce the effects of extrinsic noise on the network output. Using natural and synthetic gene networks with and without the network motif, we measure gene network activity in single yeast cells and find that the activity of the compensated network is significantly lower in noise compared with the non-compensated network. A mathematical analysis provides intuitive insights into these results and a novel stochastic model tracking cell-volume and cell-cycle predicts the experimental results. Our work implies that noise is a selectable trait tunable by evolution. PMID:27694830

  5. Approaches for recognizing disease genes based on network.

    PubMed

    Zou, Quan; Li, Jinjin; Wang, Chunyu; Zeng, Xiangxiang

    2014-01-01

    Diseases are closely related to genes, thus indicating that genetic abnormalities may lead to certain diseases. The recognition of disease genes has long been a goal in biology, which may contribute to the improvement of health care and understanding gene functions, pathways, and interactions. However, few large-scale gene-gene association datasets, disease-disease association datasets, and gene-disease association datasets are available. A number of machine learning methods have been used to recognize disease genes based on networks. This paper states the relationship between disease and gene, summarizes the approaches used to recognize disease genes based on network, analyzes the core problems and challenges of the methods, and outlooks future research direction.

  6. Evolvability and hierarchy in rewired bacterial gene networks.

    PubMed

    Isalan, Mark; Lemerle, Caroline; Michalodimitrakis, Konstantinos; Horn, Carsten; Beltrao, Pedro; Raineri, Emanuele; Garriga-Canut, Mireia; Serrano, Luis

    2008-04-17

    Sequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily moulded the contents of a given genome. Though the effect of knocking out or overexpressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To explore network evolvability, we constructed 598 recombinations of promoters (including regulatory regions) with different transcription or sigma-factor genes in Escherichia coli, added over a wild-type genetic background. Here we show that approximately 95% of new networks are tolerated by the bacteria, that very few alter growth, and that expression level correlates with factor position in the wild-type network hierarchy. Most importantly, we find that certain networks consistently survive over the wild type under various selection pressures. Therefore new links in the network are rarely a barrier for evolution and can even confer a fitness advantage.

  7. Evolvability and hierarchy in rewired bacterial gene networks

    PubMed Central

    Isalan, Mark; Lemerle, Caroline; Michalodimitrakis, Konstantinos; Beltrao, Pedro; Horn, Carsten; Raineri, Emanuele; Garriga-Canut, Mireia; Serrano, Luis

    2009-01-01

    Sequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily molded the contents of a given genome. Though the effect of knocking out or over-expressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To explore network evolvability, we constructed 598 recombinations of promoters (including regulatory regions) with different transcription or σ-factor genes in Escherichia coli, added over a wild-type genetic background. Here we show that ~95% of new networks are tolerated by the bacteria, that very few alter growth, and that expression level correlates with factor position in the wild-type network hierarchy. Most importantly, we find that certain networks consistently survive over the wild-type under various selection pressures. Therefore new links in the network are rarely a barrier for evolution and can even confer a fitness advantage. PMID:18421347

  8. Convergence in pigmentation at multiple levels: mutations, genes and function

    PubMed Central

    Manceau, Marie; Domingues, Vera S.; Linnen, Catherine R.; Rosenblum, Erica Bree; Hoekstra, Hopi E.

    2010-01-01

    Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  9. Convergence in pigmentation at multiple levels: mutations, genes and function.

    PubMed

    Manceau, Marie; Domingues, Vera S; Linnen, Catherine R; Rosenblum, Erica Bree; Hoekstra, Hopi E

    2010-08-27

    Convergence--the independent evolution of the same trait by two or more taxa--has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  10. Parallel Recruitment of Multiple Genes into C4 Photosynthesis

    PubMed Central

    Christin, Pascal-Antoine; Boxall, Susanna F.; Gregory, Richard; Edwards, Erika J.; Hartwell, James; Osborne, Colin P.

    2013-01-01

    During the diversification of living organisms, novel adaptive traits usually evolve through the co-option of preexisting genes. However, most enzymes are encoded by gene families, whose members vary in their expression and catalytic properties. Each may therefore differ in its suitability for recruitment into a novel function. In this work, we test for the presence of such a gene recruitment bias using the example of C4 photosynthesis, a complex trait that evolved recurrently in flowering plants as a response to atmospheric CO2 depletion. We combined the analysis of complete nuclear genomes and high-throughput transcriptome data for three grass species that evolved the C4 trait independently. For five of the seven enzymes analyzed, the same gene lineage was recruited across the independent C4 origins, despite the existence of multiple copies. The analysis of a closely related C3 grass confirmed that C4 expression patterns were not present in the C3 ancestors but were acquired during the evolutionary transition to C4 photosynthesis. The significant bias in gene recruitment indicates that some genes are more suitable for a novel function, probably because the mutations they accumulated brought them closer to the characteristics required for the new function. PMID:24179135

  11. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.

    PubMed

    Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune

    2016-01-01

    Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.

  12. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.

    PubMed

    Himmelstein, Daniel S; Baranzini, Sergio E

    2015-07-01

    The first decade of Genome Wide Association Studies (GWAS) has uncovered a wealth of disease-associated variants. Two important derivations will be the translation of this information into a multiscale understanding of pathogenic variants and leveraging existing data to increase the power of existing and future studies through prioritization. We explore edge prediction on heterogeneous networks--graphs with multiple node and edge types--for accomplishing both tasks. First we constructed a network with 18 node types--genes, diseases, tissues, pathophysiologies, and 14 MSigDB (molecular signatures database) collections--and 19 edge types from high-throughput publicly-available resources. From this network composed of 40,343 nodes and 1,608,168 edges, we extracted features that describe the topology between specific genes and diseases. Next, we trained a model from GWAS associations and predicted the probability of association between each protein-coding gene and each of 29 well-studied complex diseases. The model, which achieved 132-fold enrichment in precision at 10% recall, outperformed any individual domain, highlighting the benefit of integrative approaches. We identified pleiotropy, transcriptional signatures of perturbations, pathways, and protein interactions as influential mechanisms explaining pathogenesis. Our method successfully predicted the results (with AUROC = 0.79) from a withheld multiple sclerosis (MS) GWAS despite starting with only 13 previously associated genes. Finally, we combined our network predictions with statistical evidence of association to propose four novel MS genes, three of which (JAK2, REL, RUNX3) validated on the masked GWAS. Furthermore, our predictions provide biological support highlighting REL as the causal gene within its gene-rich locus. Users can browse all predictions online (http://het.io). Heterogeneous network edge prediction effectively prioritized genetic associations and provides a powerful new approach for data

  13. Optimizing multiple sclerosis diagnosis: gene expression and genomic association

    PubMed Central

    Gurevich, Michael; Miron, Gadi; Achiron, Anat

    2015-01-01

    Objective The diagnosis of multiple sclerosis (MS) at disease onset is sometimes masqueraded by other diagnostic options resembling MS clinically or radiologically (NonMS). In the present study we utilized findings of large-scale Genome-Wide Association Studies (GWAS) to develop a blood gene expression-based classification tool to assist in diagnosis during the first demyelinating event. Methods We have merged knowledge of 110 MS susceptibility genes gained from MS GWAS studies together with our experimental results of differential blood gene expression profiling between 80 MS and 31 NonMS patients. Multiple classification algorithms were applied to this cohort to construct a diagnostic classifier that correctly distinguished between MS and NonMS patients. Accuracy of the classifier was tested on an additional independent group of 146 patients including 121 MS and 25 NonMS patients. Results We have constructed a 42 gene-transcript expression-based MS diagnostic classifier. The overall accuracy of the classifier, as tested on an independent patient population consisting of diagnostically challenging cases including NonMS patients with positive MRI findings, achieved a correct classification rate of 76.0 ± 3.5%. Interpretation The presented diagnostic classification tool complements the existing diagnostic McDonald criteria by assisting in the accurate exclusion of other neurological diseases at presentation of the first demyelinating event suggestive of MS. PMID:25815353

  14. Genes and Environment in Multiple Sclerosis project: A platform to investigate multiple sclerosis risk.

    PubMed

    Xia, Zongqi; White, Charles C; Owen, Emily K; Von Korff, Alina; Clarkson, Sarah R; McCabe, Cristin A; Cimpean, Maria; Winn, Phoebe A; Hoesing, Ashley; Steele, Sonya U; Cortese, Irene C M; Chitnis, Tanuja; Weiner, Howard L; Reich, Daniel S; Chibnik, Lori B; De Jager, Philip L

    2016-02-01

    The Genes and Environment in Multiple Sclerosis project establishes a platform to investigate the events leading to multiple sclerosis (MS) in at-risk individuals. It has recruited 2,632 first-degree relatives from across the USA. Using an integrated genetic and environmental risk score, we identified subjects with twice the MS risk when compared to the average family member, and we report an initial incidence rate in these subjects that is 30 times greater than that of sporadic MS. We discuss the feasibility of large-scale studies of asymptomatic at-risk subjects that leverage modern tools of subject recruitment to execute collaborative projects.

  15. Inferring slowly-changing dynamic gene-regulatory networks.

    PubMed

    Wit, Ernst C; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with l1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset.

  16. Inferring slowly-changing dynamic gene-regulatory networks

    PubMed Central

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with ℓ1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset. PMID:25917062

  17. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks.

    PubMed

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-06-01

    The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.

  18. Function Annotation of an SBP-box Gene in Arabidopsis Based on Analysis of Co-expression Networks and Promoters

    PubMed Central

    Wang, Yi; Hu, Zongli; Yang, Yuxin; Chen, Xuqing; Chen, Guoping

    2009-01-01

    The SQUAMOSA PROMOTER BINDING PROTEIN–LIKE (SPL) gene family is an SBP-box transcription family in Arabidopsis. While several physiological responses to SPL genes have been reported, their biological role remains elusive. Here, we use a combined analysis of expression correlation, the interactome, and promoter content to infer the biological role of the SPL genes in Arabidopsis thaliana. Analysis of the SPL-correlated gene network reveals multiple functions for SPL genes. Network analysis shows that SPL genes function by controlling other transcription factor families and have relatives with membrane protein transport activity. The interactome analysis of the correlation genes suggests that SPL genes also take part in metabolism of glucose, inorganic salts, and ATP production. Furthermore, the promoters of the correlated genes contain a core binding cis-element (GTAC). All of these analyses suggest that SPL genes have varied functions in Arabidopsis. PMID:19333437

  19. Gene network-based cancer prognosis analysis with sparse boosting

    PubMed Central

    Ma, Shuangge; Huang, Yuan; Huang, Jian; Fang, Kuangnan

    2013-01-01

    Summary High-throughput gene profiling studies have been extensively conducted, searching for markers associated with cancer development and progression. In this study, we analyse cancer prognosis studies with right censored survival responses. With gene expression data, we adopt the weighted gene co-expression network analysis (WGCNA) to describe the interplay among genes. In network analysis, nodes represent genes. There are subsets of nodes, called modules, which are tightly connected to each other. Genes within the same modules tend to have co-regulated biological functions. For cancer prognosis data with gene expression measurements, our goal is to identify cancer markers, while properly accounting for the network module structure. A two-step sparse boosting approach, called Network Sparse Boosting (NSBoost), is proposed for marker selection. In the first step, for each module separately, we use a sparse boosting approach for within-module marker selection and construct module-level ‘super markers ’. In the second step, we use the super markers to represent the effects of all genes within the same modules and conduct module-level selection using a sparse boosting approach. Simulation study shows that NSBoost can more accurately identify cancer-associated genes and modules than alternatives. In the analysis of breast cancer and lymphoma prognosis studies, NSBoost identifies genes with important biological implications. It outperforms alternatives including the boosting and penalization approaches by identifying a smaller number of genes/modules and/or having better prediction performance. PMID:22950901

  20. Time-Delayed Models of Gene Regulatory Networks

    PubMed Central

    Parmar, K.; Blyuss, K. B.; Kyrychko, Y. N.; Hogan, S. J.

    2015-01-01

    We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After discussion of alternative modelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA dynamics with that of the full model. The review concludes with the discussion of some open problems. PMID:26576197

  1. Neural network-based multiple robot simultaneous localization and mapping.

    PubMed

    Saeedi, Sajad; Paull, Liam; Trentini, Michael; Li, Howard

    2011-12-01

    In this paper, a decentralized platform for simultaneous localization and mapping (SLAM) with multiple robots is developed. Each robot performs single robot view-based SLAM using an extended Kalman filter to fuse data from two encoders and a laser ranger. To extend this approach to multiple robot SLAM, a novel occupancy grid map fusion algorithm is proposed. Map fusion is achieved through a multistep process that includes image preprocessing, map learning (clustering) using neural networks, relative orientation extraction using norm histogram cross correlation and a Radon transform, relative translation extraction using matching norm vectors, and then verification of the results. The proposed map learning method is a process based on the self-organizing map. In the learning phase, the obstacles of the map are learned by clustering the occupied cells of the map into clusters. The learning is an unsupervised process which can be done on the fly without any need to have output training patterns. The clusters represent the spatial form of the map and make further analyses of the map easier and faster. Also, clusters can be interpreted as features extracted from the occupancy grid map so the map fusion problem becomes a task of matching features. Results of the experiments from tests performed on a real environment with multiple robots prove the effectiveness of the proposed solution.

  2. Neural network-based multiple robot simultaneous localization and mapping.

    PubMed

    Saeedi, Sajad; Paull, Liam; Trentini, Michael; Li, Howard

    2011-12-01

    In this paper, a decentralized platform for simultaneous localization and mapping (SLAM) with multiple robots is developed. Each robot performs single robot view-based SLAM using an extended Kalman filter to fuse data from two encoders and a laser ranger. To extend this approach to multiple robot SLAM, a novel occupancy grid map fusion algorithm is proposed. Map fusion is achieved through a multistep process that includes image preprocessing, map learning (clustering) using neural networks, relative orientation extraction using norm histogram cross correlation and a Radon transform, relative translation extraction using matching norm vectors, and then verification of the results. The proposed map learning method is a process based on the self-organizing map. In the learning phase, the obstacles of the map are learned by clustering the occupied cells of the map into clusters. The learning is an unsupervised process which can be done on the fly without any need to have output training patterns. The clusters represent the spatial form of the map and make further analyses of the map easier and faster. Also, clusters can be interpreted as features extracted from the occupancy grid map so the map fusion problem becomes a task of matching features. Results of the experiments from tests performed on a real environment with multiple robots prove the effectiveness of the proposed solution. PMID:22156983

  3. Regulatory gene networks and the properties of the developmental process

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; McClay, David R.; Hood, Leroy

    2003-01-01

    Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.

  4. Revealing Shared and Distinct Gene Network Organization in Arabidopsis Immune Responses by Integrative Analysis1

    PubMed Central

    Dong, Xiaobao; Jiang, Zhenhong; Peng, You-Liang; Zhang, Ziding

    2015-01-01

    Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing 1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to establish a robust immune response. PMID:25614062

  5. Analysis of Gene Sets Based on the Underlying Regulatory Network

    PubMed Central

    Michailidis, George

    2009-01-01

    Abstract Networks are often used to represent the interactions among genes and proteins. These interactions are known to play an important role in vital cell functions and should be included in the analysis of genes that are differentially expressed. Methods of gene set analysis take advantage of external biological information and analyze a priori defined sets of genes. These methods can potentially preserve the correlation among genes; however, they do not directly incorporate the information about the gene network. In this paper, we propose a latent variable model that directly incorporates the network information. We then use the theory of mixed linear models to present a general inference framework for the problem of testing the significance of subnetworks. Several possible test procedures are introduced and a network based method for testing the changes in expression levels of genes as well as the structure of the network is presented. The performance of the proposed method is compared with methods of gene set analysis using both simulation studies, as well as real data on genes related to the galactose utilization pathway in yeast. PMID:19254181

  6. Phenotype accessibility and noise in random threshold gene regulatory networks.

    PubMed

    Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W

    2014-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  7. Phenotype Accessibility and Noise in Random Threshold Gene Regulatory Networks

    PubMed Central

    Feldman, Marcus W.

    2015-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  8. Gene co-expression networks shed light into diseases of brain iron accumulation

    PubMed Central

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry

    2016-01-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  9. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available. PMID:25370817

  10. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  11. PyPanda: a Python package for gene regulatory network reconstruction

    PubMed Central

    van IJzendoorn, David G.P.; Glass, Kimberly; Quackenbush, John; Kuijjer, Marieke L.

    2016-01-01

    Summary: PANDA (Passing Attributes between Networks for Data Assimilation) is a gene regulatory network inference method that uses message-passing to integrate multiple sources of ‘omics data. PANDA was originally coded in C ++. In this application note we describe PyPanda, the Python version of PANDA. PyPanda runs considerably faster than the C ++ version and includes additional features for network analysis. Availability and implementation: The open source PyPanda Python package is freely available at http://github.com/davidvi/pypanda. Contact: mkuijjer@jimmy.harvard.edu or d.g.p.van_ijzendoorn@lumc.nl PMID:27402905

  12. GeneMANIA: Fast gene network construction and function prediction for Cytoscape

    PubMed Central

    Montojo, Jason; Zuberi, Khalid; Rodriguez, Harold; Bader, Gary D.; Morris, Quaid

    2014-01-01

    The GeneMANIA Cytoscape app enables users to construct a composite gene-gene functional interaction network from a gene list. The resulting network includes the genes most related to the original list, and functional annotations from Gene Ontology. The edges are annotated with details about the publication or data source the interactions were derived from. The app leverages GeneMANIA’s database of 1800+ networks, containing over 500 million interactions spanning 8 organisms: A. thaliana, C. elegans, D. melanogaster, D. rerio, H. sapiens, M. musculus, R. norvegicus, and S. cerevisiae. Users may also import their own organisms, networks, and expression profiles. The app is compatible with Cytoscape versions 2 and 3. PMID:25254104

  13. Molecular systems governing leaf growth: from genes to networks.

    PubMed

    González, Nathalie; Inzé, Dirk

    2015-02-01

    Arabidopsis leaf growth consists of a complex sequence of interconnected events involving cell division and cell expansion, and requiring multiple levels of genetic regulation. With classical genetics, numerous leaf growth regulators have been identified, but the picture is far from complete. With the recent advances made in quantitative phenotyping, the study of the quantitative, dynamic, and multifactorial features of leaf growth is now facilitated. The use of high-throughput phenotyping technologies to study large numbers of natural accessions or mutants, or to screen for the effects of large sets of chemicals will allow for further identification of the additional players that constitute the leaf growth regulatory networks. Only a tight co-ordination between these numerous molecular players can support the formation of a functional organ. The connections between the components of the network and their dynamics can be further disentangled through gene-stacking approaches and ultimately through mathematical modelling. In this review, we describe these different approaches that should help to obtain a holistic image of the molecular regulation of organ growth which is of high interest in view of the increasing needs for plant-derived products.

  14. Identifying gene regulatory network rewiring using latent differential graphical models.

    PubMed

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  15. Identifying gene regulatory network rewiring using latent differential graphical models

    PubMed Central

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-01-01

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions. PMID:27378774

  16. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Synchronization in Complex Networks with Multiple Connections

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang

    2010-01-01

    In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.

  17. Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases.

    PubMed

    Tan, Chris Soon Heng; Bodenmiller, Bernd; Pasculescu, Adrian; Jovanovic, Marko; Hengartner, Michael O; Jørgensen, Claus; Bader, Gary D; Aebersold, Ruedi; Pawson, Tony; Linding, Rune

    2009-01-01

    Protein kinases enable cellular information processing. Although numerous human phosphorylation sites and their dynamics have been characterized, the evolutionary history and physiological importance of many signaling events remain unknown. Using target phosphoproteomes determined with a similar experimental and computational pipeline, we investigated the conservation of human phosphorylation events in distantly related model organisms (fly, worm, and yeast). With a sequence-alignment approach, we identified 479 phosphorylation events in 344 human proteins that appear to be positionally conserved over approximately 600 million years of evolution and hence are likely to be involved in fundamental cellular processes. This sequence-alignment analysis suggested that many phosphorylation sites evolve rapidly and therefore do not display strong evolutionary conservation in terms of sequence position in distantly related organisms. Thus, we devised a network-alignment approach to reconstruct conserved kinase-substrate networks, which identified 778 phosphorylation events in 698 human proteins. Both methods identified proteins tightly regulated by phosphorylation as well as signal integration hubs, and both types of phosphoproteins were enriched in proteins encoded by disease-associated genes. We analyzed the cellular functions and structural relationships for these conserved signaling events, noting the incomplete nature of current phosphoproteomes. Assessing phosphorylation conservation at both site and network levels proved useful for exploring both fast-evolving and ancient signaling events. We reveal that multiple complex diseases seem to converge within the conserved networks, suggesting that disease development might rely on common molecular networks.

  18. Evaluation of Gene Association Methods for Coexpression Network Construction and Biological Knowledge Discovery

    PubMed Central

    Kumari, Sapna; Nie, Jeff; Chen, Huann-Sheng; Ma, Hao; Stewart, Ron; Li, Xiang; Lu, Meng-Zhu; Taylor, William M.; Wei, Hairong

    2012-01-01

    Background Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical. Methods and Results In this study, we compared eight gene association methods – Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson – and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods. Conclusions We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction. PMID:23226279

  19. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  20. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference

    PubMed Central

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-01-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η2 (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research.

  1. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference.

    PubMed

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-12-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η(2) (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research.

  2. Gene Expression Network Reconstruction by LEP Method Using Microarray Data

    PubMed Central

    You, Na; Mou, Peng; Qiu, Ting; Kou, Qiang; Zhu, Huaijin; Chen, Yuexi; Wang, Xueqin

    2012-01-01

    Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration. PMID:23365528

  3. Microfluidic devices for measuring gene network dynamics in single cells

    PubMed Central

    Bennett, Matthew R.; Hasty, Jeff

    2010-01-01

    The dynamics governing gene regulation have an important role in determining the phenotype of a cell or organism. From processing extracellular signals to generating internal rhythms, gene networks are central to many time-dependent cellular processes. Recent technological advances now make it possible to track the dynamics of gene networks in single cells under various environmental conditions using microfluidic ‘lab-on-a-chip’ devices, and researchers are using these new techniques to analyse cellular dynamics and discover regulatory mechanisms. These technologies are expected to yield novel insights and allow the construction of mathematical models that more accurately describe the complex dynamics of gene regulation. PMID:19668248

  4. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation

    PubMed Central

    Parikh, Abhirath; Wu, Jincheng; Blanton, Robert M.

    2015-01-01

    Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies. PMID:25813860

  5. Visualization of multiple alignments, phylogenies and gene family evolution.

    PubMed

    Procter, James B; Thompson, Julie; Letunic, Ivica; Creevey, Chris; Jossinet, Fabrice; Barton, Geoffrey J

    2010-03-01

    Software for visualizing sequence alignments and trees are essential tools for life scientists. In this review, we describe the major features and capabilities of a selection of stand-alone and web-based applications useful when investigating the function and evolution of a gene family. These range from simple viewers, to systems that provide sophisticated editing and analysis functions. We conclude with a discussion of the challenges that these tools now face due to the flood of next generation sequence data and the increasingly complex network of bioinformatics information sources.

  6. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants.

    PubMed

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  7. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants

    PubMed Central

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  8. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    PubMed

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-01

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes.

  9. Interplay between gene expression noise and regulatory network architecture

    PubMed Central

    Chalancon, Guilhem; Ravarani, Charles; Balaji, S.; Martinez-Arias, Alfonso; Aravind, L.; Jothi, Raja; Babu, M. Madan

    2012-01-01

    Complex regulatory networks orchestrate most cellular processes in biological systems. Genes in such networks are subject to expression noise, resulting in isogenic cell populations exhibiting cell-to-cell variation in protein levels. Increasing evidence suggests that cells have evolved regulatory strategies to limit, tolerate, or amplify expression noise. In this context, fundamental questions arise: how can the architecture of gene regulatory networks generate, make use of, or be constrained by expression noise? Here, we discuss the interplay between expression noise and gene regulatory network at different levels of organization, ranging from a single regulatory interaction to entire regulatory networks. We then consider how this interplay impacts a variety of phenomena such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. Finally, we highlight recent technological developments that permit measurements at the single-cell level, and discuss directions for future research. PMID:22365642

  10. Approaches to modeling gene regulatory networks: a gentle introduction.

    PubMed

    Schlitt, Thomas

    2013-01-01

    This chapter is split into two main sections; first, I will present an introduction to gene networks. Second, I will discuss various approaches to gene network modeling which will include some examples for using different data sources. Computational modeling has been used for many different biological systems and many approaches have been developed addressing the different needs posed by the different application fields. The modeling approaches presented here are not limited to gene regulatory networks and occasionally I will present other examples. The material covered here is an update based on several previous publications by Thomas Schlitt and Alvis Brazma (FEBS Lett 579(8),1859-1866, 2005; Philos Trans R Soc Lond B Biol Sci 361(1467), 483-494, 2006; BMC Bioinformatics 8(suppl 6), S9, 2007) that formed the foundation for a lecture on gene regulatory networks at the In Silico Systems Biology workshop series at the European Bioinformatics Institute in Hinxton. PMID:23715978

  11. Multiple-server Flexible Blind Quantum Computation in Networks

    NASA Astrophysics Data System (ADS)

    Kong, Xiaoqin; Li, Qin; Wu, Chunhui; Yu, Fang; He, Jinjun; Sun, Zhiyuan

    2016-06-01

    Blind quantum computation (BQC) can allow a client with limited quantum power to delegate his quantum computation to a powerful server and still keep his own data private. In this paper, we present a multiple-server flexible BQC protocol, where a client who only needs the ability of accessing qua ntum channels can delegate the computational task to a number of servers. Especially, the client's quantum computation also can be achieved even when one or more delegated quantum servers break down in networks. In other words, when connections to certain quantum servers are lost, clients can adjust flexibly and delegate their quantum computation to other servers. Obviously it is trivial that the computation will be unsuccessful if all servers are interrupted.

  12. Multi-Commodity Network Flow for Tracking Multiple People.

    PubMed

    Ben Shitrit, Horesh; Berclaz, Jérôme; Fleuret, Francois; Fua, Pascal

    2014-08-01

    In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a multi-commodity network flow problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame-to-frame. Furthermore, our algorithm lends itself to a real-time implementation. We validate our approach on three publicly available datasets that contain long and complex sequences, the APIDIS basketball dataset, the ISSIA soccer dataset, and the PETS'09 pedestrian dataset. We also demonstrate its performance on a newer basketball dataset that features complete world championship basketball matches. In all cases, our approach preserves identity better than state-of-the-art tracking algorithms.

  13. Multi-Commodity Network Flow for Tracking Multiple People.

    PubMed

    Ben Shitrit, Horesh; Berclaz, Jérôme; Fleuret, François; Fua, Pascal

    2013-10-17

    n this paper, we show that tracking multiple people whose paths may intersect can be formulated as a multi-commodity network flow problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame to frame. Furthermore, our algorithm lends itself to a real-time implementation. We validate our approach on three publicly available datasets that contain long and complex sequences, the APIDIS basketball dataset, the ISSIA soccer dataset and the PETS’09 pedestrian dataset. We also demonstrate its performance on a newer basketball dataset that features complete world championship basketball matches. In all cases, our approach preserves identity better than state-of-the-art tracking algorithms.

  14. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks

    PubMed Central

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-01-01

    The diverse, specialized genes present in today’s lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins’ binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes’ evolutionary properties. Slowly evolving (“cold”), old genes tend to interact with each other, as do rapidly evolving (“hot”), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN’s community structures and its genes’ evolutionary properties provide new perspectives for understanding evolutionary genetics. PMID:27359334

  15. Inference of the Xenopus tropicalis embryonic regulatory network and spatial gene expression patterns

    PubMed Central

    2014-01-01

    Background During embryogenesis, signaling molecules produced by one cell population direct gene regulatory changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here, we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred networks to predict spatial gene expression patterns. Results We use two inference models with different underlying assumptions that incorporate existing network information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes. Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial patterns, yet they are complementary for the patterns that they do capture. Conclusion The presented methodology of gene network inference combined with spatial pattern prediction provides an additional layer of validation to

  16. Molecular analysis of immunoglobulin genes in multiple myeloma.

    PubMed

    Kosmas, C; Stamatopoulos, K; Stavroyianni, N; Belessi, C; Viniou, N; Yataganas, X

    1999-04-01

    The study of immunoglobulin genes in multiple myeloma over the last five years has provided important information regarding biology, ontogenetic location, disease evolution, pathogenic consequences and tumor-specific therapeutic intervention with idiotypic vaccination. Detailed analysis of V(H) genes has revealed clonal relationship between switch variants expressed by the bone marrow plasma cell and myeloma progenitors in the marrow and peripheral blood. V(H) gene usage is biased against V4-34 (encoding antibodies with cold agglutinin specificity; anti-l/i) explaining the absence of autoimmune phenomena in myeloma compared to other B-cell lymphoproliferative disorders. V(H) genes accumulate somatic hypermutations following a distribution compatible with antigen selection, but with no intraclonal heterogeneity. V(L) genes indicate a bias in usage of VkappaI family members and somatic hypermutation, in line with antigen selection, of the expressed Vkappa genes is higher than any other B-cell lymphoid disorder. A complementary imprint of antigen selection as evidenced by somatic hypermutation of either the V(H) or V(L) clonogenic genes has been observed. The absence of ongoing somatic mutations in either V(H) or V(L) genes gives rise to the notion that the cell of origin in myeloma is a post-germinal center memory B-cell. Clinical application of sensitive PCR methods in order to detect clonal immunoglobulin gene rearrangements has made relevant the monitoring and follow-up of minimal residual disease in stem cell autografts and after myeloablative therapy. The fact that surface immunoglobulin V(H) and V(L) sequences constitute unique tumor-specific antigenic determinants has stimulated investigators to devise strategies aiming to generate active specific immunity against the idiotype of malignant B-cells in myeloma by constructing vaccines based on expressed single-chain Fv fragments, DNA plasmids carrying V(H)+V(L) clonogenic genes for naked DNA vaccination, or

  17. Asymmetric Regulation of Peripheral Genes by Two Transcriptional Regulatory Networks

    PubMed Central

    Li, Jing-Ru; Suzuki, Takahiro; Nishimura, Hajime; Kishima, Mami; Maeda, Shiori; Suzuki, Harukazu

    2016-01-01

    Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only. Global gene expression analysis showed cross-regulation of TRNs. Detailed analysis revealed that knocking down fibroblastic TRN positively affected half of the upregulated monocytic genes, indicating that intrinsic fibroblastic TRN interfered with the expression of induced genes. In contrast, reconstitution of monocytic TRN showed neutral effects on the majority of fibroblastic gene downregulation. This study provides an explicit example that demonstrates how two networks together regulate gene expression during cell reprogramming processes and contributes to the elaborate exploration of TRNs. PMID:27483142

  18. Gene Network Reconstruction by Integration of Prior Biological Knowledge.

    PubMed

    Li, Yupeng; Jackson, Scott A

    2015-03-30

    With the development of high-throughput genomic technologies, large, genome-wide datasets have been collected, and the integration of these datasets should provide large-scale, multidimensional, and insightful views of biological systems. We developed a method for gene association network construction based on gene expression data that integrate a variety of biological resources. Assuming gene expression data are from a multivariate Gaussian distribution, a graphical lasso (glasso) algorithm is able to estimate the sparse inverse covariance matrix by a lasso (L1) penalty. The inverse covariance matrix can be seen as direct correlation between gene pairs in the gene association network. In our work, instead of using a single penalty, different penalty values were applied for gene pairs based on a priori knowledge as to whether the two genes should be connected. The a priori information can be calculated or retrieved from other biological data, e.g., Gene Ontology similarity, protein-protein interaction, gene regulatory network. By incorporating prior knowledge, the weighted graphical lasso (wglasso) outperforms the original glasso both on simulations and on data from Arabidopsis. Simulation studies show that even when some prior knowledge is not correct, the overall quality of the wglasso network was still greater than when not incorporating that information, e.g., glasso.

  19. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data

    PubMed Central

    Faria, José P.; Overbeek, Ross; Taylor, Ronald C.; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.

    2016-01-01

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental

  20. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data.

    PubMed

    Faria, José P; Overbeek, Ross; Taylor, Ronald C; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S

    2016-01-01

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same "ON" and "OFF" gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental conditions

  1. Motifs emerge from function in model gene regulatory networks

    PubMed Central

    Burda, Z.; Krzywicki, A.; Martin, O. C.; Zagorski, M.

    2011-01-01

    Gene regulatory networks allow the control of gene expression patterns in living cells. The study of network topology has revealed that certain subgraphs of interactions or “motifs” appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have prescribed functional capabilities. Markov Chain Monte Carlo sampling is then used to determine how these functional networks lead to specific motif statistics in the interactions. In the case where the regulatory networks are constrained to exhibit multistability, we find a high frequency of gene pairs that are mutually inhibitory and self-activating. In contrast, networks constrained to have periodic gene expression patterns (mimicking for instance the cell cycle) have a high frequency of bifan-like motifs involving four genes with at least one activating and one inhibitory interaction. PMID:21960444

  2. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which

  3. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes. PMID:27343475

  4. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  5. Topological origin of global attractors in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhang, YunJun; Ouyang, Qi; Geng, Zhi

    2015-02-01

    Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely related to other complex dynamics. In this paper, we aim to reveal the core modules in regulatory networks that determine their global attractors and the relationship between these core modules and other motifs. This work has been done via three steps. Firstly, inspired by the signal transmission in the regulation process, we extract the model of chain-like network from regulation networks. We propose a module of "ideal transmission chain (ITC)", which is proved sufficient and necessary (under certain condition) to form a global fixed-point in the context of chain-like network. Secondly, by examining two well-studied regulatory networks (i.e., the cell-cycle regulatory networks of Budding yeast and Fission yeast), we identify the ideal modules in true regulation networks and demonstrate that the modules have a superior contribution to network stability (quantified by the relative size of the biggest attraction basin). Thirdly, in these two regulation networks, we find that the double negative feedback loops, which are the key motifs of forming bistability in regulation, are connected to these core modules with high network stability. These results have shed new light on the connection between the topological feature and the dynamic property of regulatory networks.

  6. Network analysis of microRNAs, transcription factors, target genes and host genes in nasopharyngeal carcinoma

    PubMed Central

    WANG, HAO; XU, ZHIWEN; MA, MENGYAO; WANG, NING; WANG, KUNHAO

    2016-01-01

    Numerous studies on the morbidity of nasopharyngeal carcinoma (NPC) have identified several genes, microRNAs (miRNAs or miRs) and transcription factors (TFs) that influence the pathogenesis of NPC. However, summarizing all the regulatory networks involved in NPC is challenging. In the present study, the genes, miRNAs and TFs involved in NPC were considered as the nodes of the so-called regulatory network, and the associations between them were investigated. To clearly represent these associations, three regulatory networks were built seperately, namely, the differentially expressed network, the associated network and the global network. The differentially expressed network is the most important one of these three networks, since its nodes are differentially expressed genes whose mutations may lead to the development of NPC. Therefore, by modifying the aberrant expression of those genes that are differentially expressed in this network, their dysregulation may be corrected and the tumorigenesis of NPC may thus be prevented. Analysis of the aforementioned three networks highlighted the importance of certain pathways, such as self-adaptation pathways, in the development of NPC. For example, cyclin D1 (CCND1) was observed to regulate Homo sapiens-miR-20a, which in turn targeted CCND1. The present study conducted a systematic analysis of the pathogenesis of NPC through the three aforementioned regulatory networks, and provided a theoretical model for biologists. Future studies are required to evaluate the influence of the highlighted pathways in NPC. PMID:27313701

  7. Gene-based and semantic structure of the Gene Ontology as a complex network

    NASA Astrophysics Data System (ADS)

    Coronnello, Claudia; Tumminello, Michele; Miccichè, Salvatore

    2016-09-01

    The last decade has seen the advent and consolidation of ontology based tools for the identification and biological interpretation of classes of genes, such as the Gene Ontology. The Gene Ontology (GO) is constantly evolving over time. The information accumulated time-by-time and included in the GO is encoded in the definition of terms and in the setting up of semantic relations amongst terms. Here we investigate the Gene Ontology from a complex network perspective. We consider the semantic network of terms naturally associated with the semantic relationships provided by the Gene Ontology consortium. Moreover, the GO is a natural example of bipartite network of terms and genes. Here we are interested in studying the properties of the projected network of terms, i.e. a gene-based weighted network of GO terms, in which a link between any two terms is set if at least one gene is annotated in both terms. One aim of the present paper is to compare the structural properties of the semantic and the gene-based network. The relative importance of terms is very similar in the two networks, but the community structure changes. We show that in some cases GO terms that appear to be distinct from a semantic point of view are instead connected, and appear in the same community when considering their gene content. The identification of such gene-based communities of terms might therefore be the basis of a simple protocol aiming at improving the semantic structure of GO. Information about terms that share large gene content might also be important from a biomedical point of view, as it might reveal how genes over-expressed in a certain term also affect other biological processes, molecular functions and cellular components not directly linked according to GO semantics.

  8. CDX2 regulates multiple trophoblast genes in bovine trophectoderm CT-1 cells.

    PubMed

    Schiffmacher, Andrew T; Keefer, Carol L

    2013-10-01

    The bovine trophectoderm (TE) undergoes a dramatic morphogenetic transition prior to uterine endometrial attachment. Many studies have documented trophoblast-specific gene expression profiles at various pre-attachment stages, yet genetic interactions within the transitioning TE gene regulatory network are not well characterized. During bovine embryogenesis, transcription factors OCT4 and CDX2 are co-expressed during early trophoblast elongation. In this study, the bovine trophectoderm-derived CT-1 cell line was utilized as a genetic model to examine the roles of CDX2 and OCT4 within the bovine trophoblast gene regulatory network. An RT-PCR screen for TE-lineage transcription factors identified expression of CDX2, ERRB, ID2, SOX15, ELF5, HAND1, and ASCL2. CT-1 cells also express a nuclear-localized, 360 amino acid OCT4 ortholog of the pluripotency-specific human OCT4A. To delineate the roles of CDX2 and OCT4 within the CT-1 gene network, CDX2 and OCT4 levels were manipulated via overexpression and siRNA-mediated knockdown. An increase in CDX2 negatively regulated OCT4 expression, but increased expression of IFNT, HAND1, ASCL2, SOX15, and ELF5. A reduction of CDX2 levels exhibited a reciprocal effect, resulting in decreased expression of IFNT, HAND1, ASCL2, and SOX15. Both overexpression and knockdown of CDX2 increased ETS2 transcription. In contrast to CDX2, manipulation of OCT4 levels only revealed a positive autoregulatory mechanism and upregulation of ASCL2. Together, these results suggest that CDX2 is a core regulator of multiple trophoblast genes within CT-1 cells.

  9. Gene regulation: hacking the network on a sugar high.

    PubMed

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  10. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa.

    PubMed

    Li, Jimeng; Liu, Bo; Cheng, Feng; Wang, Xiaowu; Aarts, Mark G M; Wu, Jian

    2014-07-01

    Genes underlying environmental adaptability tend to be over-retained in polyploid plant species. Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation, but little is known about the differential expression of duplicated genes upon these stress conditions. Applying Tag-Seq technology to leaves of Brassica rapa grown under FeD, ZnD, ZnE or CdE conditions, with normal conditions as a control, we examined global gene expression changes and compared the expression patterns of multiple paralogs. We identified 812, 543, 331 and 447 differentially expressed genes under FeD, ZnD, ZnE and CdE conditions, respectively, in B. rapa leaves. Genes involved in regulatory networks centered on the transcription factors bHLH038 or bHLH100 were differentially expressed under (ZnE-induced) FeD. Further analysis revealed that genes associated with Zn, Fe and Cd responses tended to be over-retained in the B. rapa genome. Most of these multiple-copy genes showed the same direction of expression change under stress conditions. We conclude that the duplicated genes involved in trace element responses in B. rapa are functionally redundant, making the regulatory network more complex in B. rapa than in Arabidopsis thaliana.

  11. Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders.

    PubMed

    Gaiteri, C; Ding, Y; French, B; Tseng, G C; Sibille, E

    2014-01-01

    In a research environment dominated by reductionist approaches to brain disease mechanisms, gene network analysis provides a complementary framework in which to tackle the complex dysregulations that occur in neuropsychiatric and other neurological disorders. Gene-gene expression correlations are a common source of molecular networks because they can be extracted from high-dimensional disease data and encapsulate the activity of multiple regulatory systems. However, the analysis of gene coexpression patterns is often treated as a mechanistic black box, in which looming 'hub genes' direct cellular networks, and where other features are obscured. By examining the biophysical bases of coexpression and gene regulatory changes that occur in disease, recent studies suggest it is possible to use coexpression networks as a multi-omic screening procedure to generate novel hypotheses for disease mechanisms. Because technical processing steps can affect the outcome and interpretation of coexpression networks, we examine the assumptions and alternatives to common patterns of coexpression analysis and discuss additional topics such as acceptable datasets for coexpression analysis, the robust identification of modules, disease-related prioritization of genes and molecular systems and network meta-analysis. To accelerate coexpression research beyond modules and hubs, we highlight some emerging directions for coexpression network research that are especially relevant to complex brain disease, including the centrality-lethality relationship, integration with machine learning approaches and network pharmacology.

  12. Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data

    PubMed Central

    CHAI, Lian En; LAW, Chow Kuan; MOHAMAD, Mohd Saberi; CHONG, Chuii Khim; CHOON, Yee Wen; DERIS, Safaai; ILLIAS, Rosli Md

    2014-01-01

    Background: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). Methods: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. Results: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). Conclusion: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes. PMID:24876803

  13. Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction

    PubMed Central

    2013-01-01

    Background Ontologies and catalogs of gene functions, such as the Gene Ontology (GO) and MIPS-FUN, assume that functional classes are organized hierarchically, that is, general functions include more specific ones. This has recently motivated the development of several machine learning algorithms for gene function prediction that leverages on this hierarchical organization where instances may belong to multiple classes. In addition, it is possible to exploit relationships among examples, since it is plausible that related genes tend to share functional annotations. Although these relationships have been identified and extensively studied in the area of protein-protein interaction (PPI) networks, they have not received much attention in hierarchical and multi-class gene function prediction. Relations between genes introduce autocorrelation in functional annotations and violate the assumption that instances are independently and identically distributed (i.i.d.), which underlines most machine learning algorithms. Although the explicit consideration of these relations brings additional complexity to the learning process, we expect substantial benefits in predictive accuracy of learned classifiers. Results This article demonstrates the benefits (in terms of predictive accuracy) of considering autocorrelation in multi-class gene function prediction. We develop a tree-based algorithm for considering network autocorrelation in the setting of Hierarchical Multi-label Classification (HMC). We empirically evaluate the proposed algorithm, called NHMC (Network Hierarchical Multi-label Classification), on 12 yeast datasets using each of the MIPS-FUN and GO annotation schemes and exploiting 2 different PPI networks. The results clearly show that taking autocorrelation into account improves the predictive performance of the learned models for predicting gene function. Conclusions Our newly developed method for HMC takes into account network information in the learning phase: When

  14. Estrogen Signaling Multiple Pathways to Impact Gene Transcription

    PubMed Central

    Marino, Maria; Galluzzo, Paola; Ascenzi, Paolo

    2006-01-01

    Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge. PMID:18369406

  15. A complex network analysis of hypertension-related genes

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  16. Gene network and pathway generation and analysis: Editorial

    SciTech Connect

    Zhao, Zhongming; Sanfilippo, Antonio P.; Huang, Kun

    2011-02-18

    The past decade has witnessed an exponential growth of biological data including genomic sequences, gene annotations, expression and regulation, and protein-protein interactions. A key aim in the post-genome era is to systematically catalogue gene networks and pathways in a dynamic living cell and apply them to study diseases and phenotypes. To promote the research in systems biology and its application to disease studies, we organized a workshop focusing on the reconstruction and analysis of gene networks and pathways in any organisms from high-throughput data collected through techniques such as microarray analysis and RNA-Seq.

  17. Gene regulatory networks modelling using a dynamic evolutionary hybrid

    PubMed Central

    2010-01-01

    Background Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type. Results The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among genes. Conclusions The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks. The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are available from: http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/. PMID:20298548

  18. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi

    PubMed Central

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C.; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-01-01

    Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  19. Multiple Differential Networks Strategy Reveals Carboplatin and Melphalan-Induced Dynamic Module Changes in Retinoblastoma.

    PubMed

    Chen, Cui; Ma, Feng-Wei; Du, Cui-Yun; Wang, Ping

    2016-01-01

    BACKGROUND Retinoblastoma (RB) is the most common malignant tumor of the eye in childhood. The objective of this paper was to investigate carboplatin (CAR)- and melphalan (MEL)-induced dynamic module changes in RB based on multiple (M) differential networks, and to generate systems-level insights into RB progression. MATERIAL AND METHODS To achieve this goal, we constructed M-differential co-expression networks (DCNs), assigned a weight to each edge, and identified seed genes in M DCNs by ranking genes based on their topological features. Starting with seed genes, a module search was performed to explore candidate modules in CAR and MEL condition. M-DMs were detected according to significance evaluations of M-modules, which originated from refinement of candidate modules. Further, we revealed dynamic changes in M-DM activity and connectivity on the basis of significance of Module Connectivity Dynamic Score (MCDS). RESULTS In the present study, M=2, a total of 21 seed genes were obtained. By assessing module search, refinement, and evaluation, we gained 18 2-DMs. Moreover, 3 significant 2-DMs (Module 1, Module 2, and Module 3) with dynamic changes across CAR and MEL condition were determined, and we denoted them as dynamic modules. Module 1 had 27 nodes of which 6 were seed genes and 56 edges. Module 2 was composed of 28 nodes and 54 edges. A total of 28 nodes interacted with 45 edges presented in Module 3. CONCLUSIONS We have identified 3 dynamic modules with changes induced by CAR and MEL in RB, which might give insights in revealing molecular mechanism for RB therapy. PMID:27144687

  20. Modeling DNA sequence-based cis-regulatory gene networks.

    PubMed

    Bolouri, Hamid; Davidson, Eric H

    2002-06-01

    Gene network analysis requires computationally based models which represent the functional architecture of regulatory interactions, and which provide directly testable predictions. The type of model that is useful is constrained by the particular features of developmentally active cis-regulatory systems. These systems function by processing diverse regulatory inputs, generating novel regulatory outputs. A computational model which explicitly accommodates this basic concept was developed earlier for the cis-regulatory system of the endo16 gene of the sea urchin. This model represents the genetically mandated logic functions that the system executes, but also shows how time-varying kinetic inputs are processed in different circumstances into particular kinetic outputs. The same basic design features can be utilized to construct models that connect the large number of cis-regulatory elements constituting developmental gene networks. The ultimate aim of the network models discussed here is to represent the regulatory relationships among the genomic control systems of the genes in the network, and to state their functional meaning. The target site sequences of the cis-regulatory elements of these genes constitute the physical basis of the network architecture. Useful models for developmental regulatory networks must represent the genetic logic by which the system operates, but must also be capable of explaining the real time dynamics of cis-regulatory response as kinetic input and output data become available. Most importantly, however, such models must display in a direct and transparent manner fundamental network design features such as intra- and intercellular feedback circuitry; the sources of parallel inputs into each cis-regulatory element; gene battery organization; and use of repressive spatial inputs in specification and boundary formation. Successful network models lead to direct tests of key architectural features by targeted cis-regulatory analysis. PMID

  1. Computational discovery of gene modules and regulatory networks.

    PubMed

    Bar-Joseph, Ziv; Gerber, Georg K; Lee, Tong Ihn; Rinaldi, Nicola J; Yoo, Jane Y; Robert, François; Gordon, D Benjamin; Fraenkel, Ernest; Jaakkola, Tommi S; Young, Richard A; Gifford, David K

    2003-11-01

    We describe an algorithm for discovering regulatory networks of gene modules, GRAM (Genetic Regulatory Modules), that combines information from genome-wide location and expression data sets. A gene module is defined as a set of coexpressed genes to which the same set of transcription factors binds. Unlike previous approaches that relied primarily on functional information from expression data, the GRAM algorithm explicitly links genes to the factors that regulate them by incorporating DNA binding data, which provide direct physical evidence of regulatory interactions. We use the GRAM algorithm to describe a genome-wide regulatory network in Saccharomyces cerevisiae using binding information for 106 transcription factors profiled in rich medium conditions data from over 500 expression experiments. We also present a genome-wide location analysis data set for regulators in yeast cells treated with rapamycin, and use the GRAM algorithm to provide biological insights into this regulatory network

  2. Bayesian Nonlinear Model Selection for Gene Regulatory Networks

    PubMed Central

    Ni, Yang; Stingo, Francesco C.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Summary Gene regulatory networks represent the regulatory relationships between genes and their products and are important for exploring and defining the underlying biological processes of cellular systems. We develop a novel framework to recover the structure of nonlinear gene regulatory networks using semiparametric spline-based directed acyclic graphical models. Our use of splines allows the model to have both flexibility in capturing nonlinear dependencies as well as control of overfitting via shrinkage, using mixed model representations of penalized splines. We propose a novel discrete mixture prior on the smoothing parameter of the splines that allows for simultaneous selection of both linear and nonlinear functional relationships as well as inducing sparsity in the edge selection. Using simulation studies, we demonstrate the superior performance of our methods in comparison with several existing approaches in terms of network reconstruction and functional selection. We apply our methods to a gene expression dataset in glioblastoma multiforme, which reveals several interesting and biologically relevant nonlinear relationships. PMID:25854759

  3. COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals

    PubMed Central

    Obayashi, Takeshi; Okamura, Yasunobu; Ito, Satoshi; Tadaka, Shu; Motoike, Ikuko N.; Kinoshita, Kengo

    2013-01-01

    Coexpressed gene databases are valuable resources for identifying new gene functions or functional modules in metabolic pathways and signaling pathways. Although coexpressed gene databases are a fundamental platform in the field of plant biology, their use in animal studies is relatively limited. The COXPRESdb (http://coxpresdb.jp) provides coexpression relationships for multiple animal species, as comparisons of coexpressed gene lists can enhance the reliability of gene coexpression determinations. Here, we report the updates of the database, mainly focusing on the following two points. First, we updated our coexpression data by including recent microarray data for the previous seven species (human, mouse, rat, chicken, fly, zebrafish and nematode) and adding four new species (monkey, dog, budding yeast and fission yeast), along with a new human microarray platform. A reliability scoring function was also implemented, based on coexpression conservation to filter out coexpression with low reliability. Second, the network drawing function was updated, to implement automatic cluster analyses with enrichment analyses in Gene Ontology and in cis elements, along with interactive network analyses with Cytoscape Web. With these updates, COXPRESdb will become a more powerful tool for analyses of functional and regulatory networks of genes in a variety of animal species. PMID:23203868

  4. Development of a synthetic gene network to modulate gene expression by mechanical forces

    PubMed Central

    Kis, Zoltán; Rodin, Tania; Zafar, Asma; Lai, Zhangxing; Freke, Grace; Fleck, Oliver; Del Rio Hernandez, Armando; Towhidi, Leila; Pedrigi, Ryan M.; Homma, Takayuki; Krams, Rob

    2016-01-01

    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude. PMID:27404994

  5. Development of a synthetic gene network to modulate gene expression by mechanical forces.

    PubMed

    Kis, Zoltán; Rodin, Tania; Zafar, Asma; Lai, Zhangxing; Freke, Grace; Fleck, Oliver; Del Rio Hernandez, Armando; Towhidi, Leila; Pedrigi, Ryan M; Homma, Takayuki; Krams, Rob

    2016-01-01

    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude. PMID:27404994

  6. Functional features, biological pathways, and protein interaction networks of addiction-related genes.

    PubMed

    Sun, Jingchun; Zhao, Zhongming

    2010-05-01

    Addictions are chronic and common brain disorders affected by many genetic, environmental, and behavioral factors. Recent genome-wide linkage and association studies have revealed several promising genomic regions and multiple genes relating to addictions. To explore the underlying biological processes in the development of addictions, we used 62 genes recently reviewed by Li and Burmeister (2009) as representative addiction-related genes, and then we investigated their features in gene function, pathways, and protein interaction networks. We performed enrichment tests of their Gene Ontology (GO) annotations and of their pathways in the Ingenuity Pathways Analysis (IPA) system. The tests revealed that these addiction-related genes were highly enriched in neurodevelopment-related processes. Interestingly, we found circadian rhythm signaling in one of the enriched pathways. Moreover, these addiction-related genes tended to have higher connectivity and shorter characteristic shortest-path distances compared to control genes in the protein-protein interaction (PPI) network. This investigation is the first of such kind in addiction studies, and it is useful for further addiction candidate-gene prioritization and verification, thus helping us to better understand molecular mechanisms of addictions.

  7. How Gene Networks Can Uncover Novel CVD Players

    PubMed Central

    Parnell, Laurence D; Casas-Agustench, Patricia; Iyer, Lakshmanan K; Ordovas, Jose M

    2014-01-01

    Cardiovascular diseases (CVD) are complex, involving numerous biological entities from genes and small molecules to organ function. Placing these entities in networks where the functional relationships among the constituents are drawn can aid in our understanding of disease onset, progression and prevention. While networks, or interactomes, are often classified by a general term, say lipids or inflammation, it is a more encompassing class of network that is more informative in showing connections among the active entities and allowing better hypotheses of novel CVD players to be formulated. A range of networks will be presented whereby the potential to bring new objects into the CVD milieu will be exemplified. PMID:24683432

  8. A Synthesis Method of Gene Networks Having Cyclic Expression Pattern Sequences by Network Learning

    NASA Astrophysics Data System (ADS)

    Mori, Yoshihiro; Kuroe, Yasuaki

    Recently, synthesis of gene networks having desired functions has become of interest to many researchers because it is a complementary approach to understanding gene networks, and it could be the first step in controlling living cells. There exist several periodic phenomena in cells, e.g. circadian rhythm. These phenomena are considered to be generated by gene networks. We have already proposed synthesis method of gene networks based on gene expression. The method is applicable to synthesizing gene networks possessing the desired cyclic expression pattern sequences. It ensures that realized expression pattern sequences are periodic, however, it does not ensure that their corresponding solution trajectories are periodic, which might bring that their oscillations are not persistent. In this paper, in order to resolve the problem we propose a synthesis method of gene networks possessing the desired cyclic expression pattern sequences together with their corresponding solution trajectories being periodic. In the proposed method the persistent oscillations of the solution trajectories are realized by specifying passing points of them.

  9. Testing whether Genetic Variation Explains Correlation of Quantitative Measures of Gene Expression, and Application to Genetic Network Analysis

    PubMed Central

    Yu, Zhaoxia; Wang, Leiwei; Hildebrandt, Michelle A.T.; Schaid, Daniel J.

    2009-01-01

    SUMMARY Genetic networks for gene expression data are often built by graphical models, which in turn are built from pairwise correlations of gene expression levels. A key feature of building graphical models is evaluation of conditional independence of two traits, given other traits. When conditional independence can be assumed, the traits that are conditioned on are considered to “explain” the correlation of a pair of traits, allowing efficient building and interpretation of a network. Overlaying genetic polymorphisms, such as single nucleotide polymorphisms (SNPs), on quantitative measures of gene expression provides a much richer set of data to build a genetic network, because it is possible to evaluate whether sets of SNPs “explain” the correlation of gene expression levels. However, there is strong evidence that gene expression levels are controlled by multiple interacting genes, suggesting that it will be difficult to reduce the partial correlation completely to zero. Ignoring the fact that some set of SNPs can explain at least part of the correlation between gene expression levels, if not all, might miss important clues on the genetic control of gene expression. To enrich the assessment of the causes of correlation between gene expression levels, we develop methods to evaluate whether a set of covariates (e.g., SNPs, or even a set of quantitative expression transcripts), explains at least some of the correlation of gene expression levels. These methods can be used to assist the interpretation of regulation of gene expression and the construction of gene regulation networks. PMID:18444230

  10. Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network

    PubMed Central

    Wang, Bingbo; Gao, Lin; Zhang, Qingfang; Li, Aimin; Deng, Yue; Guo, Xingli

    2015-01-01

    Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies. PMID:26284649

  11. Gene-network inference by message passing

    NASA Astrophysics Data System (ADS)

    Braunstein, A.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2008-01-01

    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.

  12. Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks

    PubMed Central

    Pinho, Ricardo; Garcia, Victor; Irimia, Manuel; Feldman, Marcus W.

    2014-01-01

    Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. PMID:25375153

  13. Inferring the gene network underlying the branching of tomato inflorescence.

    PubMed

    Astola, Laura; Stigter, Hans; van Dijk, Aalt D J; van Daelen, Raymond; Molenaar, Jaap

    2014-01-01

    The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  14. Gap Gene Regulatory Dynamics Evolve along a Genotype Network.

    PubMed

    Crombach, Anton; Wotton, Karl R; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-05-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as "system drift." System drift is illustrated by the gap gene network-involved in segmental patterning-in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of "genotype networks" and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability).

  15. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  16. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    PubMed

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general.

  17. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  18. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  19. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  20. Stochastic S-system modeling of gene regulatory network.

    PubMed

    Chowdhury, Ahsan Raja; Chetty, Madhu; Evans, Rob

    2015-10-01

    Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomyces cerevisiae yeast, and (2) the SOS DNA repair network in Escherichia coli.

  1. Multiple Hub Network Choice in the Liberalized European Market

    NASA Technical Reports Server (NTRS)

    Berechman, Joseph; deWit, Jaap

    1997-01-01

    . In the meantime, open skies agreements have been concluded between the USA and most of the EU member states to facilitate strategic alliances between airlines of the states involved. As a result of this on-going liberalization the model of the single 'national' carrier using the national home base as its single hub for the designated third, fourth and sixth freedom operations will stepwise disappear. Within the EU the concept of the national carrier has already been replaced by that of the community carrier. State ownership in more and more European carriers is reduced. On the longer run mergers or even bankruptcy will further undermine the "single national carrier - single national hub" model in Europe. In the meantime, strategic alliances between national carriers in Europe will already reduce the airlines' loyalty to a single airport. Profit maximization and accountability to share holders will supersede the loyalty of these newly emerging alliances, probably looking for the opportunities of a multiple hub network to adequately cover the whole European market. As a consequence, some European airports might see a substantial decline in arriving, departing and transfer traffic, thus in revenues and financial solvency, as well as in their connection to other inter-continental and intra-European destinations. At the same time, other airports might realize a significant increase in traffic as they will be sought after by the profit maximizing airlines as their major gateway hubs. Which will be the losing airports and which will be the winning ones? Can airports anticipate the actions of airlines in deregulated markets and utilize policies which will improve their relative position? If so, what should be these anticipatory policies? These questions become the more urgent, since an increasing number of major European airports will be privatized in the near future. Although increasing airport congestion in Europe will also be reflected in a growing demand pressure for

  2. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis. PMID:27125224

  3. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  4. Combining many interaction networks to predict gene function and analyze gene lists.

    PubMed

    Mostafavi, Sara; Morris, Quaid

    2012-05-01

    In this article, we review how interaction networks can be used alone or in combination in an automated fashion to provide insight into gene and protein function. We describe the concept of a "gene-recommender system" that can be applied to any large collection of interaction networks to make predictions about gene or protein function based on a query list of proteins that share a function of interest. We discuss these systems in general and focus on one specific system, GeneMANIA, that has unique features and uses different algorithms from the majority of other systems.

  5. Reference genes for quantitative gene expression studies in multiple avian species.

    PubMed

    Olias, Philipp; Adam, Iris; Meyer, Anne; Scharff, Constance; Gruber, Achim D

    2014-01-01

    Quantitative real-time PCR (qPCR) rapidly and reliably quantifies gene expression levels across different experimental conditions. Selection of suitable reference genes is essential for meaningful normalization and thus correct interpretation of data. In recent years, an increasing number of avian species other than the chicken has been investigated molecularly, highlighting the need for an experimentally validated pan-avian primer set for reference genes. Here we report testing a set for 14 candidate reference genes (18S, ABL, GAPDH, GUSB, HMBS, HPRT, PGK1, RPL13, RPL19, RPS7, SDHA, TFRC, VIM, YWHAZ) on different tissues of the mallard (Anas platyrhynchos), domestic chicken (Gallus gallus domesticus), common crane (Grus grus), white-tailed eagle (Haliaeetus albicilla), domestic turkey (Meleagris gallopavo f. domestica), cockatiel (Nymphicus hollandicus), Humboldt penguin (Sphenicus humboldti), ostrich (Struthio camelus) and zebra finch (Taeniopygia guttata), spanning a broad range of the phylogenetic tree of birds. Primer pairs for six to 11 genes were successfully established for each of the nine species. As a proof of principle, we analyzed expression levels of 10 candidate reference genes as well as FOXP2 and the immediate early genes, EGR1 and CFOS, known to be rapidly induced by singing in the avian basal ganglia. We extracted RNA from microbiopsies of the striatal song nucleus Area X of adult male zebra finches after they had sang or remained silent. Using three different statistical algorithms, we identified five genes (18S, PGK1, RPS7, TFRC, YWHAZ) that were stably expressed within each group and also between the singing and silent conditions, establishing them as suitable reference genes. In conclusion, the newly developed pan-avian primer set allows accurate normalization and quantification of gene expression levels in multiple avian species. PMID:24926893

  6. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  7. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  8. Epigenetic modulation of brain gene networks for cocaine and alcohol abuse.

    PubMed

    Farris, Sean P; Harris, Robert A; Ponomarev, Igor

    2015-01-01

    Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq) and histone H3 lysine 4 trimethylation (H3K4me3) events (ChIP-Seq) revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B/DARPP-32 and the vesicular glutamate transporter SLC17A7/VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction. PMID:26041984

  9. Epigenetic modulation of brain gene networks for cocaine and alcohol abuse

    PubMed Central

    Farris, Sean P.; Harris, Robert A.; Ponomarev, Igor

    2015-01-01

    Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq) and histone H3 lysine 4 trimethylation (H3K4me3) events (ChIP-Seq) revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B/DARPP-32 and the vesicular glutamate transporter SLC17A7/VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction. PMID:26041984

  10. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles.

    PubMed

    Zhang, Yulin; Lv, Kebo; Wang, Shudong; Su, Jionglong; Meng, Dazhi

    2015-01-01

    Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function. PMID:26839582

  11. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks.

    PubMed

    Han, Hyun Wook; Ohn, Jung Hun; Moon, Jisook; Kim, Ju Han

    2013-11-01

    Biological networks often show a scale-free topology with node degree following a power-law distribution. Lethal genes tend to form functional hubs, whereas non-lethal disease genes are located at the periphery. Uni-dimensional analyses, however, are flawed. We created and investigated two distinct scale-free networks; a protein-protein interaction (PPI) and a perturbation sensitivity network (PSN). The hubs of both networks exhibit a low molecular evolutionary rate (P < 8 × 10(-12), P < 2 × 10(-4)) and a high codon adaptation index (P < 2 × 10(-16), P < 2 × 10(-8)), indicating that both hubs have been shaped under high evolutionary selective pressure. Moreover, the topologies of PPI and PSN are inversely proportional: hubs of PPI tend to be located at the periphery of PSN and vice versa. PPI hubs are highly enriched with lethal genes but not with disease genes, whereas PSN hubs are highly enriched with disease genes and drug targets but not with lethal genes. PPI hub genes are enriched with essential cellular processes, but PSN hub genes are enriched with environmental interaction processes, having more TATA boxes and transcription factor binding sites. It is concluded that biological systems may balance internal growth signaling and external stress signaling by unifying the two opposite scale-free networks that are seemingly opposite to each other but work in concert between death and disease.

  12. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles.

    PubMed

    Zhang, Yulin; Lv, Kebo; Wang, Shudong; Su, Jionglong; Meng, Dazhi

    2015-01-01

    Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function.

  13. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles

    PubMed Central

    Zhang, Yulin; Lv, Kebo; Wang, Shudong; Su, Jionglong; Meng, Dazhi

    2015-01-01

    Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function. PMID:26839582

  14. A pathway-based network analysis of hypertension-related genes

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng

    2016-02-01

    Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.

  15. Time-course gene profiling and networks in demethylated retinoblastoma cell line

    PubMed Central

    Malusa, Federico; Taranta, Monia; Zaki, Nazar; Cinti, Caterina; Capobianco, Enrico

    2015-01-01

    Retinoblastoma, a very aggressive cancer of the developing retina, initiatiates by the biallelic loss of RB1 gene, and progresses very quickly following RB1 inactivation. While its genome is stable, multiple pathways are deregulated, also epigenetically. After reviewing the main findings in relation with recently validated markers, we propose an integrative bioinformatics approach to include in the previous group new markers obtained from the analysis of a single cell line subject to epigenetic treatment. In particular, differentially expressed genes are identified from time course microarray experiments on the WERI-RB1 cell line treated with 5-Aza-2′-deoxycytidine (decitabine; DAC). By inducing demethylation of CpG island in promoter genes that are involved in biological processes, for instance apoptosis, we performed the following main integrative analysis steps: i) Gene expression profiling at 48h, 72h and 96h after DAC treatment; ii) Time differential gene co-expression networks and iii) Context-driven marker association (transcriptional factor regulated protein networks, master regulatory paths). The observed DAC-driven temporal profiles and regulatory connectivity patterns are obtained by the application of computational tools, with support from curated literature. It is worth emphasizing the capacity of networks to reconcile multi-type evidences, thus generating testable hypotheses made available by systems scale predictive inference power. Despite our small experimental setting, we propose through such integrations valuable impacts of epigenetic treatment in terms of gene expression measurements, and then validate evidenced apoptotic effects. PMID:26143641

  16. Identification of driving network of cellular differentiation from single sample time course gene expression data

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Wolanyk, Nathaniel; Ilker, Tunc; Gao, Shouguo; Wang, Xujing

    Methods developed based on bifurcation theory have demonstrated their potential in driving network identification for complex human diseases, including the work by Chen, et al. Recently bifurcation theory has been successfully applied to model cellular differentiation. However, there one often faces a technical challenge in driving network prediction: time course cellular differentiation study often only contains one sample at each time point, while driving network prediction typically require multiple samples at each time point to infer the variation and interaction structures of candidate genes for the driving network. In this study, we investigate several methods to identify both the critical time point and the driving network through examination of how each time point affects the autocorrelation and phase locking. We apply these methods to a high-throughput sequencing (RNA-Seq) dataset of 42 subsets of thymocytes and mature peripheral T cells at multiple time points during their differentiation (GSE48138 from GEO). We compare the predicted driving genes with known transcription regulators of cellular differentiation. We will discuss the advantages and limitations of our proposed methods, as well as potential further improvements of our methods.

  17. Visualizing Gene - Interactions within the Rice and Maize Network

    NASA Astrophysics Data System (ADS)

    Sampong, A.; Feltus, A.; Smith, M.

    2014-12-01

    The purpose of this research was to design a simpler visualization tool for comparing or viewing gene interaction graphs in systems biology. This visualization tool makes it possible and easier for a researcher to visualize the biological metadata of a plant and interact with the graph on a webpage. Currently available visualization software like Cytoscape and Walrus are difficult to interact with and do not scale effectively for large data sets, limiting the ability to visualize interactions within a biological system. The visualization tool developed is useful for viewing and interpreting the dataset of a gene interaction network. The graph layout drawn by this visualization tool is an improvement from the previous method of comparing lines of genes in two separate data files to, now having the ability to visually see the layout of the gene networks and how the two systems are related. The graph layout presented by the visualization tool draws a graph of the sample rice and maize gene networks, linking the common genes found in both plants and highlighting the functions served by common genes from each plant. The success of this visualization tool will enable Dr. Feltus to continue his investigations and draw conclusions on the biological evolution of the sorghum plant as well. REU Funded by NSF ACI Award 1359223 Vetria L. Byrd, PI

  18. Neural Networks Art: Solving Problems with Multiple Solutions and New Teaching Algorithm

    PubMed Central

    Dmitrienko, V. D; Zakovorotnyi, A. Yu.; Leonov, S. Yu.; Khavina, I. P

    2014-01-01

    A new discrete neural networks adaptive resonance theory (ART), which allows solving problems with multiple solutions, is developed. New algorithms neural networks teaching ART to prevent degradation and reproduction classes at training noisy input data is developed. Proposed learning algorithms discrete ART networks, allowing obtaining different classification methods of input. PMID:25246988

  19. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network

    PubMed Central

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim

    2014-01-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300

  20. Evo–Devo in the Era of Gene Regulatory Networks

    PubMed Central

    Fischer, Antje H. L.; Smith, Joel

    2012-01-01

    Advanced genomics tools enable powerful new strategies for understanding complex biological processes, including development. By extension, we should be able to use these methods in a comparative fashion to capture evolutionary mechanisms. This requires a capacity to go deep and broad, to analyze developmental gene regulatory networks in many organisms, especially nontraditional models. As we usher in a new era of next-generation GRN (gene regulatory network) analysis, it is important to ask how to evaluate the evolution of network interactions. Particularly problematic, as always, is defining “independence”: Are two character traits found together because they are functionally linked or because of historical accident? The same basic question applies to understanding developmental GRN evolution. However, the essential difference here is that a GRN defines a causal chain of events. An understanding of causal relations—how Genes A and B work in concert to drive expression of Genes C and D to create a new Territory E—gives hope for establishing “trait independence” in a way that purely correlative arguments—the association of the expression of Gene D in Territory E—never could. Insight into causality provides the key to interpretation, as seen in this simplified scenario. Real-world networks bring new degrees of complexity, but the elucidation of causal relations remains the same. Has the day arrived when a single laboratory has the wherewithal to conduct multiorganism gene network projects in parallel? No. However, we argue that day is closer than one might suppose. We describe how a speedboat GRN project in one’s favorite nonmodel organism(s) might look and provide a framework for comparative network analysis. PMID:22927135

  1. RAR-related orphan receptor A (RORA): A new susceptibility gene for multiple sclerosis.

    PubMed

    Eftekharian, Mohammad Mahdi; Noroozi, Rezvan; Sayad, Arezou; Sarrafzadeh, Shaghayegh; Toghi, Mehdi; Azimi, Tahereh; Komaki, Alireza; Mazdeh, Mehrdokht; Inoko, Hidetoshi; Taheri, Mohammad; Mirfakhraie, Reza

    2016-10-15

    Retinoic acid receptor-related orphan receptor alpha (RORA) is proposed to promote Th17 cells differentiation that play a crucial role in many inflammatory diseases, including multiple sclerosis (MS). The gene is also involved in regulation of inflammatory responses and neuronal cell development. The aim of the present study is to determine if any relation exists between RORA rs11639084 and rs4774388 gene polymorphisms on the individual susceptibility of multiple sclerosis. 410 patients with clinically definite MS and 500 ethnically-matched healthy controls participated in this study. Genotyping was performed using tetra primer-amplification refractory mutation system-PCR (4P-ARMS-PCR) method for the mentioned polymorphisms in the RORA gene. Both variants showed significant differences in allele and genotype distributions between the studied groups. Genotypes were risk associated in additive (P-value of 0.0003 and odds ratio equal to 1.7 (95% CI: 1.27-2.26)), dominant (P-value of <0.0001 and odds ratio equal to 0.55 (95% CI: 0.41-0.73)) and recessive (P-value of 0.04 and odds ratio equal to 0.33 (95% CI: (0.12-0.96)) models for rs11639084. However, the rs4774388 genotypes were risk associated in recessive model with a P-value of 0.036 and an odds ratio of 0.62 (95% CI: (0.4-0.97)). To the best of our knowledge this is the first report concerning the association between RORΑ gene polymorphisms and MS. The further study of RORΑ related pathways and gene networks might result in the better understanding of the pathophysiology of MS and related symptoms.

  2. RAR-related orphan receptor A (RORA): A new susceptibility gene for multiple sclerosis.

    PubMed

    Eftekharian, Mohammad Mahdi; Noroozi, Rezvan; Sayad, Arezou; Sarrafzadeh, Shaghayegh; Toghi, Mehdi; Azimi, Tahereh; Komaki, Alireza; Mazdeh, Mehrdokht; Inoko, Hidetoshi; Taheri, Mohammad; Mirfakhraie, Reza

    2016-10-15

    Retinoic acid receptor-related orphan receptor alpha (RORA) is proposed to promote Th17 cells differentiation that play a crucial role in many inflammatory diseases, including multiple sclerosis (MS). The gene is also involved in regulation of inflammatory responses and neuronal cell development. The aim of the present study is to determine if any relation exists between RORA rs11639084 and rs4774388 gene polymorphisms on the individual susceptibility of multiple sclerosis. 410 patients with clinically definite MS and 500 ethnically-matched healthy controls participated in this study. Genotyping was performed using tetra primer-amplification refractory mutation system-PCR (4P-ARMS-PCR) method for the mentioned polymorphisms in the RORA gene. Both variants showed significant differences in allele and genotype distributions between the studied groups. Genotypes were risk associated in additive (P-value of 0.0003 and odds ratio equal to 1.7 (95% CI: 1.27-2.26)), dominant (P-value of <0.0001 and odds ratio equal to 0.55 (95% CI: 0.41-0.73)) and recessive (P-value of 0.04 and odds ratio equal to 0.33 (95% CI: (0.12-0.96)) models for rs11639084. However, the rs4774388 genotypes were risk associated in recessive model with a P-value of 0.036 and an odds ratio of 0.62 (95% CI: (0.4-0.97)). To the best of our knowledge this is the first report concerning the association between RORΑ gene polymorphisms and MS. The further study of RORΑ related pathways and gene networks might result in the better understanding of the pathophysiology of MS and related symptoms. PMID:27653902

  3. Remoting alternatives for a multiple phased-array antenna network

    NASA Astrophysics Data System (ADS)

    Shi, Zan; Foshee, James J.

    2001-10-01

    Significant improvements in technology have made phased array antennas an attractive alternative to the traditional dish antenna for use on wide body airplanes. These improvements have resulted in reduced size, reduced cost, reduced losses in the transmit and receive channels (simplifying the design), a significant extension in the bandwidth capability, and an increase in the functional capability. Flush mounting (thus reduced drag) and rapid beam switching are among the evolving desirable features of phased array antennas. Beam scanning of phased array antennas is limited to +/-45 degrees at best and therefore multiple phased array antennas would need to be used to insure instantaneous communications with any ground station (stations located at different geographical locations on the ground) and with other airborne stations. The exact number of phased array antennas and the specific installation location of each antenna on the wide body airplane would need to be determined by the specific communication requirements, but it is conceivable as many as five phased array antennas may need to be used to provide the required coverage. Control and switching of these antennas would need to be accomplished at a centralized location on the airplane and since these antennas would be at different locations on the airplane an efficient scheme of remoting would need to be used. To save in cost and keep the phased array antennas as small as possible the design of the phased array antennas would need to be kept simple. A dish antenna and a blade antenna (small size) could also be used to augment the system. Generating the RF signals at the central location and then using RF cables or waveguide to get the signal to any given antenna could result in significant RF losses. This paper will evaluate a number of remoting alternatives to keep the system design simple, reduce system cost, and utilize the functional capability of networking multiple phased array antennas on a wide body

  4. Listening to the noise: random fluctuations reveal gene network parameters

    SciTech Connect

    Munsky, Brian; Khammash, Mustafa

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.

  5. Construction and analysis of regulatory genetic networks in cervical cancer based on involved microRNAs, target genes, transcription factors and host genes.

    PubMed

    Wang, Ning; Xu, Zhiwen; Wang, Kunhao; Zhu, Minghui; Li, Yang

    2014-04-01

    Over recent years, genes and microRNA (miRNA/miR) have been considered as key biological factors in human carcinogenesis. During cancer development, genes may act as multiple identities, including target genes of miRNA, transcription factors and host genes. The present study concentrated on the regulatory networks consisting of the biological factors involved in cervical cancer in order to investigate their features and affect on this specific pathology. Numerous raw data was collected and organized into purposeful structures, and adaptive procedures were defined for application to the prepared data. The networks were therefore built with the factors as basic components according to their interacting associations. The networks were constructed at three levels of interdependency, including a differentially-expressed network, a related network and a global network. Comparisons and analyses were made at a systematic level rather than from an isolated gene or miRNA. Critical hubs were extracted in the core networks and notable features were discussed, including self-adaption feedback regulation. The present study expounds the pathogenesis from a novel point of view and is proposed to provide inspiration for further investigation and therapy.

  6. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

    PubMed

    Lipner, Ettie M; Garcia, Benjamin J; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.

  7. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    PubMed Central

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  8. Chaperone Hsp47 drives malignant growth and invasion by modulating an ECM gene network

    PubMed Central

    Zhu, Jieqing; Xiong, Gaofeng; Fu, Hanjiang; Evers, B. Mark; Zhou, Binhua P.; Xu, Ren

    2015-01-01

    The extracellular matrix (ECM) is a determining factor in the tumor microenvironment that restrains or promotes malignant growth. In this report, we show how the molecular chaperone protein Hsp47 functions as a nodal hub in regulating an ECM gene transcription network. A transcription network analysis showed that Hsp47 expression was activated during breast cancer development and progression. Hsp47 silencing reprogrammed human breast cancer cells to form growth-arrested and/or non-invasive structures in 3D cultures, and to limit tumor growth in xenograft assays by reducing deposition of collagen and fibronectin. Co-expression network analysis also showed that levels of microRNA-29b and 29c were inversely correlated with expression of Hsp47 and ECM network genes in human breast cancer tissues. We found that miR-29 repressed expression of Hsp47 along with multiple ECM network genes. Ectopic expression of miR-29b suppressed malignant phenotypes of breast cancer cells in 3D culture. Clinically, increased expression of Hsp47 and reduced levels of miR-29b and 29c were associated with poor survival outcomes in breast cancer patients. Our results show that Hsp47 is regulated by miR-29 during breast cancer development and progression, and that increased Hsp47 expression promotes cancer progression in part by enhancing deposition of ECM proteins. PMID:25744716

  9. Functional Connectivity in Multiple Cortical Networks Is Associated with Performance Across Cognitive Domains in Older Adults

    PubMed Central

    Shaw, Emily E.; Schultz, Aaron P.; Sperling, Reisa A.

    2015-01-01

    Abstract Intrinsic functional connectivity MRI has become a widely used tool for measuring integrity in large-scale cortical networks. This study examined multiple cortical networks using Template-Based Rotation (TBR), a method that applies a priori network and nuisance component templates defined from an independent dataset to test datasets of interest. A priori templates were applied to a test dataset of 276 older adults (ages 65–90) from the Harvard Aging Brain Study to examine the relationship between multiple large-scale cortical networks and cognition. Factor scores derived from neuropsychological tests represented processing speed, executive function, and episodic memory. Resting-state BOLD data were acquired in two 6-min acquisitions on a 3-Tesla scanner and processed with TBR to extract individual-level metrics of network connectivity in multiple cortical networks. All results controlled for data quality metrics, including motion. Connectivity in multiple large-scale cortical networks was positively related to all cognitive domains, with a composite measure of general connectivity positively associated with general cognitive performance. Controlling for the correlations between networks, the frontoparietal control network (FPCN) and executive function demonstrated the only significant association, suggesting specificity in this relationship. Further analyses found that the FPCN mediated the relationships of the other networks with cognition, suggesting that this network may play a central role in understanding individual variation in cognition during aging. PMID:25827242

  10. Propagation of genetic variation in gene regulatory networks.

    PubMed

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  11. MiRTargetLink--miRNAs, Genes and Interaction Networks.

    PubMed

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-04-14

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink.

  12. miRTargetLink—miRNAs, Genes and Interaction Networks

    PubMed Central

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-01-01

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink. PMID:27089332

  13. EGN: a wizard for construction of gene and genome similarity networks

    PubMed Central

    2013-01-01

    Background Increasingly, similarity networks are being used for evolutionary analyses of molecular datasets. These networks are very useful, in particular for the analysis of gene sharing, lateral gene transfer and for the detection of distant homologs. Currently, such analyses require some computer programming skills due to the limited availability of user-friendly freely distributed software. Consequently, although appealing, the construction and analyses of these networks remain less familiar to biologists than do phylogenetic approaches. Results In order to ease the use of similarity networks in the community of evolutionary biologists, we introduce a software program, EGN, that runs under Linux or MacOSX. EGN automates the reconstruction of gene and genome networks from nucleic and proteic sequences. EGN also implements statistics describing genetic diversity in these samples, for various user-defined thresholds of similarities. In the interest of studying the complexity of evolutionary processes affecting microbial evolution, we applied EGN to a dataset of 571,044 proteic sequences from the three domains of life and from mobile elements. We observed that, in Borrelia, plasmids play a different role than in most other eubacteria. Rather than being genetic couriers involved in lateral gene transfer, Borrelia’s plasmids and their genes act as private genetic goods, that contribute to the creation of genetic diversity within their parasitic hosts. Conclusion EGN can be used for constructing, analyzing, and mining molecular datasets in evolutionary studies. The program can help increase our knowledge of the processes through which genes from distinct sources and/or from multiple genomes co-evolve in lineages of cellular organisms. PMID:23841456

  14. An algebra-based method for inferring gene regulatory networks

    PubMed Central

    2014-01-01

    Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also

  15. Additive functions in boolean models of gene regulatory network modules.

    PubMed

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  16. Additive Functions in Boolean Models of Gene Regulatory Network Modules

    PubMed Central

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H.; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  17. Multiple tipping points and optimal repairing in interacting networks

    NASA Astrophysics Data System (ADS)

    Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo

    2016-03-01

    Systems composed of many interacting dynamical networks--such as the human body with its biological networks or the global economic network consisting of regional clusters--often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two `forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.

  18. The US Network of Pediatric Multiple Sclerosis Centers: Development, Progress, and Next Steps

    PubMed Central

    Casper, T. Charles; Rose, John W.; Roalstad, Shelly; Waubant, Emmanuelle; Aaen, Gregory; Belman, Anita; Chitnis, Tanuja; Gorman, Mark; Krupp, Lauren; Lotze, Timothy E.; Ness, Jayne; Patterson, Marc; Rodriguez, Moses; Weinstock-Guttman, Bianca; Browning, Brittan; Graves, Jennifer; Tillema, Jan-Mendelt; Benson, Leslie; Harris, Yolanda

    2014-01-01

    Multiple sclerosis and other demyelinating diseases in the pediatric population have received an increasing level of attention by clinicians and researchers. The low incidence of these diseases in children creates a need for the involvement of multiple clinical centers in research efforts. The Network of Pediatric Multiple Sclerosis Centers was created initially in 2006 to improve the diagnosis and care of children with demyelinating diseases. In 2010, the Network shifted its focus to multicenter research while continuing to advance the care of patients. The Network has obtained support from the National Multiple Sclerosis Society, the Guthy-Jackson Charitable Foundation, and the National Institutes of Health. The Network will continue to serve as a platform for conducting impactful research in pediatric demyelinating diseases of the central nervous system. This article provides a description of the history and development, organization, mission, research priorities, current studies, and future plans of the Network. PMID:25270659

  19. The US Network of Pediatric Multiple Sclerosis Centers: Development, Progress, and Next Steps.

    PubMed

    Casper, T Charles; Rose, John W; Roalstad, Shelly; Waubant, Emmanuelle; Aaen, Gregory; Belman, Anita; Chitnis, Tanuja; Gorman, Mark; Krupp, Lauren; Lotze, Timothy E; Ness, Jayne; Patterson, Marc; Rodriguez, Moses; Weinstock-Guttman, Bianca; Browning, Brittan; Graves, Jennifer; Tillema, Jan-Mendelt; Benson, Leslie; Harris, Yolanda

    2015-09-01

    Multiple sclerosis and other demyelinating diseases in the pediatric population have received an increasing level of attention by clinicians and researchers. The low incidence of these diseases in children creates a need for the involvement of multiple clinical centers in research efforts. The Network of Pediatric Multiple Sclerosis Centers was created initially in 2006 to improve the diagnosis and care of children with demyelinating diseases. In 2010, the Network shifted its focus to multicenter research while continuing to advance the care of patients. The Network has obtained support from the National Multiple Sclerosis Society, the Guthy-Jackson Charitable Foundation, and the National Institutes of Health. The Network will continue to serve as a platform for conducting impactful research in pediatric demyelinating diseases of the central nervous system. This article provides a description of the history and development, organization, mission, research priorities, current studies, and future plans of the Network.

  20. Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks

    PubMed Central

    Yamanaka, Ryota; Kitano, Hiroaki

    2013-01-01

    Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks. PMID:24278007

  1. Analysis of gene regulatory networks in the mammalian circadian rhythm.

    PubMed

    Yan, Jun; Wang, Haifang; Liu, Yuting; Shao, Chunxuan

    2008-10-01

    Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4-5 hours in rat compared to mouse and 8-12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.

  2. Multiple relaxation modes in associative polymer networks with varying connectivity

    NASA Astrophysics Data System (ADS)

    Bohdan, M.; Sprakel, J.; van der Gucht, J.

    2016-09-01

    The dynamics and mechanics of networks depend sensitively on their spatial connectivity. To explore the effect of connectivity on local network dynamics, we prepare transient polymer networks in which we systematically cut connecting bonds. We do this by creating networks formed from hydrophobically modified difunctionalized polyethylene glycol chains. These form physical gels, consisting of flowerlike micelles that are transiently cross-linked by connecting bridges. By introducing monofunctionalized chains, we can systematically reduce the number of bonds between micelles and thus lower the network connectivity, which strongly reduces the network elasticity and relaxation time. Dynamic light scattering reveals a complex relaxation dynamics that are not apparent in bulk rheology. We observe three distinct relaxation modes. First we find a fast diffusive mode that does not depend on the number of bridges and is attributed to the diffusion of micelles within a cage formed by neighboring micelles. A second, intermediate mode depends strongly on network connectivity but surprisingly is independent of the scattering vector q . We attribute this viscoelastic mode to fluctuations in local connectivity of the network. The third, slowest mode is also diffusive and is attributed to the diffusion of micelle clusters through the viscoelastic matrix. These results shed light on the microscopic dynamics in weakly interconnected transient networks.

  3. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks

    PubMed Central

    Martin, Alberto J. M.; Dominguez, Calixto; Contreras-Riquelme, Sebastián; Holmes, David S.; Perez-Acle, Tomas

    2016-01-01

    Understanding the control of gene expression remains one of the main challenges in the post-genomic era. Accordingly, a plethora of methods exists to identify variations in gene expression levels. These variations underlay almost all relevant biological phenomena, including disease and adaptation to environmental conditions. However, computational tools to identify how regulation changes are scarce. Regulation of gene expression is usually depicted in the form of a gene regulatory network (GRN). Structural changes in a GRN over time and conditions represent variations in the regulation of gene expression. Like other biological networks, GRNs are composed of basic building blocks called graphlets. As a consequence, two new metrics based on graphlets are proposed in this work: REConstruction Rate (REC) and REC Graphlet Degree (RGD). REC determines the rate of graphlet similarity between different states of a network and RGD identifies the subset of nodes with the highest topological variation. In other words, RGD discerns how th GRN was rewired. REC and RGD were used to compare the local structure of nodes in condition-specific GRNs obtained from gene expression data of Escherichia coli, forming biofilms and cultured in suspension. According to our results, most of the network local structure remains unaltered in the two compared conditions. Nevertheless, changes reported by RGD necessarily imply that a different cohort of regulators (i.e. transcription factors (TFs)) appear on the scene, shedding light on how the regulation of gene expression occurs when E. coli transits from suspension to biofilm. Consequently, we propose that both metrics REC and RGD should be adopted as a quantitative approach to conduct differential analyses of GRNs. A tool that implements both metrics is available as an on-line web server (http://dlab.cl/loto). PMID:27695050

  4. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head blight caused by Fusarium graminearum (Fg) is a major limiting factor of wheat production with both yield loss and mycotoxin contamination. Here we report a model for global Fg gene regulatory networks (GRNs) inferred from a large collection of transcriptomic data using a machine-learning appro...

  5. A gene network engineering platform for lactic acid bacteria.

    PubMed

    Kong, Wentao; Kapuganti, Venkata S; Lu, Ting

    2016-02-29

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  6. Network analysis of genes and their association with diseases.

    PubMed

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-15

    A plethora of network-based approaches within the Systems Biology universe have been applied, to date, to investigate the underlying molecular mechanisms of various human diseases. In the present study, we perform a bipartite, topological and clustering graph analysis in order to gain a better understanding of the relationships between human genetic diseases and the relationships between the genes that are implicated in them. For this purpose, disease-disease and gene-gene networks were constructed from combined gene-disease association networks. The latter, were created by collecting and integrating data from three diverse resources, each one with different content covering from rare monogenic disorders to common complex diseases. This data pluralism enabled us to uncover important associations between diseases with unrelated phenotypic manifestations but with common genetic origin. For our analysis, the topological attributes and the functional implications of the individual networks were taken into account and are shortly discussed. We believe that some observations of this study could advance our understanding regarding the etiology of a disease with distinct pathological manifestations, and simultaneously provide the springboard for the development of preventive and therapeutic strategies and its underlying genetic mechanisms.

  7. A gene network engineering platform for lactic acid bacteria

    PubMed Central

    Kong, Wentao; Kapuganti, Venkata S.; Lu, Ting

    2016-01-01

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  8. Network analysis of genes and their association with diseases.

    PubMed

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-15

    A plethora of network-based approaches within the Systems Biology universe have been applied, to date, to investigate the underlying molecular mechanisms of various human diseases. In the present study, we perform a bipartite, topological and clustering graph analysis in order to gain a better understanding of the relationships between human genetic diseases and the relationships between the genes that are implicated in them. For this purpose, disease-disease and gene-gene networks were constructed from combined gene-disease association networks. The latter, were created by collecting and integrating data from three diverse resources, each one with different content covering from rare monogenic disorders to common complex diseases. This data pluralism enabled us to uncover important associations between diseases with unrelated phenotypic manifestations but with common genetic origin. For our analysis, the topological attributes and the functional implications of the individual networks were taken into account and are shortly discussed. We believe that some observations of this study could advance our understanding regarding the etiology of a disease with distinct pathological manifestations, and simultaneously provide the springboard for the development of preventive and therapeutic strategies and its underlying genetic mechanisms. PMID:27265032

  9. Using SPEEDES to simulate the blue gene interconnect network

    NASA Technical Reports Server (NTRS)

    Springer, P.; Upchurch, E.

    2003-01-01

    JPL and the Center for Advanced Computer Architecture (CACR) is conducting application and simulation analyses of BG/L in order to establish a range of effectiveness for the Blue Gene/L MPP architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution.

  10. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans.

    PubMed

    Zeng, Lin; Burne, Robert A

    2008-10-01

    Streptococcus mutans is particularly well adapted for high-affinity, high-capacity catabolism of multiple carbohydrate sources. S. mutansenzyme II (EII(Lev)), a fructose/mannose permease encoded by the levDEFG genes, and fruA, which encodes a hydrolase that releases fructose from fructan polymers, are transcriptionally regulated by the LevQRST four-component signal transduction system. Here, we demonstrate that: (i) levDEFGX are co-transcribed and the levE/F intergenic region is required for optimal expression of levFGX; (ii) D-mannose is a potent inducer of the levD and fruA operons; (iii) CcpA regulates levD expression in a carbohydrate-specific manner; (iv) deletion of the genes for the fructose/mannose-EII enzymes of S. mutans (manL, fruI and levD) enhances levD expression; (v) repression of the LevQRST regulon by EII enzymes depends on the presence of their substrates and requires LevR, but not LevQST; and (vi) CcpA inhibits expression of the manL and fruI genes to indirectly control the LevQRST regulon. Further, the manL, ccpA, fruI/fruCD and levD gene products differentially exert control over the cellobiose and lactose operons. Collectively, the results reveal the existence of a global regulatory network in S. mutans that governs the utilization of non-preferred carbohydrates in response to the availability and source of multiple preferred carbohydrates. PMID:18699864

  11. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    PubMed Central

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; Celniker, Susan E.; Yu, Bin; Frise, Erwin

    2016-01-01

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior–posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data. PMID:27071099

  12. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  13. Genes and experience shape brain networks of conscious control.

    PubMed

    Posner, Michael I

    2005-01-01

    One aspect of consciousness involves voluntary control over thoughts and feelings, often called will. Progress in neuroimaging and in sequencing the human genome makes it possible to think about voluntary control in terms of a specific neural network that includes midline and lateral frontal areas. A number of cognitive tasks involving conflict as well as the control of emotions have been shown to activate these brain areas. Studies have traced the development of this network in the ability to regulate cognition and emotion from about 2.5 to 7 years of age. Individual differences in this network have been related to parental reports of the ability of children to regulate their behavior, to delay reward and to develop a conscience. In adolescents these individual differences predict the propensity for antisocial behavior. Differences in specific genes are related to individual efficiency in performance of the network, and by neuroimaging, to the strength of its activation of this network. Future animal studies may make it possible to learn in detail how genes influence the common pattern of development of self-regulation made possible by this network. Moreover, a number of neurological and psychiatric pathologies involving difficulties in awareness and volition show deficits in parts of this network. We are now studying whether specific training experiences can influence the development of this network in 4-year-old children and if so, for whom it is most effective. Voluntary control is also important for the regulation of conscious input from the sensory environment. It seems likely that the same network involved in self-regulation is also crucial for focal attention to the sensory world.

  14. Synthetic in vivo validation of gene network circuitry.

    PubMed

    Damle, Sagar S; Davidson, Eric H

    2012-01-31

    Embryonic development is controlled by networks of interacting regulatory genes. The individual linkages of gene regulatory networks (GRNs) are customarily validated by functional cis-regulatory analysis, but an additional approach to validation is to rewire GRN circuitry to test experimentally predictions derived from network structure. Here we use this synthetic method to challenge specific predictions of the sea urchin embryo endomesoderm GRN. Expression vectors generated by in vitro recombination of exogenous sequences into BACs were used to cause elements of a nonskeletogenic mesoderm GRN to be deployed in skeletogenic cells and to detect their effects. The result of reengineering the regulatory circuitry in this way was to divert the developmental program of these cells from skeletogenesis to pigment cell formation, confirming a direct prediction of the GRN. In addition, the experiment revealed previously undetected cryptic repression functions. PMID:22238426

  15. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster.

    PubMed

    Lee, Hangnoh; Cho, Dong-Yeon; Whitworth, Cale; Eisman, Robert; Phelps, Melissa; Roote, John; Kaufman, Thomas; Cook, Kevin; Russell, Steven; Przytycka, Teresa; Oliver, Brian

    2016-09-01

    Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds. PMID:27599372

  16. Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster

    PubMed Central

    Lee, Hangnoh; Cho, Dong-Yeon; Roote, John; Kaufman, Thomas; Cook, Kevin; Przytycka, Teresa; Oliver, Brian

    2016-01-01

    Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds. PMID:27599372

  17. PDCD10 Gene Mutations in Multiple Cerebral Cavernous Malformations

    PubMed Central

    Cigoli, Maria Sole; Avemaria, Francesca; De Benedetti, Stefano; Gesu, Giovanni P.; Accorsi, Lucio Giordano; Parmigiani, Stefano; Corona, Maria Franca; Capra, Valeria; Mosca, Andrea; Giovannini, Simona; Notturno, Francesca; Ciccocioppo, Fausta; Volpi, Lilia; Estienne, Margherita; De Michele, Giuseppe; Antenora, Antonella; Bilo, Leda; Tavoni, Antonietta; Zamponi, Nelia; Alfei, Enrico; Baranello, Giovanni; Riva, Daria; Penco, Silvana

    2014-01-01

    Cerebral cavernous malformations (CCMs) are vascular abnormalities that may cause seizures, intracerebral haemorrhages, and focal neurological deficits. Familial form shows an autosomal dominant pattern of inheritance with incomplete penetrance and variable clinical expression. Three genes have been identified causing familial CCM: KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3. Aim of this study is to report additional PDCD10/CCM3 families poorly described so far which account for 10-15% of hereditary cerebral cavernous malformations. Our group investigated 87 consecutive Italian affected individuals (i.e. positive Magnetic Resonance Imaging) with multiple/familial CCM through direct sequencing and Multiplex Ligation-Dependent Probe Amplification (MLPA) analysis. We identified mutations in over 97.7% of cases, and PDCD10/CCM3 accounts for 13.1%. PDCD10/CCM3 molecular screening revealed four already known mutations and four novel ones. The mutated patients show an earlier onset of clinical manifestations as compared to CCM1/CCM2 mutated patients. The study of further families carrying mutations in PDCD10/CCM3 may help define a possible correlation between genotype and phenotype; an accurate clinical follow up of the subjects would help define more precisely whether mutations in PDCD10/CCM3 lead to a characteristic phenotype. PMID:25354366

  18. Propagation of genetic variation in gene regulatory networks

    PubMed Central

    Plahte, Erik; Gjuvsland, Arne B.; Omholt, Stig W.

    2013-01-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network’s feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation. PMID:23997378

  19. Multiple tipping points and optimal repairing in interacting networks

    PubMed Central

    Majdandzic, Antonio; Braunstein, Lidia A.; Curme, Chester; Vodenska, Irena; Levy-Carciente, Sary; Eugene Stanley, H.; Havlin, Shlomo

    2016-01-01

    Systems composed of many interacting dynamical networks—such as the human body with its biological networks or the global economic network consisting of regional clusters—often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two ‘forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model. PMID:26926803

  20. Multiple regimes of robust patterns between network structure and biodiversity.

    PubMed

    Jover, Luis F; Flores, Cesar O; Cortez, Michael H; Weitz, Joshua S

    2015-12-03

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.

  1. Multiple regimes of robust patterns between network structure and biodiversity

    NASA Astrophysics Data System (ADS)

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-12-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.

  2. Multiple regimes of robust patterns between network structure and biodiversity

    PubMed Central

    Jover, Luis F.; Flores, Cesar O.; Cortez, Michael H.; Weitz, Joshua S.

    2015-01-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996

  3. Multiple regimes of robust patterns between network structure and biodiversity.

    PubMed

    Jover, Luis F; Flores, Cesar O; Cortez, Michael H; Weitz, Joshua S

    2015-01-01

    Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities. PMID:26632996

  4. A parietal memory network revealed by multiple MRI methods.

    PubMed

    Gilmore, Adrian W; Nelson, Steven M; McDermott, Kathleen B

    2015-09-01

    The manner by which the human brain learns and recognizes stimuli is a matter of ongoing investigation. Through examination of meta-analyses of task-based functional MRI and resting state functional connectivity MRI, we identified a novel network strongly related to learning and memory. Activity within this network at encoding predicts subsequent item memory, and at retrieval differs for recognized and unrecognized items. The direction of activity flips as a function of recent history: from deactivation for novel stimuli to activation for stimuli that are familiar due to recent exposure. We term this network the 'parietal memory network' (PMN) to reflect its broad involvement in human memory processing. We provide a preliminary framework for understanding the key functional properties of the network. PMID:26254740

  5. Gap Gene Regulatory Dynamics Evolve along a Genotype Network

    PubMed Central

    Crombach, Anton; Wotton, Karl R.; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-01-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability). PMID:26796549

  6. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks

    PubMed Central

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change. PMID:26913048

  7. [A generalized chemical-kinetic method for modeling gene networks].

    PubMed

    Likhoshvaĭ, V A; Matushkin, Iu G; Ratushnyĭ, A V; Anan'ko, E A; Ignat'eva, E V; Podkolodnaia, O A

    2001-01-01

    Development of methods for mathematical simulation of biological systems and building specific simulations is an important trend of bioinformatics development. Here we describe the method of generalized chemokinetic simulation generating flexible and adequate simulations of various biological systems. Adequate simulations of complex nonlinear gene networks--control system of cholesterol by synthesis in the cell and erythrocyte differentiation and maturation--are given as the examples. The simulations were expressed in terms of unit processes--biochemical reactions. Optimal sets of parameters were determined and the systems were numerically simulated under various conditions. The simulations allow us to study possible functional conditions of these gene networks, calculate consequences of mutations, and define optimal strategies for their correction including therapeutic ones. Graphical user interface for these simulations is available at http://wwwmgs.bionet.nsc.ru/systems/MGL/GeneNet/. PMID:11771132

  8. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    SciTech Connect

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.

  9. Characterization of Genes for Beef Marbling Based on Applying Gene Coexpression Network

    PubMed Central

    Lim, Dajeong; Kim, Nam-Kuk; Lee, Seung-Hwan; Park, Hye-Sun; Cho, Yong-Min; Chai, Han-Ha; Kim, Heebal

    2014-01-01

    Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7) using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60) and dihydropyrimidine dehydrogenase (DPYD) are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness. PMID:24624372

  10. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  11. Analysis of microRNA and Gene Expression Profiles in Multiple Sclerosis: Integrating Interaction Data to Uncover Regulatory Mechanisms

    PubMed Central

    Freiesleben, Sherry; Hecker, Michael; Zettl, Uwe Klaus; Fuellen, Georg; Taher, Leila

    2016-01-01

    MicroRNAs (miRNAs) have been reported to contribute to the pathophysiology of multiple sclerosis (MS), an inflammatory disorder of the central nervous system. Here, we propose a new consensus-based strategy to analyse and integrate miRNA and gene expression data in MS as well as other publically available data to gain a deeper understanding of the role of miRNAs in MS and to overcome the challenges posed by studies with limited patient sample sizes. We processed and analysed microarray datasets, and compared the expression of genes and miRNAs in the blood of MS patients and controls. We then used our consensus and integration approach to construct two molecular networks dysregulated in MS: a miRNA- and a gene-based network. We identified 18 differentially expressed (DE) miRNAs and 128 DE genes that may contribute to the regulatory alterations behind MS. The miRNAs were linked to immunological and neurological pathways, and we exposed let-7b-5p and miR-345-5p as promising blood-derived disease biomarkers in MS. The results suggest that DE miRNAs are more informative than DE genes in uncovering pathways potentially involved in MS. Our findings provide novel insights into the regulatory mechanisms and networks underlying MS. PMID:27694855

  12. LegumeGRN: A Gene Regulatory Network Prediction Server for Functional and Comparative Studies

    PubMed Central

    Wang, Mingyi; Verdier, Jerome; Benedito, Vagner A.; Tang, Yuhong; Murray, Jeremy D.; Ge, Yinbing; Becker, Jörg D.; Carvalho, Helena; Rogers, Christian; Udvardi, Michael; He, Ji

    2013-01-01

    Building accurate gene regulatory networks (GRNs) from high-throughput gene expression data is a long-standing challenge. However, with the emergence of new algorithms combined with the increase of transcriptomic data availability, it is now reachable. To help biologists to investigate gene regulatory relationships, we developed a web-based computational service to build, analyze and visualize GRNs that govern various biological processes. The web server is preloaded with all available Affymetrix GeneChip-based transcriptomic and annotation data from the three model legume species, i.e., Medicago truncatula, Lotus japonicus and Glycine max. Users can also upload their own transcriptomic and transcription factor datasets from any other species/organisms to analyze their in-house experiments. Users are able to select which experiments, genes and algorithms they will consider to perform their GRN analysis. To achieve this flexibility and improve prediction performance, we have implemented multiple mainstream GRN prediction algorithms including co-expression, Graphical Gaussian Models (GGMs), Context Likelihood of Relatedness (CLR), and parallelized versions of TIGRESS and GENIE3. Besides these existing algorithms, we also proposed a parallel Bayesian network learning algorithm, which can infer causal relationships (i.e., directionality of interaction) and scale up to several thousands of genes. Moreover, this web server also provides tools to allow integrative and comparative analysis between predicted GRNs obtained from different algorithms or experiments, as well as comparisons between legume species. The web site is available at http://legumegrn.noble.org. PMID:23844010

  13. Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers

    PubMed Central

    Tinti, Michele; Dissanayake, Kumara; Synowsky, Silvia; Albergante, Luca; MacKintosh, Carol

    2014-01-01

    The complexity of signalling pathways was boosted at the origin of the vertebrates, when two rounds of whole genome duplication (2R-WGD) occurred. Those genes and proteins that have survived from the 2R-WGD—termed 2R-ohnologues—belong to families of two to four members, and are enriched in signalling components relevant to cancer. Here, we find that while only approximately 30% of human transcript-coding genes are 2R-ohnologues, they carry 42–60% of the gene mutations in 30 different cancer types. Across a subset of cancer datasets, including melanoma, breast, lung adenocarcinoma, liver and medulloblastoma, we identified 673 2R-ohnologue families in which one gene carries mutations at multiple positions, while sister genes in the same family are relatively mutation free. Strikingly, in 315 of the 322 2R-ohnologue families displaying such a skew in multiple cancers, the same gene carries the heaviest mutation load in each cancer, and usually the second-ranked gene is also the same in each cancer. Our findings inspire the hypothesis that in certain cancers, heterogeneous combinations of genetic changes impair parts of the 2R-WGD signalling networks and force information flow through a limited set of oncogenic pathways in which specific non-mutated 2R-ohnologues serve as effectors. The non-mutated 2R-ohnologues are therefore potential therapeutic targets. These include proteins linked to growth factor signalling, neurotransmission and ion channels. PMID:24806839

  14. Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers.

    PubMed

    Tinti, Michele; Dissanayake, Kumara; Synowsky, Silvia; Albergante, Luca; MacKintosh, Carol

    2014-05-01

    The complexity of signalling pathways was boosted at the origin of the vertebrates, when two rounds of whole genome duplication (2R-WGD) occurred. Those genes and proteins that have survived from the 2R-WGD—termed 2R-ohnologues—belong to families of two to four members, and are enriched in signalling components relevant to cancer. Here, we find that while only approximately 30% of human transcript-coding genes are 2R-ohnologues, they carry 42–60% of the gene mutations in 30 different cancer types. Across a subset of cancer datasets, including melanoma, breast, lung adenocarcinoma, liver and medulloblastoma, we identified 673 2R-ohnologue families in which one gene carries mutations at multiple positions, while sister genes in the same family are relatively mutation free. Strikingly, in 315 of the 322 2R-ohnologue families displaying such a skew in multiple cancers, the same gene carries the heaviest mutation load in each cancer, and usually the second-ranked gene is also the same in each cancer. Our findings inspire the hypothesis that in certain cancers, heterogeneous combinations of genetic changes impair parts of the 2R-WGD signalling networks and force information flow through a limited set of oncogenic pathways in which specific non-mutated 2R-ohnologues serve as effectors. The non-mutated 2R-ohnologues are therefore potential therapeutic targets. These include proteins linked to growth factor signalling, neurotransmission and ion channels.

  15. Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers.

    PubMed

    Tinti, Michele; Dissanayake, Kumara; Synowsky, Silvia; Albergante, Luca; MacKintosh, Carol

    2014-01-01

    The complexity of signalling pathways was boosted at the origin of the vertebrates, when two rounds of whole genome duplication (2R-WGD) occurred. Those genes and proteins that have survived from the 2R-WGD-termed 2R-ohnologues-belong to families of two to four members, and are enriched in signalling components relevant to cancer. Here, we find that while only approximately 30% of human transcript-coding genes are 2R-ohnologues, they carry 42-60% of the gene mutations in 30 different cancer types. Across a subset of cancer datasets, including melanoma, breast, lung adenocarcinoma, liver and medulloblastoma, we identified 673 2R-ohnologue families in which one gene carries mutations at multiple positions, while sister genes in the same family are relatively mutation free. Strikingly, in 315 of the 322 2R-ohnologue families displaying such a skew in multiple cancers, the same gene carries the heaviest mutation load in each cancer, and usually the second-ranked gene is also the same in each cancer. Our findings inspire the hypothesis that in certain cancers, heterogeneous combinations of genetic changes impair parts of the 2R-WGD signalling networks and force information flow through a limited set of oncogenic pathways in which specific non-mutated 2R-ohnologues serve as effectors. The non-mutated 2R-ohnologues are therefore potential therapeutic targets. These include proteins linked to growth factor signalling, neurotransmission and ion channels.

  16. Preservation of dynamic properties in qualitative modeling frameworks for gene regulatory networks.

    PubMed

    Jamshidi, Shahrad; Siebert, Heike; Bockmayr, Alexander

    2013-05-01

    Mathematical modeling often helps to provide a systems perspective on gene regulatory networks. In particular, qualitative approaches are useful when detailed kinetic information is lacking. Multiple methods have been developed that implement qualitative information in different ways, e.g., in purely discrete or hybrid discrete/continuous models. In this paper, we compare the discrete asynchronous logical modeling formalism for gene regulatory networks due to R. Thomas with piecewise affine differential equation models. We provide a local characterization of the qualitative dynamics of a piecewise affine differential equation model using the discrete dynamics of a corresponding Thomas model. Based on this result, we investigate the consistency of higher-level dynamical properties such as attractor characteristics and reachability. We show that although the two approaches are based on equivalent information, the resulting qualitative dynamics are different. In particular, the dynamics of the piecewise affine differential equation model is not a simple refinement of the dynamics of the Thomas model.

  17. Elucidating the genotype-phenotype relationships and network perturbations of human shared and specific disease genes from an evolutionary perspective.

    PubMed

    Begum, Tina; Ghosh, Tapash Chandra

    2014-10-05

    To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes, which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene: one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are slow in SHD group, intermediate in SPD group, and fast in ND group. Group-to-group evolutionary rate differences remain statistically significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show tissue-restricted expression, and are involved in transmembrane transport. Among all the factors, our regression analyses interestingly suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmembrane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several edgetic perturbations and, thus, has more severe effect on gene phenotypes.

  18. Literature Mining and Ontology based Analysis of Host-Brucella Gene-Gene Interaction Network.

    PubMed

    Karadeniz, İlknur; Hur, Junguk; He, Yongqun; Özgür, Arzucan

    2015-01-01

    Brucella is an intracellular bacterium that causes chronic brucellosis in humans and various mammals. The identification of host-Brucella interaction is crucial to understand host immunity against Brucella infection and Brucella pathogenesis against host immune responses. Most of the information about the inter-species interactions between host and Brucella genes is only available in the text of the scientific publications. Many text-mining systems for extracting gene and protein interactions have been proposed. However, only a few of them have been designed by considering the peculiarities of host-pathogen interactions. In this paper, we used a text mining approach for extracting host-Brucella gene-gene interactions from the abstracts of articles in PubMed. The gene-gene interactions here represent the interactions between genes and/or gene products (e.g., proteins). The SciMiner tool, originally designed for detecting mammalian gene/protein names in text, was extended to identify host and Brucella gene/protein names in the abstracts. Next, sentence-level and abstract-level co-occurrence based approaches, as well as sentence-level machine learning based methods, originally designed for extracting intra-species gene interactions, were utilized to extract the interactions among the identified host and Brucella genes. The extracted interactions were manually evaluated. A total of 46 host-Brucella gene interactions were identified and represented as an interaction network. Twenty four of these interactions were identified from sentence-level processing. Twenty two additional interactions were identified when abstract-level processing was performed. The Interaction Network Ontology (INO) was used to represent the identified interaction types at a hierarchical ontology structure. Ontological modeling of specific gene-gene interactions demonstrates that host-pathogen gene-gene interactions occur at experimental conditions which can be ontologically represented. Our

  19. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  20. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    PubMed

    Varrella, Stefano; Romano, Giovanna; Costantini, Susan; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  1. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer

    PubMed Central

    2014-01-01

    Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy, improving clinical cancer therapy, and personalization of treatments. Results ECs-specific gene co-expression networks were constructed by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Important pathways and putative cancer hub genes contribution to tumorigenesis of ECs were identified. An elastic-net regularized classification model was built using the cancer hub gene signatures to predict the phenotypic characteristics of ECs. The 19 cancer hub gene signatures had high predictive power to distinguish among three key principal features of ECs: grade, type, and stage. Intriguingly, these hub gene networks seem to contribute to ECs progression and malignancy via cell-cycle regulation, antigen processing and the citric acid (TCA) cycle. Conclusions The results of this study provide a powerful biomarker discovery platform to better understand the progression of ECs and to uncover potential therapeutic targets in the treatment of ECs. This information might lead to improved monitoring of ECs and resulting improvement of treatment of ECs, the 4th most common of cancer in women. PMID:24758163

  2. How difficult is inference of mammalian causal gene regulatory networks?

    PubMed

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  3. Multiple neural network approaches to clinical expert systems

    NASA Astrophysics Data System (ADS)

    Stubbs, Derek F.

    1990-08-01

    We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results

  4. Innovation and robustness in complex regulatory gene networks

    PubMed Central

    Ciliberti, S.; Martin, O. C.; Wagner, A.

    2007-01-01

    The history of life involves countless evolutionary innovations, a steady stream of ingenuity that has been flowing for more than 3 billion years. Very little is known about the principles of biological organization that allow such innovation. Here, we examine these principles for evolutionary innovation in gene expression patterns. To this end, we study a model for the transcriptional regulation networks that are at the heart of embryonic development. A genotype corresponds to a regulatory network of a given topology, and a phenotype corresponds to a steady-state gene expression pattern. Networks with the same phenotype form a connected graph in genotype space, where two networks are immediate neighbors if they differ by one regulatory interaction. We show that an evolutionary search on this graph can reach genotypes that are as different from each other as if they were chosen at random in genotype space, allowing evolutionary access to different kinds of innovation while staying close to a viable phenotype. Thus, although robustness to mutations may hinder innovation in the short term, we conclude that long-term innovation in gene expression patterns can only emerge in the presence of the robustness caused by connected genotype graphs. PMID:17690244

  5. Four-quadrant optical matrix-vector multiplication machine as a neural-network processor.

    PubMed

    Abramson, S; Saad, D; Marom, E; Konforti, N

    1993-03-10

    Optical processors for neural networks are primarily fast matrix-vector multiplication machines that can potentially compete with serial computers owing to their parallelism and their ability to facilitate densely connected networks. However, in most proposed systems the multiplication supports only two quadrants and is thus unable to provide bipolar neuron outputs for increasing network capabilities and learning rate. We propose and demonstrate an opto-electronic four-quadrant matrix-vector multiplier that can be used for feed-forward neural-network recall and learning. Experimental results obtained with common commercial components demonstrate a novel, useful, and reliable approach for fourquadrant matrix-vector multiplication in general and for feed-forward neural-network training and recall in particular. PMID:20820267

  6. Four-quadrant optical matrix vector multiplication machine as a neural network processor

    NASA Astrophysics Data System (ADS)

    Abramson, Shai; Saad, D.; Marom, Emanuel; Konforti, Naim

    1993-08-01

    Optical processors for neural networks are primarily fast matrix-vector multiplication machines that can potentially compete with serial computers owing to their parallelism and their ability to facilitate densely connected networks. However, in most proposed systems the multiplication supports only two quadrants and is thus unable to provide bipolar neuron outputs for increasing network capabilities and learning rate. We propose and demonstrate an opto-electronic four quadrant matrix-vector multiplier that can be used for feedforward neural networks recall and learning. Experimental results obtained with common commercial components demonstrate a novel, useful, and reliable approach for four quadrant matrix-vector multiplication in general and for feedforward neural network training and recall in particular.

  7. Gene regulation networks generate diverse pigmentation patterns in plants.

    PubMed

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.

  8. Identification of direction in gene networks from expression and methylation

    PubMed Central

    2013-01-01

    Background Reverse-engineering gene regulatory networks from expression data is difficult, especially without temporal measurements or interventional experiments. In particular, the causal direction of an edge is generally not statistically identifiable, i.e., cannot be inferred as a statistical parameter, even from an unlimited amount of non-time series observational mRNA expression data. Some additional evidence is required and high-throughput methylation data can viewed as a natural multifactorial gene perturbation experiment. Results We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the causal direction of edges by combining DNA methylation and mRNA transcription data. We describe the circumstances under which edge directions become identifiable and experiments with both real and synthetic data demonstrate that the accuracy of IDEM for inferring both edge placement and edge direction in gene regulatory networks is significantly improved relative to other methods. Conclusion Reverse-engineering directed gene regulatory networks from static observational data becomes feasible by exploiting the context provided by high-throughput DNA methylation data. An implementation of the algorithm described is available at http://code.google.com/p/idem/. PMID:24182195

  9. Establishing the Architecture of Plant Gene Regulatory Networks.

    PubMed

    Yang, F; Ouma, W Z; Li, W; Doseff, A I; Grotewold, E

    2016-01-01

    Gene regulatory grids (GRGs) encompass the space of all the possible transcription factor (TF)-target gene interactions that regulate gene expression, with gene regulatory networks (GRNs) representing a temporal and spatial manifestation of a portion of the GRG, essential for the specification of gene expression. Thus, understanding GRG architecture provides a valuable tool to explain how genes are expressed in an organism, an important aspect of synthetic biology and essential toward the development of the "in silico" cell. Progress has been made in some unicellular model systems (eg, yeast), but significant challenges remain in more complex multicellular organisms such as plants. Key to understanding the organization of GRGs is therefore identifying the genes that TFs bind to, and control. The application of sensitive and high-throughput methods to investigate genome-wide TF-target gene interactions is providing a wealth of information that can be linked to important agronomic traits. We describe here the methods and resources that have been developed to investigate the architecture of plant GRGs and GRNs. We also provide information regarding where to obtain clones or other resources necessary for synthetic biology or metabolic engineering. PMID:27480690

  10. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis

    PubMed Central

    Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM

    2014-01-01

    Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953

  11. Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks

    PubMed Central

    Priedigkeit, Nolan; Wolfe, Nicholas; Clark, Nathan L.

    2015-01-01

    Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC), is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting “disease map” network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks. PMID:25679399

  12. Node Handprinting: A Scalable and Accurate Algorithm for Aligning Multiple Biological Networks.

    PubMed

    Radu, Alex; Charleston, Michael

    2015-07-01

    Due to recent advancements in high-throughput sequencing technologies, progressively more protein-protein interactions have been identified for a growing number of species. Subsequently, the protein-protein interaction networks for these species have been further refined. The increase in the quality and availability of these networks has in turn brought a demand for efficient methods to analyze such networks. The pairwise alignment of these networks has been moderately investigated, with numerous algorithms available, but there is very little progress in the field of multiple network alignment. Multiple alignment of networks from different organisms is ideal at finding abnormally conserved or disparate subnetworks. We present a fast and accurate algorithmic approach, Node Handprinting (NH), based on our previous work with Node Fingerprinting, which enables quick and accurate alignment of multiple networks. We also propose two new metrics for the analysis of multiple alignments, as the current metrics are not as sophisticated as their pairwise alignment counterparts. To assess the performance of NH, we use previously aligned datasets as well as protein interaction networks generated from the public database BioGRID. Our results indicate that NH compares favorably with current methodologies and is the only algorithm capable of performing the more complex alignments.

  13. Multiple optimal learning factors for feed-forward networks

    NASA Astrophysics Data System (ADS)

    Malalur, Sanjeev S.; Manry, Michael T.

    2010-04-01

    A batch training algorithm for feed-forward networks is proposed which uses Newton's method to estimate a vector of optimal learning factors, one for each hidden unit. Backpropagation, using this learning factor vector, is used to modify the hidden unit's input weights. Linear equations are then solved for the network's output weights. Elements of the new method's Gauss-Newton Hessian matrix are shown to be weighted sums of elements from the total network's Hessian. In several examples, the new method performs better than backpropagation and conjugate gradient, with similar numbers of required multiplies. The method performs as well as or better than Levenberg-Marquardt, with several orders of magnitude fewer multiplies due to the small size of its Hessian.

  14. Reconstruction of Gene Networks of Iron Response in Shewanella oneidensis

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin Koo; Gao, Haichun; Arkin, Adam; Palumbo, Anthony Vito; Zhou, Jizhong

    2009-01-01

    It is of great interest to study the iron response of the -proteobacterium Shewanella oneidensis since it possesses a high content of iron and is capable of utilizing iron for anaerobic respiration. We report here that the iron response in S. oneidensis is a rapid process. To gain more insights into the bacterial response to iron, temporal gene expression profiles were examined for iron depletion and repletion, resulting in identification of iron-responsive biological pathways in a gene co-expression network. Iron acquisition systems, including genes unique to S. oneidensis, were rapidly and strongly induced by iron depletion, and repressed by iron repletion. Some were required for iron depletion, as exemplified by the mutational analysis of the putative siderophore biosynthesis protein SO3032. Unexpectedly, a number of genes related to anaerobic energy metabolism were repressed by iron depletion and induced by repletion, which might be due to the iron storage potential of their protein products. Other iron-responsive biological pathways include protein degradation, aerobic energy metabolism and protein synthesis. Furthermore, sequence motifs enriched in gene clusters as well as their corresponding DNA-binding proteins (Fur, CRP and RpoH) were identified, resulting in a regulatory network of iron response in S. oneidensis. Together, this work provides an overview of iron response and reveals novel features in S. oneidensis, including Shewanella-specific iron acquisition systems, and suggests the intimate relationship between anaerobic energy metabolism and iron response.

  15. Sequence-based model of gap gene regulatory network

    PubMed Central

    2014-01-01

    Background The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. Results We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and for the set with the site of interest excluded. Conclusions The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are

  16. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  17. Coherent organization in gene regulation: a study on six networks

    NASA Astrophysics Data System (ADS)

    Aral, Neşe; Kabakçıoğlu, Alkan

    2016-04-01

    Structural and dynamical fingerprints of evolutionary optimization in biological networks are still unclear. Here we analyze the dynamics of genetic regulatory networks responsible for the regulation of cell cycle and cell differentiation in three organisms or cell types each, and show that they follow a version of Hebb's rule which we have termed coherence. More precisely, we find that simultaneously expressed genes with a common target are less likely to act antagonistically at the attractors of the regulatory dynamics. We then investigate the dependence of coherence on structural parameters, such as the mean number of inputs per node and the activatory/repressory interaction ratio, as well as on dynamically determined quantities, such as the basin size and the number of expressed genes.

  18. Noise Control in Gene Regulatory Networks with Negative Feedback.

    PubMed

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  19. Sex-dependent gene regulatory networks of the heart rhythm

    PubMed Central

    Iacobas, S.; Thomas, N.; Spray, D. C.

    2010-01-01

    Expression level, control, and intercoordination of 66 selected heart rhythm determinant (HRD) genes were compared in atria and ventricles of four male and four female adult mice. We found that genes encoding various adrenergic receptors, ankyrins, ion channels and transporters, connexins, cadherins, plakophilins, and other components of the intercalated discs form a complex network that is chamber dependent and differs between the two sexes. In addition, most HRD genes in atria had higher expression in males than in females, while in ventricles, expression levels were mostly higher in females than in males. Moreover, significant chamber differences were observed between the sexes, with higher expression in atria than ventricles for males and higher expression in ventricles than atria for females. We have ranked the selected genes according to their prominence (new concept) within the HRD gene web defined as extent of expression coordination with the other web genes and stability of expression. Interestingly, the prominence hierarchy was substantially different between the two sexes. Taken together, these findings indicate that the organizational principles of the heart rhythm transcriptome are sex dependent, with the newly introduced prominence analysis allowing identification of genes that are pivotal for the sexual dichotomy. PMID:19756788

  20. Multiple Measures of Network TV News Bias in Campaign '72.

    ERIC Educational Resources Information Center

    Lowry, Dennis T.

    Divided into two parts, this study includes an analysis of the verbal content of Nixon and McGovern news stories carried by the three networks and an analysis of selected types of nonverbal content. The universe for the study was the 53 days, Monday through Friday, between the end of the Republican national convention and election day, 1972. A…

  1. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time. PMID:23851949

  2. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time.

  3. Phase transitions in the evolution of gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    The role of gene regulatory networks is to respond to environmental conditions and optimize growth of the cell. A typical example is found in bacteria, where metabolic genes are activated in response to nutrient availability, and are subsequently turned off to conserve energy when their specific substrates are depleted. However, in fluctuating environmental conditions, regulatory networks could experience strong evolutionary pressures not only to turn the right genes on and off, but also to respond optimally under a wide spectrum of fluctuation timescales. The outcome of evolution is predicted by the long-term growth rate, which differentiates between optimal strategies. Here we present an analytic computation of the long-term growth rate in randomly fluctuating environments, by using mean-field and higher order expansion in the environmental history. We find that optimal strategies correspond to distinct regions in the phase space of fluctuations, separated by first and second order phase transitions. The statistics of environmental randomness are shown to dictate the possible evolutionary modes, which either change the structure of the regulatory network abruptly, or gradually modify and tune the interactions between its components.

  4. Predicting chemotherapeutic drug combinations through gene network profiling

    PubMed Central

    Nguyen, Thi Thuy Trang; Chua, Jacqueline Kia Kee; Seah, Kwi Shan; Koo, Seok Hwee; Yee, Jie Yin; Yang, Eugene Guorong; Lim, Kim Kiat; Pang, Shermaine Yu Wen; Yuen, Audrey; Zhang, Louxin; Ang, Wee Han; Dymock, Brian; Lee, Edmund Jon Deoon; Chen, Ee Sin

    2016-01-01

    Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. However, selecting the most appropriate drugs for such therapy is not necessarily an easy or straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific ontological sub-classifications were identified through the computation of relative hypersensitivities. We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and the differential targeting of a conserved gene interaction network when screening for successful chemotherapeutic drug combinations for human cells. PMID:26791325

  5. How to infer gene networks from expression profiles, revisited.

    PubMed

    Penfold, Christopher A; Wild, David L

    2011-12-01

    Inferring the topology of a gene-regulatory network (GRN) from genome-scale time-series measurements of transcriptional change has proved useful for disentangling complex biological processes. To address the challenges associated with this inference, a number of competing approaches have previously been used, including examples from information theory, Bayesian and dynamic Bayesian networks (DBNs), and ordinary differential equation (ODE) or stochastic differential equation. The performance of these competing approaches have previously been assessed using a variety of in silico and in vivo datasets. Here, we revisit this work by assessing the performance of more recent network inference algorithms, including a novel non-parametric learning approach based upon nonlinear dynamical systems. For larger GRNs, containing hundreds of genes, these non-parametric approaches more accurately infer network structures than do traditional approaches, but at significant computational cost. For smaller systems, DBNs are competitive with the non-parametric approaches with respect to computational time and accuracy, and both of these approaches appear to be more accurate than Granger causality-based methods and those using simple ODEs models.

  6. Multiple Suboptimal Solutions for Prediction Rules in Gene Expression Data

    PubMed Central

    Komori, Osamu; Pritchard, Mari; Eguchi, Shinto

    2013-01-01

    This paper discusses mathematical and statistical aspects in analysis methods applied to microarray gene expressions. We focus on pattern recognition to extract informative features embedded in the data for prediction of phenotypes. It has been pointed out that there are severely difficult problems due to the unbalance in the number of observed genes compared with the number of observed subjects. We make a reanalysis of microarray gene expression published data to detect many other gene sets with almost the same performance. We conclude in the current stage that it is not possible to extract only informative genes with high performance in the all observed genes. We investigate the reason why this difficulty still exists even though there are actively proposed analysis methods and learning algorithms in statistical machine learning approaches. We focus on the mutual coherence or the absolute value of the Pearson correlations between two genes and describe the distributions of the correlation for the selected set of genes and the total set. We show that the problem of finding informative genes in high dimensional data is ill-posed and that the difficulty is closely related with the mutual coherence. PMID:23662163

  7. Semi-Supervised Multi-View Learning for Gene Network Reconstruction

    PubMed Central

    Ceci, Michelangelo; Pio, Gianvito; Kuzmanovski, Vladimir; Džeroski, Sašo

    2015-01-01

    The task of gene regulatory network reconstruction from high-throughput data is receiving increasing attention in recent years. As a consequence, many inference methods for solving this task have been proposed in the literature. It has been recently observed, however, that no single inference method performs optimally across all datasets. It has also been shown that the integration of predictions from multiple inference methods is more robust and shows high performance across diverse datasets. Inspired by this research, in this paper, we propose a machine learning solution which learns to combine predictions from multiple inference methods. While this approach adds additional complexity to the inference process, we expect it would also carry substantial benefits. These would come from the automatic adaptation to patterns on the outputs of individual inference methods, so that it is possible to identify regulatory interactions more reliably when these patterns occur. This article demonstrates the benefits (in terms of accuracy of the reconstructed networks) of the proposed method, which exploits an iterative, semi-supervised ensemble-based algorithm. The algorithm learns to combine the interactions predicted by many different inference methods in the multi-view learning setting. The empirical evaluation of the proposed algorithm on a prokaryotic model organism (E. coli) and on a eukaryotic model organism (S. cerevisiae) clearly shows improved performance over the state of the art methods. The results indicate that gene regulatory network reconstruction for the real datasets is more difficult for S. cerevisiae than for E. coli. The software, all the datasets used in the experiments and all the results are available for download at the following link: http://figshare.com/articles/Semi_supervised_Multi_View_Learning_for_Gene_Network_Reconstruction/1604827. PMID:26641091

  8. Functional divergence and convergence between the transcript network and gene network in lung adenocarcinoma

    PubMed Central

    Hsu, Min-Kung; Pan, Chia-Lin; Chen, Feng-Chi

    2016-01-01

    Introduction Alternative RNA splicing is a critical regulatory mechanism during tumorigenesis. However, previous oncological studies mainly focused on the splicing of individual genes. Whether and how transcript isoforms are coordinated to affect cellular functions remain underexplored. Also of great interest is how the splicing regulome cooperates with the transcription regulome to facilitate tumorigenesis. The answers to these questions are of fundamental importance to cancer biology. Results Here, we report a comparative study between the transcript-based network (TN) and the gene-based network (GN) derived from the transcriptomes of paired tumor–normal tissues from 77 lung adenocarcinoma patients. We demonstrate that the two networks differ significantly from each other in terms of patient clustering and the number and functions of network modules. Interestingly, the majority (89.5%) of multi-transcript genes have their transcript isoforms distributed in at least two TN modules, suggesting regulatory and functional divergences between transcript isoforms. Furthermore, TN and GN modules share onlŷ50%–60% of their biological functions. TN thus appears to constitute a regulatory layer separate from GN. Nevertheless, our results indicate that functional convergence and divergence both occur between TN and GN, implying complex interactions between the two regulatory layers. Finally, we report that the expression profiles of module members in both TN and GN shift dramatically yet concordantly during tumorigenesis. The mechanisms underlying this coordinated shifting remain unclear yet are worth further explorations. Conclusion We show that in lung adenocarcinoma, transcript isoforms per se are coordinately regulated to conduct biological functions not conveyed by the network of genes. However, the two networks may interact closely with each other by sharing the same or related biological functions. Unraveling the effects and mechanisms of such interactions will

  9. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    PubMed

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  10. Identification of microRNA-regulated gene networks by expression analysis of target genes

    PubMed Central

    Gennarino, Vincenzo Alessandro; D'Angelo, Giovanni; Dharmalingam, Gopuraja; Fernandez, Serena; Russolillo, Giorgio; Sanges, Remo; Mutarelli, Margherita; Belcastro, Vincenzo; Ballabio, Andrea; Verde, Pasquale; Sardiello, Marco; Banfi, Sandro

    2012-01-01

    MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs. PMID:22345618

  11. Multiple deep convolutional neural networks averaging for face alignment

    NASA Astrophysics Data System (ADS)

    Zhang, Shaohua; Yang, Hua; Yin, Zhouping

    2015-05-01

    Face alignment is critical for face recognition, and the deep learning-based method shows promise for solving such issues, given that competitive results are achieved on benchmarks with additional benefits, such as dispensing with handcrafted features and initial shape. However, most existing deep learning-based approaches are complicated and quite time-consuming during training. We propose a compact face alignment method for fast training without decreasing its accuracy. Rectified linear unit is employed, which allows all networks approximately five times faster convergence than a tanh neuron. An eight learnable layer deep convolutional neural network (DCNN) based on local response normalization and a padding convolutional layer (PCL) is designed to provide reliable initial values during prediction. A model combination scheme is presented to further reduce errors, while showing that only two network architectures and hyperparameter selection procedures are required in our approach. A three-level cascaded system is ultimately built based on the DCNNs and model combination mode. Extensive experiments validate the effectiveness of our method and demonstrate comparable accuracy with state-of-the-art methods on BioID, labeled face parts in the wild, and Helen datasets.

  12. A Network of Genes Antagonistic to the LIN-35 Retinoblastoma Protein of Caenorhabditis elegans

    PubMed Central

    Polley, Stanley R. G.; Fay, David S.

    2012-01-01

    The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene. PMID:22542970

  13. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  14. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  15. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

    PubMed

    Goode, Debbie K; Obier, Nadine; Vijayabaskar, M S; Lie-A-Ling, Michael; Lilly, Andrew J; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-03-01

    Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  16. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation

    PubMed Central

    Goode, Debbie K.; Obier, Nadine; Vijayabaskar, M.S.; Lie-A-Ling, Michael; Lilly, Andrew J.; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A.; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R.; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-01-01

    Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  17. Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus

    PubMed Central

    Chai, Hangzhen; Yin, Ru; Liu, Yongfeng; Meng, Huiying; Zhou, Xianqiang; Zhou, Guolin; Bi, Xupeng; Yang, Xue; Zhu, Tonghan; Zhu, Weiming; Deng, Zixin; Hong, Kui

    2016-01-01

    Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5–8–5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, with altered ophiobolin yield using genome sequencing and in silico analysis, combined with in vivo genetic manipulation. Involvement of the five gene clusters in ophiobolin synthesis was confirmed by investigation of the five key terpene synthesis relevant enzymes in each gene cluster, either by gene deletion and complementation or in vitro verification of protein function. The results demonstrate that ophiobolin skeleton biosynthesis involves five gene clusters, which are responsible for C15, C20, C25, and C30 terpenoid biosynthesis. PMID:27273151

  18. Overexpressing the Multiple-Stress Responsive Gene At1g74450 Reduces Plant Height and Male Fertility in Arabidopsis thaliana

    PubMed Central

    Visscher, Anne M.; Belfield, Eric J.; Vlad, Daniela; Irani, Niloufer; Moore, Ian; Harberd, Nicholas P.

    2015-01-01

    A subset of genes in Arabidopsis thaliana is known to be up-regulated in response to a wide range of different environmental stress factors. However, not all of these genes are characterized as yet with respect to their functions. In this study, we used transgenic knockout, overexpression and reporter gene approaches to try to elucidate the biological roles of five unknown multiple-stress responsive genes in Arabidopsis. The selected genes have the following locus identifiers: At1g18740, At1g74450, At4g27652, At4g29780 and At5g12010. Firstly, T-DNA insertion knockout lines were identified for each locus and screened for altered phenotypes. None of the lines were found to be visually different from wildtype Col-0. Secondly, 35S-driven overexpression lines were generated for each open reading frame. Analysis of these transgenic lines showed altered phenotypes for lines overexpressing the At1g74450 ORF. Plants overexpressing the multiple-stress responsive gene At1g74450 are stunted in height and have reduced male fertility. Alexander staining of anthers from flowers at developmental stage 12–13 showed either an absence or a reduction in viable pollen compared to wildtype Col-0 and At1g74450 knockout lines. Interestingly, the effects of stress on crop productivity are most severe at developmental stages such as male gametophyte development. However, the molecular factors and regulatory networks underlying environmental stress-induced male gametophytic alterations are still largely unknown. Our results indicate that the At1g74450 gene provides a potential link between multiple environmental stresses, plant height and pollen development. In addition, ruthenium red staining analysis showed that At1g74450 may affect the composition of the inner seed coat mucilage layer. Finally, C-terminal GFP fusion proteins for At1g74450 were shown to localise to the cytosol. PMID:26485022

  19. Using Genome-Wide Expression Profiling to Define Gene Networks Relevant to the Study of Complex Traits: From RNA Integrity to Network Topology

    PubMed Central

    O'Brien, M.A.; Costin, B.N.; Miles, M.F.

    2014-01-01

    Postgenomic studies of the function of genes and their role in disease have now become an area of intense study since efforts to define the raw sequence material of the genome have largely been completed. The use of whole-genome approaches such as microarray expression profiling and, more recently, RNA-sequence analysis of transcript abundance has allowed an unprecedented look at the workings of the genome. However, the accurate derivation of such high-throughput data and their analysis in terms of biological function has been critical to truly leveraging the postgenomic revolution. This chapter will describe an approach that focuses on the use of gene networks to both organize and interpret genomic expression data. Such networks, derived from statistical analysis of large genomic datasets and the application of multiple bioinformatics data resources, poten-tially allow the identification of key control elements for networks associated with human disease, and thus may lead to derivation of novel therapeutic approaches. However, as discussed in this chapter, the leveraging of such networks cannot occur without a thorough understanding of the technical and statistical factors influencing the derivation of genomic expression data. Thus, while the catch phrase may be “it's the network … stupid,” the understanding of factors extending from RNA isolation to genomic profiling technique, multivariate statistics, and bioinformatics are all critical to defining fully useful gene networks for study of complex biology. PMID:23195313

  20. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana

    PubMed Central

    Lee, Insuk; Ambaru, Bindu; Thakkar, Pranjali; Marcotte, Edward M.; Rhee, Seung Y.

    2010-01-01

    Plants are essential sources of food, fiber and renewable energy. Effective methods for manipulating plant traits have important agricultural and economic consequences. We introduce a rational approach for associating genes with plant traits by combined use of a genome-scale functional network and targeted reverse genetic screening. We present a probabilistic network (AraNet) of functional associations among 19,647 (73%) genes of the reference flowering plant Arabidopsis thaliana. AraNet associations have measured precision greater than literature-based protein interactions (21%) for 55% of genes, and are highly predictive for diverse biological pathways. Using AraNet, we found a 10-fold enrichment in identifying early seedling development genes. By interrogating network neighborhoods, we identify At1g80710 (now Drought sensitive 1; Drs1) and At3g05090 (now Lateral root stimulator 1; Lrs1) as novel regulators of drought sensitivity and lateral root development, respectively. AraNet (http://www.functionalnet.org/aranet/) provides a global resource for plant gene function identification and genetic dissection of plant traits. PMID:20118918

  1. Multiple Yeast Genes, Including Paf1 Complex Genes, Affect Telomere Length via Telomerase RNA Abundance▿ †

    PubMed Central

    Mozdy, Amy D.; Podell, Elaine R.; Cech, Thomas R.

    2008-01-01

    Twofold reductions in telomerase RNA levels cause telomere shortening in both humans and the yeast Saccharomyces cerevisiae. To test whether multiple genes that affect telomere length act by modulating telomerase RNA abundance, we used real-time reverse transcription-PCR to screen S. cerevisiae deletion strains reported to maintain shorter or longer telomeres to determine the levels of their telomerase RNA (TLC1) abundance. Of 290 strains screened, 5 had increased TLC1 levels; 4 of these maintained longer telomeres. Twenty strains had decreased TLC1 levels; 18 of these are known to maintain shorter telomeres. Four strains with decreased TLC1 RNA levels contained deletions of subunits of Paf1C (polymerase II-associated factor complex). While Paf1C had been implicated in the transcription of both polyadenylated and nonpolyadenylated RNAs, Paf1C had not been associated previously with the noncoding telomerase RNA. In Paf1C mutant strains, TLC1 overexpression partially rescues telomere length and cell growth defects, suggesting that telomerase RNA is a critical direct or indirect Paf1C target. Other factors newly identified as affecting TLC1 RNA levels include cyclin-dependent kinase, the mediator complex, protein phosphatase 2A, and ribosomal proteins L13B and S16A. This report establishes that a subset of telomere length genes act by modulating telomerase RNA abundance. PMID:18411302

  2. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  3. Predicting Gene Structures from Multiple RT-PCR Tests

    NASA Astrophysics Data System (ADS)

    Kováč, Jakub; Vinař, Tomáš; Brejová, Broňa

    It has been demonstrated that the use of additional information such as ESTs and protein homology can significantly improve accuracy of gene prediction. However, many sources of external information are still being omitted from consideration. Here, we investigate the use of product lengths from RT-PCR experiments in gene finding. We present hardness results and practical algorithms for several variants of the problem and apply our methods to a real RT-PCR data set in the Drosophila genome. We conclude that the use of RT-PCR data can improve the sensitivity of gene prediction and locate novel splicing variants.

  4. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.

    PubMed

    Zhang, Shao-Wu; Shao, Dong-Dong; Zhang, Song-Yao; Wang, Yi-Bin

    2014-06-01

    The identification of disease genes is very important not only to provide greater understanding of gene function and cellular mechanisms which drive human disease, but also to enhance human disease diagnosis and treatment. Recently, high-throughput techniques have been applied to detect dozens or even hundreds of candidate genes. However, experimental approaches to validate the many candidates are usually time-consuming, tedious and expensive, and sometimes lack reproducibility. Therefore, numerous theoretical and computational methods (e.g. network-based approaches) have been developed to prioritize candidate disease genes. Many network-based approaches implicitly utilize the observation that genes causing the same or similar diseases tend to correlate with each other in gene-protein relationship networks. Of these network approaches, the random walk with restart algorithm (RWR) is considered to be a state-of-the-art approach. To further improve the performance of RWR, we propose a novel method named ESFSC to identify disease-related genes, by enlarging the seed set according to the centrality of disease genes in a network and fusing information of the protein-protein interaction (PPI) network topological similarity and the gene expression correlation. The ESFSC algorithm restarts at all of the nodes in the seed set consisting of the known disease genes and their k-nearest neighbor nodes, then walks in the global network separately guided by the similarity transition matrix constructed with PPI network topological similarity properties and the correlational transition matrix constructed with the gene expression profiles. As a result, all the genes in the network are ranked by weighted fusing the above results of the RWR guided by two types of transition matrices. Comprehensive simulation results of the 10 diseases with 97 known disease genes collected from the Online Mendelian Inheritance in Man (OMIM) database show that ESFSC outperforms existing methods for

  5. Evolution of a core gene network for skeletogenesis in chordates.

    PubMed

    Hecht, Jochen; Stricker, Sigmar; Wiecha, Ulrike; Stiege, Asita; Panopoulou, Georgia; Podsiadlowski, Lars; Poustka, Albert J; Dieterich, Christoph; Ehrich, Siegfried; Suvorova, Julia; Mundlos, Stefan; Seitz, Volkhard

    2008-03-21

    The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1-3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and

  6. Evolution of a Core Gene Network for Skeletogenesis in Chordates

    PubMed Central

    Hecht, Jochen; Panopoulou, Georgia; Podsiadlowski, Lars; Poustka, Albert J.; Dieterich, Christoph; Ehrich, Siegfried; Suvorova, Julia; Mundlos, Stefan; Seitz, Volkhard

    2008-01-01

    The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1–3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and

  7. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm.

    PubMed

    Nadadur, Rangarajan D; Broman, Michael T; Boukens, Bastiaan; Mazurek, Stefan R; Yang, Xinan; van den Boogaard, Malou; Bekeny, Jenna; Gadek, Margaret; Ward, Tarsha; Zhang, Min; Qiao, Yun; Martin, James F; Seidman, Christine E; Seidman, Jon; Christoffels, Vincent; Efimov, Igor R; McNally, Elizabeth M; Weber, Christopher R; Moskowitz, Ivan P

    2016-08-31

    Cardiac rhythm is extremely robust, generating 2 billion contraction cycles during the average human life span. Transcriptional control of cardiac rhythm is poorly understood. We found that removal of the transcription factor gene Tbx5 from the adult mouse caused primary spontaneous and sustained atrial fibrillation (AF). Atrial cardiomyocytes from the Tbx5-mutant mice exhibited action potential abnormalities, including spontaneous depolarizations, which were rescued by chelating free calcium. We identified a multitiered transcriptional network that linked seven previously defined AF risk loci: TBX5 directly activated PITX2, and TBX5 and PITX2 antagonistically regulated membrane effector genes Scn5a, Gja1, Ryr2, Dsp, and Atp2a2 In addition, reduced Tbx5 dose by adult-specific haploinsufficiency caused decreased target gene expression, myocardial automaticity, and AF inducibility, which were all rescued by Pitx2 haploinsufficiency in mice. These results defined a transcriptional architecture for atrial rhythm control organized as an incoherent feed-forward loop, driven by TBX5 and modulated by PITX2. TBX5/PITX2 interplay provides tight control of atrial rhythm effector gene expression, and perturbation of the co-regulated network caused AF susceptibility. This work provides a model for the molecular mechanisms underpinning the genetic implication of multiple AF genome-wide association studies loci and will contribute to future efforts to stratify patients for AF risk by genotype. PMID:27582060

  8. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    PubMed

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  9. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence

    PubMed Central

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case. PMID:27298752

  10. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    PubMed

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  11. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes.

    PubMed

    Li, Bing; Yang, Ying; Ma, Liping; Ju, Feng; Guo, Feng; Tiedje, James M; Zhang, Tong

    2015-11-01

    A metagenomic approach and network analysis was used to investigate the wide-spectrum profiles of antibiotic resistance genes (ARGs) and their co-occurrence patterns in 50 samples from 10 typical environments. In total, 260 ARG subtypes belonging to 18 ARG types were detected with an abundance range of 5.4 × 10(-6)-2.2 × 10(-1) copy of ARG per copy of 16S-rRNA gene. The trend of the total ARG abundances in environments matched well with the levels of anthropogenic impacts on these environments. From the less impacted environments to the seriously impacted environments, the total ARG abundances increased up to three orders of magnitude, that is, from 3.2 × 10(-3) to 3.1 × 10(0) copy of ARG per copy of 16S-rRNA gene. The abundant ARGs were associated with aminoglycoside, bacitracin, β-lactam, chloramphenicol, macrolide-lincosamide-streptogramin, quinolone, sulphonamide and tetracycline, in agreement with the antibiotics extensively used in human medicine or veterinary medicine/promoters. The widespread occurrences and abundance variation trend of vancomycin resistance genes in different environments might imply the spread of vancomycin resistance genes because of the selective pressure resulting from vancomycin use. The simultaneous enrichment of 12 ARG types in adult chicken faeces suggests the coselection of multiple ARGs in this production system. Non-metric multidimensional scaling analysis revealed that samples belonging to the same environment generally possessed similar ARG compositions. Based on the co-occurrence pattern revealed by network analysis, tetM and aminoglycoside resistance protein, the hubs of the ARG network, are proposed to be indicators to quantitatively estimate the abundance of 23 other co-occurring ARG subtypes by power functions.

  12. Reverse engineering and analysis of genome-wide gene regulatory networks from gene expression profiles using high-performance computing.

    PubMed

    Belcastro, Vincenzo; Gregoretti, Francesco; Siciliano, Velia; Santoro, Michele; D'Angelo, Giovanni; Oliva, Gennaro; di Bernardo, Diego

    2012-01-01

    Regulation of gene expression is a carefully regulated phenomenon in the cell. “Reverse-engineering” algorithms try to reconstruct the regulatory interactions among genes from genome-scale measurements of gene expression profiles (microarrays). Mammalian cells express tens of thousands of genes; hence, hundreds of gene expression profiles are necessary in order to have acceptable statistical evidence of interactions between genes. As the number of profiles to be analyzed increases, so do computational costs and memory requirements. In this work, we designed and developed a parallel computing algorithm to reverse-engineer genome-scale gene regulatory networks from thousands of gene expression profiles. The algorithm is based on computing pairwise Mutual Information between each gene-pair. We successfully tested it to reverse engineer the Mus Musculus (mouse) gene regulatory network in liver from gene expression profiles collected from a public repository. A parallel hierarchical clustering algorithm was implemented to discover “communities” within the gene network. Network communities are enriched for genes involved in the same biological functions. The inferred network was used to identify two mitochondrial proteins.

  13. Single Cell Visualization of Yeast Gene Expression Shows Correlation of Epigenetic Switching between Multiple Heterochromatic Regions through Multiple Generations

    PubMed Central

    Mano, Yasunobu; Kobayashi, Tetsuya J.; Nakayama, Jun-ichi; Uchida, Hiroyuki; Oki, Masaya

    2013-01-01

    Differences in gene expression between individual cells can be mediated by epigenetic regulation; thus, methods that enable detailed analyses of single cells are crucial to understanding this phenomenon. In this study, genomic silencing regions of Saccharomyces cerevisiae that are subject to epigenetic regulation, including the HMR, HML, and telomere regions, were investigated using a newly developed single cell analysis method. This method uses fluorescently labeled proteins to track changes in gene expression over multiple generations of a single cell. Epigenetic control of gene expression differed depending on the specific silencing region at which the reporter gene was inserted. Correlations between gene expression at the HMR-left and HMR-right regions, as well as the HMR-right and HML-right regions, were observed in the single-cell level; however, no such correlations involving the telomere region were observed. Deletion of the histone acetyltransferase GCN5 gene from a yeast strain carrying a fluorescent reporter gene at the HMR-left region reduced the frequency of changes in gene expression over a generation. The results presented here suggest that epigenetic control within an individual cell is reversible and can be achieved via regulation of histone acetyltransferase activity. PMID:23843746

  14. Next generation communications satellites: Multiple access and network studies

    NASA Technical Reports Server (NTRS)

    Stern, T. E.; Schwartz, M.; Meadows, H. E.; Ahmadi, H. K.; Gadre, J. G.; Gopal, I. S.; Matsmo, K.

    1980-01-01

    Following an overview of issues involved in the choice of promising system architectures for efficient communication with multiple small inexpensive Earth stations serving hetergeneous user populations, performance evaluation via analysis and simulation for six SS/TDMA (satellite-switched/time-division multiple access) system architectures is discussed. These configurations are chosen to exemplify the essential alternatives available in system design. Although the performance evaluation analyses are of fairly general applicability, whenever possible they are considered in the context of NASA's 30/20 GHz studies. Packet switched systems are considered, with the assumption that only a part of transponder capacit is devoted to packets, the integration of circuit and packet switched traffic being reserved for further study. Three types of station access are distinguished: fixed (FA), demand (DA), and random access (RA). Similarly, switching in the satellite can be assigned on a fixed (FS) or demand (DS) basis, or replaced by a buffered store-and-forward system (SF) onboard the satellite. Since not all access/switching combinations are practical, six systems are analyzed in detail: three FS SYSTEMS, FA/FS, DA/ES, RA/FS; one DS system, DA/DS; and two SF systems, FA/SF, DA/SF. Results are presented primarily in terms of delay-throughput characteristics.

  15. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  16. Realization of tristability in a multiplicatively coupled dual-loop genetic network

    PubMed Central

    Huang, Bo; Xia, Yun; Liu, Feng; Wang, Wei

    2016-01-01

    Multistability is a crucial recurring theme in cell signaling. Multistability is attributed to the presence of positive feedback loops, but the general condition and essential mechanism for realizing multistability remain unclear. Here, we build a generic circuit model comprising two transcription factors and a microRNA, representing a kind of core architecture in gene regulatory networks. The circuit can be decomposed into two positive feedback loops (PFLs) or one PFL and one negative feedback loop (NFL), which are multiplicatively coupled. Bifurcation analyses of the model reveal that the circuit can achieve tristability through four kinds of bifurcation scenarios when parameter values are varied in a wide range. We formulate the general requirement for tristability in terms of logarithmic gain of the circuit. The parameter ranges for tristability and possible transition routes among steady states are determined by the combination of gain features of individual feedback loops. Coupling two PFLs with bistability or one NFL with a bistable PFL is most likely to generate tristability, but the underlying mechanisms are largely different. We also interpret published results and make testable predictions. This work sheds new light on interlinking feedback loops to realize tristability. The proposed theoretical framework can be of wide applicability. PMID:27378101

  17. Realization of tristability in a multiplicatively coupled dual-loop genetic network.

    PubMed

    Huang, Bo; Xia, Yun; Liu, Feng; Wang, Wei

    2016-01-01

    Multistability is a crucial recurring theme in cell signaling. Multistability is attributed to the presence of positive feedback loops, but the general condition and essential mechanism for realizing multistability remain unclear. Here, we build a generic circuit model comprising two transcription factors and a microRNA, representing a kind of core architecture in gene regulatory networks. The circuit can be decomposed into two positive feedback loops (PFLs) or one PFL and one negative feedback loop (NFL), which are multiplicatively coupled. Bifurcation analyses of the model reveal that the circuit can achieve tristability through four kinds of bifurcation scenarios when parameter values are varied in a wide range. We formulate the general requirement for tristability in terms of logarithmic gain of the circuit. The parameter ranges for tristability and possible transition routes among steady states are determined by the combination of gain features of individual feedback loops. Coupling two PFLs with bistability or one NFL with a bistable PFL is most likely to generate tristability, but the underlying mechanisms are largely different. We also interpret published results and make testable predictions. This work sheds new light on interlinking feedback loops to realize tristability. The proposed theoretical framework can be of wide applicability. PMID:27378101

  18. Four-path multiple ∞-shaped fiber protection mechanism for cable television networks

    NASA Astrophysics Data System (ADS)

    Shih, Fu-Hung; Lai, Jiunn-Ru; Chen, Wen-Ping; Wang, Luke K.

    2015-03-01

    Traditional cable television (CATV) network configuration is mainly a branch topology. When fibers break, there are always disconnections of CATV and Internet access. Meanwhile, network service providers usually cannot be instantly informed of network breakage; network problems are noticed only after the users call for services. Network breakage location detection and repair are, in general, costly and time-consuming. This paper proposes a new framework to protect CATV fiber optic networks, where a HUB with multiple optical protection switching (OPS) is constructed between the head end and the fiber nodes. The first layer ranging from the head end to the HUB forms a 1+1 protection path ring structure. The second layer ranging from the HUB to the fiber nodes forms multiple 1+1 protection path ring structures. The framework can form a four fiber optic path protection architecture with multiple ∞-shapes between the head end and the fiber nodes. When the CATV network system experiences a malfunction, such as fiber optic cable breakage or poor signal quality, OPS can immediately switch the fiber transmission path in order to maintain uninterrupted CATV network traffic. After simulation tests on fiber path switching time automatic protection switching, frame loss, packet jitter, latency, bit errors, and system traffic flow monitoring by manually switching OPS and pulling broken fiber optic cable, results show that the fiber path protection switching mechanism can react immediately, and test data results show that network traffic is unaffected, so the proposed framework can effectively enhance the survivability and quality of service of CATV network systems.

  19. Phylogeny of the caniform carnivora: evidence from multiple genes.

    PubMed

    Yu, Li; Zhang, Ya-ping

    2006-05-01

    The monophyletic group Caniformia in the order Carnivora currently comprises seven families whose relationships remain contentious. The phylogenetic positions of the two panda species within the Caniformia have also been evolutionary puzzles over the past decades, especially for Ailurus fulgens (the red panda). Here, new nuclear sequences from two introns of the beta-fibrinogen gene (beta-fibrinogen introns 4 and 7) and a complete mitochondrial (mt) gene (ND2) from 17 caniform representatives were explored for their utilities in resolving higher-level relationships in the Caniformia. In addition, two previously available nuclear (IRBP exon 1 and TTR intron 1) data sets were also combined and analyzed simultaneously with the newly obtained sequence data in this study. Combined analyses of four nuclear and one mt genes (4417 bp) recover a branching order in which almost all nodes were strongly supported. The present analyses provide evidence in favor of Ailurus fulgens as the closest taxon to the procyonid-mustelid (i.e., Musteloidea sensu stricto) clade, followed by pinnipeds (i.e., Otariidae and Phocidae), Ursidae (including Ailuropoda melanoleuca), and Canidae, the most basal lineage in the Caniformia. The potential utilities of different genes in the context of caniform phylogeny were also evaluated, with special attention to the previously unexplored beta-fibrinogen intron 4 and 7 genes.

  20. Quantitative assessment of gene expression network module-validation methods.

    PubMed

    Li, Bing; Zhang, Yingying; Yu, Yanan; Wang, Pengqian; Wang, Yongcheng; Wang, Zhong; Wang, Yongyan

    2015-01-01

    Validation of pluripotent modules in diverse networks holds enormous potential for systems biology and network pharmacology. An arising challenge is how to assess the accuracy of discovering all potential modules from multi-omic networks and validating their architectural characteristics based on innovative computational methods beyond function enrichment and biological validation. To display the framework progress in this domain, we systematically divided the existing Computational Validation Approaches based on Modular Architecture (CVAMA) into topology-based approaches (TBA) and statistics-based approaches (SBA). We compared the available module validation methods based on 11 gene expression datasets, and partially consistent results in the form of homogeneous models were obtained with each individual approach, whereas discrepant contradictory results were found between TBA and SBA. The TBA of the Zsummary value had a higher Validation Success Ratio (VSR) (51%) and a higher Fluctuation Ratio (FR) (80.92%), whereas the SBA of the approximately unbiased (AU) p-value had a lower VSR (12.3%) and a lower FR (45.84%). The Gray area simulated study revealed a consistent result for these two models and indicated a lower Variation Ratio (VR) (8.10%) of TBA at 6 simulated levels. Despite facing many novel challenges and evidence limitations, CVAMA may offer novel insights into modular networks. PMID:26470848

  1. Novel genes dramatically alter regulatory network topology in amphioxus

    PubMed Central

    Zhang, Qing; Zmasek, Christian M; Dishaw, Larry J; Mueller, M Gail; Ye, Yuzhen; Litman, Gary W; Godzik, Adam

    2008-01-01

    Background Regulation in protein networks often utilizes specialized domains that 'join' (or 'connect') the network through specific protein-protein interactions. The innate immune system, which provides a first and, in many species, the only line of defense against microbial and viral pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently sequenced, occupies a unique position in the evolution of innate immunity, having diverged within the chordate lineage prior to the emergence of the adaptive immune system in vertebrates. Results The repertoire of several families of innate immunity proteins is expanded in amphioxus compared to both vertebrates and protostome invertebrates. Part of this expansion consists of genes encoding proteins with unusual domain architectures, which often contain both upstream receptor and downstream activator domains, suggesting a potential role for direct connections (shortcuts) that bypass usual signal transduction pathways. Conclusion Domain rearrangements can potentially alter the topology of protein-protein interaction (and regulatory) networks. The extent of such arrangements in the innate immune network of amphioxus suggests that domain shuffling, which is an important mechanism in the evolution of multidomain proteins, has also shaped the development of immune systems. PMID:18680598

  2. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    PubMed

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  3. Self-organising continuous attractor networks with multiple activity packets, and the representation of space.

    PubMed

    Stringer, S M; Rolls, E T; Trappenberg, T P

    2004-01-01

    'Continuous attractor' neural networks can maintain a localised packet of neuronal activity representing the current state of an agent in a continuous space without external sensory input. In applications such as the representation of head direction or location in the environment, only one packet of activity is needed. For some spatial computations a number of different locations, each with its own features, must be held in memory. We extend previous approaches to continuous attractor networks (in which one packet of activity is maintained active) by showing that a single continuous attractor network can maintain multiple packets of activity simultaneously, if each packet is in a different state space or map. We also show how such a network could by learning self-organise to enable the packets in each space to be moved continuously in that space by idiothetic (motion) inputs. We show how such multi-packet continuous attractor networks could be used to maintain different types of feature (such as form vs colour) simultaneously active in the correct location in a spatial representation. We also show how high-order synapses can improve the performance of these networks, and how the location of a packet could be read by motor networks. The multiple packet continuous attractor networks described here may be used for spatial representations in brain areas such as the parietal cortex and hippocampus.

  4. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  5. Augmented Lagrange Hopfield Network for Economic Dispatch with Multiple Fuel Options

    NASA Astrophysics Data System (ADS)

    Dieu, Vo Ngoc; Ongsakul, Weerakorn; Polprasert, Jirawadee

    2011-06-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem with multiple fuel options. The proposed ALHN method is a continuous Hopfield neural network with its energy function based on augmented Lagrangian function. The advantages of ALHN over the conventional Hopfield neural network are easier use, more general applications, faster convergence, better optimal solution, and larger scale of problem implementation. The method solves the problem by directly searching the most suitable fuel among the available fuels of each unit and finding the optimal solution for the problem based on minimization of the energy function of the continuous Hopfield neural network. The proposed method is tested on systems up to 100 units and the obtained results are compared to those from other methods in the literature. The results have shown that the proposed method is efficient for solving the ED problem with multiple fuel options and favorable for implementation in large scale problems.

  6. Augmented lagrange hopfield network for economic dispatch with multiple fuel options

    SciTech Connect

    Dieu, Vo Ngoc; Ongsakul, Weerakorn; Polprasert, Jirawadee

    2011-06-20

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem with multiple fuel options. The proposed ALHN method is a continuous Hopfield neural network with its energy function based on augmented Lagrangian function. The advantages of ALHN over the conventional Hopfield neural network are easier use, more general applications, faster convergence, better optimal solution, and larger scale of problem implementation. The method solves the problem by directly searching the most suitable fuel among the available fuels of each unit and finding the optimal solution for the problem based on minimization of the energy function of the continuous Hopfield neural network. The proposed method is tested on systems up to 100 units and the obtained results are compared to those from other methods in the literature. The results have shown that the proposed method is efficient for solving the ED problem with multiple fuel options and favorable for implementation in large scale problems.

  7. Network meta-analysis for comparing treatment effects of multiple interventions: an introduction.

    PubMed

    Catalá-López, Ferrán; Tobías, Aurelio; Cameron, Chris; Moher, David; Hutton, Brian

    2014-11-01

    Systematic reviews and meta-analyses of randomized trials have long been important synthesis tools for guiding evidence-based medicine. More recently, network meta-analyses, an extension of traditional meta-analyses enabling the comparison of multiple interventions, use new statistical methods to incorporate clinical evidence from both direct and indirect treatment comparisons in a network of treatments and associated trials. There is a need to provide education to ensure that core methodological considerations underlying network meta-analyses are well understood by readers and researchers to maximize their ability to appropriately interpret findings and appraise validity. Network meta-analyses are highly informative for assessing the comparative effects of multiple competing interventions in clinical practice and are a valuable tool for health technology assessment and comparative effectiveness research.

  8. Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Shoue, Douglas A; Schulz, Robert A

    2012-01-01

    Hematopoiesis occurs in two phases in Drosophila, with the first completed during embryogenesis and the second accomplished during larval development. The lymph gland serves as the venue for the final hematopoietic program, with this larval tissue well-studied as to its cellular organization and genetic regulation. While the medullary zone contains stem-like hematopoietic progenitors, the posterior signaling center (PSC) functions as a niche microenvironment essential for controlling the decision between progenitor maintenance versus cellular differentiation. In this report, we utilize a PSC-specific GAL4 driver and UAS-gene RNAi strains, to selectively knockdown individual gene functions in PSC cells. We assessed the effect of abrogating the function of 820 genes as to their requirement for niche cell production and differentiation. 100 genes were shown to be essential for normal niche development, with various loci placed into sub-groups based on the functions of their encoded protein products and known genetic interactions. For members of three of these groups, we characterized loss- and gain-of-function phenotypes. Gene function knockdown of members of the BAP chromatin-remodeling complex resulted in niche cells that do not express the hedgehog (hh) gene and fail to differentiate filopodia believed important for Hh signaling from the niche to progenitors. Abrogating gene function of various members of the insulin-like growth factor and TOR signaling pathways resulted in anomalous PSC cell production, leading to a defective niche organization. Further analysis of the Pten, TSC1, and TSC2 tumor suppressor genes demonstrated their loss-of-function condition resulted in severely altered blood cell homeostasis, including the abundant production of lamellocytes, specialized hemocytes involved in innate immune responses. Together, this cell-specific RNAi knockdown survey and mutant phenotype analyses identified multiple genes and their regulatory networks required for

  9. Data and programs in support of network analysis of genes and their association with diseases.

    PubMed

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-01

    The network-based approaches that were employed in order to depict the relationships between human genetic diseases and their associated genes are described. Towards this direction, monopartite disease-disease and gene-gene networks were constructed from bipartite gene-disease association networks. The latter were created by collecting and integrating data from three diverse resources, each one with different content, covering from rare monogenic disorders to common complex diseases. Moreover, topological and clustering graph analyses were performed. The methodology and the programs presented in this article are related to the research article entitled "Network analysis of genes and their association with diseases" [1]. PMID:27508260

  10. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data.

    PubMed

    Liu, Zhi-Ping

    2015-02-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented.

  11. Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules.

    PubMed

    Lawrence, Patrick G; Patil, Pritam S; Leipzig, Nic D; Lapitsky, Yakov

    2016-02-01

    Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants).

  12. Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules.

    PubMed

    Lawrence, Patrick G; Patil, Pritam S; Leipzig, Nic D; Lapitsky, Yakov

    2016-02-01

    Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants). PMID:26811936

  13. Quantitative and logic modelling of gene and molecular networks

    PubMed Central

    Le Novère, Nicolas

    2015-01-01

    Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms. PMID:25645874

  14. A novel all-optical label processing for OPS networks based on multiple OOC sequences from multiple-groups OOC

    NASA Astrophysics Data System (ADS)

    Qiu, Kun; Zhang, Chongfu; Ling, Yun; Wang, Yibo

    2007-11-01

    This paper proposes an all-optical label processing scheme using multiple optical orthogonal codes sequences (MOOCS) for optical packet switching (OPS) (MOOCS-OPS) networks, for the first time to the best of our knowledge. In this scheme, the multiple optical orthogonal codes (MOOC) from multiple-groups optical orthogonal codes (MGOOC) are permuted and combined to obtain the MOOCS for the optical labels, which are used to effectively enlarge the capacity of available optical codes for optical labels. The optical label processing (OLP) schemes are reviewed and analyzed, the principles of MOOCS-based optical labels for OPS networks are given, and analyzed, then the MOOCS-OPS topology and the key realization units of the MOOCS-based optical label packets are studied in detail, respectively. The performances of this novel all-optical label processing technology are analyzed, the corresponding simulation is performed. These analysis and results show that the proposed scheme can overcome the lack of available optical orthogonal codes (OOC)-based optical labels due to the limited number of single OOC for optical label with the short code length, and indicate that the MOOCS-OPS scheme is feasible.

  15. Adaptive Multi-Node Multiple Input and Multiple Output (MIMO) Transmission for Mobile Wireless Multimedia Sensor Networks

    PubMed Central

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-01-01

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase. PMID:24152920

  16. Adaptive multi-node multiple input and multiple output (MIMO) transmission for mobile wireless multimedia sensor networks.

    PubMed

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-10-02

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.

  17. Evolutionary Design of Gene Networks: Forced Evolution by Genomic Parasites

    PubMed Central

    Spirov, A. V.; Zagriychuk, E. A.; Holloway, D. M.

    2014-01-01

    The co-evolution of species with their genomic parasites (transposons) is thought to be one of the primary ways of rewiring gene regulatory networks (GRNs). We develop a framework for conducting evolutionary computations (EC) using the transposon mechanism. We find that the selective pressure of transposons can speed evolutionary searches for solutions and lead to outgrowth of GRNs (through co-option of new genes to acquire insensitivity to the attacking transposons). We test the approach by finding GRNs which can solve a fundamental problem in developmental biology: how GRNs in early embryo development can robustly read maternal signaling gradients, despite continued attacks on the genome by transposons. We observed co-evolutionary oscillations in the abundance of particular GRNs and their transposons, reminiscent of predator-prey or host-parasite dynamics. PMID:25558118

  18. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences.

    PubMed

    Zheng, Xiaoyan; Cai, Danying; Potter, Daniel; Postman, Joseph; Liu, Jing; Teng, Yuanwen

    2014-11-01

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence datasets. Phylogenetic trees based on both cpDNA and nuclear LFY2int2-N (LN) data resulted in poor resolution, especially, only five primary species were monophyletic in the LN tree. A phylogenetic network of LN suggested that reticulation caused by hybridization is one of the major evolutionary processes for Pyrus species. Polytomies of the gene trees and star-like structure of cpDNA networks suggested rapid radiation is another major evolutionary process, especially for the occidental species. Pyrus calleryana and P. regelii were the earliest diverged Pyrus species. Two North African species, P. cordata, P. spinosa and P. betulaefolia were descendent of primitive stock Pyrus species and still share some common molecular characters. Southwestern China, where a large number of P. pashia populations are found, is probably the most important diversification center of Pyrus. More accessions and nuclear genes are needed for further understanding the evolutionary histories of Pyrus.

  19. Analysis of a distributed algorithm to determine multiple routes with path diversity in ad hoc networks.

    SciTech Connect

    Ghosal, Dipak; Mueller, Stephen Ng

    2005-04-01

    With multipath routing in mobile ad hoc networks (MANETs), a source can establish multiple routes to a destination for routing data. In MANETs, mulitpath routing can be used to provide route resilience, smaller end-to-end delay, and better load balancing. However, when the multiple paths are close together, transmissions of different paths may interfere with each other, causing degradation in performance. Besides interference, the physical diversity of paths also improves fault tolerance. We present a purely distributed multipath protocol based on the AODV-Multipath (AODVM) protocol called AODVM with Path Diversity (AODVM/PD) that finds multiple paths with a desired degree of correlation between paths specified as an input parameter to the algorithm. We demonstrate through detailed simulation analysis that multiple paths with low degree of correlation determined by AODVM/PD provides both smaller end-to-end delay than AODVM in networks with low mobility and better route resilience in the presence of correlated node failures.

  20. Delay-induced multiple stochastic resonances on scale-free neuronal networks.

    PubMed

    Wang, Qingyun; Perc, Matjaz; Duan, Zhisheng; Chen, Guanrong

    2009-06-01

    We study the effects of periodic subthreshold pacemaker activity and time-delayed coupling on stochastic resonance over scale-free neuronal networks. As the two extreme options, we introduce the pacemaker, respectively, to the neuron with the highest degree and to one of the neurons with the lowest degree within the network, but we also consider the case when all neurons are exposed to the periodic forcing. In the absence of delay, we show that an intermediate intensity of noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble, irrespective to its placing, thus providing evidences for stochastic resonance on the scale-free neuronal networks. Interestingly thereby, if the forcing in form of a periodic pulse train is introduced to all neurons forming the network, the stochastic resonance decreases as compared to the case when only a single neuron is paced. Moreover, we show that finite delays in coupling can significantly affect the stochastic resonance on scale-free neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances independently of the placing of the pacemaker, but they can also altogether destroy stochastic resonance. Delay-induced multiple stochastic resonances manifest as well-expressed maxima of the correlation measure, appearing at every multiple of the pacemaker period. We argue that fine-tuned delays and locally active pacemakers are vital for assuring optimal conditions for stochastic resonance on complex neuronal networks.

  1. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    PubMed Central

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  2. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks.

    PubMed

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model's scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  3. Relative stability of network states in Boolean network models of gene regulation in development.

    PubMed

    Zhou, Joseph Xu; Samal, Areejit; d'Hérouël, Aymeric Fouquier; Price, Nathan D; Huang, Sui

    2016-01-01

    Progress in cell type reprogramming has revived the interest in Waddington's concept of the epigenetic landscape. Recently researchers developed the quasi-potential theory to represent the Waddington's landscape. The Quasi-potential U(x), derived from interactions in the gene regulatory network (GRN) of a cell, quantifies the relative stability of network states, which determine the effort required for state transitions in a multi-stable dynamical system. However, quasi-potential landscapes, originally developed for continuous systems, are not suitable for discrete-valued networks which are important tools to study complex systems. In this paper, we provide a framework to quantify the landscape for discrete Boolean networks (BNs). We apply our framework to study pancreas cell differentiation where an ensemble of BN models is considered based on the structure of a minimal GRN for pancreas development. We impose biologically motivated structural constraints (corresponding to specific type of Boolean functions) and dynamical constraints (corresponding to stable attractor states) to limit the space of BN models for pancreas development. In addition, we enforce a novel functional constraint corresponding to the relative ordering of attractor states in BN models to restrict the space of BN models to the biological relevant class. We find that BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics of pancreas cell differentiation. This framework can also determine the genes' influence on cell state transitions, and thus can facilitate the rational design of cell reprogramming protocols.

  4. Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls

    PubMed Central

    Baranzini, Sergio E.; Khankhanian, Pouya; Patsopoulos, Nikolaos A.; Li, Michael; Stankovich, Jim; Cotsapas, Chris; Søndergaard, Helle Bach; Ban, Maria; Barizzone, Nadia; Bergamaschi, Laura; Booth, David; Buck, Dorothea; Cavalla, Paola; Celius, Elisabeth G.; Comabella, Manuel; Comi, Giancarlo; Compston, Alastair; Cournu-Rebeix, Isabelle; D’alfonso, Sandra; Damotte, Vincent; Din, Lennox; Dubois, Bénédicte; Elovaara, Irina; Esposito, Federica; Fontaine, Bertrand; Franke, Andre; Goris, An; Gourraud, Pierre-Antoine; Graetz, Christiane; Guerini, Franca R.; Guillot-Noel, Léna; Hafler, David; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Harbo, Hanne F.; Hemmer, Bernhard; Hillert, Jan; Kemppinen, Anu; Kockum, Ingrid; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Leone, Maurizio; Lill, Christina M.; Macciardi, Fabio; Martin, Roland; Martinelli, Vittorio; Martinelli-Boneschi, Filippo; McCauley, Jacob L.; Myhr, Kjell-Morten; Naldi, Paola; Olsson, Tomas; Oturai, Annette; Pericak-Vance, Margaret A.; Perla, Franco; Reunanen, Mauri; Saarela, Janna; Saker-Delye, Safa; Salvetti, Marco; Sellebjerg, Finn; Sørensen, Per Soelberg; Spurkland, Anne; Stewart, Graeme; Taylor, Bruce; Tienari, Pentti; Winkelmann, Juliane; Zipp, Frauke; Ivinson, Adrian J.; Haines, Jonathan L.; Sawcer, Stephen; DeJager, Philip; Hauser, Stephen L.; Oksenberg, Jorge R.

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits. PMID:23731539

  5. Developing Pedagogical Tools to Improve Teaching Multiple Models of the Gene in High School

    ERIC Educational Resources Information Center

    Auckaraaree, Nantaya

    2013-01-01

    Multiple models of the gene are used to explore genetic phenomena in scientific practices and in the classroom. In genetics curricula, the classical and molecular models are presented in disconnected domains. Research demonstrates that, without explicit connections, students have difficulty developing an understanding of the gene that spans…

  6. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data.

    PubMed

    Bourdakou, Marilena M; Athanasiadis, Emmanouil I; Spyrou, George M

    2016-01-01

    Systemic approaches are essential in the discovery of disease-specific genes, offering a different perspective and new tools on the analysis of several types of molecular relationships, such as gene co-expression or protein-protein interactions. However, due to lack of experimental information, this analysis is not fully applicable. The aim of this study is to reveal the multi-potent contribution of statistical network inference methods in highlighting significant genes and interactions. We have investigated the ability of statistical co-expression networks to highlight and prioritize genes for breast cancer subtypes and stages in terms of: (i) classification efficiency, (ii) gene network pattern conservation, (iii) indication of involved molecular mechanisms and (iv) systems level momentum to drug repurposing pipelines. We have found that statistical network inference methods are advantageous in gene prioritization, are capable to contribute to meaningful network signature discovery, give insights regarding the disease-related mechanisms and boost drug discovery pipelines from a systems point of view. PMID:26892392

  7. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data

    PubMed Central

    Bourdakou, Marilena M.; Athanasiadis, Emmanouil I.; Spyrou, George M.

    2016-01-01

    Systemic approaches are essential in the discovery of disease-specific genes, offering a different perspective and new tools on the analysis of several types of molecular relationships, such as gene co-expression or protein-protein interactions. However, due to lack of experimental information, this analysis is not fully applicable. The aim of this study is to reveal the multi-potent contribution of statistical network inference methods in highlighting significant genes and interactions. We have investigated the ability of statistical co-expression networks to highlight and prioritize genes for breast cancer subtypes and stages in terms of: (i) classification efficiency, (ii) gene network pattern conservation, (iii) indication of involved molecular mechanisms and (iv) systems level momentum to drug repurposing pipelines. We have found that statistical network inference methods are advantageous in gene prioritization, are capable to contribute to meaningful network signature discovery, give insights regarding the disease-related mechanisms and boost drug discovery pipelines from a systems point of view. PMID:26892392

  8. Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis.

    PubMed

    Kay, P; Groszmann, M; Ross, J J; Parish, R W; Swain, S M

    2013-01-01

    Disrupting pollen tube growth and fertilization in Arabidopsis plants leads to reduced seed set and silique size, providing a powerful genetic system with which to identify genes with important roles in plant fertility. A transgenic Arabidopsis line with reduced pollen tube growth, seed set and silique growth was used as the progenitor in a genetic screen to isolate suppressors with increased seed set and silique size. This screen generated a new allele of INDEHISCENT (IND), a gene originally identified by its role in valve margin development and silique dehiscence (pod shatter). IND forms part of a regulatory network that involves several other transcriptional regulators and involves the plant hormones GA and auxin. Using GA and auxin mutants that alter various aspects of reproductive development, we have identified novel roles for IND, its paralogue HECATE3, and the MADS box proteins SHATTERPROOF1/2 in flower and fruit development. These results suggest that modified forms of the regulatory network originally described for the Arabidopsis valve margin, which include these genes and/or their recently evolved paralogs, function in multiple components of GA/auxin-regulated reproductive development. PMID:23126654

  9. In vivo imaging of clock gene expression in multiple tissues of freely moving mice.

    PubMed

    Hamada, Toshiyuki; Sutherland, Kenneth; Ishikawa, Masayori; Miyamoto, Naoki; Honma, Sato; Shirato, Hiroki; Honma, Ken-Ichi

    2016-01-01

    Clock genes are expressed throughout the body, although how they oscillate in unrestrained animals is not known. Here, we show an in vivo imaging technique that enables long-term simultaneous imaging of multiple tissues. We use dual-focal 3D tracking and signal-intensity calibration to follow gene expression in a target area. We measure circadian rhythms of clock genes in the olfactory bulb, right and left ears and cortices, and the skin. In addition, the kinetic relationship between gene expression and physiological responses to experimental cues is monitored. Under stable conditions gene expression is in phase in all tissues. In response to a long-duration light pulse, the olfactory bulb shifts faster than other tissues. In Cry1(-/-) Cry2(-/-) arrhythmic mice circadian oscillation is absent in all tissues. Thus, our system successfully tracks circadian rhythms in clock genes in multiple tissues in unrestrained mice. PMID:27285820

  10. Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations.

    PubMed

    Ó'Maoiléidigh, Diarmuid S; Thomson, Bennett; Raganelli, Andrea; Wuest, Samuel E; Ryan, Patrick T; Kwaśniewska, Kamila; Carles, Cristel C; Graciet, Emmanuelle; Wellmer, Frank

    2015-07-01

    Understanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene. Here, we tested experimental strategies for gene