Sample records for multiple global climate

  1. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Treesearch

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  2. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  3. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  4. A Robust, Scalable Framework for Conducting Climate Change Susceptibility Analyses

    DTIC Science & Technology

    2014-05-01

    for identifying areas of heightened risk from varying forms of climate forcings is needed. Based on global climate model projections, deviations from...framework provides an opportunity to easily combine multiple data sources — that are often freely available from many federal, state, and global ...Climate change and extreme weather events: implications for food production, plant diseases, and pests. Global Change and Human Health 2:90–104. ERDC/EL

  5. Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    PubMed Central

    Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125

  6. Global climate change adaptation priorities for biodiversity and food security.

    PubMed

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  7. Determining the effect of key climate drivers on global hydropower production

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Ng, J. Y.; Lee, D.; Block, P. J.

    2017-12-01

    Accounting for about 17% of total global electrical power production, hydropower is arguably the world's main renewable energy source and a key asset to meet Paris climate agreements. A key component of hydropower production is water availability, which depends on both precipitation and multiple drivers of climate variability acting at different spatial and temporal scales. To understand how these drivers impact global hydropower production, we study the relation between four patterns of ocean-atmosphere climate variability (i.e., El Niño Southern Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and Atlantic Multidecadal Oscillation) and monthly time series of electrical power production for over 1,500 hydropower reservoirs—obtained via simulation with a high-fidelity dam model forced with 20th century climate conditions. Notably significant relationships between electrical power productions and climate variability are found in many climate sensitive regions globally, including North and South America, East Asia, West Africa, and Europe. Coupled interactions from multiple, simultaneous climate drivers are also evaluated. Finally, we highlight the importance of using these climate drivers as an additional source of information within reservoir operating rules where the skillful predictability of inflow exists.

  8. Assessing NARCCAP climate model effects using spatial confidence regions.

    PubMed

    French, Joshua P; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference.

  9. Interacting effects of multiple stresses on growth and physiological processes in northern forest trees

    Treesearch

    Judson G. Isebrands; Richard E. Dickson; Joanne Rebbeck; David F. Karnosky

    2000-01-01

    Global climate chagnge is a complex and controversial subject, both technically and politically. Recently, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations concluded that "the balance of evidence suggests a discernible human influence on global climate" and that "further accumulation of greenhouse gases will commit the earth...

  10. Assessing NARCCAP climate model effects using spatial confidence regions

    PubMed Central

    French, Joshua P.; McGinnis, Seth; Schwartzman, Armin

    2017-01-01

    We assess similarities and differences between model effects for the North American Regional Climate Change Assessment Program (NARCCAP) climate models using varying classes of linear regression models. Specifically, we consider how the average temperature effect differs for the various global and regional climate model combinations, including assessment of possible interaction between the effects of global and regional climate models. We use both pointwise and simultaneous inference procedures to identify regions where global and regional climate model effects differ. We also show conclusively that results from pointwise inference are misleading, and that accounting for multiple comparisons is important for making proper inference. PMID:28936474

  11. Climate change; Confronting the global experiment

    Treesearch

    Constance I. Millar

    2006-01-01

    Earth’s natural climate system is characterized by continually changing climates, with climate regimes that oscillate quasi-cyclically at multiple and nested scales from annual to multi-millennial, and commonly change abruptly. Under naturally changing climates, plant species track changes at all scales in individualistic manner, with plant communities...

  12. Global climate change and children's health: threats and strategies for prevention.

    PubMed

    Sheffield, Perry E; Landrigan, Philip J

    2011-03-01

    Global climate change will have multiple effects on human health. Vulnerable populations-children, the elderly, and the poor-will be disproportionately affected. We reviewed projected impacts of climate change on children's health, the pathways involved in these effects, and prevention strategies. We assessed primary studies, review articles, and organizational reports. Climate change is increasing the global burden of disease and in the year 2000 was responsible for > 150,000 deaths worldwide. Of this disease burden, 88% fell upon children. Documented health effects include changing ranges of vector-borne diseases such as malaria and dengue; increased diarrheal and respiratory disease; increased morbidity and mortality from extreme weather; changed exposures to toxic chemicals; worsened poverty; food and physical insecurity; and threats to human habitation. Heat-related health effects for which research is emerging include diminished school performance, increased rates of pregnancy complications, and renal effects. Stark variation in these outcomes is evident by geographic region and socioeconomic status, and these impacts will exacerbate health disparities. Prevention strategies to reduce health impacts of climate change include reduction of greenhouse gas emissions and adaptation through multiple public health interventions. Further quantification of the effects of climate change on children's health is needed globally and also at regional and local levels through enhanced monitoring of children's environmental health and by tracking selected indicators. Climate change preparedness strategies need to be incorporated into public health programs.

  13. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  14. A Global Framework for Monitoring Phenological Responses to Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, whichmore » we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.« less

  15. Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.; Stoll, Danielle K.

    2010-01-01

    Numerical models of the global climate system are the primary tools used to understand and project climate disruptions in the form of future global warming. The Pliocene has been identified as the closest, albeit imperfect, analog to climate conditions expected for the end of this century, making an independent data set of Pliocene conditions necessary for ground truthing model results. Because most climate model output is produced in the form ofmean annual conditions, we present a derivative of the USGS PRISM3 Global Climate Reconstruction which integrates multiple proxies of sea surface temperature (SST) into single surface temperature anomalies. We analyze temperature estimates from faunal and floral assemblage data,Mg/Ca values and alkenone unsaturation indices to arrive at a single mean annual SST anomaly (Pliocene minus modern) best describing each PRISM site, understanding that multiple proxies should not necessarily show concordance. The power of themultiple proxy approach lies within its diversity, as no two proxies measure the same environmental variable. This data set can be used to verify climate model output, to serve as a starting point for model inter-comparisons, and for quantifying uncertainty in Pliocene model prediction in perturbed physics ensembles.

  16. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  17. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  18. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    PubMed

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a heterogeneous tropical forest landscape: (i) rehabilitation of degraded forests aiming to provide global climate regulation and habitat provision ecosystem services and (ii) management intervention to sustain global climate regulation and habitat provision ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Climate history shapes contemporary leaf litter decomposition

    Treesearch

    Michael S. Strickland; Ashley D. Keiser; Mark A. Bradford

    2015-01-01

    Litter decomposition is mediated by multiple variables, of which climate is expected to be a dominant factor at global scales. However, like other organisms, traits of decomposers and their communities are shaped not just by the contemporary climate but also their climate history. Whether or not this affects decomposition rates is underexplored. Here we source...

  20. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  1. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicatormore » Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  3. Using Probabilistic Methods in Water Scarcity Assessments: A First Step Towards a Water Scarcity Risk Assessment Framework

    NASA Technical Reports Server (NTRS)

    Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Phillip

    2016-01-01

    Water scarcity -driven by climate change, climate variability, and socioeconomic developments- is recognized as one of the most important global risks, both in terms of likelihood and impact. Whilst a wide range of studies have assessed the role of long term climate change and socioeconomic trends on global water scarcity, the impact of variability is less well understood. Moreover, the interactions between different forcing mechanisms, and their combined effect on changes in water scarcity conditions, are often neglected. Therefore, we provide a first step towards a framework for global water scarcity risk assessments, applying probabilistic methods to estimate water scarcity risks for different return periods under current and future conditions while using multiple climate and socioeconomic scenarios.

  4. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    NASA Astrophysics Data System (ADS)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  5. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    NASA Astrophysics Data System (ADS)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  6. The North American Regional Climate Change Assessment Program (NARCCAP): Status and results

    NASA Astrophysics Data System (ADS)

    Arritt, R.

    2009-04-01

    NARCCAP is an international program that is generating projections of climate change for the U.S., Canada, and northern Mexico at decision-relevant regional scales. NARCCAP uses multiple limited-area regional climate models (RCMs) nested within multiple atmosphere-ocean general circulation models (AOGCMs). The use of multiple regional and global models allows us to investigate the uncertainty in model responses to future emissions (here, the A2 SRES scenario). The project also includes global time-slice experiments at the same discretization (50 km) using the GFDL atmospheric model (AM2.1) and the NCAR atmospheric model (CAM3). Phase I of the experiment uses the regional models nested within reanalysis in order to establish uncertainty attributable to the RCMs themselves. Phase II of the project then nests the RCMs within results from the current and future runs of the AOGCMs to explore the cascade of uncertainty from the global to the regional models. Phase I has been completed and the results to be shown include findings that spectral nudging is beneficial in some regions but not in others. Phase II is nearing completion and some preliminary results will be shown.

  7. Concept Mapping to Assess Learning and Understanding of Complexity in Courses on Global Climate Change

    NASA Astrophysics Data System (ADS)

    Rebich-Hespanha, S.; Gautier, C.

    2010-12-01

    The complex nature of climate change science poses special challenges for educators wishing to broaden and deepen student understanding of the climate system and its sensitivity to and impacts upon human activity. Learners have prior knowledge that may limit their perception and processing of the multiple relationships between processes (e.g., feedbacks) that arise in global change science, and these existing mental models serve as the scaffold for all future learning. Because adoption of complex scientific concepts is not likely if instruction includes presentation of information or concepts that are not compatible with the learners’ prior knowledge, providing effective instruction on this complex topic requires learning opportunities that are anchored upon an evaluation of the limitations and inaccuracies of the learners’ existing understandings of the climate system. The formative evaluation that serves as the basis for planning such instruction can also be useful as a baseline against which to evaluate subsequent learning. We will present concept-mapping activities that we have used to assess students’ knowledge and understanding about global climate change in courses that utilized multiple assessment methods including presentations, writings, discussions, and concept maps. The courses in which these activities were completed use a variety of instructional approaches (including standard lectures and lab assignments and a mock summit) to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. Two instances of concept map assessment will be presented: one focused on evaluating student understanding of the major components of the climate system and their interconnections, and the other focused on student understanding of the connections between climate change and the global food system. We will discuss how concept mapping can be used to demonstrate evidence of learning and conceptual change, and also how it can be used to provide information about gaps in knowledge and misconceptions students have about the topic.

  8. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales.

    PubMed

    Feng, Huihui

    2016-09-07

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate.

  9. Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I

    2014-02-01

    The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Regional Climate Simulation and Data Assimilation with Variable-Resolution GCMs

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    2002-01-01

    Variable resolution GCMs using a global stretched grid (SG) with enhanced regional resolution over one or multiple areas of interest represents a viable new approach to regional climateklimate change and data assimilation studies and applications. The multiple areas of interest, at least one within each global quadrant, include the major global mountains and major global monsoonal circulations over North America, South America, India-China, and Australia. They also can include the polar domains, and the European and African regions. The SG-approach provides an efficient regional downscaling to mesoscales, and it is an ideal tool for representing consistent interactions of globaYlarge- and regionallmeso- scales while preserving the high quality of global circulation. Basically, the SG-GCM simulations are no different from those of the traditional uniform-grid GCM simulations besides using a variable-resolution grid. Several existing SG-GCMs developed by major centers and groups are briefly described. The major discussion is based on the GEOS (Goddard Earth Observing System) SG-GCM regional climate simulations.

  11. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems

    Treesearch

    P. Sicard; A. Augustaitis; S. Belyazid; C. Calfapietra; A. De Marco; Mark E. Fenn; Andrzej Bytnerowicz; Nancy Grulke; S. He; R. Matyssek; Y. Serengil; G. Wieser; E. Paoletti

    2016-01-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii)...

  12. Climate Science's Globally Distributed Infrastructure

    NASA Astrophysics Data System (ADS)

    Williams, D. N.

    2016-12-01

    The Earth System Grid Federation (ESGF) is primarily funded by the Department of Energy's (DOE's) Office of Science (the Office of Biological and Environmental Research [BER] Climate Data Informatics Program and the Office of Advanced Scientific Computing Research Next Generation Network for Science Program), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), and the National Science Foundation (NSF), the European Infrastructure for the European Network for Earth System Modeling (IS-ENES), and the Australian National University (ANU). Support also comes from other U.S. federal and international agencies. The federation works across multiple worldwide data centers and spans seven international network organizations to provide users with the ability to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a series of geographically distributed peer nodes that are independently administered and united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP; output used by the Intergovernmental Panel on Climate Change assessment reports), multiple model intercomparison projects (MIPs; endorsed by the World Climate Research Programme [WCRP]), and the Accelerated Climate Modeling for Energy (ACME; ESGF is included in the overarching ACME workflow process to store model output). ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs the global climate science community. Data served by ESGF includes not only model output but also observational data from satellites and instruments, reanalysis, and generated images.

  13. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    PubMed

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  14. Agroforestry, climate change, and food security

    USDA-ARS?s Scientific Manuscript database

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  15. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change. © 2015 John Wiley & Sons Ltd.

  16. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes

    DOE PAGES

    Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun; ...

    2015-03-16

    Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH 4) and nitrous oxide (N 2O) are the two most important GHGs after carbon dioxide (CO 2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH 4 and N 2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO 2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, andmore » nitrogen fertilizer use.« less

  17. Disentangling synergistic climate drivers on the evolution of two species of planktonic foraminifera on regional and global scales

    NASA Astrophysics Data System (ADS)

    Brombacher, A.; Wilson, P. A.; Bailey, I.; Ezard, T. H. G.

    2016-02-01

    Evolution is driven by a combination of biotic and abiotic factors. When quantifying the effects of abiotic drivers, evolutionary change is generally described as a response to a single environmental parameter assumed to represent global climate. However, climate is a complex system of many interacting factors and characterized by high regional variability. Therefore, to understand the role of climate in evolutionary change, we need to consider multiple environmental parameters, across local, regional and global scales, as well as their interactions. The deep-sea microfossil record is sufficiently complete that sufficiently continuous multivariate climatic and multivariate trait data can be obtained from the same samples. Here we present morphological records of the planktonic foraminifera species Globoconella puncticulata and Truncorotalia crassaformis over a 500,000-year interval directly preceding the extinction of G. puncticulata (2.41 Ma). Material was collected from five North Atlantic sites (ODP Sites 659 [18° N], 925 [3° N] and 981 [55° N], IODP Site U1313 [41° N] and DSDP Site 606 [37° N]). Test size and shape of over 35,000 individuals were measured and compared to site-specific records of sea surface temperature, primary productivity and marine aeolian dust deposition, as well as to global records of ice volume, ocean circulation and atmospheric CO2, and all two-way interactions. Morphological parameters respond weakly to individual climate parameters. Once interactions among all studied climate parameters were incorporated, abiotic change explained around 35% of the evolutionary variance. Observed covariances between environmental parameters vary strongly with glacial-interglacial cyclicity, implying that the relationships among climate variables and their relative influences on evolutionary change varied through time. This time dependence cautions against unfettered use of dimension reduction techniques, such as principal components analysis, to extract a single, supposedly dominant, proxy. Furthermore species' responses differed between geographic locations, impressing the need to test how interactions among multiple climate variables at different regional settings shape the biotic microevolutionary response to local and global abiotic change.

  18. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana

    The recent International Panel on Climate change (IPCC) report identifies significant co-benefits from climate policies on near-term ambient air pollution and related human health outcomes [1]. This is increasingly relevant for policy making as the health impacts of air pollution are a major global concern- the Global Burden of Disease (GBD) study identifies outdoor air pollution as the sixth major cause of death globally [2]. Integrated assessment models (IAMs) are an effective tool to evaluate future air pollution outcomes across a wide range of assumptions on socio-economic development and policy regimes. The Representative Concentration Pathways (RCPs) [3] were the firstmore » set of long-term global scenarios developed across multiple integrated assessment models that provided detailed estimates of a number of air pollutants until 2100. However these scenarios were primarily designed to cover a defined range of radiative forcing outcomes and thus did not specifically focus on the interactions of long-term climate goals on near-term air pollution impacts. More recently, [4] used the RCP4.5 scenario to evaluate the co-benefits of global GHG reductions on air quality and human health in 2030. [5-7] have further examined the interactions of more diverse pollution control regimes with climate policies. This paper extends the listed studies in a number of ways. Firstly it uses multiple IAMs to look into the co-benefits of a global climate policy for ambient air pollution under harmonized assumptions on near-term air pollution control. Multi-model frameworks have been extensively used in the analysis of climate change mitigation pathways, and the structural uncertainties regarding the underlying mechanisms (see for example [8-10]. This is to our knowledge the first time that a multi-model evaluation has been specifically designed and applied to analyze the co-benefits of climate change policy on ambient air quality, thus enabling a better understanding of at a detailed sector and region level. A second methodological advancement is a quantification of the co-benefits in terms of the associated atmospheric concentrations of fine particulate matter (PM2.5) and consequent mortality related outcomes across different models. This is made possible by the use of state-of the art simplified atmospheric model that allows for the first time a computationally feasible multi-model evaluation of such outcomes.« less

  19. Vulnerability of riparian obligate species to the interactive effect of fire, climate and hydrological change

    Treesearch

    Megan M. Friggens; Rachel Loehman; Lisa Holsinger; Deborah Finch

    2014-01-01

    Climate change is expected to have multiple direct and indirect impacts on ecosystems in the interior western U.S. (Christensen et al., 2007; IPCC 2013). Global climate predictions for the Southwest include higher temperatures, more variable rainfall, and more drought periods, which will likely exacerbate the ongoing issues relating to wildfire and water allocation in...

  20. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  1. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  2. NOAA's Role in Sustaining Global Ocean Observations: Future Plans for OAR's Ocean Observing and Monitoring Division

    NASA Astrophysics Data System (ADS)

    Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney

    2017-04-01

    The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.

  3. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    NASA Astrophysics Data System (ADS)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.

  4. Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects

    NASA Astrophysics Data System (ADS)

    Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.

    2014-12-01

    Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).

  5. Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa

    NASA Astrophysics Data System (ADS)

    Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.

    2009-08-01

    Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.

  6. Optimal function explains forest responses to global change

    Treesearch

    Roderick Dewar; Oskar Franklin; Annikki Makela; Ross E. McMurtrie; Harry T. Valentine

    2009-01-01

    Plant responses to global changes in carbon dioxide (CO2), nitrogen, and water availability are critical to future atmospheric CO2 concentrations, hydrology, and hence climate. Our understanding of those responses is incomplete, however. Multiple-resource manipulation experiments and empirical observations have revealed a...

  7. Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe.

    PubMed

    Zhang, Cui-Jing; Shen, Ju-Pei; Sun, Yi-Fei; Wang, Jun-Tao; Zhang, Li-Mei; Yang, Zhong-Ling; Han, Hong-Yan; Wan, Shi-Qiang; He, Ji-Zheng

    2017-04-01

    Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques, were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Allowable carbon emissions lowered by multiple climate targets.

    PubMed

    Steinacher, Marco; Joos, Fortunat; Stocker, Thomas F

    2013-07-11

    Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.

  9. Chapter 3: Climate change at multiple scales

    Treesearch

    Constance Millar; Ron Neilson; Dominique Bachelet; Ray Drapek; Jim Lenihan

    2006-01-01

    Concepts about the natural world influence approaches to forest management. In the popular press, climate change inevitably refers to global warming, greenhouse gas impacts, novel anthropogenic (human-induced) threats, and international politics. There is, however, a larger context that informs our understanding of changes that are occurring - that is, Earth’...

  10. Climates of U.S. cities in the 21st century

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2017-12-01

    Urban climates are projected to warm over the 21st century due to global climate change and urban development. To assess this projected warming, Weather Research and Forecasting (WRF) model simulations are performed at 20 km resolution over the contiguous U.S. for three 10-year periods: contemporary (2000-2009), mid-century (2050-2059), and end-of-century (2090-2099). Urban land use projections are derived from the EPA's ICLUS data set, and future climate projections are based on two global climate models and two greenhouse gas emissions scenarios. The potential for design implementations such as `green' roofs and high albedo roofs to offset the projected warming is considered. Effects of urban expansion, urban densification and infrastructure adaptation on urban climate are compared over the century. Assessment considers impacts at both seasonal and diurnal scales, isolates fair weather impacts, and considers multiple climate variables: air temperature, precipitation, humidity, wind speed, and surface energy budget partitioning.

  11. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  12. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  13. Assessing Climate Change Risks Using a Multi-Model Approach

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Scholze, M.; Prentice, C.

    2007-12-01

    We quantify the risks of climate-induced changes in key ecosystem processes during the 21st century by forcing a dynamic global vegetation model with multiple scenarios from the IPCC AR4 data archive using 16 climate models and mapping the proportions of model runs showing exceedance of natural variability in wildfire frequency and freshwater supply or shifts in vegetation cover. Our analysis does not assign probabilities to scenarios. Instead, we consider the distribution of outcomes within three sets of model runs grouped according to the amount of global warming they simulate: < 2 degree C (including committed climate change simulations), 2-3 degree C, and >3 degree C. Here, we are contrasting two different methods for calculating the risks: first we use an equal weighting approach giving every model within one of the three sets the same weight, and second, we weight the models according to their ability to model ENSO. The differences are underpinning the need for the development of more robust performance metrics for global climate models.

  14. Towards a Global Water Scarcity Risk Assessment Framework: Incorporation of Probability Distributions and Hydro-Climatic Variability

    NASA Technical Reports Server (NTRS)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2016-01-01

    Changing hydro-climatic and socioeconomic conditions increasingly put pressure on fresh water resources and are expected to aggravate water scarcity conditions towards the future. Despite numerous calls for risk-based water scarcity assessments, a global-scale framework that includes UNISDR's definition of risk does not yet exist. This study provides a first step towards such a risk based assessment, applying a Gamma distribution to estimate water scarcity conditions at the global scale under historic and future conditions, using multiple climate change and population growth scenarios. Our study highlights that water scarcity risk, expressed in terms of expected annual exposed population, increases given all future scenarios, up to greater than 56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels.

  15. Climate change impact assessments on the water resources of India under extensive human interventions.

    PubMed

    Madhusoodhanan, C G; Sreeja, K G; Eldho, T I

    2016-10-01

    Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.

  16. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE PAGES

    Kim, John B.; Monier, Erwan; Sohngen, Brent; ...

    2017-03-28

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  17. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    NASA Astrophysics Data System (ADS)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  18. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, John B.; Monier, Erwan; Sohngen, Brent

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  19. Robust Spring Drying in the Southwestern U.S. and Seasonal Migration of Wet/Dry Patterns in a Warmer Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yang; Leung, Lai-Yung R.; Lu, Jian

    2014-03-16

    This study compares climate simulations over the United States produced by a regional climate model with the driving global climate simulations as well as a large multi-model ensemble of global climate simulations to investigate robust changes in water availability (precipitation (P) – evapotranspiration (E)). A robust spring dry signal across multiple models is identified in the Southwest that results from a decrease in P and an increase in E in the future. In the boreal winter and summer, the prominent changes in P – E are associated with a north – south dipole pattern, while in spring, the prominent changesmore » in P – E appear as an east – west dipole pattern. The progression of the north – south and east – west dipole patterns through the seasons manifests clearly as a seasonal “clockwise” migration of wet/dry patterns, which is shown to be a robust feature of water availability changes in the US consistent across regional and global climate simulations.« less

  20. Century long observation constrained global dynamic downscaling and hydrologic implication

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  1. Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.

    2017-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.

  2. Global Potential for Hydro-generated Electricity and Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hejazi, M. I.; Leon, C.; Calvin, K. V.; Thomson, A. M.; Li, H. Y.

    2014-12-01

    Hydropower is a dominant renewable energy source at the global level, accounting for more than 15% of the world's total power supply. It is also very vulnerable to climate change. Improved understanding of climate change impact on hydropower can help develop adaptation measures to increase the resilience of energy system. In this study, we developed a comprehensive estimate of global hydropower potential using runoff and stream flow data derived from a global hydrologic model with a river routing sub-model, along with turbine technology performance, cost assumptions, and environmental consideration (Figure 1). We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by regions. Resources in a number of countries exceed by multiple folds the total current demand for electricity, e.g., Russia and Indonesia. A sensitivity analysis indicates that hydropower potential can be highly sensitive to a number of parameters including designed flow for capacity, cost and financing, turbine efficiency, and stream flow. The climate change impact on hydropower potential was evaluated by using runoff outputs from 4 climate models (HadCM3, PCM, CGCM2, and CSIRO2). It was found that the climate change on hydropower shows large variation not only by regions, but also climate models, and this demonstrates the importance of incorporating climate change into infrastructure-planning at the regional level though the existing uncertainties.

  3. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming

    PubMed Central

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-01-01

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves. PMID:26951654

  4. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO 2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplifiedmore » global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  5. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE PAGES

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; ...

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO 2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplifiedmore » global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  6. The multitrophic consequences of concurrent insect invasions: a range-expanding herbivore and its associated parasitoid affect native tritrophic interactions

    USDA-ARS?s Scientific Manuscript database

    Global climatic changes may lead to the arrival of range-expanding species into new environments. Species from different trophic levels sharing the same climatic niche may invade new habitats simultaneously or in quick succession, causing the formation of multiple novel interactions into native food...

  7. On Epochal Mission of Multicultural Education in a Perspective of Globalization

    ERIC Educational Resources Information Center

    Chen, Shi-jian

    2006-01-01

    The development of modern societies accelerates the process of globalization, which in turn brings about a conspicuous diversity of cultures. Cultural difference and cultural diversity are characteristics of multiculturalism, which commits itself to the construction of favorable educational climates for multiple cultures. Such a progression has…

  8. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.

    PubMed

    Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R

    2014-10-22

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts

    PubMed Central

    Bonebrake, Timothy C.; Boggs, Carol L.; Stamberger, Jeannie A.; Deutsch, Curtis A.; Ehrlich, Paul R.

    2014-01-01

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. PMID:25165769

  10. Interactive effects of global change factors on soil respiration and its components: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Shao, Junjiong; Nie, Yuanyuan; He, Yanghui; Jiang, Liling; Wu, Zhuoting; Hosseini Bai, Shahla

    2016-09-01

    As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the ecological and climate systems. © 2016 John Wiley & Sons Ltd.

  11. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Mahowald, N. M.; Randerson, J. T.; Lawrence, P. J.

    2012-01-01

    Landscape fires during the 21st century are expected to change in response to multiple agents of global change. Important controlling factors include climate controls on the length and intensity of the fire season, fuel availability, and fire management, which are already anthropogenically perturbed today and are predicted to change further in the future. An improved understanding of future fires will contribute to an improved ability to project future anthropogenic climate change, as changes in fire activity will in turn impact climate. In the present study we used a coupled-carbon-fire model to investigate how changes in climate, demography, and land use may alter fire emissions. We used climate projections following the SRES A1B scenario from two different climate models (ECHAM5/MPI-OM and CCSM) and changes in population. Land use and harvest rates were prescribed according to the RCP 45 scenario. In response to the combined effect of all these drivers, our model estimated, depending on our choice of climate projection, an increase in future (2075-2099) fire carbon emissions by 17 and 62% compared to present day (1985-2009). The largest increase in fire emissions was predicted for Southern Hemisphere South America for both climate projections. For Northern Hemisphere Africa, a region that contributed significantly to the global total fire carbon emissions, the response varied between a decrease and an increase depending on the climate projection. We disentangled the contribution of the single forcing factors to the overall response by conducting an additional set of simulations in which each factor was individually held constant at pre-industrial levels. The two different projections of future climate change evaluated in this study led to increases in global fire carbon emissions by 22% (CCSM) and 66% (ECHAM5/MPI-OM). The RCP 45 projection of harvest and land use led to a decrease in fire carbon emissions by -5%. The RCP 26 and RCP 60 harvest and landuse projections caused decreases around -20%. Changes in human ignition led to an increase of 20%. When we also included changes in fire management efforts to suppress fires in densely populated areas, global fire carbon emission decreased by -6% in response to changes in population density. We concluded from this study that changes in fire emissions in the future are controlled by multiple interacting factors. Although changes in climate led to an increase in future fire emissions this could be globally counterbalanced by coupled changes in land use, harvest, and demography.

  12. Modeling global yield growth of major crops under multiple socioeconomic pathways

    NASA Astrophysics Data System (ADS)

    Iizumi, T.; Kim, W.; Zhihong, S.; Nishimori, M.

    2016-12-01

    Global gridded crop models (GGCMs) are a key tool in deriving global food security scenarios under climate change. However, it is difficult for GGCMs to reproduce the reported yield growth patterns—rapid growth, yield stagnation and yield collapse. Here, we propose a set of parameterizations for GGCMs to capture the contributions to yield from technological improvements at the national and multi-decadal scales. These include country annual per capita gross domestic product (GDP)-based parameterizations for the nitrogen application rate and crop tolerance to stresses associated with high temperature, low temperature, water deficit and water excess. Using a GGCM combined with the parameterizations, we present global 140-year (1961-2100) yield growth simulations for maize, soybean, rice and wheat under multiple shared socioeconomic pathways (SSPs) and no climate change. The model reproduces the major characteristics of reported global and country yield growth patterns over the 1961-2013 period. Under the most rapid developmental pathway SSP5, the simulated global yields for 2091-2100, relative to 2001-2010, are the highest (1.21-1.82 times as high, with variations across the crops), followed by SSP1 (1.14-1.56 times as high), SSP2 (1.12-1.49 times as high), SSP4 (1.08-1.38 times as high) and SSP3 (1.08-1.36 times as high). Future country yield growth varies substantially by income level as well as by crop and by SSP. These yield pathways offer a new baseline for addressing the interdisciplinary questions related to global agricultural development, food security and climate change.

  13. Effects of cumulus entrainment and multiple cloud types on a January global climate model simulation

    NASA Technical Reports Server (NTRS)

    Yao, Mao-Sung; Del Genio, Anthony D.

    1989-01-01

    An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores the atmosphere to a neutral moist convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges, and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base.

  14. A high-resolution, empirical approach to climate impact assessment for regulatory analysis

    NASA Astrophysics Data System (ADS)

    Delgado, M.; Simcock, J. G.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Rising, J. A.; Nath, I.; Yuan, J.; Rode, A.; Chong, T.; Dobbels, G.; Hussain, A.; Wang, J.; Song, Y.; Mohan, S.; Larsen, K.; Houser, T.

    2017-12-01

    Recent breakthroughs in computing, data availability, and methodology have precipitated significant advances in the understanding of the relationship between climate and socioeconomic outcomes [1]. And while the use of estimates of the global marginal costs of greenhouse gas emissions (e.g. the SCC) are a mandatory component of regulatory policy in many jurisdictions, existing SCC-IAMs have lagged advances in impact assessment and valuation [2]. Recent work shows that incorporating high spatial and temporal resolution can significantly affect the observed relationships of economic outcomes to climate and socioeconomic factors [3] and that maintaining this granularity is critical to understanding the sensitivity of aggregate measures of valuation to inequality and risk adjustment methodologies [4]. We propose a novel framework that decomposes uncertainty in the SCC along multiple sources, including aggregate climate response parameters, the translation of global climate into local weather, the effect of weather on physical and economic systems, human and macro-economic responses, and impact valuation methodologies. This work extends Hsiang et al. (2017) [4] to directly estimate local response functions for multiple sectors in each of 24,378 global regions and to estimate impacts at this resolution daily, incorporating endogenous, empirically-estimated adaptation and costs. The goal of this work is to provide insight into the heterogeneity of climate impacts and to work with other modeling teams to enhance the empirical grounding of integrated climate impact assessment in more complex energy-environment-economics models. [1] T. Carleton and S. Hsiang (2016), DOI: 10.1126/science.aad9837. [2] National Academies of Sciences, Engineering, and Medicine (2017), DOI: 10.17226/24651. [3] Burke, M., S. Hsiang, and E. Miguel (2015), DOI: 10.1038/nature15725. [4] S. Hsiang et al. (2017), DOI: 10.1126/science.aal4369.

  15. Transitions between multiple equilibria of paleo climate: a glimpse in to the dynamics of abrupt climate change

    NASA Astrophysics Data System (ADS)

    Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo

    2017-04-01

    The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.

  16. El-Niño Grande and the Great Famine (1876-78)

    NASA Astrophysics Data System (ADS)

    Singh, D.; Seager, R.; Cook, B. I.; Cane, M. A.; Ting, M.; Cook, E. R.; Davis, M.

    2017-12-01

    The 1876-1878 Great Famine impacted multiple regions across the globe including parts of Asia, Nordeste Brazil, and northern and southern Africa, with total human fatalities exceeding 50 million people, arguably the worst environmental disaster to befall humanity. While socio-economic factors in the Late Victorian colonial world were responsible for the global humanitarian disaster, the triggers for famine were acute droughts that caused widespread crop failures. We combine instrumental observations, tree-ring drought estimates, and sea-surface temperature (SST) reconstructions to present the first characterization of this multi-year drought and investigate its associated global climatic conditions. We show that this extremely severe and widespread drought was largely caused by an El-Niño that exceeded the extreme intensities of the 1982-83 and 1997-98 El-Niños. Its higher peak intensity, the central Pacific location of the peak SST anomalies, and longer persistence, were critical in generating extreme droughts over multiple seasons in several regions. The cascading influence of the extreme tropical Pacific SSTs led to unprecedented conditions in the tropical Indian and Atlantic basins that likely influenced the intensity and persistence of regional droughts in parts of the world. The climatic conditions associated with the Great Famine arose from natural variability, indicating a similar event could occur in the future and simultaneously induce drought conditions across multiple major grain producing areas of the world, undermining global food-security. Improved understanding of the causes and character of the 1876-1878 global climate and food crisis should lead to better anticipation and prediction of such events to help avert similar catastrophes.

  17. When Law Students Read Multiple Documents about Global Warming: Examining the Role of Topic-Specific Beliefs about the Nature of Knowledge and Knowing

    ERIC Educational Resources Information Center

    Braten, Ivar; Stromso, Helge I.

    2010-01-01

    In this study, law students (n = 49) read multiple authentic documents presenting conflicting information on the topic of climate change and responded to verification tasks assessing their superficial as well as their deeper-level within- and across-documents comprehension. Hierarchical multiple regression analyses showed that even after variance…

  18. Grassland agriculture

    USDA-ARS?s Scientific Manuscript database

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  19. Global and local environmental changes as drivers of Buruli ulcer emergence.

    PubMed

    Combe, Marine; Velvin, Camilla Jensen; Morris, Aaron; Garchitorena, Andres; Carolan, Kevin; Sanhueza, Daniel; Roche, Benjamin; Couppié, Pierre; Guégan, Jean-François; Gozlan, Rodolphe Elie

    2017-04-26

    Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.

  20. Microbial diversity drives multifunctionality in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  1. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-28

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

  2. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.

  3. GFDL's unified regional-global weather-climate modeling system with variable resolution capability for severe weather predictions and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Lin, S. J.

    2015-12-01

    The NOAA/Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions (e.g., tornado outbreak events and cat-5 hurricanes) and ultra-high-resolution (1-km) regional climate simulations within a consistent global modeling framework. The fundation of this flexible regional-global modeling system is the non-hydrostatic extension of the vertically Lagrangian dynamical core (Lin 2004, Monthly Weather Review) known in the community as FV3 (finite-volume on the cubed-sphere). Because of its flexability and computational efficiency, the FV3 is one of the final candidates of NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched (single) grid capability, a two-way (regional-global) multiple nested grid capability, and the combination of the stretched and two-way nests, so as to make convection-resolving regional climate simulation within a consistent global modeling system feasible using today's High Performance Computing System. One of our main scientific goals is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornadoes using a global model that was originally designed for century long climate simulations. As a unified weather-climate modeling system, we evaluated the performance of the model with horizontal resolution ranging from 1 km to as low as 200 km. In particular, for downscaling studies, we have developed various tests to ensure that the large-scale circulation within the global varaible resolution system is well simulated while at the same time the small-scale can be accurately captured within the targeted high resolution region.

  4. WHOLE-SEEDLING BIOMASS ALLOCATION, LEAF AREA, AND TISSUE CHEMISTRY FOR DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE FOR 4 YEARS

    EPA Science Inventory

    Changes in the global climate may impact forests, but data are lacking for climate change effects on whole tree productivity over multiple seasons and conditions representative of the field. To address this critical need, we measured biomass allocation for whole Pseudotsuga menzi...

  5. Effects of the Bering Strait closure on AMOC and global climate under different background climates

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Meehl, Gerald A.; Han, Weiqing; Otto-Bliestner, Bette; Abe-Ouchi, Ayako; Rosenbloom, Nan

    2015-03-01

    Previous studies have suggested that the status of the Bering Strait may have a significant influence on global climate variability on centennial, millennial, and even longer time scales. Here we use multiple versions of the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM, versions 2 and 3) to investigate the influence of the Bering Strait closure/opening on the Atlantic Meridional Overturning Circulation (AMOC) and global mean climate under present-day, 15 thousand-year before present (kyr BP), and 112 kyr BP climate boundary conditions. Our results show that regardless of the version of the model used or the widely different background climates, the Bering Strait's closure produces a robust result of a strengthening of the AMOC, and an increase in the northward meridional heat transport in the Atlantic. As a consequence, the climate becomes warmer in the North Atlantic and the surrounding regions, but cooler in the North Pacific, leading to a seesaw-like climate change between these two basins. For the first time it is noted that the absence of the Bering Strait throughflow causes a slower motion of Arctic sea ice, a reduced upper ocean water exchange between the Arctic and North Atlantic, reduced sea ice export and less fresh water in the North Atlantic. These changes contribute positively to the increased upper ocean density there, thus strengthening the AMOC. Potentially these changes in the North Atlantic could have a significant effect on the ice sheets both upstream and downstream in ice age climate, and further influence global sea level changes.

  6. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  7. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  8. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE PAGES

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef; ...

    2017-06-05

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  9. Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa

    NASA Astrophysics Data System (ADS)

    Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.

    2008-11-01

    Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered via appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scales, for atmospheric CO2 mitigation and supporting, and provisioning ecosystem services, respectively. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, as evidence suggests that both may be inter-linked, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategised at the national or sub-national levels to improve C storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.

  10. A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010

    DOE PAGES

    Zhang, Yu; Pan, Ming; Sheffield, Justin; ...

    2018-01-12

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation ( P), evapotranspiration (ET), runoff ( R), and the totalmore » water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P-ET- R-TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984–2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.« less

  11. A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Pan, Ming; Sheffield, Justin

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation ( P), evapotranspiration (ET), runoff ( R), and the totalmore » water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P-ET- R-TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984–2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.« less

  12. A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Pan, Ming; Sheffield, Justin; Siemann, Amanda L.; Fisher, Colby K.; Liang, Miaoling; Beck, Hylke E.; Wanders, Niko; MacCracken, Rosalyn F.; Houser, Paul R.; Zhou, Tian; Lettenmaier, Dennis P.; Pinker, Rachel T.; Bytheway, Janice; Kummerow, Christian D.; Wood, Eric F.

    2018-01-01

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P - ET - R - TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984-2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and validating models.

  13. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  14. Effectiveness of forest management strategies to mitigate effects of global change in Siberia

    Treesearch

    Eric Gustafson; Anatoly Shvidenko; Robert Scheller; Brian Sturtevant

    2011-01-01

    Siberian forest ecosystems are experiencing multiple global changes. Climate change produces direct (temperature and precipitation) and indirect (altered fire regimes and increase in cold-limited insect outbreaks) effects. Although much of Siberia has not yet been subject to timber harvest, the frontier of timber cutting is advancing steadily across the region. We...

  15. An Assessment of IPCC 20th Century Climate Simulations Using the 15-year Sea Level Record from Altimetry

    NASA Astrophysics Data System (ADS)

    Leuliette, E.; Nerem, S.; Jakub, T.

    2006-07-01

    Recen tly, multiple ensemble climate simulations h ave been produced for th e forthco ming Fourth A ssessment Report of the Intergovernmental Panel on Climate Change (IPCC). N early two dozen coupled ocean- atmo sphere models have contr ibuted output for a variety of climate scen arios. One scenar io, the climate of the 20th century exper imen t (20C3 M), produces model output that can be comp ared to th e long record of sea level provided by altimetry . Generally , the output from the 20C3M runs is used to initialize simulations of future climate scenar ios. Hence, v alidation of the 20 C3 M experiment resu lts is crucial to the goals of th e IPCC. We present compar isons of global mean sea level (G MSL) , global mean steric sea level change, and regional patterns of sea lev el chang e from these models to r esults from altimetry, tide gauge measurements, and reconstructions.

  16. Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Y.

    2015-12-01

    A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.

  17. Evaluation of the multi-model CORDEX-Africa hindcast using RCMES

    NASA Astrophysics Data System (ADS)

    Kim, J.; Waliser, D. E.; Lean, P.; Mattmann, C. A.; Goodale, C. E.; Hart, A.; Zimdars, P.; Hewitson, B.; Jones, C.

    2011-12-01

    Recent global climate change studies have concluded with a high confidence level that the observed increasing trend in the global-mean surface air temperatures since mid-20th century is triggered by the emission of anthropogenic greenhouse gases (GHGs). The increase in the global-mean temperature due to anthropogenic emissions is nearly monotonic and may alter the climatological norms resulting in a new climate normal. In the presence of anthropogenic climate change, assessing regional impacts of the altered climate state and developing the plans for mitigating any adverse impacts are an important concern. Assessing future climate state and its impact remains a difficult task largely because of the uncertainties in future emissions and model errors. Uncertainties in climate projections propagates into impact assessment models and result in uncertainties in the impact assessments. In order to facilitate the evaluation of model data, a fundamental step for assessing model errors, the JPL Regional Climate Model Evaluation System (RCMES: Lean et al. 2010; Hart et al. 2011) has been developed through a joint effort of the investigators from UCLA and JPL. RCMES is also a regional climate component of a larger worldwide ExArch project. We will present the evaluation of the surface temperatures and precipitation from multiple RCMs participating in the African component of the Coordinated Regional Climate Downscaling Experiment (CORDEX) that has organized a suite of regional climate projection experiments in which multiple RCMs and GCMs are incorporated. As a part of the project, CORDEX organized a 20-year regional climate hindcast study in order to quantify and understand the uncertainties originating from model errors. Investigators from JPL, UCLA, and the CORDEX-Africa team collaborate to analyze the RCM hindcast data using RCMES. The analysis is focused on measuring the closeness between individual regional climate model outputs as well as their ensembles and observed data. The model evaluation is quantified in terms of widely used metrics. Details on the conceptual outline and architecture of RCMES is presented in two companion papers "The Regional climate model Evaluation System (RCMES) based on contemporary satellite and other observations for assessing regional climate model fidelity" and "A Reusable Framework for Regional Climate Model Evaluation" in GC07 and IN30, respectively.

  18. Farming with Grass: Achieving Sustainable Mixed Agricultural Landscapes

    USDA-ARS?s Scientific Manuscript database

    Agriculture in grassland environments is facing multiple stresses from shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Grassla...

  19. (Un)certainty in climate change impacts on global energy consumption

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  20. Forest processes and global environmental change: predicting the effects of individual and multiple stressors

    Treesearch

    John Aber; Ronald P. Neilson; Steve McNulty; James M. Lenihan; Dominque Bachelet; Raymond J. Drapek

    2001-01-01

    The purpose of this article is to review the state of prediction of forest ecosystem response to envisioned changes in the physical and chemical climate. These results are offered as one part of the forest sector analysis of the National Assessment of the Potential Consequences of Climate Variability and Change. This article has three sections. The first offers a very...

  1. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Brooks, V.

    1997-01-01

    This paper describes the use of satellite data to calibrate a new climate-vegetation greenness relationship for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes If the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980's in order to refine our understanding of intra-annual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global 1o gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80 percent of the geographic variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from lo grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.

  2. Do Responses to Different Anthropogenic Forcings Add Linearly in Climate Models?

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; Bonfils, Celine; LeGrande, Allegra N.; Nazarenko, Larissa; Tsigaridis, Kostas

    2015-01-01

    Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, we demonstrate that there are significant nonlinearities in precipitation responses to di?erent forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to di?erences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.

  3. Do responses to different anthropogenic forcings add linearly in climate models?

    DOE PAGES

    Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; ...

    2015-10-14

    Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However,more » we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Lastly, our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.« less

  4. Thinking about Global Warming: Effect of Policy-Related Documents and Prompts on Learning about Causes of Climate Change

    ERIC Educational Resources Information Center

    Blaum, Dylan; Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne

    2017-01-01

    We examined students' understanding of the causes of a scientific phenomenon from a multiple-document-inquiry unit. Students read several documents that each described causal factors that could be integrated to address the given writing task of explaining the causes of change in average global temperature. We manipulated whether the document set…

  5. Predicting global change effects on forest biomass and composition in south-central Siberia

    Treesearch

    Eric Gustafson; Anatoly D. Shvidenko; Brian R. Sturtevant; Robert M. Scheller

    2010-01-01

    Multiple global changes such as timber harvesting in areas not previously disturbed by cutting and climate change will undoubtedly affect the composition and spatial distribution of boreal forests, which will, in turn, affect the ability of these forests to retain carbon and maintain biodiversity. To predict future states of the boreal forest reliably, it is necessary...

  6. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats. PMID:27513565

  7. Translating climate data for business decisions

    NASA Astrophysics Data System (ADS)

    Steinberg, N.

    2015-12-01

    Businesses are bound to play an integral role in global and local climate change adaptation efforts, and integrating climate science into business decision-making can help protect companies' bottom-line and the communities which they depend upon. Yet many companies do not have good means to measure and manage climate risks. There are inherent limiting factors to incorporating climate data into existing operations and sourcing strategies. Spatial and temporal incongruities between climate and business models can make integration cumbersome. Even when such incongruities are resolved, raw climate data must undergo multiple transformations until the data is deemed actionable or otherwise translatable in dollar terms. However, the predictability of future impacts is advancing along with the use of second-order variables such as Cooling Degree Days and Water-Limited Crop productivity, helping business managers make better decisions about future energy and water demand requirements under the prospect of rising temperatures and more variable rainfall. This presentation will discuss the methods and opportunities for transforming raw climate data into business metrics. Results for the 2015 Corporate Adaptation Survey, led by Four Twenty Seven and in partnership with Notre Dame Global Adaptation Index, will also be presented to illustrate existing gaps between climate science and its application in the business context.

  8. Extinction vulnerability of coral reef fishes.

    PubMed

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  9. Assessing Inter-Sectoral Climate Change Risks: The Role of ISIMIP

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Arnell, Nigel W.; Ebi, Kristie L.; Lotze-Campen, Hermann; Raes, Frank; Rapley, Chris; Smith, Mark Stafford; Cramer, Wolfgang; Frieler, Katja; Reyer, Christopher P. O.; hide

    2017-01-01

    The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socioeconomic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.

  10. Extinction vulnerability of coral reef fishes

    PubMed Central

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron MacNeil, M; McClanahan, Tim R; Öhman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-01-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. PMID:21320260

  11. A Variable-Resolution Stretched-Grid General Circulation Model and Data Assimilation System with Multiple Areas of Interest: Studying the Anomalous Regional Climate Events of 1998

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence; Govindaraju, Ravi C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The new stretched-grid design with multiple (four) areas of interest, one at each global quadrant, is implemented into both a stretched-grid GCM (general circulation model) and a stretched-grid data assimilation system (DAS). The four areas of interest include: the U.S./Northern Mexico, the El Nino area/Central South America, India/China, and the Eastern Indian Ocean/Australia. Both the stretched-grid GCM and DAS annual (November 1997 through December 1998) integrations are performed with 50 km regional resolution. The efficient regional down-scaling to mesoscales is obtained for each of the four areas of interest while the consistent interactions between regional and global scales and the high quality of global circulation, are preserved. This is the advantage of the stretched-grid approach. The global variable resolution DAS incorporating the stretched-grid GCM has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The anomalous regional climate events of 1998 that occurred over the U.S., Mexico, South America, China, India, African Sahel, and Australia are investigated in both simulation and data assimilation modes. Tree assimilated products are also used, along with gauge precipitation data, for validating the simulation results. The obtained results show that the stretched-grid GCM and DAS are capable of producing realistic high quality simulated and assimilated products at mesoscale resolution for regional climate studies and applications.

  12. Global Climate Change, Food Security and the U.S. Food System

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Walsh, Margaret; Hauser, Rachel; Murray, Anthony; Jadin, Jenna; Baklund, Peter; Robinson, Paula

    2013-01-01

    Climate change influences on the major pillars of food security. Each of the four elements of food security (availability,access,utilization,andstability) is vulnerable to changes in climate. For example,reductions in production related to regional drought influence food availability at multiple scales. Changes in price influences the ability of certain populations to purchase food (access). Utilization maybe affected when production zones shift, reducing the availability of preferred or culturally appropriate types of food within a region. Stability of the food supply may be highly uncertain given an increased incidence of extreme climatic events and their influence on production patterns.

  13. An improved Multimodel Approach for Global Sea Surface Temperature Forecasts

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. K.; Mehrotra, R.; Sharma, A.

    2014-12-01

    The concept of ensemble combinations for formulating improved climate forecasts has gained popularity in recent years. However, many climate models share similar physics or modeling processes, which may lead to similar (or strongly correlated) forecasts. Recent approaches for combining forecasts that take into consideration differences in model accuracy over space and time have either ignored the similarity of forecast among the models or followed a pairwise dynamic combination approach. Here we present a basis for combining model predictions, illustrating the improvements that can be achieved if procedures for factoring in inter-model dependence are utilised. The utility of the approach is demonstrated by combining sea surface temperature (SST) forecasts from five climate models over a period of 1960-2005. The variable of interest, the monthly global sea surface temperature anomalies (SSTA) at a 50´50 latitude-longitude grid, is predicted three months in advance to demonstrate the utility of the proposed algorithm. Results indicate that the proposed approach offers consistent and significant improvements for majority of grid points compared to the case where the dependence among the models is ignored. Therefore, the proposed approach of combining multiple models by taking into account the existing interdependence, provides an attractive alternative to obtain improved climate forecast. In addition, an approach to combine seasonal forecasts from multiple climate models with varying periods of availability is also demonstrated.

  14. Our Globally Changing Climate. Chapter 1

    NASA Technical Reports Server (NTRS)

    Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; hide

    2017-01-01

    Since the Third U.S. National Climate Assessment (NCA3) was published in May 2014, new observations along multiple lines of evidence have strengthened the conclusion that Earth's climate is changing at a pace and in a pattern not explainable by natural influences. While this report focuses especially on observed and projected future changes for the United States, it is important to understand those changes in the global context (this chapter). The world has warmed over the last 150 years, especially over the last six decades, and that warming has triggered many other changes to Earth's climate. Evidence for a changing climate abounds, from the top of the atmosphere to the depths of the oceans. Thousands of studies conducted by tens of thousands of scientists around the world have documented changes in surface, atmospheric, and oceanic temperatures; melting glaciers; disappearing snow cover; shrinking sea ice; rising sea level; and an increase in atmospheric water vapor. Rainfall patterns and storms are changing, and the occurrence of droughts is shifting.

  15. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: introduction to a SETAC international workshop.

    PubMed

    Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Copyright © 2013 SETAC.

  16. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: Introduction to a SETAC international workshop

    USGS Publications Warehouse

    Stahl, Ralph G.; Hooper, Michael J.; Balbus, John M.; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S. Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners.

  17. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their definitions of global coverages intended to ensure the needs of major global and international organizations (UNFCCC and IPCC) are met as a core objective. Consider how new optimization tools like rule-based engines (RBES) offer alternative methods of evaluating collaborative architectures and constellations? What would the trade space of optimized operational climate monitoring architectures of ECV look like? Third, using the RBES tool kit (2014) demonstrate with application to a climate centric rule-based decision engine - optimizing architectural trades of earth observation satellite systems, allowing comparison(s) to existing architectures and gaining insights for global collaborative architectures. How difficult is it to pull together an optimized climate case study - utilizing for example 12 climate based instruments on multiple existing platforms and nominal handful of orbits; for best cost and performance benefits against the collection requirements of representative set of ECV. How much effort and resources would an organization expect to invest to realize these analysis and utility benefits?

  18. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  19. Understanding uncertainty in precipitation changes in a balanced perturbed-physics ensemble under multiple climate forcings

    NASA Astrophysics Data System (ADS)

    Millar, R.; Ingram, W.; Allen, M. R.; Lowe, J.

    2013-12-01

    Temperature and precipitation patterns are the climate variables with the greatest impacts on both natural and human systems. Due to the small spatial scales and the many interactions involved in the global hydrological cycle, in general circulation models (GCMs) representations of precipitation changes are subject to considerable uncertainty. Quantifying and understanding the causes of uncertainty (and identifying robust features of predictions) in both global and local precipitation change is an essential challenge of climate science. We have used the huge distributed computing capacity of the climateprediction.net citizen science project to examine parametric uncertainty in an ensemble of 20,000 perturbed-physics versions of the HadCM3 general circulation model. The ensemble has been selected to have a control climate in top-of-atmosphere energy balance [Yamazaki et al. 2013, J.G.R.]. We force this ensemble with several idealised climate-forcing scenarios including carbon dioxide step and transient profiles, solar radiation management geoengineering experiments with stratospheric aerosols, and short-lived climate forcing agents. We will present the results from several of these forcing scenarios under GCM parametric uncertainty. We examine the global mean precipitation energy budget to understand the robustness of a simple non-linear global precipitation model [Good et al. 2012, Clim. Dyn.] as a better explanation of precipitation changes in transient climate projections under GCM parametric uncertainty than a simple linear tropospheric energy balance model. We will also present work investigating robust conclusions about precipitation changes in a balanced ensemble of idealised solar radiation management scenarios [Kravitz et al. 2011, Atmos. Sci. Let.].

  20. Using conceptual maps to assess students' climate change understanding and misconceptions

    NASA Astrophysics Data System (ADS)

    Gautier, C.

    2011-12-01

    The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.

  1. Hydropower versus irrigation—an analysis of global patterns

    NASA Astrophysics Data System (ADS)

    Zeng, Ruijie; Cai, Ximing; Ringler, Claudia; Zhu, Tingju

    2017-03-01

    Numerous reservoirs around the world provide multiple flow regulation functions; key among these are hydroelectricity production and water releases for irrigation. These functions contribute to energy and food security at national, regional and global levels. While reservoir operations for hydroelectricity production might support irrigation, there are also well-known cases where hydroelectricity production reduces water availability for irrigated food production. This study assesses these relationships at the global level using machine-learning techniques and multi-source datasets. We find that 54% of global installed hydropower capacity (around 507 thousand Megawatt) competes with irrigation. Regions where such competition exists include the Central United States, northern Europe, India, Central Asia and Oceania. On the other hand, 8% of global installed hydropower capacity (around 79 thousand Megawatt) complements irrigation, particularly in the Yellow and Yangtze River Basins of China, the East and West Coasts of the United States and most river basins of Southeast Asia, Canada and Russia. No significant relationship is found for the rest of the world. We further analyze the impact of climate variables on the relationships between hydropower and irrigation. Reservoir flood control functions that operate under increased precipitation levels appear to constrain hydroelectricity production in various river basins of the United States, South China and most basins in Europe and Oceania. On the other hand, increased reservoir evaporative losses and higher irrigation requirements due to higher potential evaporation levels may lead to increased tradeoffs between irrigation and hydropower due to reduced water availability in regions with warmer climates, such as India, South China, and the Southern United States. With most reservoirs today being built for multiple purposes, it is important for policymakers to understand and plan for growing tradeoffs between key functions. This will be particularly important as climate mitigation calls for an increase in renewable energy while agro-hydrological impacts of climate change, population and economic growth and associated dietary change increase the need for irrigated food production in many regions round the world.

  2. From Extraction to Renewal: A Global Campaign for Healthy Energy.

    PubMed

    Wang, Jennifer S; Euripidou, Rico; Armstrong, Fiona; Jensen, Génon K; Karliner, Josh; Guinto, Renzo R; Zhao, Ang; Narayanan, Divya; Orris, Peter

    2016-02-01

    A global movement is emerging in the health sector to engage in discourse and advocacy on the health impacts and health costs of energy choices--specifically the health harms of extractive, climate-disrupting energy sources such as coal and gas. Individuals and organizations in the health sector have begun to address climate and energy issues at multiple levels of engagement, including with others in the health sector, with pollution-affected communities, with policy makers, and with the media. We present recent examples of health sector advocacy and leadership on the health impacts of energy choices and opportunities for broadening and deepening the movement. © The Author(s) 2016.

  3. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination

    NASA Astrophysics Data System (ADS)

    Tao, Fulu; Feng, Zhaozhong; Tang, Haoye; Chen, Yi; Kobayashi, Kazuhiko

    2017-03-01

    Air pollution and climate change are increasing threats to agricultural production and food security. Extensive studies have focused on the effect of climate change, but the interactive effects of multiple global change factors are poorly understood. Here, we incorporate the interactions between climate change, carbon dioxide (CO2) and ozone (O3) into an eco-physiological mechanistic model based on three years of O3 Free-Air Concentration Elevation (O3-FACE) experiments. We then investigate the effects of climate change, elevated CO2 concentration ([CO2]) and rising O3 concentration ([O3]) on wheat growth and productivity in eastern China in 1996-2005 (2000s) and 2016-2025 (2020s) under two climate change scenarios, singly and in combination. We find the interactive effects of climate change, CO2 and O3 on wheat productivity have spatially explicit patterns; the effect of climate change dominates the general pattern, which is however subject to the large uncertainties of climate change scenarios. Wheat productivity is estimated to increase by 2.8-9.0% due to elevated [CO2] however decline by 2.8-11.7% due to rising [O3] in the 2020s, relative to the 2000s. The combined effects of CO2 and O3 are less than that of O3 only, on average by 4.6-5.2%, however with O3 damage outweighing CO2 benefit in most of the region. This study demonstrates a more biologically meaningful and appropriate approach for assessing the interactive effects of climate change, CO2 and O3 on crop growth and productivity. Our findings promote the understanding on the interactive effects of multiple global change factors across contrasting climate conditions, cast doubt on the potential of CO2 fertilization effect in offsetting possible negative effect of climate change on crop productivity as suggested by many previous studies.

  4. Integrating a Detailed Agricultural Model in a Global Economic Framework: New methods for assessment of climate mitigation and adaptation opportunities

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Calvin, K.; Zhang, X.; Wise, M.; West, T. O.

    2010-12-01

    Climate change and food security are global issues increasingly linked through human decision making that takes place across all scales from on-farm management actions to international climate negotiations. Understanding how agricultural systems can respond to climate change, through mitigation or adaptation, while still supplying sufficient food to feed a growing global population, thus requires a multi-sector tool in a global economic framework. Integrated assessment models are one such tool, however they are typically driven by historical aggregate statistics of production in combination with exogenous assumptions of future trends in agricultural productivity; they are not yet capable of exploring agricultural management practices as climate adaptation or mitigation strategies. Yet there are agricultural models capable of detailed biophysical modeling of farm management and climate impacts on crop yield, soil erosion and C and greenhouse gas emissions, although these are typically applied at point scales that are incompatible with coarse resolution integrated assessment modeling. To combine the relative strengths of these modeling systems, we are using the agricultural model EPIC (Environmental Policy Integrated Climate), applied in a geographic data framework for regional analyses, to provide input to the global economic model GCAM (Global Change Assessment Model). The initial phase of our approach focuses on a pilot region of the Midwest United States, a highly productive agricultural area. We apply EPIC, a point based biophysical process model, at 60 m spatial resolution within this domain and aggregate the results to GCAM agriculture and land use subregions for the United States. GCAM is then initialized with multiple management options for key food and bioenergy crops. Using EPIC to distinguish these management options based on grain yield, residue yield, soil C change and cost differences, GCAM then simulates the optimum distribution of the available management options to meet demands for food and energy over the next century. The coupled models provide a new platform for evaluating future changes in agricultural management based on food demand, bioenergy demand, and changes in crop yield and soil C under a changing climate. This framework can be applied to evaluate the economically and biophysically optimal distribution of management under future climates.

  5. Global Squeeze: Assessing Climate-Critical Resource Constraints for Coastal Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Chase, N. T.; Becker, A.; Schwegler, B.; Fischer, M.

    2014-12-01

    The projected impacts of climate change in the coastal zone will require local planning and local resources to adapt to increasing risks of social, environmental, and economic consequences from extreme events. This means that, for the first time in human history, aggregated local demands could outpace global supply of certain "climate-critical resources." For example, construction materials such as sand and gravel, steel, and cement may be needed to fortify many coastal locations at roughly the same point in time if decision makers begin to construct new storm barriers or elevate coastal lands. Where might adaptation bottlenecks occur? Can the world produce enough cement to armour the world's seaports as flood risks increase due to sea-level rise and more intense storms? Just how many coastal engineers would multiple such projects require? Understanding such global implications of adaptation requires global datasets—such as bathymetry, coastal topography, local sea-level rise and storm surge projections, and construction resource production capacity—that are currently unavailable at a resolution appropriate for a global-scale analysis. Our research group has identified numerous gaps in available data necessary to make such estimates on both the supply and demand sides of this equation. This presentation examines the emerging need and current availability of these types of datasets and argues for new coordinated efforts to develop and share such data.

  6. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  7. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel

    2014-03-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  8. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  9. Water resources sensitivity to the isolated effects of land use, water demand and climate change under 2 degree global warming

    NASA Astrophysics Data System (ADS)

    Bisselink, Berny; Bernhard, Jeroen; de Roo, Ad

    2017-04-01

    One of the key impacts of global change are the future water resources. These water resources are influenced by changes in land use (LU), water demand (WD) and climate change. Recent developments in scenario modelling opened new opportunities for an integrated assessment. However, for identifying water resource management strategies it is helpful to focus on the isolated effects of possible changes in LU, WD and climate that may occur in the near future. In this work, we quantify the isolated contribution of LU, WD and climate to the integrated total water resources assuming a linear model behavior. An ensemble of five EURO-CORDEX RCP8.5 climate projections for the 31-year periods centered on the year of exceeding the global-mean temperature of 2 degree is used to drive the fully distributed hydrological model LISFLOOD for multiple river catchments in Europe. The JRC's Land Use Modelling Platform LUISA was used to obtain a detailed pan-European reference land use scenario until 2050. Water demand is estimated based on socio-economic (GDP, population estimates etc.), land use and climate projections as well. For each climate projection, four model runs have been performed including an integrated (LU, WD and climate) simulation and other three simulations to isolate the effect of LU, WD and climate. Changes relative to the baseline in terms of water resources indicators of the ensemble means of the 2 degree warming period and their associated uncertainties will reveal the integrated and isolated effect of LU, WD and climate change on water resources.

  10. Environmental health risk assessment and management for global climate change

    NASA Astrophysics Data System (ADS)

    Carter, P.

    2014-12-01

    This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline from 2015 (CAN International 2014), and if policy makers are limited to the IPCC AR5 we recommend RCP2.6, with emissions declining by 2020.

  11. The Borderlands and climate change: Chapter 10 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.

    2013-01-01

    The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin -Ho

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  13. Fire in Australian savannas: from leaf to landscape.

    PubMed

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Climate velocity and the future global redistribution of marine biodiversity

    NASA Astrophysics Data System (ADS)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  15. Quantification of physical and economic impacts of climate change on public infrastructure in Alaska and benefits of global greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.

    2015-12-01

    Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to warming at northern latitudes.

  16. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  17. Unraveling multiple changes in complex climate time series using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Berner, Nadine; Trauth, Martin H.; Holschneider, Matthias

    2016-04-01

    Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of observations. Unraveling such transitions yields essential information for the understanding of the observed system. The precise detection and basic characterization of underlying changes is therefore of particular importance in environmental sciences. We present a kernel-based Bayesian inference approach to investigate direct as well as indirect climate observations for multiple generic transition events. In order to develop a diagnostic approach designed to capture a variety of natural processes, the basic statistical features of central tendency and dispersion are used to locally approximate a complex time series by a generic transition model. A Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of such a transition. To systematically investigate time series for multiple changes occurring at different temporal scales, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. Thus, based on a generic transition model a probability expression is derived that is capable to indicate multiple changes within a complex time series. We discuss the method's performance by investigating direct and indirect climate observations. The approach is applied to environmental time series (about 100 a), from the weather station in Tuscaloosa, Alabama, and confirms documented instrumentation changes. Moreover, the approach is used to investigate a set of complex terrigenous dust records from the ODP sites 659, 721/722 and 967 interpreted as climate indicators of the African region of the Plio-Pleistocene period (about 5 Ma). The detailed inference unravels multiple transitions underlying the indirect climate observations coinciding with established global climate events.

  18. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  19. Multiple crises and global health: New and necessary frontiers of health politics

    PubMed Central

    Schrecker, Ted

    2012-01-01

    The world economy is entering an era of multiple crises, involving finance, food security and global environmental change. This article assesses the implications for global public health, describes the contours of post-2007 crises in food security and finance, and then briefly indicates the probable health impacts. There follows a discussion of the crisis of climate change, one that will unfold over a longer time frame but with manifestations that may already be upon us. The article then discusses the political economy of responses to these crises, noting the formidable obstacles that exist to equitable resolution. The article concludes by noting the threat that such crises present to recent progress in global health, arguing that global health researchers and practitioners must become more familiar with the relevant social processes, and that proposed solutions that neglect the continuing importance of the nation-state are misdirected. PMID:22657093

  20. Multiple crises and global health: new and necessary frontiers of health politics.

    PubMed

    Schrecker, Ted

    2012-01-01

    The world economy is entering an era of multiple crises, involving finance, food security and global environmental change. This article assesses the implications for global public health, describes the contours of post-2007 crises in food security and finance, and then briefly indicates the probable health impacts. There follows a discussion of the crisis of climate change, one that will unfold over a longer time frame but with manifestations that may already be upon us. The article then discusses the political economy of responses to these crises, noting the formidable obstacles that exist to equitable resolution. The article concludes by noting the threat that such crises present to recent progress in global health, arguing that global health researchers and practitioners must become more familiar with the relevant social processes, and that proposed solutions that neglect the continuing importance of the nation-state are misdirected.

  1. Global climate simulations with the A1F1 scenario for 2000-2100: Meltwater, temperature and river flow impacts in India

    NASA Astrophysics Data System (ADS)

    Erickson, D. J.; Branstetter, M. L.; Wilbanks, T. J.; Ganguly, A. R.; Hoffman, F. M.; King, A. W.; Buja, L.; Panwar, T. S.

    2008-05-01

    Climate simulations based on the assumptions implicit in the SRES A1F1 scenario for the period 2000-2100 using CCSM3 are analyzed. We find temperature increases of 3-9oC over Northern India by the end of this century. We will discuss the implications and resulting alterations of the hydrologic cycle as the climate evolves from 2000-2100. In particular, we will assess the changes in the surface latent and sensible heat energy budget, the Indian regional water budgets including trends in the timing and duration of the Indian monsoon and the resulting impacts on mean river flow and hydroelectric power generation potential. These analyses will also be examined within the context of heat index, droughts, floods and related estimates of societal robustness and resiliency. We will compare our new insights with the existing literature. Climate simulations based on the SRES A2 and B1 scenarios forced with land cover have indicated increased cloud cover and precipitation, resulting in decreased incident radiation and higher latent heat fluxes, in India during June, July and August by 2050 (Feddema et al., 2005). Analyses of historical records in the context of the Indian Monsoon Rainfall (IMR) have suggested an evolving relation of IMR with natural climate variability caused by El Nino events (Krishna Kumar et al., 2006), studied the combined effects of natural climate variability and global warming (Kripalini et al., 2003) on IMR, as well as demonstrated an increasing trend of extreme rain events in a warming environment (Goswami et al., 2006). In addition, the vulnerability of the Indian agriculture sector to climate change was analyzed and mapped at district-levels by combining with multiple global stressors (O'Brien et al., 2004). [[References::: (1) Feddema, J.J., Oleson, K.W., Bonan, G.B., Mearns, L.O., Buja, L.E., Meehl, G.A., and W.M. Washington (2005): The importance of land-cover change in simulating future climates, Science, 310 (5754): 1674-1678, 9 December.... (2) Goswami, B.N., Venugopal, V., Sengupta, D., Madhusoodanan, and P.K. Xavier (2006): Increasing trend of extreme rain events over India in a warming environment, Science, 314 (5804): 1442-1445, 1 December.... (3) Kripalini, R.H., Kulkarni, A., Sabade, S.S., and M.L. Khandekar (2003): Indian monsoon variability in a global warming scenario, Natural Hazards, 29: 189-206.... (4) Krishna Kumar, M., Rajagolapan, B., Hoerling, M., Bates, G., and M. Cane (2006): Unraveling the mystery of Indian Monsoon failure during El Nino, Science, 314 (5796): 115-119, 6 October.... (5) O'Brien, K., Leichenko, R., Kelkar, U., Venema, H., Aandhal, G., Tompkins, H., Javed, A., Bhadwal, S., Barg, S., Nygaard, L., and J. West (2004): Mapping vulnerability to multiple stressors: climate change and globalization in India, Global Environmental Change, 14: 303-313.

  2. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.

  3. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.

    2015-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment Report.

  4. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    PubMed

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2.

  5. Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

    PubMed Central

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing atmospheric CO2. PMID:25401492

  6. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  7. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    DOE PAGES

    Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; ...

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less

  8. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    NASA Astrophysics Data System (ADS)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.

  9. Global Climate Change for Kids: Making Difficult Ideas Accessible and Exciting

    NASA Astrophysics Data System (ADS)

    Fisher, D. K.; Leon, N.; Greene, M. P.

    2009-12-01

    NASA has recently launched its Global Climate Change web site (http://climate.nasa.gov), and it has been very well received. It has now also launched in preliminary form an associated site for children and educators, with a plan for completion in the near future. The goals of the NASA Global Climate Change Education site are: To increase awareness and understanding of climate change science in upper-elementary and middle-school students, reinforcing and building upon basic concepts introduced in the formal science education curriculum for these grades; To present, insofar as possible, a holistic picture of climate change science and current evidence of climate change, describing Earth as a system of interconnected processes; To be entertaining and motivating; To be clear and easy to understand; To be easy to navigate; To address multiple learning styles; To describe and promote "green" careers; To increase awareness of NASA's contributions to climate change science; To provide valuable resources for educators; To be compliant with Section 508 of the Americans with Disabilities Act. The site incorporates research findings not only on climate change, but also on effective web design for children. It is envisioned that most of the content of the site will ultimately be presented in multimedia forms. These will include illustrated and narrated "slide shows," animated expositions, interactive concept-rich games and demonstrations, videos, animated fictionalized stories, and printable picture galleries. In recognition of the attention span of the audience, content is presented in short, modular form, with a suggested, but not mandatory order of access. Empathetic animal and human cartoon personalities are used to explain concepts and tell stories. Expository, fiction, game, video, text, and image modules are interlinked for reinforcement of similar ideas. NASA's Global Climate Change Education web site addresses the vital need to impart and emphasize Earth system science concepts at or near the beginning of the education pipeline.

  10. Multiple External Representations: Bridges or Barriers to Climate Literacy?

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.

    2012-12-01

    The continuous barrage of science related headlines and other media sources warn us of the need to heed the imperative for a science literate society. Climate change, genetics, evolution are a few of the charged and complex scientific topics requiring public understanding of the science to fully grasp the enormous reach of these topics in our daily lives. For instance, our global climate is changing as evidenced by the analysis of Earth observing satellite data, in-situ data, and proxy data records. How we as a global society decide to address the needs associated with a changing climate are contingent upon having a population that understands how the climate system functions, and can therefore make informed decisions on how to mitigate the effects of climate change. Communication in science relies heavily on the use of multiple representations to support the claims presented. However, these multiple representations require spatial and temporal skills to interpret information portrayed in them, and how a person engages with complex text and the multiple representations varies with the level of expertise one has with the content area. For example, a climatologist will likely identify anomalous data more quickly than a novice when presented with a graph of temperature change over time. These representations are used throughout textbooks as well as popular reading materials such as newspapers and magazines without much consideration for how a reader engages with complex text, diagrams, images, and graphs. If the ability to read and interact with scientific text found in popular literature is perceived as a worthy goal of scientific literacy, then it is imperative that readers understand the relationship between multiple representations and the text while interacting with the science literature they are reading. For example, in climate related articles multiple representations not only support the content, but they are part of the content not to be overlooked by a reader. Climatologists recognize the wealth of data and content found in these representations and therefore find themselves in a position where they can effectively interact with the author and their claims. This expert ability to seamlessly integrate text with the associated representations is at one end of the continuum of scientific text comprehension, but what abilities define a novice and those in between expert and novice in this continuum of scientific text comprehension? This talk will describe an ongoing research project with the overarching goal to establish the balance of this continuum in order to identify scaffolds that will assist non expert readers negotiate meaning from complex scientific text inclusive of multiple representations found in popular literature in climatology. It will inform those creating data representations on how best to create the representations so that claims and causal relationships may be derived from the literature or media source.

  11. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.

  12. Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei

    This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.

  13. Global health benefits of mitigating ozone pollution with methane emission controls.

    PubMed

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  14. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  15. Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) processes at the leaf-to-landscape scales in multiple land uses have important controls and feedbacks for the local, regional and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and cro...

  16. THE INFLUENCE OF GLOBAL CLIMATE CHANGE ON THE SCIENTIFIC FOUNDATIONS AND APPLICATIONS OF ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY: INTRODUCTION TO A SETAC INTERNATIONAL WORKSHOP

    PubMed Central

    Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Environ. Toxicol. Chem. 2013;32:13–19. © 2012 SETAC PMID:23097130

  17. Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species.

    PubMed

    Campos, Fernando A; Morris, William F; Alberts, Susan C; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Pusey, Anne; Stoinski, Tara S; Strier, Karen B; Fedigan, Linda M

    2017-11-01

    Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates. © 2017 John Wiley & Sons Ltd.

  18. Fire in Australian savannas: from leaf to landscape

    PubMed Central

    Beringer, Jason; Hutley, Lindsay B; Abramson, David; Arndt, Stefan K; Briggs, Peter; Bristow, Mila; Canadell, Josep G; Cernusak, Lucas A; Eamus, Derek; Edwards, Andrew C; Evans, Bradley J; Fest, Benedikt; Goergen, Klaus; Grover, Samantha P; Hacker, Jorg; Haverd, Vanessa; Kanniah, Kasturi; Livesley, Stephen J; Lynch, Amanda; Maier, Stefan; Moore, Caitlin; Raupach, Michael; Russell-Smith, Jeremy; Scheiter, Simon; Tapper, Nigel J; Uotila, Petteri

    2015-01-01

    Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management. PMID:25044767

  19. Climate change, livelihoods and the multiple determinants of water adequacy: two approaches at regional to global scale

    NASA Astrophysics Data System (ADS)

    Lissner, Tabea; Reusser, Dominik

    2015-04-01

    Inadequate access to water is already a problem in many regions of the world and processes of global change are expected to further exacerbate the situation. Many aspects determine the adequacy of water resources: beside actual physical water stress, where the resource itself is limited, economic and social water stress can be experienced if access to resource is limited by inadequate infrastructure, political or financial constraints. To assess the adequacy of water availability for human use, integrated approaches are needed that allow to view the multiple determinants in conjunction and provide sound results as a basis for informed decisions. This contribution proposes two parts of an integrated approach to look at the multiple dimensions of water scarcity at regional to global scale. These were developed in a joint project with the German Development Agency (GIZ). It first outlines the AHEAD approach to measure Adequate Human livelihood conditions for wEll-being And Development, implemented at global scale and at national resolution. This first approach allows viewing impacts of climate change, e.g. changes in water availability, within the wider context of AHEAD conditions. A specific focus lies on the uncertainties in projections of climate change and future water availability. As adequate water access is not determined by water availability alone, in a second step we develop an approach to assess the water requirements for different sectors in more detail, including aspects of quantity, quality as well as access, in an integrated way. This more detailed approach is exemplified at region-scale in Indonesia and South Africa. Our results show that in many regions of the world, water scarcity is a limitation to AHEAD conditions in many countries, regardless of differing modelling output. The more detailed assessments highlight the relevance of additional aspects to assess the adequacy of water for human use, showing that in many regions, quality and infrastructure are the main limitations to water security.

  20. Science and policy applicability of the transient climate response to cumulative emissions of carbon

    NASA Astrophysics Data System (ADS)

    Rogelj, J.

    2014-12-01

    The Transient Climate Response to cumulative Carbon Emissions (TCRE) provides a quantification of the near-linear relationship between cumulative emissions of carbon and global-mean temperature increase. For its most recent report, the Intergovernmental Panel on Climate Change bases its assessment on a large body of literature which encompasses multiple lines of evidence. In this session I will look at the literature basis that was available for TCRE at the time of the IPCC Fifth Assessment Report, providing an easy-to-access introduction into the TCRE concept. Building on this basis and summarizing my own recent work on this, I will discuss the strengths and weaknesses of the use of TCRE for climate policy. While the TCRE concept provides a clear long-term view of what is required to stabilize global-mean temperature increase, I will explore how TCRE uncertainties might pose problems for using TCRE as the only policy guidance in near-term policy decisions.

  1. Towards a New Food System Assessment: AgMIP Coordinated Global and Regional Assessments of Climate Change

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Thorburn, Peter

    2017-01-01

    Agricultural stakeholders need more credible information on which to base adaptation and mitigation policy decisions. In order to provide this, we must improve the rigor of agricultural modelling. Ensemble approaches can be used to address scale issues and integrated teams can overcome disciplinary silos. The AgMIP Coordinated Global and Regional Assessments of Climate Change and Food Security (CGRA) has the goal to link agricultural systems models using common protocols and scenarios to significantly improve understanding of climate effects on crops, livestock and livelihoods across multiple scales. The AgMIP CGRA assessment brings together experts in climate, crop, livestock, economics, and food security to develop Protocols to guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including, socioeconomic development, greenhouse gas concentrations, and specific pathways of agricultural sector development. Through these approaches, AgMIP partners around the world are providing an evidence base for their stakeholders as they make decisions and investments.

  2. More frequent moments in the climate change debate as emissions continue

    NASA Astrophysics Data System (ADS)

    Huntingford, Chris; Friedlingstein, Pierre

    2015-12-01

    Recent years have witnessed unprecedented interest in how the burning of fossil fuels may impact on the global climate system. Such visibility of this issue is in part due to the increasing frequency of key international summits to debate emissions levels, including the 2015 21st Conference of Parties meeting in Paris. In this perspective we plot a timeline of significant climate meetings and reports, and against metrics of atmospheric greenhouse gas changes and global temperature. One powerful metric is cumulative CO2 emissions that can be related to past and future warming levels. That quantity is analysed in detail through a set of papers in this ERL focus issue. We suggest it is an open question as to whether our timeline implies a lack of progress in constraining climate change despite multiple recent keynote meetings—or alternatively—that the increasing level of debate is encouragement that solutions will be found to prevent any dangerous warming levels?

  3. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed

    Nabi, Sa; Qader, Ss

    2009-03-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world.This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards.

  4. Interdisciplinary knowledge exchange across scales in a globally changing marine environment.

    PubMed

    McDonald, Karlie S; Hobday, Alistair J; Fulton, Elizabeth A; Thompson, Peter A

    2018-07-01

    The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species-specific regional scale climate change research is most commonly published, and "supporting" is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines. © 2018 John Wiley & Sons Ltd.

  5. EXPLAINING FOREST COMPOSITION AND BIOMASS ACROSS MULTIPLE BIOGEOGRAPHIC REGIONS

    EPA Science Inventory

    Current scientific concerns regarding the impacts of global change include the responses of forest composition and biomass to rapid changes in climate, and forest gap models, have often been used to address this issue. These models reflect the concept that forest composition and...

  6. Multiple states in the late Eocene ocean circulation

    NASA Astrophysics Data System (ADS)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  7. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM atmore » the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops.« less

  8. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community-integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095, particularly with more stringent climate mitigation targets. Under the FFICT scenario, water scarcity is projected to increase, driven by higher water demands for bio-energy crops.

  9. Climate change: the evidence and our options.

    PubMed

    Thompson, Lonnie G

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides some of the strongest evidence to date that a large-scale, pervasive, and, in some cases, rapid change in Earth's climate system is underway. This paper highlights observations of 20th and 21st century glacier shrinkage in the Andes, the Himalayas, and on Mount Kilimanjaro. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds of years to multiple millennia, suggesting that climatological conditions that dominate those regions today are different from those under which these ice fields originally accumulated and have been sustained. The current warming is therefore unusual when viewed from the millennial perspective provided by multiple lines of proxy evidence and the 160-year record of direct temperature measurements. Despite all this evidence, plus the well-documented continual increase in atmospheric greenhouse gas concentrations, societies have taken little action to address this global-scale problem. Hence, the rate of global carbon dioxide emissions continues to accelerate. As a result of our inaction, we have three options: mitigation, adaptation, and suffering.

  10. Climate Change: The Evidence and Our Options

    PubMed Central

    Thompson, Lonnie G

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides some of the strongest evidence to date that a large-scale, pervasive, and, in some cases, rapid change in Earth's climate system is underway. This paper highlights observations of 20th and 21st century glacier shrinkage in the Andes, the Himalayas, and on Mount Kilimanjaro. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds of years to multiple millennia, suggesting that climatological conditions that dominate those regions today are different from those under which these ice fields originally accumulated and have been sustained. The current warming is therefore unusual when viewed from the millennial perspective provided by multiple lines of proxy evidence and the 160-year record of direct temperature measurements. Despite all this evidence, plus the well-documented continual increase in atmospheric greenhouse gas concentrations, societies have taken little action to address this global-scale problem. Hence, the rate of global carbon dioxide emissions continues to accelerate. As a result of our inaction, we have three options: mitigation, adaptation, and suffering. PMID:22532707

  11. On the definition and identifiability of the alleged "hiatus" in global warming.

    PubMed

    Lewandowsky, Stephan; Risbey, James S; Oreskes, Naomi

    2015-11-24

    Recent public debate and the scientific literature have frequently cited a "pause" or "hiatus" in global warming. Yet, multiple sources of evidence show that climate change continues unabated, raising questions about the status of the "hiatus". To examine whether the notion of a "hiatus" is justified by the available data, we first document that there are multiple definitions of the "hiatus" in the literature, with its presumed onset spanning a decade. For each of these definitions we compare the associated temperature trend against trends of equivalent length in the entire record of modern global warming. The analysis shows that the "hiatus" trends are encompassed within the overall distribution of observed trends. We next assess the magnitude and significance of all possible trends up to 25 years duration looking backwards from each year over the past 30 years. At every year during the past 30 years, the immediately preceding warming trend was always significant when 17 years (or more) were included in the calculation, alleged "hiatus" periods notwithstanding. If current definitions of the "pause" used in the literature are applied to the historical record, then the climate system "paused" for more than 1/3 of the period during which temperatures rose 0.6 K.

  12. Overcoming barriers to public understanding of climate change

    NASA Astrophysics Data System (ADS)

    Hayhoe, K.

    2012-12-01

    Humans are interfering with global climate, increasing the risk of serious consequences for human society and the natural environment. As the scientific evidence builds, however, so does the public controversy surrounding this issue. Why is climate change so contentious? What makes it so hard to comprehend? I argue that there is no single reason for this, but rather a perfect storm of multiple confounding factors; scientific, historical, ideological, psychological and even physiological in nature. Education—of both the messengers and the audience—can play a critical role in surmounting many of the common barriers to understanding, accepting, and acting this important issue.

  13. Consequences of 1.5 °C and 2 °C global warming levels for temperature and precipitation changes over Central Africa

    NASA Astrophysics Data System (ADS)

    Pokam Mba, Wilfried; Longandjo, Georges-Noel T.; Moufouma-Okia, Wilfran; Bell, Jean-Pierre; James, Rachel; Vondou, Derbetini A.; Haensler, Andreas; Fotso-Nguemo, Thierry C.; Merlin Guenang, Guy; Djiotang Tchotchou, Angennes Lucie; Kamsu-Tamo, Pierre H.; Takong, Ridick R.; Nikulin, Grigory; Lennard, Christopher J.; Dosio, Alessandro

    2018-05-01

    Discriminating climate impacts between 1.5 °C and 2 °C warming levels is particularly important for Central Africa, a vulnerable region where multiple biophysical, political, and socioeconomic stresses interact to constrain the region’s adaptive capacity. This study uses an ensemble of 25 transient Regional Climate Model (RCM) simulations from the CORDEX initiative, forced with the Representative Concentration Pathway (RCP) 8.5, to investigate the potential temperature and precipitation changes in Central Africa corresponding to 1.5 °C and 2 °C global warming levels. Global climate model simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to drive the RCMs and determine timing of the targeted global warming levels. The regional warming differs over Central Africa between 1.5 °C and 2 °C global warming levels. Whilst there are large uncertainties associated with projections at 1.5 °C and 2 °C, the 0.5 °C increase in global temperature is associated with larger regional warming response. Compared to changes in temperature, changes in precipitation are more heterogeneous and climate model simulations indicate a lack of consensus across the region, though there is a tendency towards decreasing seasonal precipitation in March–May, and a reduction of consecutive wet days. As a drought indicator, a significant increase in consecutive dry days was found. Consistent changes of maximum 5 day rainfall are also detected between 1.5 °C vs. 2 °C global warming levels.

  14. The Consequential Challenges of Climate Change

    DTIC Science & Technology

    2011-03-22

    LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a. REPORT UNCLASSIFED b. ABSTRACT UNCLASSIFED c . THIS PAGE...3 precipitation events. As measured by multiple methods, the global annual average temperature rose 0.13˚ C per decade between 1955 and 2005...The IPCC projects global temperatures will rise by approximately 5 C in the next twenty years and 8 C to 4 C by the end of the century.15 These

  15. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone

    The climate response to geoengineering with stratospheric aerosols has the potential to be designed to achieve some chosen objectives. By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. We use simulations from the fully-coupled whole-atmosphere chemistry-climate model CESM1(WACCM), to demonstrate that three spatial degrees of freedom of AOD can be achieved by appropriately combining injection at different locations: an approximately spatially-uniform AOD distribution, the relative difference in AOD between Northern and Southern hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yieldmore » 1–2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that many climate effects can be predicted from single-latitude injection simulations. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change, relative to a case using only equatorial aerosol injection. The additional degrees of freedom can be used, for example, to balance interhemispheric temperature differences and the equator to pole temperature difference in addition to the global mean temperature; this is projected in this model to reduce the mean-square error in temperature compensation by 30%.« less

  16. Managing for interactions between local and global stressors of ecosystems.

    PubMed

    Brown, Christopher J; Saunders, Megan I; Possingham, Hugh P; Richardson, Anthony J

    2013-01-01

    Global stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem management is thus attempting to compensate for the impacts of global stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects. It is not clear, however, how management should proceed for antagonistic interactions among stressors, where multiple stressors do not have an additive or greater impact. Research to date has focussed on identifying synergisms among stressors, but antagonisms may be just as common. We examined the effectiveness of management when faced with different types of interactions in two systems--seagrass and fish communities--where the global stressor was climate change but the local stressors were different. When there were synergisms, mitigating local stressors delivered greater gains, whereas when there were antagonisms, management of local stressors was ineffective or even degraded ecosystems. These results suggest that reducing a local stressor can compensate for climate change impacts if there is a synergistic interaction. Conversely, if there is an antagonistic interaction, management of local stressors will have the greatest benefits in areas of refuge from climate change. A balanced research agenda, investigating both antagonistic and synergistic interaction types, is needed to inform management priorities.

  17. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14more » geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.« less

  18. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    NASA Astrophysics Data System (ADS)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  19. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981-2010 from multiple satellite products

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Song, Dan-Xia

    2014-09-01

    For several decades, long-term time series data sets of multiple global land surface albedo products have been generated from satellite observations. These data sets have been used as one of the key variables in climate change studies. This study aims to assess the surface albedo climatology and to analyze long-term albedo changes, from nine satellite-based data sets for the period 1981-2010, on a global basis. Results show that climatological surface albedo data sets derived from satellite observations can be used to validate, calibrate, and further improve surface albedo simulations and parameterizations in current climate models. However, the albedo products derived from the International Satellite Cloud Climatology Project and the Global Energy and Water Exchanges Project have large seasonal biases. At latitudes higher than 50°, the maximal difference in winter zonal albedo ranges from 0.1 to 0.4 among the nine satellite data sets. Satellite-based albedo data sets agree relatively well during the summer at high latitudes, with a standard deviation of 0.04 for the 70°-80° zone in both hemispheres. The fine-resolution (0.05°) data sets agree well with each other for all the land cover types in middle to low latitudes; however, large spread was identified for their albedos at middle to high latitudes over land covers with mixed snow and sparse vegetation. By analyzing the time series of satellite-based albedo products over the past three decades, albedo of the Northern Hemisphere was found to be decreasing in July, likely due to the shrinking snow cover. Meanwhile, albedo in January was found to be increasing, likely because of the expansion of snow cover in northern winter. However, to improve the albedo estimation at high latitudes, and ultimately the climate models used for long-term climate change studies, a still better understanding of differences between satellite-based albedo data sets is required.

  20. Tropical warming and the dynamics of endangered primates.

    PubMed

    Wiederholt, Ruscena; Post, Eric

    2010-04-23

    Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.

  1. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Brander, Keith; Luczak, Christophe; Ibanez, Frederic

    2008-11-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.

  2. Coastline degradation as an indicator of global change

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Letcher, Trevor M.

    2009-01-01

    Finding a climate change signal on coasts is more problematic than often assumed. Coasts undergo natural dynamics at many scales, with erosion and recovery in response to climate variability such as El Niño, or extreme events such as storms and infrequent tsunamis. Additionally, humans have had enormous impacts on most coasts, overshadowing most changes that one can presently attribute directly to climate change. Each area of coast is experiencing its own pattern of relative sea-level change and climate change, making discrimination of the component of degradation that results from climate change problems. The best examples of a climate influence are related to temperature rise at low and high latitudes, as seen by the impacts on coral reefs and polar coasts, respectively. Observations through the twentieth century demonstrate the importance of understanding the impacts of sea-level rise and climate change in the context of multiple drivers of change; this will remain a challenge under a more rapidly changing climate. Nevertheless, there are emerging signs that climate change provides a global threat—sea ice is retreating, permafrost in coastal areas is widely melting. Reefs are bleaching more often, and the sea is rising—amplifying widespread trends of subsidence and threatening low-lying areas. To enhance the sustainability of coastal systems, management strategies will also need to address this challenge, focusing on the drivers that are dominant at each section of coast. Global warming through the twentieth century has caused a series of changes with important implications for coastal areas. These include rising temperatures, rising sea level, increasing CO2 concentrations with an associated reduction in seawater pH, and more intense precipitation on average.

  3. Assessing Climate Change in Early Warm Season and Impacts on Wildfire Potential in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Kim, S. H.; Kim, J.; Nghiem, S. V.; Fujioka, F.; Myoung, B.

    2016-12-01

    Wildfires are an important concern in the Southwestern United States (SWUS) where the prevalent semi-arid to arid climate, vegetation types and hot and dry warm seasons challenge strategic fire management. Although they are part of the natural cycle related to the region's climate, significant growth of urban areas and expansion of the wildland-urban interface, have made wildfires a serious high-risk hazard. Previous studies also showed that the SWUS region is prone to frequent droughts due to large variations in wet season rainfall and has suffered from a number of severe wildfires in the recent decades. Despite the increasing trend in large wildfires, future wildfire risk assessment studies at regional scales for proactive adaptations are lacking. Our previous study revealed strong correlations between the North Atlantic Oscillation (NAO) and temperatures during March-June in SWUS. The abnormally warm and dry conditions in an NAO-positive spring, combined with reduced winter precipitation, can cause an early start of a fire season and extend it for several seasons, from late spring to fall. A strong interannual variation of the Keetch-Byram Drought Index (KBDI) during the early warm season was also found in the 35 year period 1979 - 2013 of the North American Regional Reanalysis (NARR) dataset. Thus, it is crucial to investigate the climate change impact that early warm season temperatures have on future wildfire danger potential. Our study reported here examines fine-resolution fire-weather variables for 2041-2070 projected in the North American Regional Climate Change Assessment Program (NARCCAP). The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The local wildfire potential in future climate is investigated using both the Keetch-Byram Drought Index (KBDI) and the Canadian Fire Weather Index (FWI) which have been widely used for assessing wildfire potential in the U.S.A and Canada, respectively.

  4. The More, the Better?! Multiple vs. Single Jobholders’ Job Satisfaction as a Matter of Lacked Information

    PubMed Central

    Kottwitz, Maria U.; Hünefeld, Lena; Frank, Benjamin P.; Otto, Kathleen

    2017-01-01

    In recent decades, the working world has changed dramatically and rising demands on flexibility make the coordination of personal and professional life more difficult. Therefore, it is important that the incumbents are in possession of all necessary information concerning their job. This might be a key issue to remain satisfied. Simultaneously, atypical forms of employment have substantially increased in the labor market; one such form is holding more than one job. While the motives might differ from needing an additional income to broadening job opportunities, practicing several jobs requires coordination and thus, being informed. Building on research regarding organizational constraints and role ambiguity, we hypothesize that the paucity of information is negatively related to (dimensions of) job satisfaction. This effect should be stronger for multiple as compared to single jobbers; specifically when considering the job satisfaction with the social climate, given that being informed by others is an important factor in the coordination of several jobs. Data taken from the BiBB/BAuA-Employment-Survey provide a sample of 17,782 German employees (54% women), including 1,084 multiple jobbers (59% women). Job satisfaction was measured as employees global satisfaction and their satisfaction with facets dimensions: the social climate, structural working conditions, personal growth opportunities, and material incentives they receive for their work. Paucity of information was measured by the frequency of lacked information. Our study indicated that paucity of information was negatively related to both, global and all facets dimensions of job satisfaction. Multiple regression analyses further revealed interaction effects of paucity of information and form of employment. Specifically, the negative correlation of paucity of information with global as well as satisfaction with the social climate was stronger for employees’ holding more than one job. These results were independent of age, gender, organizational tenure, working hours, socioeconomic occupational status, as well as important working conditions (workload and autonomy). Incumbents with less paucity of necessary job-related information are more satisfied, especially when they hold multiple jobs. Supervisors and colleagues are advised to provide all necessary information and to ensure that employees retain it. PMID:28798709

  5. The More, the Better?! Multiple vs. Single Jobholders' Job Satisfaction as a Matter of Lacked Information.

    PubMed

    Kottwitz, Maria U; Hünefeld, Lena; Frank, Benjamin P; Otto, Kathleen

    2017-01-01

    In recent decades, the working world has changed dramatically and rising demands on flexibility make the coordination of personal and professional life more difficult. Therefore, it is important that the incumbents are in possession of all necessary information concerning their job. This might be a key issue to remain satisfied. Simultaneously, atypical forms of employment have substantially increased in the labor market; one such form is holding more than one job. While the motives might differ from needing an additional income to broadening job opportunities, practicing several jobs requires coordination and thus, being informed. Building on research regarding organizational constraints and role ambiguity, we hypothesize that the paucity of information is negatively related to (dimensions of) job satisfaction. This effect should be stronger for multiple as compared to single jobbers; specifically when considering the job satisfaction with the social climate, given that being informed by others is an important factor in the coordination of several jobs. Data taken from the BiBB/BAuA-Employment-Survey provide a sample of 17,782 German employees (54% women), including 1,084 multiple jobbers (59% women). Job satisfaction was measured as employees global satisfaction and their satisfaction with facets dimensions: the social climate, structural working conditions, personal growth opportunities, and material incentives they receive for their work. Paucity of information was measured by the frequency of lacked information. Our study indicated that paucity of information was negatively related to both, global and all facets dimensions of job satisfaction. Multiple regression analyses further revealed interaction effects of paucity of information and form of employment. Specifically, the negative correlation of paucity of information with global as well as satisfaction with the social climate was stronger for employees' holding more than one job. These results were independent of age, gender, organizational tenure, working hours, socioeconomic occupational status, as well as important working conditions (workload and autonomy). Incumbents with less paucity of necessary job-related information are more satisfied, especially when they hold multiple jobs. Supervisors and colleagues are advised to provide all necessary information and to ensure that employees retain it.

  6. Hydrological Climate Classification: Can We Improve on Köppen-Geiger?

    NASA Astrophysics Data System (ADS)

    Knoben, W.; Woods, R. A.; Freer, J. E.

    2017-12-01

    Classification is essential in the study of complex natural systems, yet hydrology so far has no formal way to structure the climate forcing which underlies hydrologic response. Various climate classification systems can be borrowed from other disciplines but these are based on different organizing principles than a hydrological classification might use. From gridded global data we calculate a gridded aridity index, an aridity seasonality index and a rain-vs-snow index, which we use to cluster global locations into climate groups. We then define the membership degree of nearly 1100 catchments to each of our climate groups based on each catchment's climate and investigate the extent to which streamflow responses within each climate group are similar. We compare this climate classification approach with the often-used Köppen-Geiger classification, using statistical tests based on streamflow signature values. We find that three climate indices are sufficient to distinguish 18 different climate types world-wide. Climates tend to change gradually in space and catchments can thus belong to multiple climate groups, albeit with different degrees of membership. Streamflow responses within a climate group tend to be similar, regardless of the catchments' geographical proximity. A Wilcoxon two-sample test based on streamflow signature values for each climate group shows that the new classification can distinguish different flow regimes using this classification scheme. The Köppen-Geiger approach uses 29 climate classes but is less able to differentiate streamflow regimes. Climate forcing exerts a strong control on typical hydrologic response and both change gradually in space. This makes arbitrary hard boundaries in any classification scheme difficult to defend. Any hydrological classification should thus acknowledge these gradual changes in forcing. Catchment characteristics (soil or vegetation type, land use, etc) can vary more quickly in space than climate does, which can explain streamflow differences between geographically close locations. Summarizing, this work shows that hydrology needs its own way to structure climate forcing, acknowledging that climates vary gradually on a global scale and explicitly including those climate aspects that drive seasonal changes in hydrologic regimes.

  7. Multi-objective optimization for generating a weighted multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2017-12-01

    Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.

  8. Spatiotemporal Trends in late-Holocene Fire Regimes in Arctic and Boreal Alaska

    NASA Astrophysics Data System (ADS)

    Hoecker, T. J.; Higuera, P. E.; Hu, F.; Kelly, R.

    2015-12-01

    Alaskan arctic and boreal ecosystems are of global importance owing to their sensitivity and feedbacks to directional climate change. Wildfires are a primary driver of boreal carbon balance, and altered fire regimes may significantly impact global climate through the release of stored carbon and changes to surface albedo. Paleoecological records provide a window to how these systems respond to change by revealing climatic and disturbance variability throughout the Holocene. These long-term records highlight the sensitivity of fire regimes to climate and vegetation change, including responses to the relatively warm Medieval Climate Anomaly (MCA), and the relatively cool Little Ice Age (LIA). Over millennial timescales, boreal forests and arctic tundra have been resilient to climate change, but continued directional climate change may result in novel vegetation compositions and fire regimes, with potentially significant implications for global climate. Here we present a spatiotemporal synthesis of 22 published sediment-charcoal records from three Alaskan ecoregions. We add to this network eight records collected in June 2015 from an additional ecoregion. Variability in fire return intervals (FRIs) was quantified within and among ecoregions and climatic periods spanning the past 2 millennia, based on a peak analysis representing local fire events. Preliminary results suggest that fire regimes were responsive to centennial-scale climatic shifts, including the MCA and LIA, but the degree of sensitivity varies by ecoregion. Over the past 2000 years, FRIs were shortest during the MCA, indicating the potential for climate warming to promote high rates of burning. FRIs in tundra regions of northwestern Alaska and in interior boreal forests were 20% shorter during the MCA than during the LIA, and 25% shorter in boreal forest in the south-central Brooks Range. Burning was likely promoted during the warmer, drier MCA through lower fuel moisture. Quantifying fire-regime response to climate forcing across multiple ecoregions helps reveal the mechanisms that connect fire and climate in Alaskan ecosystems.

  9. Climate warming drives local extinction: Evidence from observation and experimentation.

    PubMed

    Panetta, Anne Marie; Stanton, Maureen L; Harte, John

    2018-02-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant ( Androsace septentrionalis ). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues.

  10. Climate warming drives local extinction: Evidence from observation and experimentation

    PubMed Central

    Panetta, Anne Marie; Stanton, Maureen L.; Harte, John

    2018-01-01

    Despite increasing concern about elevated extinction risk as global temperatures rise, it is difficult to confirm causal links between climate change and extinction. By coupling 25 years of in situ climate manipulation with experimental seed introductions and both historical and current plant surveys, we identify causal, mechanistic links between climate change and the local extinction of a widespread mountain plant (Androsace septentrionalis). Climate warming causes precipitous declines in population size by reducing fecundity and survival across multiple life stages. Climate warming also purges belowground seed banks, limiting the potential for the future recovery of at-risk populations under ameliorated conditions. Bolstered by previous reports of plant community shifts in this experiment and in other habitats, our findings not only support the hypothesis that climate change can drive local extinction but also foreshadow potentially widespread species losses in subalpine meadows as climate warming continues. PMID:29507884

  11. Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change.

    PubMed

    Burggren, Warren

    2018-05-10

    The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival. © 2018. Published by The Company of Biologists Ltd.

  12. Global intensification in observed short-duration rainfall extremes

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.

    2017-12-01

    Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.

  13. Southwestern Pine Forests Likely to Disappear

    ScienceCinema

    McDowell, Nathan

    2018-01-16

    A new study, led by Los Alamos National Laboratory's Nathan McDowell, suggests that widespread loss of a major forest type, the pine-juniper woodlands of the Southwestern U.S., could be wiped out by the end of this century due to climate change, and that conifers throughout much of the Northern Hemisphere may be on a similar trajectory. New results, reported in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. McDowell and his large international team strove to provide the missing pieces of understanding tree death at three levels: plant, regional and global. The team rigorously developed and evaluated multiple process-based and empirical models against experimental results, and then compared these models to results from global vegetation models to examine independent simulations. They discovered that the global models simulated mortality throughout the Northern Hemisphere that was of similar magnitude, but much broader spatial scale, as the evaluated ecosystem models predicted for in the Southwest.

  14. Nuclear power: renaissance or relapse? Global climate change and long-term Three Mile Island activists' narratives.

    PubMed

    Culley, Marci R; Angelique, Holly

    2010-06-01

    Community narratives are increasingly important as people move towards an ecologically sustainable society. Global climate change is a multi-faceted problem with multiple stakeholders. The voices of affected communities must be heard as we make decisions of global significance. We document the narratives of long-term anti-nuclear activists near the Three Mile Island (TMI) nuclear power plant who speak out in the dawn of a nuclear renaissance/relapse. While nuclear power is marketed as a "green" solution to global warming, their narratives reveal three areas for consideration; (1) significant problems with nuclear technology, (2) lessons "not" learned from the TMI disaster, and (3) hopes for a sustainable future. Nuclear waste, untrustworthy officials and economic issues were among the problems cited. Deceptive shaping of public opinion, nuclear illiteracy, and an aging anti-nuclear movement were reasons cited for the lessons not learned. However, many remain optimistic and envision increased participation to create an ecologically-balanced world.

  15. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils.

    PubMed

    Zomer, Robert J; Bossio, Deborah A; Sommer, Rolf; Verchot, Louis V

    2017-11-14

    The role of soil organic carbon in global carbon cycles is receiving increasing attention both as a potentially large and uncertain source of CO 2 emissions in response to predicted global temperature rises, and as a natural sink for carbon able to reduce atmospheric CO 2 . There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential. Croplands worldwide could sequester between 0.90 and 1.85 Pg C/yr, i.e. 26-53% of the target of the "4p1000 Initiative: Soils for Food Security and Climate". The importance of intensively cultivated regions such as North America, Europe, India and intensively cultivated areas in Africa, such as Ethiopia, is highlighted. Soil carbon sequestration and the conservation of existing soil carbon stocks, given its multiple benefits including improved food production, is an important mitigation pathway to achieve the less than 2 °C global target of the Paris Climate Agreement.

  16. Southwestern Pine Forests Likely to Disappear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Nathan

    A new study, led by Los Alamos National Laboratory's Nathan McDowell, suggests that widespread loss of a major forest type, the pine-juniper woodlands of the Southwestern U.S., could be wiped out by the end of this century due to climate change, and that conifers throughout much of the Northern Hemisphere may be on a similar trajectory. New results, reported in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. McDowell and his large international team strove to provide the missing pieces of understanding tree death at three levels: plant, regional and global. The teammore » rigorously developed and evaluated multiple process-based and empirical models against experimental results, and then compared these models to results from global vegetation models to examine independent simulations. They discovered that the global models simulated mortality throughout the Northern Hemisphere that was of similar magnitude, but much broader spatial scale, as the evaluated ecosystem models predicted for in the Southwest.« less

  17. Interpretation of Trace Gas Data Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1997-01-01

    This is a theoretical research project aimed at: (1) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (2) utilization of inverse methods to determine these source/sink strengths which use the NCAR/Boulder CCM2-T42 3-D model and a global 3-D Model for Atmospheric Transport and Chemistry (MATCH) which is based on analyzed observed wind fields (developed in collaboration by MIT and NCAR/Boulder), (3) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and, (4) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3-D models. Important goals include determination of regional source strengths of methane, nitrous oxide, and other climatically and chemically important biogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements and hydrohalocarbons used as alternatives to the restricted halocarbons.

  18. National climate policies across Europe and their impacts on cities strategies.

    PubMed

    Heidrich, O; Reckien, D; Olazabal, M; Foley, A; Salvia, M; de Gregorio Hurtado, S; Orru, H; Flacke, J; Geneletti, D; Pietrapertosa, F; Hamann, J J-P; Tiwary, A; Feliu, E; Dawson, R J

    2016-03-01

    Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Agriculturally Relevant Climate Extremes and Their Trends in the World's Major Growing Regions

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Troy, Tara J.

    2018-04-01

    Climate extremes can negatively impact crop production, and climate change is expected to affect the frequency and severity of extremes. Using a combination of in situ station measurements (Global Historical Climatology Network's Daily data set) and multiple other gridded data products, a derived 1° data set of growing season climate indices and extremes is compiled over the major growing regions for maize, wheat, soybean, and rice for 1951-2006. This data set contains growing season climate indices that are agriculturally relevant, such as the number of hot days, duration of dry spells, and rainfall intensity. Before 1980, temperature-related indices had few trends; after 1980, statistically significant warming trends exist for each crop in the majority of growing regions. In particular, crops have increasingly been exposed to extreme hot temperatures, above which yields have been shown to decline. Rainfall trends are less consistent compared to temperature, with some regions receiving more rainfall and others less. Anomalous temperature and precipitation conditions are shown to often occur concurrently, with dry growing seasons more likely to be hotter, have larger drought indices, and have larger vapor pressure deficits. This leads to the confluence of a variety of climate conditions that negatively impact crop yields. These results show a consistent increase in global agricultural exposure to negative climate conditions since 1980.

  20. Climate Golden Age or Greenhouse Gas Dark Age Legacy?

    NASA Astrophysics Data System (ADS)

    Carter, P.

    2016-12-01

    Relying on the IPCC Assessments, this paper assesses legacy from total committed global warming over centuries, correlated with comprehensive projected impacts. Socio-economic inertia, climate system inertia, atmospheric greenhouse gas (GHG) concentrations, amplifying feedback emissions, and unmasking of cooling aerosols are determinants. Stabilization of global temperature (and ocean acidification for CO2) requires emissions of "long lived greenhouse gases" to be "about zero," including feedbacks. "The feedback … is positive" this century; many large feedback sources tend to be self- and inter-reinforcing. Only timely total conversion of all fossil fuel power to clean, virtually zero-carbon renewable power can achieve virtual zero carbon emissions. This results in multiple, increasing benefits for the entire world population of today's and all future generations, as laid out here. Conversions of methane- and nitrous oxide-emitting sources have large benefits. Without timely conversion to virtual zero emissions, the global climate and ocean disruptions are predicted to become progressively more severe and practically irreversible. "Continued emission of greenhouse gases will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems." Crop yields in all main food-producing regions are projected to decline progressively with rising temperature (as proxy to multiple adverse effects) (AR5). Ocean heating, acidification, and de-oxygenation are projected to increase under all scenarios, as is species extinction. The legacy for humanity depends on reducing long-lived global emissions fast enough to virtual zero. Today's surface warming with unprecedented and accelerating atmospheric GHG concentrations requires an immediate response. The only IPCC scenario to possibly meet this and not exceed 2ºC by and after 2100 is the best-case RCP2.6, which requires CO2 eq. emissions to peak right away and decline at the latest by 2020.

  1. Assessments of Future Maize Yield Potential Changes in the Korean Peninsula Using Multiple Crop Models

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.

    2016-12-01

    The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas concentration pathways. The results indicate that the projected Yp in the Korean peninsula is significantly changed comparing to the historical period and proper adaptation strategies such as optimized planting dates can considerably alleviate Yp decrease.

  2. The Multitrophic Effects of Climate Change and Glacier Retreat in Mountain Rivers

    PubMed Central

    2017-01-01

    Abstract Climate change is driving the thinning and retreat of many glaciers globally. Reductions of ice-melt inputs to mountain rivers are changing their physicochemical characteristics and, in turn, aquatic communities. Glacier-fed rivers can serve as model systems for investigations of climate-change effects on ecosystems because of their strong atmospheric–cryospheric links, high biodiversity of multiple taxonomic groups, and significant conservation interest concerning endemic species. From a synthesis of existing knowledge, we develop a new conceptual understanding of how reducing glacier cover affects organisms spanning multiple trophic groups. Although the response of macroinvertebrates to glacier retreat has been well described, we show that there remains a relative paucity of information for biofilm, microinvertebrate, and vertebrate taxa. Enhanced understanding of whole river food webs will improve the prediction of river-ecosystem responses to deglaciation while offering the potential to identify and protect a wider range of sensitive and threatened species. PMID:29599537

  3. The Multitrophic Effects of Climate Change and Glacier Retreat in Mountain Rivers.

    PubMed

    Fell, Sarah C; Carrivick, Jonathan L; Brown, Lee E

    2017-10-01

    Climate change is driving the thinning and retreat of many glaciers globally. Reductions of ice-melt inputs to mountain rivers are changing their physicochemical characteristics and, in turn, aquatic communities. Glacier-fed rivers can serve as model systems for investigations of climate-change effects on ecosystems because of their strong atmospheric-cryospheric links, high biodiversity of multiple taxonomic groups, and significant conservation interest concerning endemic species. From a synthesis of existing knowledge, we develop a new conceptual understanding of how reducing glacier cover affects organisms spanning multiple trophic groups. Although the response of macroinvertebrates to glacier retreat has been well described, we show that there remains a relative paucity of information for biofilm, microinvertebrate, and vertebrate taxa. Enhanced understanding of whole river food webs will improve the prediction of river-ecosystem responses to deglaciation while offering the potential to identify and protect a wider range of sensitive and threatened species.

  4. A paradigm shift toward a consistent modeling framework to assess climate impacts

    NASA Astrophysics Data System (ADS)

    Monier, E.; Paltsev, S.; Sokolov, A. P.; Fant, C.; Chen, H.; Gao, X.; Schlosser, C. A.; Scott, J. R.; Dutkiewicz, S.; Ejaz, Q.; Couzo, E. A.; Prinn, R. G.; Haigh, M.

    2017-12-01

    Estimates of physical and economic impacts of future climate change are subject to substantial challenges. To enrich the currently popular approaches of assessing climate impacts by evaluating a damage function or by multi-model comparisons based on the Representative Concentration Pathways (RCPs), we focus here on integrating impacts into a self-consistent coupled human and Earth system modeling framework that includes modules that represent multiple physical impacts. In a sample application we show that this framework is capable of investigating the physical impacts of climate change and socio-economic stressors. The projected climate impacts vary dramatically across the globe in a set of scenarios with global mean warming ranging between 2.4°C and 3.6°C above pre-industrial by 2100. Unabated emissions lead to substantial sea level rise, acidification that impacts the base of the oceanic food chain, air pollution that exceeds health standards by tenfold, water stress that impacts an additional 1 to 2 billion people globally and agricultural productivity that decreases substantially in many parts of the world. We compare the outcomes from these forward-looking scenarios against the common goal described by the target-driven scenario of 2°C, which results in much smaller impacts. It is challenging for large internationally coordinated exercises to respond quickly to new policy targets. We propose that a paradigm shift toward a self-consistent modeling framework to assess climate impacts is needed to produce information relevant to evolving global climate policy and mitigation strategies in a timely way.

  5. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe.

    PubMed

    Durán, Jorge; Delgado-Baquerizo, Manuel; Dougill, Andrew J; Guuroh, Reginald T; Linstädter, Anja; Thomas, Andrew D; Maestre, Fernando T

    2018-05-01

    The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change. © 2018 by the Ecological Society of America.

  6. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement

    USDA-ARS?s Scientific Manuscript database

    To address the multiple challenges to food security posed by global climate change, population growth and rising incomes, plant breeders are developing new crop varieties that can enhance both agricultural productivity and environmental sustainability. Current breeding practices, however, are unable...

  7. Bringing Them in: The Experiences of Imported and Overseas-Qualified Teachers

    ERIC Educational Resources Information Center

    Sharplin, Elaine

    2009-01-01

    This qualitative multiple-site case study explores the experiences of imported and overseas-qualified teachers appointed to fill "difficult-to-staff" Western Australian rural schools. In a climate of global teacher shortages, investigation of the strategies adopted to solve this problem requires empirical examination. The study of six…

  8. Wood Energy Production, Sustainable Farming Livelihood and Multifunctionality in Finland

    ERIC Educational Resources Information Center

    Huttunen, Suvi

    2012-01-01

    Climate change and the projected depletion of fossil energy resources pose multiple global challenges. Innovative technologies offer interesting possibilities to achieve more sustainable outcomes in the energy production sector. Local, decentralized alternatives have the potential to sustain livelihoods in rural areas. One example of such a…

  9. A keyword approach to finding common ground in community-based definitions of human well-being

    EPA Science Inventory

    Ecosystem-based management involves the integration of ecosystem services and their human beneficiaries into decision making. This can occur at multiple scales; addressing global issues such as climate change down to local problems such as flood protection and maintaining water q...

  10. Subtropical Climate Variability since the Last Glacial Maximum from Speleothem Precipitation Reconstructions in Florida

    NASA Astrophysics Data System (ADS)

    Polk, J.; van Beynen, P.; DeLong, K. L.; Asmerom, Y.; Polyak, V. J.

    2017-12-01

    Teleconnections between the tropical-subtropical regions of the Americas since the Last Glacial Maximum (LGM), particularly the Mid- to Late-Holocene, and high-resolution proxy records refining climate variability over this period continue to receive increasing attention. Here, we present a high-resolution, precisely dated speleothem record spanning multiple periods of time since the LGM ( 30 ka) for the Florida peninsula. The data indicate that the amount effect plays a significant role in determining the isotopic signal of the speleothem calcite. Collectively, the records indicate distinct differences in climate in the region between the LGM, Mid-Holocene, and Late Holocene, including a progressive shift in ocean composition and precipitation isotopic values through the period, suggesting Florida's sensitivity to regional and global climatic shifts. Comparisons between speleothem δ18O values and Gulf of Mexico marine records reveal a strong connection between the Gulf region and the terrestrial subtropical climate in the Late Holocene, while the North Atlantic's influence is clear in the earlier portions of the record. Warmer sea surface temperatures correspond to enhanced evaporation, leading to more intense atmospheric convection in Florida, and thereby modulating the isotopic composition of rainfall above the cave. These regional signals in climate extend from the subtropics to the tropics, with a clear covariance between the speleothem signal and other proxy records from around the region, as well as global agreement during the LGM period with other records. These latter connections appear to be driven by changes in the mean position of the Intertropical Convergence Zone and time series analysis of the δ18O values reveals significant multidecadal periodicities in the record, which are evidenced by agreement with the AMV and other multidecadal influences (NAO and PDO) likely having varying influence throughout the period of record. The climate variability recorded in our record suggests complex responses to major and abrupt shifts during these periods, likely due to Florida's subtropical location and the influence of multiple climate forcing mechanisms in the region.

  11. Interannual Variations in Global Vegetation Phenology Derived from a Long Term AVHRR and MODIS Data Record

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Friedl, M. A.; Yu, Y.

    2013-12-01

    Land surface phenology metrics are widely retrieved from satellite observations at regional and global scales, and have been shown to be valuable for monitoring terrestrial ecosystem dynamics in response to extreme climate events and predicting biological responses to future climate scenarios. While the response of spring vegetation greenup to climate warming at mid-to-high latitudes is well-documented, understanding of diverse phenological responses to climate change over entire growing cycles and at broad geographic scales is incomplete. Many studies assume that the timing of individual phenological indicators in responses to climate forcing is independent of phenological events that occur at other times during the growing season. In this paper we use a different strategy. Specifically, we hypothesize that integrating sequences of key phenological indicators across growing seasons provides a more effective way to capture long-term variation in phenology in response to climate change. To explore this hypothesis we use global land surface phenology metrics derived from the Version 3 Long Term Vegetation Index Products from Multiple Satellite Data Records data set to examine interannual variations and trends in global land surface phenology from 1982-2010. Using daily enhanced vegetation index (EVI) data at a spatial resolution of 0.05 degrees, we model the phenological trajectory for each individual pixel using piecewise logistic models. The modeled trajectories were then used to detect phenological indicators including the onset of greenness increase, the onset of greenness maximum, the onset of greenness decrease, the onset of greenness minimum, and the growing season length, among others at global scale. The quality of land surface phenology detection for individual pixels was calculated based on metrics that characterize the EVI quality and model fits in annual time series at each pixel. Phenological indicators characterized as having good quality were then used to detect interannual variation and long-term trends using linear and nonlinear trend analysis techniques.

  12. Avoided economic impacts of energy demand changes by 1.5 and 2 °C climate stabilization

    NASA Astrophysics Data System (ADS)

    Park, Chan; Fujimori, Shinichiro; Hasegawa, Tomoko; Takakura, Jun’ya; Takahashi, Kiyoshi; Hijioka, Yasuaki

    2018-04-01

    Energy demand associated with space heating and cooling is expected to be affected by climate change. There are several global projections of space heating and cooling use that take into consideration climate change, but a comprehensive uncertainty of socioeconomic and climate conditions, including a 1.5 °C global mean temperature change, has never been assessed. This paper shows the economic impact of changes in energy demand for space heating and cooling under multiple socioeconomic and climatic conditions. We use three shared socioeconomic pathways as socioeconomic conditions. For climate conditions, we use two representative concentration pathways that correspond to 4.0 °C and 2.0 °C scenarios, and a 1.5 °C scenario driven from the 2.0 °C scenario with assumption in conjunction with five general circulation models. We find that the economic impacts of climate change are largely affected by socioeconomic assumptions, and global GDP change rates range from +0.21% to ‑2.01% in 2100 under the 4.0 °C scenario, depending on the socioeconomic condition. Sensitivity analysis that differentiates the thresholds of heating and cooling degree days clarifies that the threshold is a strong factor that generates these differences. Meanwhile, the impact of the 1.5 °C is small regardless of socioeconomic assumptions (‑0.02% to ‑0.06%). The economic loss caused by differences in socioeconomic assumption under the 1.5 °C scenario is much smaller than that under the 2 °C scenario, which implies that stringent climate mitigation can work as a risk hedge to socioeconomic development diversity.

  13. Spatio-temporal variation in fitness responses to contrasting environments in Arabidopsis thaliana.

    PubMed

    Exposito-Alonso, Moises; Brennan, Adrian C; Alonso-Blanco, Carlos; Picó, F Xavier

    2018-06-27

    The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness-related traits can be heterogeneous over time. We estimated selection of life-history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north-western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north-western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north-western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  14. Global Single and Multiple Cloud Classification with a Fuzzy Logic Expert System

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Tovinkere, Vasanth; Titlow, James; Baum, Bryan A.

    1996-01-01

    An unresolved problem in remote sensing concerns the analysis of satellite imagery containing both single and multiple cloud layers. While cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget, most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. Coakley (1983) used a spatial coherence method to determine whether a region contained more than one cloud layer. Baum et al. (1995) developed a scheme for detection and analysis of daytime multiple cloud layers using merged AVHRR (Advanced Very High Resolution Radiometer) and HIRS (High-resolution Infrared Radiometer Sounder) data collected during the First ISCCP Regional Experiment (FIRE) Cirrus 2 field campaign. Baum et al. (1995) explored the use of a cloud classification technique based on AVHRR data. This study examines the feasibility of applying the cloud classifier to global satellite imagery.

  15. Estimation of biogeochemical climate regulation services in Chinese forest ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, S.

    2016-12-01

    As the global climate is changing, the climate regulation service of terrestrial ecosystem has been widely studied. Forests, as one of the most important terrestrial ecosystem types, is the biggest carbon pool or sink on land and can regulate climate through both biophysical and biogeochemical means. China is a country with vast forested areas and a variety of forest ecosystems types. Although current studies have related the climate regulation service of forest in China with biophysical or biogeochemical mechanism, there is still a lack of quantitative estimation of climate regulation services, especially for the biogeochemical climate regulation service. The GHGV (greenhouse gas value) is an indicator that can quantify the biochemical climate regulation service using ecosystems' stored organic matter, annual greenhouse gas flux, and potential greenhouse gas exchange rates during disturbances over a multiple year time frame. Therefore, we used GHGV to estimate the contribution of China's ten main forest types to biogeochemical climate regulation and generate the pattern of biochemical climate regulation service in Chinese forest ecosystems.

  16. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective.

    PubMed

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-02-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The 'evolving metacommunity' framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats.

  17. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective

    PubMed Central

    Urban, Mark C; De Meester, Luc; Vellend, Mark; Stoks, Robby; Vanoverbeke, Joost

    2012-01-01

    We need to understand joint ecological and evolutionary responses to climate change to predict future threats to biological diversity. The ‘evolving metacommunity’ framework emphasizes that interactions between ecological and evolutionary mechanisms at both local and regional scales will drive community dynamics during climate change. Theory suggests that ecological and evolutionary dynamics often interact to produce outcomes different from those predicted based on either mechanism alone. We highlight two of these dynamics: (i) species interactions prevent adaptation of nonresident species to new niches and (ii) resident species adapt to changing climates and thereby prevent colonization by nonresident species. The rate of environmental change, level of genetic variation, source-sink structure, and dispersal rates mediate between these potential outcomes. Future models should evaluate multiple species, species interactions other than competition, and multiple traits. Future experiments should manipulate factors such as genetic variation and dispersal to determine their joint effects on responses to climate change. Currently, we know much more about how climates will change across the globe than about how species will respond to these changes despite the profound effects these changes will have on global biological diversity. Integrating evolving metacommunity perspectives into climate change biology should produce more accurate predictions about future changes to species distributions and extinction threats. PMID:25568038

  18. Sensitivity of leaf size and shape to climate: Global patterns and paleoclimatic applications

    USGS Publications Warehouse

    Peppe, D.J.; Royer, D.L.; Cariglino, B.; Oliver, S.Y.; Newman, S.; Leight, E.; Enikolopov, G.; Fernandez-Burgos, M.; Herrera, F.; Adams, J.M.; Correa, E.; Currano, E.D.; Erickson, J.M.; Hinojosa, L.F.; Hoganson, J.W.; Iglesias, A.; Jaramillo, C.A.; Johnson, K.R.; Jordan, G.J.; Kraft, N.J.B.; Lovelock, E.C.; Lusk, C.H.; Niinemets, U.; Penuelas, J.; Rapson, G.; Wing, S.L.; Wright, I.J.

    2011-01-01

    Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (??4.0 vs 4.8??C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships. ?? 2011 The Authors. New Phytologist ?? 2011 New Phytologist Trust.

  19. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

  20. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  1. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall

    DOE PAGES

    Yoon, Jin -Ho

    2015-12-07

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  2. The Agricultural Model Intercomparison and Improvement Project: Phase I Activities by a Global Community of Science. Chapter 1

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Jones, James W.; Hatfield, Jerry L.; Antle, John M.; Ruane, Alexander C.; Mutter, Carolyn Z.

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.

  3. Climate change impacts on West Nile virus transmission in a global context

    PubMed Central

    Paz, Shlomit

    2015-01-01

    West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change. PMID:25688020

  4. Towards a global water scarcity risk assessment framework: using scenarios and risk distributions

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Philip

    2016-04-01

    Over the past decades, changing hydro-climatic and socioeconomic conditions have led to increased water scarcity problems. A large number of studies have shown that these water scarcity conditions will worsen in the near future. Despite numerous calls for risk-based assessments of water scarcity, a framework that includes UNISDR's definition of risk does not yet exist at the global scale. This study provides a first step towards such a risk-based assessment, applying a Gamma distribution to estimate water scarcity conditions at the global scale under historic and future conditions, using multiple climate change projections and socioeconomic scenarios. Our study highlights that water scarcity risk increases given all future scenarios, up to >56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity in terms of Expected Annual Exposed Population, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels. Covering hazard, exposure, and vulnerability, risk-based methods are well-suited to assess water scarcity adaptation. Completing the presented risk framework therefore offers water managers a promising perspective to increase water security in a well-informed and adaptive manner.

  5. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    PubMed

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The risk of water scarcity at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Schewe, Jacob; Sharpe, Simon

    2015-04-01

    Water scarcity is a threat to human well-being and economic development in many countries today. Future climate change is expected to exacerbate the global water crisis by reducing renewable freshwater resources different world regions, many of which are already dry. Studies of future water scarcity often focus on most-likely, or highest-confidence, scenarios. However, multi-model projections of water resources reveal large uncertainty ranges, which are due to different types of processes (climate, hydrology, human) and are therefore not easy to reduce. Thus, central estimates or multi-model mean results may be insufficient to inform policy and management. Here we present an alternative, risk-based approach. We use an ensemble of multiple global climate and hydrological models to quantify the likelihood of crossing a given water scarcity threshold under different levels of global warming. This approach allows assessing the risk associated with any particular, pre-defined threshold (or magnitude of change that must be avoided), regardless of whether it lies in the center or in the tails of the uncertainty distribution. We show applications of this method on the country and river basin scale, illustrate the effects of societal processes on the resulting risk estimates, and discuss the further potential of this approach for research and stakeholder dialogue.

  7. Air Pollution Prevention and Control Policy in China.

    PubMed

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  8. An observationally constrained estimate of global dust aerosol optical depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, David A.; Heald, Colette L.; Kok, Jasper F.

    Here, the role of mineral dust in climate and ecosystems has been largely quantified using global climate and chemistry model simulations of dust emission, transport, and deposition. However, differences between these model simulations are substantial, with estimates of global dust aerosol optical depth (AOD) that vary by over a factor of 5. Here we develop an observationally based estimate of the global dust AOD, using multiple satellite platforms, in situ AOD observations and four state-of-the-science global models over 2004–2008. We estimate that the global dust AOD at 550 nm is 0.030 ± 0.005 (1σ), higher than the AeroCom model medianmore » (0.023) and substantially narrowing the uncertainty. The methodology used provides regional, seasonal dust AOD and the associated statistical uncertainty for key dust regions around the globe with which model dust schemes can be evaluated. Exploring the regional and seasonal differences in dust AOD between our observationally based estimate and the four models in this study, we find that emissions in Africa are often overrepresented at the expense of Asian and Middle Eastern emissions and that dust removal appears to be too rapid in most models.« less

  9. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed Central

    Nabi, SA; Qader, SS

    2009-01-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world. This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards. PMID:21483497

  10. An observationally constrained estimate of global dust aerosol optical depth

    DOE PAGES

    Ridley, David A.; Heald, Colette L.; Kok, Jasper F.; ...

    2016-12-06

    Here, the role of mineral dust in climate and ecosystems has been largely quantified using global climate and chemistry model simulations of dust emission, transport, and deposition. However, differences between these model simulations are substantial, with estimates of global dust aerosol optical depth (AOD) that vary by over a factor of 5. Here we develop an observationally based estimate of the global dust AOD, using multiple satellite platforms, in situ AOD observations and four state-of-the-science global models over 2004–2008. We estimate that the global dust AOD at 550 nm is 0.030 ± 0.005 (1σ), higher than the AeroCom model medianmore » (0.023) and substantially narrowing the uncertainty. The methodology used provides regional, seasonal dust AOD and the associated statistical uncertainty for key dust regions around the globe with which model dust schemes can be evaluated. Exploring the regional and seasonal differences in dust AOD between our observationally based estimate and the four models in this study, we find that emissions in Africa are often overrepresented at the expense of Asian and Middle Eastern emissions and that dust removal appears to be too rapid in most models.« less

  11. Global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)

    1991-01-01

    Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.

  12. Satellite lidar and radar: Key components of the future climate observing system

    NASA Astrophysics Data System (ADS)

    Winker, D. M.

    2017-12-01

    Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.

  13. Diversification of land plants: insights from a family-level phylogenetic analysis.

    PubMed

    Fiz-Palacios, Omar; Schneider, Harald; Heinrichs, Jochen; Savolainen, Vincent

    2011-11-21

    Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario.

  14. Community shifts under climate change: mechanisms at multiple scales.

    PubMed

    Gornish, Elise S; Tylianakis, Jason M

    2013-07-01

    Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.

  15. Stable isotopic constraints on global soil organic carbon turnover

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p < 0.001) linear relationship between ln( - β) and estimates of litter and root decomposition rates suggests similar controls over rates of organic matter decay among the generalized soil C stocks. Overall, these findings demonstrate the utility of soil δ13C for independently benchmarking global models of soil C turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  16. Climate-Related Hazards: A Method for Global Assessment of Urban and Rural Population Exposure to Cyclones, Droughts, and Floods

    PubMed Central

    Christenson, Elizabeth; Elliott, Mark; Banerjee, Ovik; Hamrick, Laura; Bartram, Jamie

    2014-01-01

    Global climate change (GCC) has led to increased focus on the occurrence of, and preparation for, climate-related extremes and hazards. Population exposure, the relative likelihood that a person in a given location was exposed to a given hazard event(s) in a given period of time, was the outcome for this analysis. Our objectives were to develop a method for estimating the population exposure at the country level to the climate-related hazards cyclone, drought, and flood; develop a method that readily allows the addition of better datasets to an automated model; differentiate population exposure of urban and rural populations; and calculate and present the results of exposure scores and ranking of countries based on the country-wide, urban, and rural population exposures to cyclone, drought, and flood. Gridded global datasets on cyclone, drought and flood occurrence as well as population density were combined and analysis was carried out using ArcGIS. Results presented include global maps of ranked country-level population exposure to cyclone, drought, flood and multiple hazards. Analyses by geography and human development index (HDI) are also included. The results and analyses of this exposure assessment have implications for country-level adaptation. It can also be used to help prioritize aid decisions and allocation of adaptation resources between countries and within a country. This model is designed to allow flexibility in applying cyclone, drought and flood exposure to a range of outcomes and adaptation measures. PMID:24566046

  17. Modelling terrestrial nitrous oxide emissions and implications for climate feedback.

    PubMed

    Xu-Ri; Prentice, I Colin; Spahni, Renato; Niu, Hai Shan

    2012-10-01

    Ecosystem nitrous oxide (N2O) emissions respond to changes in climate and CO2 concentration as well as anthropogenic nitrogen (N) enhancements. Here, we aimed to quantify the responses of natural ecosystem N2O emissions to multiple environmental drivers using a process-based global vegetation model (DyN-LPJ). We checked that modelled annual N2O emissions from nonagricultural ecosystems could reproduce field measurements worldwide, and experimentally observed responses to step changes in environmental factors. We then simulated global N2O emissions throughout the 20th century and analysed the effects of environmental changes. The model reproduced well the global pattern of N2O emissions and the observed responses of N cycle components to changes in environmental factors. Simulated 20th century global decadal-average soil emissions were c. 8.2-9.5 Tg N yr(-1) (or 8.3-10.3 Tg N yr(-1) with N deposition). Warming and N deposition contributed 0.85±0.41 and 0.80±0.14 Tg N yr(-1), respectively, to an overall upward trend. Rising CO2 also contributed, in part, through a positive interaction with warming. The modelled temperature dependence of N2O emission (c. 1 Tg N yr(-1) K(-1)) implies a positive climate feedback which, over the lifetime of N2O (114 yr), could become as important as the climate-carbon cycle feedback caused by soil CO2 release. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Linkages Between Multiscale Global Sea Surface Temperature Change and Precipitation Variabilities in the US

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Heng-Yi

    1999-01-01

    A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.

  19. Evaluation of global equal-area mass grid solutions from GRACE

    NASA Astrophysics Data System (ADS)

    Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron

    2015-04-01

    The Gravity Recovery and Climate Experiment (GRACE) range-rate data was inverted into global equal-area mass grid solutions at the Center for Space Research (CSR) using Tikhonov Regularization to stabilize the ill-posed inversion problem. These solutions are intended to be used for applications in Hydrology, Oceanography, Cryosphere etc without any need for post-processing. This paper evaluates these solutions with emphasis on spatial and temporal characteristics of the signal content. These solutions will be validated against multiple models and in-situ data sets.

  20. Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2017-10-01

    Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.

  1. On the definition and identifiability of the alleged “hiatus” in global warming

    PubMed Central

    Lewandowsky, Stephan; Risbey, James S.; Oreskes, Naomi

    2015-01-01

    Recent public debate and the scientific literature have frequently cited a “pause” or “hiatus” in global warming. Yet, multiple sources of evidence show that climate change continues unabated, raising questions about the status of the “hiatus”. To examine whether the notion of a “hiatus” is justified by the available data, we first document that there are multiple definitions of the “hiatus” in the literature, with its presumed onset spanning a decade. For each of these definitions we compare the associated temperature trend against trends of equivalent length in the entire record of modern global warming. The analysis shows that the “hiatus” trends are encompassed within the overall distribution of observed trends. We next assess the magnitude and significance of all possible trends up to 25 years duration looking backwards from each year over the past 30 years. At every year during the past 30 years, the immediately preceding warming trend was always significant when 17 years (or more) were included in the calculation, alleged “hiatus” periods notwithstanding. If current definitions of the “pause” used in the literature are applied to the historical record, then the climate system “paused” for more than 1/3 of the period during which temperatures rose 0.6 K. PMID:26597713

  2. Correlations Between Extreme Atmospheric Hazards and Global Teleconnections: Implications for Multihazard Resilience

    NASA Astrophysics Data System (ADS)

    Steptoe, H.; Jones, S. E. O.; Fox, H.

    2018-03-01

    Occurrences of concurrent extreme atmospheric hazards represent a significant area of uncertainty for organizations involved in disaster mitigation and risk management. Understanding risks posed by natural disasters and their relationship with global climate drivers is crucial in preparing for extreme events. In this review we quantify the strength of the physical mechanisms linking hazards and atmosphere-ocean processes. We demonstrate how research from the science community may be used to support disaster risk reduction and global sustainable development efforts. We examine peer-reviewed literature connecting 16 regions affected by extreme atmospheric hazards and eight key global drivers of weather and climate. We summarize current understanding of multihazard disaster risk in each of these regions and identify aspects of the global climate system that require further investigation to strengthen our resilience in these areas. We show that some drivers can increase the risk of concurrent hazards across different regions. Organizations that support disaster risk reduction, or underwrite exposure, in multiple regions may have a heightened risk of facing multihazard losses. We find that 15 regional hazards share connections via the El Niño-Southern Oscillation, with the Indian Ocean Dipole, North Atlantic Oscillation, and the Southern Annular Mode being secondary sources of significant regional interconnectivity. From a hazard perspective, rainfall over China shares the most connections with global drivers and has links to both Northern and Southern Hemisphere modes of variability. We use these connections to assess the global likelihood of concurrent hazard occurrence in support of multihazard resilience and disaster risk reduction goals.

  3. Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannesson, G

    2010-03-17

    Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that themore » average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves configuring and running a regional climate model (RCM) nested within a given GCM projection (i.e., the GCM provides bounder conditions for the RCM). On the other hand, statistical downscaling aims at establishing a statistical relationship between observed local/regional climate variables of interest and synoptic (GCM-scale) climate predictors. The resulting empirical relationship is then applied to future GCM projections. A comparison of the pros and cons of dynamical versus statistical downscaling is outside the scope of this effort, but has been extensively studied and the reader is referred to Wilby et al. (1998); Murphy (1999); Wood et al. (2004); Benestad et al. (2007); Fowler et al. (2007), and references within those. The scope of this effort is to study methodology, a statistical framework, to propagate and account for GCM uncertainty in regional statistical downscaling assessment. In particular, we will explore how to leverage an ensemble of GCM projections to quantify the impact of the GCM uncertainty in such an assessment. There are three main component to this effort: (1) gather the necessary climate-related data for a regional SDS study, including multiple GCM projections, (2) carry out SDS, and (3) assess the uncertainty. The first step is carried out using tools written in the Python programming language, while analysis tools were developed in the statistical programming language R; see Figure 1.« less

  4. Global climate change and fragmentation of native brook trout distribution in the southern Appalachian Mountains

    Treesearch

    Patricia A. Flebbe

    1997-01-01

    Current distributions of native brook trout (Salvelinus fontinalis) in the Southern Appalachians are restricted to upper elevations by multiple factors, including habitat requirements, introduced rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout, and other human activities. Present-day distribution of brook trout habitat is already fragmented. Increased...

  5. Development of the Long-Term Agro-ecosystem Research (LTAR) Network: Current status and future trends

    USDA-ARS?s Scientific Manuscript database

    Long-term research conducted at multiple scales is critical to assessing the effects of key long term drivers (e.g., global population growth; land-use change; increased competition for natural resources; climate variability and change) on our ability to sustain or enhance agricultural production to...

  6. Landscape-based population viability models demonstrate importance of strategic conservation planning for birds

    Treesearch

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh; D. Todd Jones-Farland

    2013-01-01

    Efforts to conserve regional biodiversity in the face of global climate change, habitat loss and fragmentation will depend on approaches that consider population processes at multiple scales. By combining habitat and demographic modeling, landscape-based population viability models effectively relate small-scale habitat and landscape patterns to regional population...

  7. An AgMIP framework for improved agricultural representation in integrated assessment models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold

    Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agriculturalmore » Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.« less

  8. An AgMIP framework for improved agricultural representation in integrated assessment models

    NASA Astrophysics Data System (ADS)

    Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.

    2017-12-01

    Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.

  9. Climate impact of beef: an analysis considering multiple time scales and production methods without use of global warming potentials

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R. T.; Eshel, G.

    2015-08-01

    An analysis of the climate impact of various forms of beef production is carried out, with a particular eye to the comparison between systems relying primarily on grasses grown in pasture (‘grass-fed’ or ‘pastured’ beef) and systems involving substantial use of manufactured feed requiring significant external inputs in the form of synthetic fertilizer and mechanized agriculture (‘feedlot’ beef). The climate impact is evaluated without employing metrics such as {{CO}}2{{e}} or global warming potentials. The analysis evaluates the impact at all time scales out to 1000 years. It is concluded that certain forms of pastured beef production have substantially lower climate impact than feedlot systems. However, pastured systems that require significant synthetic fertilization, inputs from supplemental feed, or deforestation to create pasture, have substantially greater climate impact at all time scales than the feedlot and dairy-associated systems analyzed. Even the best pastured system analyzed has enough climate impact to justify efforts to limit future growth of beef production, which in any event would be necessary if climate and other ecological concerns were met by a transition to primarily pasture-based systems. Alternate mitigation options are discussed, but barring unforseen technological breakthroughs worldwide consumption at current North American per capita rates appears incompatible with a 2 °C warming target.

  10. An Overview of Occupational Risks From Climate Change.

    PubMed

    Applebaum, Katie M; Graham, Jay; Gray, George M; LaPuma, Peter; McCormick, Sabrina A; Northcross, Amanda; Perry, Melissa J

    2016-03-01

    Changes in atmosphere and temperature are affecting multiple environmental indicators from extreme heat events to global air quality. Workers will be uniquely affected by climate change, and the occupational impacts of major shifts in atmospheric and weather conditions need greater attention. Climate change-related exposures most likely to differentially affect workers in the USA and globally include heat, ozone, polycyclic aromatic hydrocarbons, other chemicals, pathogenic microorganisms, vector-borne diseases, violence, and wildfires. Epidemiologic evidence documents a U-, J-, or V-shaped relationship between temperature and mortality. Whereas heat-related morbidity and mortality risks are most evident in agriculture, many other outdoor occupational sectors are also at risk, including construction, transportation, landscaping, firefighting, and other emergency response operations. The toxicity of chemicals change under hyperthermic conditions, particularly for pesticides and ozone. Combined with climate-related changes in chemical transport and distribution, these interactions represent unique health risks specifically to workers. Links between heat and interpersonal conflict including violence require attention because they pose threats to the safety of emergency medicine, peacekeeping and humanitarian relief, and public safety professionals. Recommendations for anticipating how US workers will be most susceptible to climate change include formal monitoring systems for agricultural workers; modeling scenarios focusing on occupational impacts of extreme climate events including floods, wildfires, and chemical spills; and national research agenda setting focusing on control and mitigation of occupational susceptibility to climate change.

  11. Statistical prediction of September Arctic Sea Ice minimum based on stable teleconnections with global climate and oceanic patterns

    NASA Astrophysics Data System (ADS)

    Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.

    2016-12-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  12. Predicting Seagrass Occurrence in a Changing Climate Using Random Forests

    NASA Astrophysics Data System (ADS)

    Aydin, O.; Butler, K. A.

    2017-12-01

    Seagrasses are marine plants that can quickly sequester vast amounts of carbon (up to 100 times more and 12 times faster than tropical forests). In this work, we present an integrated GIS and machine learning approach to build a data-driven model of seagrass presence-absence. We outline a random forest approach that avoids the prevalence bias in many ecological presence-absence models. One of our goals is to predict global seagrass occurrence from a spatially limited training sample. In addition, we conduct a sensitivity study which investigates the vulnerability of seagrass to changing climate conditions. We integrate multiple data sources including fine-scale seagrass data from MarineCadastre.gov and the recently available globally extensive publicly available Ecological Marine Units (EMU) dataset. These data are used to train a model for seagrass occurrence along the U.S. coast. In situ oceans data are interpolated using Empirical Bayesian Kriging (EBK) to produce globally extensive prediction variables. A neural network is used to estimate probable future values of prediction variables such as ocean temperature to assess the impact of a warming climate on seagrass occurrence. The proposed workflow can be generalized to many presence-absence models.

  13. The Jormungand Global Climate State and Implications for the Neoproterozoic Snowball Paradox (Invited)

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.; Voigt, A.; Koll, D.; Pierrehumbert, R. T.

    2010-12-01

    We present a previously undescribed global climate state, the Jormungand state, that is nearly ice-covered with a narrow (~10-15 degrees of latitude) strip of open ocean near the equator. This state is sustained by internal dynamics of the hydrological cycle and the cryosphere. There is a new bifurcation in global climate climate associated with the Jormungand state that leads to significant hysteresis. We investigate the Jormungand state in a coupled ocean-atmosphere GCM, in multiple atmospheric GCMs coupled to a mixed layer ocean run in an idealized configuration, and we make a simple modification to the Budyko-Sellers model so that it produces Jormungand states. We suggest that the Jormungand state may be a better model for the Neoproterozoic glaciations (~635 Ma and ~715 Ma) than either the hard Snowball or the Slushball models. A Jormungand state would have a large enough region of open ocean near the equator to explain the micropaleontological and molecular clock evidence that photosynthetic eukaryotes thrived both before and immediately after the Neoproterozoic episodes. Additionally, since there is significant hysteresis associated with the Jormungand state, it can explain the cap carbonate sequences, the oxygen isotopic evidence that suggests high CO2 values, and the various evidence that suggests lifetimes for the glaciations of 1 Myrs or more. Since there is not significant hysteresis associated with the Slushball model, the Slushball model cannot explain these observations. Finally, we note that although the Slushball and Jormungand models share the characteristic of open ocean in the tropics, the Jormungand state is produced by entirely different physics, is entered through a new bifurcation in global climate, and is associated with significant hysteresis. Bifurcation diagram of global climate in the CAM global climate model, run with no continents, a 50 m mixed layer with no ocean heat transport, an eccentricity of zero, and annually and diurnally-varying insolation with a solar constant of 94% of present value. Red diamonds denote simulations initiated from ice-free conditions, blue circles denote simulations initiated from the Jormungand state, and green squares denote simulations initiated from the Snowball state. The black curve shows model equilibria, with dotted unstable solution branches (separatrices) and bifurcations drawn schematically.

  14. Limiting global-mean temperature increase to 1.5-2 °C could reduce the incidence and spatial spread of dengue fever in Latin America.

    PubMed

    Colón-González, Felipe J; Harris, Ian; Osborn, Timothy J; Steiner São Bernardo, Christine; Peres, Carlos A; Hunter, Paul R; Lake, Iain R

    2018-06-12

    The Paris Climate Agreement aims to hold global-mean temperature well below 2 °C and to pursue efforts to limit it to 1.5 °C above preindustrial levels. While it is recognized that there are benefits for human health in limiting global warming to 1.5 °C, the magnitude with which those societal benefits will be accrued remains unquantified. Crucial to public health preparedness and response is the understanding and quantification of such impacts at different levels of warming. Using dengue in Latin America as a study case, a climate-driven dengue generalized additive mixed model was developed to predict global warming impacts using five different global circulation models, all scaled to represent multiple global-mean temperature assumptions. We show that policies to limit global warming to 2 °C could reduce dengue cases by about 2.8 (0.8-7.4) million cases per year by the end of the century compared with a no-policy scenario that warms by 3.7 °C. Limiting warming further to 1.5 °C produces an additional drop in cases of about 0.5 (0.2-1.1) million per year. Furthermore, we found that by limiting global warming we can limit the expansion of the disease toward areas where incidence is currently low. We anticipate our study to be a starting point for more comprehensive studies incorporating socioeconomic scenarios and how they may further impact dengue incidence. Our results demonstrate that although future climate change may amplify dengue transmission in the region, impacts may be avoided by constraining the level of warming. Copyright © 2018 the Author(s). Published by PNAS.

  15. Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America

    PubMed Central

    Harris, Ian; Osborn, Timothy J.; Steiner São Bernardo, Christine; Peres, Carlos A.; Lake, Iain R.

    2018-01-01

    The Paris Climate Agreement aims to hold global-mean temperature well below 2 °C and to pursue efforts to limit it to 1.5 °C above preindustrial levels. While it is recognized that there are benefits for human health in limiting global warming to 1.5 °C, the magnitude with which those societal benefits will be accrued remains unquantified. Crucial to public health preparedness and response is the understanding and quantification of such impacts at different levels of warming. Using dengue in Latin America as a study case, a climate-driven dengue generalized additive mixed model was developed to predict global warming impacts using five different global circulation models, all scaled to represent multiple global-mean temperature assumptions. We show that policies to limit global warming to 2 °C could reduce dengue cases by about 2.8 (0.8–7.4) million cases per year by the end of the century compared with a no-policy scenario that warms by 3.7 °C. Limiting warming further to 1.5 °C produces an additional drop in cases of about 0.5 (0.2–1.1) million per year. Furthermore, we found that by limiting global warming we can limit the expansion of the disease toward areas where incidence is currently low. We anticipate our study to be a starting point for more comprehensive studies incorporating socioeconomic scenarios and how they may further impact dengue incidence. Our results demonstrate that although future climate change may amplify dengue transmission in the region, impacts may be avoided by constraining the level of warming. PMID:29844166

  16. Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record

    NASA Technical Reports Server (NTRS)

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-01-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  17. Changes in the probability of co-occurring extreme climate events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.

    2017-12-01

    Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.

  18. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven modelling and model-data integration approaches can guide the future development of global process-oriented vegetation-fire models.

  19. The Many Hazards of Trend Evaluation

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; de Beurs, K.; Zhang, X.; Kimball, J. S.; Small, C.

    2014-12-01

    Given the awareness in the scientific community of global scale drivers such as population growth, globalization, and climatic variation and change, many studies seek to identify temporal patterns in data that may be plausibly related to one or more aspect of global change. Here we explore two questions: "What constitutes a trend in a time series?" and "How can a trend be misinterpreted?" There are manifold hazards—both methodological and psychological—in detecting a trend, quantifying its magnitude, assessing its significance, identifying probable causes, and evaluating the implications of the trend. These hazards can combine to elevate the risk of misinterpreting the trend. In contrast, evaluation of multiple trends within a biogeophysical framework can attenuate the risk of misinterpretation. We review and illustrate these hazards and demonstrate the efficacy of an approach using multiple indicators detecting significant trends (MIDST) applied to time series of remote sensing data products.

  20. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance level, but their temporal variation could be well modeled by using the fourth-order polynomial. Overall, this study further emphasized the importance of using multiple GCMs for studying climate change impacts on hydrology. Furthermore, the temporal variation of uncertainty sourced from GCMs should be given more attention.

  1. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzepek, K.; Neumann, Jim; Smith, Joel

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  2. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE PAGES

    Strzepek, K.; Neumann, Jim; Smith, Joel; ...

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  3. Constraining the long-term climate reponse to stratospheric sulfate aerosols injection by the short-term volcanic climate response

    NASA Astrophysics Data System (ADS)

    Plazzotta, M.; Seferian, R.; Douville, H.; Kravitz, B.; Tilmes, S.; Tjiputra, J.

    2016-12-01

    Rising greenhouse gas emissions are leading to global warming and climate change, which will have multiple impacts on human society. Geoengineering methods like solar radiation management by stratospheric sulfate aerosols injection (SSA-SRM) aim at treating the symptoms of climate change by reducing the global temperature. Since a real-world testing cannot be implemented, Earth System Models (ESMs) are useful tools to assess the climate impacts of such geoengineering methods. However, coordinated simulations performed with the Geoengineering Model Intercomparison Project (GeoMIP) have shown that climate cooling in response to a continuous injection of 5Tg of SO2 per year under RCP45 future projection (the so-called G4 experiment) differs substantially between ESMs. Here, we employ a volcano analog approach to constrain the climate response in SSA-SRM geoengineering simulations across an ensemble of 10 ESMs. We identify an emergent relationship between the long-term cooling in responses to the mitigation of the clear-sky surface downwelling shortwave radiation (RSDSCS), and the short-term cooling related to the change in RSDSCS during the major tropical volcanic eruptions observed over the historical period (1850-2005). This relationship explains almost 80% of the multi-model spread. Combined with contemporary observations of the latest volcanic eruptions (satellite observations and model reanalyzes), this relationship provides a tight constraint on the climate impacts of SSA-SRM. We estimate that a continuous injection of SO2 aerosols into the stratosphere will reduce the global average temperature of continental land surface by 0.47 K per W m-2, impacting both hydrological and carbon cycles. Compared with the unconstrained ESMs ensemble (range from 0.32 to 0.92 K per W m-2 ), our estimate represents much higher confidence ways to assess the impacts of SSA-SRM on the climate while ruling the most extreme projections of the unconstrained ensemble extremely unlikely.

  4. The MedCLIVAR program and the climate of the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lionello, P.; Gacic, M.; Gomis, G.; Garcia-Herrera, R.; Giorgi, F.; Planton, S.; Trigo, R.; Theocharis, A.; Tsimplis, M. N.; Ulbrich, U.; Xoplaki, E.

    2012-04-01

    MedCLIVAR has become an independent platform for scientific discussion, the exchange of information and the coordination of activities across scientific groups around the Mediterranean. The scientific objects of the programme include past climate variability, connections between the Mediterranean and global climate, the Mediterranean Sea circulation and sea level, feedbacks on the global climate system, and the regional responses to greenhouse gas, air pollution, and aerosols. A strength of the MedCLIVAR programme is the development of a multidisciplinary vision of the evolution of Mediterranean climate, which includes atmospheric, marine and terrestrial components at multiple time scales, covering the range from paleo-reconstructions to future climate scenarios. MedCLIVAR has promoted scientific dissemination with many publication and by producing two books, which review the climate-related knowledge of the Mediterranean basin, one published at the beginning of the project and the second just recently finalized. Over these years, MedCLIVAR (www.medclivar.eu) has held 6 workshops and 2 schools, assigned 31 young scientist exchange grants and 7 senior scientist short visits, sponsored or co-sponsored 11 scientific meetings and organized annual sessions during the European Geophysical Union general assembly. A systematic archive of observations and model data simulations on the Mediterranean Climate, in order to both share data across the scientific community and ensure the data availability for 10 years, is presently being organized at the WDCC (http://cera-www.dkrz.de/CERA/MedCLIVAR.html)

  5. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition.

    PubMed

    Pound, Matthew J; Salzmann, Ulrich

    2017-02-24

    Rapid global cooling at the Eocene - Oligocene Transition (EOT), ~33.9-33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO 2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO 2 at the EOT.

  6. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.

    PubMed

    Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M

    2016-04-27

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. © 2016 The Author(s).

  7. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study

    PubMed Central

    Pearson, Richard G.; Hui, Cang; Gessner, Mark O.; Pérez, Javier; Alexandrou, Markos A.; Graça, Manuel A. S.; Cardinale, Bradley J.; Albariño, Ricardo J.; Arunachalam, Muthukumarasamy; Barmuta, Leon A.; Boulton, Andrew J.; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G.; Dudgeon, David; Encalada, Andrea C.; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S.; Gonçalves, José F.; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S.; Pringle, Catherine M.; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M.

    2016-01-01

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551

  8. Exploring and Analyzing Climate Variations Online by Using MERRA-2 data at GES DISC

    NASA Astrophysics Data System (ADS)

    Shen, S.; Ostrenga, D.; Vollmer, B.; Kempler, S.

    2016-12-01

    NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) (http://giovanni.sci.gsfc.nasa.gov/giovanni/) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Recently, long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, and preprocessing the data. Example data include climate reanalysis from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS) which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM) which assimilates data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.

  9. Exploring and Analyzing Climate Variations Online by Using NASA MERRA-2 Data at GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Kempler, Steven J.

    2016-01-01

    NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) (http:giovanni.sci.gsfc.nasa.govgiovanni) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, preprocessing, and learning data. Example data include climate reanalysis data from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning in 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS), which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM), which provides data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.

  10. Quantifying PM2.5-Meteorology Sensitivities in a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Tai, A. P. K.; Fiore, A. M.; Mauzerall, D. L.

    2016-01-01

    Climate change can influence fine particulate matter concentrations (PM2.5) through changes in air pollution meteorology. Knowledge of the extent to which climate change can exacerbate or alleviate air pollution in the future is needed for robust climate and air pollution policy decision-making. To examine the influence of climate on PM2.5, we use the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 (GFDL CM3), a fully-coupled chemistry-climate model, combined with future emissions and concentrations provided by the four Representative Concentration Pathways (RCPs). For each of the RCPs, we conduct future simulations in which emissions of aerosols and their precursors are held at 2005 levels while other climate forcing agents evolve in time, such that only climate (and thus meteorology) can influence PM2.5 surface concentrations. We find a small increase in global, annual mean PM2.5 of about 0.21 micro-g/cu m3 (5%) for RCP8.5, a scenario with maximum warming. Changes in global mean PM2.5 are at a maximum in the fall and are mainly controlled by sulfate followed by organic aerosol with minimal influence of black carbon. RCP2.6 is the only scenario that projects a decrease in global PM2.5 with future climate changes, albeit only by -0.06 micro-g/cu m (1.5%) by the end of the 21st century. Regional and local changes in PM2.5 are larger, reaching upwards of 2 micro-g/cu m for polluted (eastern China) and dusty (western Africa) locations on an annually averaged basis in RCP8.5. Using multiple linear regression, we find that future PM2.5 concentrations are most sensitive to local temperature, followed by surface wind and precipitation. PM2.5 concentrations are robustly positively associated with temperature, while negatively related with precipitation and wind speed. Present-day (2006-2015) modeled sensitivities of PM2.5 to meteorological variables are evaluated against observations and found to agree reasonably well with observed sensitivities (within 10e50% over the eastern United States for several variables), although the modeled PM2.5 is less sensitive to precipitation than in the observations due to weaker convective scavenging. We conclude that the hypothesized "climate penalty" of future increases in PM2.5 is relatively minor on a global scale compared to the influence of emissions on PM2.5 concentrations.

  11. Combined impacts of global changes on biodiversity across the USA

    PubMed Central

    Bellard, C.; Leclerc, C.; Courchamp, F.

    2015-01-01

    Most studies of the effects of global changes on biodiversity focus on a single threat, but multiple threats lead to species extinction. We lack spatially explicit assessments of the intensity of multiple threats and their impacts on biodiversity. Here, we used a novel metric of cumulative threats and impacts to assess the consequences of multiple threats on 196 endemic species across the USA. We predict that large areas with high cumulative impact scores for amphibians, birds, mammals, and reptiles will be concentrated in the eastern part of the USA by the 2050 s and 2080 s. These high cumulative impact values are due mainly to the presence of invasive species, climate change, cropland and pasture areas; additionally, a significant proportion of endemic species are vulnerable to some of these threats where they occur. This analysis provides a useful means of identifying where conservation measures and monitoring programs that should consider multiple threats should be implemented in the future. PMID:26149694

  12. Climate impact on suicide rates in Finland from 1971 to 2003

    NASA Astrophysics Data System (ADS)

    Ruuhela, Reija; Hiltunen, Laura; Venäläinen, Ari; Pirinen, Pentti; Partonen, Timo

    2009-03-01

    Seasonal patterns of death from suicide are well-documented and have been attributed to climatic factors such as solar radiation and ambient temperature. However, studies on the impact of weather and climate on suicide are not consistent, and conflicting data have been reported. In this study, we performed a correlation analysis between nationwide suicide rates and weather variables in Finland during the period 1971-2003. The weather parameters studied were global solar radiation, temperature and precipitation, and a range of time spans from 1 month to 1 year were used in order to elucidate the dose-response relationship, if any, between weather variables and suicide. Single and multiple linear regression models show weak associations using 1-month and 3-month time spans, but robust associations using a 12-month time span. Cumulative global solar radiation had the best explanatory power, while average temperature and cumulative precipitation had only a minor impact on suicide rates. Our results demonstrate that winters with low global radiation may increase the risk of suicide. The best correlation found was for the 5-month period from November to March; the inter-annual variability in the cumulative global radiation for that period explained 40 % of the variation in the male suicide rate and 14 % of the variation in the female suicide rate, both at a statistically significant level. Long-term variations in global radiation may also explain, in part, the observed increasing trend in the suicide rate until 1990 and the decreasing trend since then in Finland.

  13. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.

  14. How will climate change affect watershed mercury export in a representative Coastal Plain watershed?

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.

    2012-12-01

    Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed HgT dynamics and the representative mathematical structures underpinning existing watershed Hg models.

  15. A Systematic Review of Global Drivers of Ant Elevational Diversity

    PubMed Central

    Szewczyk, Tim; McCain, Christy M.

    2016-01-01

    Ant diversity shows a variety of patterns across elevational gradients, though the patterns and drivers have not been evaluated comprehensively. In this systematic review and reanalysis, we use published data on ant elevational diversity to detail the observed patterns and to test the predictions and interactions of four major diversity hypotheses: thermal energy, the mid-domain effect, area, and the elevational climate model. Of sixty-seven published datasets from the literature, only those with standardized, comprehensive sampling were used. Datasets included both local and regional ant diversity and spanned 80° in latitude across six biogeographical provinces. We used a combination of simulations, linear regressions, and non-parametric statistics to test multiple quantitative predictions of each hypothesis. We used an environmentally and geometrically constrained model as well as multiple regression to test their interactions. Ant diversity showed three distinct patterns across elevations: most common were hump-shaped mid-elevation peaks in diversity, followed by low-elevation plateaus and monotonic decreases in the number of ant species. The elevational climate model, which proposes that temperature and precipitation jointly drive diversity, and area were partially supported as independent drivers. Thermal energy and the mid-domain effect were not supported as primary drivers of ant diversity globally. The interaction models supported the influence of multiple drivers, though not a consistent set. In contrast to many vertebrate taxa, global ant elevational diversity patterns appear more complex, with the best environmental model contingent on precipitation levels. Differences in ecology and natural history among taxa may be crucial to the processes influencing broad-scale diversity patterns. PMID:27175999

  16. The Mars climate for a photovoltaic system operation

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on the climatic conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The distribution of solar insolation (global, direct and diffuse) and ambient temperature is addressed. This data are given at the Viking lander's locations and can also be used, to a first approximation, for other latitudes. The insolation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The ambient temperature (diurnal and yearly distribution) is based on direct measurements with a thermocouple at 1.6 m above the ground at the Viking lander locations. The insolation and ambient temperature information are short term data. New information about Mars may be forthcoming in the future from new analysis of previously collected data or from future flight missions. The Mars climate data for photovoltaic system operation will thus be updated accordingly.

  17. Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones

    Treesearch

    Yiqi Luo; Dieter Gerten; Guerric Le Maire; William J. Parton; Ensheng Weng; Xuhui Zhou; Cindy Keough; Claus Beier; Philippe Ciais; Wolfgang Cramer; Jeffrey S. Dukes; Bridget Emmett; Paul J. Hanson; Alan Knapp; Sune Linder; Dan Nepstad; Lindsey. Rustad

    2008-01-01

    Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive...

  18. Psychological Science's Contributions to a Sustainable Environment: Extending Our Reach to a Grand Challenge of Society

    ERIC Educational Resources Information Center

    Kazdin, Alan E.

    2009-01-01

    Climate change and degradation of the environment are global problems associated with many other challenges (e.g., population increases, reduction of glaciers, and loss of critical habitats). Psychological science can play a critical role in addressing these problems by fostering a sustainable environment. Multiple strategies for fostering a…

  19. Effectiveness of forest management strategies to mitigate effects of global change in south-central Siberia

    Treesearch

    Eric J. Gustafson; Anatoly Z. Shvidenko; Robert M. Scheller

    2011-01-01

    We investigated questions about the ability of broad silvicultural strategies to achieve multiple objectives (reduce disturbance losses, maintain the abundance of preferred species, mitigate fragmentation and loss of age-class diversity, and sequester aboveground carbon) under future climate conditions in Siberia. We conducted a factorial experiment using the LANDIS-II...

  20. Modeling species’ realized climatic niche space and predicting their response to global warming for several western forest species with small geographic distributions

    Treesearch

    Marcus V. Warwell; Gerald E. Rehfeldt; Nicholas L. Crookston

    2010-01-01

    The Random Forests multiple regression tree was used to develop an empirically based bioclimatic model of the presence-absence of species occupying small geographic distributions in western North America. The species assessed were subalpine larch (Larix lyallii), smooth Arizona cypress (Cupressus arizonica ssp. glabra...

  1. Ecosystem evapotranspiration: challenges in measurements, estimates, and modeling

    Treesearch

    Devendra Amatya; S. Irmak; P. Gowda; Ge Sun; J.E. Nettles; K.R. Douglas-Mankin

    2016-01-01

    Evapotranspiration (ET) processes at the leaf to landscape scales in multiple land uses have important controls and feedbacks for local, regional, and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and crop water use are critical for adapting more effective management strategies...

  2. Modeling potential evapotranspiration of two forested watersheds in the southern Appalachians

    Treesearch

    L.Y. Rao; G. Sun; C.R. Ford; J.M. Vose

    2011-01-01

    Global climate change has direct impacts on watershed hydrology through altering evapotranspiration (ET) processes at multiple scales. There are many methods to estimate forest ET with models, but the most practical and the most popular one is the potential ET (PET) based method. However, the choice of PET methods for AET estimation remains challenging. This study...

  3. Comparative water use of native and invasive plants at multiple scales: a global meta-analysis.

    PubMed

    Cavaleri, Molly A; Sack, Lawren

    2010-09-01

    Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.

  4. Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change.

    PubMed

    Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner

    2018-02-01

    Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers of global change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Constant Chinese Loess Plateau dust source since the Late Miocene

    NASA Astrophysics Data System (ADS)

    Bird, Anna; Millar, Ian; Stevens, Thomas; Rodenburg, Tanja; Rittner, Martin; Vermeesch, Pieter; Lu, Huayu

    2017-04-01

    The dramatic deepening of northern hemisphere glaciation at the Pliocene-Pleistocene boundary is accompanied by major changes in global climate. The role of the global atmospheric dust cycle in this event is not clear; in particular, whether, changes in the dust cycle influenced climates change, or resulted from it. Miocene and Quaternary wind-blown Chinese loess records past dust-cycle history, influences of aridification and monsoon circulation. Previous work on the vast Chinese Loess Plateau is in conflict over whether changes in dust source occur at the Pliocene-Pleistocene boundary (2.59 Ma), or at 1.2 Ma, despite these intervals marking major shifts in monsoon dynamics (Sun 2005; Nie et al. 2014a). Here we present Sr, Nd and Hf isotopic data from multiple sites and show that the dust source remains the same across these boundaries. The use of isotope tracers from multiple sites allows us to demonstrate that shifts in sediment geochemistry can be explained by grain-size and weathering changes. Nd and Hf isotopes show that the dust was dominantly sourced from the Tibetan Plateau, with some input from bedrock underlying the Badain Jaran/Tengger deserts. This shows that a major established and constant dust source on the northern Tibetan Plateau has been active and unchanged since the late Miocene, despite dramatically changing climate conditions. Changes in loess accumulation are therefore a function of climate change in the Tibetan Plateau source regions rather than due to expanding source areas controlled by aridification over a widening area over the Pliocene and Quaternary.

  6. Paleobotanical Evidence for Coupling of Temperature and pCO2 during the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Smith, R. Y.; Greenwood, D. R.; Basinger, J. F.

    2009-12-01

    The Early Eocene Climatic Optimum (EECO) was the warmest period of the Cenozoic, indicated by multiple proxy mean annual temperature estimates for sea and land surface. However, estimates of pCO2 from geochemical, modeling, and paleontological proxies show a wide range of values, from near modern day levels to an order of magnitude greater. Resolving the pCO2 record for this time period, and correlating it with trends in temperature, is a key task in understanding the interaction of climate and pCO2 in globally warm periods. Here we present a fine scale study of trends in temperature and pCO2 based on paleobotanical data from an early Eocene site from the Okanagan Highlands of British Columbia, Canada. Plant macrofossils were collected using an unbiased census approach from three informal units, allowing for quantitative comparison of trends within the site. Temperature estimates derived from multiple paleobotanical techniques (physiognomic and floristic approaches) suggest microthermal (MAT <13°C) but equable (CMMT >0°C) conditions for this upland site, and show a trend in declining MAT over time reflected in the three units. At the same time, stomatal frequency of Ginkgo suggests that pCO2 was high (>2x modern values), but also declining over time. These results suggest that temperature and pCO2 were coupled during this globally warm period, and that fine scale trends on the order of 103 - 104 years can be tracked within fossil sites to provide a window on climate/pCO2 interactions.

  7. Temperature response of soil respiration largely unaltered with experimental warming.

    PubMed

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO 2 ) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  8. Temperature response of soil respiration largely unaltered with experimental warming

    USGS Publications Warehouse

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  9. Temperature response of soil respiration largely unaltered with experimental warming

    PubMed Central

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming. PMID:27849609

  10. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  11. Trade-offs and synergies between carbon storage and livelihood benefits from forest commons.

    PubMed

    Chhatre, Ashwini; Agrawal, Arun

    2009-10-20

    Forests provide multiple benefits at local to global scales. These include the global public good of carbon sequestration and local and national level contributions to livelihoods for more than half a billion users. Forest commons are a particularly important class of forests generating these multiple benefits. Institutional arrangements to govern forest commons are believed to substantially influence carbon storage and livelihood contributions, especially when they incorporate local knowledge and decentralized decision making. However, hypothesized relationships between institutional factors and multiple benefits have never been tested on data from multiple countries. By using original data on 80 forest commons in 10 countries across Asia, Africa, and Latin America, we show that larger forest size and greater rule-making autonomy at the local level are associated with high carbon storage and livelihood benefits; differences in ownership of forest commons are associated with trade-offs between livelihood benefits and carbon storage. We argue that local communities restrict their consumption of forest products when they own forest commons, thereby increasing carbon storage. In showing rule-making autonomy and ownership as distinct and important institutional influences on forest outcomes, our results are directly relevant to international climate change mitigation initiatives such as Reduced Emissions from Deforestation and Forest Degradation (REDD) and avoided deforestation. Transfer of ownership over larger forest commons patches to local communities, coupled with payments for improved carbon storage can contribute to climate change mitigation without adversely affecting local livelihoods.

  12. Applying the global RCP-SSP-SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach.

    PubMed

    Kebede, Abiy S; Nicholls, Robert J; Allan, Andrew; Arto, Iñaki; Cazcarro, Ignacio; Fernandes, Jose A; Hill, Chris T; Hutton, Craig W; Kay, Susan; Lázár, Attila N; Macadam, Ian; Palmer, Matthew; Suckall, Natalie; Tompkins, Emma L; Vincent, Katharine; Whitehead, Paul W

    2018-09-01

    To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA 1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future changing conditions. The concept, methods, and processes presented are transferable to other sub-national socio-ecological settings with multi-scale challenges. Copyright © 2018. Published by Elsevier B.V.

  13. Mainstreaming climate adaptation in the Asia-Pacific: Role of networks and universities in promoting climate literacy

    NASA Astrophysics Data System (ADS)

    Ling, F. H.; Yasuhara, K.; Tamura, M.; Tabayashi, Y.; Mimura, N.

    2011-12-01

    As the international climate regime continues to evolve, adaptation has emerged as a key component of responding to climate change. Due to limited scientific, financial, and institutional capacities, as well as perceived competition with multiple priorities, strategies for adaptive measures are not being implemented at the pace needed to address current and future climate risks. Adaptation networks, both global and in the Asia-Pacific region, have formed to overcome the lack of sufficient communication and collaboration among different stakeholders and domains of expertise. In this presentation, we discuss various efforts at Ibaraki University in Japan to integrate technical and social aspects of adaptation into a multidisciplinary effort, to foster synergies among various networks, to clarify the roles of developed and developing countries, and to develop a standard for assessing vulnerability and adaptability across various geographical contexts.

  14. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    NASA Astrophysics Data System (ADS)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  15. Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios.

    PubMed

    Thompson, Sally E; Levin, Simon; Rodriguez-Iturbe, Ignacio

    2014-04-01

    Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction. © 2014 John Wiley & Sons Ltd.

  16. Diversification of land plants: insights from a family-level phylogenetic analysis

    PubMed Central

    2011-01-01

    Background Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. Results We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. Conclusions This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario. PMID:22103931

  17. Climate change, estuaries and anadromous fish habitat in the northeastern United States: models, downscaling and uncertainty

    NASA Astrophysics Data System (ADS)

    Muhling, B.; Gaitan, C. F.; Tommasi, D.; Saba, V. S.; Stock, C. A.; Dixon, K. W.

    2016-02-01

    Estuaries of the northeastern United States provide essential habitat for many anadromous fishes, across a range of life stages. Climate change is likely to impact estuarine environments and habitats through multiple pathways. Increasing air temperatures will result in a warming water column, and potentially increased stratification. In addition, changes to precipitation patterns may alter freshwater inflow dynamics, leading to altered seasonal salinity regimes. However, the spatial resolution of global climate models is generally insufficient to resolve these processes at the scale of individual estuaries. Global models can be downscaled to a regional resolution using a variety of dynamical and statistical methods. In this study, we examined projections of estuarine conditions, and future habitat extent, for several anadromous fishes in the Chesapeake Bay using different statistical downscaling methods. Sources of error from physical and biological models were quantified, and key areas of uncertainty were highlighted. Results suggested that future projections of the distribution and recruitment of species most strongly linked to freshwater flow dynamics had the highest levels of uncertainty. The sensitivity of different life stages to environmental conditions, and the population-level responses of anadromous species to climate change, were identified as important areas for further research.

  18. Improvement of TOPEX/POSEIDON and Jason-1 Geophysical Data Record for Global Change Studies and Coastal Applications

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    1999-01-01

    The Earth's modem climate change has been characterized by interlinked changes in temperature, CO2, ice sheets and sea level. Global sea level change is a critical indicator for study of contemporary climate change. Sea level rise appears to have accelerated since the ice sheet retreats have stopped some 5000 years ago and it is estimated that the sea level rise has been approx. 15 cm over the last century. Contemporary radar altimeters represent the only technique capable of monitoring global sea level change with accuracy approaching 1 mm/yr and with a temporal scale of days and a spatial scale of 100 km or longer. This report highlights the major accomplishments of the TOPEX/POSEIDON (T/P) Extended Mission and Jason-1 science investigation. The primary objectives of the investigation include the calibration and improvement of T/P and Jason-1 altimeter data for global sea level change and coastal tide and circulation studies. The scientific objectives of the investigation include: (1) the calibration and improvement of T/P and Jason-1 data as a reference measurement system for the accurate cross-linking with other altimeter systems (Seasat, Geosat, ERS-1, ERS-2, GFO-1, and Envisat), (2) the improved determination and the associated uncertainties of the long-term (15-year) global mean sea level change using multiple altimeters, (3) the characterization of the sea level change by analyses of independent data, including tide gauges, sea surface temperature, and (4) the improvement coastal radar altimetry for studies including coastal ocean tide modeling and coastal circulation. Major accomplishments of the investigation include the development of techniques for low-cost radar altimeter absolute calibration (including the associated GPS-buoy technology), coastal ocean tide modeling, and the linking of multiple altimeter systems and the resulting determination of the 15-year (1985-1999) global mean sea level variations. The current rate of 15-year sea level rise observed by multiple satellite altimetry is +2.3 +/- 1.2 mm/yr, which is in general agreement with the analysis of sparsely distributed tide gauge measurements for the same data span, and represents the first such determination of sea level change in its kind.

  19. The Lake Towuti Drilling Project: A New, 1-Million Year Record of Indo-Pacific Hydroclimate

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bijaksana, S.; Vogel, H.; Melles, M.; Crowe, S.; Fajar, S. J.; Hasberg, A. K.; Ivory, S.; Kallmeyer, J.; Kelly, C. S.; Kirana, K. H.; Morlock, M.; Tamuntuan, G. H.; Wicaksono, S. A.

    2015-12-01

    ­The Indo-Pacific region plays an integral role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are each hypothesized to exert a dominant control on Indo-Pacific hydroclimate variations through the Pleistocene, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to these global forcings. New paleoclimate records spanning multiple glacial-interglacial cycles are therefore required to document the region's hydroclimatic response to the full range of global climate boundary conditions observed during the late Quaternary. Lake Towuti is located in central Indonesia and is the only known terrestrial sedimentary archive in the region that spans multiple glacial-interglacial cycles. From May - July, 2015, the Towuti Drilling Project, consisting of nearly 40 scientists from eight countries, recovered over 1,000 meters of new sediment core from Lake Towuti. This includes cores though the entire sediment column to bedrock, which likely provide a >1-million-year records of regional hydroclimate. On-site borehole and sediment core logging data document major shifts in sediment composition, including transitions from lake clays to peats, calcareous sediments, and gravels. These data show excellent agreement with major lithological transitions recorded in seismic reflection data, and indicate large changes in lake levels and hydroclimate through the late Quaternary. Prior work on Lake Towuti indicated a dominant control by global ice volume on regional hydroclimate, a hypothesis we aim to test through the analysis of these new cores. This presentation will review existing records from the region and show the first long geochemical and sedimentological records from Lake Towuti to understand orbital-scale hydrologic change during the last ~1 million years.

  20. Future Earth -- New Approaches to address Climate Change and Sustainability in the MENA Region

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Abu Alhaija, Rana

    2016-04-01

    Interactions and feedbacks between rapidly increasing multiple pressures on water, energy and food security drive social-ecological systems at multiple scales towards critical thresholds in countries of the Eastern Mediterranean, the Middle East and North Africa (MENA Region). These pressures, including climate change, the growing demand on resources and resource degradation, urbanization and globalization, cause unprecedented challenges for countries and communities in the region. Responding to these challenges requires integrated science and a closer relationship with policy makers and stakeholders. Future Earth has been designed to respond to these urgent needs. In order to pursue such objectives, Future Earth is becoming the host organization for some 23 programs that were previously run under four global environmental change programmes, DIVERSITAS, the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme (IHDP) and the World Climate Research Programme (WCRP). Some further projects arose out of the Earth System Science Partnership (ESSP). It thus brings together a wide spectrum of expertise and knowledge that will be instrumental in tackling urgent problems in the MENA region and the wider Mediterranean Basin. Future Earth is being administered by a globally distributed secretariat that also includes a series of Regional Centers, which will be the nuclei for the development of new regional networks. The Cyprus Institute in Nicosia, Cyprus (CyI; www.cyi.ac.cy) is hosting the Regional Center for the MENA Region. The CyI is a non-profit research and post-graduate education institution with a strong scientific and technological orientation and a distinctive regional, Eastern Mediterranean scope. Cyprus at the crossroads of three continents and open to all nations in the region provides excellent conditions for advancing the research agenda of Future Earth in the MENA Region. Given the recent and ongoing major political and societal transformation in the region, research and development that help prepare the MENA countries for anticipated global changes and advance the development of sustainable structures are not only meaningful, but also a quite challenging undertakings.

  1. Climate change 101 : understanding and responding to global climate change

    DOT National Transportation Integrated Search

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  2. Links between the built environment, climate and population health: interdisciplinary environmental change research in New York City.

    PubMed

    Rosenthal, Joyce Klein; Sclar, Elliott D; Kinney, Patrick L; Knowlton, Kim; Crauderueff, Robert; Brandt-Rauf, Paul W

    2007-10-01

    Global climate change is expected to pose increasing challenges for cities in the following decades, placing greater stress and impacts on multiple social and biophysical systems, including population health, coastal development, urban infrastructure, energy demand, and water supplies. Simultaneously, a strong global trend towards urbanisation of poverty exists, with increased challenges for urban populations and local governance to protect and sustain the wellbeing of growing cities. In the context of these 2 overarching trends, interdisciplinary research at the city scale is prioritised for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive responses to climate change. This article discusses 2 recent initiatives of The Earth Institute at Columbia University (EI) as examples of research that integrates the methods and objectives of several disciplines, including environmental health science and urban planning, to understand the potential public health impacts of global climate change and mitigative measures for the more localised effects of the urban heat island in the New York City metropolitan region. These efforts embody 2 distinct research approaches. The New York Climate & Health Project created a new integrated modeling system to assess the public health impacts of climate and land use change in the metropolitan region. The Cool City Project aims for more applied policy-oriented research that incorporates the local knowledge of community residents to understand the costs and benefits of interventions in the built environment that might serve to mitigate the harmful impacts of climate change and variability, and protect urban populations from health stressors associated with summertime heat. Both types of research are potentially useful for understanding the impacts of environmental change at the urban scale, the policies needed to address these challenges, and to train scholars capable of collaborative approaches across the social and biophysical sciences.

  3. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Van Lanen, H. A. J.

    2015-03-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three general circulation models for the SRES A2 emission scenario (GCM forced models), and the WATCH Forcing Data set (reference model). The threshold level method was applied to investigate drought occurrence, duration and severity. Results for the control period (1971-2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate models' results after post-processing produce realistic outcomes for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D) climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry (B) climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the drought analysis for the control period showed that projections of hydrological drought characteristics are most uncertain. On a global scale the increase in hydrological drought duration and severity in multiple regions will lead to a higher impact of drought events, which should motivate water resource managers to timely anticipate the increased risk of more severe drought in groundwater and streamflow and to design pro-active measures.

  4. An empirical test of the relative and combined effects of land-cover and climate change on local colonization and extinction.

    PubMed

    Yalcin, Semra; Leroux, Shawn James

    2018-04-14

    Land-cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land-cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981-1985 and 2001-2005 are correlated with land-cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land-cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land-cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land-cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land-cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction. © 2018 John Wiley & Sons Ltd.

  5. Possible implications of global climate change on global lightning distributions and frequencies

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global lightning frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global lightning activity for the warmer climate and a 24% decrease in global lightning activity for the colder climate. This implies an approximate 5-6% change in global lightning frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground lightning frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled lightning changes depends on season, location, and even time of day.

  6. Qualitative assessment of climate-driven ecological shifts in the Caspian Sea

    PubMed Central

    Beyraghdar Kashkooli, Omid; Gröger, Joachim; Núñez-Riboni, Ismael

    2017-01-01

    The worldwide occurrence of complex climate-induced ecological shifts in marine systems is one of the major challenges in sustainable bio-resources management. The occurrence of ecological environment-driven shifts was studied in the Southern Caspian Sea using the “shiftogram” method on available fisheries-related (i.e. commercially important bentho-pelagic fish stocks) ecological and climatic variables. As indicators of potential environmentally driven shift patterns we used indices for the North Atlantic Oscillation, the Southern Oscillation, the Siberian High, the East Atlantic-West Russia pattern, as well as Sea Surface Temperature and surface chlorophyll-a concentration. Given the explorative findings from the serial shift analyses, the cascading and serial order of multiple shift events in climatic-ecologic conditions of the southern Caspian Sea suggested a linkage between external forces and dynamics of ecosystem components and structures in the following order: global-scale climate forces lead to local environmental processes, which in turn lead to biological components dynamics. For the first time, this study indicates that ecological shifts are an integral component of bentho-pelagic subsystem regulatory processes and dynamics. Qualitative correspondence of biological responses of bentho-pelagic stocks to climatic events is one of the supporting evidences that overall Caspian ecosystem structures and functioning might have–at least partially–been impacted by global-scale climatic or local environmental shifts. These findings may help to foster a regional Ecosystem-based Approach to Management (EAM) as an integral part of bentho-pelagic fisheries management plans. PMID:28475609

  7. Understanding and predicting climate variations in the Middle East for sustainable water resource management and development

    NASA Astrophysics Data System (ADS)

    Samuels, Rana

    Water issues are a source of tension between Israelis and Palestinians. In the and region of the Middle East, water supply is not just scarce but also uncertain: It is not uncommon for annual rainfall to be as little as 60% or as much as 125% of the multiannual average. This combination of scarcity and uncertainty exacerbates the already strained economy and the already tensed political situation. The uncertainty could be alleviated if it were possible to better forecast water availability. Such forecasting is key not only for water planning and management, but also for economic policy and for political decision making. Water forecasts at multiple time scales are necessary for crop choice, aquifer operation and investments in desalination infrastructure. The unequivocal warming of the climate system adds another level of uncertainty as global and regional water cycles change. This makes the prediction of water availability an even greater challenge. Understanding the impact of climate change on precipitation can provide the information necessary for appropriate risk assessment and water planning. Unfortunately, current global circulation models (GCMs) are only able to predict long term climatic evolution at large scales but not local rainfall. The statistics of local precipitation are traditionally predicted using historical rainfall data. Obviously these data cannot anticipate changes that result from climate change. It is therefore clear that integration of the global information about climate evolution and local historical data is needed to provide the much needed predictions of regional water availability. Currently, there is no theoretical or computational framework that enables such integration for this region. In this dissertation both a conceptual framework and a computational platform for such integration are introduced. In particular, suite of models that link forecasts of climatic evolution under different CO2 emissions scenarios to observed rainfall data from local stations are developed. These are used to develop scenarios for local rainfall statistics such as average annual amounts, dry spells, wet spells and drought persistence. This suite of models can provide information that is not attainable from existing tools in terms of its spatial and temporal resolution. Specifically, the goal is to project the impact of established global climate change scenarios in this region and, how much of the change might be mitigated by proposed CO2 reduction strategies. A major problem in this enterprise is to find the best way to integrate global climatic information with local rainfall data. From the climatologic perspective the problem is to find the right teleconnections. That is, non local or global measurable phenomena that influence local rainfall in a way that could be characterized and quantified statistically. From the computational perspective the challenge is to model these subtle, nonlinear relationships and to downscale the global effects into local predictions. Climate simulations to the year 2100 under selected climate change scenarios are used. Overall, the suite of models developed and presented can be applied to answer most questions from the different water users and planners. Farmers and the irrigation community can ask "What is the probability of rain over the next week?" Policy makers can ask "How much desalination capacity will I need to meet demand 90% of the time in the climate change scenario over the next 20 years?" Aquifer managers can ask "What is the expected recharge rate of the aquifers over the next decade?" The use of climate driven answers to these questions will help the region better prepare and adapt to future shifts in water resources and availability.

  8. Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis.

    PubMed

    Eller, Franziska; Skálová, Hana; Caplan, Joshua S; Bhattarai, Ganesh P; Burger, Melissa K; Cronin, James T; Guo, Wen-Yong; Guo, Xiao; Hazelton, Eric L G; Kettenring, Karin M; Lambertini, Carla; McCormick, Melissa K; Meyerson, Laura A; Mozdzer, Thomas J; Pyšek, Petr; Sorrell, Brian K; Whigham, Dennis F; Brix, Hans

    2017-01-01

    Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO 2 ; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global change and its consequences.

  9. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with reanalysis/ observed output. We apply the same for future under RCP scenarios. We observe spatially and temporally varying global change of wind energy density. The underlying assumption is that the regression relationship will also hold good for future. The results highlight the needs to change the design standards of wind mills at different locations, considering climate change and at the same time the requirement of height modifications for existing mills to produce same energy in future.

  10. Global Trends in Chlorophyll Concentration Observed with the Satellite Ocean Colour Data Record

    NASA Astrophysics Data System (ADS)

    Melin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S.

    2016-08-01

    To detect climate change signals in the data records derived from remote sensing of ocean colour, combining data from multiple missions is required, which implies that the existence of inter-mission differences be adequately addressed prior to undertaking trend studies. Trend distributions associated with merged products are compared with those obtained from single-mission data sets in order to evaluate their suitability for climate studies. Merged products originally developed for operational applications such as near-real time distribution (GlobColour) do not appear to be proper climate data records, showing large parts of the ocean with trends significantly different from trends obtained with SeaWiFS, MODIS or MERIS. On the other hand, results obtained from the Climate Change Initiative (CCI) data are encouraging, showing a good consistency with single-mission products.

  11. Climate change impacts on human exposures to air pollution ...

    EPA Pesticide Factsheets

    This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.

  12. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?

    Treesearch

    Donald McKenzie; Jeremy S. Littell

    2017-01-01

    Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong,...

  13. Empowering High School Students in Scientific Careers: Developing Statewide Partnerships

    NASA Astrophysics Data System (ADS)

    Aguilar, C.; Swartz, D.

    2008-05-01

    Center for Multiscale Modeling of Atmospheric Processes (CMMAP) is a National Science Foundation Science and Technology Center focused on improving the representation of cloud processes in climate models. The Center is divided into three sections including Knowledge Transfer, Research, and Education and Diversity. The Science Education and Diversity mission is to educate and train people with diverse backgrounds in Climate and Earth System Science by enhancing teaching and learning and disseminating science results through multiple media. CMMAP is partnering with two local school districts to host an annual global climate conferences for high school students. The 2008 Colorado Global Climate Conference seeks "To educate students on global and local climate issues and empower them to se their knowledge." The conference is sponsored by CMMAP, The Governor's Energy Office, Poudre School District, Thompson School District, Clif Bar, and Ben and Jerry's Scoop Shop of Fort Collins. The conference seeks to inspire students to pursue future education and careers in science fields. Following an opening welcome from the Governor's Energy Office, Keynote Piers Sellers will discuss his experiences as an atmospheric scientist and NASA astronaut. Students will then attend 3 out of 16 breakout sessions including such sessions as "Hot poems, Cool Paintings, and the treasures of Antiquity of Climate Change", "Mitigation vs Adaptation", "Bigfoot Walks(What Size is our carbon footprint?)" "The Wedges: Reduc ing Carbon Emissions", and "We the People: Climate and Culture of Climate Change" to name a few. Using The Governor's High School Conference on the Environment sponsored by the Wisconsin Center for Environmental Education as a model we are developing statewide partnerships to bring high school students together to look at global climate issues that will impact their future and of which they can be part of the solution through their education and career paths. In addition to attending breakout sessions, students will participate in a Learning Fair where over 100 demonstrations and hands on experiments will be available from everything to "Making a Cloud in a Bottle" to "Making a Difference One Tea Bag at a Time." Students will also bring a poster to showcase their accomplishments in their own schools. The target audience is 400 high school students from across the state of Colorado, specifically targeting underserved populations such as students from rural areas, minority populations and students that are eligible for free and reduced lunch.

  14. Contrasting Responses of the Humboldt Current Ecosystem between the Holocene and MIS5e Interglacials Revealed from Multiple Sediment Records

    NASA Astrophysics Data System (ADS)

    Salvatteci, R.; Schneider, R. R.; Blanz, T.; Martinez, P.; Crosta, X.

    2016-12-01

    The Humboldt Current Ecosystem (HCE) off Peru yields about 10% of the global fish catch, producing more fish per unit area than any other region in the world. The high productivity is maintained by the upwelling of cold, nutrient-rich water from the oxygen minimum zone (OMZ), driven by strong trade winds. However, the potential impacts of climate change on upwelling dynamics and oceanographic conditions in the near future are uncertain, threatening local and global economies. Here, we unravel the response of the HCE to contrasting climatic conditions during the last two interglacials (i.e. Holocene and MIS5e) providing an independent insight about the relation between climatic factors and upwelling and productivity dynamics. For this purpose, we used multiple cores to reconstruct past changes in OMZ and upwelling intensity, productivity and fish biomass variability. Chronologies for the Holocene were obtained by multiple 14C ages and laminae correlations among cores, while for the MIS5e they were mainly done by correlation of prominent features in several proxies with other published records. We used a multiproxy approach including alkenones to reconstruct sea surface temperatures, δ15N as a proxy for water column denitrification, redox sensitive metals as proxies for sediment redox conditions, and diatom and fish debris assemblages to reconstruct ecological changes. The results show a very different response of the HCE to climate conditions during the last 2 interglacials, likely driven by changes in Tropical Pacific dynamics. During the Holocene we find that 1) the Late Holocene exhibits higher multi-centennial scale variability compared to the Early Holocene, 2) increased upwelling and a weak OMZ during the mid-Holocene, and 3) long term increase in productivity (diatoms and fishes) from the Early to the Late Holocene. During the MIS5e we find an 1) intense OMZ, 2) strong water column stratification, 3) high siliceous biomass, and 4) low fish biomass compared to the Holocene and a regime shift towards more hemipelagic fishes. Our paleoreconstructions during the globally warm MIS5e are consistent with models indicating that the expected increase in stratification and atmospheric CO2 concentrations may significantly reduce fish capacity in the HCE with heavy ecological and economic consequences.

  15. Disease emergence from global climate and land use change.

    PubMed

    Patz, Jonathan A; Olson, Sarah H; Uejio, Christopher K; Gibbs, Holly K

    2008-11-01

    Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.

  16. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    DOE PAGES

    Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.; ...

    2016-05-31

    Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less

  17. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagle, Pradeep; Xiao, Xiangming; Kolb, Thomas E.

    Here, understanding the differences in carbon and water vapor fluxes of spatially distributed evergreen needleleaf forests (ENFs) is crucial for accurately estimating regional or global carbon and water budgets and when predicting the responses of ENFs to current and future climate. We compared the fluxes of ten AmeriFlux ENF sites to investigate cross-site variability in net ecosystem exchange of carbon (NEE), gross primary production (GPP), and evapotranspiration (ET). We used wavelet cross-correlation analysis to examine responses of NEE and ET to common climatic drivers over multiple timescales and also determined optimum values of air temperature (T a) and vapor pressuremore » deficit (VPD) for NEE and ET.« less

  18. A survey of urban climate change experiments in 100 cities

    PubMed Central

    Castán Broto, Vanesa; Bulkeley, Harriet

    2013-01-01

    Cities are key sites where climate change is being addressed. Previous research has largely overlooked the multiplicity of climate change responses emerging outside formal contexts of decision-making and led by actors other than municipal governments. Moreover, existing research has largely focused on case studies of climate change mitigation in developed economies. The objective of this paper is to uncover the heterogeneous mix of actors, settings, governance arrangements and technologies involved in the governance of climate change in cities in different parts of the world. The paper focuses on urban climate change governance as a process of experimentation. Climate change experiments are presented here as interventions to try out new ideas and methods in the context of future uncertainties. They serve to understand how interventions work in practice, in new contexts where they are thought of as innovative. To study experimentation, the paper presents evidence from the analysis of a database of 627 urban climate change experiments in a sample of 100 global cities. The analysis suggests that, since 2005, experimentation is a feature of urban responses to climate change across different world regions and multiple sectors. Although experimentation does not appear to be related to particular kinds of urban economic and social conditions, some of its core features are visible. For example, experimentation tends to focus on energy. Also, both social and technical forms of experimentation are visible, but technical experimentation is more common in urban infrastructure systems. While municipal governments have a critical role in climate change experimentation, they often act alongside other actors and in a variety of forms of partnership. These findings point at experimentation as a key tool to open up new political spaces for governing climate change in the city. PMID:23805029

  19. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America

    PubMed Central

    Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839

  20. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America.

    PubMed

    Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W

    2017-01-01

    Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.

  1. Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  2. Examining the Performance of Statistical Downscaling Methods: Toward Matching Applications to Data Products

    NASA Astrophysics Data System (ADS)

    Dixon, K. W.; Lanzante, J. R.; Adams-Smith, D.

    2017-12-01

    Several challenges exist when seeking to use future climate model projections in a climate impacts study. A not uncommon approach is to utilize climate projection data sets derived from more than one future emissions scenario and from multiple global climate models (GCMs). The range of future climate responses represented in the set is sometimes taken to be indicative of levels of uncertainty in the projections. Yet, GCM outputs are deemed to be unsuitable for direct use in many climate impacts applications. GCM grids typically are viewed as being too coarse. Additionally, regional or local-scale biases in a GCM's simulation of the contemporary climate that may not be problematic from a global climate modeling perspective may be unacceptably large for a climate impacts application. Statistical downscaling (SD) of climate projections - a type of post-processing that uses observations to inform the refinement of GCM projections - is often used in an attempt to account for GCM biases and to provide additional spatial detail. "What downscaled climate projection is the best one to use" is a frequently asked question, but one that is not always easy to answer, as it can be dependent on stakeholder needs and expectations. Here we present results from a perfect model experimental design illustrating how SD method performance can vary not only by SD method, but how performance can also vary by location, season, climate variable of interest, amount of projected climate change, SD configuration choices, and whether one is interested in central tendencies or the tails of the distribution. Awareness of these factors can be helpful when seeking to determine the suitability of downscaled climate projections for specific climate impacts applications. It also points to the potential value of considering more than one SD data product in a study, so as to acknowledge uncertainties associated with the strengths and weaknesses of different downscaling methods.

  3. Model-data integration to improve the LPJmL dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Thonicke, Kirsten; Schaphoff, Sibyll; Thurner, Martin; von Bloh, Werner; Dorigo, Wouter; Carvalhais, Nuno

    2017-04-01

    Dynamic global vegetation models show large uncertainties regarding the development of the land carbon balance under future climate change conditions. This uncertainty is partly caused by differences in how vegetation carbon turnover is represented in global vegetation models. Model-data integration approaches might help to systematically assess and improve model performances and thus to potentially reduce the uncertainty in terrestrial vegetation responses under future climate change. Here we present several applications of model-data integration with the LPJmL (Lund-Potsdam-Jena managed Lands) dynamic global vegetation model to systematically improve the representation of processes or to estimate model parameters. In a first application, we used global satellite-derived datasets of FAPAR (fraction of absorbed photosynthetic activity), albedo and gross primary production to estimate phenology- and productivity-related model parameters using a genetic optimization algorithm. Thereby we identified major limitations of the phenology module and implemented an alternative empirical phenology model. The new phenology module and optimized model parameters resulted in a better performance of LPJmL in representing global spatial patterns of biomass, tree cover, and the temporal dynamic of atmospheric CO2. Therefore, we used in a second application additionally global datasets of biomass and land cover to estimate model parameters that control vegetation establishment and mortality. The results demonstrate the ability to improve simulations of vegetation dynamics but also highlight the need to improve the representation of mortality processes in dynamic global vegetation models. In a third application, we used multiple site-level observations of ecosystem carbon and water exchange, biomass and soil organic carbon to jointly estimate various model parameters that control ecosystem dynamics. This exercise demonstrates the strong role of individual data streams on the simulated ecosystem dynamics which consequently changed the development of ecosystem carbon stocks and fluxes under future climate and CO2 change. In summary, our results demonstrate challenges and the potential of using model-data integration approaches to improve a dynamic global vegetation model.

  4. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  5. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  6. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Observation-based Estimate of Climate Sensitivity with a Scaling Climate Response Function

    NASA Astrophysics Data System (ADS)

    Hébert, Raphael; Lovejoy, Shaun

    2016-04-01

    To properly adress the anthropogenic impacts upon the earth system, an estimate of the climate sensitivity to radiative forcing is essential. Observation-based estimates of climate sensitivity are often limited by their ability to take into account the slower response of the climate system imparted mainly by the large thermal inertia of oceans, they are nevertheless essential to provide an alternative to estimates from global circulation models and increase our confidence in estimates of climate sensitivity by the multiplicity of approaches. It is straightforward to calculate the Effective Climate Sensitivity(EffCS) as the ratio of temperature change to the change in radiative forcing; the result is almost identical to the Transient Climate Response(TCR), but it underestimates the Equilibrium Climate Sensitivity(ECS). A study of global mean temperature is thus presented assuming a Scaling Climate Response Function to deterministic radiative forcing. This general form is justified as there exists a scaling symmetry respected by the dynamics, and boundary conditions, over a wide range of scales and it allows for long-range dependencies while retaining only 3 parameter which are estimated empirically. The range of memory is modulated by the scaling exponent H. We can calculate, analytically, a one-to-one relation between the scaling exponent H and the ratio of EffCS to TCR and EffCS to ECS. The scaling exponent of the power law is estimated by a regression of temperature as a function of forcing. We consider for the analysis 4 different datasets of historical global mean temperature and 100 scenario runs of the Coupled Model Intercomparison Project Phase 5 distributed among the 4 Representative Concentration Pathways(RCP) scenarios. We find that the error function for the estimate on historical temperature is very wide and thus, many scaling exponent can be used without meaningful changes in the fit residuals of historical temperatures; their response in the year 2100 on the other hand, is very broad, especially for a low-emission scenario such as RCP 2.6. CMIP5 scenario runs thus allow for a narrower estimate of H which can then be used to estimate the ECS and TCR from the EffCS estimated from the historical data.

  8. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.

    PubMed

    Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M

    2014-08-01

    Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. © 2014 Society for Conservation Biology.

  9. Consistency of climate change projections from multiple global and regional model intercomparison projects

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.

    2018-03-01

    We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.

  10. The NASA NEESPI Data Portal: Products, Information, and Services

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory; Loboda, Tatiana; Csiszar, Ivan; Romanov, Peter; Gerasimov, Irina

    2008-01-01

    Studies have indicated that land cover and use changes in Northern Eurasia influence global climate system. However, the procedures are not fully understood and it is challenging to understand the interactions between the land changes in this region and the global climate. Having integrated data collections form multiple disciplines are important for studies of climate and environmental changes. Remote sensed and model data are particularly important die to sparse in situ measurements in many Eurasia regions especially in Siberia. The NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) NEESPI data portal has generated infrastructure to provide satellite remote sensing and numerical model data for atmospheric, land surface, and cryosphere. Data searching, subsetting, and downloading functions are available. ONe useful tool is the Web-based online data analysis and visualization system, Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure), which allows scientists to assess easily the state and dynamics of terrestrial ecosystems in Northern Eurasia and their interactions with global climate system. Recently, we have created a metadata database prototype to expand the NASA NEESPI data portal for providing a venue for NEESPI scientists fo find the desired data easily and leveraging data sharing within NEESPI projects. The database provides product level information. The desired data can be found through navigation and free text search and narrowed down by filtering with a number of constraints. In addition, we have developed a Web Map Service (WMS) prototype to allow access data and images from difference data resources.

  11. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  12. Large-Scale and Global Hydrology. Chapter 92

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; Koster, Randal; Peters-Lidard, Christa D.; Famiglietti, James S.; Lakshmi, Venkat

    2016-01-01

    Powered by the sun, water moves continuously between and through Earths oceanic, atmospheric, and terrestrial reservoirs. It enables life, shapes Earths surface, and responds to and influences climate change. Scientists measure various features of the water cycle using a combination of ground, airborne, and space-based observations, and seek to characterize it at multiple scales with the aid of numerical models. Over time our understanding of the water cycle and ability to quantify it have improved, owing to advances in observational capabilities, the extension of the data record, and increases in computing power and storage. Here we present some of the most recent estimates of global and continental ocean basin scale water cycle stocks and fluxes and provide examples of modern numerical modeling systems and reanalyses.Further, we discuss prospects for predicting water cycle variability at seasonal and longer scales, which is complicated by a changing climate and direct human impacts related to water management and agriculture. Changes to the water cycle will be among the most obvious and important facets of climate change, thus it is crucial that we continue to invest in our ability to monitor it.

  13. A trait-based approach for predicting species responses to environmental change from sparse data: how well might terrestrial mammals track climate change?

    PubMed

    Santini, Luca; Cornulier, Thomas; Bullock, James M; Palmer, Stephen C F; White, Steven M; Hodgson, Jenny A; Bocedi, Greta; Travis, Justin M J

    2016-07-01

    Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate change. A major challenge is to parameterise spread models for many species. We introduce an approach that addresses this challenge, coupling a trait-based analysis with spatial population modelling to project spread rates for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life-history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate the relative roles of different life-history traits in driving modelled spread rates, demonstrating that any one alone will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower than the global mean velocity of climate change. This novel trait-space-demographic modelling approach has broad applicability for tackling many key ecological questions for which we have the models but are hindered by data availability. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica

    NASA Astrophysics Data System (ADS)

    Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.

    2005-12-01

    The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology and remote climate forcing is evaluated using the isotope signal from multiple trees, local meteorological observations, and climate field data for the well-observed 1997-1998 warm El Niño-Southern Oscillation (ENSO) event. The successful calibration of our age model is a necessary step toward the development of long, annually-resolved paleoclimate reconstructions from old trees, even without rings, which will be used to evaluate the cause of recent observed climate change at Monteverde and as proxies for tropical climate field reconstructions.

  15. A bottom-up institutional approach to cooperative governance of risky commons

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Vítor V.; Santos, Francisco C.; Pacheco, Jorge M.

    2013-09-01

    Avoiding the effects of climate change may be framed as a public goods dilemma, in which the risk of future losses is non-negligible, while realizing that the public good may be far in the future. The limited success of existing attempts to reach global cooperation has been also associated with a lack of sanctioning institutions and mechanisms to deal with those who do not contribute to the welfare of the planet or fail to abide by agreements. Here we investigate the emergence and impact of different types of sanctioning to deter non-cooperative behaviour in climate agreements. We show that a bottom-up approach, in which parties create local institutions that punish free-riders, promotes the emergence of widespread cooperation, mostly when risk perception is low, as it is at present. On the contrary, global institutions provide, at best, marginal improvements regarding overall cooperation. Our results clearly suggest that a polycentric approach involving multiple institutions is more effective than that associated with a single, global one, indicating that such a bottom-up, self-organization approach, set up at a local scale, provides a better ground on which to attempt a solution for such a complex and global dilemma.

  16. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  17. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review.

    PubMed

    Boyd, Philip W; Collins, Sinead; Dupont, Sam; Fabricius, Katharina; Gattuso, Jean-Pierre; Havenhand, Jonathan; Hutchins, David A; Riebesell, Ulf; Rintoul, Max S; Vichi, Marcello; Biswas, Haimanti; Ciotti, Aurea; Gao, Kunshan; Gehlen, Marion; Hurd, Catriona L; Kurihara, Haruko; McGraw, Christina M; Navarro, Jorge M; Nilsson, Göran E; Passow, Uta; Pörtner, Hans-Otto

    2018-06-01

    Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation. © 2018 John Wiley & Sons Ltd.

  18. Future possible crop yield scenarios under multiple SSP and RCP scenarios.

    NASA Astrophysics Data System (ADS)

    Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.

    2016-12-01

    Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.

  19. Continent-scale global change attribution in European birds - combining annual and decadal time scales.

    PubMed

    Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper; Tøttrup, Anders P; Chylarecki, Przemysław; Jiguet, Frédéric; Lehikoinen, Aleksi; Noble, David G; Reif, Jiri; Schmid, Hans; van Turnhout, Chris; Burfield, Ian J; Foppen, Ruud; Voříšek, Petr; van Strien, Arco; Gregory, Richard D; Rahbek, Carsten

    2016-02-01

    Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we investigate the recent impact of multiple environmental changes on European farmland birds, here focusing on climate change and land use change. We analyze more than 800 time series from 18 countries spanning the past two decades. Analysis of long-term population growth rates documents simultaneous responses that can be attributed to both climate change and land-use change, including long-term increases in populations of hot-dwelling species and declines in long-distance migrants and farmland specialists. In contrast, analysis of annual growth rates yield novel insights into the potential mechanisms driving long-term climate induced change. In particular, we find that birds are affected by winter, spring, and summer conditions depending on the distinct breeding phenology that corresponds to their migratory strategy. Birds in general benefit from higher temperatures or higher primary productivity early on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach will be of general use when high-resolution time series are available in large-scale biodiversity surveys. © 2015 John Wiley & Sons Ltd.

  20. Replumbing of the Biological Pump caused by Millennial Climate Variability

    NASA Astrophysics Data System (ADS)

    Galbraith, E.; Sarmiento, J.

    2008-12-01

    It has been hypothesized that millennial-timescale variability in the biological pump was a critical instigator of glacial-interglacial cycles. However, even in the absence of changes in ecosystem function (e.g. due to iron fertilization), determining the mechanisms by which physical climate variability alters the biological pump is not simple. Changes in upper ocean circulation and deep water formation have previously been shown to alter both the downward flux of organic matter and the mass of respired carbon in the ocean interior, often in non- intuitive ways. For example, a reduced upward flux of nutrients at the global scale will decrease the global rate of export production, but it could either increase or decrease the respired carbon content of the ocean interior, depending on where the reduced upward flux of nutrients occurs. Furthermore, viable candidates for physical climate forcing are numerous, including changes in the westerly winds, changes in the depth of the thermocline, and changes in the formation rate of North Atlantic Deep Water, among others. We use a simple, prognostic, light-and temperature-dependent model of biogeochemical cycling within a state-of-the- art global coupled ocean-atmosphere model to examine the response of the biological pump to changes in the coupled Earth system over multiple centuries. The biogeochemical model explicitly distinguishes respired carbon from preformed and saturation carbon, allowing the activity of the biological pump to be clearly quantified. Changes are forced in the model by altering the background climate state, and by manipulating the flux of freshwater to the North Atlantic region. We show how these changes in the physical state of the coupled ocean-atmosphere system impact the distribution and mass of respired carbon in the ocean interior, and the relationship these changes bear to global patterns of export production via the redistribution of nutrients.

  1. Particulate Matter and Ozone Prediction and Source Attribution for U.S. Air Quality Management in a Changing World

    NASA Astrophysics Data System (ADS)

    Sanyal, S.; Wuebbles, D. J.

    2017-12-01

    In this study, the focus is on how global changes in climate and emissions will affect the U.S. air quality, especially on fine particulate matter and ozone, projecting their future trends and quantifying key source attribution. We are conducting three primary experiments : (1) historical simulations for period 1994-2013 to establish the credibility of the system and refine process-level understanding of U.S. regional air quality; (2) projections for period 2041-2060 to quantify individual and combined impacts of global climate and emissions changes under multiple scenarios; (3) sensitivity analyses to determine future changes in pollution sources and their relative contributions from anthropogenic and natural emissions, long-range pollutant transport, and climate change effects. Here we will present the result from the first experiment with the global model CESM1.2 (with fully coupled chemistry using CAM-chem5) driven by NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis data at 0.9o x 1.25o resolution. We will present the comparison between the results from model simulation with observation data from EPA database. Since there is always a challenge in comparing gridded prediction from model data with point data from the observation databases, because the model simulations calculate the average outcome over a grid for a given set of conditions while the stochastic component (e.g. sub-grid variations) embedded in the observations are not accounted for, we are using extensive statistical measure to do the comparison. We will also determine relative contributions from multiscale (local, regional, global) processes, major source regions (Mexico, Canada, Asia, Africa) and types (natural, anthropogenic) and associated uncertainties (climate decadal oscillations/interannual variations, emissions and model structure errors).

  2. Mars dust storms - Interannual variability and chaos

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.; Lyons, James R.

    1993-01-01

    The hypothesis is that the global climate system, consisting of atmospheric dust interacting with the circulation, produces its own interannual variability when forced at the annual frequency. The model has two time-dependent variables representing the amount of atmospheric dust in the northern and southern hemispheres, respectively. Absorption of sunlight by the dust drives a cross-equatorial Hadley cell that brings more dust into the heated hemisphere. The circulation decays when the dust storm covers the globe. Interannual variability manifests itself either as a periodic solution in which the period is a multiple of the Martian year, or as an aperiodic (chaotic) solution that never repeats. Both kinds of solution are found in the model, lending support to the idea that interannual variability is an intrinsic property of the global climate system. The next step is to develop a hierarchy of dust-circulation models capable of being integrated for many years.

  3. Pareto-Optimal Estimates of California Precipitation Change

    NASA Astrophysics Data System (ADS)

    Langenbrunner, Baird; Neelin, J. David

    2017-12-01

    In seeking constraints on global climate model projections under global warming, one commonly finds that different subsets of models perform well under different objective functions, and these trade-offs are difficult to weigh. Here a multiobjective approach is applied to a large set of subensembles generated from the Climate Model Intercomparison Project phase 5 ensemble. We use observations and reanalyses to constrain tropical Pacific sea surface temperatures, upper level zonal winds in the midlatitude Pacific, and California precipitation. An evolutionary algorithm identifies the set of Pareto-optimal subensembles across these three measures, and these subensembles are used to constrain end-of-century California wet season precipitation change. This methodology narrows the range of projections throughout California, increasing confidence in estimates of positive mean precipitation change. Finally, we show how this technique complements and generalizes emergent constraint approaches for restricting uncertainty in end-of-century projections within multimodel ensembles using multiple criteria for observational constraints.

  4. Structure and functioning of dryland ecosystems in a changing world.

    PubMed

    Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2016-11-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.

  5. Structure and functioning of dryland ecosystems in a changing world

    PubMed Central

    Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2017-01-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303

  6. Water dependency and water exploitation at global scale as indicators of water security

    NASA Astrophysics Data System (ADS)

    De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.

    2015-12-01

    A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.

  7. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition

    PubMed Central

    Pound, Matthew J.; Salzmann, Ulrich

    2017-01-01

    Rapid global cooling at the Eocene – Oligocene Transition (EOT), ~33.9–33.5 Ma, is widely considered to mark the onset of the modern icehouse world. A large and rapid drop in atmospheric pCO2 has been proposed as the driving force behind extinctions in the marine realm and glaciation on Antarctica. However, the global terrestrial response to this cooling is uncertain. Here we present the first global vegetation and terrestrial temperature reconstructions for the EOT. Using an extensive palynological dataset, that has been statistically grouped into palaeo-biomes, we show a more transitional nature of terrestrial climate change by indicating a spatial and temporal heterogeneity of vegetation change at the EOT in both hemispheres. The reconstructed terrestrial temperatures show for many regions a cooling that started well before the EOT and continued into the Early Oligocene. We conclude that the heterogeneous pattern of global vegetation change has been controlled by a combination of multiple forcings, such as tectonics, sea-level fall and long-term decline in greenhouse gas concentrations during the late Eocene to early Oligocene, and does not represent a single response to a rapid decline in atmospheric pCO2 at the EOT. PMID:28233862

  8. A fully traits-based approach to modeling global vegetation distribution.

    PubMed

    van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M

    2014-09-23

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.

  9. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    NASA Astrophysics Data System (ADS)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample from the full range of uncertainties associated with all parts of the simulation chain, from global climate models with simulations of natural climate variability, through regional climate downscaling, and on to modeling of affected hydrologic processes and downstream water resources impacts. This talk will present part of the work underway now both to reveal and reduce some important uncertainties and to develop explicit guidance for future generation of quantitative hydroclimatic storylines. Topics will include: 1- model structural and parameter-set limitations of some methods widely used to quantify climate impacts to hydrologic processes [Gutmann et al., 2014; Newman et al., 2015]; 2- development and evaluation of new, spatially consistent, U.S. national-scale climate downscaling and hydrologic simulation capabilities directly relevant at the multiple scales of water-resource decision-making [Newman et al., 2015; Mizukami et al., 2015; Gutmann et al., 2016]; and 3- development and evaluation of advanced streamflow forecasting methods to reduce and represent integrated uncertainties in a tractable way [Wood et al., 2014; Wood et al., 2015]. A key focus will be areas where climatologic and hydrologic science is currently under-developed to inform decisions - or is perhaps wrongly scaled or misapplied in practice - indicating the need for additional fundamental science and interpretation.

  10. Synthesizing late Holocene paleoclimate reconstructions: Lessons learned, common challenges, and implications for future research

    NASA Astrophysics Data System (ADS)

    Rodysill, J. R.

    2017-12-01

    Proxy-based reconstructions provide vital information for developing histories of environmental and climate changes. Networks of spatiotemporal paleoclimate information are powerful tools for understanding dynamical processes within the global climate system and improving model-based predictions of the patterns and magnitudes of climate changes at local- to global-scales. Compiling individual paleoclimate records and integrating reconstructed climate information in the context of an ensemble of multi-proxy records, which are fundamental for developing a spatiotemporal climate data network, are hindered by challenges related to data and information accessibility, chronological uncertainty, sampling resolution, climate proxy type, and differences between depositional environments. The U.S. Geological Survey (USGS) North American Holocene Climate Synthesis Working Group has been compiling and integrating multi-proxy paleoclimate data as part of an ongoing effort to synthesize Holocene climate records from North America. The USGS North American Holocene Climate Synthesis Working Group recently completed a late Holocene hydroclimate synthesis for the North American continent using several proxy types from a range of depositional environments, including lakes, wetlands, coastal marine, and cave speleothems. Using new age-depth relationships derived from the Bacon software package, we identified century-scale patterns of wetness and dryness for the past 2000 years with an age uncertainty-based confidence rating for each proxy record. Additionally, for highly-resolved North American lake sediment records, we computed average late Holocene sediment deposition rates and identified temporal trends in age uncertainty that are common to multiple lakes. This presentation addresses strengths and challenges of compiling and integrating data from different paleoclimate archives, with a particular focus on lake sediments, which may inform and guide future paleolimnological studies.

  11. Using non-systematic surveys to investigate effects of regional climate variability on Australasian gannets in the Hauraki Gulf, New Zealand

    NASA Astrophysics Data System (ADS)

    Srinivasan, Mridula; Dassis, Mariela; Benn, Emily; Stockin, Karen A.; Martinez, Emmanuelle; Machovsky-Capuska, Gabriel E.

    2015-05-01

    Few studies have investigated regional and natural climate variability on seabird populations using ocean reanalysis datasets (e.g. Simple Ocean Data Assimilation (SODA)) that integrate atmospheric information to supplement ocean observations and provide improved estimates of ocean conditions. Herein we use a non-systematic dataset on Australasian gannets (Morus serrator) from 2001 to 2009 to identify potential connections between Gannet Sightings Per Unit Effort (GSPUE) and climate and oceanographic variability in a region of known importance for breeding seabirds, the Hauraki Gulf (HG), New Zealand. While no statistically significant relationships between GSPUE and global climate indices were determined, there was a significant correlation between GSPUE and regional SST anomaly for HG. Also, there appears to be a strong link between global climate indices and regional climate in the HG. Further, based on cross-correlation function coefficients and lagged multiple regression models, we identified potential leading and lagging climate variables, and climate variables but with limited predictive capacity in forecasting future GSPUE. Despite significant inter-annual variability and marginally cooler SSTs since 2001, gannet sightings appear to be increasing. We hypothesize that at present underlying physical changes in the marine ecosystem may be insufficient to affect supply of preferred gannet main prey (pilchard Sardinops spp.), which tolerate a wide thermal range. Our study showcases the potential scientific value of lengthy non-systematic data streams and when designed properly (i.e., contain abundance, flock size, and spatial data), can yield useful information in climate impact studies on seabirds and other marine fauna. Such information can be invaluable for enhancing conservation measures for protected species in fiscally constrained research environments.

  12. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    ERIC Educational Resources Information Center

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  13. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  14. Ways to Include Global Climate Change in Courses for Prospective Teachers

    ERIC Educational Resources Information Center

    van Zee, Emily; Grobart, Emma; Roberts-Harris, Deborah

    2016-01-01

    What responsibility do science teacher educators have for engaging students in learning about global climate change in courses? How can the topic of global climate change be added to an already packed course curriculum? The authors have begun assembling instructional resources and learning ways others have incorporated global climate change in…

  15. Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas

    PubMed Central

    Brown, Sally; Wolff, Claudia; Merkens, Jan-Ludolf

    2018-01-01

    The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’. PMID:29610380

  16. Vulnerability of ecosystems to climate change moderated by habitat intactness.

    PubMed

    Eigenbrod, Felix; Gonzalez, Patrick; Dash, Jadunandan; Steyl, Ilse

    2015-01-01

    The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48×48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8×4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large-scale refugia is the priority. In human-dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large-scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network. © 2014 John Wiley & Sons Ltd.

  17. Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas.

    PubMed

    Nicholls, Robert J; Brown, Sally; Goodwin, Philip; Wahl, Thomas; Lowe, Jason; Solan, Martin; Godbold, Jasmin A; Haigh, Ivan D; Lincke, Daniel; Hinkel, Jochen; Wolff, Claudia; Merkens, Jan-Ludolf

    2018-05-13

    The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  18. Management of Local Stressors Can Improve the Resilience of Marine Canopy Algae to Global Stressors

    PubMed Central

    Strain, Elisabeth M. A.; van Belzen, Jim; van Dalen, Jeroen; Bouma, Tjeerd J.; Airoldi, Laura

    2015-01-01

    Coastal systems are increasingly threatened by multiple local anthropogenic and global climatic stressors. With the difficulties in remediating global stressors, management requires alternative approaches that focus on local scales. We used manipulative experiments to test whether reducing local stressors (sediment load and nutrient concentrations) can improve the resilience of foundation species (canopy algae along temperate rocky coastlines) to future projected global climate stressors (high wave exposure, increasing sea surface temperature), which are less amenable to management actions. We focused on Fucoids (Cystoseira barbata) along the north-western Adriatic coast in the Mediterranean Sea because of their ecological relevance, sensitivity to a variety of human impacts, and declared conservation priority. At current levels of sediment and nutrients, C. barbata showed negative responses to the simulated future scenarios of high wave exposure and increased sea surface temperature. However, reducing the sediment load increased the survival of C. barbata recruits by 90.24% at high wave exposure while reducing nutrient concentrations resulted in a 20.14% increase in the survival and enhanced the growth of recruited juveniles at high temperature. We conclude that improving water quality by reducing nutrient concentrations, and particularly the sediment load, would significantly increase the resilience of C. barbata populations to projected increases in climate stressors. Developing and applying appropriate targets for specific local anthropogenic stressors could be an effective management action to halt the severe and ongoing loss of key marine habitats. PMID:25807516

  19. Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas

    NASA Astrophysics Data System (ADS)

    Nicholls, Robert J.; Brown, Sally; Goodwin, Philip; Wahl, Thomas; Lowe, Jason; Solan, Martin; Godbold, Jasmin A.; Haigh, Ivan D.; Lincke, Daniel; Hinkel, Jochen; Wolff, Claudia; Merkens, Jan-Ludolf

    2018-05-01

    The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  20. Climate change and watershed mercury export: a multiple projection and model analysis

    USGS Publications Warehouse

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  1. Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data.

    PubMed

    Farrer, Emily C; Ashton, Isabel W; Knape, Jonas; Suding, Katharine N

    2014-04-01

    Two sources of complexity make predicting plant community response to global change particularly challenging. First, realistic global change scenarios involve multiple drivers of environmental change that can interact with one another to produce non-additive effects. Second, in addition to these direct effects, global change drivers can indirectly affect plants by modifying species interactions. In order to tackle both of these challenges, we propose a novel population modeling approach, requiring only measurements of abundance and climate over time. To demonstrate the applicability of this approach, we model population dynamics of eight abundant plant species in a multifactorial global change experiment in alpine tundra where we manipulated nitrogen, precipitation, and temperature over 7 years. We test whether indirect and interactive effects are important to population dynamics and whether explicitly incorporating species interactions can change predictions when models are forecast under future climate change scenarios. For three of the eight species, population dynamics were best explained by direct effect models, for one species neither direct nor indirect effects were important, and for the other four species indirect effects mattered. Overall, global change had negative effects on species population growth, although species responded to different global change drivers, and single-factor effects were slightly more common than interactive direct effects. When the fitted population dynamic models were extrapolated under changing climatic conditions to the end of the century, forecasts of community dynamics and diversity loss were largely similar using direct effect models that do not explicitly incorporate species interactions or best-fit models; however, inclusion of species interactions was important in refining the predictions for two of the species. The modeling approach proposed here is a powerful way of analyzing readily available datasets which should be added to our toolbox to tease apart complex drivers of global change. © 2013 John Wiley & Sons Ltd.

  2. Marine assemblages respond rapidly to winter climate variability.

    PubMed

    Morley, James W; Batt, Ryan D; Pinsky, Malin L

    2017-07-01

    Even species within the same assemblage have varied responses to climate change, and there is a poor understanding for why some taxa are more sensitive to climate than others. In addition, multiple mechanisms can drive species' responses, and responses may be specific to certain life stages or times of year. To test how marine species respond to climate variability, we analyzed 73 diverse taxa off the southeast US coast in 26 years of scientific trawl survey data and determined how changes in distribution and biomass relate to temperature. We found that winter temperatures were particularly useful for explaining interannual variation in species' distribution and biomass, although the direction and magnitude of the response varied among species from strongly negative, to little response, to strongly positive. Across species, the response to winter temperature varied greatly, with much of this variation being explained by thermal preference. A separate analysis of annual commercial fishery landings revealed that winter temperatures may also impact several important fisheries in the southeast United States. Based on the life stages of the species surveyed, winter temperature appears to act through overwinter mortality of juveniles or as a cue for migration timing. We predict that this assemblage will be responsive to projected increases in temperature and that winter temperature may be broadly important for species relationships with climate on a global scale. © The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  3. Communicating Climate Change: the Problem of Knowing and Doing.

    NASA Astrophysics Data System (ADS)

    Wildcat, D.

    2008-12-01

    The challenge of global warming and climate change may illustrate better than any recent phenomenon that quite independent of the science associated with our assessment, modeling, mitigation strategies and adaptation to the multiple complex processes that characterize this phenomenon, our greatest challenge resides in creating systems where knowledge can be usefully communicated to the general public. Knowledge transfer will pose significant challenges when addressing a topic that often leaves the ill-informed and non-scientist overwhelmed with pieces of information and paralyzed with a sense that there is nothing to be done to address this global problem. This communication problem is very acute in North American indigenous communities where a first-hand, on-the-ground, experience of climate change is indisputable, but where the charts, graphs and sophisticated models presented by scientists are treated with suspicion and often not explained very well. This presentation will discuss the efforts of the American Indian and Alaska Native Climate Change Working Group to prepare future generations of AI/AN geoscience professionals, educators, and a geoscience literate AI/AN workforce, while insuring that our Indigenous tribal knowledges of land- and sea-scapes, and climates are valued, used and incorporated into our tribal exercise of geoscience education and research. The Working Group's efforts are already suggesting the communication problem for Indigenous communities will best be solved by 'growing' our own culturally competent Indigenous geoscience professionals.

  4. Modeling contemporary climate profiles of whitebark pine (Pinus albicaulis) and predicting responses to global warming

    Treesearch

    Marcus V. Warwell; Gerald E. Rehfeldt; Nicholas L. Crookston

    2006-01-01

    The Random Forests multiple regression tree was used to develop an empirically-based bioclimate model for the distribution of Pinus albicaulis (whitebark pine) in western North America, latitudes 31° to 51° N and longitudes 102° to 125° W. Independent variables included 35 simple expressions of temperature and precipitation and their interactions....

  5. When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world

    Treesearch

    Eric J. Gustafson

    2013-01-01

    Researchers and natural resource managers need predictions of how multiple global changes (e.g., climate change, rising levels of air pollutants, exotic invasions) will affect landscape composition and ecosystem function. Ecological predictive models used for this purpose are constructed using either a mechanistic (process-based) or a phenomenological (empirical)...

  6. Studies of Trace Gas Chemical Cycles Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2003-01-01

    We report progress in the first year, and summarize proposed work for the second year of the three-year dynamical-chemical modeling project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (b) utilization of inverse methods to determine these source/sink strengths using either MATCH (Model for Atmospheric Transport and Chemistry) which is based on analyzed observed wind fields or back-trajectories computed from these wind fields, (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important goals include determination of regional source strengths of methane, nitrous oxide, methyl bromide, and other climatically and chemically important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal protocol and its follow-on agreements and hydrohalocarbons now used as alternatives to the restricted halocarbons.

  7. Response of Urban Systems to Climate Change in Europe: Heat Stress Exposure and the Effect on Human Health

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart; Grommen, Mart

    2015-04-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a subsequent step, the heat stress variables are superposed on relevant socio-economic datasets targeting total population and its distribution per age class as well as vulnerable institutions such as hospitals, schools, rest homes and child/day care facilities in order to generate heat stress exposure maps for each use case city and various climate, urban planning and mitigation scenarios. The specifications and requirements for the various scenarios have been consolidated in close collaboration with the local stakeholders during dedicated end-users workshops. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for evolving towards sustainable and climate resilient cities.

  8. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  9. Global Food Security in a Changing Climate: Considerations and Projections

    NASA Astrophysics Data System (ADS)

    Walsh, M. K.; Brown, M. E.; Backlund, P. W.; Antle, J. M.; Carr, E. R.; Easterling, W. E.; Funk, C. C.; Murray, A.; Ngugi, M.; Barrett, C. B.; Ingram, J. S. I.; Dancheck, V.; O'Neill, B. C.; Tebaldi, C.; Mata, T.; Ojima, D. S.; Grace, K.; Jiang, H.; Bellemare, M.; Attavanich, W.; Ammann, C. M.; Maletta, H.

    2015-12-01

    Global food security is an elusive challenge and important policy focus from the community to the globe. Food is provisioned through food systems that may be simple or labyrinthine, yet each has vulnerabilities to climate change through its effects on food production, transportation, storage, and other integral food system activities. At the same time, the future of food systems is sensitive to socioeconomic trajectories determined by choices made outside of the food system, itself. Constrictions for any reason can lead to decreased food availability, access, utilization, or stability - that is, to diminished food security. Possible changes in trade and other U.S. relationships to the rest of the world under changing conditions to the end of the century are considered through integrated assessment modelling under a range of emissions scenarios. Climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. In the near term, some high-latitude production export regions may benefit from changes in climate. The types and price of food imports is likely to change, as are export demands, affecting U.S. consumers and producers. Demands placed on foreign assistance programs may increase, as may demand for advanced technologies. Adaptation across the food system has great potential to manage climate change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame.

  10. ISI-MIP: The Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Huber, V.; Dahlemann, S.; Frieler, K.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2013-12-01

    The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. The unique cross-sectoral scope of the project provides the opportunity to study cascading effects of impacts in interacting sectors and to identify regional 'hot spots' where multiple sectors experience extreme impacts. Another emphasis lies on the development of novel metrics to describe societal impacts of a warmer climate. We briefly outline the methodological framework, and then present selected results of the first, fast-tracked phase of ISI-MIP. The fast track brought together 35 global impact models internationally, spanning five sectors across human society and the natural world (agriculture, water, natural ecosystems, health and coastal infrastructure), and using the latest generation of global climate simulations (RCP projections from the CMIP5 archive) and socioeconomic drivers provided within the SSP process. We also introduce the second phase of the project, which will enlarge the scope of ISI-MIP by encompassing further impact sectors (e.g., forestry, fisheries, permafrost) and regional modeling approaches. The focus for the next round of simulations will be the validation and improvement of models based on historical observations and the analysis of variability and extreme events. Last but not least, we discuss the longer-term objective of ISI-MIP to initiate a coordinated, ongoing impact assessment process, driven by the entire impact community and in parallel with well-established climate model intercomparisons (CMIP).

  11. When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health.

    PubMed

    Highwood, Eleanor J; Kinnersley, Robert P

    2006-05-01

    With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring.

  12. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.

    PubMed

    O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F

    2017-08-31

    In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

  13. Future Freshwater Stress on Small Islands: Population, Aridity and Global Warming Targets

    NASA Astrophysics Data System (ADS)

    Karnauskas, K. B.; Schleussner, C. F.; Donnelly, J. P.; Anchukaitis, K. J.

    2017-12-01

    Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Future freshwater stress, including geographic and seasonal variability, has important implications for climate change adaptation scenarios for vulnerable human populations living on islands across the world ocean. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here we apply a recently developed methodology to project future changes in aridity in combination with population projections associated with different shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5°C and 2°C above pre-industrial levels. By accounting for evaporative demand a posteriori, we reveal a robust yet spatially variable tendency towards increasing aridity for 16 million people living on islands by mid-century. Although about half of the islands are projected to experience increased rainfall—predominantly in the deep tropics—projected changes in evaporation are more uniform, shifting the global distribution of changes in island freshwater balance towards greater aridity. In many cases, the magnitude of projected drying is comparable to the amplitude of the estimated observed interannual variability, with important consequences for extreme events. While we find that future population growth will dominate changes in projected freshwater stress especially towards the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. Particularly across the Caribbean region, a substantial fraction ( 25%) of the large overall freshwater stress projected under 2°C at 2030 can be avoided by limiting global warming to 1.5°C. Our findings add to a growing body of literature on the difference in climate impacts between 1.5°C and 2°C and underscore the need for regionally specific analysis.

  14. A Regional Climate Model Evaluation System based on Satellite and other Observations

    NASA Astrophysics Data System (ADS)

    Lean, P.; Kim, J.; Waliser, D. E.; Hall, A. D.; Mattmann, C. A.; Granger, S. L.; Case, K.; Goodale, C.; Hart, A.; Zimdars, P.; Guan, B.; Molotch, N. P.; Kaki, S.

    2010-12-01

    Regional climate models are a fundamental tool needed for downscaling global climate simulations and projections, such as those contributing to the Coupled Model Intercomparison Projects (CMIPs) that form the basis of the IPCC Assessment Reports. The regional modeling process provides the means to accommodate higher resolution and a greater complexity of Earth System processes. Evaluation of both the global and regional climate models against observations is essential to identify model weaknesses and to direct future model development efforts focused on reducing the uncertainty associated with climate projections. However, the lack of reliable observational data and the lack of formal tools are among the serious limitations to addressing these objectives. Recent satellite observations are particularly useful as they provide a wealth of information on many different aspects of the climate system, but due to their large volume and the difficulties associated with accessing and using the data, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL / UCLA is developing a model evaluation system to help make satellite observations, in conjunction with in-situ, assimilated, and reanalysis datasets, more readily accessible to the modeling community. The system includes a central database to store multiple datasets in a common format and codes for calculating predefined statistical metrics to assess model performance. This allows the time taken to compare model simulations with satellite observations to be reduced from weeks to days. Early results from the use this new model evaluation system for evaluating regional climate simulations over California/western US regions will be presented.

  15. Climatic variability in the Gulf of California associated with the Medieval Warm Period and the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Flores-Castillo, O. D. L. A.; Martínez-López, A.; Perez-Cruz, L. L.

    2017-12-01

    Marine ecosystems close to the coasts are highly susceptible to be affected both by the variability due to natural processes of the climate system as well as by anthropogenic activities. The Gulf of California, located near the tropical Pacific region, whose influence on the long-term global climate has already been demonstrated, represents a great opportunity to assess the regional response to these effects. This study reconstructs some of the oceanographic and climatic conditions that occurred simultaneously with the Medieval Warm Period (MWP) and the Little Ice Age (LIA) climatic periods in the southern region of the gulf. This reconstruction was based on the use of multiple indirect indicators or proxies of paleoproduction and geochemistry (determined by isotope-ratios mass spectrometer interfaced with an elemental analyzer and inductively coupled plasma mass spectrometry) preserved in a high-resolution laminated sedimentary sequence collected in the slope of southeastern coast of the Gulf of California (24.2822 ° N and 108.3037 ° W). The main effects of these periods were higher precipitation conditions that generated a greater fluvial contribution during the MWP besides a bigger oxygenation of the water mass near the bottom. These conditions were followed by an increase in exported production, decrease in the oxygen content of the water near the bottom and an increase in the denitrification during the transition to the LIA. The results confirm the existence of oceanographic and climatic variability on a secular scale in the Gulf of California associated with both global climatic periods.

  16. Quantifying the Influence of Dynamics Across Scales on Regional Climate Uncertainty in Western North America

    NASA Astrophysics Data System (ADS)

    Goldenson, Naomi L.

    Uncertainties in climate projections at the regional scale are inevitably larger than those for global mean quantities. Here, focusing on western North American regional climate, several approaches are taken to quantifying uncertainties starting with the output of global climate model projections. Internal variance is found to be an important component of the projection uncertainty up and down the west coast. To quantify internal variance and other projection uncertainties in existing climate models, we evaluate different ensemble configurations. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find internal variability can be quantified consistently using a large ensemble or an ensemble of opportunity that includes small ensembles from multiple models and climate scenarios. The latter offers the advantage of also producing estimates of uncertainty due to model differences. We conclude that climate projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible. We then conduct a small single-model ensemble of simulations using the Model for Prediction Across Scales with physics from the Community Atmosphere Model Version 5 (MPAS-CAM5) and prescribed historical sea surface temperatures. In the global variable resolution domain, the finest resolution (at 30 km) is in our region of interest over western North America and upwind over the northeast Pacific. In the finer-scale region, extreme precipitation from atmospheric rivers (ARs) is connected to tendencies in seasonal snowpack in mountains of the Northwest United States and California. In most of the Cascade Mountains, winters with more AR days are associated with less snowpack, in contrast to the northern Rockies and California's Sierra Nevadas. In snowpack observations and reanalysis of the atmospheric circulation, we find similar relationships between frequency of AR events and winter season snowpack in the western United States. In spring, however, there is not a clear relationship between number of AR days and seasonal mean snowpack across the model ensemble, so caution is urged in interpreting the historical record in the spring season. Finally, the representation of the El Nino Southern Oscillation (ENSO)--an important source of interannual climate predictability in some regions--is explored in a large single-model ensemble using ensemble Empirical Orthogonal Functions (EOFs) to find modes of variance across the entire ensemble at once. The leading EOF is ENSO. The principal components (PCs) of the next three EOFs exhibit a lead-lag relationship with the ENSO signal captured in the first PC. The second PC, with most of its variance in the summer season, is the most strongly cross-correlated with the first. This approach offers insight into how the model considered represents this important atmosphere-ocean interaction. Taken together these varied approaches quantify the implications of climate projections regionally, identify processes that make snowpack water resources vulnerable, and seek insight into how to better simulate the large-scale climate modes controlling regional variability.

  17. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    NASA Astrophysics Data System (ADS)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate.

  18. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model.

    PubMed

    Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Rammig, Anja; Kattge, Jens; Poorter, Lourens; Peñuelas, Josep; Thonicke, Kirsten

    2015-01-22

    Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N area ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects. © 2015 John Wiley & Sons Ltd.

  19. Public Health and Mental Health Implications of Environmentally Induced Forced Migration.

    PubMed

    Shultz, James M; Rechkemmer, Andreas; Rai, Abha; McManus, Katherine T

    2018-03-28

    ABSTRACTClimate change is increasingly forcing population displacement, better described by the phrase environmentally induced forced migration. Rising global temperatures, rising sea levels, increasing frequency and severity of natural disasters, and progressive depletion of life-sustaining resources are among the drivers that stimulate population mobility. Projections forecast that current trends will rapidly accelerate. This will lead to an estimated 200 million climate migrants by the year 2050 and create dangerous tipping points for public health and security.Among the public health consequences of climate change, environmentally induced forced migration is one of the harshest and most harmful outcomes, always involving a multiplicity of profound resource and social losses and frequently exposing migrants to trauma and violence. Therefore, one particular aspect of forced migration, the effects of population displacement on mental health and psychosocial functioning, deserves dedicated focus. Multiple case examples are provided to elucidate this theme. (Disaster Med Public Health Preparedness. 2018;page 1 of 7).

  20. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing the impacts of multiple GCM ensemble members. The implications of various approaches to dealing with uncertainty, such as these, must be carefully communicated to decision makers in order for projected climate impacts to be viewed as credible and used appropriately.

  1. Place in Pacific Islands Climate Education

    NASA Astrophysics Data System (ADS)

    Barros, C.; Koh, M. W.

    2015-12-01

    Understanding place, including both the environment and its people, is essential to understanding our climate, climate change, and its impacts. For us to develop a sense of our place, we need to engage in multiple ways of learning: observation, experimentation, and opportunities to apply new knowledge (Orr, 1992). This approach allows us to access different sources of knowledge and then create local solutions for local issues. It is especially powerful when we rely on experts and elders in our own community along with information from the global community.The Pacific islands Climate Education Partnership (PCEP) is a collaboration of partners—school systems, nongovernmental organizations, and government agencies—working to support learning and teaching about climate in the Pacific. Since 2009, PCEP partners have been working together to develop and implement classroom resources, curriculum standards, and teacher professional learning opportunities in which learners approach climate change and its impacts first through the lens of their own place. Such an approach to putting place central to teaching and learning about climate requires partnership and opportunities for learners to explore solutions for and with their communities. In this presentation, we will share the work unfolding in the Republic of the Marshall Islands (RMI) as one example of PCEP's approach to place-based climate education. Three weeklong K-12 teacher professional learning workshops took place during June-July 2015 in Majuro, RMI on learning gardens, climate science, and project-based learning. Each workshop was co-taught with local partners and supports educators in teaching climate-related curriculum standards through tasks that can foster sense of place through observation, experimentation, and application of new knowledge. Additionally, we will also share PCEP's next steps in place-based climate education, specifically around emerging conversations about the importance of highlighting stories of place to generate local solutions for local issues, as well as further global awareness about climate change impacts in the Pacific.

  2. The PRISM (Pliocene Palaeoclimate) reconstruction: Time for a paradigm shift

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.; Foley, Kevin M.; Johnson, Andrew L. A.; Williams, Mark; Riesselman, Christina

    2013-01-01

    Global palaeoclimate reconstructions have been invaluable to our understanding of the causes and effects of climate change, but single-temperature representations of the oceanic mixed layer for data–model comparisons are outdated, and the time for a paradigm shift in marine palaeoclimate reconstruction is overdue. The new paradigm in marine palaeoclimate reconstruction stems the loss of valuable climate information and instead presents a holistic and nuanced interpretation of multi-dimensional oceanographic processes and responses. A wealth of environmental information is hidden within the US Geological Survey's Pliocene Research,Interpretation and Synoptic Mapping (PRISM) marine palaeoclimate reconstruction, and we introduce here a plan to incorporate all valuable climate data into the next generation of PRISM products. Beyond the global approach and focus, we plan to incorporate regional climate dynamics with emphasis on processes, integrating multiple environmental proxies wherever available in order to better characterize the mixed layer, and developing a finer time slice within the Mid-Piacenzian Age of the Pliocene, complemented by underused proxies that offer snapshots into environmental conditions. The result will be a proxy-rich, temporally nested, process-oriented approach in a digital format - a relational database with geographic information system capabilities comprising a three-dimensional grid representing the surface layer, with a plethora of data in each cell.

  3. The local and global climate forcings induced inhomogeneity of Indian rainfall.

    PubMed

    Nair, P J; Chakraborty, A; Varikoden, H; Francis, P A; Kuttippurath, J

    2018-04-16

    India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.

  4. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change.

    PubMed

    Galbraith, David; Levy, Peter E; Sitch, Stephen; Huntingford, Chris; Cox, Peter; Williams, Mathew; Meir, Patrick

    2010-08-01

    *The large-scale loss of Amazonian rainforest under some future climate scenarios has generally been considered to be driven by increased drying over Amazonia predicted by some general circulation models (GCMs). However, the importance of rainfall relative to other drivers has never been formally examined. *Here, we conducted factorial simulations to ascertain the contributions of four environmental drivers (precipitation, temperature, humidity and CO(2)) to simulated changes in Amazonian vegetation carbon (C(veg)), in three dynamic global vegetation models (DGVMs) forced with climate data based on HadCM3 for four SRES scenarios. *Increased temperature was found to be more important than precipitation reduction in causing losses of Amazonian C(veg) in two DGVMs (Hyland and TRIFFID), and as important as precipitation reduction in a third DGVM (LPJ). Increases in plant respiration, direct declines in photosynthesis and increases in vapour pressure deficit (VPD) all contributed to reduce C(veg) under high temperature, but the contribution of each mechanism varied greatly across models. Rising CO(2) mitigated much of the climate-driven biomass losses in the models. *Additional work is required to constrain model behaviour with experimental data under conditions of high temperature and drought. Current models may be overly sensitive to long-term elevated temperatures as they do not account for physiological acclimation.

  5. Climate legacies drive global soil carbon stocks in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Eldridge, David J.; Maestre, Fernando T.; Karunaratne, Senani B.; Trivedi, Pankaj; Reich, Peter B.; Singh, Brajesh K.

    2017-01-01

    Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios. PMID:28439540

  6. Combining super-ensembles and statistical emulation to improve a regional climate and vegetation model

    NASA Astrophysics Data System (ADS)

    Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.

    2017-12-01

    Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun

    Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH 4) and nitrous oxide (N 2O) are the two most important GHGs after carbon dioxide (CO 2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH 4 and N 2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO 2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, andmore » nitrogen fertilizer use.« less

  8. Mock climate summit: teaching and assessing learning

    NASA Astrophysics Data System (ADS)

    Schweizer, D.; Gautier, C.; Bazerman, C.

    2003-04-01

    This paper will demonstrate the effectiveness of a Mock Climate Summit as a pedagogical approach for teaching the science and policy aspects of global climate change. The Mock Climate Summit is a student-centered course simulating the Conference of the Parties (COP) where international environmental protocols are negotiated. Compared to traditional lecture-based methods common in the geoscience classroom, the Mock Climate Summit uses negotiations and arguments to teach the interactions between these two “spheres” and demonstrate the depth and breadth of these interactions. Through a detailed assessment of students’ dialogue transcribed from video and audio tapes, we found that the nature of the student dialogue matures rapidly as they are given multiple opportunities to present, negotiate and argue a specific topic. Students’ dialogue progress from hypothetical (what-if) scenarios to action-oriented scenarios and implementation plans. The progression of the students’ dialogue shows increased comfort with the communities’ discourse as they take ownership of the point-of-view associated with their assumed roles.

  9. Mock Climate Summit: Teaching and Assessing Learning

    NASA Astrophysics Data System (ADS)

    Schweizer, D.; Gautier, C.; Bazerman, C.

    2003-04-01

    This paper will demonstrate the effectiveness of a Mock Climate Summit as a pedagogical for teaching the science and policy aspects of global climate change. The Mock Climate Summit is a student-centered course simulating the Conference of the Parties (COP) where international environmental protocols are negotiated. Compared to traditional lecture-based methods common in the geoscience classroom, the Mock Climate Summit uses negotiations and arguments to teach the interactions between these two "spheres" and demonstrate the depth and breadth of these interactions. Through a detailed assessment of students' dialogue transcribed from video and audio tapes, we found that the nature of the student dialogue matures rapidly as they are given multiple opportunities to present, negotiate and argue a specific topic. Students' dialogue progress from hypothetical (what-if) scenarios to action-oriented scenarios and implementation plans. The progression of the students' dialogue shows increased comfort with the communities' discourse as they take ownership of the point-of-view associated with their assumed roles.

  10. Common Warming Pattern Emerges Irrespective of Forcing Location

    NASA Astrophysics Data System (ADS)

    Kang, Sarah M.; Park, Kiwoong; Jin, Fei-Fei; Stuecker, Malte F.

    2017-10-01

    The Earth's climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models.

  11. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network.

    PubMed

    Couture, Raoul-Marie; Moe, S Jannicke; Lin, Yan; Kaste, Øyvind; Haande, Sigrid; Lyche Solheim, Anne

    2018-04-15

    Excess nutrient inputs and climate change are two of multiple stressors affecting many lakes worldwide. Lake Vansjø in southern Norway is one such eutrophic lake impacted by blooms of toxic blue-green algae (cyanobacteria), and classified as moderate ecological status under the EU Water Framework Directive. Future climate change may exacerbate the situation. Here we use a set of chained models (global climate model, hydrological model, catchment phosphorus (P) model, lake model, Bayesian Network) to assess the possible future ecological status of the lake, given the set of climate scenarios and storylines common to the EU project MARS (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). The model simulations indicate that climate change alone will increase precipitation and runoff, and give higher P fluxes to the lake, but cause little increase in phytoplankton biomass or changes in ecological status. For the storylines of future management and land-use, however, the model results indicate that both the phytoplankton biomass and the lake ecological status can be positively or negatively affected. Our results also show the value in predicting a biological indicator of lake ecological status, in this case, cyanobacteria biomass with a BN model. For all scenarios, cyanobacteria contribute to worsening the status assessed by phytoplankton, compared to using chlorophyll-a alone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  13. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public. © 2012 Society for Risk Analysis.

  14. Global exposure and vulnerability to multi-sector development and climate change hotspots

    NASA Astrophysics Data System (ADS)

    Byers, Edward; Gidden, Matthew; Leclère, David; Balkovic, Juraj; Burek, Peter; Ebi, Kristie; Greve, Peter; Grey, David; Havlik, Petr; Hillers, Astrid; Johnson, Nils; Kahil, Taher; Krey, Volker; Langan, Simon; Nakicenovic, Nebjosa; Novak, Robert; Obersteiner, Michael; Pachauri, Shonali; Palazzo, Amanda; Parkinson, Simon; Rao, Narasimha D.; Rogelj, Joeri; Satoh, Yusuke; Wada, Yoshihide; Willaarts, Barbara; Riahi, Keywan

    2018-05-01

    Understanding the interplay between multiple climate change risks and socioeconomic development is increasingly required to inform effective actions to manage these risks and pursue sustainable development. We calculate a set of 14 impact indicators at different levels of global mean temperature (GMT) change and socioeconomic development covering water, energy and land sectors from an ensemble of global climate, integrated assessment and impact models. The analysis includes changes in drought intensity and water stress index, cooling demand change and heat event exposure, habitat degradation and crop yield, amongst others. To investigate exposure to multi-sector climate impacts, these are combined with gridded socioeconomic projections of population and those ‘vulnerable to poverty’ from three Shared Socioeconomic Pathways (SSP) (income <10/day, currently 4.2 billion people). We show that global exposure to multi-sector risks approximately doubles between 1.5 °C and 2 °C GMT change, doubles again with 3 °C GMT change and is ~6x between the best and worst cases (SSP1/1.5 °C vs SSP3/3 °C, 0.8–4.7bi). For populations vulnerable to poverty, the exposure is an order of magnitude greater (8–32x) in the high poverty and inequality scenarios (SSP3) compared to sustainable socioeconomic development (SSP1). Whilst 85%–95% of global exposure falls to Asian and African regions, they have 91%–98% of the exposed and vulnerable population (depending on SSP/GMT combination), approximately half of which in South Asia. In higher warming scenarios, African regions have growing proportion of the global exposed and vulnerable population, ranging from 7%–17% at 1.5 °C, doubling to 14%–30% at 2 °C and again to 27%–51% at 3 °C. Finally, beyond 2 °C and at higher risk thresholds, the world’s poorest are disproportionately impacted, particularly in cases (SSP3) of high inequality in Africa and southern Asia. Sustainable development that reduces poverty, mitigates emissions and meets targets in the water, energy and land sectors has the potential for order-of-magnitude scale reductions in multi-sector climate risk for the most vulnerable.

  15. Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences.

    PubMed

    Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. Public health impact of global heating due to climate change: potential effects on chronic non-communicable diseases.

    PubMed

    Kjellstrom, Tord; Butler, Ainslie J; Lucas, Robyn M; Bonita, Ruth

    2010-04-01

    Several categories of ill health important at the global level are likely to be affected by climate change. To date the focus of this association has been on communicable diseases and injuries. This paper briefly analyzes potential impacts of global climate change on chronic non-communicable diseases (NCDs). We reviewed the limited available evidence of the relationships between climate exposure and chronic and NCDs. We further reviewed likely mechanisms and pathways for climatic influences on chronic disease occurrence and impacts on pre-existing chronic diseases. There are negative impacts of climatic factors and climate change on some physiological functions and on cardio-vascular and kidney diseases. Chronic disease risks are likely to increase with climate change and related increase in air pollution, malnutrition, and extreme weather events. There are substantial research gaps in this arena. The health sector has a major role in facilitating further research and monitoring the health impacts of global climate change. Such work will also contribute to global efforts for the prevention and control of chronic NCDs in our ageing and urbanizing global population.

  17. A transient stochastic weather generator incorporating climate model uncertainty

    NASA Astrophysics Data System (ADS)

    Glenis, Vassilis; Pinamonti, Valentina; Hall, Jim W.; Kilsby, Chris G.

    2015-11-01

    Stochastic weather generators (WGs), which provide long synthetic time series of weather variables such as rainfall and potential evapotranspiration (PET), have found widespread use in water resources modelling. When conditioned upon the changes in climatic statistics (change factors, CFs) predicted by climate models, WGs provide a useful tool for climate impacts assessment and adaption planning. The latest climate modelling exercises have involved large numbers of global and regional climate models integrations, designed to explore the implications of uncertainties in the climate model formulation and parameter settings: so called 'perturbed physics ensembles' (PPEs). In this paper we show how these climate model uncertainties can be propagated through to impact studies by testing multiple vectors of CFs, each vector derived from a different sample from a PPE. We combine this with a new methodology to parameterise the projected time-evolution of CFs. We demonstrate how, when conditioned upon these time-dependent CFs, an existing, well validated and widely used WG can be used to generate non-stationary simulations of future climate that are consistent with probabilistic outputs from the Met Office Hadley Centre's Perturbed Physics Ensemble. The WG enables extensive sampling of natural variability and climate model uncertainty, providing the basis for development of robust water resources management strategies in the context of a non-stationary climate.

  18. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  19. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  20. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  1. Climate change indices for Greenland applied directly for other arctic regions - Enhanced and utilized climate information from one high resolution RCM downscaling for Greenland evaluated through pattern scaling and CMIP5

    NASA Astrophysics Data System (ADS)

    Olesen, M.; Christensen, J. H.; Boberg, F.

    2016-12-01

    Climate change indices for Greenland applied directly for other arctic regions - Enhanced and utilized climate information from one high resolution RCM downscaling for Greenland evaluated through pattern scaling and CMIP5Climate change affects the Greenlandic society both advantageously and disadvantageously. Changes in temperature and precipitation patterns may result in changes in a number of derived society related climate indices, such as the length of growing season or the number of annual dry days or a combination of the two - indices of substantial importance to society in a climate adaptation context.Detailed climate indices require high resolution downscaling. We have carried out a very high resolution (5 km) simulation with the regional climate model HIRHAM5, forced by the global model EC-Earth. Evaluation of RCM output is usually done with an ensemble of downscaled output with multiple RCM's and GCM's. Here we have introduced and tested a new technique; a translation of the robustness of an ensemble of GCM models from CMIP5 into the specific index from the HIRHAM5 downscaling through a correlation between absolute temperatures and its corresponding index values from the HIRHAM5 output.The procedure is basically conducted in two steps: First, the correlation between temperature and a given index for the HIRHAM5 simulation by a best fit to a second order polynomial is identified. Second, the standard deviation from the CMIP5 simulations is introduced to show the corresponding standard deviation of the index from the HIRHAM5 run. The change of specific climate indices due to global warming will then be possible to evaluate elsewhere corresponding to the change in absolute temperature.Results based on selected indices with focus on the future climate in Greenland calculated for the rcp4.5 and rcp8.5 scenarios will be presented.

  2. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila

    2011-01-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.

  3. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    NASA Astrophysics Data System (ADS)

    O'Brien, S.; Kenney, M.; Chen, R. S.; Baptista, S. R.; Quattrochi, D. A.

    2011-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation's activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: -How do we know that there is a changing climate and how is it expected to change in the future? -Are important climate impacts and opportunities occurring or predicted to occur in the future? -Are we adapting successfully? -What are the vulnerabilities and resiliencies given a changing climate? -Are we preparing adequately for extreme events? It is not expected that the NCA indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.

  4. Insect-damaged fossil leaves record food web response to ancient climate change and extinction.

    PubMed

    Wilf, P

    2008-01-01

    Plants and herbivorous insects have dominated terrestrial ecosystems for over 300 million years. Uniquely in the fossil record, foliage with well-preserved insect damage offers abundant and diverse information both about producers and about ecological and sometimes taxonomic groups of consumers. These data are ideally suited to investigate food web response to environmental perturbations, and they represent an invaluable deep-time complement to neoecological studies of global change. Correlations between feeding diversity and temperature, between herbivory and leaf traits that are modulated by climate, and between insect diversity and plant diversity can all be investigated in deep time. To illustrate, I emphasize recent work on the time interval from the latest Cretaceous through the middle Eocene (67-47 million years ago (Ma)), including two significant events that affected life: the end-Cretaceous mass extinction (65.5 Ma) and its ensuing recovery; and globally warming temperatures across the Paleocene-Eocene boundary (55.8 Ma). Climatic effects predicted from neoecology generally hold true in these deep-time settings. Rising temperature is associated with increased herbivory in multiple studies, a result with major predictive importance for current global warming. Diverse floras are usually associated with diverse insect damage; however, recovery from the end-Cretaceous extinction reveals uncorrelated plant and insect diversity as food webs rebuilt chaotically from a drastically simplified state. Calibration studies from living forests are needed to improve interpretation of the fossil data.

  5. Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses

    NASA Astrophysics Data System (ADS)

    Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.

    2014-12-01

    Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.

  6. A Climatic Stability Approach to Prioritizing Global Conservation Investments

    PubMed Central

    Iwamura, Takuya; Wilson, Kerrie A.; Venter, Oscar; Possingham, Hugh P.

    2010-01-01

    Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002–2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term. PMID:21152095

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu

    In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity andmore » seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer would measure peak-to-trough amplitudes of 13% and 47% for the temperate and snowball climates, respectively. Diurnal heating is important for equatorial observers ({approx}5% phase variations), because the obliquity effects cancel to first order from that vantage. Finally, we compare the prospects of optical versus thermal direct imaging missions for constraining the climate on exoplanets and conclude that while zero- and one-dimensional models are best served by thermal measurements, second-order models accounting for seasons and planetary thermal inertia would require both optical and thermal observations.« less

  8. Research on Biodiversity and Climate Change at a Distance: Collaboration Networks between Europe and Latin America and the Caribbean

    PubMed Central

    Dangles, Olivier; Loirat, Jean; Freour, Claire; Serre, Sandrine; Vacher, Jean; Le Roux, Xavier

    2016-01-01

    Biodiversity loss and climate change are both globally significant issues that must be addressed through collaboration across countries and disciplines. With the December 2015 COP21 climate conference in Paris and the recent creation of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), it has become critical to evaluate the capacity for global research networks to develop at the interface between biodiversity and climate change. In the context of the European Union (EU) strategy to stand as a world leader in tackling global challenges, the European Commission has promoted ties between the EU and Latin America and the Caribbean (LAC) in science, technology and innovation. However, it is not clear how these significant interactions impact scientific cooperation at the interface of biodiversity and climate change. We looked at research collaborations between two major regions—the European Research Area (ERA) and LAC—that addressed both biodiversity and climate change. We analysed the temporal evolution of these collaborations, whether they were led by ERA or LAC teams, and which research domains they covered. We surveyed publications listed on the Web of Science that were authored by researchers from both the ERA and LAC and that were published between 2003 and 2013. We also run similar analyses on other topics and other continents to provide baseline comparisons. Our results revealed a steady increase in scientific co-authorships between ERA and LAC countries as a result of the increasingly complex web of relationships that has been weaved among scientists from the two regions. The ERA-LAC co-authorship increase for biodiversity and climate change was higher than those reported for other topics and for collaboration with other continents. We also found strong differences in international collaboration patterns within the LAC: co-publications were fewest from researchers in low- and lower-middle-income countries and most prevalent from researchers in emerging countries like Mexico and Brazil. Overall, interdisciplinary publications represented 25.8% of all publications at the interface of biodiversity and climate change in the ERA-LAC network. Further scientific collaborations should be promoted 1) to prevent less developed countries from being isolated from the global cooperation network, 2) to ensure that scientists from these countries are trained to lead visible and recognized biodiversity and climate change research, and 3) to develop common study models that better integrate multiple scientific disciplines and better support decision-making. PMID:27304924

  9. Research on Biodiversity and Climate Change at a Distance: Collaboration Networks between Europe and Latin America and the Caribbean.

    PubMed

    Dangles, Olivier; Loirat, Jean; Freour, Claire; Serre, Sandrine; Vacher, Jean; Le Roux, Xavier

    2016-01-01

    Biodiversity loss and climate change are both globally significant issues that must be addressed through collaboration across countries and disciplines. With the December 2015 COP21 climate conference in Paris and the recent creation of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), it has become critical to evaluate the capacity for global research networks to develop at the interface between biodiversity and climate change. In the context of the European Union (EU) strategy to stand as a world leader in tackling global challenges, the European Commission has promoted ties between the EU and Latin America and the Caribbean (LAC) in science, technology and innovation. However, it is not clear how these significant interactions impact scientific cooperation at the interface of biodiversity and climate change. We looked at research collaborations between two major regions-the European Research Area (ERA) and LAC-that addressed both biodiversity and climate change. We analysed the temporal evolution of these collaborations, whether they were led by ERA or LAC teams, and which research domains they covered. We surveyed publications listed on the Web of Science that were authored by researchers from both the ERA and LAC and that were published between 2003 and 2013. We also run similar analyses on other topics and other continents to provide baseline comparisons. Our results revealed a steady increase in scientific co-authorships between ERA and LAC countries as a result of the increasingly complex web of relationships that has been weaved among scientists from the two regions. The ERA-LAC co-authorship increase for biodiversity and climate change was higher than those reported for other topics and for collaboration with other continents. We also found strong differences in international collaboration patterns within the LAC: co-publications were fewest from researchers in low- and lower-middle-income countries and most prevalent from researchers in emerging countries like Mexico and Brazil. Overall, interdisciplinary publications represented 25.8% of all publications at the interface of biodiversity and climate change in the ERA-LAC network. Further scientific collaborations should be promoted 1) to prevent less developed countries from being isolated from the global cooperation network, 2) to ensure that scientists from these countries are trained to lead visible and recognized biodiversity and climate change research, and 3) to develop common study models that better integrate multiple scientific disciplines and better support decision-making.

  10. The effects of elevated temperature and dissolved ρCO2 on a marine foundation species.

    PubMed

    Speights, Cori J; Silliman, Brian R; McCoy, Michael W

    2017-06-01

    Understanding how climate change and other environmental stressors will affect species is a fundamental concern of modern ecology. Indeed, numerous studies have documented how climate stressors affect species distributions and population persistence. However, relatively few studies have investigated how multiple climate stressors might affect species. In this study, we investigate the impacts of how two climate change factors affect an important foundation species. Specifically, we tested how ocean acidification from dissolution of CO 2 and increased sea surface temperatures affect multiple characteristics of juvenile eastern oysters ( Crassostrea virginica ). We found strong impacts of each stressor, but no interaction between the two. Simulated warming to mimic heat stressed summers reduced oyster growth, survival, and filtration rates. Additionally, we found that CO 2 -induced acidification reduced strength of oyster shells, which could potentially facilitate crab predation. As past studies have detected few impacts of these stressors on adult oysters, these results indicate that early life stages of calcareous marine organisms may be more susceptible to effects of ocean acidification and global warming. Overall, these data show that predicted changes in temperature and CO 2 can differentially influence direct effects on individual species, which could have important implications for the nature of their trophic interactions.

  11. NATO’s Future Role in the Arctic

    DTIC Science & Technology

    2016-05-01

    iv Global Climate Change and Arctic Geopolitics............................. Error! Bookmark not defined. Russian Claims to the Arctic...13 1 Global Climate Change and Arctic Geopolitics Global climate change has a profound...explaining the effect of climate change in the Arctic and the consequences on regional security. Issues regarding territorial sovereignty will be

  12. Simulating Global Climate Summits

    ERIC Educational Resources Information Center

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  13. Global opportunities in land and water use while staying within the safe (and just) operating space: quantifications of interactions and tradeoffs

    NASA Astrophysics Data System (ADS)

    Gerten, Dieter; Jägermeyr, Jonas; Heck, Vera

    2016-04-01

    Staying within the safe and just operating space as defined by multiple planetary boundaries will be a major challenge especially in view of anticipated future increases in food demand, the potential need for balancing climate change (e.g. through terrestrial carbon dioxide removal) and its impacts, and the water and land demand associated with these goals and measures. This presentation will show simulation results from a comprehensive model-based study on the global potentials of diverse crop management options considered as opportunities to stay within the planetary boundaries for human freshwater use and land-system change. The quantified on-farm options include rainwater harvesting, soil conservation and more efficient irrigation, all of which are designed to use neither more water nor more land for agriculture than is presently the case. Results show that irrigation efficiency improvements could save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ambitious scenario), and if rerouted to irrigate neighbouring rainfed systems, could at the same time boost kilocalorie production by 26% globally. Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, such ambitious yet achievable integrated water management strategies could increase global kcal production by 41% and close the water-related yield gap by 62%. Global climate change would have adverse effects on crop yields in many regions, but the improvements in water management quantified here could buffer such effects to a significant degree. Thus, a substantial amount of anticipated future needs for food production could be fulfilled without further approaching / transgressing planetary boundaries. In addition, it will be shown how large-scale biomass plantations for the purpose of terrestrial CO2 removal (climate engineering, potentially implemented should the planetary boundary for climate change be further transgressed) would impact on land and water resources and, thus, how such measures would compromise attempts to stay within the safe operating space. In conclusion, this presentation provides new quantitative evidence for significant interactions and tradeoffs among different planetary boundaries.

  14. Comparison of Solar and Other Influences on Long-term Climate

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Lacis, Andrew A.; Ruedy, Reto A.

    1990-01-01

    Examples are shown of climate variability, and unforced climate fluctuations are discussed, as evidenced in both model simulations and observations. Then the author compares different global climate forcings, a comparison which by itself has significant implications. Finally, the author discusses a new climate simulation for the 1980s and 1990s which incorporates the principal known global climate forcings. The results indicate a likelihood of rapid global warming in the early 1990s.

  15. Evaluation of mean climate in a chemistry-climate model simulation

    NASA Astrophysics Data System (ADS)

    Hong, S.; Park, H.; Wie, J.; Park, R.; Lee, S.; Moon, B. K.

    2017-12-01

    Incorporation of the interactive chemistry is essential for understanding chemistry-climate interactions and feedback processes in climate models. Here we assess a newly developed chemistry-climate model (GRIMs-Chem), which is based on the Global/Regional Integrated Model system (GRIMs) including the aerosol direct effect as well as stratospheric linearized ozone chemistry (LINOZ). We conducted GRIMs-Chem with observed sea surface temperature during the period of 1979-2010, and compared the simulation results with observations and also with CMIP models. To measure the relative performance of our model, we define the quantitative performance metric using the Taylor diagram. This metric allow us to assess overall features in simulating multiple variables. Overall, our model better reproduce the zonal mean spatial pattern of temperature, horizontal wind, vertical motion, and relative humidity relative to other models. However, the model did not produce good simulations at upper troposphere (200 hPa). It is currently unclear which model processes are responsible for this. AcknowledgementsThis research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  16. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains

    NASA Astrophysics Data System (ADS)

    Tuanmu, Mao-Ning; Viña, Andrés; Winkler, Julie A.; Li, Yu; Xu, Weihua; Ouyang, Zhiyun; Liu, Jianguo

    2013-03-01

    Climate change is threatening global ecosystems through its impact on the survival of individual species and their ecological functions. Despite the important role of understorey plants in forest ecosystems, climate impact assessments on understorey plants and their role in supporting wildlife habitat are scarce in the literature. Here we assess climate-change impacts on understorey bamboo species with an emphasis on their ecological function as a food resource for endangered giant pandas (Ailuropoda melanoleuca). An ensemble of bamboo distribution projections associated with multiple climate-change projections and bamboo dispersal scenarios indicates a substantial reduction in the distributional ranges of three dominant bamboo species in the Qinling Mountains, China during the twenty-first century. As these three species comprise almost the entire diet of the panda population in the region, the projected changes in bamboo distribution suggest a potential shortage of food for this population, unless alternative food sources become available. Although the projections were developed under unavoidable simplifying assumptions and uncertainties, they indicate potential challenges for panda conservation and underscore the importance of incorporating interspecific interactions into climate-change impact assessments and associated conservation planning.

  17. Climate Model Diagnostic Analyzer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei

    2015-01-01

    The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.

  18. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone; Richter, Jadwiga H.; Mills, Michael J.; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis

    2017-12-01

    By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. This leads to the ability to influence the climate response to geoengineering with stratospheric aerosols, providing the potential for design. We use simulations from the fully coupled whole-atmosphere chemistry climate model CESM1(WACCM) to demonstrate that by appropriately combining injection at just four different locations, 30°S, 15°S, 15°N, and 30°N, then three spatial degrees of freedom of AOD can be achieved: an approximately spatially uniform AOD distribution, the relative difference in AOD between Northern and Southern Hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yield 1-2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that the response to different combinations of injection at different latitudes can be estimated from single-latitude injection simulations; nonlinearities associated with both aerosol growth and changes to stratospheric circulation will be increasingly important at higher forcing levels. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change relative to a case using only equatorial aerosol injection (which overcools the tropics relative to high latitudes). The additional degrees of freedom can be used, for example, to balance the interhemispheric temperature gradient and the equator to pole temperature gradient in addition to the global mean temperature. Further research is needed to better quantify the impacts of these strategies on changes to long-term temperature, precipitation, and other climate parameters.

  19. Antarctica and Global Environmental Change - Lessons from the Past Inform Climate Change Policy Today

    NASA Astrophysics Data System (ADS)

    Dunbar, R. B.; Scientific Team Of Odp Drilling Leg 318; Andrill Science Team

    2011-12-01

    Antarctic's continental ice, sea ice, and the broader Southern Ocean form a coupled and complex climate system that interacts in important yet poorly understood ways with the low and mid-latitudes. Because of its unusual sovereignty status and the fact that there is no indigenous human population, information about climate change in Antarctica penetrates the policy world less readily than findings from other regions. Yet, Antarctica's potential to impact climate change globally is disproportionately large. Vulnerable portions of the ice sheet may contribute up to 3 to 5 meters of sea level rise in the coming centuries, including significant amounts within the next 50 years. Loss of sea ice and other changes in the Southern Ocean may reduce oceanic uptake of excess atmospheric carbon dioxide, exacerbating global warming worldwide. Antarctica's impact on the Southern Hemisphere wind field is now well-established, contributing to ongoing decadal-scale perturbations in continental precipitation as well as major reorganizations of Southern Ocean food chains. Recent scientific drilling programs in the Ross Sea and off Wilkes Land, Antarctica, provide valuable insights into past climatic and biogeochemical change in Antarctica, insights of great relevance to international and national climate change policy. In this paper, we discuss polar amplification, sea level variability coupled to Antarctic ice volume, and response timescales as seen through the lens of past climate change. One key result emerging from multiple drilling programs is recognition of unanticipated dynamism in the Antarctic ice sheet during portions of the Pliocene (at a time with pCO2 levels equivalent to those anticipated late this century) as well as during "super-interglacials" of the Pleistocene. Evidence for substantially warmer ocean temperatures and reduced sea ice cover at these times suggests that polar amplification of natural climate variability, even under scenarios of relative small amounts of radiative forcing, is strong at all timescales. It also appears that we are committed to the attainment of pCO2 levels within the next several decades that in the past were associated with substantial reductions in Antarctic glacial ice volume, and hence significant amounts of global sea level rise. New and detailed studies of past warm intervals as well as the most recent deglaciation reveal the potential for century-scale (or even more rapid) melt events. A new ultra-high resolution record of East Antarctic climate change extending to the most recent deglaciation reveals unusually large climatic excursions in both the earliest Holocene and mid-Holocene. Taken together, the paleoclimate record derived from geological drilling in Antarctica should be taken by policymakers as substantial and credible new evidence of increased risk of dangerous climate change in the decades and century ahead.

  20. Climate change and watershed mercury export: a multiple projection and model analysis.

    PubMed

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  1. Climate Change, the Energy-water-food Nexus, and the "New" Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Middleton, R. S.; Bennett, K. E.; Solander, K.; Hopkins, E.

    2017-12-01

    Climate change, extremes, and climate-driven disturbances are anticipated to have substantial impacts on regional water resources, particularly in the western and southwestern United States. These unprecedented conditions—a no-analog future—will result in challenges to adaptation, mitigation, and resilience planning for the energy-water-food nexus. We have analyzed the impact of climate change on Colorado River flows for multiple climate and disturbance scenarios: 12 global climate models and two CO2 emission scenarios (RCP 4.5 and RCP 8.5) from the Intergovernmental Panel on Climate Change's Coupled Model Intercomparison Study, version 5, and multiple climate-driven forest disturbance scenarios including temperature-drought vegetation mortality and insect infestations. Results indicate a wide range of potential streamflow projections and the potential emergence of a "new" Colorado River basin. Overall, annual streamflow tends to increase under the majority of modeled scenarios due to projected increases in precipitation across the basin, though a significant number of scenarios indicate moderate and potentially substantial reductions in water availability. However, all scenarios indicate severe changes in seasonality of flows and strong variability across headwater systems. This leads to increased fall and winter streamflow, strong reductions in spring and summer flows, and a shift towards earlier snowmelt timing. These impacts are further exacerbated in headwater systems, which are key to driving Colorado River streamflow and hence water supply for both internal and external basin needs. These results shed a new and important slant on the Colorado River basin, where an emergent streamflow pattern may result in difficulties to adjust to these new regimes, resulting in increased stress to the energy-water-food nexus.

  2. Mitigation/adaptation and health: health policymaking in the global response to climate change and implications for other upstream determinants.

    PubMed

    Wiley, Lindsay F

    2010-01-01

    The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well. © 2010 American Society of Law, Medicine & Ethics, Inc.

  3. The Fate of the World is in your hands: computer gaming for multi-faceted climate change education

    NASA Astrophysics Data System (ADS)

    Bedford, D. P.

    2015-12-01

    Climate change is a multi-faceted (or 'wicked') problem. True climate literacy therefore requires understanding not only the workings of the climate system, but also the current and potential future impacts of climate change and sea level rise on individuals, communities and countries around the world, as noted in the US Global Change Research Program's (2009) Climate Literacy: The Essential Principles of Climate Sciences. The asymmetric nature of climate change impacts, whereby the world's poorest countries have done the least to cause the problem but will suffer disproportionate consequences, has also been widely noted. Education in climate literacy therefore requires an element of ethics in addition to physical and social sciences. As if addressing these multiple aspects of climate change were not challenging enough, polling data has repeatedly shown that many members of the public tend to see climate change as a far away problem affecting people remote from them at a point in the future, but not themselves. This perspective is likely shared by many students. Computer gaming provides a possible solution to the combined problems of, on the one hand, addressing the multi-faceted nature of climate change, and, on the other hand, making the issue real to students. Fate of the World, a game produced by the company Red Redemption, has been used on several occasions in a small (20-30 students) introductory level general education course on global warming at Weber State University. Players are required to balance difficult decisions about energy investment while managing regional political disputes and attempting to maintain minimum levels of development in the world's poorer countries. By providing a realistic "total immersion" experience, the game has the potential to make climate change issues more immediate to players, and presents them with the ethical dilemmas inherent in climate change. This presentation reports on the use of Fate of the World in an educational setting, highlighting student experiences and lessons learned from two attempts to use the game as a tool for teaching the multi-faceted nature of climate change.

  4. Linking Global and Regional Models to Simulate U.S. Air Quality in the Year 2050

    EPA Science Inventory

    The potential impact of global climate change on future air quality in the United States is investigated with global and regional-scale models. Regional climate model scenarios are developed by dynamically downscaling the outputs from a global chemistry and climate model and are...

  5. 75 FR 63147 - Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...] Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global Climate Change... Program; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. To enhance the...; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. EDA will publish separate...

  6. Greening of the Earth and its drivers

    DOE PAGES

    Zhu, Zaichun; Piao, Shilong; Myneni, Ranga B.; ...

    2016-04-25

    Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services 1, 2. Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 1982 2009. We show a persistent and widespread increase of growing season integrated LAI (greening) over 25% to 50% of the global vegetated area, whereas less than 4% of the globe shows decreasing LAImore » (browning). Factorial simulations with multiple global ecosystem models suggest that CO 2 fertilization effects explain 70% of the observed greening trend, followed by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) (4%). CO 2 fertilization effects explain most of the greening trends in the tropics, whereas climate change resulted in greening of the high latitudes and the Tibetan Plateau. LCC contributed most to the regional greening observed in southeast China and the eastern United States. In conclusion, the regional effects of unexplained factors suggest that the next generation of ecosystem models will need to explore the impacts of forest demography, differences in regional management intensities for cropland and pastures, and other emerging productivity constraints such as phosphorus availability.« less

  7. Global Terrestrial Water Storage Changes and Connections to ENSO Events

    NASA Astrophysics Data System (ADS)

    Ni, Shengnan; Chen, Jianli; Wilson, Clark R.; Li, Jin; Hu, Xiaogong; Fu, Rong

    2018-01-01

    Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to 0.70, well above the 95% significance level ( 0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle-high latitudes shows the large-scale impact of ENSO on the global water cycle.

  8. Greening of the Earth and its drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zaichun; Piao, Shilong; Myneni, Ranga B.

    Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services 1, 2. Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and ten global ecosystem models to investigate four key drivers of LAI trends during 1982 2009. We show a persistent and widespread increase of growing season integrated LAI (greening) over 25% to 50% of the global vegetated area, whereas less than 4% of the globe shows decreasing LAImore » (browning). Factorial simulations with multiple global ecosystem models suggest that CO 2 fertilization effects explain 70% of the observed greening trend, followed by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) (4%). CO 2 fertilization effects explain most of the greening trends in the tropics, whereas climate change resulted in greening of the high latitudes and the Tibetan Plateau. LCC contributed most to the regional greening observed in southeast China and the eastern United States. In conclusion, the regional effects of unexplained factors suggest that the next generation of ecosystem models will need to explore the impacts of forest demography, differences in regional management intensities for cropland and pastures, and other emerging productivity constraints such as phosphorus availability.« less

  9. From climate to global change: Following the footprint of Prof. Duzheng YE's research

    NASA Astrophysics Data System (ADS)

    Fu, Congbin

    2017-10-01

    To commemorate 100 years since the birth of Professor Duzheng YE, this paper reviews the contribution of Ye and his research team to the development from climate to global change science in the past 30 or so years, including: (1) the role of climate change in global change; (2) the critical time scales and predictability of global change; (3) the sensitive regions of global change—transitional zones of climate and ecosystems; and (4) orderly human activities and adaptation to global change, with a focus on the development of a proactive strategy for adaptation to such change.

  10. Evolution of natural history information in the 21st century – developing an integrated framework for biological and geographical data

    USGS Publications Warehouse

    Reusser, Deborah A.; Lee, Henry

    2011-01-01

    Threats to marine and estuarine species operate over many spatial scales, from nutrient enrichment at the watershed/estuarine scale to invasive species and climate change at regional and global scales. To help address research questions across these scales, we provide here a standardized framework for a biogeographical information system containing queriable biological data that allows extraction of information on multiple species, across a variety of spatial scales based on species distributions, natural history attributes and habitat requirements. As scientists shift from research on localized impacts on individual species to regional and global scale threats, macroecological approaches of studying multiple species over broad geographical areas are becoming increasingly important. The standardized framework described here for capturing and integrating biological and geographical data is a critical first step towards addressing these macroecological questions and we urge organizations capturing biogeoinformatics data to consider adopting this framework.

  11. A Global Repository for Planet-Sized Experiments and Observations

    NASA Technical Reports Server (NTRS)

    Williams, Dean; Balaji, V.; Cinquini, Luca; Denvil, Sebastien; Duffy, Daniel; Evans, Ben; Ferraro, Robert D.; Hansen, Rose; Lautenschlager, Michael; Trenham, Claire

    2016-01-01

    Working across U.S. federal agencies, international agencies, and multiple worldwide data centers, and spanning seven international network organizations, the Earth System Grid Federation (ESGF) allows users to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP) output used by the Intergovernmental Panel on Climate Change assessment reports. Data served by ESGF not only include model output (i.e., CMIP simulation runs) but also include observational data from satellites and instruments, reanalyses, and generated images. Metadata summarize basic information about the data for fast and easy data discovery.

  12. China national space remote sensing infrastructure and its application

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  13. Correlating regional natural hazards for global reinsurance risk assessment

    NASA Astrophysics Data System (ADS)

    Steptoe, Hamish; Maynard, Trevor; Economou, Theo; Fox, Helen; Wallace, Emily; Maisey, Paul

    2016-04-01

    Concurrent natural hazards represent an uncertainty in assessing exposure for the insurance industry. The recently implemented Solvency II Directive requires EU insurance companies to fully understand and justify their capital reserving and portfolio decisions. Lloyd's, the London insurance and reinsurance market, commissioned the Met Office to investigate the dependencies between different global extreme weather events (known to the industry as perils), and the mechanisms for these dependencies, with the aim of helping them assess their compound risk to the exposure of multiple simultaneous hazards. In this work, we base the analysis of hazard-to-hazard dependency on the interaction of different modes of global and regional climate variability. Lloyd's defined 16 key hazard regions, including Australian wildfires, flooding in China and EU windstorms, and we investigate the impact of 10 key climate modes on these areas. We develop a statistical model that facilitates rapid risk assessment whilst allowing for both temporal auto-correlation and, crucially, interdependencies between drivers. The simulator itself is built conditionally using autoregressive regression models for each driver conditional on the others. Whilst the baseline assumption within the (re)insurance industry is that different natural hazards are independent of each other, the assumption of independence of meteorological risks requires greater justification. Although our results suggest that most of the 120 hazard-hazard connections considered are likely to be independent of each other, 13 have significant dependence arising from one or more global modes of climate variability. This allows us to create a matrix of linkages describing the hazard dependency structure that Lloyd's can use to inform their understanding of risk.

  14. Preindustrial nitrous oxide emissions from the land biosphere estimated by using a global biogeochemistry model

    NASA Astrophysics Data System (ADS)

    Xu, Rongting; Tian, Hanqin; Lu, Chaoqun; Pan, Shufen; Chen, Jian; Yang, Jia; Zhang, Bowen

    2017-07-01

    To accurately assess how increased global nitrous oxide (N2O) emission has affected the climate system requires a robust estimation of the preindustrial N2O emissions since only the difference between current and preindustrial emissions represents net drivers of anthropogenic climate change. However, large uncertainty exists in previous estimates of preindustrial N2O emissions from the land biosphere, while preindustrial N2O emissions on the finer scales, such as regional, biome, or sector scales, have not been well quantified yet. In this study, we applied a process-based Dynamic Land Ecosystem Model (DLEM) to estimate the magnitude and spatial patterns of preindustrial N2O fluxes at the biome, continental, and global level as driven by multiple environmental factors. Uncertainties associated with key parameters were also evaluated. Our study indicates that the mean of the preindustrial N2O emission was approximately 6.20 Tg N yr-1, with an uncertainty range of 4.76 to 8.13 Tg N yr-1. The estimated N2O emission varied significantly at spatial and biome levels. South America, Africa, and Southern Asia accounted for 34.12, 23.85, and 18.93 %, respectively, together contributing 76.90 % of global total emission. The tropics were identified as the major source of N2O released into the atmosphere, accounting for 64.66 % of the total emission. Our multi-scale estimates provide a robust reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere

  15. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  16. Responding to climate change and the global land crisis: REDD+, market transformation and low-emissions rural development

    PubMed Central

    Nepstad, Daniel C.; Boyd, William; Stickler, Claudia M.; Bezerra, Tathiana; Azevedo, Andrea A.

    2013-01-01

    Climate change and rapidly escalating global demand for food, fuel, fibre and feed present seemingly contradictory challenges to humanity. Can greenhouse gas (GHG) emissions from land-use, more than one-fourth of the global total, decline as growth in land-based production accelerates? This review examines the status of two major international initiatives that are designed to address different aspects of this challenge. REDD+ is an emerging policy framework for providing incentives to tropical nations and states that reduce their GHG emissions from deforestation and forest degradation. Market transformation, best represented by agricultural commodity roundtables, seeks to exclude unsustainable farmers from commodity markets through international social and environmental standards for farmers and processors. These global initiatives could potentially become synergistically integrated through (i) a shared approach for measuring and favouring high environmental and social performance of land use across entire jurisdictions and (ii) stronger links with the domestic policies, finance and laws in the jurisdictions where agricultural expansion is moving into forests. To achieve scale, the principles of REDD+ and sustainable farming systems must be embedded in domestic low-emission rural development models capable of garnering support across multiple constituencies. We illustrate this potential with the case of Mato Grosso State in the Brazilian Amazon. PMID:23610173

  17. Responding to climate change and the global land crisis: REDD+, market transformation and low-emissions rural development.

    PubMed

    Nepstad, Daniel C; Boyd, William; Stickler, Claudia M; Bezerra, Tathiana; Azevedo, Andrea A

    2013-06-05

    Climate change and rapidly escalating global demand for food, fuel, fibre and feed present seemingly contradictory challenges to humanity. Can greenhouse gas (GHG) emissions from land-use, more than one-fourth of the global total, decline as growth in land-based production accelerates? This review examines the status of two major international initiatives that are designed to address different aspects of this challenge. REDD+ is an emerging policy framework for providing incentives to tropical nations and states that reduce their GHG emissions from deforestation and forest degradation. Market transformation, best represented by agricultural commodity roundtables, seeks to exclude unsustainable farmers from commodity markets through international social and environmental standards for farmers and processors. These global initiatives could potentially become synergistically integrated through (i) a shared approach for measuring and favouring high environmental and social performance of land use across entire jurisdictions and (ii) stronger links with the domestic policies, finance and laws in the jurisdictions where agricultural expansion is moving into forests. To achieve scale, the principles of REDD+ and sustainable farming systems must be embedded in domestic low-emission rural development models capable of garnering support across multiple constituencies. We illustrate this potential with the case of Mato Grosso State in the Brazilian Amazon.

  18. Satellite assessment of increasing tree cover 1982-2016

    NASA Astrophysics Data System (ADS)

    Song, X. P.; Hansen, M.

    2017-12-01

    The Earth's vegetation has undergone dramatic changes as we enter the Anthropocene. Recent studies have quantified global forest cover dynamics and resulting biogeochemical and biophysical impacts to the climate for the post-2000 time period. However, long-term gradual changes in undisturbed forests are less well quantified. We mapped annual tree cover using satellite data and quantified tree cover change during 1982-2016. The dataset was produced by combining optical observations from multiple satellite sensors, including the Advanced Very High Resolution Radiometer, the Moderate Resolution Imaging Spectroradiometer, the Landsat Enhanced Thematic Mapper Plus and various very high spatial resolution sensors. Contrary to current understanding of forest area change, global tree cover increased by 7%. The overall net gain in tree cover is a result of net loss in the tropics overweighed by net gain in the subtropical, temperate and boreal zones. All mountain systems, regardless of climate domain, experienced increases in tree cover. Regional patterns of tree cover gain including eastern United States, eastern Europe and southern China, indicate profound influences of socioeconomic, political or land management changes in shaping long-term environmental change. Results provide the first comprehensive record of global tree cover dynamics over the past four decades and may be used to reduce uncertainties in the quantification of the global carbon cycle.

  19. A prospective study of differential sources of school-related social support and adolescent global life satisfaction.

    PubMed

    Siddall, James; Huebner, E Scott; Jiang, Xu

    2013-01-01

    This study examined the cross-sectional and prospective relationships between three sources of school-related social support (parent involvement, peer support for learning, and teacher-student relationships) and early adolescents' global life satisfaction. The participants were 597 middle school students from 1 large school in the southeastern United States who completed measures of school social climate and life satisfaction on 2 occasions, 5 months apart. The results revealed that school-related experiences in terms of social support for learning contributed substantial amounts of variance to individual differences in adolescents' satisfaction with their lives as a whole. Cross-sectional multiple regression analyses of the differential contributions of the sources of support demonstrated that family and peer support for learning contributed statistically significant, unique variance to global life satisfaction reports. Prospective multiple regression analyses demonstrated that only family support for learning continued to contribute statistically significant, unique variance to the global life satisfaction reports at Time 2. The results suggest that school-related experiences, especially family-school interactions, spill over into adolescents' overall evaluations of their lives at a time when direct parental involvement in schooling and adolescents' global life satisfaction are generally declining. Recommendations for future research and educational policies and practices are discussed. © 2013 American Orthopsychiatric Association.

  20. Terrestrial essential climate variables (ECVs) at a glance

    USGS Publications Warehouse

    Stitt, Susan; Dwyer, John; Dye, Dennis; Josberger, Edward

    2011-01-01

    The Global Terrestrial Observing System, Global Climate Observing System, World Meteorological Organization, and Committee on Earth Observation Satellites all support consistent global land observations and measurements. To accomplish this goal, the Global Terrestrial Observing System defined 'essential climate variables' as measurements of atmosphere, oceans, and land that are technically and economically feasible for systematic observation and that are needed to meet the United Nations Framework Convention on Climate Change and requirements of the Intergovernmental Panel on Climate Change. The following are the climate variables defined by the Global Terrestrial Observing System that relate to terrestrial measurements. Several of them are currently measured most appropriately by in-place observations, whereas others are suitable for measurement by remote sensing technologies. The U.S. Geological Survey is the steward of the Landsat archive, satellite imagery collected from 1972 to the present, that provides a potential basis for deriving long-term, global-scale, accurate, timely and consistent measurements of many of these essential climate variables.

  1. Collaboration pathway(s) using new tools for optimizing operational climate monitoring from space

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2014-10-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the needs of decision makers, scientific investigators and global users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent (2014) rulebased decision engine modeling runs that targeted optimizing the intended NPOESS architecture, becomes a surrogate for global operational climate monitoring architecture(s). This rule-based systems tools provide valuable insight for Global climate architectures, through the comparison and evaluation of alternatives considered and the exhaustive range of trade space explored. A representative optimization of Global ECV's (essential climate variables) climate monitoring architecture(s) is explored and described in some detail with thoughts on appropriate rule-based valuations. The optimization tools(s) suggest and support global collaboration pathways and hopefully elicit responses from the audience and climate science shareholders.

  2. ECOLOGICAL RISK ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE

    PubMed Central

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause–effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses—include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Environ. Toxicol. Chem. 2013;32:79–92. © 2012 SETAC PMID:23161373

  3. Climate for women in climate science: Women scientists and the Intergovernmental Panel on Climate Change.

    PubMed

    Gay-Antaki, Miriam; Liverman, Diana

    2018-02-27

    The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women's views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. Copyright © 2018 the Author(s). Published by PNAS.

  4. Climate for women in climate science: Women scientists and the Intergovernmental Panel on Climate Change

    PubMed Central

    Gay-Antaki, Miriam; Liverman, Diana

    2018-01-01

    The Intergovernmental Panel on Climate Change (IPCC) is an authoritative and influential source of reports on climate change. The lead authors of IPCC reports include scientists from around the world, but questions have been raised about the dominance of specific disciplines in the report and the disproportionate number of scholars from the Global North. In this paper, we analyze the as-yet-unexamined issue of gender and IPCC authorship, looking at changes in gender balance over time and analyzing women’s views about their experience and barriers to full participation, not only as women but also at the intersection of nationality, race, command of English, and discipline. Over time, we show that the proportion of female IPCC authors has seen a modest increase from less than 5% in 1990 to more than 20% in the most recent assessment reports. Based on responses from over 100 women IPCC authors, we find that many women report a positive experience in the way in which they are treated and in their ability to influence the report, although others report that some women were poorly represented and heard. We suggest that an intersectional lens is important: not all women experience the same obstacles: they face multiple and diverse barriers associated with social identifiers such as race, nationality, command of English, and disciplinary affiliation. The scientific community benefits from including all scientists, including women and those from the Global South. This paper documents barriers to participation and identifies opportunities to diversify climate science. PMID:29440422

  5. Ecological risk assessment in the context of global climate change.

    PubMed

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.

  6. Integrating Information Networks for Collective Planetary Stewardship

    NASA Astrophysics Data System (ADS)

    Tiwari, A.

    2016-12-01

    Responsible behaviour resulting from climate literacy in global environmental movement is limited to policy and planning institutions in the Global South, while remaining absent for ends-user. Thus, planetary stewardship exists only at earth system boundaries where pressures sink to the local scale while ethics remains afloat. Existing citizen participation is restricted within policy spheres, appearing synonymous to enforcements in social psychology. Much, accounted reason is that existing information mechanisms operate mostly through linear exchanges between institutions and users, therefore reinforcing only hierarchical relationships. This study discloses such relationships that contribute to broad networking gaps through information demand assessment of stakeholders in a dozen development projects based in South Asia. Two parameters widely used for this purpose are: a. Feedback: Ends-user feedback to improve consumption literacy of climate sensitive resources (through consumption displays, billing, advisory services ecolabelling, sensors) and, b. Institutional Policy: Rewarding punishing to enforce desired behaviour (subsidies, taxation). Research answered: 1. Who gets the information (Equity in Information Distribution)? As existing information publishing mechanisms are designed by and for analysts, 2. How information translates to climate action Transparency of Execution)? Findings suggested that climate goals manifested in economic policy, than environmental policy, have potential clear short-term benefits and costs, and coincide with people's economic goals Also grassroots roles for responsible behaviour are empowered with presence of end user information. Barier free climate communication process and decision making is ensured among multiplicity of stakeholders with often conflicting perspectives. Research finds significance where collaboration among information networks can better translate regional policies into local action for climate adaptation and resilience capacity building.

  7. 2015 ESGF Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D. N.

    2015-06-22

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration whose purpose is to develop the software infrastructure needed to facilitate and empower the study of climate change on a global scale. ESGF’s architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces. The cornerstones of its interoperability are the peer-to-peer messaging, which is continuously exchanged among all nodes in the federation; a shared architecture for search and discovery; and a security infrastructure based on industry standards. ESGF integrates popular application engines available from the open-sourcemore » community with custom components (for data publishing, searching, user interface, security, and messaging) that were developed collaboratively by the team. The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP)—output used by the Intergovernmental Panel on Climate Change assessment reports. ESGF is a successful example of integration of disparate open-source technologies into a cohesive functional system that serves the needs of the global climate science community.« less

  8. Relationship of various factors affecting the sustainable private forest management at Pajangan District, Special Regions Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Widayanto, B.; Karsidi, R.; Kusnandar; Sutrisno, J.

    2018-03-01

    Forests have a role and function in providing good atmosphere with stable oxygen content and affecting global climate stability. Good forest management will provide stable climatic conditions in global climate change. A good forest is managed to provide a sustainable environment condition. This study aims to analyze the relationship of various factors affecting the sustainability of private forests management. This research is a quantitative research with survey method and determination of sampling are was by purposive sampling. Sampling method using multiple stage cluster sampling with 60 samples. From the results it was found that the successful sustainable private forest management influenced by various factors, such as group dynamics, stakeholder support, community institutions, and farmer participation. The continuity of private forest management is determined by the fulfillment of economic, social and environmental dimensions. The most interesting finding is that the group dynamics conditions are very good, whereas the sense of togetherness among community is very strong under limited resources managing private forests. The sense of togetherness resulted creativity to diversify business and thus reduced the pressure in exploiting the forest. Some people think that managing the people's forest as a culture so that its existence can be more sustainable.

  9. The Agriculture Model Intercomparison and Improvement Project (AgMIP) (Invited)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2010-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and world agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Historical period results will spur model improvement and interaction among major modeling groups, while future period results will lead directly to tests of adaptation and mitigation strategies across a range of scales. AgMIP will consist of a multi-scale impact assessment utilizing the latest methods for climate and agricultural scenario generation. Scenarios and modeling protocols will be distributed on the web, and multi-model results will be collated and analyzed to ensure the widest possible coverage of agricultural crops and regions. AgMIP will place regional changes in agricultural production in a global context that reflects new trading opportunities, imbalances, and shortages in world markets resulting from climate change and other driving forces for food supply. Such projections are essential inputs from the Vulnerability, Impacts, and Adaptation (VIA) research community to the Intergovernmental Panel on Climate Change Fifth Assessment (AR5), now underway, and the UN Framework Convention on Climate Change. They will set the context for local-scale vulnerability and adaptation studies, supply test scenarios for national-scale development of trade policy instruments, provide critical information on changing supply and demand for water resources, and elucidate interactive effects of climate change and land use change. AgMIP will not only provide crucially-needed new global estimates of how climate change will affect food supply and hunger in the agricultural regions of the world, but it will also build the capabilities of developing countries to estimate how climate change will affect their supply and demand for food.

  10. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations

    NASA Astrophysics Data System (ADS)

    Ruhl, Micha; Hesselbo, Stephen P.; Hinnov, Linda; Jenkyns, Hugh C.; Xu, Weimu; Riding, James B.; Storm, Marisa; Minisini, Daniel; Ullmann, Clemens V.; Leng, Melanie J.

    2016-12-01

    The Early Jurassic was marked by multiple periods of major global climatic and palaeoceanographic change, biotic turnover and perturbed global geochemical cycles, commonly linked to large igneous province volcanism. This epoch was also characterised by the initial break-up of the super-continent Pangaea and the opening and formation of shallow-marine basins and ocean gateways, the timing of which are poorly constrained. Here, we show that the Pliensbachian Stage and the Sinemurian-Pliensbachian global carbon-cycle perturbation (marked by a negative shift in δ13 C of 2- 4 ‰), have respective durations of ∼8.7 and ∼2 Myr. We astronomically tune the floating Pliensbachian time scale to the 405 Kyr eccentricity solution (La2010d), and propose a revised Early Jurassic time scale with a significantly shortened Sinemurian Stage duration of 6.9 ± 0.4 Myr. When calibrated against the new time scale, the existing Pliensbachian seawater 87Sr/86Sr record shows relatively stable values during the first ∼2 Myr of the Pliensbachian, superimposed on the long-term Early Jurassic decline in 87Sr/86Sr. This plateau in 87Sr/86Sr values coincides with the Sinemurian-Pliensbachian boundary carbon-cycle perturbation. It is possibly linked to a late phase of Central Atlantic Magmatic Province (CAMP) volcanism that induced enhanced global weathering of continental crustal materials, leading to an elevated radiogenic strontium flux to the global ocean.

  11. Preview of Our Changing Planet. The U.S. Climate Change Science Program for Fiscal Year 2008

    DTIC Science & Technology

    2007-04-01

    reduce the uncertainty in predictions of the global and regional water cycle and surface climate. Sunlight not reflected back to space provides the...research elements include atmospheric composition, climate variability and change, the global water cycle , land-use and land-cover change, the global...entire planet, and researchers with the ability to better explain observed changes in the climate system. Global Water Cycle – Research associated with

  12. USGS global change research

    USGS Publications Warehouse

    ,

    1995-01-01

    The Earth's global environment--its interrelated climate, land, oceans, fresh water, atmospheric and ecological systems-has changed continually throughout Earth history. Human activities are having ever-increasing effects on these systems. Sustaining our environment as population and demands for resources increase requires a sound understanding of the causes and cycles of natural change and the effects of human activities on the Earth's environmental systems. The U.S. Global Change Research Program was authorized by Congress in 1989 to provide the scientific understanding necessary to develop national and international policies concerning global environmental issues, particularly global climate change. The program addresses questions such as: what factors determine global climate; have humans already begun to change the global climate; will the climate of the future be very different; what will be the effects of climate change; and how much confidence do we have in our predictions? Through understanding, we can improve our capability to predict change, reduce the adverse effects of human activities, and plan strategies for adapting to natural and human-induced environmental change.

  13. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteman, Cameron; Capps, Scott

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfiremore » Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.« less

  14. Atmospheric Circulation and West Greenland Precipitation

    NASA Astrophysics Data System (ADS)

    Auger, J.; Birkel, S. D.; Maasch, K. A.; Schuenemann, K. C.; Mayewski, P. A.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.

    2016-12-01

    The surface mass balance of the Greenland Ice Sheet has declined substantially in recent decades across West Greenland with important implications for global sea level and freshwater resources. Here, we investigate changes in heat and moisture delivery to West Greenland through changes in atmospheric circulation in order to gain insight into possible future climate. Particular focus is placed on the role of known climate variability, including the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO), in influencing the intensity, frequency, and track of cyclones across the North Atlantic. This study utilizes multiple daily climate reanalysis models (CFSR, ERA-Interim, JRA-55) in addition to observational data. Preliminary results indicate a primary influence from the NAO, with a secondary influence from the low frequency oscillation connected to the AMO. Work is ongoing, and a complete synthesis will be presented at the fall meeting.

  15. Environmental forcing of terrestrial carbon isotope excursion amplification across five Eocene hyperthermals

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Abels, H.

    2015-12-01

    Abrupt changes in the isotope composition of exogenic carbon pools accompany many major episodes of global change in the geologic record. The global expression of this change in substrates that reflect multiple carbon pools provides important evidence that many events reflect persistent, global redistribution of carbon between reduced and oxidized stocks. As the diversity of records documenting any event grows, however, discrepancies in the expression of carbon isotope change among substrates are almost always revealed. These differences in magnitude, pace, and pattern of change can complicate interpretations of global carbon redistribution, but under ideal circumstances can also provide additional information on changes in specific environmental and biogeochemical systems that accompanied the global events. Here we evaluate possible environmental influences on new terrestrial records of the negative carbon isotope excursions (CIEs) associated with multiple hyperthermals of the Early Eocene, which show a common pattern of amplified carbon isotope change in terrestrial paleosol carbonate records relative to that recorded in marine substrates. Scaling relationships between climate and carbon-cycle proxies suggest that that the climatic (temperature) impact of each event scaled proportionally with the magnitude of its marine CIE, likely implying that all events involved release of reduced carbon with a similar isotopic composition. Amplification of the terrestrial CIEs, however, does not scale with event magnitude, being proportionally less for the first, largest event (the PETM). We conduct a sensitivity test of a coupled plant-soil carbon isotope model to identify conditions that could account for the observed CIE scaling. At least two possibilities consistent with independent lines of evidence emerge: first, varying effects of pCO2 change on photosynthetic carbon isotope discrimination under changing background pCO2, and second, contrasting changes in regional hydroclimate during the PETM and subsequent hyperthermals. These mechanisms have very different implications for the reconstruction of environmental conditions, and resolving the correct interpretation will require new, complimentary records of plant and soil conditions associated with the Early Eocene hyperthermals.

  16. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  17. Wintertime urban heat island modified by global climate change over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  18. Beyond exposure, sensitivity and adaptive capacity: A response based ecological framework to assess species climate change vulnerability

    USGS Publications Warehouse

    Fortini, Lucas B.; Schubert, Olivia

    2017-01-01

    As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By instead defining vulnerability as the degree to which a species is unable to exhibit any of the responses necessary for persistence under climate change (i.e., toleration of projected changes, migration to new climate-compatible areas, enduring in microrefugia, and evolutionary adaptation), we can bring VAs into the realm of ecological science without applying borrowed abstract concepts that have consistently challenged species-centric research and management. This response-based framework to assess species vulnerability to climate change allows better integration of relevant ecological data and past research, yielding results with much clearer implications for conservation and research prioritization.

  19. Exploring the impact of transformational leadership on nurse innovation behaviour: a cross-sectional study.

    PubMed

    Weng, Rhay-Hung; Huang, Ching-Yuan; Chen, Li-Mei; Chang, Li-Yu

    2015-05-01

    This study explored the influences of transformational leadership on nurse innovation behaviour and the mediating role of organisational climate. Recently, global nursing experts have been aggressively encouraging nurses to pursue innovation in nursing in order to improve nursing outcomes. Nursing innovation, in turn, is affected by nursing leadership. We employed a questionnaire survey to collect data, and selected a sample of nurses from hospitals in Taiwan. A total of 439 valid surveys were obtained. Hierarchical multiple regression model analysis was conducted to test the study hypothesis. The mean values of agreement of nurse innovation behaviour and transformational leadership were 3.40 and 3.78, respectively. Patient safety climate and innovation climate were found to have full mediating effects on the relationship between transformational leadership and innovation behaviour. Organisational climate has a significant impact on innovation behaviour. Transformational leadership has indirect effects on innovation behaviour via the mediation of patient safety climate and innovation climate. Hospitals should enhance transformational leadership by designing leadership training programmes and establishing transformational culture. In addition, nursing managers should foster nursing innovation through improvements in organisational climate. © 2013 John Wiley & Sons Ltd.

  20. Global climate change impacts on forests and markets

    Treesearch

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  1. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  2. Future crop production threatened by extreme heat

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Ewert, Frank

    2014-04-01

    Heat is considered to be a major stress limiting crop growth and yields. While important findings on the impact of heat on crop yield have been made based on experiments in controlled environments, little is known about the effects under field conditions at larger scales. The study of Deryng et al (2014 Global crop yield response to extreme heat stress under multiple climate change futures Environ. Res. Lett. 9 034011), analysing the impact of heat stress on maize, spring wheat and soya bean under climate change, represents an important contribution to this emerging research field. Uncertainties in the occurrence of heat stress under field conditions, plant responses to heat and appropriate adaptation measures still need further investigation.

  3. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    USGS Publications Warehouse

    Romañach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  4. Ad hoc committee on global climate issues: Annual report

    USGS Publications Warehouse

    Gerhard, L.C.; Hanson, B.M.B.

    2000-01-01

    The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.

  5. Vegetation and climate changes in western Amazonia during a previous Interglacial- Glacial transition

    NASA Astrophysics Data System (ADS)

    Cardenas, M. L.; Gosling, W. D.; Sherlock, S. C.; Poole, I.; Pennington, R. T.

    2009-12-01

    Amazonia is one of the most biodiverse areas of the world and its vegetation plays a crucial role in controlling the global climate through the regulation of the levels of atmospheric CO2. However, Amazonian ecosystems and their role in the climate system are threatened by ongoing the human impact (already estimated loss of 60% of the species in western Amazonia) and predicted climate change (+1.1-6.4oC by 2100). Unfortunately, there is absence of data relating to the ecological baseline function and response to global climate change of western Amazonian ecosystems in the absence of humans. To help anticipate the impact of future climate change predictions an improved understanding of the natural responses of tropical vegetation to known past climate change is required. Here we present the first study that shows the response of pristine tropical ecosystems in western Amazonia biodiversity hotspot to a major global climate change event (a Quaternary Interglacial-Glacial transition). Pleistocene lake/swamp sediments preserved at the Erazo study site (Lat. 00o 33’S, Long. 077o 52’W, 1927m alt.) today within tropical cloud forest vegetation provide a unique opportunity to examine the impact of past climate shifts. The sediment are >40,000 years old (radiocarbon infinite) and younger than 1 million years (presence of Alder biomarker) and consist of organic layers interbedded with volcanic ash (tephra). This study presents data from multiple proxies (fossil pollen, wood macrofossils and charcoal) to establish a comprehensive picture of regional and local vegetation change prior to human arrival. Our data show a change of vegetation from palm-dominated forest indicative of warm and wet conditions similar to the present at the base of this record, to a forest dominated by Podocarpus sp. suggesting cold and wet conditions at the top of the record. The transition between these two vegetation communities appears to be progressive with small sharp changes along the ecological succession. Fire activity appears to be minor through the record associated only with volcanic events (tephra layers). We conclude that western Amazonian vegetation was effected by Pleistocene global climate change. The Erazo record shows the progression of the vegetation from warm/wet Interglacial-like period similar to the present, to a colder and wetter Glacial-like period. This magnitude of change agrees with similar magnitude changes inferred for the last glacial-interglacial transition at 14,700-9,000 calendar years BP. We also establish for the first time that no natural fire occurred in western Amazonia in the absence of humans, under interglacial or glacial conditions, without volcanic eruptions acting as a source of ignition.

  6. Multiple mortality events in bats: a global review

    USGS Publications Warehouse

    O'Shea, Thomas J.; Cryan, Paul; Hayman, David TH; Plowright, Raina K.; Streicker, Daniel G.

    2016-01-01

    Collectively, over half of all reported MMEs were of anthropogenic origin. The documented occurrence of MMEs in bats due to abiotic factors such as intense storms, flooding, heat waves, and drought is likely to increase in the future with climate change. Coupled with the chronic threats of roosting and foraging habitat loss, increasing mortality through MMEs is unlikely to be compensated for, given the need for high survival in the dynamics of bat populations.

  7. Climate Impact of a Regional Nuclear Weapons Exchange: An Improved Assessment Based On Detailed Source Calculations

    NASA Astrophysics Data System (ADS)

    Reisner, Jon; D'Angelo, Gennaro; Koo, Eunmo; Even, Wesley; Hecht, Matthew; Hunke, Elizabeth; Comeau, Darin; Bos, Randall; Cooley, James

    2018-03-01

    We present a multiscale study examining the impact of a regional exchange of nuclear weapons on global climate. Our models investigate multiple phases of the effects of nuclear weapons usage, including growth and rise of the nuclear fireball, ignition and spread of the induced firestorm, and comprehensive Earth system modeling of the oceans, land, ice, and atmosphere. This study follows from the scenario originally envisioned by Robock, Oman, Stenchikov, et al. (2007, https://doi.org/10.5194/acp-7-2003-2007), based on the analysis of Toon et al. (2007, https://doi.org/10.5194/acp-7-1973-2007), which assumes a regional exchange between India and Pakistan of fifty 15 kt weapons detonated by each side. We expand this scenario by modeling the processes that lead to production of black carbon, in order to refine the black carbon forcing estimates of these previous studies. When the Earth system model is initiated with 5 × 109 kg of black carbon in the upper troposphere (approximately from 9 to 13 km), the impact on climate variables such as global temperature and precipitation in our simulations is similar to that predicted by previously published work. However, while our thorough simulations of the firestorm produce about 3.7 × 109 kg of black carbon, we find that the vast majority of the black carbon never reaches an altitude above weather systems (approximately 12 km). Therefore, our Earth system model simulations conducted with model-informed atmospheric distributions of black carbon produce significantly lower global climatic impacts than assessed in prior studies, as the carbon at lower altitudes is more quickly removed from the atmosphere. In addition, our model ensembles indicate that statistically significant effects on global surface temperatures are limited to the first 5 years and are much smaller in magnitude than those shown in earlier works. None of the simulations produced a nuclear winter effect. We find that the effects on global surface temperatures are not uniform and are concentrated primarily around the highest arctic latitudes, dramatically reducing the global impact on human health and agriculture compared with that reported by earlier studies. Our analysis demonstrates that the probability of significant global cooling from a limited exchange scenario as envisioned in previous studies is highly unlikely, a conclusion supported by examination of natural analogs, such as large forest fires and volcanic eruptions.

  8. Climate impact of a regional nuclear weapons exchange: An improved assessment based on detailed source calculations

    DOE PAGES

    Reisner, Jon Michael; D'Angelo, Gennaro; Koo, Eunmo; ...

    2018-02-13

    In this paper, we present a multi-scale study examining the impact of a regional exchange of nuclear weapons on global climate. Our models investigate multiple phases of the effects of nuclear weapons usage, including growth and rise of the nuclear fireball, ignition and spread of the induced firestorm, and comprehensive Earth system modeling of the oceans, land, ice, and atmosphere. This study follows from the scenario originally envisioned by Robock et al. (2007a), based on the analysis of Toon et al. (2007), which assumes a regional exchange between India and Pakistan of fifty 15-kiloton weapons detonated by each side. Wemore » expand this scenario by modeling the processes that lead to production of black carbon, in order to refine the black carbon forcing estimates of these previous studies. When the Earth system model is initiated with 5 × 10 9 kg of black carbon in the upper troposphere (approximately 9 to 13 km), the impact on climate variables such as global temperature and precipitation in our simulations is similar to that predicted by previously published work. However, while our thorough simulations of the firestorm produce about 3.7 × 10 9 kg of black carbon, we find that the vast majority of the black carbon never reaches an altitude above weather systems (approximately 12 km). Therefore, our Earth system model simulations conducted with model-informed atmospheric distributions of black carbon produce significantly lower global climatic impacts than assessed in prior studies, as the carbon at lower altitudes is more quickly removed from the atmosphere. In addition, our model ensembles indicate that statistically significant effects on global surface temperatures are limited to the first 5 years and are much smaller in magnitude than those shown in earlier works. None of the simulations produced a nuclear winter effect. We find that the effects on global surface temperatures are not uniform and are concentrated primarily around the highest arctic latitudes, dramatically reducing the global impact on human health and agriculture compared with that reported by earlier studies. Lastly, our analysis demonstrates that the probability of significant global cooling from a limited exchange scenario as envisioned in the previous studies is highly unlikely, a conclusion supported by examination of natural analogs, such as large forest fires and volcanic eruptions.« less

  9. Climate impact of a regional nuclear weapons exchange: An improved assessment based on detailed source calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisner, Jon Michael; D'Angelo, Gennaro; Koo, Eunmo

    In this paper, we present a multi-scale study examining the impact of a regional exchange of nuclear weapons on global climate. Our models investigate multiple phases of the effects of nuclear weapons usage, including growth and rise of the nuclear fireball, ignition and spread of the induced firestorm, and comprehensive Earth system modeling of the oceans, land, ice, and atmosphere. This study follows from the scenario originally envisioned by Robock et al. (2007a), based on the analysis of Toon et al. (2007), which assumes a regional exchange between India and Pakistan of fifty 15-kiloton weapons detonated by each side. Wemore » expand this scenario by modeling the processes that lead to production of black carbon, in order to refine the black carbon forcing estimates of these previous studies. When the Earth system model is initiated with 5 × 10 9 kg of black carbon in the upper troposphere (approximately 9 to 13 km), the impact on climate variables such as global temperature and precipitation in our simulations is similar to that predicted by previously published work. However, while our thorough simulations of the firestorm produce about 3.7 × 10 9 kg of black carbon, we find that the vast majority of the black carbon never reaches an altitude above weather systems (approximately 12 km). Therefore, our Earth system model simulations conducted with model-informed atmospheric distributions of black carbon produce significantly lower global climatic impacts than assessed in prior studies, as the carbon at lower altitudes is more quickly removed from the atmosphere. In addition, our model ensembles indicate that statistically significant effects on global surface temperatures are limited to the first 5 years and are much smaller in magnitude than those shown in earlier works. None of the simulations produced a nuclear winter effect. We find that the effects on global surface temperatures are not uniform and are concentrated primarily around the highest arctic latitudes, dramatically reducing the global impact on human health and agriculture compared with that reported by earlier studies. Lastly, our analysis demonstrates that the probability of significant global cooling from a limited exchange scenario as envisioned in the previous studies is highly unlikely, a conclusion supported by examination of natural analogs, such as large forest fires and volcanic eruptions.« less

  10. A history of the science and politics of climate change: the role of the Intergovernmental Panel on Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolin, B.

    2007-11-15

    In response to growing concern about human-induced global climate change, the UN Intergovernmental Panel on Climate Change (IPCC) was formed in 1988. Written by its first Chairman, this book is a unique overview of the history of the IPCC. It describes and evaluates the intricate interplay between key factors in the science and politics of climate change, the strategy that has been followed, and the regretfully slow pace in getting to grips with the uncertainties that have prevented earlier action being taken. The book also highlights the emerging conflict between establishing a sustainable global energy system and preventing a seriousmore » change in global climate. Contents are: Part I. The Early History of the Climate Change Issue: 1. Nineteenth century discoveries; 2. The natural carbon cycle and life on earth; 3. Global research initiatives in meteorology and climatology; 4. Early international assessments of climate change; Part II. The Climate Change Issue Becomes One of Global Concern: 5. Setting the stage; 6. The scientific basis for a climate convention; 7. Serving the Intergovernmental Negotiating Committee; 8. The Second IPP Assessment Report; 9. In the aftermath of the IPCC Second Assessment; 10. The Kyoto Protocol is agreed and a third assessment begun; 11. A decade of hesitance and slow progress; Part III. A Turning Point in Addressing Climate Change?: 12. Key scientific finding of prime political relevance; 13. Climate change and the future global energy supply system; Concluding remarks. 9 figs.« less

  11. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    NASA Astrophysics Data System (ADS)

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  12. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  13. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  14. Global drivers of the stratospheric polar vortex via nonlinear causal discovery

    NASA Astrophysics Data System (ADS)

    Kretschmer, M.; Runge, J.; Coumou, D.

    2016-12-01

    The stratospheric polar vortex plays a major role in the Northern Hemisphere midlatitudes, especially in driving extreme weather conditions. Many different global drivers, from Arctic sea ice to tropical climate patterns, are hypothesized to influence its stability, including linear and nonlinear mechanisms. Here a novel causal discovery approach, extending previous work [1], that is adapted to the particular challenges posed by such a high-dimensional dataset comprised of multiple, possibly nonlinearly coupled time series is demonstrated. While links in the reconstructed network can be called causal only with respect to the set of analyzed variables, the absence of causal links allows to assess where physical mechanisms are unlikely.The present work confirms recent results obtained with a similar, but linear, approach [2], regarding the impact of Barents and Kara sea ice concentrations, and extends the analysis also to tropical drivers to cover more proposed mechanisms. [1] Jakob Runge, Vladimir Petoukhov, and Jürgen Kurths, 2014: Quantifying the Strength and Delay of Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure Based on Graphical Models. J. Climate 27, 720-739, doi: 10.1175/JCLI-D-13-00159.1.[2] Marlene Kretschmer, Dim Coumou, Jonathan F. Donges, and Jakob Runge, 2016: Using Causal Effect Networks to Analyze Different Arctic Drivers of Midlatitude Winter Circulation. J. Climate 29, 4069-4081, doi: 10.1175/JCLI-D-15-0654.1.

  15. Targeted conservation to safeguard a biodiversity hotspot from climate and land-cover change.

    PubMed

    Struebig, Matthew J; Wilting, Andreas; Gaveau, David L A; Meijaard, Erik; Smith, Robert J; Fischer, Manuela; Metcalfe, Kristian; Kramer-Schadt, Stephanie

    2015-02-02

    Responses of biodiversity to changes in both land cover and climate are recognized [1] but still poorly understood [2]. This poses significant challenges for spatial planning as species could shift, contract, expand, or maintain their range inside or outside protected areas [2-4]. We examine this problem in Borneo, a global biodiversity hotspot [5], using spatial prioritization analyses that maximize species conservation under multiple environmental-change forecasts. Climate projections indicate that 11%-36% of Bornean mammal species will lose ≥ 30% of their habitat by 2080, and suitable ecological conditions will shift upslope for 23%-46%. Deforestation exacerbates this process, increasing the proportion of species facing comparable habitat loss to 30%-49%, a 2-fold increase on historical trends. Accommodating these distributional changes will require conserving land outside existing protected areas, but this may be less than anticipated from models incorporating deforestation alone because some species will colonize high-elevation reserves. Our results demonstrate the increasing importance of upland reserves and that relatively small additions (16,000-28,000 km(2)) to the current conservation estate could provide substantial benefits to biodiversity facing changes to land cover and climate. On Borneo, much of this land is under forestry jurisdiction, warranting targeted conservation partnerships to safeguard biodiversity in an era of global change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The Carbonates in ALH 84001 Record the Evolution of the Martian Atmosphere Through Multiple Formation Events

    NASA Technical Reports Server (NTRS)

    Shaheen, R.; Niles, P. B.; Corrgan, C.

    2012-01-01

    Current Martian conditions restrict the presence of liquid water due to low temperatures (approx 210K), a thin atmosphere (approx 7mb), and intense UV radiation. However, past conditions on Mars may have been different with the possibility that the ancient Martian climate was warm and wet with a dense CO2 atmosphere. The cycling of carbon on Mars through atmospheric CO2 and carbonate minerals is critical for deciphering its climate history. In particular stable isotopes contained in carbonates can provide information of their origin and formation environment as well as possibly hinting at the composition of global reservoirs such as atmospheric CO2. Martian meteorite ALH 84001 contains widely studied carbonate rosettes that have been dated to approx. 3.9 Ga and have been used to interpret climatic conditions present at that time. However, there is mount-ing evidence for multiple episodes of carbonate formation in ALH 84001 with potentially distinct isotopic compositions. This study seeks to tease out these different carbonate assemblages using stepped phosphoric acid dissolution and analysis of carbon and triple oxygen stable isotopes. In addition, we report SIMS analyses of the delta O-18 several petrographically unusual carbonate phases in the meteorite.

  17. The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Ruane, Alexander Clark

    2014-01-01

    Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve substantially the climate, crop, and economic simulation tools that are used to characterize the agricultural sector, to assess future world food security under changing climate conditions, and to enhance adaptation capacity both globally and regionally. To understand better and improve the modeled crop responses, AgMIP has conducted detailed crop model intercomparisons at closely observed field sites for wheat (Asseng et al., 2013), rice (Li et al., in review), maize (Bassu et al., 2014), and sugarcane (Singels et al., 2013). A coordinated modeling exercise was one of the original motivations for AgMIP, and C3MP provides rapid estimation of crop responses to CO2, water, and temperature (CTW) changes, adding dimension and insight into the crop model intercomparisons, while facilitating interactions within the global community of modelers. C3MP also contributes a fast-track, multi-model climate sensitivity assessment for the AgMIP climate and crop modeling teams on Research Track 2 (Fig. 1), which seeks to understand the impact of projected climatic changes on crop production and food security (Rosenzweig et al., 2013; Ruane et al., 2014).

  18. Global Climate Change and NEPA: The Difficulty with Cumulative Impacts Analysis

    DTIC Science & Technology

    2008-05-18

    This paper will provide a survey of the current requirements under the law for addressing global climate change in NEPA documents, along with various...methodologies for quantifying the potential global climate change impacts of federal actions subject to NEPA.

  19. Climate change impacts and adaptation in forestry: responses by trees and markets.

    Treesearch

    Ralph Alig; Darius Adams; Linda Joyce; Brent Sohngen

    2004-01-01

    The forest sector-forestry and forest industries-plays an important role in the global climate change debate. The sector influences the global carbon cycle through the sequestration of atmospheric carbon in forests and is in turn influenced by global climate change through its impacts on the rates of forest growth and climate-induced changes in natural disturbances...

  20. National Security and Global Climate Change

    DTIC Science & Technology

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  1. Developing a Pilot Indicator System for U.S. Climate Changes, Impacts, Vulnerabilities, and Responses

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A.; Arndt, D. S.; Pouyat, R. V.; Aicher, R.; Lloyd, A.; Malik, O.; Reyes, J. J.; Anderson, S. M.

    2014-12-01

    The National Climate Indicators System is being developed as part of sustained assessment activities associated with the U.S. National Climate Assessment (NCA). The NCA is conducted under the U.S. Global Change Research Program, which is required to provide a report to Congress every 4 years. The National Climate Indicators System is a set of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information. The Indicators System will address questions important to multiple audiences including (but not limited to) nonscientists (e.g., Congress, U.S. citizens, students), resource managers, and state and municipal planners in a conceptually unified framework. The physical, ecological, and societal indicators will be scalable, to provide information for indicators at national, state, regional, and local scales. The pilot system is a test of the Indicators System for evaluation purposes to assess the readiness of indicators and usability of the system. The National Climate Indicator System has developed a pilot given the recommendations of over 150+ scientists and practitioners and 14 multidisciplinary teams, including, for example, greenhouse gases, forests, grasslands, water, human health, oceans and coasts, and energy. The pilot system of indicators includes approximately 20 indicators that are already developed, scientifically vetted, and implementable immediately. Specifically, the pilot indicators include a small set of global climate context indicators, which provide context for the national or regional indicators, as well as a set of nationally important U.S. natural system and human sector indicators. The purpose of the pilot is to work with stakeholder communities to evaluate the system and the individual indicators using a robust portfolio of evaluation studies, which provides a data driven approach to further develop and improve the National Climate Indicators System.

  2. A flexible, multi-faceted, multi-media approach to teaching climate change to non-STEM majors

    NASA Astrophysics Data System (ADS)

    De Roo, R. D.; Liemohn, M. W.

    2011-12-01

    The University of Michigan offers a 100-level course entitled, "Our Changing Atmosphere," often taken to fulfill the natural science distribution credit requirement by up to 200 students in non-technical majors per term. This course covers the properties and structure of the atmosphere and how they are changing, emphasizing the global climate and climate change. After a brief introduction to atmospheric basics, highlights from Earth's climate history are presented, followed by modern-day changes to climate, such as air pollution, stratospheric ozone depletion, and global warming. The current format of the course relies heavily on Lecturebook, Lecturetools, and C-tools as online electronic resources for the class. The textbook for the course is managed through Lecturebook, which also provides hyperlinked text and hundreds of built-in questions for homework sets and student review. The recitation lessons are uploaded to Lecturebook, which allows for interactive question-and-answer sessions during class in multiple formats. The University of Michigan's C-tools environment is also used for email distribution and archiving, additional resource postings, and as a backup to these other two websites. The structure of the class permits different instructors to emphasize different facets of climate, and to employ different instructional techniques. For example, the textbook differs depending on the term the course is offered. One of us emphasizes good-vs-bad science usage via video, sound clip, or PDF posting on a weather or climate related topic in every lecture. Good-v-bad science usage of climate topics in research, media reporting, and casual conversation are all discussed by the students and included in the examinations. The other instructor emphasizes the findings of the IPCC, employs hands-on activities in lecture and eschews exams in favor of collaborative homework assignments. The assignments include qualitative and quantitative analyses of climate topics and the exploration of model predictions under differing assumptions.

  3. Climate change impacts on water availability: developing regional scenarios for agriculture of the Former Soviet Union countries of Central Asia

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.

    2010-12-01

    Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region.

  4. Climate Scenarios for the NASA / USAID SERVIR Project: Challenges for Multiple Planning Horizons

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Roberts, J. B.; Lyon, B.; Funk, C.; Bosilovich, M. G.

    2014-01-01

    SERVIR, an acronym meaning "to serve" in Spanish, is a joint venture between NASA and the U.S. Agency for International Development (USAID) which provides satellite-based Earth observation data, modeling, and science applications to help developing nations in Central America, East Africa and the Himalayas improve environmental decision making. Anticipating climate variability / climate change impacts has now become an important component of the SERVIR efforts to build capacity in these regions. Uncertainty in hydrometeorological components of climate variations and exposure to extreme events across scales from weather to climate are of particular concern. We report here on work to construct scenarios or outlooks that are being developed as input drivers for decision support systems (DSSs) in a variety of settings. These DSSs are being developed jointly by a broad array NASA Applied Science Team (AST) Investigations and user communities in the three SERVIR Hub Regions, Central America, East Africa and the Himalayas. Issues span hydrologic / water resources modeling, agricultural productivity, and forest carbon reserves. The scenarios needed for these efforts encompass seasonal forecasts, interannual outlooks, and likely decadal / multi-decadal trends. Providing these scenarios across the different AST efforts enables some level of integration in considering regional responses to climate events. We will discuss a number of challenges in developing this continuum of scenarios including the identification and "mining" of predictability, addressing multiple continental regions, issues of downscaling global model integrations to regional / local applications (i.e. hydrologic and crop modeling). We compare / contrast the role of the U.S. National Multi- Model Experiment initiative in seasonal forecasts and the CMIP-5 climate model experiments in supporting these efforts. Examples of these scenarios, their use, and an assessment of their utility as well as limitations will be presented.

  5. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.

    PubMed

    Sack, Lawren; Scoffoni, Christine

    2013-06-01

    The design and function of leaf venation are important to plant performance, with key implications for the distribution and productivity of ecosystems, and applications in paleobiology, agriculture and technology. We synthesize classical concepts and the recent literature on a wide range of aspects of leaf venation. We describe 10 major structural features that contribute to multiple key functions, and scale up to leaf and plant performance. We describe the development and plasticity of leaf venation and its adaptation across environments globally, and a new global data compilation indicating trends relating vein length per unit area to climate, growth form and habitat worldwide. We synthesize the evolution of vein traits in the major plant lineages throughout paleohistory, highlighting the multiple origins of individual traits. We summarize the strikingly diverse current applications of leaf vein research in multiple fields of science and industry. A unified core understanding will enable an increasing range of plant biologists to incorporate leaf venation into their research. © 2013 The Authors New Phytologist © 2013 New Phytologist Trust.

  6. The Glacial-Interglacial Monsoon Recorded by Speleothems from Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Hellstrom, J. C.; Rifai, H.

    2015-12-01

    The Indo-Pacific Warm Pool is a primary source of heat and moisture to the global atmosphere and a key player in tropical and global climate variability. There is mounting evidence that atmospheric convection and oceanic processes in the tropics can modulate global climate on orbital and sub-orbital timescales. Glacial-interglacial cycles represent the largest natural climate changes over the last 800 kyr with each cycle terminated by rapid global warming and sea level rise. Our understanding of the role and response of tropical atmospheric convection during these periods of dramatic warming is limited. We present the first speleothem paleomonsoon record for southwest Sulawesi (5ºS, 119ºE), spanning two glacial-interglacial cycles, including glacial termination IV (~340 kyr BP) and both phases of termination III (~248 and ~220 kyr BP). This unique record is constructed from multiple stalagmites from two separate caves and is based on a multi-proxy approach (δ18O, δ13C, Mg/Ca, Sr/Ca) that provides insight into the mechanisms controlling Australian-Indonesian summer monsoon variability. Speleothem δ18O and trace element data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. Terminations IV, III, and I are each characterized by an abrupt 3‰ decrease in δ18O. Variability in δ18O leading-in to glacial terminations is also similar, and corresponds to October insolation. Prior to deglaciation, there is a distinct shift to higher δ18O that is synchronized with weak monsoon intervals in Chinese speleothem records. The remarkably consistent pattern among terminations implies that the response of tropical convection to changing background climates is well regulated. Furthermore, we find that speleothem δ13C leads δ18O by ~5 kyr during glacial terminations. The early decrease in speleothem δ13C may reflect the response of tropical vegetation to rising atmospheric CO2 and temperature, rather than regional changes in rainfall.

  7. Impacts of climate change on the global forest sector

    USGS Publications Warehouse

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.

  8. Pace of shifts in climate regions increases with global temperature

    NASA Astrophysics Data System (ADS)

    Mahlstein, Irina; Daniel, John S.; Solomon, Susan

    2013-08-01

    Human-induced climate change causes significant changes in local climates, which in turn lead to changes in regional climate zones. Large shifts in the world distribution of Köppen-Geiger climate classifications by the end of this century have been projected. However, only a few studies have analysed the pace of these shifts in climate zones, and none has analysed whether the pace itself changes with increasing global mean temperature. In this study, pace refers to the rate at which climate zones change as a function of amount of global warming. Here we show that present climate projections suggest that the pace of shifting climate zones increases approximately linearly with increasing global temperature. Using the RCP8.5 emissions pathway, the pace nearly doubles by the end of this century and about 20% of all land area undergoes a change in its original climate. This implies that species will have increasingly less time to adapt to Köppen zone changes in the future, which is expected to increase the risk of extinction.

  9. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  10. The global climate change effect on the Altai region's climate in the first half of XXI century

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly A.; Volkov, Nikolai V.; Makushev, Konstantin M.; Mordvin, Egor Yu.

    2017-11-01

    We investigate an effect of global climate system change on climate of Altai region. It is shown that a data of the RegCM4 regional climate model, obtained for contemporary and future periods, within an approach which is based on standard Euclidean distance, allows to define specific zones in which climate change is forecasted. Such zones have been defined for the Altai region territory within the framework of global radiative forcing scenarios RCP 4.5 and RCP 8.5 for the middle of XXI century.

  11. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission

    PubMed Central

    Parham, Paul E.; Waldock, Joanna; Christophides, George K.; Hemming, Deborah; Agusto, Folashade; Evans, Katherine J.; Fefferman, Nina; Gaff, Holly; Gumel, Abba; LaDeau, Shannon; Lenhart, Suzanne; Mickens, Ronald E.; Naumova, Elena N.; Ostfeld, Richard S.; Ready, Paul D.; Thomas, Matthew B.; Velasco-Hernandez, Jorge; Michael, Edwin

    2015-01-01

    Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10–15 years. In this review, we seek to elucidate current knowledge around this topic, identify key themes and uncertainties, evaluate ongoing challenges and open research questions and, crucially, offer some solutions for the field. Although many of these challenges are ubiquitous across multiple VBDs, more specific issues also arise in different vector–pathogen systems. PMID:25688012

  12. The Climate Science Special Report: Detection and Attribution

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.

    2017-12-01

    The Climate Science Special Report reiterates previous findings about the human influence on global mean surface air temperature with the statement "…it is extremely likely that human activities, especially emissions of greenhouse gases, are the dominant cause of the observed warming since the mid 20th century. For the warming over the last century, there is no convincing alternative explanation supported by the extent of the observational evidence." This is a statement made with high confidence and supported by multiple lines of evidence. The report also assesses the latest developments in the field of probabilistic extreme event attribution—the quantification of the influence of anthropogenic climate change on individual extreme weather events—with a focus on those recent events within the United States that have been analyzed. Thirty different events within the US are reported on including heat waves, cold snaps, wet seasons, individual storms and droughts. Most but not all of the individual US events studied revealed an influence from human induced changes to the climate system.

  13. A dataset mapping the potential biophysical effects of vegetation cover change

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  14. A dataset mapping the potential biophysical effects of vegetation cover change

    PubMed Central

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-01-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538

  15. The impacts of a 4 Degree C world on Sustainable Development

    NASA Astrophysics Data System (ADS)

    Bierbaum, R. M.; Schellnhuber, H.

    2012-12-01

    Climate change already poses a serious and immediate threat to development. There are many other urgent challenges, but developing countries cannot afford to ignore climate change since it interacts with many of these other challenges, such as availability of food, water, energy, and shelter, and it make protecting people from floods, droughts, and disease outbreaks more difficult. Confronting climate change requires both mitigation--to avoid the unmanageable, and adaptation--to manage the unavoidable. A 4 degree C world will tax the ability of systems to adapt. There will be significant disruption in multiple sectors, and likely, the large-scale displacement of human populations. The reduction in the resilience of natural and managed ecosystems will impact the resilience of socio-economic systems around the world. A 4 degree C world could increase vulnerability to other global non-climatic stressors and shocks, such as emerging pandemics, trade disruptions or financial market shocks. Developing countries will be the hardest hit, and their prospects for sustainable development compromised.

  16. A study on the impact of nuclear power plant construction relative to decommissioning Fossil Fuel Power Plant in order to reduce carbon dioxide emissions using a modified Nordhaus Vensim DICE model

    NASA Astrophysics Data System (ADS)

    Colpetzer, Jason Lee

    The current levels of CO2 emissions and high levels accumulating in the atmosphere have climate scientists concerned. The Dynamic Integrated Climate Economy Model or "DICE" for short is a highly developed model that has been used to simulate climate change and evaluate factors addressing global warming. The model was developed by Yale's Nordhaus along with collaborators and the compilation of numerous scientific publications. The purpose of this study is to recreate DICE using Vensim and modify it to evaluate the use of nuclear power plants (NPPs) as a means to counter global temperature increases in the atmosphere and oceans and the associated cost of damages. The amount of greenhouse gas emissions from a NPP are about 6% per Megawatt as that from a Fossil Fuel Power Plant (FFPP). Based on this, a model was developed to simulate construction of NPPs with subsequent decommissioning of FFPPs with an equivalent power output. The results produced through multiple simulation runs utilizing variable NPP construction rates show that some minor benefit is achievable if all of the more than 10,000 FFPPs currently in operation in the U.S. are replaced with NPPs. The results show that a reduction in CO 2 emissions of 2.48% will occur if all of the FFPPs are decommissioned. At a minimum rate of 50 NPPs constructed per year, the largest reduction in CO2 in the atmosphere, 1.94% or 44.5 billion tons of carbon, is possible. This results in a reduction in global warming of 0.068°C or 1.31%. The results also show that this reduction in global warming will be equivalent to a reduction of 8.2% or $148 B in anticipated annual spending as a result of climate change damages. Further results indicate that using NPPs to address climate change will provide a small benefit; ultimately, it will not be enough to reduce CO2 emissions or atmospheric CO 2 to control global warming. The amount of CO2 in the atmosphere is predicted to be 1055 parts per million (ppm) even in the best case scenario, which is well above the current limit of 350 ppm proposed by Hansen et. al.

  17. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  18. Greenhouse Gas-ette Fall 1988, Spring, Fall 1989, Winter, Spring, Fall 1990.

    ERIC Educational Resources Information Center

    Greenhouse Gas-ette, 1990

    1990-01-01

    This newsletter is for educators interested in developing lessons related to global climate change. The newsletter contains sample lessons, news items involving global climate change on an international scale, and background information on issues related to global climate change. (CW)

  19. Public Reception of Climate Science: Coherence, Reliability, and Independence.

    PubMed

    Hahn, Ulrike; Harris, Adam J L; Corner, Adam

    2016-01-01

    Possible measures to mitigate climate change require global collective actions whose impacts will be felt by many, if not all. Implementing such actions requires successful communication of the reasons for them, and hence the underlying climate science, to a degree that far exceeds typical scientific issues which do not require large-scale societal response. Empirical studies have identified factors, such as the perceived level of consensus in scientific opinion and the perceived reliability of scientists, that can limit people's trust in science communicators and their subsequent acceptance of climate change claims. Little consideration has been given, however, to recent formal results within philosophy concerning the relationship between truth, the reliability of evidence sources, the coherence of multiple pieces of evidence/testimonies, and the impact of (non-)independence between sources of evidence. This study draws on these results to evaluate exactly what has (and, more important, has not yet) been established in the empirical literature about the factors that bias the public's reception of scientific communications about climate change. Copyright © 2015 Cognitive Science Society, Inc.

  20. Criteria for selecting a CO/sub 2//climate change region of study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmonds, J.; Cushman, R.; Easterling, W.

    One of the most important research issues active today is the greenhouse issue. Progress has been made in exploring the relationship between human activities and the accumulation of CO/sub 2/ and other radiatively important gases in the atmosphere. While significant research remains in refining our understanding of the timing of possible CO/sub 2//climate change, the examination of the nature and magnitude of consequences of CO/sub 2//climate change remains in a relatively early stage of development. While the accumulation of greenhouse gases in the atmosphere may be a global problem, the consequences of CO/sub 2//climate change will be experienced regionally. Itmore » is therefore critical that methods be developed to address the regional examination of CO/sub 2//climate change. An analytical framework is described and a ''cookie cutter'' technique is utilized to deal with multiple resource sectors in selecting a Region of Study. The result leads to the selection of the four midwestern states of Kansas, Nebraska, Iowa, and Missouri. The role of information systems, uncertainty analysis, and knowledge transfer is discussed. 19 refs., 2 figs.« less

Top