Equatorial late-afternoon periodic TEC fluctuations observed by multiple GPS receivers
NASA Astrophysics Data System (ADS)
Tsugawa, T.; Maruyama, T.; Saito, S.; Ishii, M.
2009-12-01
We report, for the first time, equatorial periodic total electron content (TEC) fluctuations observed in the late afternoon by multiple GPS receivers. As a part of Southeast Asia low-latitude ionospheric network (SEALION), GPS receivers at Chiang Mai and Chumphon, Thailand, have been operated since 2005. We found that periodic TEC fluctuations (PTF) with the periods of 15-30 minutes are often observed at these two sites in the spring (Apr-May) late afternoon. Further investigations using multiple GPS receivers in Southeast Asia revealed that the PTFs propagate at 150-200 m/s away from the equator and their amplitudes depend on the satellite azimuth angle. Statistical study of the PTF activity at different latitudes and longitudes clarified that the PTFs are not observed at mid-latitudes, and their seasonal variations are different at different longitudes and at geomagnetically conjugate regions. These observational results indicate that the PTFs are caused by the atmospheric gravity waves (AGW) which are generated in the equatorial lower atmosphere and propagate away from the equator. Simultaneous GPS-TEC and ionosonde observations at Chumphon revealed that the day-to-day variations of PTF activities are well correlated with those of the rate of TEC change index (ROTI) and the occurrence of equatorial spread F (ESF) after the sunset, indicating the PTFs may be related with the onset of the ESF and plasma bubbles.
Method of steering the gain of a multiple antenna global positioning system receiver
NASA Astrophysics Data System (ADS)
Evans, Alan G.; Hermann, Bruce R.
1992-06-01
A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.
Phase Correction for GPS Antenna with Nonunique Phase Center
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Dobbins, Justin
2005-01-01
A method of determining the position and attitude of a body equipped with a Global Positioning System (GPS) receiver includes an accounting for the location of the nonunique phase center of a distributed or wraparound GPS antenna. The method applies, more specifically, to the case in which (1) the GPS receiver utilizes measurements of the phases of GPS carrier signals in its position and attitude computations and (2) the body is axisymmetric (e.g., spherical or round cylindrical) and wrapped at its equator with a single- or multiple-element antenna, the radiation pattern of which is also axisymmetric with the same axis of symmetry as that of the body.
NASA Technical Reports Server (NTRS)
Lanyi, Gabor E.; Roth, Titus
1988-01-01
Total ionospheric electron contents (TEC) were measured by global positioning system (GPS) dual-frequency receivers developed by the Jet Propulsion Laboratory. The measurements included P-code (precise ranging code) and carrier phase data for six GPS satellites during multiple five-hour observing sessions. A set of these GPS TEC measurements were mapped from the GPS lines of sight to the line of sight of a Faraday beacon satellite by statistically fitting the TEC data to a simple model of the ionosphere. The mapped GPS TEC values were compared with the Faraday rotation measurements. Because GPS transmitter offsets are different for each satellite and because some GPS receiver offsets were uncalibrated, the sums of the satellite and receiver offsets were estimated simultaneously with the TEC in a least squares procedure. The accuracy of this estimation procedure is evaluated indicating that the error of the GPS-determined line of sight TEC can be at or below 1 x 10 to the 16th el/sq cm. Consequently, the current level of accuracy is comparable to the Faraday rotation technique; however, GPS provides superior sky coverage.
National aerospace meeting of the Institute of Navigation
NASA Astrophysics Data System (ADS)
Fell, Patrick
The program for this year's aerospace meeting of The Institute of Navigation addressed developments in the evolving Global Positioning System (GPS) of navigation satellites, inertial navigation systems, and other electronic navigation systems and their applications. Also included in the program were a limited number of papers addressing the geodetic use of the GPS system.The Global Positioning System is a constellation of 18 navigation satellites being developed by the Department of Defense to provide instantaneous worldwide navigation. The system will support a multitude of military applications. The first paper by Jacobson reviewed the engineering development of GPS navigation receivers stressing the use of common hardware and software modules. A later paper by Ould described the mechanization of a digital receiver for GPS applications designed for faster acquisition of the spread spectrum satellite transmissions than analog receivers. The paper by Brady discussed the worldwide coverage that is provided by the limited number of satellites that will constitute the GPS constellation through 1983. The capability provided by the satellites presently on orbit would support a variety of experiments at almost any location. Tables of multiple satellite availability are provided for numerous worldwide locations. For civil aviation applications, Vogel addressed the satellite geometry considerations for low cost GPS user equipment, Esposito described the Federal Aviation Administration acceptance tests of a GPS navigation receiver, and Hopkins discussed the design and capability of an integrated GPS strapdown attitude and heading reference system for avionics.
A GPS measurement system for precise satellite tracking and geodesy
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Wu, S.-C.; Lichten, S. M.
1985-01-01
NASA is pursuing two key applications of differential positioning with the Global Positioning System (GPS): sub-decimeter tracking of earth satellites and few-centimeter determination of ground-fixed baselines. Key requirements of the two applications include the use of dual-frequency carrier phase data, multiple ground receivers to serve as reference points, simultaneous solution for use position and GPS orbits, and calibration of atmospheric delays using water vapor radiometers. Sub-decimeter tracking will be first demonstrated on the TOPEX oceanographic satellite to be launched in 1991. A GPS flight receiver together with at least six ground receivers will acquire delta range data from the GPS carriers for non-real-time analysis. Altitude accuracies of 5 to 10 cm are expected. For baseline measurements, efforts will be made to obtain precise differential pseudorange by resolving the cycle ambiguity in differential carrier phase. This could lead to accuracies of 2 or 3 cm over a few thousand kilometers. To achieve this, a high-performance receiver is being developed, along with improved calibration and data processing techniques. Demonstrations may begin in 1986.
Small satellite attitude determination based on GPS/IMU data fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovan, Andrey; Cepe, Ali
In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.
NASA Astrophysics Data System (ADS)
Chu, Q. P.; Van Woerkom, P. Th. L. M.
The Global Positioning System or GPS has been developed for the purpose of enabling accurate positioning and navigation anywhere on or near the surface of the Earth. In addition to the US system GPS-NAVSTAR, the Russian GLONASS system is also in place and operational. Other such systems are under study. The key measurement involved is the time of travel of signals from a particular GPS spacecraft to the navigating receiver. Navigation accuracies of the order of tenths of meters are achievable, and accuracies at the centimeter level can also be obtained with special enhancement techniques. In recent years spacecraft have already been exploring the use of GPS for in-orbit navigation. As the receiver is solid state, rugged, power-lean, and cheap, GPS for autonomous navigation will be an objective even for low-cost spacecraft of only modest sophistication. When the GPS receiver is equipped with multiple antennas with baselines even as low as about one meter, it can also give attitude information. In this case, the position of the spacecraft needs to be known with only very moderate accuracy. However, the phase differences between signals received by the different antennas now constitute the key measurements. In this case a centimeter level accuracy of range difference can be obtained. Receivers carrying out the processing of such measurements are already on the market, even in space-qualified versions. For spacecraft maneuvering at low rates, accuracies of the order of tenths of a degree are achievable. There are reasons for maintaining classical attitude sensor suites on a spacecraft even when a GPS receiver is added. In this case the classical sensors may be allowed to be of modest quality only, as subsequent fusion of their data with those from the GPS receiver may restore the accuracy of the final estimate again to an acceptable level. Hence, low-cost attitude sensors combined with a low-cost GPS receiver can still satisfy non-trivial attitude reconstitution accuracy requirements. As carrier phase difference measurements are ambiguous because of the unknown number of GPS signal cycles received, the estimated attitude is in principle ambiguous as well. Therefore, resolution of the GPS signal cycle ambiguity becomes a necessary task before determining the attitude for a stand-alone GPS attitude sensing system. This problem may be solved by introducing additional low-cost reference attitude sensors like three-axis magnetometers. This is also one of the advantages of integrated sensor systems. The paper is organized as follows. Global Positioning System and GPS observables are described in the first two sections. The main attitude determination concepts are presented in the next section. For small spacecraft, GPS integrated with other low-cost attitude sensors results in a data fusion concept, to be discussed next. The last section highlights experiences and on-going projects related to the spacecraft attitude determination using GPS.
A Low Cost GPS System for Real-Time Tracking of Sounding Rockets
NASA Technical Reports Server (NTRS)
Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)
2001-01-01
This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.
Where in the world are my field plots? Using GPS effectively in environmental field studies
Johnson, Chris E.; Barton, Christopher C.
2004-01-01
Global positioning system (GPS) technology is rapidly replacing tape, compass, and traditional surveying instruments as the preferred tool for estimating the positions of environmental research sites. One important problem, however, is that it can be difficult to estimate the uncertainty of GPS-derived positions. Sources of error include various satellite- and site-related factors, such as forest canopy and topographic obstructions. In a case study from the Hubbard Brook Experimental Forest in New Hampshire, hand-held, mapping-grade GPS receivers generally estimated positions with 1–5 m precision in open, unobstructed settings, and 20–30 m precision under forest canopy. Surveying-grade receivers achieved precisions of 10 cm or less, even in challenging terrain. Users can maximize the quality of their GPS measurements by “mission planning” to take advantage of high-quality satellite conditions. Repeated measurements and simultaneous data collection at multiple points can be used to assess accuracy and precision.
A GPS based fawn saving system using relative distance and angle determination
NASA Astrophysics Data System (ADS)
Ascher, A.; Eberhardt, M.; Lehner, M.; Biebl, E.
2016-09-01
Active UHF RFID systems are often used for identifying, tracking and locating objects. In the present publication a GPS- based localization system for saving fawns during pasture mowing was introduced and tested. Fawns were first found by a UAV before mowing began. They were then tagged with small active RFID transponders, and an appropriate reader was installed on a mowing machine. Conventional direction-of-arrival approaches require a large antenna array with multiple elements and a corresponding coherent receiver, which introduces a large degree of complexity on the reader-side. Instead, our transponders were equipped with a small GPS module, allowing a transponder to determine its own position on request from the reader. A UHF link was used to transmit the location to a machine- mounted reader, where a second GPS receiver was installed. Using information from this second position and a machine- mounted magnetometer for determining the relative north direction of a vehicle, relative distance, and angle between GPS receivers can be calculated. The accuracy and reliability of this novel method were tested under realistic operating conditions, considering critical factors such as the height of grass, the lying position of a fawn, humidity and geographical area.
Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission
NASA Technical Reports Server (NTRS)
Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.
2012-01-01
The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).
Precise measurement method for ionospheric total electron content using signals from GPS satellites
NASA Technical Reports Server (NTRS)
Imae, Michito; Kiuchi, Hitoshi; Kaneko, Akihiro; Hama, Shinichi; Miki, Chihiro
1990-01-01
A GPS codeless receiver called GTR-2 was for measuring total electron content (TEC) along the line of sight to the GPS satellite by using the cross correlation amplitude of the received P-code signals carried by L1(1575.42 MHz) and L2(1227.6 MHz). This equipment has the performance of uncertainty in the measurement of TEC of about 2 X 10(exp 16) electrons/sq m when a 10 dBi gain antenna was used. To increase the measurement performance, an upper version of GTR-2 called GTR-3 is planned which uses the phase information of the continuous signals obtained by making a cross correlation or multiplication of the received L1 and L2 P-code signals. By using the difference of these measured phases values, the ionospheric delay with the ambiguities of the periods of L1+L2 and L1-L2 signals can be estimated.
Shuttle Global Positioning System (GPS) system design study
NASA Technical Reports Server (NTRS)
Nilsen, P. W.
1979-01-01
The various integration problems in the Shuttle GPS system were investigated. The analysis of the Shuttle GPS link was studied. A preamplifier was designed since the Shuttle GPS antennas must be located remotely from the receiver. Several GPS receiver architecture trade-offs were discussed. The Shuttle RF harmonics and intermode that fall within the GPS receiver bandwidth were analyzed. The GPS PN code acquisition was examined. Since the receiver clock strongly affects both GPS carrier and code acquisition performance, a clock model was developed.
Herrmann, M L H; von Waldegg, G H; Kip, M; Lehmann, B; Andrusch, S; Straub, H; Robra, B-P
2015-01-01
After the hospital discharge of older patients with multiple morbidities, GPs are often faced with the task of prioritising the patients' drug regimens so as to reduce the risk of overmedication. How do GPs prioritise such medications in multimorbid elderly patients at the transition between inpatient and home care? The experience by the GPs is documented in typical case vignettes. 44 GPs in Sachsen-Anhalt were recruited--they were engaged in focus group discussions and interviewed using semi-standardised questionnaires. Typical case vignettes were developed, relevant to the everyday care that elderly patients would typically receive from their GPs with respect to their drug optimisation. According to the results of the focus groups, the following issues affect GPs' decisions: drug and patient safety, their own competence in the health system, patient health literacy, evidence base, communication between secondary and primary care (and their respective influences on each other). When considering individual cases, patient safety, patient wishes, and quality of life were central. This is demonstrated by the drug dispositions of one exemplary case vignette. GPs do prioritise drug regimens with rational criteria. Initial problem delineation, process documentation and the design of a transferable product are interlinking steps in the development of case vignettes. Care issues of drug therapy in elderly patients with multiple morbidities should be investigated further with larger representative samples in order to clarify whether the criteria used here are applied contextually or consistently. Embedding case vignettes into further education concepts is also likely to be useful. © Georg Thieme Verlag KG Stuttgart · New York.
An Exploration of Software-Based GNSS Signal Processing at Multiple Frequencies
NASA Astrophysics Data System (ADS)
Pasqual Paul, Manuel; Elosegui, Pedro; Lind, Frank; Vazquez, Antonio; Pankratius, Victor
2017-01-01
The Global Navigation Satellite System (GNSS; i.e., GPS, GLONASS, Galileo, and other constellations) has recently grown into numerous areas that go far beyond the traditional scope in navigation. In the geosciences, for example, high-precision GPS has become a powerful tool for a myriad of geophysical applications such as in geodynamics, seismology, paleoclimate, cryosphere, and remote sensing of the atmosphere. Positioning with millimeter-level accuracy can be achieved through carrier-phase-based, multi-frequency signal processing, which mitigates various biases and error sources such as those arising from ionospheric effects. Today, however, most receivers with multi-frequency capabilities are highly specialized hardware receiving systems with proprietary and closed designs, limited interfaces, and significant acquisition costs. This work explores alternatives that are entirely software-based, using Software-Defined Radio (SDR) receivers as a way to digitize the entire spectrum of interest. It presents an overview of existing open-source frameworks and outlines the next steps towards converting GPS software receivers from single-frequency to dual-frequency, geodetic-quality systems. In the future, this development will lead to a more flexible multi-constellation GNSS processing architecture that can be easily reused in different contexts, as well as to further miniaturization of receivers.
Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers
NASA Technical Reports Server (NTRS)
Lightsey, E. Glenn
2004-01-01
Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.
Software Defined GPS Receiver for International Space Station
NASA Technical Reports Server (NTRS)
Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee
2011-01-01
JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.
Benefits of Software GPS Receivers for Enhanced Signal Processing
2000-01-01
1 Published in GPS SOLUTIONS 4(1) Summer, 2000, pages 56-66. Benefits of Software GPS Receivers for Enhanced Signal Processing Alison Brown...Diego, CA 92110-3127 Number of Pages: 24 Number of Figures: 20 ABSTRACT In this paper the architecture of a software GPS receiver is described...and an analysis is included of the performance of a software GPS receiver when tracking the GPS signals in challenging environments. Results are
Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking
NASA Technical Reports Server (NTRS)
Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)
2001-01-01
In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange,, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide CIA code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets [Bull, ION-GPS-2000]. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance [Montenbruck et al., ION-GPS-2000]. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly 17g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached a maximum altitude of over 80 km. A detailed analysis of the attained flight data will be given in the paper together with a evaluation of different receiver designs and antenna concepts.
Jan, Shau-Shiun; Sun, Chih-Cheng
2010-01-01
The detection of low received power of global positioning system (GPS) signals in the signal acquisition process is an important issue for GPS applications. Improving the miss-detection problem of low received power signal is crucial, especially for urban or indoor environments. This paper proposes a signal existence verification (SEV) process to detect and subsequently verify low received power GPS signals. The SEV process is based on the time-frequency representation of GPS signal, and it can capture the characteristic of GPS signal in the time-frequency plane to enhance the GPS signal acquisition performance. Several simulations and experiments are conducted to show the effectiveness of the proposed method for low received power signal detection. The contribution of this work is that the SEV process is an additional scheme to assist the GPS signal acquisition process in low received power signal detection, without changing the original signal acquisition or tracking algorithms.
NASA Astrophysics Data System (ADS)
Vinande, Eric T.
This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.
NAVIGATION PERFORMANCE IN HIGH EARTH ORBITS USING NAVIGATOR GPS RECEIVER
NASA Technical Reports Server (NTRS)
Bamford, William; Naasz, Bo; Moreau, Michael C.
2006-01-01
NASA GSFC has developed a GPS receiver that can acquire and track GPS signals with sensitivity significantly lower than conventional GPS receivers. This opens up the possibility of using GPS based navigation for missions in high altitude orbit, such as Geostationary Operational Environmental Satellites (GOES) in a geostationary orbit, and the Magnetospheric MultiScale (MMS) Mission, in highly eccentric orbits extending to 12 Earth radii and higher. Indeed much research has been performed to study the feasibility of using GPS navigation in high Earth orbits and the performance achievable. Recently, GSFC has conducted a series of hardware in-the-loop tests to assess the performance of this new GPS receiver in various high Earth orbits of interest. Tracking GPS signals to down to approximately 22-25 dB-Hz, including signals from the GPS transmitter side-lobes, steady-state navigation performance in a geostationary orbit is on the order of 10 meters. This paper presents the results of these tests, as well as sensitivity analysis to such factors as ionosphere masks, use of GPS side-lobe signals, and GPS receiver sensitivity.
Calibration of the BEV GPS Receiver by Using TWSTFT
2008-12-01
40th Annual Precise Time and Time Interval (PTTI) Meeting 543 CALIBRATION OF THE BEV GPS RECEIVER BY USING TWSTFT A. Niessner1, W...a calibration of the BEV reference GPS time receiver by using Two-way Satellite Time and Frequency Transfer ( TWSTFT ). Due to antenna changes, a new...calibration of the BEV receiver was necessary. This receiver is the first GPS receiver with calibration through TWSTFT and used for UTC computation
TOPEX/POSEIDON operational orbit determination results using global positioning satellites
NASA Technical Reports Server (NTRS)
Guinn, J.; Jee, J.; Wolff, P.; Lagattuta, F.; Drain, T.; Sierra, V.
1994-01-01
Results of operational orbit determination, performed as part of the TOPEX/POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment, are presented in this article. Elements of this experiment include the GPS satellite constellation, the GPS demonstration receiver on board T/P, six ground GPS receivers, the GPS Data Handling Facility, and the GPS Data Processing Facility (GDPF). Carrier phase and P-code pseudorange measurements from up to 24 GPS satellites to the seven GPS receivers are processed simultaneously with the GDPF software MIRAGE to produce orbit solutions of T/P and the GPS satellites. Daily solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and DORIS precision orbit solutions.
Evaluation of micro-GPS receivers for tracking small-bodied mammals
Shipley, Lisa A.; Forbey, Jennifer S.; Olsoy, Peter J.
2017-01-01
GPS telemetry markedly enhances the temporal and spatial resolution of animal location data, and recent advances in micro-GPS receivers permit their deployment on small mammals. One such technological advance, snapshot technology, allows for improved battery life by reducing the time to first fix via postponing recovery of satellite ephemeris (satellite location) data and processing of locations. However, no previous work has employed snapshot technology for small, terrestrial mammals. We evaluated performance of two types of micro-GPS (< 20 g) receivers (traditional and snapshot) on a small, semi-fossorial lagomorph, the pygmy rabbit (Brachylagus idahoensis), to understand how GPS errors might influence fine-scale assessments of space use and habitat selection. During stationary tests, microtopography (i.e., burrows) and satellite geometry had the largest influence on GPS fix success rate (FSR) and location error (LE). There was no difference between FSR while animals wore the GPS collars above ground (determined via light sensors) and FSR generated during stationary, above-ground trials, suggesting that animal behavior other than burrowing did not markedly influence micro-GPS errors. In our study, traditional micro-GPS receivers demonstrated similar FSR and LE to snapshot receivers, however, snapshot receivers operated inconsistently due to battery and software failures. In contrast, the initial traditional receivers deployed on animals experienced some breakages, but a modified collar design consistently functioned as expected. If such problems were resolved, snapshot technology could reduce the tradeoff between fix interval and battery life that occurs with traditional micro-GPS receivers. Our results suggest that micro-GPS receivers are capable of addressing questions about space use and resource selection by small mammals, but that additional techniques might be needed to identify use of habitat structures (e.g., burrows, tree cavities, rock crevices) that could affect micro-GPS performance and bias study results. PMID:28301495
NASA Technical Reports Server (NTRS)
Gomez, Susan F.; Lammers, Michael L.
2004-01-01
The Global Positioning System Subsystem (GPS) for International Space Station (ISS) was activated April 12,2002 following the installation of the SO truss segment that included the GPS antennas on Shuttle mission STS-110. The ISS GPS receiver became the primary source for position, velocity, and attitude information for ISS two days after activation. The GPS receiver also provides a time reference for manual control of ISS time, and will be used for automatic time updates after problems are resolved with the output from the receiver. After two years of on-orbit experience, the GPS continues to be used as the primary navigation source for ISS; however, enough problems have surfaced that the firmware in the GPS attitude code has had to be totally rewritten and new algorithms developed, the firmware that processed the time output from the GPS receiver had to be rewritten, while the GPS navigation code has had minor revisions. The factors contributing to the delivery of a GPS receiver for use on ISS that requires extensive operator intervention to function are discussed. Observations from two years worth of GPS solutions will also be discussed. The technical solutions to the anomalous GPS receiver behavior will be discussed.
NASA Astrophysics Data System (ADS)
Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bhat, N. D. R.; Briggs, F.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B.-Q.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapińska, A. D.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A. R.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.
2015-08-01
We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.
33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.
Code of Federal Regulations, 2011 CFR
2011-07-01
...GPS) receiver; (2) Marine band Non-Directional Beacon receiver capable of receiving dGPS error... frequency; and (4) Control unit. (b) An AISSE must have the following capabilities: (1) Use dGPS to sense... Recommended Standards for Differential NAVSTAR GPS Service in determining the required information; (3...
NASA Astrophysics Data System (ADS)
Komjathy, Attila; Sparks, Lawrence; Wilson, Brian D.; Mannucci, Anthony J.
2005-12-01
As the number of ground-based and space-based receivers tracking the Global Positioning System (GPS) satellites steadily increases, it is becoming possible to monitor changes in the ionosphere continuously and on a global scale with unprecedented accuracy and reliability. As of August 2005, there are more than 1000 globally distributed dual-frequency GPS receivers available using publicly accessible networks including, for example, the International GPS Service and the continuously operating reference stations. To take advantage of the vast amount of GPS data, researchers use a number of techniques to estimate satellite and receiver interfrequency biases and the total electron content (TEC) of the ionosphere. Most techniques estimate vertical ionospheric structure and, simultaneously, hardware-related biases treated as nuisance parameters. These methods often are limited to 200 GPS receivers and use a sequential least squares or Kalman filter approach. The biases are later removed from the measurements to obtain unbiased TEC. In our approach to calibrating GPS receiver and transmitter interfrequency biases we take advantage of all available GPS receivers using a new processing algorithm based on the Global Ionospheric Mapping (GIM) software developed at the Jet Propulsion Laboratory. This new capability is designed to estimate receiver biases for all stations. We solve for the instrumental biases by modeling the ionospheric delay and removing it from the observation equation using precomputed GIM maps. The precomputed GIM maps rely on 200 globally distributed GPS receivers to establish the "background" used to model the ionosphere at the remaining 800 GPS sites.
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Sparks, Lawrence; Wilson, Brian D.; Mannucci, Anthony J.
2005-01-01
To take advantage of the vast amount of GPS data, researchers use a number of techniques to estimate satellite and receiver interfrequency biases and the total electron content (TEC) of the ionosphere. Most techniques estimate vertical ionospheric structure and, simultaneously, hardware-related biases treated as nuisance parameters. These methods often are limited to 200 GPS receivers and use a sequential least squares or Kalman filter approach. The biases are later removed from the measurements to obtain unbiased TEC. In our approach to calibrating GPS receiver and transmitter interfrequency biases we take advantage of all available GPS receivers using a new processing algorithm based on the Global Ionospheric Mapping (GIM) software developed at the Jet Propulsion Laboratory. This new capability is designed to estimate receiver biases for all stations. We solve for the instrumental biases by modeling the ionospheric delay and removing it from the observation equation using precomputed GIM maps. The precomputed GIM maps rely on 200 globally distributed GPS receivers to establish the ''background'' used to model the ionosphere at the remaining 800 GPS sites.
DOT National Transportation Integrated Search
2016-10-14
Outline : : Interference Tolerance Mask (ITM) to Effective Isotropic Radiated Power (IRP) for the particular case of a single transmitter : : ITM() to IRP() for the general case of multiple transmitters : : Input parameters needed to solv...
47 CFR 87.151 - Special requirements for differential GPS receivers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... differential GPS receivers. (a) The receiver shall achieve a message failure rate less than or equal to one...
Evaluation of a Mobile Phone for Aircraft GPS Interference
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.
2004-01-01
Measurements of spurious emissions from a mobile phone are conducted in a reverberation chamber for the Global Positioning System (GPS) radio frequency band. This phone model was previously determined to have caused interference to several aircraft GPS receivers. Interference path loss (IPL) factors are applied to the emission data, and the outcome compared against GPS receiver susceptibility. The resulting negative safety margins indicate there are risks to aircraft GPS systems. The maximum emission level from the phone is also shown to be comparable with some laptop computer's emissions, implying that laptop computers can provide similar risks to aircraft GPS receivers.
A study of ionospheric grid modification technique for BDS/GPS receiver
NASA Astrophysics Data System (ADS)
Liu, Xuelin; Li, Meina; Zhang, Lei
2017-07-01
For the single-frequency GPS receiver, ionospheric delay is an important factor affecting the positioning performance. There are many kinds of ionospheric correction methods, common models are Bent model, IRI model, Klobuchar model, Ne Quick model and so on. The US Global Positioning System (GPS) uses the Klobuchar coefficients transmitted in the satellite signal to correct the ionospheric delay error for a single frequency GPS receiver, but this model can only reduce the ionospheric error of about 50% in the mid-latitudes. In the Beidou system, the accuracy of the correction delay is higher. Therefore, this paper proposes a method that using BD grid information to correct GPS ionospheric delay to improve the ionospheric delay for the BDS/GPS compatible positioning receiver. In this paper, the principle of ionospheric grid algorithm is introduced in detail, and the positioning accuracy of GPS system and BDS/GPS compatible positioning system is compared and analyzed by the real measured data. The results show that the method can effectively improve the positioning accuracy of the receiver in a more concise way.
High-precision coseismic displacement estimation with a single-frequency GPS receiver
NASA Astrophysics Data System (ADS)
Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing
2015-07-01
To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.
Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver
NASA Technical Reports Server (NTRS)
Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.
2012-01-01
Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.
Human factors evaluation of TSO-C129A GPS receivers
DOT National Transportation Integrated Search
1998-10-22
This report documents an evaluation of the usability of TSO-C129a-certified Global Positioning System (GPS) receivers. Bench and flight tests were conducted on six GPS receivers. The evaluations covered 23 flight tasks. Both subjective and objective ...
Gaboreau, Y; Imbert, P; Jacquet, J-P; Marchand, O; Couturier, P; Gavazzi, G
2013-11-01
Malnutrition is associated with a high morbi-mortality in elderly populations and their institutionalization at an early stage. The incidence is well known despite being often under-diagnosed in primary care. General practitioners (GPs) have a key role in home care. What are the factors affecting malnutrition-screening implementation by French GPs? We conducted a cross-sectional survey in two areas in the southeast of France (Savoie and Isère). In May 2008, an anonymized survey was sent by e-mail and/or post to all GPs with a large clinical practice. Two months later, reminder letters were sent. Potential barriers were measured by dichotomous scale. On GPs' characteristics (socio-demographic, medical training, geriatric practice and knowledge), multiple regression logistic was performed to identify others factors affecting malnutrition screening. In all, 493 GPs (26.85%) answered and 72.2% felt that malnutrition screening was useful although only 26.6% implemented it each year and 11.9% every 2-5 years. The main barriers to the implementation were patient selection (60.4%) and forgetting to screen (26.6%). Minor barriers were lack of knowledge (19.5%) or time (15%). New factors were identified: unsuitable working conditions (19.1%), insufficient motivation (6.8%) or technical support (7.2%). The quality of malnutrition information received was found to be the only promoter of annual screening (odds ratio=1.44 (1.087-1.919); P=0.011). This survey is the first in France to reveal GPs' factors affecting malnutrition implementation. New obstacles were identified in this survey. The hope of implementing regular malnutrition screening by GPs seems to lie with the quality of malnutrition information received.
Guidelines for the Design of GPS and LORAN Receiver Controls and Displays
DOT National Transportation Integrated Search
1995-03-01
Long range navigation (Loran) and global positioning system (GPS) receivers are widely used in aviation. The Loran and GPS receivers are similar in size and function but derive their navigation signals from different sources. The design of the contro...
The March 1985 demonstration of the fiducial network concept for GPS geodesy: A preliminary report
NASA Technical Reports Server (NTRS)
Davidson, J. M.; Thornton, C. L.; Dixon, T. H.; Vegos, C. J.; Young, L. E.; Yunck, T. P.
1986-01-01
The first field tests in preparation for the NASA Global Positioning System (GPS) Caribbean Initiative were conducted in late March and Early April of 1985. The GPS receivers were located at the POLARIS Very Long Base Interferometry (VLBI) stations at Westford, Massachusetts; Richmond, Florida; and Ft. Davis, Texas; and at the Mojave, Owens Valley, and Hat Creek VLBI stations in California. Other mobile receivers were placed near Mammoth Lakes, California; Pt. Mugu, California; Austin, Texas; and Dahlgren, Virginia. These sites were equipped with a combination of GPS receiver types, including SERIES-X, TI-4100 and AFGL dual frequency receivers. The principal objectives of these tests were the demonstration of the fiducial network concept for precise GPS geodesy, the performance assessment of the participating GPS receiver types, and to conduct the first in a series of experiments to monitor ground deformation in the Mammoth Lakes-Long Valley caldera region in California. Other objectives included the testing of the water vapor radiometers for the calibration of GPS data, the development of efficient procedures for planning and coordinating GPS field exercise, the establishment of institutional interfaces for future cooperating ventures, the testing of the GPS Data Analysis Software (GIPSY, for GPS Inferred Positioning SYstem), and the establishment of a set of calibration baselines in California. Preliminary reports of the success of the field tests, including receiver performance and data quality, and on the status of the data analysis software are given.
The influence of grounding on GPS receiver differential code biases
NASA Astrophysics Data System (ADS)
Choi, Byung-Kyu; Lee, Sang Jeong
2018-07-01
The Global Positioning System (GPS) has become an effective tool for estimating ionospheric total electron content (TEC). One of the critical factors affecting ionospheric TEC estimation from GPS data is the differential code biases (DCBs) inherent in both GPS receivers and satellites. To investigate the factor that affects the receiver DCB, we consider the relationship between the receiver DCB and the grounding of an antenna. GPS data from 9 stations in South Korea from three periods (the years 2009, 2014, and 2017) were used in the analysis. It was found that a significant jump (∼8-13 ns, or ∼ 23-37 TECU) in hourly DCB time series occurred simultaneously at the two different sites when an antenna is changed from a grounded to the non-grounded state. Thus, our study clearly identifies that the grounding of GPS equipment is a factor of the receiver DCB changes.
NASA Astrophysics Data System (ADS)
Usui, T.; Yoshida, H.; Miyamoto, H.; Yaguchi, N.; Terasawa, T.; Yoshikawa, I.
2012-05-01
We are developing an instrument for teaching purpose to determine the trajectory of a meteor with the Ham-band Radio Observations(HRO) . In this work, we describe newly developed ranging system with using Frequency Modulated signals and show some results.
NASA Technical Reports Server (NTRS)
Wennersten, Miriam; Banes, Vince; Boegner, Greg; Clagnett, Charles; Dougherty, Lamar; Edwards, Bernard; Roman, Joe; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA Goddard Space Flight Center has built an open architecture, 24 channel spaceflight Global Positioning System (GPS) receiver. The compact PCI PiVoT GPS receiver card is based on the Mitel/GEC Plessey Builder 2 board. PiVoT uses two Plessey 2021 correlators to allow tracking of up to 24 separate GPS SV's on unique channels. Its four front ends can support four independent antennas, making it a useful card for hosting GPS attitude determination algorithms. It has been built using space quality, radiation tolerant parts. The PiVoT card works at a lower signal to noise ratio than the original Builder 2 board. It also hosts an improved clock oscillator. The PiVoT software is based on the original Piessey Builder 2 software ported to the Linux operating system. The software is posix compliant and can be easily converted to other posix operating systems. The software is open source to anyone with a licensing agreement with Plessey. Additional tasks can be added to the software to support GPS science experiments or attitude determination algorithms. The next generation PiVoT receiver will be a single radiation hardened compact PCI card containing the microprocessor and the GPS receiver optimized for use above the GPS constellation.
System and method for generating attitude determinations using GPS
NASA Technical Reports Server (NTRS)
Cohen, Clark E. (Inventor)
1996-01-01
A GPS attitude receiver for determining the attitude of a moving vehicle in conjunction with a first, a second, a third, and a fourth antenna mounted to the moving vehicle. Each of the antennas receives a plurality of GPS signals that each include a carrier component. For each of the carrier components of the received GPS signals there is an integer ambiguity associated with the first and fourth antennas, an integer ambiguity associated with second and fourth antennas, and an integer ambiguity associated with the third and fourth antennas. The GPS attitude receiver measures phase values for the carrier components of the GPS signals received from each of the antennas at a plurality of measurement epochs during an initialization period and at a measurement epoch after the initialization period. In response to the phase values measured at the measurement epochs during the initialization period, the GPS attitude receiver computes integer ambiguity resolution values representing resolution of the integer ambiguities. Then, in response to the computed integer ambiguity resolution values and the phase value measured at the measurement epoch after the initialization period, it computes values defining the attitude of the moving vehicle at the measurement epoch after the initialization period.
DOT National Transportation Integrated Search
1995-04-01
This checklist is designed to assist FAA certification personnel and GPS : receiver manufacturers in the evaluation of the pilot-system interface : characteristics of GPS receivers to be certified according to TSO C129 A1, : RTCA/DO-208, and AC 20-13...
Precise Clock Solutions Using Carrier Phase from GPS Receivers in the International GPS Service
NASA Technical Reports Server (NTRS)
Zumberge, J. F.; Jefferson, D. C.; Stowers, D. A.; Tjoelker, R. L.; Young, L. E.
1999-01-01
As one of its activities as an Analysis Center in the International GPS Service (IGS), the Jet Propulsion Laboratory (JPL) uses data from a globally distributed network of geodetic-quality GPS receivers to estimate precise clock solutions, relative to a chosen reference, for both the GPS satellites and GPS receiver internal clocks, every day. The GPS constellation and ground network provide geometrical strength resulting in formal errors of about 100 p sec for these estimates. Some of the receivers in the global IGS network contain high quality frequency references, such as hydrogen masers. The clock solutions for such receivers are smooth at the 20-p sec level on time scales of a few minutes. There are occasional (daily to weekly) shifts at the microsec level, symptomatic of receiver resets, and 200-p sec-level discontinuities at midnight due to 1-day processing boundaries. Relative clock solutions among 22 IGS sites proposed as "fiducial" in the IGS/BIPM pilot project have been examined over a recent 4-week period. This allows a quantitative measure of receiver reset frequency as a function of site. For days and-sites without resets, the Allan deviation of the relative clock solutions is also computed for subdaily values of tau..
Estimating Effects of Multipath Propagation on GPS Signals
NASA Technical Reports Server (NTRS)
Byun, Sung; Hajj, George; Young, Lawrence
2005-01-01
Multipath Simulator Taking into Account Reflection and Diffraction (MUSTARD) is a computer program that simulates effects of multipath propagation on received Global Positioning System (GPS) signals. MUSTARD is a very efficient means of estimating multipath-induced position and phase errors as functions of time, given the positions and orientations of GPS satellites, the GPS receiver, and any structures near the receiver as functions of time. MUSTARD traces each signal from a GPS satellite to the receiver, accounting for all possible paths the signal can take, including all paths that include reflection and/or diffraction from surfaces of structures near the receiver and on the satellite. Reflection and diffraction are modeled by use of the geometrical theory of diffraction. The multipath signals are added to the direct signal after accounting for the gain of the receiving antenna. Then, in a simulation of a delay-lock tracking loop in the receiver, the multipath-induced range and phase errors as measured by the receiver are estimated. All of these computations are performed for both right circular polarization and left circular polarization of both the L1 (1.57542-GHz) and L2 (1.2276-GHz) GPS signals.
NASA Technical Reports Server (NTRS)
Rundle, John
1998-01-01
A consortium of investigators from several universities and Government agencies have conducted a series of aircraft topographic surveys over the Long Valley caldera, California. The region has a geologic history of extensive volcanism, and its central dome has recently been undergoing resurgent uplift episodes of up to 4 cm per year, a deformation rate that is still continuing. These surveys were conducted from the NASA WFF T39 jet aircraft, outfitted with a nadir-profiling altimetric laser (ATLAS), a GPS guidance system for in-flight precision navigation, two P-code GPS receivers, a Litton LTN92 inertial unit for attitude determination, and both video and still-frame aerial cameras. In addition, two base-station GPS receivers were deployed for post-flight differential navigation, complementing the permanent GPS station operated on the resurgent dome by JPL, and a kinematic automobile survey of roads crossing the area was conducted, thereby complementing the JPL kinematic GPS surveys of some of the same roads. Precision flying yielded multiple profiles along nearly identical paths, including crossing profiles over selected locations within the caidera and calibration flights over Mono Lake, and Lake Crowley. Data from the most recent survey in 1995 are at this time still being reduced, but the standard error of the mean is very low (< 3 mm), due to the high number of crossover points. We thus intend to evaluate the technique for measuring systematic changes in the dome height over time.
Autonomous Spacecraft Navigation Using Above-the-Constellation GPS Signals
NASA Technical Reports Server (NTRS)
Winternitz, Luke
2017-01-01
GPS-based spacecraft navigation offers many performance and cost benefits, and GPS receivers are now standard GNC components for LEO missions. Recently, more and more high-altitude missions are taking advantage of the benefits of GPS navigation as well. High-altitude applications pose challenges, however, because receivers operating above the GPS constellations are subject to reduced signal strength and availability, and uncertain signal quality. This presentation will present the history and state-of-the-art in high-altitude GPS spacecraft navigation, including early experiments, current missions and receivers, and efforts to characterize and protect signals available to high-altitude users. Recent results from the very-high altitude MMS mission are also provided.
2016-06-01
UNCLASSIFIED Development of GPS Receiver Kalman Filter Algorithms for Stationary, Low-Dynamics, and High-Dynamics Applications Peter W. Sarunic 1 1...determine instantaneous estimates of receiver position and then goes on to develop three Kalman filter based estimators, which use stationary receiver...used in actual GPS receivers, and cover a wide range of applications. While the standard form of the Kalman filter , of which the three filters just
Estimation of total electron content (TEC) using spaceborne GPS measurements
NASA Astrophysics Data System (ADS)
Choi, Key-Rok; Lightsey, E. Glenn
2008-09-01
TerraSAR-X (TSX), a high-resolution interferometric Synthetic Aperture Radar (SAR) mission from DLR (German Aerospace Center, Deutsches Zentrum für Luft-und Raumfahrt), was successfully launched into orbit on June 15, 2007. It includes a dual-frequency GPS receiver called IGOR (Integrated GPS Occultation Receiver), which is a heritage NASA/JPL BlackJack receiver. The software for the TSX IGOR receiver was specially-modified software developed at UT/CSR. This software was upgraded to provide enhanced occultation capabilities. This paper describes total electron content (TEC) estimation using simulation data and onboard GPS data of TerraSAR-X. The simulated GPS data were collected using the IGOR Engineering Model (EM) in the laboratory and the onboard GPS data were collected from the IGOR Flight Model (FM) on TSX. To estimate vertical total electron content (vTEC) for the simulation data, inter-frequency biases (IFB) were estimated using the "carrier to code leveling process." For the onboard GPS data, IFBs of GPS satellites were retrieved from the navigation message and applied to the measurements.
SUPL support for mobile devices
NASA Astrophysics Data System (ADS)
Narisetty, Jayanthi; Soghoyan, Arpine; Sundaramurthy, Mohanapriya; Akopian, David
2012-02-01
Conventional Global Positioning System (GPS) receivers operate well in open-sky environments. But their performance degrades in urban canyons, indoors and underground due to multipath, foliage, dissipation, etc. To overcome such situations, several enhancements have been suggested such as Assisted GPS (A-GPS). Using this approach, orbital parameters including ephemeris and almanac along with reference time and coarse location information are provided to GPS receivers to assist in acquisition of weak signals. To test A-GPS enabled receivers high-end simulators are used, which are not affordable by many academic institutions. This paper presents an economical A-GPS supplement for inexpensive simulators which operates on application layer. Particularly proposed solution is integrated with National Instruments' (NI) GPS Simulation Toolkit and implemented using NI's Labview environment. This A-GPS support works for J2ME and Android platforms. The communication between the simulator and the receiver is in accordance with the Secure User Plane Location (SUPL) protocol encapsulated with Radio Resource Location Protocol (RRLP) applies to Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) cellular networks.
Improving the Quality of Low-Cost GPS Receiver Data for Monitoring Using Spatial Correlations
NASA Astrophysics Data System (ADS)
Zhang, Li; Schwieger, Volker
2016-06-01
The investigations on low-cost single frequency GPS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox LEA-6T GPS receivers combined with Trimble Bullet III GPS antennas containing self-constructed L1-optimized choke rings can already obtain an accuracy in the range of millimeters which meets the requirements of geodetic precise monitoring applications (see [
Navigating the Return Trip from the Moon Using Earth-Based Ground Tracking and GPS
NASA Technical Reports Server (NTRS)
Berry, Kevin; Carpenter, Russell; Moreau, Michael C.; Lee, Taesul; Holt, Gregg N.
2009-01-01
NASA s Constellation Program is planning a human return to the Moon late in the next decade. From a navigation perspective, one of the most critical phases of a lunar mission is the series of burns performed to leave lunar orbit, insert onto a trans-Earth trajectory, and target a precise re-entry corridor in the Earth s atmosphere. A study was conducted to examine sensitivity of the navigation performance during this phase of the mission to the type and availability of tracking data from Earth-based ground stations, and the sensitivity to key error sources. This study also investigated whether GPS measurements could be used to augment Earth-based tracking data, and how far from the Earth GPS measurements would be useful. The ability to track and utilize weak GPS signals transmitted across the limb of the Earth is highly dependent on the configuration and sensitivity of the GPS receiver being used. For this study three GPS configurations were considered: a "standard" GPS receiver with zero dB antenna gain, a "weak signal" GPS receiver with zero dB antenna gain, and a "weak signal" GPS receiver with an Earth-pointing direction antenna (providing 10 dB additional gain). The analysis indicates that with proper selection and configuration of the GPS receiver on the Orion spacecraft, GPS can potentially improve navigation performance during the critical final phases of flight prior to Earth atmospheric entry interface, and may reduce reliance on two-way range tracking from Earth-based ground stations.
Johnson, David R; Ziersch, Anna M; Burgess, Teresa
2008-01-01
Introduction Many refugees arrive in Australia with complex health needs. In South Australia (SA), providing initial health care to refugees is the responsibility of General Practitioners (GPs) in private practice. Their capacity to perform this work effectively for current newly arrived refugees is uncertain. The aim of this study was to document the challenges faced by GPs in private practice in SA when providing initial care to refugees and to discuss the implications of this for policy relating to optimising health care services for refugees. Methods Semi-structured interviews with twelve GPs in private practice and three Medical Directors of Divisions of General Practice. Using a template analysis approach the interviews were coded and analysed thematically. Results Multiple challenges providing care to refugees were found including those related to: (1) refugee health issues; (2) the GP-refugee interaction; and (3) the structure of general practice. The Divisions also reported challenges assisting GPs to provide effective care related to a lack of funding and awareness of which GPs required support. Although respondents suggested a number of ways that GPs could be assisted to provide better initial care to refugees, strong support was voiced for the initial care of refugees to be provided via a specialist refugee health service. Conclusion GPs in this study were under-resourced, at both an individual GP level as well as a structural level, to provide effective initial care for refugees. In SA, there are likely to be a number of challenges attempting to increase the capacity of GPs in private practice to provide initial care. An alternative model is for refugees with multiple and complex health care needs as well as those with significant resettlement challenges to receive initial health care via the existing specialist refugee health service in Adelaide. PMID:18687150
A simulation of GPS and differential GPS sensors
NASA Technical Reports Server (NTRS)
Rankin, James M.
1993-01-01
The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.
NASA Technical Reports Server (NTRS)
Wennersten, Miriam Dvorak; Banes, Anthony Vince; Boegner, Gregory J.; Dougherty, Lamar; Edwards, Bernard L.; Roman, Joseph; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA Goddard Space Flight Center has built an open architecture, 24 channel space flight GPS receiver. The CompactPCI PiVoT GPS receiver card is based on the Mitel/GEC Plessey Builder-2 board. PiVoT uses two Plessey 2021 correlators to allow tracking of up to 24 separate GPS SV's on unique channels. Its four front ends can support four independent antennas, making it a useful card for hosting GPS attitude determination algorithms. It has been built using space quality, radiation tolerant parts. The PiVoT card will track a weaker signal than the original Builder 2 board. It also hosts an improved clock oscillator. The PiVoT software is based on the original Plessey Builder 2 software ported to the Linux operating system. The software is POSIX complaint and can easily be converted to other POSIX operating systems. The software is open source to anyone with a licensing agreement with Plessey. Additional tasks can be added to the software to support GPS science experiments or attitude determination algorithms. The next generation PiVoT receiver will be a single radiation hardened CompactPCI card containing the microprocessor and the GPS receiver optimized for use above the GPS constellation. PiVoT was flown successfully on a balloon in July, 2001, for its first non-simulated flight.
Comparison of GLONASS and GPS Time Transfers
NASA Astrophysics Data System (ADS)
Daly, P.; Koshelyaevsky, N. B.; Lewandowski, W.; Petit, G.; Thomas, C.
1993-01-01
The Russian global space navigation system GLONASS could provide a technique similar to GPS for international time comparison. The main limitation to its use for time transfer is the lack of commercially available time receivers. The University of Leeds built a GPS/GLONASS receiver five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years the VNIIFTRI and several other Russian time laboratories have used Russian-built GLONASS navigation receivers for time comparisons. Since June 1991, the VNIIFTRI has operated a GPS time receiver which offers, for the first time, an opportunity for the direct comparison of time transfers using GPS and GLONASS. This seven-month experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.
Using GPS Reflections for Satellite Remote Sensing
NASA Technical Reports Server (NTRS)
Mickler, David
2000-01-01
GPS signals that have reflected off of the ocean's surface have shown potential for use in oceanographic and atmospheric studies. The research described here investigates the possible deployment of a GPS reflection receiver onboard a remote sensing satellite in low Earth orbit (LEO). The coverage and resolution characteristics of this receiver are calculated and estimated. This mission analysis examines using reflected GPS signals for several remote sensing missions. These include measurement of the total electron content in the ionosphere, sea surface height, and ocean wind speed and direction. Also discussed is the potential test deployment of such a GPS receiver on the space shuttle. Constellations of satellites are proposed to provide adequate spatial and temporal resolution for the aforementioned remote sensing missions. These results provide a starting point for research into the feasibility of augmenting or replacing existing remote sensing satellites with spaceborne GPS reflection-detecting receivers.
Myth Busted: Civilian GPS Receivers Actually do have Access to the L2 Frequency
2010-01-01
2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Myth Busted: Civilian GPS Receivers Actually do Have Access...matter experts on Position, Navigation and Timing and on the Global Positioning System ( GPS ) constellation. In the course of educat- ing FA40s in...the Space Operations Officer Qualification Course, in less than three months, students receive as many as six briefs dealing with GPS . These briefs
NAVSTAR GPS Marine Receiver Performance Analysis
DOT National Transportation Integrated Search
1984-09-01
This report is an analysis and comparison of the capability of several NAVSTAR GPS receiver configurations to provide accurate position data to the civil marine user. The NAVSTAR GPS system itself has the potential to provide civil marine users with ...
NASA Technical Reports Server (NTRS)
Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.
2011-01-01
Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.
Distributed processing of a GPS receiver network for a regional ionosphere map
NASA Astrophysics Data System (ADS)
Choi, Kwang Ho; Hoo Lim, Joon; Yoo, Won Jae; Lee, Hyung Keun
2018-01-01
This paper proposes a distributed processing method applicable to GPS receivers in a network to generate a regional ionosphere map accurately and reliably. For accuracy, the proposed method is operated by multiple local Kalman filters and Kriging estimators. Each local Kalman filter is applied to a dual-frequency receiver to estimate the receiver’s differential code bias and vertical ionospheric delays (VIDs) at different ionospheric pierce points. The Kriging estimator selects and combines several VID estimates provided by the local Kalman filters to generate the VID estimate at each ionospheric grid point. For reliability, the proposed method uses receiver fault detectors and satellite fault detectors. Each receiver fault detector compares the VID estimates of the same local area provided by different local Kalman filters. Each satellite fault detector compares the VID estimate of each local area with that projected from the other local areas. Compared with the traditional centralized processing method, the proposed method is advantageous in that it considerably reduces the computational burden of each single Kalman filter and enables flexible fault detection, isolation, and reconfiguration capability. To evaluate the performance of the proposed method, several experiments with field collected measurements were performed.
A New Indoor Positioning System Architecture Using GPS Signals.
Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue
2015-04-29
The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.
Research in Application of Geodetic GPS Receivers in Time Synchronization
NASA Astrophysics Data System (ADS)
Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.
2018-04-01
In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least 2 common-view satellites for each tracking period when the elevation angle is 30°. Data processing used precise GPS satellite ephemeris, double-frequency P-code combination observations without ionosphere effects and the correction of the Black troposphere Delay Model. the weighted average of all common-viewed GPS satellites in the same tracking period is taken by weighting the root-mean-square error of each satellite, finally a time comparison data between two stations is obtained, and then the time synchronization result between the two stations (PTB and USNO) is obtained. It can be seen from the analysis of time synchronization result that the root mean square error of REFSV (the difference between the local frequency standard at the mid-point of the actual tracking length and the tracked satellite time in unit of 0.1 ns) shows a linear change within one day, However the jump occurs when jumping over the day which is mainly caused by satellites position being changed due to the interpolation of two-day precise satellite ephemeris across the day. the overall trend of time synchronization result is declining and tends to be stable within a week-long time. We compared the time synchronization results (without considering the hardware delay correction) with those published by the International Bureau of Weights and Measures (BIPM), and the comparing result from a week earlier shows that the trend is same but there is a systematic bias which was mainly caused by hardware delays of geodetic GPS receiver. Regardless of the hardware delay, the comparing result is about between 102 ns and 106 ns. the vast majority of the difference within 2 ns but the difference of individual moment does not exceed 4ns when taking into account the systemic bias which mainly caused by hardware delay. Therefore, it is feasible to use the geodetic GPS receiver to achieve the time synchronization result in nanosecond order between two stations which separated by thousands kilometers, and multi-channel geodetic GPS receivers have obvious advantages over single-channel geodetic GPS receivers in the number of common-viewing satellites. In order to obtain higher precision (e.g sub-nanosecond order) time synchronization results, we shall take account into carrier phase observations, hardware delay ,and more error-influencing factors should be considered such as troposphere delay correction, multipath effects, and hardware delays changes due to temperature changes.
Preliminary Results of the GPS Flight Experiment on the High Earth Orbit AMSAT-OSCAR 40 Spacecraft
NASA Technical Reports Server (NTRS)
Moreau, Michael C.; Bauer, Frank H.; Carpenter, J. Russell; Davis, Edward P.; Davis, George W.; Jackson, Larry A.
2002-01-01
The GPS flight experiment on the High Earth Orbit (HEO) AMSAT-OSCAR 40 (AO-40) spacecraft was activated for a period of approximately six weeks between 25 September and 2 November, 2001, and the initial results have exciting implications for using GPS as a low-cost orbit determination sensor for future HEO missions. AO-40, an amateur radio satellite launched November 16, 2000, is currently in a low inclination, 1000 by 58,800 km altitude orbit. Although the GPS receiver was not initialized in any way, it regularly returned GPS observations from points all around the orbit. Raw signal to noise levels as high as 9 AMUs (Trimble Amplitude Measurement Units) or approximately 48 dB-Hz have been recorded at apogee, when the spacecraft was close to 60,000 km in altitude. On several occasions when the receiver was below the GPS constellation (below 20,000 krn altitude), observations were reported for GPS satellites tracked through side lobe transmissions. Although the receiver has not returned any point solutions, there has been at least one occasion when four satellites were tracked simultaneously, and this short arc of data was used to compute point solutions after the fact. These results are encouraging, especially considering the spacecraft is currently in a spin-stabilized attitude mode that narrows the effective field of view of the receiving antennas and adversely affects GPS tracking. Already AO-40 has demonstrated the feasibility of recording GPS observations in HEO using an unaided receiver. Furthermore, it is providing important information about the characteristics of GPS signals received by a spacecraft in a HEO, which has long been of interest to many in the GPS community. Based on the data returned so far, the tracking performance is expected to improve when the spacecraft is transitioned to a three axis stabilized, nadir pointing attitude in Summer, 2002.
GPS Receivers Use-Case Information : GPS Adjacent Band Compatibility Assessment Workshop
DOT National Transportation Integrated Search
2014-09-18
Topics 1. Background. 2. Use Case Template. 3. Description of Submitted UseCases from DOT Extended Pos/Nav Working Group. 4. Utilization of UseCase Information. 5. Request of Information for Additional UseCases from GPS Receiver Manufacturer...
GPS meteorology - Remote sensing of atmospheric water vapor using the Global Positioning System
NASA Technical Reports Server (NTRS)
Bevis, Michael; Businger, Steven; Herring, Thomas A.; Rocken, Christian; Anthes, Richard A.; Ware, Randolph H.
1992-01-01
We present a new approach to remote sensing of water vapor based on the Global Positioning System (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, and government and military agencies, in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitate water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change.
Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks
Nadarajah, Nandakumaran; Wang, Kan; Choudhury, Mazher
2018-01-01
Precise point positioning (PPP) and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic), can benefit enormously from the integration of multiple global navigation satellite systems (GNSS). In such a multi-GNSS landscape, the positioning convergence time is expected to be reduced considerably as compared to the one obtained by a single-GNSS setup. It is therefore the goal of the present contribution to provide numerical insights into the role taken by the multi-GNSS integration in delivering fast and high-precision positioning solutions (sub-decimeter and centimeter levels) using PPP-RTK. To that end, we employ the Curtin PPP-RTK platform and process data-sets of GPS, BeiDou Navigation Satellite System (BDS) and Galileo in stand-alone and combined forms. The data-sets are collected by various receiver types, ranging from high-end multi-frequency geodetic receivers to low-cost single-frequency mass-market receivers. The corresponding stations form a large-scale (Australia-wide) network as well as a small-scale network with inter-station distances less than 30 km. In case of the Australia-wide GPS-only ambiguity-float setup, 90% of the horizontal positioning errors (kinematic mode) are shown to become less than five centimeters after 103 min. The stated required time is reduced to 66 min for the corresponding GPS + BDS + Galieo setup. The time is further reduced to 15 min by applying single-receiver ambiguity resolution. The outcomes are supported by the positioning results of the small-scale network. PMID:29614040
Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
Nadarajah, Nandakumaran; Khodabandeh, Amir; Wang, Kan; Choudhury, Mazher; Teunissen, Peter J G
2018-04-03
Precise point positioning (PPP) and its integer ambiguity resolution-enabled variant, PPP-RTK (real-time kinematic), can benefit enormously from the integration of multiple global navigation satellite systems (GNSS). In such a multi-GNSS landscape, the positioning convergence time is expected to be reduced considerably as compared to the one obtained by a single-GNSS setup. It is therefore the goal of the present contribution to provide numerical insights into the role taken by the multi-GNSS integration in delivering fast and high-precision positioning solutions (sub-decimeter and centimeter levels) using PPP-RTK. To that end, we employ the Curtin PPP-RTK platform and process data-sets of GPS, BeiDou Navigation Satellite System (BDS) and Galileo in stand-alone and combined forms. The data-sets are collected by various receiver types, ranging from high-end multi-frequency geodetic receivers to low-cost single-frequency mass-market receivers. The corresponding stations form a large-scale (Australia-wide) network as well as a small-scale network with inter-station distances less than 30 km. In case of the Australia-wide GPS-only ambiguity-float setup, 90% of the horizontal positioning errors (kinematic mode) are shown to become less than five centimeters after 103 min. The stated required time is reduced to 66 min for the corresponding GPS + BDS + Galieo setup. The time is further reduced to 15 min by applying single-receiver ambiguity resolution. The outcomes are supported by the positioning results of the small-scale network.
Analyzing JAVAD TR-G2 GPS Receiver's Sensitivities to SLS Trajectory
NASA Technical Reports Server (NTRS)
Schuler, Tristan
2017-01-01
Automated guidance and navigation systems are an integral part to successful space missions. Previous researchers created Python tools to receive and parse data from a JAVAD TR-G2 space-capable GPS receiver. I improved the tool by customizing the output for plotting and comparing several simulations. I analyzed position errors, data loss, and signal loss by comparing simulated receiver data from an IFEN GPS simulator to ‘truth data’ from a proposed trajectory. By adjusting the trajectory simulation’s gain, attitude, and start time, NASA can assess the best time to launch the SLS, where to position the antennas on the Block 1-B, and which filter to use. Some additional testing has begun with the Novatel SpaceQuestGPS receiver as well as a GNSS SDR receiver.
The Stability of GPS Carrier-Phase Receivers
2010-11-01
Frequency Transfer ( TWSTFT ) method [2]. For both CP and TWSTFT , accuracy in time transfer is achieved through special calibration efforts that retain...View (CV) receivers and TWSTFT equipment. Many of these geodetic receivers operate continuously within the International GNSS Service (IGS), and...with TWSTFT , GPS CV, and GPS P3. If ionosphere-free measurements are used in combination with nominally compensated tropospheric corrections, a
Navigator GPS Receiver for Fast Acquisition and Weak Signal Space Applications
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Moreau, Michael; Boegner, Gregory J.; Sirotzky, Steve
2004-01-01
NASA Goddard Space Flight Center (GSFC) is developing a new space-borne GPS receiver that can operate effectively in the full range of Earth orbiting missions from Low Earth Orbit (LEO) to geostationary and beyond. Navigator is designed to be a fully space flight qualified GPS receiver optimized for fast signal acquisition and weak signal tracking. The fast acquisition capabilities provide exceptional time to first fix performance (TIFF) with no a priori receiver state or GPS almanac information, even in the presence of high Doppler shifts present in LEO (or near perigee in highly eccentric orbits). The fast acquisition capability also makes it feasible to implement extended correlation intervals and therefore significantly reduce Navigator s acquisition threshold. This greatly improves GPS observability when the receiver is above the GPS constellation (and satellites must be tracked from the opposite side of the Earth) by providing at least 10 dB of increased acquisition sensitivity. Fast acquisition and weak signal tracking algorithms have been implemented and validated on a hardware development board. A fully functional version of the receiver, employing most of the flight parts, with integrated navigation software is expected by mid 2005. An ultimate goal of this project is to license the Navigator design to an industry partner who will then market the receiver as a commercial product.
DOT National Transportation Integrated Search
1995-04-01
This document is a checklist designed to assist Federal Aviation Administration(FAA) certification personnel and global : positioning system (GPS) receiver manufacturers in the evaluation of the pilot-system interface characteristlcs of GPS : recieve...
A Simple Method to Improve Autonomous GPS Positioning for Tractors
Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim
2011-01-01
Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory. PMID:22163917
Radiation-hardened fast acquisition/weak signal tracking system and method
NASA Technical Reports Server (NTRS)
Winternitz, Luke (Inventor); Boegner, Gregory J. (Inventor); Sirotzky, Steve (Inventor)
2009-01-01
A global positioning system (GPS) receiver and method of acquiring and tracking GPS signals comprises an antenna adapted to receive GPS signals; an analog radio frequency device operatively connected to the antenna and adapted to convert the GPS signals from an analog format to a digital format; a plurality of GPS signal tracking correlators operatively connected to the analog RF device; a GPS signal acquisition component operatively connected to the analog RF device and the plurality of GPS signal tracking correlators, wherein the GPS signal acquisition component is adapted to calculate a maximum vector on a databit correlation grid; and a microprocessor operatively connected to the plurality of GPS signal tracking correlators and the GPS signal acquisition component, wherein the microprocessor is adapted to compare the maximum vector with a predetermined correlation threshold to allow the GPS signal to be fully acquired and tracked.
2002-12-01
radio and batteries. The procedures outlined in this CHETN will concentrate on the Magellan GPS ProMARK X-CP receiver as it was used to collect...The Magellan GPS ProMARK X-CP is a small robust light receiver that can log 9 hr of both pseudorange and carrier phase satellite data for post...post- processing software, pseudorange GPS data recorded by the ProMARK X-CP can be post-processed differential to achieve 1-3 m (3.3-9.8 ft) horizontal
GPS-based system for satellite tracking and geodesy
NASA Technical Reports Server (NTRS)
Bertiger, Willy I.; Thornton, Catherine L.
1989-01-01
High-performance receivers and data processing systems developed for GPS are reviewed. The GPS Inferred Positioning System (GIPSY) and the Orbiter Analysis and Simulation Software (OASIS) are described. The OASIS software is used to assess GPS system performance using GIPSY for data processing. Consideration is given to parameter estimation for multiday arcs, orbit repeatability, orbit prediction, daily baseline repeatability, agreement with VLBI, and ambiguity resolution. Also, the dual-frequency Rogue receiver, which can track up to eight GPS satellites simultaneously, is discussed.
Orbiter global positioning system design and Ku-band problem investigations, exhibit B, revision 1
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1983-01-01
The hardware, software, and interface between them was investigated for a low dynamics, nonhostile environment, low cost GPS receiver (GPS Z set). The set is basically a three dimensional geodetic and way point navigator with GPS time, ground speed, and ground track as possible outputs in addition to the usual GPS receiver set outputs. Each functional module comprising the GPS set is described, enumerating its functional inputs and outputs, leading to the interface between hardware and software of the set.
Assimilative modeling of low latitude ionosphere
NASA Technical Reports Server (NTRS)
Pi, Xiaoqing; Wang, Chunining; Hajj, George A.; Rosen, I. Gary; Wilson, Brian D.; Mannucci, Anthony J.
2004-01-01
In this paper we present an observation system simulation experiment for modeling low-latitude ionosphere using a 3-dimensional (3-D) global assimilative ionospheric model (GAIM). The experiment is conducted to test the effectiveness of GAIM with a 4-D variational approach (4DVAR) in estimation of the ExB drift and thermospheric wind in the magnetic meridional planes simultaneously for all longitude or local time sectors. The operational Global Positioning System (GPS) satellites and the ground-based global GPS receiver network of the International GPS Service are used in the experiment as the data assimilation source. 'The optimization of the ionospheric state (electron density) modeling is performed through a nonlinear least-squares minimization process that adjusts the dynamical forces to reduce the difference between the modeled and observed slant total electron content in the entire modeled region. The present experiment for multiple force estimations reinforces our previous assessment made through single driver estimations conducted for the ExB drift only.
Genetic predisposition scores associate with muscular strength, size, and trainability.
Thomaes, Tom; Thomis, Martine; Onkelinx, Steven; Goetschalckx, Kaatje; Fagard, Robert; Lambrechts, Diether; Vanhees, Luc
2013-08-01
The number of studies trying to identify genetic sequence variation related to muscular phenotypes has increased enormously. The aim of this study was to identify the role of a genetic predisposition score (GPS) based on earlier identified gene variants for different muscular endophenotypes to explain the individual differences in muscular fitness characteristics and the response to training in patients with coronary artery disease. Two hundred and sixty coronary artery disease patients followed a standard ambulatory, 3-month supervised training program for cardiac patients. Maximal knee extension strength (KES) and rectus femoris diameter were measured at baseline and after rehabilitation. Sixty-five single nucleotide polymorphisms (SNP) in 30 genes were selected based on genotype-phenotype association literature. Backward regression analysis revealed subsets of SNP associated with the different phenotypes. GPS were constructed for all sets of SNP by adding up the strength-increasing alleles. General linear models and multiple stepwise regression analysis were used to test the explained variance of the GPS in baseline and strength responses. Receiver operating characteristic curve analyses were performed to discriminate between high- and low-responder status. GPS were significantly associated with the rectus femoris diameter (P < 0.01) and its response (P < 0.0001), the isometric KES (P < 0.05) and its response (P < 0.01), the isokinetic KES at 60° · s (P < 0.05) and 180° · s (P < 0.001) and their responses to training (P < 0.0001), and the isokinetic KES endurance (P < 0.001) and its change after training (P < 0.0001). The GPS was shown as an independent determinant in baseline and response phenotypes with partial explained variance up to 23%. Receiver operating characteristic analysis showed a significant discriminating accuracy of the models, including the GPS for responses to training, with areas under the curve ranging from 0.62 to 0.85. GPS for muscular phenotypes showed to be associated with baseline KES, muscle diameter, and the response to training in cardiac rehabilitation patients.
A Real-Time Capable Software-Defined Receiver Using GPU for Adaptive Anti-Jam GPS Sensors
Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S.; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun
2011-01-01
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities. PMID:22164116
A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.
Seo, Jiwon; Chen, Yu-Hsuan; De Lorenzo, David S; Lo, Sherman; Enge, Per; Akos, Dennis; Lee, Jiyun
2011-01-01
Due to their weak received signal power, Global Positioning System (GPS) signals are vulnerable to radio frequency interference. Adaptive beam and null steering of the gain pattern of a GPS antenna array can significantly increase the resistance of GPS sensors to signal interference and jamming. Since adaptive array processing requires intensive computational power, beamsteering GPS receivers were usually implemented using hardware such as field-programmable gate arrays (FPGAs). However, a software implementation using general-purpose processors is much more desirable because of its flexibility and cost effectiveness. This paper presents a GPS software-defined radio (SDR) with adaptive beamsteering capability for anti-jam applications. The GPS SDR design is based on an optimized desktop parallel processing architecture using a quad-core Central Processing Unit (CPU) coupled with a new generation Graphics Processing Unit (GPU) having massively parallel processors. This GPS SDR demonstrates sufficient computational capability to support a four-element antenna array and future GPS L5 signal processing in real time. After providing the details of our design and optimization schemes for future GPU-based GPS SDR developments, the jamming resistance of our GPS SDR under synthetic wideband jamming is presented. Since the GPS SDR uses commercial-off-the-shelf hardware and processors, it can be easily adopted in civil GPS applications requiring anti-jam capabilities.
Predictions of GPS X-Set Performance during the Places Experiment
1979-07-01
previously existing GPS X-set receiver simulation was modified to include the received signal spectrum and the receiver code correlation operation... CORRELATION OPERATION The X-set receiver simulation documented in Reference 3-1 is a direct sampled -data digital implementation of the GPS X-set...ul(t) -sin w2t From Carrier and Code Loops (wit +0 1 (t)) Figure 3-6. Simplified block diagram of code correlator operation and I-Q sampling . 6 I
Investigation of a L1-optimized choke ring ground plane for a low-cost GPS receiver-system
NASA Astrophysics Data System (ADS)
Zhang, Li; Schwieger, Volker
2018-01-01
Besides the geodetic dual-frequency GNSS receivers-systems (receiver and antenna), there are also low-cost single-frequency GPS receiver-systems. The multipath effect is a limiting factor of accuracy for both geodetic dual-frequency and low-cost single-frequency GPS receivers. And the multipath effect is for the short baselines dominating error (typical for the monitoring in Engineering Geodesy). So accuracy and reliability of GPS measurement for monitoring can be improved by reducing the multipath signal. In this paper, the self-constructed L1-optimized choke ring ground plane (CR-GP) is applied to reduce the multipath signal. Its design will be described and its performance will be investigated. The results show that the introduced low-cost single-frequency GPS receiver-system, which contains the Ublox LEA-6T single-frequency GPS receiver and Trimble Bullet III antenna with a self-constructed L1-optimized CR-GP, can reach standard deviations of 3 mm in east, 5 mm in north and 9 mm in height in the test field which has many reflectors. This accuracy is comparable with the geodetic dual-frequency GNSS receiver-system. The improvement of the standard deviation of the measurement using the CR-GP is about 50 % and 35 % compared to the used antenna without shielding and with flat ground plane respectively.
A review of GPS-based tracking techniques for TDRS orbit determination
NASA Technical Reports Server (NTRS)
Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S.-C.
1993-01-01
This article evaluates two fundamentally different approaches to the Tracking and Data Relay Satellite (TDRS) orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRS. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRS's broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and Tracking and Data Relay Satellite System satellites by ground receivers. Both strategies can be designed to meet future operational requirements for TDRS-II orbit determination.
Impact of Swarm GPS receiver updates on POD performance
NASA Astrophysics Data System (ADS)
van den IJssel, Jose; Forte, Biagio; Montenbruck, Oliver
2016-05-01
The Swarm satellites are equipped with state-of-the-art Global Positioning System (GPS) receivers, which are used for the precise geolocation of the magnetic and electric field instruments, as well as for the determination of the Earth's gravity field, the total electron content and low-frequency thermospheric neutral densities. The onboard GPS receivers deliver high-quality data with an almost continuous data rate. However, the receivers show a slightly degraded performance when flying over the geomagnetic poles and the geomagnetic equator, due to ionospheric scintillation. Furthermore, with only eight channels available for dual-frequency tracking, the amount of collected GPS tracking data is relatively low compared with various other missions. Therefore, several modifications have been implemented to the Swarm GPS receivers. To optimise the amount of collected GPS data, the GPS antenna elevation mask has slowly been reduced from 10° to 2°. To improve the robustness against ionospheric scintillation, the bandwidths of the GPS receiver tracking loops have been widened. Because these modifications were first implemented on Swarm-C, their impact can be assessed by a comparison with the close flying Swarm-A satellite. This shows that both modifications have a positive impact on the GPS receiver performance. The reduced elevation mask increases the amount of GPS tracking data by more than 3 %, while the updated tracking loops lead to around 1.3 % more observations and a significant reduction in tracking losses due to severe equatorial scintillation. The additional observations at low elevation angles increase the average noise of the carrier phase observations, but nonetheless slightly improve the resulting reduced-dynamic and kinematic orbit accuracy as shown by independent satellite laser ranging (SLR) validation. The more robust tracking loops significantly reduce the large carrier phase observation errors at the geomagnetic poles and along the geomagnetic equator and do not degrade the observations at midlatitudes. SLR validation indicates that the updated tracking loops also improve the reduced-dynamic and kinematic orbit accuracy. It is expected that the Swarm gravity field recovery will benefit from the improved kinematic orbit quality and potentially also from the expected improvement of the kinematic baseline determination and the anticipated reduction in the systematic gravity field errors along the geomagnetic equator. Finally, other satellites that carry GPS receivers that encounter similar disturbances might also benefit from this analysis.
Comparison of GPS and GLONASS common-view time transfers
NASA Technical Reports Server (NTRS)
Lewandowski, W.; Petit, G.; Thomas, C.; Cherenkov, G. T.; Koshelyaevsky, N. B.; Pushkin, S. B.
1993-01-01
It was already shown than even with a simple daily averaging of GLONASS data at each site, continental GLONASS time transfer can be achieved at a level of several tens of nanoseconds. A further step is to carry out observations of GLONASS satellites by the common-view method. A comparison of GPS and GLONASS common-view time transfers between Russia and Western Europe are reported. At each site, a GPS receiver and a GLONASS receiver are connected to the same atomic clock. Both GPS receivers are of NBS type and the GLONASS receivers are of type A-724. As GPS common-view time transfer between Sevres and Mendeleevo is accomplished at a level of a few nanoseconds in precision, it gives an excellent reference with which to evaluate the performance of GLONASS common-view time transfer.
Single-Receiver GPS Phase Bias Resolution
NASA Technical Reports Server (NTRS)
Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.
2010-01-01
Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp
Jan, Shau-Shiun; Kao, Yu-Chun
2013-05-17
The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.
Jan, Shau-Shiun; Kao, Yu-Chun
2013-01-01
The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142
Nguyen, Phong Ha; Arsalan, Muhammad; Koo, Ja Hyung; Naqvi, Rizwan Ali; Truong, Noi Quang; Park, Kang Ryoung
2018-05-24
Autonomous landing of an unmanned aerial vehicle or a drone is a challenging problem for the robotics research community. Previous researchers have attempted to solve this problem by combining multiple sensors such as global positioning system (GPS) receivers, inertial measurement unit, and multiple camera systems. Although these approaches successfully estimate an unmanned aerial vehicle location during landing, many calibration processes are required to achieve good detection accuracy. In addition, cases where drones operate in heterogeneous areas with no GPS signal should be considered. To overcome these problems, we determined how to safely land a drone in a GPS-denied environment using our remote-marker-based tracking algorithm based on a single visible-light-camera sensor. Instead of using hand-crafted features, our algorithm includes a convolutional neural network named lightDenseYOLO to extract trained features from an input image to predict a marker's location by visible light camera sensor on drone. Experimental results show that our method significantly outperforms state-of-the-art object trackers both using and not using convolutional neural network in terms of both accuracy and processing time.
Spaceborne GPS remote sensing for atmospheric research
NASA Astrophysics Data System (ADS)
Feng, Dasheng; Herman, Benjamin M.; Exner, M. L.; Schreiner, B.; Anthes, Richard A.; Ware, Randolph H.
1995-11-01
The global positioning system (GPS) is based on a constellation of 24 transmitter satellites orbiting the earth at approximately 21,000 km altitude. The original goal of the GPS was to provide global and all-weather precision positioning and navigation for the military. Since this original concept was developed, several civilian applications have been conceived that are making use of these satellites. GPS/MET is one such application. GPS/MET is sponsored by NSF, FAA, NOAA, and NASA. The goal of GPS/MET is to demonstrate the feasibility of recovering atmospheric temperature profiles from occulting radio signals from one of the 24 GPS transmitters. On April 3, 1995, a small radio receiver was launched into a 750 km low- earth orbit and 70 degree inclination. As this receiver orbits, occultations occur when the radio link between any one of the 24 GPS transmitters and the low-earth orbiting (LEO) receiver progressively descends or ascends through the earth's atmosphere. With the current constellation of GPS transmitters, approximately 500 such occultations occur in each 24-hour period per LEO receiver. Several hundred occultations have been analyzed to date, where some type of confirmational data has been available (i.e., radiosonde, satellite, numerical analysis gridded data). In this paper, we present a brief outline of the method followed by a few typical temperature soundings that have been obtained.
Evaluation of GPS Coverage for the X-33 Michael-6 Trajectory
NASA Technical Reports Server (NTRS)
Lundberg, John B.
1998-01-01
The onboard navigational system for the X-33 test flights will be based on the use of measurements collected from the Embedded Global Positioning System (GPS)/INS system. Some of the factors which will affect the quality of the GPS contribution to the navigational solution will be the number of pseudorange measurements collected at any instant in time, the distribution of the GPS satellites within the field of view, and the inherent noise level of the GPS receiver. The distribution of GPS satellites within the field of view of the receiver's antenna will depend on the receiver's position, the time of day, pointing direction of the antenna, and the effective cone angle of the antenna. The number of pseudorange measurements collected will depend upon these factors as well as the time required to lock onto a GPS satellite signal once the GPS satellite comes into the field of view of the antenna and the number of available receiver channels. The objective of this study is to evaluate the GPS coverage resulting from the proposed antenna pointing directions, the proposed antenna cone angles, and the effects due to the time of day for the X-33 Michael-6 trajectory from launch at Edwards AFB, California, to the start of the Terminal Area Energy Management (TAEM) phase on approach to Michael AAF, Utah.
NASA Technical Reports Server (NTRS)
Oaks, J.; Frank, A.; Falvey, S.; Lister, M.; Buisson, J.; Wardrip, C.; Warren, H.
1982-01-01
Time transfer equipment and techniques used with the Navigation Technology Satellites were modified and extended for use with the Global Positioning System (GPS) satellites. A prototype receiver was built and field tested. The receiver uses the GPS L1 link at 1575 MHz with C/A code only to resolve a measured range to the satellite. A theoretical range is computed from the satellite ephemeris transmitted in the data message and the user's coordinates. Results of user offset from GPS time are obtained by differencing the measured and theoretical ranges and applying calibration corrections. Results of the first field test evaluation of the receiver are presented.
NASA Technical Reports Server (NTRS)
Bertiger, W.; Bar-Sever, Y.; Desai, S.; Duncan, C.; Haines, B.; Kuang, D.; Lough, M.; Reichert, A.; Romans, L.; Srinivasan, J.;
2000-01-01
The BlackJack family of GPS receivers has been developed at JPL to satisfy NASA's requirements for high-accuracy, dual-frequency, Y-codeless GPS receivers for NASA's Earth science missions. In this paper we will present the challenges that were overcome to meet this accuracy requirement. We will discuss the various reduced dynamic strategies, Space Shuttle dynamic models, and our tests for accuracy that included a military Y-code dual-frequency receiver (MAGR).
GPS Antenna Data Needed : GPS Adjacent Band Compatibility Workshop Volpe Center, Cambridge MA
DOT National Transportation Integrated Search
2014-09-18
Topics. 1. Technical Objective: Receiver Antenna Mask and Electronics Data. 2. Definition of Receiver Antenna Mask. 3. Use of Receiver Antenna Mask. 4. Approaches to Generate the Antenna Mask. 5. Request for Receiver Antenna Data. 6. Next Steps.
Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-01-01
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio (C/N0) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C/N0 can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis. PMID:29207546
Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-12-04
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.
Robust GPS autonomous signal quality monitoring
NASA Astrophysics Data System (ADS)
Ndili, Awele Nnaemeka
The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and multipath. Results are presented which verify the effectiveness of these proposed methods. The benefits of pseudolites in reducing service outages due to interference are demonstrated. Pseudolites also enhance the geometry of the GPS constellation, improving overall system accuracy. Designs for pseudolites signals, to reduce the near-far problem associated with pseudolite use, are also presented.
Munro, Aime; Codde, Jim; Semmens, James; Leung, Yee; Spilsbury, Katrina; Williams, Vincent; Steel, Nerida; Cohen, Paul; Pavicic, Heidi; Westoby, Vicki; O'Leary, Peter
2015-01-01
Patients have an increased risk of persistent/recurrent cervical disease if they received treatment for a high-grade squamous intraepithelial lesion (HSIL). Consequently, understanding whether co-testing (human papillomavirus [HPV] DNA testing and cervical cytology) is fully utilised by general practitioners (GPs) is paramount. After consultation with key stakeholders, an anonymous, self-completion questionnaire was developed and disseminated to GPs who had provided cervical cytology. Responses were received from 745 GPs (30.9% response rate). A significant number (34.3%) of GPs were unaware of the use of co-testing (HPV DNA testing and cervical cytology) for the management of patients after HSIL treatment. Additionally, the majority of GPs reported they did not 'always' receive a clear follow-up plan for patients after treatment of an HSIL. GPs require further support and education to ensure successful adoption of co-testing (HPV DNA testing and cervical cytology), specifically, for patients treated for an HSIL.
Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver
NASA Technical Reports Server (NTRS)
Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry
1999-01-01
This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.
Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver
NASA Technical Reports Server (NTRS)
Simpson, James; Campbell, Chip; Carpenter, Russell; Davis, Ed; Kizhner, Semion; Lightsey, E. Glenn; Davis, George; Jackson, Larry
1999-01-01
This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X-38 Crew Return Vehicle (CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and Modified in software by the NASA Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design and tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges of that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.
Testing of the International Space Station and X-38 Crew Return Vehicle GPS Receiver
NASA Technical Reports Server (NTRS)
Simpson, James; Lightsey, Glenn; Campbell, Chip; Carpenter, Russell; Davis, George; Jackson, Larry; Davis, Ed; Kizhner, Semion
1999-01-01
This paper discusses the process and results of the performance testing of the GPS receiver planned for use on the International Space Station (ISS) and the X- 38CrewReturnVehicle(CRV). The receiver is a Force-19 unit manufactured by Trimble Navigation and modified in software by NASA:s Goddard Space Flight Center (GSFC) to perform navigation and attitude determination in space. The receiver is the primary source of navigation and attitude information for ISS and CRV. Engineers at GSFC have developed and tested the new receiver with a Global Simulation Systems Ltd (GSS) GPS Signal Generator (GPSSG). This paper documents the unique aspects of ground testing a GPS receiver that is designed for use in space. A discussion of the design of tests using the GPSSG, documentation, data capture, data analysis, and lessons learned will precede an overview of the performance of the new receiver. A description of the challenges that were overcome during this testing exercise will be presented. Results from testing show that the receiver will be within or near the specifications for ISS attitude and navigation performance. The process for verifying other requirements such as Time to First Fix, Time to First Attitude, selection/deselection of a specific GPS satellite vehicles (SV), minimum signal strength while still obtaining attitude and navigation, navigation and attitude output coverage, GPS week rollover, and Y2K requirements are also given in this paper.
Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Davis, Edward; Alonso, R.
1999-01-01
The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Davis, Edward; Alonso, Roberto
1999-01-01
The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
Understanding why GPs see pharmaceutical representatives: a qualitative interview study.
Prosser, Helen; Walley, Tom
2003-01-01
BACKGROUND: Doctors are aware of the commercial bias in pharmaceutical representative information; nevertheless, such information is known to change doctors' prescribing, and augment irrational prescribing and prescribing costs. AIM: To explore GPs, reasons for receiving visits from pharmaceutical representatives. DESIGN OF STUDY: Qualitative study with semi-structured interviews. SETTING: One hundred and seven general practitioners (GPs) in practices from two health authorities in the North West of England. RESULTS: The main outcome measures of the study were: reasons for receiving/not receiving representative visits; advantages/disadvantages in receiving visits; and quality of representative-supplied information. Most GPs routinely see pharmaceutical representatives, because they bring new drug information speedily; they are convenient and accessible; and can be consulted with a saving of time and effort. Many GPs asserted they had the skills to critically appraise the evidence. Furthermore, the credibility and social characteristics of the representative were instrumental in shaping GPs' perceptions of representatives as legitimate information providers. GPs also received visits from representatives for reasons other than information acquisition. These reasons are congruent with personal selling techniques used in marketing communications. CONCLUSIONS: The study draws attention to the social and cultural contexts of GP-representative encounters and the way in which the acquisition of pharmacological information within the mercantile context of representative visits is legitimated. This highlights the need for doctors to critically appraise information supplied by representatives in relation to other information sources. PMID:12879831
Applying clinical guidelines in general practice: a qualitative study of potential complications.
Austad, Bjarne; Hetlevik, Irene; Mjølstad, Bente Prytz; Helvik, Anne-Sofie
2016-07-22
Clinical guidelines for single diseases often pose problems in general practice work with multimorbid patients. However, little research focuses on how general practice is affected by the demand to follow multiple guidelines. This study explored Norwegian general practitioners' (GPs') experiences with and reflections upon the consequences for general practice of applying multiple guidelines. Qualitative focus group study carried out in Mid-Norway. The study involved a purposeful sample of 25 Norwegian GPs from four pre-existing groups. Interviews were audio-recorded, transcribed and analyzed using systematic text condensation, i.e. applying a phenomenological approach. The GPs' responses clustered around two major topics: 1) Complications for the GPs of applying multiple guidelines; and, 2) Complications for their patients when GPs apply multiple guidelines. For the GPs, applying multiple guidelines created a highly problematic situation as they felt obliged to implement guidelines that were not suited to their patients: too often, the map and the terrain did not match. They also experienced greater insecurity regarding their own practice which, they admitted, resulted in an increased tendency to practice 'defensive medicine'. For their patients, the GPs experienced that applying multiple guidelines increased the risk of polypharmacy, excessive non-pharmacological recommendations, a tendency toward medicalization and, for some, a reduction in quality of life. The GPs experienced negative consequences when obliged to apply a variety of single disease guidelines to multimorbid patients, including increased risk of polypharmacy and overtreatment. We believe patient-centered care and the GPs' courage to non-comply when necessary may aid in reducing these risks. Health care authorities and guideline developers need to be aware of the potential negative effects of applying a single disease focus in general practice, where multimorbidity is highly prevalent.
Comparison of GPS receiver DCB estimation methods using a GPS network
NASA Astrophysics Data System (ADS)
Choi, Byung-Kyu; Park, Jong-Uk; Min Roh, Kyoung; Lee, Sang-Jeong
2013-07-01
Two approaches for receiver differential code biases (DCB) estimation using the GPS data obtained from the Korean GPS network (KGN) in South Korea are suggested: the relative and single (absolute) methods. The relative method uses a GPS network, while the single method determines DCBs from a single station only. Their performance was assessed by comparing the receiver DCB values obtained from the relative method with those estimated by the single method. The daily averaged receiver DCBs obtained from the two different approaches showed good agreement for 7 days. The root mean square (RMS) value of those differences is 0.83 nanoseconds (ns). The standard deviation of the receiver DCBs estimated by the relative method was smaller than that of the single method. From these results, it is clear that the relative method can obtain more stable receiver DCBs compared with the single method over a short-term period. Additionally, the comparison between the receiver DCBs obtained by the Korea Astronomy and Space Science Institute (KASI) and those of the IGS Global Ionosphere Maps (GIM) showed a good agreement at 0.3 ns. As the accuracy of DCB values significantly affects the accuracy of ionospheric total electron content (TEC), more studies are needed to ensure the reliability and stability of the estimated receiver DCBs.
GPS/INS Sensor Fusion Using GPS Wind up Model
NASA Technical Reports Server (NTRS)
Williamson, Walton R. (Inventor)
2013-01-01
A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.
Method and apparatus for relative navigation using reflected GPS signals
NASA Technical Reports Server (NTRS)
Cohen, Ian R. (Inventor); Boegner, Jr., Gregory J. (Inventor)
2010-01-01
A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target.
2009-11-01
metrology, different techniques are used for time and frequency transfer, basically TWSTFT (Two-Way Satellite Time and Frequency Transfer), GPS CV (Common...traditional GPS/GLONASS CV/AV receivers and TWSTFT equipment. Time and frequency transfer using GPS code and carrier-phase is an important...or mixing GPS geodetic results with other independent techniques, such as the TWSTFT . 41 st Annual Precise Time and Time Interval (PTTI
Kimura, J; Kunisaki, C; Makino, H; Oshima, T; Ota, M; Oba, M; Takagawa, R; Kosaka, T; Ono, H A; Akiyama, H; Endo, I
2016-11-01
High Glasgow Prognostic scores (GPSs) have been associated with poor outcomes in various tumors, but the values of GPS and modified GPS (mGPS) in patients with advanced esophageal cancer receiving chemoradiotherapy (CRT) has not yet been reported. We have evaluated these with respect to predicting responsiveness to CRT and long-term survival. Between January 2002 and December 2011, tumor responses in 142 esophageal cancer patients (131 men and 11 women) with stage III (A, B and C) and IV receiving CRT were assessed. We assessed the value of the GPS as a predictor of a response to definitive CRT and also as a prognostic indicator in patients with esophageal cancer receiving CRT. We found that independent predictors of CRT responsiveness were Eastern Cooperative Oncology Group (ECOG) performance status, GPS and cTNM stage. Independent prognostic factors were ECOG performance status and GPS for progression-free survival and ECOG performance status, GPS and cTNM stage IV for disease-specific survival. GPS may be a novel predictor of CRT responsiveness and a prognostic indicator for progression-free and disease-specific survival in patients with advanced esophageal cancer. However, a multicenter study as same regime with large number of patients will be needed to confirm these outcomes. © 2015 International Society for Diseases of the Esophagus.
NASA Technical Reports Server (NTRS)
Thomas, Claudine
1994-01-01
The Global Positioning System is an outstanding tool for the dissemination of time. Using mono-channel C/A-code GPS time receivers, the restitution of GPS time through the satellite constellation presents a peak-to-peak discrepancy of several tens of nanoseconds without SA but may be as high as several hundreds of nanoseconds with SA. As a consequence, civil users are more and more interested in implementing hardware and software methods for efficient restitution of GPS time, especially in the framework of the project of a real-time prediction of UTC (UTCp) which could be available in the form of time differences (UTCp - GPS time). Previous work, for improving the real-time restitution of GPS time with SA, to the level obtained without SA, focused on the implementation of a Kalman filter based on past data and updated at each new observation. An alternative solution relies upon the statistical features of the noise brought about by SA; it has already been shown that the SA noise is efficiently reduced by averaging data from numerous satellites observed simultaneously over a sufficiently long time. This method was successfully applied to data from a GPS time receiver, model AOA TTR-4P, connected to the cesium clock kept at the BIPM. This device, a multi-channel, dual frequency, P-code GPS time receiver, is one of the first TTR-4P units in operation in a civil laboratory. Preliminary comparative studies of this new equipment with conventional GPS time receivers are described in this paper. The results of an experimental restitution of GPS time, obtained in June 1993, are also detailed: 3 to 6 satellites were observed simultaneously with a sample interval of 15 s, an efficient smoothing of SA noise was realized by averaging data on all observed satellites over more than 1 hour. When the GPS system is complete in 1994, 8 satellites will be observable continuously from anywhere in the world and the same level of uncertainty will be obtained using a shorter averaging time.
Analysis of Spaceborne GPS Systems
NASA Technical Reports Server (NTRS)
Cosmo, Mario L.; Davis, James L.; Elosegui, Pedro; Hill, Michael; ScireScapuzzo, Francesca
1998-01-01
A reasonable amount of literature can be found on the general topic of GPS receiving antennas, but very little has been published on spaceborne GPS receiving antennas. This very new topic seems to be so far more of interest for the industrial world than for the academic community. For satellite applications, microstrip antennas are usually preferred over other types of antennas mainly because of their non-electrical characteristics, such as small size, relatively lightweight, shape, possibility of integration with microwave integrated circuits, and relatively low costs. Careful design of patch antennas could meet all the requirements (electrical and non-electrical) of GPS receiving antenna to be mounted on a tethered satellite.
GENESIS: GPS Environmental and Earth Science Information System
NASA Technical Reports Server (NTRS)
Hajj, George
1999-01-01
This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.
Test results of the STI GPS time transfer receiver
NASA Technical Reports Server (NTRS)
Hall, D. L.; Handlan, J.; Wheeler, P.
1983-01-01
Global time transfer, or synchronization, between a user clock and USNO UTC time can be performed using the Global Positioning System (GPS), and commercially available time transfer receivers. This paper presents the test results of time transfer using the GPS system and a Stanford Telecommunications, Inc. (STI) Time Transfer System (TTS) Model 502. Tests at the GPS Master Control Site (MCS) in Vandenburg, California and at the United States Naval Observatory (USNO) in Washington, D.C. are described. An overview of GPS, and the STI TTS 502 is presented. A discussion of the time transfer process and test concepts is included.
Greenville Bridge Reach, Bendway Weirs
2006-09-01
However, these receivers are more expensive and heavier due to the radio and batteries. For this study, two Magellan GPS ProMARK X-CP receivers were...used to collect float data. The Magellan GPS ProMARK X-CP is a small, robust, light receiver that can log 9 hr of both pseudorange and car- rier phase...require a high degree of accu- racy. Using post-processing software, pseudorange GPS data recorded by the ProMARK X-CP can be post-processed
NASA Astrophysics Data System (ADS)
Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie
2017-12-01
An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.
GPS/GLONASS Combined Precise Point Positioning with Receiver Clock Modeling
Wang, Fuhong; Chen, Xinghan; Guo, Fei
2015-01-01
Research has demonstrated that receiver clock modeling can reduce the correlation coefficients among the parameters of receiver clock bias, station height and zenith tropospheric delay. This paper introduces the receiver clock modeling to GPS/GLONASS combined precise point positioning (PPP), aiming to better separate the receiver clock bias and station coordinates and therefore improve positioning accuracy. Firstly, the basic mathematic models including the GPS/GLONASS observation equations, stochastic model, and receiver clock model are briefly introduced. Then datasets from several IGS stations equipped with high-stability atomic clocks are used for kinematic PPP tests. To investigate the performance of PPP, including the positioning accuracy and convergence time, a week of (1–7 January 2014) GPS/GLONASS data retrieved from these IGS stations are processed with different schemes. The results indicate that the positioning accuracy as well as convergence time can benefit from the receiver clock modeling. This is particularly pronounced for the vertical component. Statistic RMSs show that the average improvement of three-dimensional positioning accuracy reaches up to 30%–40%. Sometimes, it even reaches over 60% for specific stations. Compared to the GPS-only PPP, solutions of the GPS/GLONASS combined PPP are much better no matter if the receiver clock offsets are modeled or not, indicating that the positioning accuracy and reliability are significantly improved with the additional GLONASS satellites in the case of insufficient number of GPS satellites or poor geometry conditions. In addition to the receiver clock modeling, the impacts of different inter-system timing bias (ISB) models are investigated. For the case of a sufficient number of satellites with fairly good geometry, the PPP performances are not seriously affected by the ISB model due to the low correlation between the ISB and the other parameters. However, the refinement of ISB model weakens the correlation between coordinates and ISB estimates and finally enhance the PPP performance in the case of poor observation conditions. PMID:26134106
A Novel Sensor for Attitude Determination Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Quinn, David A.; Markley, F. Landis; McCullough, Jon D.
1998-01-01
An entirely new sensor approach for attitude determination using Global Positioning System (GPS) signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a single sensor head to provide maximum GPS space vehicle availability. A number of sensor element configurations are discussed. In addition to the navigation function, the array is used to find which GPS space vehicles are within the field-of-view of each antenna element. Attitude determination is performed by considering the sightline vectors of the found GPS space vehicles together with the fixed boresight vectors of the individual antenna elements. This approach has clear advantages over the standard differential carrier-phase approach. First, errors induced by multipath effects can be significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new sensor does not require individual antennas to be physically separated to form interferometric baselines to determine attitude. Finally, development potential of the new sensor is limited only by antenna and receiver technology development unlike the physical limitations of the current interferometric attitude determination scheme. Simulation results indicate that accuracies of about 1 degree (3 omega) are possible.
A Kalman Filter Implementation for Precision Improvement in Low-Cost GPS Positioning of Tractors
Gomez-Gil, Jaime; Ruiz-Gonzalez, Ruben; Alonso-Garcia, Sergio; Gomez-Gil, Francisco Javier
2013-01-01
Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain. PMID:24217355
Liu, Xiaojun; Tan, Anran; Towne, Samuel D; Hou, Zhaoxun; Mao, Zongfu
2018-03-16
General practitioners (GPs) are highly underutilised in China with many patients going directly to hospitals when seeking routine care. Multiple countries around the world have successfully used GPs in routine care, and as such, China may benefit from the use of GPs. This study examines the status of, and factors associated with, knowledge related to GPs among outpatient populations from China's tertiary hospitals. This is a cross-sectional survey study. The questionnaires were completed by 565 outpatients from four tertiary hospitals in China during 2016. Convenience sampling on different floors and throughout the outpatient building was carried out. We used the logistic regression models to identify GP-related knowledge among different populations. Overall, 50.27% of respondents said they had never heard of GPs. This was also true among females (adjusted OR (AOR)=1.57, 95% CI 1.43 to 2.71), older adults (AOR 46-65 =1.61, 95% CI 1.39 to 2.98; AOR >65 =2.01, 95% CI 1.62 to 3.59), those with lower education level (AOR Bachelor's degree =0.61, 95% CI 0.20 to 0.81; AOR ≥Master's degree =0.49, 95% CI 0.23 to 0.76), rural residents (AOR=1.51, 95% CI 1.35 to 2.82) and those with chronic disease (AOR without chronic disease =0.61, 95% CI 0.22 to 0.71). What is more, less than one-in-ten (9.03%) outpatients were able to accurately describe what a GP was, with less than 30% accurately describing a GP among those receiving GPs' services. Outpatients who could have received less costly health services from GPs in primary medical institutions were more likely to choose costlier specialist physicians in tertiary hospitals, which is likely linked to limited knowledge about GPs. Policy makers should invest in outreach efforts to improve public awareness of GPs, while at the same time conducting continued surveillance of these efforts to evaluate progress towards this goal. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt)
NASA Astrophysics Data System (ADS)
Farah, Ashraf
2017-06-01
Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.
Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements
NASA Astrophysics Data System (ADS)
Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.
2001-12-01
As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.
Precise GPS orbits for geodesy
NASA Technical Reports Server (NTRS)
Colombo, Oscar L.
1994-01-01
The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.
GPS Signal Corruption by the Discrete Aurora: Precise Measurements From the Mahali Experiment
NASA Astrophysics Data System (ADS)
Semeter, Joshua; Mrak, Sebastijan; Hirsch, Michael; Swoboda, John; Akbari, Hassan; Starr, Gregory; Hampton, Don; Erickson, Philip; Lind, Frank; Coster, Anthea; Pankratius, Victor
2017-10-01
Measurements from a dense network of GPS receivers have been used to clarify the relationship between substorm auroras and GPS signal corruption as manifested by loss of lock on the received signal. A network of nine receivers was deployed along roadways near the Poker Flat Research Range in central Alaska, with receiver spacing between 15 and 30 km. Instances of large-amplitude phase fluctuations and signal loss of lock were registered in space and time with auroral forms associated with a sequence of westward traveling surges associated with a substorm onset over central Canada. The following conclusions were obtained: (1) The signal corruption originated in the ionospheric E region, between 100 and 150 km altitude, and (2) the GPS links suffering loss of lock were confined to a narrow band (<20 km wide) along the trailing edge of the moving auroral forms. The results are discussed in the context of mechanisms typically cited to account for GPS phase scintillation by auroral processes.
Azimuth selection for sea level measurements using geodetic GPS receivers
NASA Astrophysics Data System (ADS)
Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng
2018-03-01
Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.
Improvements in GPS precision: 10 Hz to one day
NASA Astrophysics Data System (ADS)
Choi, Kyuhong
Seeking to understand Global Positioning System (GPS) measurements and the positioning solutions in various time intervals, this dissertation improves the consistency of pseudorange measurements from different receiver types, processes 30 s interval data with optimized filtering techniques, and analyzes very-high-rate data with short arc lengths and baseline noise. The first project studies satellite-dependent biases between C/A and P1 codes. Calibrating these biases reduces the inconsistency of satellite clocks, improving the ambiguity resolution which allows for higher position precision. Receiver-dependent biases for two receivers are compared with the bias products of Center for Orbit Determination in Europe (CODE). Baseline lengths ranging up to ˜2,100km are tested with the receiver-specific biases; they resolve more phase ambiguity by 4.3% than using CODE's products. The second project analyzes 1 s and 30 s interval GPS data of the 2003 Tokachi-Oki earthquake. For 1 Hz positioning, Iterative Tropospheric Estimation (ITE) method improves vertical precision. While equalized sidereal filtering reduces noise for multipath-dominant 30--300 s periods, it can cause long-term drifts in the timeseries. A study of postseismic deformation after the Tokachi-Oki earthquake uses 30 s interval position estimations to test multiple filtering strategies to maximize precision using lower-rate data. On top of the residual stacking, estimation of a random walk constraint of sigmaDelta = 1.80 cm/ hr shows maximum noise reduction capability while retaining the real deformation signal. These techniques enhance our grasp of fault response in the aftermath of great earthquakes. The third project probes noise floor characteristics of very-high-rate (> 1 Hz) GPS data. A hybrid method, designed and tested to resolve phase biases, minimizes computational burdens while keeping the quality of ambiguity-fixed solutions. Noise characteristics are compared after an analysis of 5 and 10 Hz Ashtech MicroZ and ZFX as well as Trimble NetRS receivers. The Trimble NetRS receiver noise has a timeseries standard deviation double that of Ashtech MicroZ receivers. Also, the power spectral density function has a 0.1 Hz peak. Noise power shows white noise for the frequency range from 2 Hz and higher. Each research project assesses the methods to reduce the noises and/or biases in various time intervals. Each method considered in this dissertation will fulfill the needs for scientific applications.
NASA's global differential GPS system and the TDRSS augmentation service for satellites
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John
2004-01-01
NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy, and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access channel of NASA's Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by NASA's Jet Propulsion Laboratory. The GDGPS System employs a global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in Early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the GDGPS System.
Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai
2013-01-01
The integration of an Inertial Navigation System (INS) and the Global Positioning System (GPS) is common in mobile mapping and navigation applications to seamlessly determine the position, velocity, and orientation of the mobile platform. In most INS/GPS integrated architectures, the GPS is considered to be an accurate reference with which to correct for the systematic errors of the inertial sensors, which are composed of biases, scale factors and drift. However, the GPS receiver may produce abnormal pseudo-range errors mainly caused by ionospheric delay, tropospheric delay and the multipath effect. These errors degrade the overall position accuracy of an integrated system that uses conventional INS/GPS integration strategies such as loosely coupled (LC) and tightly coupled (TC) schemes. Conventional tightly coupled INS/GPS integration schemes apply the Klobuchar model and the Hopfield model to reduce pseudo-range delays caused by ionospheric delay and tropospheric delay, respectively, but do not address the multipath problem. However, the multipath effect (from reflected GPS signals) affects the position error far more significantly in a consumer-grade GPS receiver than in an expensive, geodetic-grade GPS receiver. To avoid this problem, a new integrated INS/GPS architecture is proposed. The proposed method is described and applied in a real-time integrated system with two integration strategies, namely, loosely coupled and tightly coupled schemes, respectively. To verify the effectiveness of the proposed method, field tests with various scenarios are conducted and the results are compared with a reliable reference system. PMID:23955434
Operational Use of GPS Navigation for Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Goodman, John L.; Propst, Carolyn A.
2008-01-01
The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.
GPS/GNSS Antenna Characterization : GPS-ABC Workshop V RTCA Washington, DC October 14, 2016.
DOT National Transportation Integrated Search
2016-10-14
One component of the Department of Transportations GPS Adjacent Band : Compatibility Study is the characterization of GPS/GNSS receiver antennas : Such characterization is needed to: : Compare radiated and conducted (wired) test result...
,
1999-01-01
The Global Positioning System (GPS) is a constellation of navigation satellites called Navigation Satellite Timing And Ranging (NAVSTAR), maintained by the U.S. Department of Defense. Many outdoor enthusiasts recognize that a handheld GPS receiver can be an accurate tool for determining their location on the terrain. The GPS receiver helps determine locations on the Earth's surface by collecting signals from three or more satellites through a process called triangulation. Identifying a location on the Earth is more useful if you also know about the surrounding topographic conditions. Using a topographic map with the GPS receiver provides important information about features of the surrounding terrain and can help you plot an effective route from one location to another.
Markham, Paula T; Porter, Bryan E; Ball, J D
2013-04-01
In this article, the authors investigated the effectiveness of a behavior modification program using global positioning system (GPS) vehicle tracking devices with contingency incentives and disincentives to reduce the speeding behavior of drivers with ADHD. Using an AB multiple-baseline design, six participants drove a 5-mile stable driving route weekly while GPS devices recorded speeds. The dependent variable was percentage of feet speeding. Following an initial baseline period, five participants received treatment. One participant remained at baseline. Visual inspection of individual participant graphs, reductions in mean percentages of speeding from baseline to treatment across participants (M = 82%), C-statistic analyses, and visual graphs with applied binomial formula supported a treatment effect. The between-participant analysis using R n Test of Ranks was significant, R n = 6, p < .01, and complemented a clean multiple-baseline result. Results indicated that this treatment program was effective in reducing speeding by drivers with ADHD and warrants replication.
Going Up. A GPS Receiver Adapts to Space
NASA Technical Reports Server (NTRS)
Lightsey, E. Glenn; Simpson, James E.
2000-01-01
Current plans for the space station call for the GPS receiver to be installed on the U.S. lab module of the station in early 2001 (ISS Assembly Flight SA), followed by the attachment of the antenna array in late 2001 (Flight 8A). At that point the U.S. ISS guidance and control system will be operational. The flight of SIGI on the space station represents a "coming of age" for GPS technology on spacecraft. For at least a decade, the promise of using GPS receivers to automate spacecraft operations, simplify satellite design, and reduce mission costs has enticed satellite designers. Integration of this technology onto spacecraft has been slower than some originally anticipated. However, given the complexity of the GPS sensor, and the importance of the functions it performs, its incorporation into mainstream satellite design has probably occurred at a very reasonable pace. Going from providing experimental payloads on small, unmanned satellites to performing critical operational functions on manned vehicles has been a major evolution. If all goes as planned in the next few months, GPS receivers will soon provide those critical functions on one of the most complex spacecraft in history, the International Space Station.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Day, John H. (Technical Monitor)
2000-01-01
Post-processing of data, related to a GPS receiver test in a GPS simulator and test facility, is an important step towards qualifying a receiver for space flight. Although the GPS simulator provides all the parameters needed to analyze a simulation, as well as excellent analysis tools on the simulator workstation, post-processing is not a GPS simulator or receiver function alone, and it must be planned as a separate pre-flight test program requirement. A GPS simulator is a critical resource, and it is desirable to move off the pertinent test data from the simulator as soon as a test is completed. The receiver and simulator databases are used to extract the test data files for postprocessing. These files are then usually moved from the simulator and receiver systems to a personal computer (PC) platform, where post-processing is done typically using PC-based commercial software languages and tools. Because of commercial software systems generality their functions are notoriously slow and more than often are the bottleneck even for short duration simulator-based tests. There is a need to do post-processing faster and within an hour after test completion, including all required operations on the simulator and receiver to prepare and move off the post-processing files. This is especially significant in order to use the previous test feedback for the next simulation setup or to run near back-to-back simulation scenarios. Solving the post-processing timing problem is critical for a pre-flight test program success. Towards this goal an approach was developed that allows to speed-up post-processing by an order of a magnitude. It is based on improving the post-processing bottleneck function algorithm using a priory information that is specific to a GPS simulation application and using only the necessary volume of truth data. The presented postprocessing scheme was used in support of a few successful space flight missions carrying GPS receivers.
Jefford, Michael; Baravelli, Carl; Dudgeon, Paul; Dabscheck, Adrian; Evans, Melanie; Moloney, Michael; Schofield, Penelope
2008-05-10
General practitioners (GPs) play a critical role in the treatment of patients with cancer; yet often lack information for optimal care. We developed standardized information for GPs about chemotherapy (CT). In a randomized controlled trial we assessed the impact of sending, by fax, information tailored to the particular patient's CT regimen. Primary end points were: confidence treating patients who were receiving CT (confidence), knowledge of adverse effects and reasons to refer the patient to the treatment center (knowledge), and satisfaction with information and shared care of patients (satisfaction). Focus group work informed the development of the CT information which focused on potential adverse effects and recommended management strategies. GPs of patients due to commence CT were randomly assigned to receive usual correspondence with or without the faxed patient/regimen-specific information. Telephone questionnaire at baseline and 1 week postintervention assessed knowledge, confidence, and satisfaction. Ninety-seven GPs managed 97 patients receiving 23 types of CT. Eighty-one (83.5%) completed the follow-up questionnaire. GPs in the intervention group demonstrated a significantly greater increase in confidence (mean difference, 0.28; 95% CI, 0.10 to 0.47) and satisfaction (mean difference, 0.57; 95% CI, 0.27 to 0.88) compared with usual care, reflecting a 7.1% and 10.5% difference in score, respectively. No differences were detected for knowledge. GPs receiving the CT sheet found correspondence significantly more useful (P < .001) and instructive (P < .001) than GPs who received standard correspondence alone. Information about CT faxed to GPs is a simple, inexpensive intervention that increases confidence managing CT adverse effects and satisfaction with shared care. This intervention could have widespread application.
The impact of GPS receiver modifications and ionospheric activity on Swarm baseline determination
NASA Astrophysics Data System (ADS)
Mao, X.; Visser, P. N. A. M.; van den IJssel, J.
2018-05-01
The European Space Agency (ESA) Swarm mission is a satellite constellation launched on 22 November 2013 aiming at observing the Earth geomagnetic field and its temporal variations. The three identical satellites are equipped with high-precision dual-frequency Global Positioning System (GPS) receivers, which make the constellation an ideal test bed for baseline determination. From October 2014 to August 2016, a number of GPS receiver modifications and a new GPS Receiver Independent Exchange Format (RINEX) converter were implemented. Moreover, the on-board GPS receiver performance has been influenced by the ionospheric scintillations. The impact of these factors is assessed for baseline determination of the pendulum formation flying Swarm-A and -C satellites. In total 30 months of data - from 15 July 2014 to the end of 2016 - is analyzed. The assessment includes analysis of observation residuals, success rate of GPS carrier phase ambiguity fixing, a consistency check between the so-called kinematic and reduced-dynamic baseline solution, and validations of orbits by comparing with Satellite Laser Ranging (SLR) observations. External baseline solutions from The German Space Operations Center (GSOC) and Astronomisches Institut - Universität Bern (AIUB) are also included in the comparison. Results indicate that the GPS receiver modifications and RINEX converter changes are effective to improve the baseline determination. This research eventually shows a consistency level of 9.3/4.9/3.0 mm between kinematic and reduced-dynamic baselines in the radial/along-track/cross-track directions. On average 98.3% of the epochs have kinematic solutions. Consistency between TU Delft and external reduced-dynamic baseline solutions is at a level of 1 mm level in all directions.
Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO
NASA Technical Reports Server (NTRS)
Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve
2004-01-01
A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.
High dynamic GPS receiver validation demonstration
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Statman, J. I.; Vilnrotter, V. A.
1985-01-01
The Validation Demonstration establishes that the high dynamic Global Positioning System (GPS) receiver concept developed at JPL meets the dynamic tracking requirements for range instrumentation of missiles and drones. It was demonstrated that the receiver can track the pseudorange and pseudorange rate of vehicles with acceleration in excess of 100 g and jerk in excess of 100 g/s, dynamics ten times more severe than specified for conventional High Dynamic GPS receivers. These results and analytic extensions to a complete system configuration establish that all range instrumentation requirements can be met. The receiver can be implemented in the 100 cu in volume required by all missiles and drones, and is ideally suited for transdigitizer or translator applications.
NASA Technical Reports Server (NTRS)
Daly, P.; Koshelyaevsky, N. B.; Lewandowski, Wlodzimierz; Petit, Gerard; Thomas, Claudine
1992-01-01
The University of Leeds built a Global Positioning System/Global Orbiting Navigation Satellite System (GPS/GLONASS) receiver about five years ago and since then has provided continuous information about GLONASS time and its comparison with GPS time. For the last two years, VNIIFTRI (All Union Institute for Physical, Technical and Radiotechnical Measurements) and some other Soviet time laboratories have used Soviet built GLONASS navigation receivers for time comparisons. Since June 1991, VNIIFTIR has been operating a GPS time receiver on loan from the BIPM (Bureau International des Poids et Mesures). This offered, for the first time, an opportunity for direct comparison of time transfers using GPS and GLONASS. This experiment shows that even with relatively imprecise data recording and processing, in terms of time metrology, GLONASS can provide continental time transfer at a level of several tens of nanoseconds.
Scintillation-Hardened GPS Receiver
NASA Technical Reports Server (NTRS)
Stephens, Donald R.
2015-01-01
CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.
Comparison of two-way satellite time transfer and GPS common-view time transfer between OCA and TUG
NASA Technical Reports Server (NTRS)
Kirchner, Dieter; Thyr, U.; Ressler, H.; Robnik, R.; Grudler, P.; Baumont, Francoise S.; Veillet, Christian; Lewandowski, Wlodzimierz W.; Hanson, W.; Clements, A.
1992-01-01
For about one year the time scales UTC(OCA) and UTC(TUG) were compared by means of GPS and two-way satellite time transfer. At the end of the experiment both links were independently 'calibrated' by measuring the differential delays of the GPS receivers and of the satellite earth stations by transportation of a GPS receiver and of one of the satellite terminals. The results obtained by both methods differ by about 3 ns, but reveal a seasonal variation of about 8 ns peak-to-peak which is likely the result of a temperature-dependence of the delays of the GPS receivers used. For the comparison of both methods the stabilities of the timescales are of great importance. Unfortunately, during the last three months of the experiment a less stable clock had to be used for the generation of UTC(TUG).
Kaner, E F; Lock, C A; McAvoy, B R; Heather, N; Gilvarry, E
1999-09-01
Providing doctors with new research findings or clinical guidelines is rarely sufficient to promote changes in clinical practice. An implementation strategy is required to provide clinicians with the skills and encouragement needed to alter established routines. To evaluate the effectiveness and cost-effectiveness of different training and support strategies in promoting implementation of screening and brief alcohol intervention (SBI) by general practitioners (GPs). Subjects were 128 GPs, one per practice, from the former Northern and Yorkshire Regional Health Authority, who agreed to use the 'Drink-Less' SBI programme in an earlier dissemination trial. GPs were stratified by previous marketing conditions and randomly allocated to three intensities of training and support: controls (n = 43) received the programme with written guidelines only, trained GPs (n = 43) received the programme plus practice-based training in programme usage, trained and supported GPs (n = 42) received the programme plus practice-based training and a support telephone call every two weeks. GPs were requested to use the programme for three months. Outcome measures included proportions of GPs implementing the programme and numbers of patients screened and intervened with. Seventy-three (57%) GPs implemented the programme and screened 11,007 patients for risk drinking. Trained and supported GPs were significantly more likely to implement the programme (71%) than controls (44%) or trained GPs (56%); they also screened, and intervened with, significantly more patients. Costs per patient screened were: trained and supported GPs, 1.05 Pounds; trained GPs, 1.08 Pounds; and controls, 1.47 Pounds. Costs per patient intervened with were: trained and supported GPs, 5.43 Pounds; trained GPs, 6.02 Pounds; and controls, 8.19 Pounds. Practice-based training plus support telephone calls was the most effective and cost-effective strategy to encourage implementation of SBI by GPs.
NASA Astrophysics Data System (ADS)
Zou, X.; Deng, Z.; Ge, M.; Dick, G.; Jiang, W.; Liu, J.
2010-07-01
In order to obtain crustal deformations of higher spatial resolution, existing GPS networks must be densified. This densification can be carried out using single-frequency receivers at moderate costs. However, ionospheric delay handling is required in the data processing. We adapt the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) for GPS networks with mixed single- and dual-frequency receivers. The SEID model is modified to utilize the observations from the three nearest dual-frequency reference stations in order to avoid contaminations from more remote stations. As data of only three stations are used, an efficient missing data constructing approach with polynomial fitting is implemented to minimize data losses. Data from large scale reference networks extended with single-frequency receivers can now be processed, based on the adapted SEID model. A new data processing scheme is developed in order to make use of existing GPS data processing software packages without any modifications. This processing scheme is evaluated using a sub-network of the German SAPOS network. The results verify that the new scheme provides an efficient way to densify existing GPS networks with single-frequency receivers.
Ionospheric corrections to precise time transfer using GPS
NASA Technical Reports Server (NTRS)
Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.
1994-01-01
The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.
Physical applications of GPS geodesy: a review.
Bock, Yehuda; Melgar, Diego
2016-10-01
Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.
Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS
NASA Astrophysics Data System (ADS)
Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.
2017-12-01
The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.
Robust GPS carrier tracking under ionospheric scintillation
NASA Astrophysics Data System (ADS)
Susi, M.; Andreotti, M.; Aquino, M. H.; Dodson, A.
2013-12-01
Small scale irregularities present in the ionosphere can induce fast and unpredictable fluctuations of Radio Frequency (RF) signal phase and amplitude. This phenomenon, known as scintillation, can degrade the performance of a GPS receiver leading to cycle slips, increasing the tracking error and also producing a complete loss of lock. In the most severe scenarios, if the tracking of multiple satellites links is prevented, outages in the GPS service can also occur. In order to render a GPS receiver more robust under scintillation, particular attention should be dedicated to the design of the carrier tracking stage, that is the receiver's part most sensitive to these types of phenomenon. This paper exploits the reconfigurability and flexibility of a GPS software receiver to develop a tracking algorithm that is more robust under ionospheric scintillation. For this purpose, first of all, the scintillation level is monitored in real time. Indeed the carrier phase and the post correlation terms obtained by the PLL (Phase Locked Loop) are used to estimate phi60 and S4 [1], the scintillation indices traditionally used to quantify the level of phase and amplitude scintillations, as well as p and T, the spectral parameters of the fluctuations PSD. The effectiveness of the scintillation parameter computation is confirmed by comparing the values obtained by the software receiver and the ones provided by a commercial scintillation monitoring, i.e. the Septentrio PolarxS receiver [2]. Then the above scintillation parameters and the signal carrier to noise density are exploited to tune the carrier tracking algorithm. In case of very weak signals the FLL (Frequency Locked Loop) scheme is selected in order to maintain the signal lock. Otherwise an adaptive bandwidth Phase Locked Loop (PLL) scheme is adopted. The optimum bandwidth for the specific scintillation scenario is evaluated in real time by exploiting the Conker formula [1] for the tracking jitter estimation. The performance of the proposed tracking scheme is assessed by using both simulated and real data. Real data have been collected in Vietnam by using a USRP (Universal Software Radio Peripheral) N210 front end connected to a rubidium oscillator. Selected events are exploited in order to challenge the algorithm with strong phase and amplitude variations. Moreover, simulated data have been collected by using the prototype of a digital front end developed by Novatel, namely the 'Firehose'. Since the latter includes a TCXO oscillator, the proposed tracking scheme is also opportunely modified to take in account the clock error contribution. References 1. R.S., Conker, M. B. El-Arini, C. J. Hegarty, and T. Hsiao, Modelling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci., 38, 1, 1001, doi: 10.1029/2000RS002604, 2003. 2. B. Bougard et al, 'CIGALA: Challenging the Solar Maximum in Brazil with PolaRxS,' ION GNSS, Portland, Sept. 2011.
Operational aspects of CASA UNO '88-The first large scale international GPS geodetic network
NASA Technical Reports Server (NTRS)
Neilan, Ruth E.; Dixon, T. H.; Meehan, Thomas K.; Melbourne, William G.; Scheid, John A.; Kellogg, J. N.; Stowell, J. L.
1989-01-01
For three weeks, from January 18 to February 5, 1988, scientists and engineers from 13 countries and 30 international agencies and institutions cooperated in the most extensive GPS (Global Positioning System) field campaign, and the largest geodynamics experiment, in the world to date. This collaborative eperiment concentrated GPS receivers in Central and South America. The predicted rates of motions are on the order of 5-10 cm/yr. Global coverage of GPS observations spanned 220 deg of longitude and 125 deg of latitude using a total of 43 GPS receivers. The experiment was the first civilian effort at implementing an extended international GPS satellite tracking network. Covariance analyses incorporating the extended tracking network predicted significant improvement in precise orbit determination, allowing accurate long-baseline geodesy in the science areas.
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess Brooks (Inventor)
1999-01-01
The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.
Heins, Marianne; Hofstede, Jolien; Rijken, Mieke; Korevaar, Joke; Donker, Gé; Francke, Anneke
2018-04-17
In many countries, GPs and home care nurses are involved in care for patients with advanced cancer. Given the varied and complex needs of these patients, providing satisfactory care is a major challenge for them. We therefore aimed to study which aspects of care patients, GPs and home care nurses consider important and whether patients receive these aspects. Seventy-two Dutch patients with advanced cancer, 87 GPs and 26 home care nurses rated the importance of support when experiencing symptoms, respect for patients' autonomy and information provision. Patients also rated whether they received these aspects. Questionnaires were based on the CQ index palliative care. Almost all patients rated information provision and respect for their autonomy as important. The majority also rated support when suffering from specific symptoms as important, especially support when in pain. In general, patients received the care they considered important. However, 49% of those who considered it important to receive support when suffering from fatigue and 23% of those who wanted to receive information on the expected course of their illness did not receive this or only did so sometimes. For most patients with advanced cancer, the palliative care that they receive matches what they consider important. Support for patients experiencing fatigue may need more attention. When symptoms are difficult to control, GPs and nurses may still provide emotional support and practical advice. Furthermore, we recommend that GPs discuss patients' need for information about the expected course of their illness.
Anshushaug, Malin; Gynnild, Mari Aas; Kaasa, Stein; Kvikstad, Anne; Grønberg, Bjørn H
2015-03-01
Many cancer patients receive chemotherapy and radiotherapy their last 30 days [end of life (EOL)]. The benefit is questionable and side effects are common. The aim of this study was to investigate what characterized the patients who received chemo- and radiotherapy during EOL, knowledge that might be used to improve practice. Patients dead from cancer in 2005 and 2009 were analyzed. Data were collected from hospital medical records. When performance status (PS) was not stated, PS was estimated from other information in the records. A Glasgow Prognostic Score (GPS) of 0, 1 or 2 was assessed from blood values (CRP and albumin). A higher score is associated with a shorter prognosis. In total 616 patients died in 2005; 599 in 2009. Among the 723 analyzed, median age was 71; 42% had metastases at diagnosis (synchronous metastases); 53% had PS 2 and 16% PS 3-4 at the start of last cancer therapy. GPS at the start of last cancer therapy was assessable in 70%; of these, 26% had GPS 1 and 35% GPS 2. Overall, 10% received chemotherapy and 8% radiotherapy during EOL. The proportions varied significantly between the different types of cancer. Multivariate analyses revealed that those at age<70 years, GPS 2, no contact with our Palliative Care Unit and synchronous metastases received most chemotherapy the last 30 days. PS 3-4, GPS 2 and synchronous metastases were strongest associated with radiotherapy the last 30 days. Ten percent received chemotherapy and 8% radiotherapy the last 30 days of life. GPS 2 and synchronous metastases were most significantly associated with cancer therapy the last 30 days of life, indicating that in general, patients with the shortest survival time after diagnosis of cancer received more chemo- and radiotherapy during EOL than other patients.
DOT National Transportation Integrated Search
2015-10-02
Initial WorkshopI held on September 18, 2014 at the Volpe Center; Overview of DOT GPS Adjacent Band Compatibility Assessment Plan and plans/timeline for implementation; Presentation on GPS use cases and list of representative GPS receivers; Descri...
Spacecraft applications of advanced global positioning system technology
NASA Technical Reports Server (NTRS)
1988-01-01
This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.
Pilot GPS LORAN Receiver Programming Performance A Laboratory Evaluation
DOT National Transportation Integrated Search
1994-02-01
This study was designed to explore GPS/LORAN receiver programming performance under : simulated flight conditions. The programming task consisted of entering, editing, and : verifying a four-waypoint flight plan. The task demands were manipulated by ...
GPS World, Innovation: Autonomous Navigation at High Earth Orbits
NASA Technical Reports Server (NTRS)
Bamford, William; Winternitz, Luke; Hay, Curtis
2005-01-01
Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these higher power signals only, precise orbit determination would not be practical. Fortunately, the GPS satellite antenna array also produces side lobe signals at much lower power levels. NASA has designed and tested the Navigator, a new GPS receiver that can acquire and track these weaker signals, thereby dramatically increasing the signal visibility at these altitudes. While using much weaker signals is a fundamental requirement for a high orbital altitude GPS receiver, it is certainly not the only challenge. There are other unique characteristics of this application that must also be considered. For example, Position Dilution of Precision (PDOP) figures are much higher at GEO and HE0 altitudes because visible GPS satellites are concentrated in a much smaller area with respect to the spacecraft antenna. These poor PDOP values contribute considerable error to the point solutions calculated by the spacecraft GPS receiver. Finally, spacecraft GPS receivers must be designed to withstand a variety of extreme environmental conditions. Variations in acceleration between launch and booster separation are extreme. Temperature gradients in the space environment are also severe. Furthermore, radiation effects are a major concern-spacecraft-borne GPS receivers must be designed with radiation-hardened electronics to guard against this phenomenon, otherwise they simply will not work. Perhaps most importantly, there are no opportunities to repair or modify any space-borne GPS receiver after it has been launched. Great care must be taken to ensure all performance characteristics have been analyzed prior to liftoff.
Code and codeless ionospheric measurements with NASA's Rogue GPS Receiver
NASA Technical Reports Server (NTRS)
Srinivasan, Jeff M.; Meehan, Tom K.; Young, Lawrence E.
1989-01-01
The NASA/JPL Rogue Receiver is an 8-satellite, non-multiplexed, highly digital global positioning system (GPS) receiver that can obtain dual frequency data either with or without knowledge of the P-code. In addition to its applications for high accuracy geodesy and orbit determination, the Rogue uses GPS satellite signals to measure the total electron content (TEC) of the ionosphere along the lines of sight from the receiver to the satellites. These measurements are used by JPL's Deep Space Network (DSN) for calibrating radiometric data. This paper will discuss Rogue TEC measurements, emphasizing the advantages of a receiver that can use the P-code, when available, but can also obtain reliable dual frequency data when the code is encrypted.
Dauwalter, D.C.; Fisher, W.L.; Belt, K.C.
2006-01-01
We tested the precision and accuracy of the Trimble GeoXT??? global positioning system (GPS) handheld receiver on point and area features and compared estimates of stream habitat dimensions (e.g., lengths and areas of riffles and pools) that were made in three different Oklahoma streams using the GPS receiver and a tape measure. The precision of differentially corrected GPS (DGPS) points was not affected by the number of GPS position fixes (i.e., geographic location estimates) averaged per DGPS point. Horizontal error of points ranged from 0.03 to 2.77 m and did not differ with the number of position fixes per point. The error of area measurements ranged from 0.1% to 110.1% but decreased as the area increased. Again, error was independent of the number of position fixes averaged per polygon corner. The estimates of habitat lengths, widths, and areas did not differ when measured using two methods of data collection (GPS and a tape measure), nor did the differences among methods change at three stream sites with contrasting morphologies. Measuring features with a GPS receiver was up to 3.3 times faster on average than using a tape measure, although signal interference from high streambanks or overhanging vegetation occasionally limited satellite signal availability and prolonged measurements with a GPS receiver. There were also no differences in precision of habitat dimensions when mapped using a continuous versus a position fix average GPS data collection method. Despite there being some disadvantages to using the GPS in stream habitat studies, measuring stream habitats with a GPS resulted in spatially referenced data that allowed the assessment of relative habitat position and changes in habitats over time, and was often faster than using a tape measure. For most spatial scales of interest, the precision and accuracy of DGPS data are adequate and have logistical advantages when compared to traditional methods of measurement. ?? 2006 Springer Science+Business Media, Inc.
Self-calibrating pseudolite arrays: Theory and experiment
NASA Astrophysics Data System (ADS)
Lemaster, Edward Alan
Tasks envisioned for future-generation Mars rovers---sample collection, area survey, resource mining, habitat construction, etc.---will require greatly enhanced navigational capabilities over those possessed by the 1997 Mars Sojourner rover. Many of these tasks will involve cooperative efforts by multiple rovers and other agents, necessitating both high accuracy and the ability to share navigation information among different users. On Earth, satellite-based carrier-phase differential GPS provides a means of delivering centimeter-level, drift-free positioning to multiple users in contact with a reference base station. It would be highly desirable to have a similar navigational capability for use in Mars exploration. This research has originated a new local-area navigation system---a Self-Calibrating Pseudolite Array (SCPA)---that can provide centimeter-level localization to multiple rovers by utilizing GPS-based pseudolite transceivers deployed in a ground-based array. Such a system of localized beacons can replace or augment a system based on orbiting satellite transmitters. Previous pseudolite arrays have relied upon a priori information to survey the locations of the pseudolites, which must be accurately known to enable navigation within the array. In contrast, an SCPA does not rely upon other measurement sources to determine these pseudolite locations. This independence is a key requirement for autonomous deployment on Mars, and is accomplished through the use of GPS transceivers containing both transmit and receive components and through algorithms that utilize limited motion of a transceiver-bearing rover to determine the locations of the stationary transceivers. This dissertation describes the theory and operation of GPS transceivers, and how they can be used for navigation within a Self-Calibrating Pseudolite Array. It presents new algorithms that can be used to self-survey such arrays robustly using no a priori information, even under adverse conditions such as high-multipath environments. It then describes the experimental SCPA prototype developed at Stanford University and used in conjunction with the K9 Mars rover operated by NASA Ames Research Center. Using this experimental system, it provides experimental validation of both successful positioning using GPS transceivers and full calibration of an SCPA following deployment in an unknown configuration.
Towards GPS Surface Reflection Remote Sensing of Sea Ice Conditions
NASA Technical Reports Server (NTRS)
Komjathy, A.; Maslanik, J. A.; Zavorotny, V. U.; Axelrad, P.; Katzberg, S. J.
2000-01-01
This paper describes the research to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. The characteristics of the GPS signals and equipment afford the possibility of new measurements not possible with existing radar and passive microwave systems. In particular, the GPS receiving systems are small and light-weight, and as such are particularly well suited to be deployed on small aircraft or satellite platforms with minimal impact. Our preliminary models and experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and fresh-water ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska suggesting correlation between forward scattered GPS returns and RADARSAT backscattered signals.
Results of an Internet-Based Dual-Frequency Global Differential GPS System
NASA Technical Reports Server (NTRS)
Muellerschoen, R.; Bertiger, W.; Lough, M.
2000-01-01
Observables from a global network of 18 GPS receivers are returned in real-time to JPL over the open Internet. 30 - 40 cm RSS global GPS orbits and precise dual-frequency GPS clocks are computed in real-time with JPL's Real Time Gipsy (RTG) software.
DOT National Transportation Integrated Search
2017-03-30
This presentation, which was given during the GPS-ABC Workshop VI in Washington, DC on March 30, 2017 details the authors' radiated testing protocols and results. GPS receiver testing was carried out April 25-29, 2016 at the Army : Research Laborator...
USGS earthquake hazards program (EHP) GPS use case : earthquake early warning (EEW) and shake alert
DOT National Transportation Integrated Search
2017-03-30
GPS Adjacent Band Workshop VI RTCA Inc., Washington D.C., 30 March 2017. USGS GPS receiver use case - Real-Time GPS for EEW -Continued: CRITICAL EFFECT - The GNSS component of the Shake Alert system augments the inertial sensors and is especial...
DOT National Transportation Integrated Search
2000-02-01
The rapid introduction of Global Positioning System (GPS) receivers for airborne navigation has outpaced the capacity of international aviation authorities to resolve human factors issues that concern safe and efficient use of such devices. Current c...
Near-optimal strategies for sub-decimeter satellite tracking with GPS
NASA Technical Reports Server (NTRS)
Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong
1986-01-01
Decimeter tracking of low Earth orbiters using differential Global Positioning System (GPS) techniques is discussed. A precisely known global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite orbits. Strategies include a purely geometric, a fully dynamic, and a hybrid strategy. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the hybrid strategy show the most promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a gravity adjustment method to exploit data from repeat ground tracks. These techniques promise to deliver subdecimeter accuracy down to the lowest satellite altitudes.
DOT National Transportation Integrated Search
2015-03-12
Initial Workshop-I held on September 18, 2014 at the Volpe Center - Overview of DOT GPS Adjacent Band Compatibility Assessment Plan and plans/timeline for implementation - Presentation on GPS use cases and list of representative GPS receivers - Descr...
NASA Astrophysics Data System (ADS)
Crowley, G.; Azeem, S. I.; Reynolds, A.; Santana, J.; Hampton, D. L.
2013-12-01
Amplitude and phase scintillation can cause serious difficulties for GPS receivers. Intense scintillation can cause loss of lock. High latitude studies generally show that phase scintillation can be severe, but the amplitude scintillation tends to be small. The reason for this is not yet understood. Furthermore, the actual causes of the ionospheric irregularities that produce high latitude scintillation are not well understood. While the gradient drift instability is thought to be important in the F-region, there may be other structures present in either the E- or F-regions. The role of particle precipitation is also not well understood. Four of ASTRA's CASES GPS receivers were deployed in Alaska to demonstrate our ability to map scintillation in realtime, to provide space weather services to GPS users, and to initiate a detailed investigation of these effects. These dual-frequency GPS receivers measure total electron content (TEC) and scintillation. The scintillation monitors were deployed in a longitudinal chain at sites in Kaktovic, Fort Yukon, Poker Flat, and Gakona. Scintillation statistics show phase scintillations to be largest at Kaktovic and smallest at Gakona. We present GPS phase scintillation and auroral emission results from the Alaska chain to characterize the correspondence between scintillation and auroral features, and to investigate the role of high latitude auroral features in driving the phase scintillations. We will also present data showing how phase scintillation can cause other GPS receivers to lose lock. The data and results are particularly valuable because they illustrate some of the challenges of using GPS systems for positioning and navigation in an auroral region like Alaska. These challenges for snowplough drivers were recently highlighted, along with the CASES SM-211 space weather monitor, in a special video in which ASTRA and three other small businesses were presented with an entrepreneurial award from William Shatner (http://youtu.be/bIVKEQH_YPk).
Global Scale Observations of Ionospheric Instabilities from GPS in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Kramer, Leonard; Goodman, John L.
2003-01-01
The GPS receiver used for navigation on the Space Shuttle exhibits range rate noise which appears to result from scintillation of the satellite signals by irregularities in ionospheric plasma. The noise events cluster in geographic regions previously identified as susceptible to instability and disturbed ionospheric conditions. These mechanisms are reviewed in the context of the GPS observations. Range rate data continuously monitored during the free orbiting phase of several space shuttle missions reveals global scale distribution of ionospheric irregularities. Equatorial events cluster +/- 20 degrees about the magnetic equator and polar events exhibit hemispheric asymmetry suggesting influence of off axis geomagnetic polar oval system. The diurnal, seasonal and geographic distribution is compared to previous work concerning equatorial spread F, Appleton anomaly and polar oval. The observations provide a succinct demonstration of the utility of space based ionospheric monitoring using GPS. The susceptability of GPS receivers to scintillation represents 'an unanticipated technical risk not factored into the selection of receivers for the United States space program.
A GPS Receiver for Lunar Missions
NASA Technical Reports Server (NTRS)
Bamford, William A.; Heckler, Gregory W.; Holt, Greg N.; Moreau, Michael C.
2008-01-01
Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical environment unique to that trajectory.
GNSS receiver use-case development GPS-ABC workshop VI RTCA Washington, DC March 30, 2017.
DOT National Transportation Integrated Search
2017-03-30
The purpose of this workshop was to discuss the results from testing of various categories of GPS/Global Navigation Satellite System (GNSS) receivers to include aviation (non-certified), cellular, general location/navigation, high precision and netwo...
47 CFR 87.151 - Special requirements for differential GPS receivers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Special requirements for differential GPS receivers. 87.151 Section 87.151 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES AVIATION SERVICES Technical Requirements § 87.151 Special requirements for...
Measuring precise sea level from a buoy using the Global Positioning System
NASA Technical Reports Server (NTRS)
Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich
1990-01-01
The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.
Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment
NASA Astrophysics Data System (ADS)
Nilsson, T.; Gradinarsky, L.; Elgered, G.
2007-10-01
Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.
Application of GPS attitude determination to gravity gradient stabilized spacecraft
NASA Technical Reports Server (NTRS)
Lightsey, E. G.; Cohen, Clark E.; Parkinson, Bradford W.
1993-01-01
Recent advances in the Global Positioning System (GPS) technology have initiated a new era in aerospace navigation and control. GPS receivers have become increasingly compact and affordable, and new developments have made attitude determination using subcentimeter positioning among two or more antennas feasible for real-time applications. GPS-based attitude control systems will become highly portable packages which provide time, navigation, and attitude information of sufficient accuracy for many aerospace needs. A typical spacecraft application of GPS attitude determination is a gravity gradient stabilized satellite in low Earth orbit that employs a GPS receiver and four body mounted patch antennas. The coupled, linearized equations of motion enable complete position and attitude information to be extracted from only two antennas. A discussion of the various error sources for spaceborne GPS attitude measurement systems is included. Attitude determination of better than 0.3 degrees is possible for 1 meter antenna separation. Suggestions are provided to improve the accuracy of the attitude solution.
NASA Technical Reports Server (NTRS)
Bauer, F. H.; Moreau, M. C.; Dahle-Melsaether, M. E.; Petrofski, W. P.; Stanton, B. J.; Thomason, S.; Harris, G. A.; Sena, R. P.; Temple, L. Parker, III
2006-01-01
Prior to the advent of artificial satellites, the concept of navigating in space and the desire to understand and validate the laws of planetary and satellite motion dates back centuries. At the initiation of orbital flight in 1957, space navigation was dominated by inertial and groundbased tracking methods, underpinned by the laws of planetary motion. It was early in the 1980s that GPS was first explored as a system useful for refining the position, velocity, and timing (PVT) of other spacecraft equipped with GPS receivers. As a result, an entirely new GPS utility was developed beyond its original purpose of providing PVT services for land, maritime, and air applications. Spacecraft both above and below the GPS constellation now receive the GPS signals, including the signals that spill over the limb of the Earth. The use of radionavigation satellite services for space navigation in High Earth Orbits is in fact a capability unique to GPS. Support to GPS space applications is being studied and planned as an important improvement to GPS. This paper discusses the formalization of PVT services in space as part of an overall GPS improvement effort. It describes the GPS Space Service Volume (SSV) and compares it to the Terrestrial Service Volume (TSV). It also discusses SSV coverage with the current GPS constellation, coverage characteristics as a function of altitude, expected power levels, and coverage figures of merit.
Casula, Giuseppe; Dubbini, Marco; Galeandro, Angelo
2007-01-01
A semi-permanent GPS network of about 30 vertices has been installed at Terra Nova Bay (TNB) near Ross Sea in Antarctica. A permanent GPS station TNB1 based on an Ashtech Z-XII dual frequency P-code GPS receiver with ASH700936D_M Choke Ring Antenna has been mounted on a reinforced concrete pillar built on bedrock since October 1998 and has recorded continuously up to the present. The semi-permanent network has been routinely surveyed every summer using high quality dual frequency GPS receivers with 24 hour sessions at 15 sec rate; data, metadata and solutions will be available to the scientific community at (http://www.geodant.unimore.it). We present the results of a distributed session approach applied to processing GPS data of the TNB GPS network, and based on Gamit/Globk 10.2-3 GPS analysis software. The results are in good agreement with other authors' computations and with many of the theoretical models.
USGS Earthquake Program GPS Use Case : Earthquake Early Warning
DOT National Transportation Integrated Search
2015-03-12
USGS GPS receiver use case. Item 1 - High Precision User (federal agency with Stafford Act hazard alert responsibilities for earthquakes, volcanoes and landslides nationwide). Item 2 - Description of Associated GPS Application(s): The USGS Eart...
Autonomous Navigation Improvements for High-Earth Orbiters Using GPS
NASA Technical Reports Server (NTRS)
Long, Anne; Kelbel, David; Lee, Taesul; Garrison, James; Carpenter, J. Russell; Bauer, F. (Technical Monitor)
2000-01-01
The Goddard Space Flight Center is currently developing autonomous navigation systems for satellites in high-Earth orbits where acquisition of the GPS signals is severely limited This paper discusses autonomous navigation improvements for high-Earth orbiters and assesses projected navigation performance for these satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) measurements. Navigation performance is evaluated as a function of signal acquisition threshold, measurement errors, and dynamic modeling errors using realistic GPS signal strength and user antenna models. These analyses indicate that an autonomous navigation position accuracy of better than 30 meters root-mean-square (RMS) can be achieved for high-Earth orbiting satellites using a GPS receiver with a very stable oscillator. This accuracy improves to better than 15 meters RMS if the GPS receiver's signal acquisition threshold can be reduced by 5 dB-Hertz to track weaker signals.
Analysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters
NASA Astrophysics Data System (ADS)
Kuang, Da; Bar-Sever, Yoaz; Haines, Bruce
2015-05-01
We use a series of simulated scenarios to characterize the observability of geocenter location with GPS tracking data. We examine in particular the improvement realized when a GPS receiver in low Earth orbit (LEO) augments the ground network. Various orbital configurations for the LEO are considered and the observability of geocenter location based on GPS tracking is compared to that based on satellite laser ranging (SLR). The distance between a satellite and a ground tracking-site is the primary measurement, and Earth rotation plays important role in determining the geocenter location. Compared to SLR, which directly and unambiguously measures this distance, terrestrial GPS observations provide a weaker (relative) measurement for geocenter location determination. The estimation of GPS transmitter and receiver clock errors, which is equivalent to double differencing four simultaneous range measurements, removes much of this absolute distance information. We show that when ground GPS tracking data are augmented with precise measurements from a GPS receiver onboard a LEO satellite, the sensitivity of the data to geocenter location increases by more than a factor of two for Z-component. The geometric diversity underlying the varying baselines between the LEO and ground stations promotes improved global observability, and renders the GPS technique comparable to SLR in terms of information content for geocenter location determination. We assess a variety of LEO orbital configurations, including the proposed orbit for the geodetic reference antenna in space mission concept. The results suggest that a retrograde LEO with altitude near 3,000 km is favorable for geocenter determination.
Alternate Waveforms for a Low-Cost Civil Global Positioning System Receiver
DOT National Transportation Integrated Search
1980-06-01
This report examines the technical feasibility of alternate waveforms to perform the GPS functions and to result in less complex receivers than is possible with the GPS C/A waveform. The approach taken to accomplish this objective is (a) to identify,...
Evaluation of the EGNOS service for topographic profiling in field geosciences
NASA Astrophysics Data System (ADS)
Kromuszczyńska, Olga; Mège, Daniel; Castaldo, Luigi; Gurgurewicz, Joanna; Makowska, Magdalena; Dębniak, Krzysztof; Jelínek, Róbert
2016-09-01
Consumer grade Global Positioning System (GPS) receivers are commonly used as a tool for data collection in many fields, including geosciences. One of the methods for improving the GPS signal is provided by the Wide Area Differential GPS (WADGPS), which uses geostationary satellites to correct errors affecting the signal in real time. This study presents results of three experiments aiming at determining whether the precision of field measurements made by such a receiver (Garmin GPSMAP 62s) operating in either the non-differential and the WADGPS differential mode is suitable for characterizing geomorphological objects or landforms. It assumes in a typical field work situation, when time cannot be devoted in the field to long periods of stationary GPS measurements and the precision of topographic profile is at least as important as, if not more than, positioning of individual points. The results show that with maintaining some rules, the expected precision may meet the nominal precision. The repeatability (coherence) of topographic profiles conducted at low speed (0.5 m s- 1) in mountain terrain is good, and vertical precision is improved in the WADGPS mode. Horizontal precision is equivalent in both modes. The GPS receiver should be operating at least 30 min prior to measuring and should not be turned off between measurements that the user like to compare. If the GPS receiver needs to be reset between profiles to be compared, the measurement precision is higher in the non-differential GPS mode. Following these rules may result in improvement of measurement quality by 20% to 80%.
Shuttle GPS R/PA evaluation analysis and performance tradeoff study
NASA Technical Reports Server (NTRS)
Booth, R. W. D.; Lindsey, W. C.
1978-01-01
Primary responsibility was understanding and analyzing the various GPS receiver functions as they relate to the shuttle environment. These receiver functions included acquisition properties of the sequential detector, acquisition and tracking properties of the various receiver phase locked loops, and the techniques of sequential receiver operation. In addition to these areas, support was provided in the areas of oscillator stability requirements, antenna management, and navigation filter requirements, including preposition aiding.
NASA Technical Reports Server (NTRS)
Davis, D. D.; Weiss, M.; Clements, A.; Allan, D. W.
1982-01-01
The National Bureau of Standards/Global Positioning System (NBS/GPS) receiver is discussed. It is designed around the concept of obtaining high accuracy, low cost time and frequency comparisons between remote frequency standards and clocks with the intent to aid international time and frequency coordination. Preliminary tests of this comparison technique between Boulder, CO and Washington, D.C indicate the ability to do accurate time transfer to better that 10 ns, and frequency measurements to better than 1 part in 10 to the 14th power. The hardware and software of the receiver is detailed. The receiver is fully automatic with a built-in 0.1 ns resolution time interval counter. A microprocessor does data processing. Satellite signal stabilities are routinely at the 5 ns level for 15 s averages, and the internal receiver stabilities are at the 1 ns level.
Accuracy of tracking forest machines with GPS
M.W. Veal; S.E. Taylor; T.P. McDonald; D.K. McLemore; M.R. Dunn
2001-01-01
This paper describes the results of a study that measured the accuracy of using GPS to track movement of forest machines. Two different commercially available GPS receivers (Trimble ProXR and GeoExplorer II) were used to track\\r\
Recap, One-on-One Discussions, and Moving Forward
DOT National Transportation Integrated Search
2014-12-04
Recap. Initial WorkshopI held on September 18, 2014 at the Volpe Center. Overview of DOT GPS Adjacent Band Compatibility Assessment Plan and plans/timeline for implementation. Presentation on GPS use cases and list of representative GPS receivers....
Turbelin, Clément; Boëlle, Pierre-Yves
2010-01-01
Web-based applications are a choice tool for general practice based epidemiological surveillance; however their use may disrupt the general practitioners (GPs) work process. In this article, we propose an alternative approach based on a desktop client application. This was developed for use in the French General Practitioners Sentinel Network. We developed a java application running as a client on the local GP computer. It allows reporting cases to a central server and provides feedback to the participating GPs. XML was used to describe surveillance protocols and questionnaires as well as instances of case descriptions. An evaluation of the users' feelings was carried out and the impact on the timeliness and completeness of surveillance data was measured. Better integration in the work process was reported, especially when the software was used at the time of consultation. Reports were received more frequently with less missing data. This study highlights the potential of allowing multiple ways of interaction with the surveillance system to increase participation of GPs and the quality of surveillance.
Accuracy of Tracking Forest Machines with GPS
M.W. Veal; S.E. Taylor; T.P. McDonald; D.K. McLemore; M.R. Dunn
2001-01-01
This paper describes the results of a study that measured the accuracy of using GPS to track movement offorest machines. Two different commercially available GPS receivers (Trimble ProXR and GeoExplorer II) were used to track wheeled skidders under three different canopy conditions at two different vehicle speeds. Dynamic GPS data were compared to position data...
Detection of VHF lightning from GPS orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suszcynsky, D. M.
2003-01-01
Satellite-based VHF' lightning detection is characterized at GPS orbit by using a VHF receiver system recently launched on the GPS SVN 54 satellite. Collected lightning triggers consist of Narrow Bipolar Events (80%) and strong negative return strokes (20%). The results are used to evaluate the performance of a future GPS-satellite-based VHF global lightning monitor.
Static Evaluation of a NAVSTAR GPS (Magnavox Z-Set) Receiver - May-September 1979
DOT National Transportation Integrated Search
1980-05-01
The report documents the results of the static testing of a NAVSTAR Global Positioning System (GPS) single channel sequential receiver (Magnavox Z-Set). These tests were performed at the Coast Guard District 11 office in Long Beach, CA from May to Se...
Study on index system of GPS interference effect evaluation
NASA Astrophysics Data System (ADS)
Zhang, Kun; Zeng, Fangling; Zhao, Yuan; Zeng, Ruiqi
2018-05-01
Satellite navigation interference effect evaluation is the key technology to break through the research of Navigation countermeasure. To evaluate accurately the interference degree and Anti-jamming ability of GPS receiver, this text based on the existing research results of Navigation interference effect evaluation, build the index system of GPS receiver effectiveness evaluation from four levels of signal acquisition, tracking, demodulation and positioning/timing and establish the model for each index. These indexes can accurately and quantitatively describe the interference effect at all levels.
Use of GPS ASHTECH Z12T receivers for accurate time and frequency comparisons.
Petit, G; Thomas, C; Jiang, Z; Uhrich, P; Taris, F
1999-01-01
The GPS phase measurements described in this paper were obtained using two similar multichannel GPS ASHTECH Z12T receivers belonging to the Bureau International des Poids et Mesures, BIPM, and the Laboratoire Primaire du Temps et des Frequences, BNM-LPTF. These receivers are based on the conventional geodetic ASHTECH Z12 unit, which has been modified to meet the stability requirements of time and frequency comparisons. Comparison of the two receivers operated side by side in different antenna configurations shows typical short-term noise of 1.1 to 3.5 ps. Longer term variations indicate a temperature sensitivity in the equipment, which limits the performance of the GPS phase method. One of the receivers was successfully operated using a temperature-stabilized antenna TSA from 3S Navigation, and the ASHTECH antenna, which feeds the second receiver, was placed in a home-built oven maintained at a constant temperature. These precautions made it possible to reduce a number of systematic effects. A separate study of frequency comparison was carried out between two hydrogen-masers located at the BNM-LPTF (Paris, France) and the PTB (Braunschweig, Germany) using receivers similar to ASHTECH Z12T receivers. The relative frequency stability obtained was about 3.3x10(-15) for an average time of 15 000 s, an interesting result comparable with the outstanding performance of new ultrastable frequency standards.
DOT National Transportation Integrated Search
1980-05-01
The report documents the results of the static testing of a NAVSTAR Global Positioning System (GPS) single channel sequential receiver (Magnavox Z-Set). These tests were performed at the Coast Guard District 11 office in Long Beach, CA from May to Se...
DOT National Transportation Integrated Search
2008-01-28
The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...
HY-2A altimetry satellite GPS orbits processing and performances
NASA Astrophysics Data System (ADS)
Mercier, F.; Houry, S.; Couhert, A.; Cerri, L.
2012-04-01
The Chinese HY-2A altimetry satellite is on the mission orbit since 1st october 2011. This satellite uses a Doris receiver (French cooperation), a GPS receiver and a SLR retro-reflector for the precise orbit determination. The GPS is a dual frequency semi-codeless receiver. Precise orbits are computed at CNES on the basis of 7 days arcs since the beginning of the mission (repeat cycle is 14 days). This presentation describes the current processing performed at CNES for this satellite. The GPS only orbits perform very well and are compared with the Doris only orbits (floating ambiguity resolution, as for Jason 1 and 2). SLR measurements are also available at ILRS, and allow an external validation of the actual radial orbit performance. This talk adresses the current status of POE solutions and the prospects for improvement based on the preliminary analysis of the tracking data.
NASA Astrophysics Data System (ADS)
Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.
2013-12-01
In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.
GPS-aided gravimetry at 30 km altitude from a balloon-borne platform
NASA Technical Reports Server (NTRS)
Lazarewicz, Andrew R.; Evans, Alan G.
1989-01-01
A balloon-borne experiment, flown at 30 km altitude over New Mexico, was used to test dynamic differential Global Positioning System (GPS) tracking in support of gravimetry at high-altitudes. The experiment package contained a gravimeter (Vibrating String Accelerometer), a full complement of inertial instruments, a TI-4100 GPS receiver and a radar transponder. The flight was supported by two GPS receivers on the ground near the flight path. From the 8 hour flight, about a forty minute period was selected for analysis. Differential GPS phase measurements were used to estimate changes in position over the sample time interval, or average velocity. In addition to average velocity, differential positions and numerical averages of acceleration were obtained in three components. Gravitational acceleration was estimated by correcting for accelerations due to translational motion, ignoring all rotational effects.
Strategies for Near Real Time Estimates of Precipitable Water Vapor from GPS Ground Receivers
NASA Technical Reports Server (NTRS)
Y., Bar-Sever; Runge, T.; Kroger, P.
1995-01-01
GPS-based estimates of precipitable water vapor (PWV) may be useful in numerical weather models to improve short-term weather predictions. To be effective in numerical weather prediction models, GPS PWV estimates must be produced with sufficient accuracy in near real time. Several estimation strategies for the near real time processing of GPS data are investigated.
Group delay variations of GPS transmitting and receiving antennas
NASA Astrophysics Data System (ADS)
Wanninger, Lambert; Sumaya, Hael; Beer, Susanne
2017-09-01
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.
Scintillation Effects on Space Shuttle GPS Data
NASA Technical Reports Server (NTRS)
Goodman, John L.; Kramer, Leonard
2001-01-01
Irregularities in ionospheric electron density result in variation in amplitude and phase of Global Positioning System (GPS) signals, or scintillation. GPS receivers tracking scintillated signals may lose carrier phase or frequency lock in the case of phase sc intillation. Amplitude scintillation can cause "enhancement" or "fading" of GPS signals and result in loss of lock. Scintillation can occur over the equatorial and polar regions and is a function of location, time of day, season, and solar and geomagnetic activity. Mid latitude regions are affected only very rarely, resulting from highly disturbed auroral events. In the spring of 1998, due to increasing concern about scintillation of GPS signals during the upcoming solar maximum, the Space Shuttle Program began to assess the impact of scintillation on Collins Miniaturized Airborne GPS Receiver (MAGR) units that are to replace Tactical Air Control and Navigation (TACAN) units on the Space Shuttle orbiters. The Shuttle Program must determine if scintillation effects pose a threat to safety of flight and mission success or require procedural and flight rule changes. Flight controllers in Mission Control must understand scintillation effects on GPS to properly diagnose "off nominal" GPS receiver performance. GPS data from recent Space Shuttle missions indicate that the signals tracked by the Shuttle MAGR manifest scintillation. Scintillation is observed as anomalous noise in velocity measurements lasting for up to 20 minutes on Shuttle orbit passes and are not accounted for in the error budget of the MAGR accuracy parameters. These events are typically coincident with latitude and local time occurrence of previously identified equatorial spread F within about 20 degrees of the magnetic equator. The geographic and seasonal history of these events from ground-based observations and a simple theoretical model, which have potential for predicting events for operational purposes, are reviewed.
Exploring the Limits of High Altitude GPS for Future Lunar Missions
NASA Technical Reports Server (NTRS)
Ashman, Benjamin W.; Parker, Joel J.; Bauer, Frank H.; Esswein, Michael
2018-01-01
An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being con- sidered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.
Exploring the Limits of High Altitude GPS for Future Lunar Missions
NASA Technical Reports Server (NTRS)
Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael
2018-01-01
An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Ray, Richard D.; Williams, Simon D. P.
2017-01-01
A standard geodetic GPS receiver and a conventional Aquatrak tide gauge, collocated at Friday Harbor, Washington, are used to assess the quality of 10 years of water levels estimated from GPS sea surface reflections.The GPS results are improved by accounting for (tidal) motion of the reflecting sea surface and for signal propagation delay by the troposphere. The RMS error of individual GPS water level estimates is about 12 cm. Lower water levels are measured slightly more accurately than higher water levels. Forming daily mean sea levels reduces the RMS difference with the tide gauge data to approximately 2 cm. For monthly means, the RMS difference is 1.3 cm. The GPS elevations, of course, can be automatically placed into a well-defined terrestrial reference frame. Ocean tide coefficients, determined from both the GPS and tide gauge data, are in good agreement, with absolute differences below 1 cm for all constituents save K1 and S1. The latter constituent is especially anomalous, probably owing to daily temperature-induced errors in the Aquatrak tide gauge
Multi-instrumental Analysis of the Ionospheric Density Response to Geomagnetic Disturbances
NASA Astrophysics Data System (ADS)
Zakharenkova, I.; Astafyeva, E.
2014-12-01
Measurements provided by Low Earth Orbit (LEO) satellite missions have already proved to be very efficient in investigations of global redistribution of ionospheric plasma and thermosphere mass density during such phenomena as geomagnetic storms. LEO satellites have various instruments for research of the ionosphere response to the space weather events like GPS receiver for precise orbit determination (POD), total electron content estimation and radio occultation, altimeter, planar Langmuir probe, topside sounder, special detectors for particle fluxes, magnetometer etc. In this paper, we present results of joint analysis of LEO satellite data, in particular CHAMP, DMSP, JASON, as well as data provided by ground-based networks of GPS receivers and ionosonde stations for global ionospheric response to the geomagnetic disturbances. We use in-situ plasma density data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP-satellite and ground-based GPS-receivers to study occurrence and global distribution of ionospheric irregularities during the main phase of the storm. Using CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities - first is the region of the auroral oval at high latitudes of both hemispheres, the second one is the low-latitudes/equatorial region between Africa and South America. The interhemispheric asymmetry of the ionospheric irregularities intensity and occurrence in polar region is discussed. Analysis of the topside TEC, derived from CHAMP onboard GPS POD antenna, indicate the significant redistribution of the topside ionospheric plasma density in the equatorial, middle and high-latitude ionosphere during main and recovery phases of geomagnetic storm. Multi-instrumental data allow to analyze in detail the complex modification and dynamics of the upper atmosphere in different altitudinal, spatial and temporal scales.
1DVAR Analysis of Temperature and Humidity Using GPS Radio Occultation Data
NASA Technical Reports Server (NTRS)
Poli, Paul; Joiner, Joanna; Kursinski, Robert
2000-01-01
The Global Positioning System enables positioning in 3 dimensions about our planet. It has been operational since 1994. Twenty-four satellites are used to aclile\\,e this performance. The signals sent by these satellites are electromagnetic waves travelling through our atmosphere down to the small receivers used by the civilian community and the military. Because of varying meteorological conditions (namely, temperature and humidity changes along the ray path), the rays do not travel in a straight line. They bend towards the surface. As a consequence, the ray path between two points is longer than a straight line, and the time it takes for a signal to travel this distance is longer. In 1995, a small GPS receiver was launched on a satellite (GPS/MET). It become possible to perform radio occultations around the Earth: the source - one of the 24 GPS satellites - is seen by the receiver as it rises or sets around the other side of the Earth. When the source disappears, the receiver progressively loses the signals. By measuring accurately the time delay between the emission and the reception of the signal, it is possible to infer which part of the delay is due to the atmosphere. We use GPS/MET data to retrieve temperature and humidity profiles simultaneously. A specific method is implemented: it combines information from numerical forecasts and GPS observations in an optimal way. Comparing the result with an independent source of observations (weather balloons), we demonstrate that GPS data have the potential to improve weather analyses. We also show that improved temperature and humidity profiles can be obtained using information from a forecast model. This confirms results obtained in this study using simulated data.
First light from a kilometer-baseline Scintillation Auroral GPS Array.
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-05-28
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.
First light from a kilometer-baseline Scintillation Auroral GPS Array
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-01-01
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318
Portable global positioning system receivers: static validity and environmental conditions.
Duncan, Scott; Stewart, Tom I; Oliver, Melody; Mavoa, Suzanne; MacRae, Deborah; Badland, Hannah M; Duncan, Mitch J
2013-02-01
GPS receivers are becoming increasingly common as an objective measure of spatiotemporal movement in free-living populations; however, research into the effects of the surrounding physical environment on the accuracy of off-the-shelf GPS receivers is limited. The goal of the current study was to (1) determine the static validity of seven portable GPS receiver models under diverse environmental conditions and (2) compare the battery life and signal acquisition times among the models. Seven GPS models (three units of each) were placed on six geodetic sites subject to a variety of environmental conditions (e.g., open sky, high-rise buildings) on three separate occasions. The observed signal acquisition time and battery life of each unit were compared to advertised specifications. Data were collected and analyzed in June 2012. Substantial variation in positional error was observed among the seven GPS models, ranging from 12.1 ± 19.6 m to 58.8 ± 393.2 m when averaged across the three test periods and six geodetic sites. Further, mean error varied considerably among sites: the lowest error occurred at the site under open sky (7.3 ± 27.7 m), with the highest error at the site situated between high-rise buildings (59.2 ± 99.2 m). While observed signal acquisition times were generally longer than advertised, the differences between observed and advertised battery life were less pronounced. Results indicate that portable GPS receivers are able to accurately monitor static spatial location in unobstructed but not obstructed conditions. It also was observed that signal acquisition times were generally underestimated in advertised specifications. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
2016-10-14
GPS receiver testing was carried out April 2529, 2016 at the Army : Research Laboratory's (ARL) Electromagnetic Vulnerability Assessment : Facility (EMVAF), White Sands Missile Range (WSMR), NM : EMVAF 100 x 70 x 40 Anechoic C...
Modeling and Assessment of GPS/BDS Combined Precise Point Positioning.
Chen, Junping; Wang, Jungang; Zhang, Yize; Yang, Sainan; Chen, Qian; Gong, Xiuqiang
2016-07-22
Precise Point Positioning (PPP) technique enables stand-alone receivers to obtain cm-level positioning accuracy. Observations from multi-GNSS systems can augment users with improved positioning accuracy, reliability and availability. In this paper, we present and evaluate the GPS/BDS combined PPP models, including the traditional model and a simplified model, where the inter-system bias (ISB) is treated in different way. To evaluate the performance of combined GPS/BDS PPP, kinematic and static PPP positions are compared to the IGS daily estimates, where 1 month GPS/BDS data of 11 IGS Multi-GNSS Experiment (MGEX) stations are used. The results indicate apparent improvement of GPS/BDS combined PPP solutions in both static and kinematic cases, where much smaller standard deviations are presented in the magnitude distribution of coordinates RMS statistics. Comparisons between the traditional and simplified combined PPP models show no difference in coordinate estimations, and the inter system biases between the GPS/BDS system are assimilated into receiver clock, ambiguities and pseudo-range residuals accordingly.
A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit
In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.
2002-10-31
association with the High-frequency Active Auroral Research Program ( HAARP ). In addition to a classic riometer and a GPS Total Electron Content (TEC...sensor previously operating at the HAARP site, NWRA also operates a set of Transit receivers for measurements of TEC and scintillation at VHF and UHF...supplementing the receiver at HAARP with a receiver north of the site and an additional receiver installed south of the HAARP site.
4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model
NASA Astrophysics Data System (ADS)
Tuna, Hakan; Arikan, Feza; Arikan, Orhan
2016-07-01
Ionospheric imaging is an important subject in ionospheric studies. GPS based TEC measurements provide very accurate information about the electron density values in the ionosphere. However, since the measurements are generally very sparse and non-uniformly distributed, computation of 3D electron density estimation from measurements alone is an ill-defined problem. Model based 3D electron density estimations provide physically feasible distributions. However, they are not generally compliant with the TEC measurements obtained from GPS receivers. In this study, GPS based TEC measurements and an ionosphere model known as International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) are employed together in order to obtain a physically accurate 3D electron density distribution which is compliant with the real measurements obtained from a GPS satellite - receiver network. Ionospheric parameters input to the IRI-Plas model are perturbed in the region of interest by using parametric perturbation models such that the synthetic TEC measurements calculated from the resultant 3D electron density distribution fit to the real TEC measurements. The problem is considered as an optimization problem where the optimization parameters are the parameters of the parametric perturbation models. Proposed technique is applied over Turkey, on both calm and storm days of the ionosphere. Results show that the proposed technique produces 3D electron density distributions which are compliant with IRI-Plas model, GPS TEC measurements and ionosonde measurements. The effect of the GPS receiver station number on the performance of the proposed technique is investigated. Results showed that 7 GPS receiver stations in a region as large as Turkey is sufficient for both calm and storm days of the ionosphere. Since the ionization levels in the ionosphere are highly correlated in time, the proposed technique is extended to the time domain by applying Kalman based tracking and smoothing approaches onto the obtained results. Combining Kalman methods with the proposed 3D CIT technique creates a robust 4D ionospheric electron density estimation model, and has the advantage of decreasing the computational cost of the proposed method. Results applied on both calm and storm days of the ionosphere show that, new technique produces more robust solutions especially when the number of GPS receiver stations in the region is small. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
Derksen, F A W M; Olde Hartman, Tim; Bensing, Jozien; Lagro-Janssen, Antoine
2018-03-27
Empathy is regarded by patients and general practitioners (GPs) as fundamental in patient-GP communication. Patients do not always experience empathy and GPs encounter circumstances which hamper applying it. To explore why receiving and offering empathy during the encounter in general practice does not always meet the wishes of both patients and GPs. A qualitative research method, based on focus group interviews with patients and in-depth interviews with GPs, was carried out. Within the research process, iterative data collection and analysis were applied. Both patients and GPs perceive a gap between what they wish for with regard to empathy, and what they actually encounter in general practice. Patients report on circumstances which hamper receiving empathy and GPs on circumstances offering it. Various obstacles were mentioned: (i) circumstances related to practice organization, (ii) circumstances related to patient-GP communication or connectedness, (iii) differences between the patient's and the GP's expectations, (iv) time pressure and its causes and (v) the GP's individual capability to offer empathy. When patients do not receive empathy from their GP or practice staff, they feel frustrated. This causes a gap between their expectations on the one hand and their actual experiences on the other. GPs generally want to incorporate empathy; the GP's private, professional and psychological well-being appears to be an important contributing factor in practicing empathy in daily practice. But they encounter various obstacles to offer this. It is up to GPs to take responsibility for showing practice members the importance of an appropriate empathical behaviour towards patients.
Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking
NASA Technical Reports Server (NTRS)
Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)
2002-01-01
In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.
Wakeshield WSF-02 GPS Experiment
NASA Technical Reports Server (NTRS)
Schutz, B. E.; Abusali, P. A. M.; Schroeder, Christine; Tapley, Byron; Exner, Michael; Mccloskey, rick; Carpenter, Russell; Cooke, Michael; Mcdonald, samantha; Combs, Nick;
1995-01-01
Shuttle mission STS-69 was launched on September 7, 1995, 10:09 CDT, carrying the Wake Shield Facility (WSF-02). The WSF-02 spacecraft included a set of payloads provided by the Texas Space Grant Consortium, known as TexasSat. One of the TexasSat payloads was a GPS TurboRogue receiver loaned by the University Corporation for Atmospheric Research. On September 11, the WSF-02 was unberthed from the Endeavour payload bay using the remote manipulator system. The GPS receiver was powered on prior to release and the WSF-02 remained in free-flight for three days before being retrieved on September 14. All WSF-02 GPS data, which includes dual frequency pseudorange and carrier phase, were stored in an on-board recorder for post-flight analysis, but "snap- shots" of data were transmitted for 2-3 minutes at intervals of several hours, when permitted by the telemetry band- widdl The GPS experiment goals were: (1) an evaluation of precision orbit determination in a low altitude environment (400 km) where perturbations due to atmospheric drag and the Earth's gravity field are more pronounced than for higher altitude satellites with high precision orbit requirements, such as TOPEX/POSEIDON; (2) an assessment of relative positioning using the WSF GPS receiver and the Endeavour Collins receiver; and (3) determination of atmospheric temperature profiles using GPS signals passing through the atmosphere. Analysis of snap-shot telemetry data indicate that 24 hours of continuous data were stored on board, which includes high rate (50 Hz) data for atmosphere temperature profiles. Examination of the limited number of real-time navigation solutions show that at least 7 GPS satellites were tracked simultaneously and the on-board clock corrections were at the microsec level, as expected. Furthermore, a dynamical consistency test provided a further validation of the on-board navigation solutions. Complete analysis will be conducted in post-flight using the data recorded on-board.
C/NOFS, SWARM, and LISN Observations of Equatorial Plasma Bubbles
NASA Astrophysics Data System (ADS)
Valladares, C. E.; Coisson, P.; Buchert, S. C.; Huang, C.; Sheehan, R.
2017-12-01
We have used Langmuir Probe densities measured during the early commissioning phase of the SWARM mission and simultaneous number densities recorded with the PLP instrument on board the C/NOFS satellite to investigate the geometric characteristics of equatorial plasma bubbles (EPB). The SWARM satellites orbit in a polar orbit and the C/NOFS satellite has a near equatorial trajectory making it possible to precisely measure the north-south and the east-west width of plasma depletions. This unique satellite database is complemented with TEC values collected with hundreds of GPS receivers that belong to LISN and other networks that operate in South and Central America. The GPS receivers provide multiple and almost concurrent observations of the TEC depletions that are required to calculate the velocity of plasma bubbles as a function of time, latitude, and longitude. The bubble velocity field commonly decreases through the night from 150 to 0 m/s and from low to higher latitudes at a rate equal to 5 m/s/degree. This bubble velocity field is used to trace backward and forward in time the satellite and GPS observations and reconstruct plasma depletions in 3 dimensions. The 3-D geometry indicates that in December 2013, the EPBs most of the time correspond to a series of embedded shells that drift eastward with velocities that vary between 125 and 20 m/s. The 3-D reconstructed EPBs can be used to perform close comparisons with results of numerical simulations and 2-D observations conducted with coherent radars or imagers.
Non-dynamic decimeter tracking of earth satellites using the Global Positioning System
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Wu, S. C.
1986-01-01
A technique is described for employing the Global Positioning System (GPS) to determine the position of a low earth orbiter with decimeter accuracy without the need for user dynamic models. A differential observing strategy is used requiring a GPS receiver on the user vehicle and a network of six ground receivers. The technique uses the continuous record of position change obtained from GPS carrier phase to smooth position measurements made with pseudo-range. The result is a computationally efficient technique that can deliver decimeter accuracy down to the lowest altitude orbits.
2001-09-01
43 4. GPS ......................................................................................................44 E. POWER SUPPLY HARDWARE...44 Figure 5.6 Earthmate GPS Receiver ........................................................................................45...and 5Watts at 25 Ft Effective Range Minimum range of wireless link is 5 miles. Positional awareness System requires GPS input to determine
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... INTERNATIONAL TRADE COMMISSION [DN 2850] Certain Automotive GPS Navigation Systems, Components... given that the U.S. International Trade Commission has received a complaint entitled In Re Certain Automotive GPS Navigation Systems, Components Thereof, And Products Containing Same, DN 2850; the Commission...
A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model
Wu, Xuerui; Jin, Shuanggen; Xia, Junming
2017-01-01
Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR. PMID:28587255
Joint IRIS/PASSCAL UNAVCO Seismic and GPS Installations, Testing, and Development
NASA Astrophysics Data System (ADS)
Fowler, J.; Alvarez, M.; Beaudoin, B.; Jackson, M.; Feaux, K.; Ruud, O.; Andreatta, V.; Meertens, C.; Ingate, S.
2002-12-01
Future large-scale deformation initiatives such as EarthScope (http://www.earthscope.org/) will provide an opportunity for collocation and integration of GPS receivers and broadband and short period seismic instruments. Example integration targets include PBO backbone and cluster sites with USArray Transportable (Bigfoot) and Permanent Array. A GPS seismic integration and testing facility at the IRIS/PASSCAL Instrument Center in Socorro, NM is currently performing side-by-side testing of different seismometers, GPS receivers, communications hardware, power systems and data streaming software. One configuration tested uses an integrated VSAT data communications system and a broadband seismometer collocated with a geodetic quality GPS system. Data are routed through a VSAT hub and distributed to the UNAVCO Data Archive in Boulder and the IRIS Data Management Center in Seattle. Preliminary results indicate data availability approaching 100% with a maximum latency of 5 sec.
Analysis of GPS Data Collected on the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Larson, K.; Plumb, J.; Zwally, J.; Abdalati, W.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
For several years, GPS observations have been made year round at the Swiss Camp, Greenland. The GPS data are recorded for 12 hours every 10-15 days; data are stored in memory and downloaded during the annual field season. Traditional GPS analysis techniques, where the receiver is assumed not to move within a 24 hour period, is not appropriate at the Swiss Camp, where horizontal velocities are on the order of 30 cm/day. Comparison of analysis strategies for these GPS data indicate that a random walk parameterization, with a constraint of 1-2 x 10(exp -7) km/sqrt(sec) minimizes noise due to satellite outages without corrupting the estimated ice velocity. Low elevation angle observations should be included in the analysis in order to increase the number of satellites viewed at each data epoch. Carrier phase ambiguity resolution is important for improving the accuracy of receiver coordinates.
GPS-Based Navigation and Orbit Determination for the AMSAT Phase 3D Satellite
NASA Technical Reports Server (NTRS)
Davis, George; Carpenter, Russell; Moreau, Michael; Bauer, Frank H.; Long, Anne; Kelbel, David; Martin, Thomas
2002-01-01
This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more important, that the receiver clock can be synchronized to GPS time. This is extremely important for real-time and post-processed orbit determination, where removal of receiver clock bias from the data time tags is needed, for time-tagging of science observations. Current analysis suggests that the inability to generate point solutions has allowed the TANS Vector clock bias to drift freely, being perhaps as large as 5-7 seconds by October, 2001, thus causing up to 50 km of along-track orbit error. The data collected in May, 2002 while in three-axis stabilized mode should provide a significant improvement in the orbit determination results.
NASA Astrophysics Data System (ADS)
Li, Xingxing
2014-05-01
Earthquake monitoring and early warning system for hazard assessment and mitigation has traditional been based on seismic instruments. However, for large seismic events, it is difficult for traditional seismic instruments to produce accurate and reliable displacements because of the saturation of broadband seismometers and problematic integration of strong-motion data. Compared with the traditional seismic instruments, GPS can measure arbitrarily large dynamic displacements without saturation, making them particularly valuable in case of large earthquakes and tsunamis. GPS relative positioning approach is usually adopted to estimate seismic displacements since centimeter-level accuracy can be achieved in real-time by processing double-differenced carrier-phase observables. However, relative positioning method requires a local reference station, which might itself be displaced during a large seismic event, resulting in misleading GPS analysis results. Meanwhile, the relative/network approach is time-consuming, particularly difficult for the simultaneous and real-time analysis of GPS data from hundreds or thousands of ground stations. In recent years, several single-receiver approaches for real-time GPS seismology, which can overcome the reference station problem of the relative positioning approach, have been successfully developed and applied to GPS seismology. One available method is real-time precise point positioning (PPP) relied on precise satellite orbit and clock products. However, real-time PPP needs a long (re)convergence period, of about thirty minutes, to resolve integer phase ambiguities and achieve centimeter-level accuracy. In comparison with PPP, Colosimo et al. (2011) proposed a variometric approach to determine the change of position between two adjacent epochs, and then displacements are obtained by a single integration of the delta positions. This approach does not suffer from convergence process, but the single integration from delta positions to displacements is accompanied by a drift due to the potential uncompensated errors. Li et al. (2013) presented a temporal point positioning (TPP) method to quickly capture coseismic displacements with a single GPS receiver in real-time. The TPP approach can overcome the convergence problem of precise point positioning (PPP), and also avoids the integration and de-trending process of the variometric approach. The performance of TPP is demonstrated to be at few centimeters level of displacement accuracy for even twenty minutes interval with real-time precise orbit and clock products. In this study, we firstly present and compare the observation models and processing strategies of the current existing single-receiver methods for real-time GPS seismology. Furthermore, we propose several refinements to the variometric approach in order to eliminate the drift trend in the integrated coseismic displacements. The mathematical relationship between these methods is discussed in detail and their equivalence is also proved. The impact of error components such as satellite ephemeris, ionospheric delay, tropospheric delay, and geometry change on the retrieved displacements are carefully analyzed and investigated. Finally, the performance of these single-receiver approaches for real-time GPS seismology is validated using 1 Hz GPS data collected during the Tohoku-Oki earthquake (Mw 9.0, March 11, 2011) in Japan. It is shown that few centimeters accuracy of coseismic displacements is achievable. Keywords: High-rate GPS; real-time GPS seismology; a single receiver; PPP; variometric approach; temporal point positioning; error analysis; coseismic displacement; fault slip inversion;
GPS receiver CODE bias estimation: A comparison of two methods
NASA Astrophysics Data System (ADS)
McCaffrey, Anthony M.; Jayachandran, P. T.; Themens, D. R.; Langley, R. B.
2017-04-01
The Global Positioning System (GPS) is a valuable tool in the measurement and monitoring of ionospheric total electron content (TEC). To obtain accurate GPS-derived TEC, satellite and receiver hardware biases, known as differential code biases (DCBs), must be estimated and removed. The Center for Orbit Determination in Europe (CODE) provides monthly averages of receiver DCBs for a significant number of stations in the International Global Navigation Satellite Systems Service (IGS) network. A comparison of the monthly receiver DCBs provided by CODE with DCBs estimated using the minimization of standard deviations (MSD) method on both daily and monthly time intervals, is presented. Calibrated TEC obtained using CODE-derived DCBs, is accurate to within 0.74 TEC units (TECU) in differenced slant TEC (sTEC), while calibrated sTEC using MSD-derived DCBs results in an accuracy of 1.48 TECU.
GPS/GLONASS Time Transfer with 20-Channel Dual GNSS Receiver
NASA Technical Reports Server (NTRS)
Daly, P.; Riley, S.
1996-01-01
One of the world's two global navigation systems, the Global Positioning System (GPS), is already fully operational (April 1994) and the other, the Global Navigation Satellite System (GLONASS) will become operational by the end of 1995 or early 1996. Each will offer, independently of the other, precise location and time transfer continuously anywhere in the world and indeed in space itself. Many potential users, in particular the civil aviation community, are keenly interested in a joint GPS/GLONASS operation since it would offer substantial advantages in defining and maintaining the integrity of the navigation aid. Results are presented on the characterization of GPS/GLONASS time comparison using a 20-channel dual receiver developed and constructed at the University of Leeds, UK.
Estimating Total Electron Content Using 1,000+ GPS Receivers
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Mannucci, Anthony
2006-01-01
A computer program uses data from more than 1,000 Global Positioning System (GPS) receivers in an Internet-accessible global network to generate daily estimates of the global distribution of vertical total electron content (VTEC) of the ionosphere. This program supersedes an older program capable of processing readings from only about 200 GPS receivers. This program downloads the data via the Internet, then processes the data in three stages. In the first stage, raw data from a global subnetwork of about 200 receivers are preprocessed, station by station, in a Kalman-filter-based least-squares estimation scheme that estimates satellite and receiver differential biases for these receivers and for satellites. In the second stage, an observation equation that incorporates the results from the first stage and the raw data from the remaining 800 receivers is solved to obtain the differential biases for these receivers. The only remaining error sources for which an account cannot be given are multipath and receiver noise contributions. The third stage is a postprocessing stage in which all the processed data are combined and used to generate new data products, including receiver differential biases and global and regional VTEC maps and animations.
Advancing Technology: GPS and GIS Outreach Training for Agricultural Producers
ERIC Educational Resources Information Center
Flynn, Allison; Arnold, Shannon
2010-01-01
The use of the Global Positioning System (GPS) and Global Information Systems (GIS) has made significant impacts on agricultural production practices. However, constant changes in the technologies require continuing educational updates. The outreach program described here introduces the operation, use, and applications of GPS receivers and GIS…
GPS interferometric reflectometry for ground-based remote sensing of snow depth and density
NASA Astrophysics Data System (ADS)
Nievinski, F. G.; Larson, K. M.; Gutmann, E. D.; Zavorotny, V.; Williams, M. W.
2011-12-01
GPS interferometric reflectometry (GPS-IR) is a method that exploits multipath for ground-based remote sensing in the surroundings of a GPS antenna. It operates on L-band, leveraging hundreds of conventional GPS sites existing in the U.S., with a typical footprint of 30-meter radius. Multipath is the coherent interference of line-of-sight and reflected signals; as the two go in and out of phase, the power recorded by a GPS interferometer goes through peaks and troughs that can be related to land surface characteristics, such as soil moisture and snow depth. GPS-IR has been demonstrated to be capable of retrieving snow depth during extended periods at various locations, as validated by comparisons with a continuously-operating terrestrial scanning laser, an airborne LIDAR campaign, manual stake surveys, and ultrasonic depth sensors. Here we explore the possibility of retrieving snow density, too. This will determine the feasibility and limitations of GPS-IR for monitoring of snow water equivalent (SWE). Data were collected at Niwot Ridge LTER in Colorado, at a 3,500-m altitude alpine tundra site. Niwot receives around 1,000 mm of precipitation per year and has a mean annual air temperature of -3.8°C. Snow density and temperature is measured in 10-cm vertical increments at snowpits dug approximately every week. A continuously-operating GPS system established in 2009 allows for measurement of the snowpack several times a day at multiple azimuths as satellites rise and set. The typical peak snow depth at the GPS site is 1.5 m, with a peak depth during the study period of 1.7 m in 2009/2010 and 2.5 m in 2010/2011; density ranged 200-600 kg/m3. We employ a forward/inverse model originally developed for snow depth and recently extended to account for layering to study both synthetic and real observations. We present comparisons of density estimates obtained using GPS-IR observations to snowpit field data, focusing initially on dry snow. In addition, we explore the sensitivity of the model to roughness, density, snow depth, and random noise. Synthetic observations derived from the forward model based on realistic snow profiles are utilized in the inverse model to quantify both the formal uncertainty and the expected error in parameter retrievals.
Application of GPS tracking techniques to orbit determination for TDRS
NASA Technical Reports Server (NTRS)
Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S. C.
1993-01-01
In this paper, we evaluate two fundamentally different approaches to TDRS orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRSS spacecraft. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRSS spacecraft broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and TDRSS satellites from a small ground network. Both strategies can be designed to meet future operational requirements for TDRS-2 orbit determination.
Altimetry Using GPS-Reflection/Occultation Interferometry
NASA Technical Reports Server (NTRS)
Cardellach, Estel; DeLaTorre, Manuel; Hajj, George A.; Ao, Chi
2008-01-01
A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface.
Paul, Christine; Rose, Shiho; Hensley, Michael; Pretto, Jeffrey; Hardy, Margaret; Henskens, Frans; Clinton-McHarg, Tara; Carey, Mariko
2016-07-19
Obstructive sleep apnoea (OSA) affects up to 28 % of the adult population in Western countries. The detection and management of OSA by general practitioners (GPs) can be poor. The study aimed to examine what influence enhanced invitations had on uptake of on-line learning modules for OSA by GPs, and whether recent referrals of patients to sleep specialists influenced uptake. Practicing GPs in regional Australia were identified and randomised to receive either an enhanced or standard invitation letter to a new on-line education module for OSA. The enhanced letter included indication that the module was eligible for professional accreditation and described the prevalence and burden of sleep disorders. Some included extra emphasis if the GP had recently referred a patient for diagnostic investigation of OSA. Two reminder letters were sent. Of 796 eligible GPs who received the letters, sixteen (2 %) accessed the website and four completed the modules over the four-month study period. GPs who received an enhanced invitation letter were not significantly more likely to access the website compared to GPs who received the standard invitation letter. Recent referral of a patient for diagnostic investigation was also not a significant factor in influencing use of the module. GP interest in on-line education about OSA appears low, and emphasis of relevant recent past patient(s) and the opportunity for professional education points was not successful in increasing engagement. There is a need to identify effective approaches to improving the detection and management of OSA in general practice.
2013-01-01
Background Few studies have investigated the effect of small unconditional non-monetary incentives on survey response rates amongst GPs or medical practitioners. This study assessed the effectiveness of offering a small unconditional non-financial incentive to increase survey response rates amongst general practitioners within a randomised controlled trial (RCT). Methods An RCT was conducted within a general practice survey that investigated how to prolong working lives amongst ageing GPs in Australia. GPs (n = 125) were randomised to receive an attractive pen or no pen during their first invitation for participation in a survey. GPs could elect to complete the survey online or via mail. Two follow up reminders were sent without a pen to both groups. The main outcome measure was response rates. Results The response rate for GPs who received a pen was higher in the intervention group (61.9%) compared to the control group (46.8%). This study did not find a statistically significant effect of a small unconditional non-financial incentive (in the form of a pen) on survey response rates amongst GPs (Odds ratio, 95% confidence interval: 1.85 (0.91 to 3.77). No GPs completed the online version. Conclusion A small unconditional non-financial incentives, in the form of a pen, may improve response rates for GPs. PMID:23899116
Pit, Sabrina Winona; Hansen, Vibeke; Ewald, Dan
2013-07-30
Few studies have investigated the effect of small unconditional non-monetary incentives on survey response rates amongst GPs or medical practitioners. This study assessed the effectiveness of offering a small unconditional non-financial incentive to increase survey response rates amongst general practitioners within a randomised controlled trial (RCT). An RCT was conducted within a general practice survey that investigated how to prolong working lives amongst ageing GPs in Australia. GPs (n = 125) were randomised to receive an attractive pen or no pen during their first invitation for participation in a survey. GPs could elect to complete the survey online or via mail. Two follow up reminders were sent without a pen to both groups. The main outcome measure was response rates. The response rate for GPs who received a pen was higher in the intervention group (61.9%) compared to the control group (46.8%). This study did not find a statistically significant effect of a small unconditional non-financial incentive (in the form of a pen) on survey response rates amongst GPs (Odds ratio, 95% confidence interval: 1.85 (0.91 to 3.77). No GPs completed the online version. A small unconditional non-financial incentives, in the form of a pen, may improve response rates for GPs.
Foundation and Development of Local Trimble User Groups: Perspectives from the Beginning
NASA Technical Reports Server (NTRS)
Duncan, Brean W.
1996-01-01
Trimble Navigation was one of the original contractors building military grade GPS receivers and has been a dominant manufacturer in the civilian market. Two Trimble user groups have been formed. By participating in GPS user groups, members become more aware of GPS capabilities and opportunities, meet people with similar interests and needs, expand business opportunities, and provide Trimble with valuable information needed to engineer better GPS equipment.
Robust Real-Time Wide-Area Differential GPS Navigation
NASA Technical Reports Server (NTRS)
Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)
1998-01-01
The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.
Wave and Current Observations in a Tidal Inlet Using GPS Drifter Buoys
2013-03-01
right panel). ............17 Figure 10. DWR-G external sensor configuration (left panel). GT-31 GPS receiver is visible on the bottom left. Two GoPro ...receiver is visible on the bottom left. Two GoPro cameras are attached to the top of the buoy. DWR-G internal sensor configuration (right panel
USDA-ARS?s Scientific Manuscript database
A device was designed to test the dynamic accuracy of Global Positioning System (GPS) receivers used in aerial vehicles. The system works by directing a sun-reflected light beam from the ground to the aircraft using mirrors. A photodetector is placed pointing downward from the aircraft and circuitry...
NASA Astrophysics Data System (ADS)
GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.
2013-12-01
BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped with Rubidium clocks and clocks performance are also presented. Finally, benefits of BDS processing strategies and further developments are concluded.
Coastal sea level measurements using a single geodetic GPS receiver
NASA Astrophysics Data System (ADS)
Larson, Kristine M.; Löfgren, Johan S.; Haas, Rüdiger
2013-04-01
This paper presents a method to derive local sea level variations using data from a single geodetic-quality Global Navigation Satellite System (GNSS) receiver using GPS (Global Positioning System) signals. This method is based on multipath theory for specular reflections and the use of Signal-to-Noise Ratio (SNR) data. The technique could be valuable for altimeter calibration and validation. Data from two test sites, a dedicated GPS tide gauge at the Onsala Space Observatory (OSO) in Sweden and the Friday Harbor GPS site of the EarthScope Plate Boundary Observatory (PBO) in USA, are analyzed. The sea level results are compared to independently observed sea level data from nearby and in situ tide gauges. For OSO, the Root-Mean-Square (RMS) agreement is better than 5 cm, while it is in the order of 10 cm for Friday Harbor. The correlation coefficients are better than 0.97 for both sites. For OSO, the SNR-based results are also compared with results from a geodetic analysis of GPS data of a two receivers/antennae tide gauge installation. The SNR-based analysis results in a slightly worse RMS agreement with respect to the independent tide gauge data than the geodetic analysis (4.8 cm and 4.0 cm, respectively). However, it provides results even for rough sea surface conditions when the two receivers/antennae installation no longer records the necessary data for a geodetic analysis.
Retrieval and Validation of Zenith and Slant Path Delays From the Irish GPS Network
NASA Astrophysics Data System (ADS)
Hanafin, Jennifer; Jennings, S. Gerard; O'Dowd, Colin; McGrath, Ray; Whelan, Eoin
2010-05-01
Retrieval of atmospheric integrated water vapour (IWV) from ground-based GPS receivers and provision of this data product for meteorological applications has been the focus of a number of Europe-wide networks and projects, most recently the EUMETNET GPS water vapour programme. The results presented here are from a project to provide such information about the state of the atmosphere around Ireland for climate monitoring and improved numerical weather prediction. Two geodetic reference GPS receivers have been deployed at Valentia Observatory in Co. Kerry and Mace Head Atmospheric Research Station in Co. Galway, Ireland. These two receivers supplement the existing Ordnance Survey Ireland active network of 17 permanent ground-based receivers. A system to retrieve column-integrated atmospheric water vapour from the data provided by this network has been developed, based on the GPS Analysis at MIT (GAMIT) software package. The data quality of the zenith retrievals has been assessed using co-located radiosondes at the Valentia site and observations from a microwave profiling radiometer at the Mace Head site. Validation of the slant path retrievals requires a numerical weather prediction model and HIRLAM (High-Resolution Limited Area Model) version 7.2, the current operational forecast model in use at Met Éireann for the region, has been used for this validation work. Results from the data processing and comparisons with the independent observations and model will be presented.
Semi-Major Axis Knowledge and GPS Orbit Determination
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)
2000-01-01
In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
Semi-Major Axis Knowledge and GPS Orbit Determination
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)
2000-01-01
In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning, Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
Crumley, Andrew B C; Stuart, Robert C; McKernan, Margaret; McDonald, Alexander C; McMillan, Donald C
2008-08-01
The aim of the present study was to compare an inflammation-based prognostic score (Glasgow Prognostic Score, GPS) with performance status (ECOG-ps) in patients receiving platinum-based chemotherapy for palliation of gastroesophageal cancer. Sixty-five patients presenting with gastroesophageal carcinoma to the Royal Infirmary, Glasgow between January 1999 and December 2005 and who received palliative chemotherapy or chemo-radiotherapy were studied. ECOG-ps, C-reactive protein, and albumin were recorded at diagnosis. Patients with both an elevated C-reactive protein (>10 mg/L) and hypoalbuminemia (<35 g/L) were allocated a GPS of 2. Patients in whom only one of these biochemical abnormalities was present were allocated a GPS of 1 and patients with a normal C-reactive protein and albumin were allocated a score of 0. Toxicity was recorded using the Common Toxicity Criteria. The minimum follow up was 14 months. During the follow-up period, 59 (91%) of the patients died. On univariate and multivariate survival analysis, only the GPS (hazard ratios 1.65, 95% CI 1.10-2.47, P < 0.05) was a significant independent predictor of cancer survival. In addition, in comparison with patients with GPS of 0, those patients with a GPS of 1 or 2 required more frequent chemotherapy dose reduction (P < 0.05), were less likely to exhibit a clinical response to treatment (P < 0.05), and had shorter survival (P < 0.05). The presence of a systemic inflammatory response, as evidenced by the GPS, appears to be superior to the subjective assessment of performance status (ECOG-ps) in predicting the response to platinum-based chemotherapy in patients with advanced gastroesophageal cancer.
Investigating Atmospheric Rivers using GPS PW from Ocean Transits
NASA Astrophysics Data System (ADS)
Almanza, V.; Foster, J. H.; Businger, S.
2014-12-01
Atmospheric Rivers (AR) can be described as a long narrow feature within a warm conveyor belt where anomalous precipitable water (PW) is transported from low to high latitudes. Close monitoring of ARs is heavily reliant on satellites, which are limited both in space and time, to capture the fluctuations PW particularly over the ocean. Ship-based Global Positioning System (GPS) receivers have been successful in obtaining millimeter PW accuracy within 100 km from the nearest ground-based reference receiver at a 30 second sampling rate. We extended this capability with a field experiment using ship-based GPS PW on board a cargo ship to traverse over the Eastern Pacific Ocean. In one 14-day cruise cycle, between the periods of February 3-16, 2014, the ship-based GPS captured PW spikes >50 mm during the early development of two ARs, which lead to moderate to heavy rainfall events for Hawaii and flood conditions along the West Coast of the United States. Comparisons between PW solutions processed using different GPS reference sites at distances 100-2000 km provided an internal validation for the ship-based GPS PW with errors typically less than 5 mm. Land-based observations provided an external validation and are in good agreement with ship-based GPS PW at distances <100 km from the coast, a zone heavily trafficked by cargo containers and a challenge area for satellite retrievals. From these preliminary results, commercial ship-based GPS receivers offer an extremely cost-effective approach for acquiring continuous meteorological observations over the oceans, which can provide important calibration/validation data for satellite retrieval algorithms. Ship-based systems could be particularly useful for augmenting our meteorological observing networks to improve weather prediction and nowcasting, which in turn provide critical support for hazard response and mitigation efforts in coastal regions.
Climatology of GPS signal loss observed by Swarm satellites
NASA Astrophysics Data System (ADS)
Xiong, Chao; Stolle, Claudia; Park, Jaeheung
2018-04-01
By using 3-year global positioning system (GPS) measurements from December 2013 to November 2016, we provide in this study a detailed survey on the climatology of the GPS signal loss of Swarm onboard receivers. Our results show that the GPS signal losses prefer to occur at both low latitudes between ±5 and ±20° magnetic latitude (MLAT) and high latitudes above 60° MLAT in both hemispheres. These events at all latitudes are observed mainly during equinoxes and December solstice months, while totally absent during June solstice months. At low latitudes the GPS signal losses are caused by the equatorial plasma irregularities shortly after sunset, and at high latitude they are also highly related to the large density gradients associated with ionospheric irregularities. Additionally, the high-latitude events are more often observed in the Southern Hemisphere, occurring mainly at the cusp region and along nightside auroral latitudes. The signal losses mainly happen for those GPS rays with elevation angles less than 20°, and more commonly occur when the line of sight between GPS and Swarm satellites is aligned with the shell structure of plasma irregularities. Our results also confirm that the capability of the Swarm receiver has been improved after the bandwidth of the phase-locked loop (PLL) widened, but the updates cannot radically avoid the interruption in tracking GPS satellites caused by the ionospheric plasma irregularities. Additionally, after the PLL bandwidth increased larger than 0.5 Hz, some unexpected signal losses are observed even at middle latitudes, which are not related to the ionospheric plasma irregularities. Our results suggest that rather than 1.0 Hz, a PLL bandwidth of 0.5 Hz is a more suitable value for the Swarm receiver.
Application of GPS Measurements for Ionospheric and Tropospheric Modelling
NASA Astrophysics Data System (ADS)
Rajendra Prasad, P.; Abdu, M. A.; Furlan, Benedito. M. P.; Koiti Kuga, Hélio
military navigation. The DOD's primary purposes were to use the system in precision weapon delivery and providing a capability that would help reverse the proliferation of navigation systems in military. Subsequently, it was very quickly realized that civil use and scientific utility would far outstrip military use. A variety of scientific applications are uniquely suited to precise positioning capabilities. The relatively high precision, low cost, mobility and convenience of GPS receivers make positioning attractive. The other applications being precise time measurement, surveying and geodesy purposes apart from orbit and attitude determination along with many user services. The system operates by transmitting radio waves from satellites to receivers on the ground, aircraft, or other satellites. These signals are used to calculate location very accurately. Standard Positioning Services (SPS) which restricts access to Coarse/Access (C/A) code and carrier signals on the L1 frequency only. The accuracy thus provided by SPS fall short of most of the accuracy requirements of users. The upper atmosphere is ionized by the ultra violet radiation from the sun. The significant errors in positioning can result when the signals are refracted and slowed by ionospheric conditions, the parameter of the ionosphere that produces most effects on GPS signals is the total number of electrons in the ionospheric propagation path. This integrated number of electrons, called Total Electron Content (TEC) varies, not only from day to night, time of the year and solar flux cycle, but also with geomagnetic latitude and longitude. Being plasma the ionosphere affects the radio waves propagating through it. Effects of scintillation on GPS satellite navigation systems operating at L1 (1.5754 GHz), L2 (1.2276 GHz) frequencies have not been estimated accurately. It is generally recognized that GPS navigation systems are vulnerable in the polar and especially in the equatorial region during the solar maximum period. In the equatorial region the irregularity structures are highly elongated in the north-south direction and are discrete in the east-west direction with dimensions of several hundred km. With such spatial distribution of irregularities needs to determine how often the GPS receivers fails to provide navigation aid with the available constellation. The effects of scintillation on the performance of GPS navigation systems in the equatorial region can be analyzed through commissioning few ground receivers. Incidentally there are few GPS receivers near these latitudes. Despite the recent advances in the ionosphere and tropospheric delay modeling for geodetic applications of GPS, the models currently used are not very precise. The conventional and operational ionosphere models viz. Klobuchar, Bent, and IRI models have certain limitations in providing very precise accuracies at all latitudes. The troposphere delay modeling also suffers in accuracy. The advances made in both computing power and knowledge of the atmosphere leads to make an effort to upgrade some of these models for improving delay corrections in GPS navigation. The ionospheric group delay corrections for orbit determination can be minimized using duel frequency. However in single frequency measurements the group delay correction is an involved task. In this paper an investigation is carried out to estimate the model coefficients of ionosphere along with precise orbit determination modeling using GPS measurements. The locations of the ground-based receivers near equator are known very exactly. Measurements from these ground stations to a precisely known satellite carrying duel receiver is used for orbit determination. The ionosphere model parameters can be refined corresponding to spatially distributed GPS receivers spread over Brazil. The tropospheric delay effects are not significant for the satellites by choosing appropriate elevation angle. However it needs to be analyzed for user like aircraft for an effective use. In this paper brief description of GPS data utilization, Navigational message, orbit computation and precise orbit determination and Ionosphere and troposphere models are summarized. The methodology towards refining ionosphere model coefficients is presented. Some of the plots and results related to orbit determination are presented. The study demonstrated the feasibility of estimating ionosphere group delay at specific latitudes and could be improved through refining some of the model coefficients using GPS measurements. It is possible to accurately determine the tropospheric delay, which may be used for an aircraft in flight without access to real time meteorological information.
Wardle, Jonathan Lee; Adams, Jon; Sibbritt, David William
2013-03-01
To ascertain the extent of and trends in the use of acupuncture in Australian general practice and the characteristics of patients receiving publicly subsidised acupuncture services from general practitioners (GPs). Secondary analysis of national patient Medicare data for claims by all non-specialist medical practitioners for Medicare Benefits Schedule items for an attendance where acupuncture was performed by a medical practitioner from 1995 to 2011. Use of acupuncture by GPs, patients' sex and age and the socioeconomic disadvantage index of GP's practice. There has been a 47.7% decline in the number of acupuncture claims by GPs per 100 000 population in the period from 1995 to 2011. Acupuncture claims were made by 3.4% of GPs in 2011. Women were almost twice as likely to receive acupuncture from a GP as men, and patients in urban areas were more than twice as likely to receive acupuncture from a GP as patients in rural areas. Acupuncture claims were highest in areas that were socioeconomically advantaged. Claims for reimbursement for acupuncture by GPs have declined significantly in Australian general practice even though the use of acupuncture by the Australian public has increased. This may be due to increased use of referrals or use of non-medical practitioners, barriers to acupuncture practice in general practice or non-specific factors affecting reimbursement for non-vocationally registered GPs.
Giménez, Nuria; Pedrazas, David; Redondo, Susana; Quintana, Salvador
2016-10-01
Adequate information for patients and respect for their autonomy are mandatory in research. This article examined insights of researchers, patients and general practitioners (GPs) on the informed consent process in clinical trials, and the role of the GP. A cross-sectional study using three questionnaires, informed consent reviews, medical records, and hospital discharge reports. GPs, researchers and patients involved in clinical trials. Included, 504 GPs, 108 researchers, and 71 patients. Consulting the GP was recommended in 50% of the informed consents. Participation in clinical trials was shown in 33% of the medical records and 3% of the hospital discharge reports. GPs scored 3.54 points (on a 1-10 scale) on the assessment of the information received by the principal investigator. The readability of the informed consent sheet was rated 8.03 points by researchers, and the understanding was rated 7.68 points by patients. Patient satisfaction was positively associated with more time for reflection. GPs were not satisfied with the information received on the participation of patients under their in clinical trials. Researchers were satisfied with the information they offered to patients, and were aware of the need to improve the information GPs received. Patients collaborated greatly towards biomedical research, expressed satisfaction with the overall process, and minimised the difficulties associated with participation. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Junseok; Kim, Yong Ha; Chung, Jong-Kyun; Ssessanga, Nicholas; Kwak, Young-Sil
2017-03-01
In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.
Long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?
NASA Astrophysics Data System (ADS)
Kelevitz, Krisztina; Houlié, Nicolas; Boschi, Lapo; Nissen-Meyer, Tarje; Giardini, Domenico
2014-05-01
It is now commonly admitted that high rate GPS observations can provide reliable surface displacement waveforms (Cervelli, et al., 2001; Langbein, et al., 2006; Houlié, et al., 2006; Houlié et al., 2011). For long-period (T>5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component (Houlié, et al., Sci. Rep. 2011). We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. GPS measurements are providing a wide range of frequencies, going beyond the range of STS-1 in the low frequency end. Nowadays, almost 10.000 GPS receivers would be able to record data at 1 Hz with 3000+ stations already streaming data in Real-Time (RT). The reasons for this quick expansion are the price of receivers, their low maintenance, and the wide range of activities they can be used for (transport, science, public apps, navigation, etc.). We are presenting work completed on the 1Hz GPS records of the Hokkaido earthquake (25th of September, 2003, Mw=8.3). 3D Waveforms have been computed with an improved, stabilised inversion algorithm in order to constrain the ground motion history. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of frequencies ranging from 0.77 mHz to 330 mHz for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. At co-located sites (STS-1 and GPS located within 10km) the agreement is good for the vertical component between seismic (both real and synthetic) and GPS waveforms.
Larson, K M; Levine, J
1999-01-01
We have conducted several time-transfer experiments using the phase of the GPS carrier rather than the code, as is done in current GPS-based time-transfer systems. Atomic clocks were connected to geodetic GPS receivers; we then used the GPS carrier-phase observations to estimate relative clock behavior at 6-minute intervals. GPS carrier-phase time transfer is more than an order of magnitude more precise than GPS common view time transfer and agrees, within the experimental uncertainty, with two-way satellite time-transfer measurements for a 2400 km baseline. GPS carrier-phase time transfer has a stability of 100 ps, which translates into a frequency uncertainty of about two parts in 10(-15) for an average time of 1 day.
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)
GPS compound eye attitude and navigation sensor and method
NASA Technical Reports Server (NTRS)
Quinn, David A. (Inventor)
2003-01-01
The present invention is a GPS system for navigation and attitude determination, comprising a sensor array including a convex hemispherical mounting structure having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces for receiving signals from space vehicles of a GPS constellation. The present invention also includes a receiver for collecting the signals and making navigation and attitude determinations. In an alternate embodiment the present invention may include two opposing convex hemispherical mounting structures, each of the mounting structures having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces.
Applicable Testing and Associated Challenges
DOT National Transportation Integrated Search
2014-12-04
NovAtel Context to Set 1 GPS L1 Only - NovAtel receivers are wideband, at a minimum of 20MHz to adequately capture the full L1 CA main lobe - To achieve 4 cm code and 0.5 mm carrier phase measurements on GPS L1 - GPS L1 only users are typically a SW ...
Preliminary GPS orbit determination results for the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Gold, Kenn; Bertiger, Willy; Wu, Sien; Yunck, Tom
1993-01-01
A single-frequency Motorola Global Positioning System (GPS) receiver was launched with the Extreme Ultraviolet Explorer mission in June 1992. The receiver utilizes dual GPS antennas placed on opposite sides of the satellite to obtain full GPS coverage as it rotates during its primary scanning mission. A data set from this GPS experiment has been processed at the Jet Propulsion Laboratory with the GIPSY-OASIS 2 software package. The single-frequency, dual antenna approach and the low altitude (approximately 500 km) orbit of the satellite create special problems for the GPS orbit determination analysis. The low orbit implies that the dynamics of the spacecraft will be difficult to model, and that atmospheric drag will be an important error source. A reduced-dynamic solution technique was investigated in which ad hoc accelerations were estimated at each time step to absorb dynamic model error. In addition, a single-frequency ionospheric correction was investigated, and a cycle-slip detector was written. Orbit accuracy is currently better than 5 m. Further optimization should improve this to about 1 m.
Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo
NASA Astrophysics Data System (ADS)
Li, Xingxing; Li, Xin; Yuan, Yongqiang; Zhang, Keke; Zhang, Xiaohong; Wickert, Jens
2017-10-01
This paper focuses on the precise point positioning (PPP) ambiguity resolution (AR) using the observations acquired from four systems: GPS, BDS, GLONASS, and Galileo (GCRE). A GCRE four-system uncalibrated phase delay (UPD) estimation model and multi-GNSS undifferenced PPP AR method were developed in order to utilize the observations from all systems. For UPD estimation, the GCRE-combined PPP solutions of the globally distributed MGEX and IGS stations are performed to obtain four-system float ambiguities and then UPDs of GCRE satellites can be precisely estimated from these ambiguities. The quality of UPD products in terms of temporal stability and residual distributions is investigated for GPS, BDS, GLONASS, and Galileo satellites, respectively. The BDS satellite-induced code biases were corrected for GEO, IGSO, and MEO satellites before the UPD estimation. The UPD results of global and regional networks were also evaluated for Galileo and BDS, respectively. As a result of the frequency-division multiple-access strategy of GLONASS, the UPD estimation was performed using a network of homogeneous receivers including three commonly used GNSS receivers (TRIMBLE NETR9, JAVAD TRE_G3TH DELTA, and LEICA). Data recorded from 140 MGEX and IGS stations for a 30-day period in January in 2017 were used to validate the proposed GCRE UPD estimation and multi-GNSS dual-frequency PPP AR. Our results show that GCRE four-system PPP AR enables the fastest time to first fix (TTFF) solutions and the highest accuracy for all three coordinate components compared to the single and dual system. An average TTFF of 9.21 min with 7{°} cutoff elevation angle can be achieved for GCRE PPP AR, which is much shorter than that of GPS (18.07 min), GR (12.10 min), GE (15.36 min) and GC (13.21 min). With observations length of 10 min, the positioning accuracy of the GCRE fixed solution is 1.84, 1.11, and 1.53 cm, while the GPS-only result is 2.25, 1.29, and 9.73 cm for the east, north, and vertical components, respectively. When the cutoff elevation angle is increased to 30{°} , the GPS-only PPP AR results are very unreliable, while 13.44 min of TTFF is still achievable for GCRE four-system solutions.
Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo
NASA Astrophysics Data System (ADS)
Li, Xingxing; Li, Xin; Yuan, Yongqiang; Zhang, Keke; Zhang, Xiaohong; Wickert, Jens
2018-06-01
This paper focuses on the precise point positioning (PPP) ambiguity resolution (AR) using the observations acquired from four systems: GPS, BDS, GLONASS, and Galileo (GCRE). A GCRE four-system uncalibrated phase delay (UPD) estimation model and multi-GNSS undifferenced PPP AR method were developed in order to utilize the observations from all systems. For UPD estimation, the GCRE-combined PPP solutions of the globally distributed MGEX and IGS stations are performed to obtain four-system float ambiguities and then UPDs of GCRE satellites can be precisely estimated from these ambiguities. The quality of UPD products in terms of temporal stability and residual distributions is investigated for GPS, BDS, GLONASS, and Galileo satellites, respectively. The BDS satellite-induced code biases were corrected for GEO, IGSO, and MEO satellites before the UPD estimation. The UPD results of global and regional networks were also evaluated for Galileo and BDS, respectively. As a result of the frequency-division multiple-access strategy of GLONASS, the UPD estimation was performed using a network of homogeneous receivers including three commonly used GNSS receivers (TRIMBLE NETR9, JAVAD TRE_G3TH DELTA, and LEICA). Data recorded from 140 MGEX and IGS stations for a 30-day period in January in 2017 were used to validate the proposed GCRE UPD estimation and multi-GNSS dual-frequency PPP AR. Our results show that GCRE four-system PPP AR enables the fastest time to first fix (TTFF) solutions and the highest accuracy for all three coordinate components compared to the single and dual system. An average TTFF of 9.21 min with 7{°} cutoff elevation angle can be achieved for GCRE PPP AR, which is much shorter than that of GPS (18.07 min), GR (12.10 min), GE (15.36 min) and GC (13.21 min). With observations length of 10 min, the positioning accuracy of the GCRE fixed solution is 1.84, 1.11, and 1.53 cm, while the GPS-only result is 2.25, 1.29, and 9.73 cm for the east, north, and vertical components, respectively. When the cutoff elevation angle is increased to 30{°}, the GPS-only PPP AR results are very unreliable, while 13.44 min of TTFF is still achievable for GCRE four-system solutions.
2008-06-01
provide the coverage. To enable weak GPS signal acquisition , one known technique at the receiver end is to extend the signal integration time...Han, “Block Accumulating Coherent Integration Over Extended Interval (BACIX) for Weak GPS Signal Acquisition ,” Proc. of ION-GNSS’06, Ft. Worth, TX...AFRL-RY-WP-TP-2008-1158 POST-CORRELATION SEMI-COHERENT INTEGRATION FOR HIGH-DYNAMIC AND WEAK GPS SIGNAL ACQUISITION (PREPRINT) Chun Yang
Towards 10(exp 9) GPS geodesy: Vector baselines, Earth rotation and reference frames
NASA Technical Reports Server (NTRS)
Schutz, Bob E.
1994-01-01
Effort during the period form January 1, 1993 to December 31, 1993 were in the following areas: GPS orbit accuracy assessments and efforts to improve the accuracy; analysis and effects of GPS receiver antenna phase center variation; analysis of global GPS data being collected for the IGS campaign; and analysis of regional (south west Pacific) campaign data. A brief summary of each of the above activities is presented.
GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Wenxuan; Zhou, Dao; Zhan, Lingwei
The phasor measurement unit (PMUs), equipped with Global Positioning System (GPS) receivers for precise time synchronization, provides measurements of voltage and current phasors at different nodes of the wide area monitoring system. However, GPS receivers are likely to lose satellite signals due to various unpredictable factors. The prevalence of GPS signal loss (GSL) on PMUs is first investigated using real PMU data. The historical GSL events are extracted from a phasor data concentrator (PDC) and FNET/GridEye server. The correlation between GSL and time, spatial location, solar activity are explored via comprehensive statistical analysis. Furthermore, the impact of GSL on phasormore » measurement accuracy has been studied via experiments. Finally, several potential solutions to mitigate the impact of GSL on PMUs are discussed and compared.« less
GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution
Yao, Wenxuan; Zhou, Dao; Zhan, Lingwei; ...
2017-03-19
The phasor measurement unit (PMUs), equipped with Global Positioning System (GPS) receivers for precise time synchronization, provides measurements of voltage and current phasors at different nodes of the wide area monitoring system. However, GPS receivers are likely to lose satellite signals due to various unpredictable factors. The prevalence of GPS signal loss (GSL) on PMUs is first investigated using real PMU data. The historical GSL events are extracted from a phasor data concentrator (PDC) and FNET/GridEye server. The correlation between GSL and time, spatial location, solar activity are explored via comprehensive statistical analysis. Furthermore, the impact of GSL on phasormore » measurement accuracy has been studied via experiments. Finally, several potential solutions to mitigate the impact of GSL on PMUs are discussed and compared.« less
Precise Orbit Determination for ALOS
NASA Technical Reports Server (NTRS)
Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji
2007-01-01
The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.
GPS application to mapping, charting and geodesy
NASA Technical Reports Server (NTRS)
Senus, W. J.; Hill, R. W.
1981-01-01
GPSPAC, a receiver being developed for space applications by the Defense Mapping Agency and NASA, will use signals from GPS constellations to generate real-time values of host vehicle position and velocity. The GPSPAC has an L-band antenna and preamp capable of receiving the 1575 MHz and 1227 MHz spread spectrum signals; its stable oscillator at 5.115 MHz provides the basic frequency reference, resulting in a long term drift of less than one part in 10 to the -10th day. The GPSPAC performs many functions on board the spacecraft which were previously relegated to large-scale ground-based computer/receiver systems. A positional accuracy of better than 8 can be achieved for those periods when four or more NAVSTAR satellites are visible to the host satellite. The GPS geodetic receiver development, which will provide prototype receivers for utilization in terrestrial surveying operations, has the potential to significantly enhance the accuracy of point geodetic surveys over the current user hardware capability.
Multi-instrument observations of the ionospheric and plasmaspheric density structure
NASA Astrophysics Data System (ADS)
Yizengaw, E.; Moldwin, M. B.
2008-05-01
: The density within the ionosphere and plasmasphere can be monitored using a combination of techniques that use both ground- and space-based instruments. We are combining diagnostic observations of everything, but the kitchen sink. These include observations of GPS TEC, TOPEX and JASON TEC, IMAGE EUV and FUV, GUVI composition data, ULF resonances, and many other multi-satellite data sets such as DMSP in situ observations. The dramatically growing number of GPS receivers on the ground and onboard Low-Earth-Orbit (LEO) satellites offers an excellent opportunity for remote sensing and monitoring of the ionospheric and plasmaspheric density structure using GPS TEC tomographic reconstruction technique. This allows us to clearly quantify magnetosphere-ionosphere (M-I) coupling dynamics, as well as confirm the long-standing conjecture that the mid-latitude trough and plasmapause are on the same field line. This has been demonstrated globally, for the first time, using a combination of data from IMAGE EUV and ground- and space-based GPS receivers. The two dimensional tomographic image of the ionosphere and plasmasphere, using data from the GPS receiver onboard LEO satellites, such as FedSat, CHAMP, COSMIC, etc, also provides a new ability to image the flux tube structure of ionospheric ion outflows, tracking flux tube structure up to 3.17Re (20,200 km) altitude for the first time. The combination of data from the altimeter on JASON and ground-based GPS network also provides an excellent opportunity to experimentally estimate the plasmaspheric density contribution to the ground-based GPS TEC and thus to the degradation of navigation and communication accuracy.
NASA Astrophysics Data System (ADS)
Blume, F.; Berglund, H. T.
2016-12-01
In 2012 the Federal Communications Commission (FCC) reversed its decision to allow communications company LightSquared to use GPS-adjacent spectrum for a ground based network after testing demonstrated harmful interference to GPS receivers. Now rebranded as Ligado, they have submitted modified application to use a smaller portion of the L-band spectrum at much lower power. Many GPS community stakeholders, including the hazard monitoring and EEW communities remain concerned that Ligado's proposed use could still cause harmful interference, causing signal degradation, real-time positioning errors, and total failure of GNSS hardware in widespread use in hazard monitoring networks. The Department of Transportation (DoT) has conducted hardware tests to determine adjacent-band transmitter power limit criteria that would prevent harmful interference from Ligado's operations. We present preliminary results produced from the data collected by the three UNAVCO receiver types tested: Trimble NetRS, Trimble NetR9, and Septentrio PolaRx5. In the first round of testing, simulated GNSS signals were broadcast in an anechoic chamber (pictured below) while interfering signals are broadcast simultaneously with varying amplitude and frequency. The older GPS-only NetRS receiver showed smaller reductions in SNR at frequencies adjacent to GPS L1 as compared to the other receivers, suggesting narrower L1 filter bandwidth in the RF frontend. The NetR9 showed greater decreases in observed SNR in the 1615 to 1625 MHz range when compared to the other two receivers. This suggests that the NetR9's L1 filter bandwidth has been increased to accommodate GNSS signals. Linearity tests were conducted to better relate SNR measurements between receiver types. The PolaRx5 receiver showed less SNR variation between tracking channels than both Trimble receivers. Our results show the power levels at which adjacent-band interference begins degrading receiver performance and eventually disables tracking. As the demand for spectrum for mobile applications increases, operators of hazard networks may need to consider the impact of RF interference on data quality and continuity. UNAVCO's participation ensures that our high precision GNSS community interests are represented in the future spectrum allocation decisions.
Simulated Assessment of Interference Effects in Direct Sequence Spread Spectrum (DSSS) QPSK Receiver
2014-03-27
bit error rate BPSK binary phase shift keying CDMA code division multiple access CSI comb spectrum interference CW continuous wave DPSK differential... CDMA ) and GPS systems which is a Gold code. This code is generated by a modulo-2 operation between two different preferred m-sequences. The preferred m...10 SNR Sim (dB) S N R O ut ( dB ) SNR RF SNR DS Figure 3.26: Comparison of input S NRS im and S NROut of the band-pass RF filter (S NRRF) and
Simulation of a navigator algorithm for a low-cost GPS receiver
NASA Technical Reports Server (NTRS)
Hodge, W. F.
1980-01-01
The analytical structure of an existing navigator algorithm for a low cost global positioning system receiver is described in detail to facilitate its implementation on in-house digital computers and real-time simulators. The material presented includes a simulation of GPS pseudorange measurements, based on a two-body representation of the NAVSTAR spacecraft orbits, and a four component model of the receiver bias errors. A simpler test for loss of pseudorange measurements due to spacecraft shielding is also noted.
The 2010 Eyjafjallajökull and 2011 Grimsvötn ash plumes as seen by GPS
NASA Astrophysics Data System (ADS)
Grapenthin, R.; Hreinsdottir, S.; Gudmundsson, M. T.
2015-12-01
The injection of a volcanic plume introduces a dynamic, localized, short-term heterogeneity in the atmosphere. Satellite-imagery based remote sensing techniques provide good spatial coverage for the detection of such plumes, but slow satellite repeat times (>30 minutes) and cloud cover can delay, if not entirely prevent, the detection. GPS, in turn, provides excellent temporal coverage, but requires favorable satellite-station-geometry such that the signal propagates through the plume if it is to be used for plume detection and analysis. Two methods exist to detect / analyze ash plumes with GPS: (a) Ash-heavy plumes result in signal dispersion and hence a lowered signal-to-noise ratio (SNR). A lowered SNR, recorded by some receivers, can provide useful information about the plume, such as location and velocity of ascent. These data can be evaluated directly as they are recorded by the receiver; without the need of solving for a receiver's position. (b) Wet plumes refract the GPS signals piercing the plume and hence induce a propagation delay. When solving for a receiver position GPS analysis tools do not model this localized phase delay effect and solutions for plume-piercing satellites do not fit the data well. This can be exploited for plume analysis such as the estimation of changes to the atmospheric refractivity index. We analyze GPS data of the ~2 month 2010 Eyafjallajökull erption and the week-long 2011 Grímsvötn eruption to infer a first order estimate of plume geometry and its progression. Using SNR and phase delay information, we evaluate the evolution of the partitioning of wet versus dry parts of the plume. During the GPS processing we iteratively solve for phase-delay and position and fix other parameters, hence reducing the mapping of least-squares misfit into position estimates and other parameters. Nearly continuous webcam imagery provides independent observations of first-order plume characteristics for the Eyafjallajökull event.
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Day, John H. (Technical Monitor)
2000-01-01
Post-Processing of data related to a Global Positioning System (GPS) simulation is an important activity in qualification of a GPS receiver for space flight. Because a GPS simulator is a critical resource it is desirable to move off the pertinent simulation data from the simulator as soon as a test is completed. The simulator data files are usually moved to a Personal Computer (PC), where the post-processing of the receiver logged measurements and solutions data and simulated data is performed. Typically post-processing is accomplished using PC-based commercial software languages and tools. Because of commercial software systems generality their general-purpose functions are notoriously slow and more than often are the bottleneck problem even for short duration experiments. For example, it may take 8 hours to post-process data from a 6-hour simulation. There is a need to do post-processing faster, especially in order to use the previous test results as feedback for a next simulation setup. This paper demonstrates that a fast software linear interpolation algorithm is applicable to a large class of engineering problems, like GPS simulation data post-processing, where computational time is a critical resource and is one of the most important considerations. An approach is developed that allows to speed-up post-processing by an order of magnitude. It is based on improving the post-processing bottleneck interpolation algorithm using apriori information that is specific to the GPS simulation application. The presented post-processing scheme was used in support of a few successful space flight missions carrying GPS receivers. A future approach to solving the post-processing performance problem using Field Programmable Gate Array (FPGA) technology is described.
GPS Ocean Reflection Experiment on Spartan 251
NASA Technical Reports Server (NTRS)
Garrison, James L; Russo, Angela; Mickler, Dave; Armatys, Michael; Ferebee, Melvin J.
1999-01-01
It has recently been demonstrated that the GPS signal which has reflected from the ocean surface contains useful geophysical data from which the sea surface wind speed and other parameters can be extracted. This can be used for remote sensing, similar to present day use of radar altimeters or scatterometers, but with significantly smaller instrumentation because of the utilization of the existing GPS broadcast signal for illumination. Several campaigns of aircraft experimentation have been completed demonstrating this technique and reflected GPS data has been reliably collected from 25 km altitude on a balloon. However, there has not yet been a demonstration that the reflected GPS signal can be detected from orbit with sufficient signal to noise ratio (SNR) to make useful remote sensing measurements. A technology demonstration experiment was planned for a Space Shuttle flight in the late 2000 using the Spartan 251 recoverable carrier. This experiment would also have been the first flight validation of the PiVoT GPS receiver developed in house at the Goddard Space Flight Center. The "open-architecture" design of this receiver would allow the software modifications to be made which control code-correlator spacing to map out the shape of the reflected signal waveform, which is the most basic data product generated by this instrumentation. A moderate gain left-hand circularly polarized antenna, constructed from an array of off-the-shelf hemispherical antennas was to be used to give approximately 3 to 6 dB of additional gain. Preliminary SNR predictions have been done indicating that this antenna would offer sufficient gain to record waveform measurements. A system level description of the experiment instrumentation, including the receiver, antenna and data storage and retrieval will be given. The visibility of GPS reflections over the mission duration of several hours will be studied, including the effects of the limited beamwidth of the antenna. Spartan 251 has now been postponed with the earliest opportunity in the year 2002. The results of this study however, have been 2 used to further the define the requirements and expected performance of reflected GPS receivers in orbit. Several other space flight opportunities are being considered based upon this new information.
Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems
NASA Technical Reports Server (NTRS)
Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.
2004-01-01
This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.
Temporal Stability of GPS Transmitter Group Delay Variations.
Beer, Susanne; Wanninger, Lambert
2018-05-29
The code observable of global navigation satellite systems (GNSS) is influenced by group delay variations (GDV) of transmitter and receiver antennas. For the Global Positioning System (GPS), the variations can sum up to 1 m in the ionosphere-free linear combination and thus can significantly affect precise code applications. The contribution of the GPS transmitters can amount to 0.8 m peak-to-peak over the entire nadir angle range. To verify the assumption of their time-invariance, we determined daily individual satellite GDV for GPS transmitter antennas over a period of more than two years. Dual-frequency observations of globally distributed reference stations and their multipath combination form the basis for our analysis. The resulting GPS GDV are stable on the level of a few centimeters for C1, P2, and for the ionosphere-free linear combination. Our study reveals that the inconsistencies of the GDV of space vehicle number (SVN) 55 with respect to earlier studies are not caused by temporal instabilities, but are rather related to receiver properties.
Assessment of Glacial Isostatic Adjustment in Greenland using GPS
NASA Astrophysics Data System (ADS)
Khan, S. A.; Bevis, M. G.; Sasgen, I.; van Dam, T. M.; Wahr, J. M.; Wouters, B.; Bamber, J. L.; Willis, M. J.; Knudsen, P.; Helm, V.; Kuipers Munneke, P.; Muresan, I. S.
2015-12-01
The Greenland GPS network (GNET) was constructed to provide a new means to assess viscoelastic and elastic adjustments driven by past and present-day changes in ice mass. Here we assess existing glacial isostatic adjustments (GIA) predictions by analysing 1995-2015 data from 61 continuous GPS receivers located along the margin of the Greenland ice sheet. Since GPS receivers measure both the GIA and elastic signals, we isolate GIA, by removing the elastic adjustments of the lithosphere due to present-day mass changes using high-resolution fields of ice surface elevation change derived from satellite and airborne altimetry measurements (ERS1/2, ICESat, ATM, ENVISAT, and CryoSat-2). For most GPS stations, our observed GIA rates contradict GIA predictions; particularly, we find huge uplift rates in southeast Greenland of up to 14 mm/yr while models predict rates of 0-2 mm/yr. Our results suggest possible improvements of GIA predictions, and hence of the poorly constrained ice load history and Earth structure models for Greenland.
Foley, Tony; Boyle, Siobhán; Jennings, Aisling; Smithson, W Henry
2017-05-22
Rising dementia prevalence rates rise combined with the policy objective of enabling people with dementia to remain living at home, means that there will be a growing demand for dementia care in the community setting. However, GPs are challenged by dementia care and have identified it as an area in which further training is needed. Previous studies of GPs dementia care educational needs have explored the views of GPs alone, without taking the perspectives of people with dementia and family carers into account. The aim of the study was to explore GPs' dementia care educational needs, as viewed from multiple perspectives, in order to inform the design and delivery of an educational programme for GPs. A qualitative study of GPs, people with dementia and family carers in a community setting was undertaken. Face-to-face interviews were performed with GPs, people with dementia and with family carers. Interviews were audio-recorded, transcribed verbatim and thematically analysed. Thirty-one people were interviewed, consisting of fourteen GPs, twelve family carers and five people with dementia. GPs expressed a wish for further education, preferentially through small group workshops. Five distinct educational needs emerged from the interviews, namely, diagnosis, disclosure, signposting of local services, counselling and the management of behavioural and psychological symptoms (BPSD). While GPs focused on diagnosis, disclosure and BPSD in particular, people with dementia and family carers emphasised the need for GPs to engage in counselling and signposting of local services. The triangulation of data from multiple relevant sources revealed a broader range of GPs' educational needs, incorporating both medical and social aspects of dementia care. The findings of this study will inform the content and delivery of a dementia educational programme for GPs that is practice-relevant, by ensuring that the curriculum meets the needs of GPs, patients and their families.
Tawk, Youssef; Tomé, Phillip; Botteron, Cyril; Stebler, Yannick; Farine, Pierre-André
2014-01-01
The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance, external aid provided through coupling with other sensors has proven to contribute substantially to enhancing navigation performance and robustness. Within this context, coupling a very simple GPS receiver with an Inertial Navigation System (INS) based on low-cost micro-electro-mechanical systems (MEMS) inertial sensors is considered in this paper. In particular, we propose a GPS/INS Tightly Coupled Assisted PLL (TCAPLL) architecture, and present most of the associated challenges that need to be addressed when dealing with very-low-performance MEMS inertial sensors. In addition, we propose a data monitoring system in charge of checking the quality of the measurement flow in the architecture. The implementation of the TCAPLL is discussed in detail, and its performance under different scenarios is assessed. Finally, the architecture is evaluated through a test campaign using a vehicle that is driven in urban environments, with the purpose of highlighting the pros and cons of combining MEMS inertial sensors with GPS over GPS alone. PMID:24569773
Field Characterization | Concentrating Solar Power | NREL
receivers for performance issues. It uses an infrared (IR) camera, global positioning system (GPS each row of a parabolic trough plant, using the GPS data to automate IR imaging and analyze
P-Code-Enhanced Encryption-Mode Processing of GPS Signals
NASA Technical Reports Server (NTRS)
Young, Lawrence; Meehan, Thomas; Thomas, Jess B.
2003-01-01
A method of processing signals in a Global Positioning System (GPS) receiver has been invented to enable the receiver to recover some of the information that is otherwise lost when GPS signals are encrypted at the transmitters. The need for this method arises because, at the option of the military, precision GPS code (P-code) is sometimes encrypted by a secret binary code, denoted the A code. Authorized users can recover the full signal with knowledge of the A-code. However, even in the absence of knowledge of the A-code, one can track the encrypted signal by use of an estimate of the A-code. The present invention is a method of making and using such an estimate. In comparison with prior such methods, this method makes it possible to recover more of the lost information and obtain greater accuracy.
Simulation and analysis of differential GPS
NASA Astrophysics Data System (ADS)
Denaro, R. P.
NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.
Spaceborne GPS: Current Status and Future Visions
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Hartman, Kate; Lightsey, E. Glenn
1998-01-01
The Global Positioning System (GPS), developed by the Department of Defense is quickly revolutionizing the architecture of future spacecraft and spacecraft systems. Significant savings in spacecraft life cycle cost, in power, and in mass can be realized by exploiting GPS technology in spaceborne vehicles. These savings are realized because GPS is a systems sensor--it combines the ability to sense space vehicle trajectory, attitude, time, and relative ranging between vehicles into one package. As a result, a reduced spacecraft sensor complement can be employed and significant reductions in space vehicle operations cost can be realized through enhanced on-board autonomy. This paper provides an overview of the current status of spaceborne GPS, a description of spaceborne GPS receivers available now and in the near future, a description of the 1997-2000 GPS flight experiments, and the spaceborne GPS team's vision for the future.
NASA Astrophysics Data System (ADS)
Ruggiero, F. H.; Groves, K. M.; Straus, P. R.; Caton, R. G.; Starks, M. J.; Tanyi, K. L.; Verlinden, M.
2009-12-01
Ionospheric irregularities are known to cause scintillation of trans-ionospheric radio signals and can affect space-based UHF/VHF communications, causing outages, and degrading GPS accuracy and precision. Current capability for characterizing and predicting ionospheric scintillation utilizes a network of ground-based receivers to detect scintillation and then extrapolate for short-term forecasts. Practical limits on deploying the ground receivers limits the accuracy and spatial coverage one can achieve with this approach. A more global approach is to use a set of space-based satellites equipped with GPS receivers, such as the COSMIC satellite constellation, to measure scintillations observed during so-called occultations with GPS satellites. In this paper the signal-to-noise values of GPS L1 signals received on the COSMIC and C/NOFS satellites for the portions of the occultations that are not affected by the terrestrial atmosphere are examined to help identify areas of ionospheric scintillation. Three years of S4 scintillation index values from COSMIC occultations are compared with near-zenith ground-based VHF S4 scintillation measurements from the AFRL SCIntillation Network Decision Aid (SCINDA) network stations. The data are correlated to ascertain the viability of using space-based scintillation measurements to characterize and predict scintillation to ground-based receivers. Several days of COSMIC and C/NOFS data are compared with each other and the ALTAIR radar located on Kwajalein Atoll, Marshall Islands to examine how occultation geometry affects observed scintillation and also to verify techniques that provide an upper bound on the spatial location of the ionospheric irregularities contributing to scintillations observed in the occultations.
GPS=A Good Candidate for Data Assimilation?
NASA Technical Reports Server (NTRS)
Poli, P.; Joiner, J.; Kursinski, R.; Einaudi, Franco (Technical Monitor)
2000-01-01
The Global Positioning System (GPS) enables positioning anywhere about our planet. The microwave signals sent by the 24 transmitters are sensitive to the atmosphere. Using the radio occultation technique, it is possible to perform soundings, with a Low Earth Orbiter (700 km) GPS receiver. The insensitiveness to clouds and aerosols, the relatively high vertical resolution (1.5 km), the self-calibration and stability of the GPS make it a priori a potentially good observing system candidate for data assimilation. A low-computing cost simple method to retrieve both temperature and humidity will be presented. Comparisons with radiosonde show the capability of the GPS to resolve the tropopause. Options for using GPS for data assimilation and remaining issues will be discussed.
GPS: A New Tool for Ocean Science
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Garrison, James L.; Zavorotny, Valery
2001-01-01
In this article, we demonstrate wind retrieval (estimate its speed) from reflected signals obtained by a GPS receiver on board an aircraft to illustrate the potential of using GPS for remote-sensing applications. Before showing those results, we provide some background on radar remote sensing and discuss the theoretical model we used to interpret reflection data. This model describes the power and correlation properties of the reflected GPS signals as a function of scattering geometry and environmental parameters related to the reflecting surface.
Sea Ice Remote Sensing Using Surface Reflected GPS Signals
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Maslanik, James; Zavorotny, Valery U.; Axelrad, Penina; Katzberg, Stephen J.
2000-01-01
This paper describes a new research effort to extend the application of Global Positioning System (GPS) signal reflections, received by airborne instruments, to cryospheric remote sensing. Our experimental results indicate that reflected GPS signals have potential to provide information on the presence and condition of sea and freshwater ice as well as the freeze/thaw state of frozen ground. In this paper we show results from aircraft experiments over the ice pack near Barrow, Alaska indicating correlation between forward-scattered GPS returns and RADARSAT backscattered measurements.
NASA Astrophysics Data System (ADS)
Dawidowicz, Karol
2014-12-01
The integration of GPS with GLONASS is very important in satellite-based positioning because it can clearly improve reliability and availability. However, unlike GPS, GLONASS satellites transmit signals at different frequencies. This results in significant difficulties in modeling and ambiguity resolution for integrated GNSS positioning. There are also some difficulties related to the antenna Phase Center Variations (PCV) problem because, as is well known, the PCV is dependent on the received signal frequency dependent. Thus, processing simultaneous observations from different positioning systems, e.g. GPS and GLONASS, we can expect complications resulting from the different structure of signals and differences in satellite constellations. The ASG-EUPOS multifunctional system for precise satellite positioning is a part of the EUPOS project involving countries of Central and Eastern Europe. The number of its users is increasing rapidly. Currently 31 of 101 reference stations are equipped with GPS/GLONASS receivers and the number is still increasing. The aim of this paper is to study the height solution differences caused by using different PCV calibration models in integrated GPS/GLONASS observation processing. Studies were conducted based on the datasets from the ASG-EUPOS network. Since the study was intended to evaluate the impact on height determination from the users' point of view, a so-called "commercial" software was chosen for post-processing. The analysis was done in a baseline mode: 3 days of GNSS data collected with three different receivers and antennas were used. For the purposes of research the daily observations were divided into different sessions with a session length of one hour. The results show that switching between relative and absolute PCV models may cause an obvious effect on height determination. This issue is particularly important when mixed GPS/GLONASS observations are post-processed.
Global positioning system for general aviation: Joint FAA-NASA Seminar. [conferences
NASA Technical Reports Server (NTRS)
1978-01-01
Programs to examine and develop means to utilize the global positioning system (GPS) for civil aviation functions are described. User requirements in this regard are discussed, the development of technologies in the areas of antennas, receivers, and signal processors for the GPS are examined, and modifications to the GPS to fit operational and design criteria are evaluated.
GPS Data Analysis for Earth Orientation at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Zumberge, J.; Webb, F.; Lindqwister, U.; Lichten, S.; Jefferson, D.; Ibanez-Meier, R.; Heflin, M.; Freedman, A.; Blewitt, G.
1994-01-01
Beginning June 1992 and continuing indefinitely as part of our contribution to FLINN (Fiducial Laboratories for an International Natural Science Network), DOSE (NASA's Dynamics of the Solid Earth Program), and the IGS (International GPS Geodynamics Service), analysts at the Jet Propulsion Laboratory (JPL) have routinely been reducing data from a globally-distributed network of Rogue Global Positioning System (GPS) receivers.
RAIM availability for supplemental GPS navigation
DOT National Transportation Integrated Search
1992-06-29
This paper examines GPS receiver autonomous integrity monitoring (RAIM) availability for supplemental navigation based on the approximate radial-error protection (ARP) method. This method applies ceiling levels for the ARP figure of merit to screen o...
Precise estimation of tropospheric path delays with GPS techniques
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1990-01-01
Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better.
Kristensen, Mads Aage Toft; Hølge-Hazelton, Bibi; Waldorff, Frans Boch; Guassora, Ann Dorrit
2017-12-22
It is not known how general practitioners (GPs) perceive the concept of self-care and how they assess self-care ability in patients with multiple chronic conditions. As a part of the strategy to improve the care of people living with chronic conditions, disease management programs in Denmark require GPs and other health care workers to assess and support patients' self-care ability. The aim of the present study was to explore GPs' perceptions and assessment of self-care ability in patients with multiple chronic conditions who have difficulty following a given treatment. A qualitative study conducted through in-depth, semi-structured interviews with a purposive sample of 12 GPs in rural areas of Denmark with economically disadvantaged populations. The interviews involved 36 complex patient cases selected by the GPs themselves. Our analysis followed the principles of systematic text condensation. Most GPs in our study had a health-related perception of self-care, but some had a broader perception encompassing the situational context of the patient's life. The GPs' assessments of patients' self-care ability were based on information from the ongoing and often long-term relationships with the patients. GPs identified four major factors that influenced patients' self-care ability, which accumulated and fluctuated over time: multimorbidity, cognitive resources, material resources, and the patients' social contexts. The GPs in this study had dual perceptions of self-care, related to both the chronic health conditions and to the broader situational contexts of their patients' lives. GPs' assessments of self-care ability depended largely on their experiences from the doctor-patient relationship, and they emphasized that the factors affecting self-care ability were highly dynamic over the patient's lifetime. However, these findings might be resisted by the Danish disease management programs, which tend to have a static and more narrow, health-related view of patient self-care. The Danish programs require GPs to assess self-care ability upfront at the beginning of treatment and do not consider whether a relationship with the patient is established. If GPs' perceptions and assessments of self-care ability are not included in chronic disease management models, there is a risk that they vill be insufficiently implemented in general practice.
Modeling Helicopter Near-Horizon Harmonic Noise Due to Transient Maneuvers
2013-01-01
heading. The PPDG system also 23 includes an Apollo /Garmin CNX80 GPS receiver and an Ashtech Z-Sensor GPS receiver with a Radio Technical Commission...contributions of main rotor thickness noise, low frequency loading noise, and blade-vortex interaction (BVI) noise during maneuvering flight for the...PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11 . SPONSOR
Nondynamic Tracking Using The Global Positioning System
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Wu, Sien-Chong
1988-01-01
Report describes technique for using Global Positioning System (GPS) to determine position of low Earth orbiter without need for dynamic models. Differential observing strategy requires GPS receiver on user vehicle and network of six ground receivers. Computationally efficient technique delivers decimeter accuracy on orbits down to lowest altitudes. New technique nondynamic long-arc strategy having potential for accuracy of best dynamic techniques while retaining much of computational simplicity of geometric techniques.
Performance Assessment of Two GPS Receivers on Space Shuttle
NASA Technical Reports Server (NTRS)
Schroeder, Christine A.; Schutz, Bob E.
1996-01-01
Space Shuttle STS-69 was launched on September 7, 1995, carrying the Wake Shield Facility (WSF-02) among its payloads. The mission included two GPS receivers: a Collins 3M receiver onboard the Endeavour and an Osborne flight TurboRogue, known as the TurboStar, onboard the WSF-02. Two of the WSF-02 GPS Experiment objectives were to: (1) assess the ability to use GPS in a relative satellite positioning mode using the receivers on Endeavour and WSF-02; and (2) assess the performance of the receivers to support high precision orbit determination at the 400 km altitude. Three ground tests of the receivers were conducted in order to characterize the respective receivers. The analysis of the tests utilized the Double Differencing technique. A similar test in orbit was conducted during STS-69 while the WSF-02 was held by the Endeavour robot arm for a one hour period. In these tests, biases were observed in the double difference pseudorange measurements, implying that biases up to 140 m exist which do not cancel in double differencing. These biases appear to exist in the Collins receiver, but their effect can be mitigated by including measurement bias parameters to accommodate them in an estimation process. An additional test was conducted in which the orbit of the combined Endeavour/WSF-02 was determined independently with each receiver. These one hour arcs were based on forming double differences with 13 TurboRogue receivers in the global IGS network and estimating pseudorange biases for the Collins. Various analyses suggest the TurboStar overall orbit accuracy is about one to two meters for this period, based on double differenced phase residuals of 34 cm. These residuals indicate the level of unmodeled forces on Endeavour produced by gravitational and nongravitational effects. The rms differences between the two independently determined orbits are better than 10 meters, thereby demonstrating the accuracy of the Collins-determined orbit at this level as well as the accuracy of the relative positioning using these two receivers.
Design study of a low cost civil aviation GPS receiver system
NASA Technical Reports Server (NTRS)
Cnossen, R.; Gilbert, G. A.
1979-01-01
A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified.
Receiver Test Selection Criteria
DOT National Transportation Integrated Search
2015-03-12
The DOT requests that GPS manufacturers submit receivers for test in the following TWG categories: - Aviation (non-certified), cellular, general location/navigation, high precision, timing, networks, and space-based receivers - Each receiver should b...
Real-time differential GPS/GLONASS trials in Europe using all-in-view 20-channel receivers
NASA Astrophysics Data System (ADS)
Capaccio, S.; Lowe, D.; Walsh, D. M. A.; Daly, P.
Following the initial development of 20-channel, all-in-view Global Navigation Satellite System (GNSS), GPS/GLONASS/Inmarsat-3, receivers at the Institute of Satellite Navigation (ISN), University of Leeds, a modification programme has been undertaken to allow real-time differential corrections to be sent from one 20-channel receiver to another identical receiver using a serial link between them. The differential correction software incorporates the RTCM SC-104 and RTCA DO-217 format developed specifically for GPS and adjusted by the ISN to allow simultaneous GLONASS operation.After successful laboratory testing, real-time differential GNSS tests were successfully completed in static mode between Aberdeen and Leeds via the SkyFix differential data-link, and in dynamic mode at DTEO Boscombe Down using a C-band data-link between the ground and a receiver on board the DRA BAC 1-11 aircraft. The aims of the tests were, (i) to demonstrate real-time differential GNSS position-fixing, (ii) to establish the accuracy improvements brought about, and (iii) to examine the effects of data-link latency and satellite PDOP on the solution accuracy.
[The information about discharge medication: what do general practitioners need?].
Adam, Henning; Niebling, Wilhelm-Bernhard; Schott, Gisela
2015-04-01
The information about the patient's discharge medication (DM) in the discharge letter guarantees the subsequent pharmacotherapy at the interface between tertiary to primary care. International data however shows that general practitioners (GPs) receive discharge letters with a delay and relevant information about DM is lacking. The aim of this study was to assess the point of view of German GPs concerning the information about DM, since no recent data about this topic is available. In a postal survey 516 GPs in the city of Berlin were contacted and asked about the transit of discharge letters and the information about DM. Results | 117 GPs answered the questionnaire (23 %). Most frequently, the patient himself handed over the information about DM to the GP on the day of his first visit in the practice after discharge. However, more than two third of GPs wished to receive the information before the patient's first consultation (73 %). Therefore, the majority preferred the electronic communication via fax (46 %) or email (9 %). Almost half of the GPs stated that discharge letters were lacking information about changes in medication and reasons for these changes. At the same time, nearly all GPs thought that these informational aspects were important. GPs wish an early and electronic transit of the DM with information concerning changes in medication and reasons. If these wishes were considered, a continuous and thus safer pharmacotherapy at the interface could be guaranteed. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Zhang, Baocheng
2016-07-01
The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.
GPS User-Interface Design Problems
DOT National Transportation Integrated Search
1999-04-01
This paper is a review of human factors problems associated with the user-interface design of a set of Global Positioning : System (GPS) receivers, certified for use in aircraft for instrument non-precision approaches. The paper focuses on : design p...
A Hands-on Physical Analog Demonstration of Real-Time Volcano Deformation Monitoring with GNSS/GPS
NASA Astrophysics Data System (ADS)
Jones, J. R.; Schobelock, J.; Nguyen, T. T.; Rajaonarison, T. A.; Malloy, S.; Njinju, E. A.; Guerra, L.; Stamps, D. S.; Glesener, G. B.
2017-12-01
Teaching about volcano deformation and how scientists study these processes using GNSS/GPS may present some challenge since the volcanoes and/or GNSS/GPS equipment are not quite accessible to most teachers. Educators and curriculum materials specialists have developed and shared a number of activities and demonstrations to help students visualize volcanic processes and ways scientist use GNSS/GPS in their research. From resources provided by MEDL (the Modeling and Educational Demonstrations Laboratory) in the Department of Geosciences at Virginia Tech, we combined multiple materials and techniques from these previous works to produce a hands-on physical analog model from which students can learn about GNSS/GPS studies of volcano deformation. The model functions as both a qualitative and quantitative learning tool with good analogical affordances. In our presentation, we will describe multiple ways of teaching with the model, what kinds of materials can be used to build it, and ways we think the model could be enhanced with the addition of Vernier sensors for data collection.
Precise tracking of remote sensing satellites with the Global Positioning System
NASA Technical Reports Server (NTRS)
Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong; Thornton, Catherine L.
1990-01-01
The Global Positioning System (GPS) can be applied in a number of ways to track remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm. All techniques use a precise global network of GPS ground receivers operating in concert with a receiver aboard the user satellite, and all estimate the user orbit, GPS orbits, and selected ground locations simultaneously. The GPS orbit solutions are always dynamic, relying on the laws of motion, while the user orbit solution can range from purely dynamic to purely kinematic (geometric). Two variations show considerable promise. The first one features an optimal synthesis of dynamics and kinematics in the user solution, while the second introduces a novel gravity model adjustment technique to exploit data from repeat ground tracks. These techniques, to be demonstrated on the Topex/Poseidon mission in 1992, will offer subdecimeter tracking accuracy for dynamically unpredictable satellites down to the lowest orbital altitudes.
GPS interferometric attitude and heading determination: Initial flight test results
NASA Technical Reports Server (NTRS)
Vangraas, Frank; Braasch, Michael
1991-01-01
Attitude and heading determination using GPS interferometry is a well-understood concept. However, efforts have been concentrated mainly in the development of robust algorithms and applications for low dynamic, rigid platforms (e.g., shipboard). This paper presents results of what is believed by the authors to be the first realtime flight test of a GPS attitude and heading determination system. The system is installed in Ohio University's Douglas DC-3 research aircraft. Signals from four antennas are processed by an Ashtech 3DF 24-channel GPS receiver. Data from the receiver are sent to a microcomputer for storage and further computations. Attitude and heading data are sent to a second computer for display on a software generated artificial horizon. Demonstration of this technique proves its candidacy for augmentation of aircraft state estimation for flight control and navigation as well as for numerous other applications.
Airborne gravimetry, altimetry, and GPS navigation errors
NASA Technical Reports Server (NTRS)
Colombo, Oscar L.
1992-01-01
Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.
Spaceborne GPS Current Status and Future Visions
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Hartman, Kate; Lightsey, E. Glenn
1998-01-01
The Global Positioning System (GPS), developed by the Department of Defense, is quickly revolutionizing the architecture of future spacecraft and spacecraft systems. Significant savings in spacecraft life cycle cost, in power, and in mass can be realized by exploiting Global Positioning System (GPS) technology in spaceborne vehicles. These savings are realized because GPS is a systems sensor-it combines the ability to sense space vehicle trajectory, attitude, time, and relative ranging between vehicles into one package. As a result, a reduced spacecraft sensor complement can be employed on spacecraft and significant reductions in space vehicle operations cost can be realized through enhanced on- board autonomy. This paper provides an overview of the current status of spaceborne GPS, a description of spaceborne GPS receivers available now and in the near future, a description of the 1997-1999 GPS flight experiments and the spaceborne GPS team's vision for the future.
NASA Technical Reports Server (NTRS)
Mccall, D. L.
1984-01-01
The results of a simulation study to define the functional characteristics of a airborne and ground reference GPS receiver for use in a Differential GPS system are doumented. The operations of a variety of receiver types (sequential-single channel, continuous multi-channel, etc.) are evaluated for a typical civil helicopter mission scenario. The math model of each receiver type incorporated representative system errors including intentional degradation. The results include the discussion of the receiver relative performance, the spatial correlative properties of individual range error sources, and the navigation algorithm used to smooth the position data.
Ionosphere Threat Model Investigations by Using Turkish National Permanent GPS Network
NASA Astrophysics Data System (ADS)
Köroǧlu, Meltem; Arikan, Feza; Koroglu, Ozan
2016-07-01
Global Positioning System (GPS) signal realibity may decrease significantly due to the variable electron density structure of ionosphere. In the literature, ionospheric disturbance is modeled as a linear semi-definite wave which has width, gradient and a constant velocity. To provide precise positioning, Ground Based Augmentation Systems (GBAS) are used. GBAS collects all measurements from GPS network receivers and computes an integrity level for the measurement by comparing the network GPS receivers measurements with the threat models of ionosphere. Threat models are computed according to ionosphere gradient characteristics. Gradient is defined as the difference of slant delays between the receivers. Slant delays are estimated from the STEC (Slant Total Electron Content) values of the ionosphere that is given by the line integral of the electron density between the receiver and GPS satellite. STEC can be estimated over Global Navigation Satellite System (GNSS) signals by using IONOLAB-STEC and IONOLAB-BIAS algorithms. Since most of the ionospheric disturbance observed locally, threat models for the GBAS systems must be extracted as locally. In this study, an automated ionosphere gradient estimation algorithm was developed by using Turkish National Permanent GPS Network (TNPGN-Active) data for year 2011. The GPS receivers are grouped within 150 km radius. For each region, for each day and for each satellite all STEC values are estimated by using IONOLAB-STEC and IONOLAB-BIAS softwares (www.ionolab.org). In the gradient estimation, station-pair method is used. Statistical properties of the valid gradients are extracted as tables for each region, day and satellite. By observing the histograms of the maximum gradients and standard deviations of the gradients with respect to the elevation angle for each day, the anomalies and disturbances of the ionosphere can be detected. It is observed that, maximum gradient estimates are less than 40 mm/km and maximum standard deviation of the gradients are observed as 5 mm/km. In the stormy days, the level of gradients and the standard deviation values becomes larger than those of quiet days. These observations may also form a basis for the estimationof velocity and width of the traveling ionospheric disturbances. The study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.
Utilizing new GNSS capabilities for exploring Geospace
NASA Astrophysics Data System (ADS)
Coster, A. J.
2015-12-01
In 2000 the density of GPS receivers across the continental United States increased to the point that strictly data-driven regional maps of total electron content (TEC) could be constructed. These data-driven maps allowed the TEC to be monitored throughout the course of geomagnetic storms and to observe the progression of traveling ionospheric disturbances. This allowed studies of the development of storm enhanced density plumes in both hemispheres and of the dynamic changes in the equatorial TEC following stratospheric warming events. Currently, GPS TEC maps have become recognized as one of the premier tools to monitor coupling of atmospheric regions from both below and above the ionosphere. The number of available scientific dual-frequency receivers across the globe now exceeds 3000. However this number is anticipated to increase rapidly in part due to the numerous arrays being fielded for commercial applications such as precision farming and highway surveying. In addition, there will be a rapid increase in the number of GNSS signals available in the near future. Besides GPS, the European Union is building a system named GALILEO, which will consist of a 30-satellite constellation. The Russians have a system based on a 24-satellite constellation named GLONASS. The Chinese are developing a system called Beidou, which means "stars of the Big Dipper". The Beidou system will consist of 35 satellites. By 2023, there will be more than 160 GNSS satellites and 400 signals. Multi-constellation, multi-band GNSS will be a major enabler for space weather studies. This talk will focus on the potential of using the multiple new GNSS signals and the new higher density receiver arrays for measurements of plasma drift, detailed studies of traveling ionospheric disturbances (TIDS) and expanded studies of atmospheric coupling. We will conclude by describing the tremendous potential of merging GNSS observations with observations collected by arrays of low-cost, low-power, and small form factor ionosondes. In the future, we predict that new ionosonde and GNSS receiver networks will enable unprecedented mesoscale real-time tomographic observations of the ionosphere.
Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2
NASA Astrophysics Data System (ADS)
Hwang, Yoola; Lee, Byoung-Sun; Kim, Haedong; Kim, Jaehoon
2011-01-01
In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.
New approaches for tracking earth orbiters using modified GPS ground receivers
NASA Technical Reports Server (NTRS)
Lichten, S. M.; Young, L. E.; Nandi, S.; Haines, B. J.; Dunn, C. E.; Edwards, C. D.
1993-01-01
A Global Positioning System (GPS) flight receiver provides a means to precisely determine orbits for satellites in low to moderate altitude orbits. Above a 5000-km altitude, however, relatively few GPS satellites are visible. New approaches to orbit determination for satellites at higher altitudes could reduce DSN antenna time needed to provide navigation and orbit determination support to future missions. Modification of GPS ground receivers enables a beacon from the orbiter to be tracked simultaneously with GPS data. The orbit accuracy expected from this GPS-like tracking (GLT) technique is expected to be in the range of a few meters or better for altitudes up to 100,000 km with a global ground network. For geosynchronous satellites, however, there are unique challenges due to geometrical limitations and to the lack of strong dynamical signature in tracking data. We examine two approaches for tracking the Tracking and Data Relay Satellite System (TDRSS) geostationary orbiters. One uses GLT with a global network; the other relies on a small 'connected element' ground network with a distributed clock for short-baseline differential carrier phase (SB Delta Phi). We describe an experiment planned for late 1993, which will combine aspects of both GLT and SB Delta Phi, to demonstrate a new approach for tracking the Tracking and Data Relay Satellites (TDRSs) that offers a number of operationally convenient and attractive features. The TDRS demonstration will be in effect a proof-of-concept experiment for a new approach to tracking spacecraft which could be applied more generally to deep-space as well as near-Earth regimes.
CALCM: The untold story of the weapon used to start the Gulf war
NASA Astrophysics Data System (ADS)
Nielson, John T.
1994-07-01
The Conventional Air Launched Cruise Missile (CALCM) was developed from the strategic ALCM, AGM-86, by integrating GPS navigation into the missile in place of terrain correlation (TERCOM). In addition, the nuclear warhead was replaced by conventional explosives. The CALCM was developed, tested, and fielded in a single year (mid-1986 - mid-1987) by the Boeing Company where the author was then employed. Although the GPS technology used, a Rockwell single channel aided receiver, has been eclipsed by newer receivers with additional capabilities and newer technology, many innovative things were done in completing the CALCM integration: the external loading of almanac data along with other mission data, three satellite navigation capability, and the use of a single channel receiver in a dynamic flight environment. This effort demonstrated that GPS outputs can be integrated quickly into an existing weapon system using the traditional loosely coupled 'cascaded filter' approach. Although this approach is not as ideal as a tightly coupled integration using raw GPS data, the use of cascaded filters resulted in a weapon that was able to be rapidly fielded. The Air Force had sufficient confidence in the missile, that after four years of operational testing, 35 of these missiles were targeted at key sites at the start of the Gulf War in 1991. This effort, which was declassified in 1992, resulted in the first weapon in the DoD inventory to be operational using GPS navigation. The effort deserves consideration as a model as to how GPS integration can be performed.
Evaluation of Refractivity Profiles from CHAMP and SAC-C GPS Radio Occultation
NASA Technical Reports Server (NTRS)
Poli, Paul; Ao, Chi On; Joiner, Joanna; delaTorreJuarez, Manuel; Hoff, Raymond
2002-01-01
The GeoForschungsZentrum's Challenging Minisatellite Payload for Geophysical Research and Application (CHAMP, Germany-US) and the Comision Nacional de Actividades Especiales' Satelite de Aplicaciones Cientificas-C (SAC-C, Argentina-US) missions are the first missions to carry a second-generation Blackjack Global Positioning System (GPS) receiver. One of the new features of this receiver is its ability to sense the lower troposphere closer to the surface than the proof-of-concept GPS Meteorology experiment (GPS/MET). Since their launch, CHAMP and SAC-C have collected thousands of GPS radio occultations, representing a wealth of measurements available for data assimilation and Numerical Weather Prediction (NWP). In order to evaluate the refractivity data derived by the Jet Propulsion Laboratory (JPL) from raw radio occultation measurements, we use Data Assimilation Office (DAO) 6-hour forecasts as an independent state of the atmosphere. We compare CHAMP and SAC-C refractivity (processed by JPL) with refractivity calculated from the DAO global fields of temperature, water vapor content and humidity. We show statistics of the differences as well as histograms of the differences.
Utilizing GPS to Determine Ionospheric Delay over the Ocean
NASA Technical Reports Server (NTRS)
Katzberg, Stephen J.; Garrison, James L., Jr.
1996-01-01
Several spaceborne altimeters have been built and flown, and others are being developed to provide measurements of ocean and ice sheet topography. Until the launch of TOPEX, altimeters were single frequency systems incapable of removing the effects of ionospheric delay on the radar pulse. With the current state of the art in satellite altimetry, the ionosphere causes the largest single error when using single frequency altimeters. Ionospheric models provide the only recourse short of adding a second frequency to the altimeter. Unfortunately, measurements of the ionosphere are lacking over the oceans or ice sheets where they are most needed. A possible solution to the lack of data density may result from an expanded use of the Global Positioning System (GPS). This paper discusses how the reflection of the GPS signal from the ocean can be used to extend ionospheric measurements by simply adding a GPS receiver and downward-pointing antenna to satellites carrying single frequency altimeters. This paper presents results of a study assessing the feasibility and effectiveness of adding a GPS receiver and downward-pointing antenna to satellites carrying single frequency altimeters.
Comparison of GPS and GLONASS Common-View Time Transfers
1992-12-01
interest as an excellent additional source. For the past three years VNIIFTRI (Mendeleevo, Moscow Region, Russian Federation) and some other Russian time...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 comparisons. Since June 1991, VNIIFTRI has operated a commercial GPS time receiver on...loan from the BIPM. Since February 1992, the BIPM has operated Russian GLONASS receiver on loan from the VNIIFTRI . Thii provides, for the first time
Analog track angle error displays improve simulated GPS approach performance
DOT National Transportation Integrated Search
1996-01-01
Pilots flying non-precision instrument approaches traditionally rely on a course deviation indicator (CDI) analog display of cross track error (XTE) information. THe new generation of GPS based area navigation (RNAV) receivers can also compute accura...
Global Positioning System: A Guide for the Approval of GPS Receiver Installation and Operation
DOT National Transportation Integrated Search
1996-10-01
This guide is designed to assist Federal Aviation Adalnlatratlon (FAA) Aviation Safety : Inspectors (ASIs) in evaluating new Global Positioning Systena (GPS) installations and : operations. Because there aro aany documents providing Information, regu...
Weijers, F; Veldhoven, C; Verhagen, C; Vissers, K; Engels, Y
2018-04-19
In our aging society, palliative care should be a standard component of health care. However, currently it is only provided to a small proportion of patients, mostly to those with cancer, and restricted to the terminal phase. Many general practitioners (GPs) say that one of their most significant challenges is to assess the right moment to start anticipatory palliative care. The "Surprise Question" (SQ1: "Would I be surprised if this patient were to die in the next 12 months"?), if answered with "no", is an easy tool to apply in identifying patients in need of palliative care. However, this tool has a low specificity. Therefore, the aim of our pilot study was to determine if adding a second, more specific "Surprise Question" (SQ2: "Would I be surprised if this patient is still alive after 12 months"?) in case SQ1 is answered in the negative, prompts GPs to plan for anticipatory palliative care. By randomization, 28 GPs in the south-eastern part of the Netherlands were allocated to three different groups. They all received a questionnaire with four vignettes, respectively representing patients with advanced organ failure (A), end stage cancer (B), frailty (C), and recently diagnosed cancer (D). GPs in the first group did not receive additional information, the second group received SQ1 after each vignette, and the third group received SQ1 and SQ2 after each vignette. We rated their answers based on essential components of palliative care (here called RADIANT score). GPs in group 3 gave higher RADIANT scores to those vignettes in which they would be surprised if the patients were still alive after 12 months. In all groups, vignette B had the highest mean RADIANT score, followed by vignettes A and C, and the lowest on vignette D. Seventy-one percent of GPs in groups 2 and 3 considered SQ1 a helpful tool, and 75% considered SQ2 helpful. This innovative pilot study indicates that the majority of GPs think SQ2 is a helpful additional tool. The combination of the two "Surprise Questions" encourages GPs to make more specific plans for anticipatory palliative care.
Performance Analysis of Constrained Loosely Coupled GPS/INS Integration Solutions
Falco, Gianluca; Einicke, Garry A.; Malos, John T.; Dovis, Fabio
2012-01-01
The paper investigates approaches for loosely coupled GPS/INS integration. Error performance is calculated using a reference trajectory. A performance improvement can be obtained by exploiting additional map information (for example, a road boundary). A constrained solution has been developed and its performance compared with an unconstrained one. The case of GPS outages is also investigated showing how a Kalman filter that operates on the last received GPS position and velocity measurements provides a performance benefit. Results are obtained by means of simulation studies and real data. PMID:23202241
Crustal deformations in the Central Mediterranean derived from the WHAT A CAT GPS project.
NASA Astrophysics Data System (ADS)
Kaniuth, K.; Drewes, H.; Stuber, K.; Tremel, H.; Kahler, H.-G.; Peter, Y.; Zerbini, S.; Tonti, G.; Veis, G.; Fagard, H.
1999-03-01
The West Hellenic Arc Tectonics and Calabrian Arc Tectonics (WHAT A CAT) project aimes at monitoring crustal deformations in the Central Mediterranean by repeated GPS campaigns. The data set acquired so far is rather heterogeneous in terms of availability of GPS satellites, performance of the involved receiver systems and quality of the satellites' orbits. The paper presents the velocity estimates achieved using a modified version of the Bernese GPS software. Main characteristic of the solution strategy is the definition of station velocity parameters already on theobservation equation level.
2014-01-01
Background Previous efforts such as Assessing Care of Vulnerable Elders (ACOVE) provide quality indicators for assessing the care of elderly patients, but thus far little has been done to leverage this knowledge to improve care for these patients. We describe a clinical decision support system to improve general practitioner (GP) adherence to ACOVE quality indicators and a protocol for investigating impact on GPs’ adherence to the rules. Design We propose two randomized controlled trials among a group of Dutch GP teams on adherence to ACOVE quality indicators. In both trials a clinical decision support system provides un-intrusive feedback appearing as a color-coded, dynamically updated, list of items needing attention. The first trial pertains to real-time automatically verifiable rules. The second trial concerns non-automatically verifiable rules (adherence cannot be established by the clinical decision support system itself, but the GPs report whether they will adhere to the rules). In both trials we will randomize teams of GPs caring for the same patients into two groups, A and B. For the automatically verifiable rules, group A GPs receive support only for a specific inter-related subset of rules, and group B GPs receive support only for the remainder of the rules. For non-automatically verifiable rules, group A GPs receive feedback framed as actions with positive consequences, and group B GPs receive feedback framed as inaction with negative consequences. GPs indicate whether they adhere to non-automatically verifiable rules. In both trials, the main outcome measure is mean adherence, automatically derived or self-reported, to the rules. Discussion We relied on active end-user involvement in selecting the rules to support, and on a model for providing feedback displayed as color-coded real-time messages concerning the patient visiting the GP at that time, without interrupting the GP’s workflow with pop-ups. While these aspects are believed to increase clinical decision support system acceptance and its impact on adherence to the selected clinical rules, systems with these properties have not yet been evaluated. Trial registration Controlled Trials NTR3566 PMID:24642339
Cunich, Michelle; Salkeld, Glenn; Dowie, Jack; Henderson, Joan; Bayram, Clare; Britt, Helena; Howard, Kirsten
2011-01-01
Annalisa© (AL) is a web-based decision-support template grounded in multi-criteria decision analysis (MCDA). It uses a simple expected value algorithm to calculate a score for each option by taking into account the individual's preferences for different criteria (as importance weights) and the evidence of the performance of each option on each criterion. Given the uncertainty surrounding the trade offs between benefits and harms for prostate cancer screening, this topic was chosen as the vehicle to introduce this new decision-support template. The aim of the study was to introduce a new decision-support template, AL, and to develop and pilot a decision-support tool for prostate cancer screening using it. A decision-support tool for prostate cancer screening (ALProst) was implemented in the AL template. ALProst incorporated evidence on both the benefits and the potential harms of prostate cancer screening (the 'attributes') from published randomized controlled trials (RCTs). Individual weights for each attribute were elicited during interviews. By combining the individual's preferences and the evidence, the best option for the user was identified on the basis of quantified scores. A convenience sample of computer-proficient primary-care physicians (general practitioners [GPs] in Australia) from the Sydney Metropolitan area (Australia) were invited to complete a face-to-face interview involving the decision-support tool. Preference for undergoing prostate-specific antigen testing for prostate cancer, both personally and for their patients, was sought prior to seeing the tool. After gaining hands-on experience with using the tool, GPs were asked to comment on the merits of the template and the tool. Preference for presenting the benefits of prostate cancer screening as the relative or absolute risk reduction in prostate cancer-specific mortality was also sought. Of 60 GPs approached, ten (six men and four women) completed an interview (16.7% response rate). Most GPs agreed/strongly agreed with positive statements about the ease with which they could use AL (seven GPs), and understand the information in, and format of, AL (nine and eight, respectively). Eight agreed/strongly agreed that ALProst would be a useful tool for discussing prostate cancer screening with their patients. GPs were also asked to nominate difficult clinical decisions that they, and their patients, have had to make; responses included cancer screening (including prostate cancer); treating patients with multiple illnesses/diseases; managing multiple cardiovascular disease risk factors; and managing patients who are receiving multiple medications. The common element was the need to consider multiple factors in making these complex decisions. AL is distinguishable from most other decision-support templates available today by its underlying conceptual framework, MCDA, and its power to combine individual preferences with evidence to derive the best option for the user quantitatively. It therefore becomes potentially useful for all decisions at all levels in the healthcare system. Moreover, it will provide a universal graphic 'language' that can overcome the burden to patients of encountering a plethora of widely varying decision aids for different conditions during their lifetime.
Fraser, Sally E; Leveritt, Michael D; Ball, Lauren E
2013-12-01
General practitioners (GPs) play an important role in the management of patients who are overweight or obese. Previous research suggests that GPs' physical characteristics may influence patients' perceptions of health care received during consultations, mediating the likelihood of patients following health advice provided by GPs. This study aimed to explore patients' perceptions of their GP's health status and its influence on patients' perceptions of healthy eating and exercise advice. An interpretive approach to phenomenology underpinned the qualitative inquiry and study design. Twenty-one participants (aged 55.9 ± 6.5 years; 14 females, 7 males) who had previously received healthy eating and/or exercise advice from a GP participated in an individual semi-structured interview. A constant comparison approach to thematic analysis was conducted. Participants identified three key indicators of perceived health of their GP. These included the GP's physical appearance, particularly weight status; perceived absence of ill health; and disclosure of a GP's health behaviours. Participants expressed favourable perceptions of the weight status of their GP. Participants expected their GP to be a healthy role model and often, but not always, felt more confident receiving advice from a GP that they perceived as healthy. The findings highlight that a GP's perceived health status influences patients' perceptions of the health advice received during consultations. These findings provide a foundation for future research that may allow GPs to modify patients' perceptions of their health status in order to facilitate behaviour change in overweight or obese patients.
Landslide monitoring using Geocubes, a wireless network of low-cost GPS receivers
NASA Astrophysics Data System (ADS)
Benoit, Lionel; Thom, Christian; Martin, Olivier
2013-04-01
Many geophysical structures such as landslides, glaciers or even volcanoes are features characterized by small extend area and deformation rate in the order of 1 to 10cm per day. Their study needs ever more accurate positioning data with an increased space and time resolution. Using an ublox LEA-6T GPS receiver, the French national mapping agency IGN developed its own wireless multi-sensor geo-monitoring system named Geocube. The basic device is equipped with a GPS and a wireless communication media and can be completed with various sensor modules such as meteorological sensors, ground humidity and pressure or seismograph. Due to the low cost of each receiver, spatial dense surveying networks are deployed. Data are then continuously collected and transmitted to a processing computer in real-time as well as saved in situ on a Micro-SD card. Among them, raw GPS carrier phase data give access to real-time accurate relative positioning on all mesh nodes if small baselines are used. In order to achieve a high accuracy, a dedicated GPS data processing method based on a Kalman filter is proposed. It allows an epoch by epoch positioning providing a high time resolution. Special attention is paid on two points : adaptation to wireless networks of low-cost GPS and real-time ability. A first test of Geocubes usability under field conditions was carried out during summer 2012. A fifteen receivers network was deployed on the landslide of Super-Sauze (French Alps) for a two months trial. The experimental area, the deployed network and the acquisition protocol are presented. Position time series with a 30 seconds sampling rate are then derived from raw data for 10 mobile receivers on a forty days session. A sub-centimetric accuracy on an epoch by epoch positioning is reached despite difficult field conditions due to a 40° elevation mask in the south direction. Then, the measured deformations are compared with in situ rainfall measurements collected by a dedicated sensor added to a Geocube on a network's node.
Landslide monitoring using Geocubes, a wireless network of low-cost GPS receivers.
NASA Astrophysics Data System (ADS)
Benoit, Lionel; Thom, Christian; Martin, Olivier
2013-04-01
Many geophysical structures such as landslides, glaciers or even volcanoes are features characterized by small extend area and deformation rate in the order of 1 to 10cm per day. Their study needs ever more accurate positioning data with an increased space and time resolution. Using an Ublox LEA-6T GPS receiver, the French national mapping agency IGN developed its own wireless multi-sensor geo-monitoring system named Geocube. The basic device is equipped with a GPS and a wireless communication media and can be completed with various sensor modules such as meteorological sensors, ground humidity and pressure or seismograph. Due to the low cost of each receiver, spatial dense surveying networks are deployed. Data are then continuously collected and transmitted to a processing computer in real-time as well as saved in situ on a Micro-SD card. Among them, raw GPS carrier phase data give access to real-time accurate relative positioning on all mesh nodes if small baselines are used. In order to achieve a high accuracy, a dedicated GPS data processing method based on a Kalman filter is proposed. It allows an epoch by epoch positioning providing a high time resolution. Special attention is paid on two points : adaptation to wireless networks of low-cost GPS and real-time ability. A first test of Geocubes usability under field conditions was carried out during summer 2012. A fifteen receivers network was deployed on the landslide of Super-Sauze (French Alps) for a two months trial. The experimental area, the deployed network and the acquisition protocol are presented. Position time series with a 30 seconds sampling rate are then derived from raw data for 10 mobile receivers on a forty days session. A sub-centimetric accuracy on an epoch by epoch positioning is reached despite difficult field conditions due to a 40° elevation mask in the south direction. Then, the measured deformations are compared with in situ rainfall measurements collected by a dedicated sensor added to a Geocube on a network's node.
Review of current GPS methodologies for producing accurate time series and their error sources
NASA Astrophysics Data System (ADS)
He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping
2017-05-01
The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.
A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Stephen Fulton; Moore, Anthony
2009-01-01
This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to {approx}1 part in 10{sup 9} or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) andmore » often cause listeners to ldquotune outrdquo due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long- term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically {approx}1 part in 10{sup 9} to 10{sup 11}, is thus transferred to the final AM transmitter carrier output frequency.« less
NASA Astrophysics Data System (ADS)
Ding, Wenwu; Tan, Bingfeng; Chen, Yongchang; Teferle, Felix Norman; Yuan, Yunbin
2018-02-01
The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28 ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6 cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5 cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8 cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7 cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.
A Closed-Loop Hardware Simulation of Decentralized Satellite Formation Control
NASA Technical Reports Server (NTRS)
Ebimuma, Takuji; Lightsey, E. Glenn; Baur, Frank (Technical Monitor)
2002-01-01
In recent years, there has been significant interest in the use of formation flying spacecraft for a variety of earth and space science missions. Formation flying may provide smaller and cheaper satellites that, working together, have more capability than larger and more expensive satellites. Several decentralized architectures have been proposed for autonomous establishment and maintenance of satellite formations. In such architectures, each satellite cooperatively maintains the shape of the formation without a central supervisor, and processing only local measurement information. The Global Positioning System (GPS) sensors are ideally suited to provide such local position and velocity measurements to the individual satellites. An investigation of the feasibility of a decentralized approach to satellite formation flying was originally presented by Carpenter. He extended a decentralized linear-quadratic-Gaussian (LQG) framework proposed by Speyer in a fashion similar to an extended Kalman filter (EKE) which processed GPS position fix solutions. The new decentralized LQG architecture was demonstrated in a numerical simulation for a realistic scenario that is similar to missions that have been proposed by NASA and the U.S. Air Force. Another decentralized architecture was proposed by Park et al. using carrier differential-phase GPS (CDGPS). Recently, Busse et al demonstrated the decentralized CDGPS architecture in a hardware-in-the-loop simulation on the Formation Flying TestBed (FFTB) at Goddard Space Flight Center (GSFC), which features two Spirent Cox 16 channel GPS signal generator. Although representing a step forward by utilizing GPS signal simulators for a spacecraft formation flying simulation, only an open-loop performance, in which no maneuvers were executed based on the real-time state estimates, was considered. In this research, hardware experimentation has been extended to include closed-loop integrated guidance and navigation of multiple spacecraft formations using GPS receivers and real-time vehicle telemetry. A hardware closed-loop simulation has been performed using the decentralized LQG architecture proposed by Carpenter in the GPS test facility at the Center for Space Research (CSR). This is the first presentation using this type of hardware for demonstration of closed-loop spacecraft formation flying.
Receivers Gather Data for Climate, Weather Prediction
NASA Technical Reports Server (NTRS)
2012-01-01
Signals from global positioning system (GPS) satellites are now being used for more than just location and navigation information. By looking at the radio waves from GPS satellites, a technology developed at NASA s Jet Propulsion Laboratory (JPL) not only precisely calculates its position, but can also use a technique known as radio occultation to help scientists study the Earth s atmosphere and gravity field to improve weather forecasts, monitor climate change, and enhance space weather research. The University Corporation for Atmospheric Research (UCAR), a nonprofit group of universities in Boulder, Colorado, compares radio occultation to the appearance of a pencil when viewed though a glass of water. The water molecules change the path of visible light waves so that the pencil appears bent, just like molecules in the air bend GPS radio signals as they pass through (or are occulted by) the atmosphere. Through measurements of the amount of bending in the signals, scientists can construct detailed images of the ionosphere (the energetic upper part of the atmosphere) and also gather information about atmospheric density, pressure, temperature, and moisture. Once collected, this data can be input into weather forecasting and climate models for weather prediction and climate studies. Traditionally, such information is obtained through the use of weather balloons. In 1998, JPL started developing a new class of GPS space science receivers, called Black Jack, that could take precise measurements of how GPS signals are distorted or delayed along their way to the receiver. By 2006, the first demonstration of a GPS radio occultation constellation was launched through a collaboration among Taiwan s National Science Council and National Space Organization, the U.S. National Science Foundation, NASA, the National Oceanic and Atmospheric Administration (NOAA), and other Federal entities. Called the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), JPL was responsible for designing COSMIC s primary instrument - based on its revolutionary Black Jack receiver.
Evaluating Cumulative Ascent:. Mountain Biking Meets Mandelbrot
NASA Astrophysics Data System (ADS)
Rapaport, D. C.
The problem of determining total distance ascended during a mountain bike trip is addressed. Altitude measurements are obtained from GPS receivers utilizing both GPS-based and barometric altitude data, with data averaging used to reduce fluctuations. The estimation process is sensitive to the degree of averaging, and is related to the well-known question of determining coastline length. Barometric-based measurements prove more reliable, due to their insensitivity to GPS altitude fluctuations.
FPGA-based real-time embedded system for RISS/GPS integrated navigation.
Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd
2012-01-01
Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.
FPGA-Based Real-Time Embedded System for RISS/GPS Integrated Navigation
Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd
2012-01-01
Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460
Pilot performance and workload using simulated GPS track angle error displays
DOT National Transportation Integrated Search
1995-01-01
The effect on simulated GPS instrument approach performance and workload resulting from the addition of Track Angle Error (TAE) information to cockpit RNAV receiver displays in explicit analog form was studied experimentally (S display formats, 6 pil...
Using GPS To Teach More Than Accurate Positions.
ERIC Educational Resources Information Center
Johnson, Marie C.; Guth, Peter L.
2002-01-01
Undergraduate science majors need practice in critical thinking, quantitative analysis, and judging whether their calculated answers are physically reasonable. Develops exercises using handheld Global Positioning System (GPS) receivers. Reinforces students' abilities to think quantitatively, make realistic "back of the envelope"…
The Mathematics of the Global Positioning System.
ERIC Educational Resources Information Center
Nord, Gail D.; Jabon, David; Nord, John
1997-01-01
Presents an activity that illustrates the application of mathematics to modern navigation and utilizes the Global Positioning System (GPS). GPS is a constellation of 24 satellites that enables receivers to compute their position anywhere on the earth with great accuracy. (DDR)
Positioning performance improvements with European multiple-frequency satellite navigation - Galileo
NASA Astrophysics Data System (ADS)
Ji, Shengyue
2008-10-01
The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity validation is crucial for any ambiguity resolution algorithm using searching method. This study has proposed to use both Ellipsoidal Integer Aperture (EIA) estimator and R-ratio test for ambiguity validation. Using real GPS data and simulated Galileo data, it has been demonstrated that the new method performs better than the use of EIA or the R-ratio test alone, with much less ambiguity mis-fixed rate.
Time and position accuracy using codeless GPS
NASA Technical Reports Server (NTRS)
Dunn, C. E.; Jefferson, D. C.; Lichten, S. M.; Thomas, J. B.; Vigue, Y.; Young, L. E.
1994-01-01
The Global Positioning System has allowed scientists and engineers to make measurements having accuracy far beyond the original 15 meter goal of the system. Using global networks of P-Code capable receivers and extensive post-processing, geodesists have achieved baseline precision of a few parts per billion, and clock offsets have been measured at the nanosecond level over intercontinental distances. A cloud hangs over this picture, however. The Department of Defense plans to encrypt the P-Code (called Anti-Spoofing, or AS) in the fall of 1993. After this event, geodetic and time measurements will have to be made using codeless GPS receivers. However, there appears to be a silver lining to the cloud. In response to the anticipated encryption of the P-Code, the geodetic and GPS receiver community has developed some remarkably effective means of coping with AS without classified information. We will discuss various codeless techniques currently available and the data noise resulting from each. We will review some geodetic results obtained using only codeless data, and discuss the implications for time measurements. Finally, we will present the status of GPS research at JPL in relation to codeless clock measurements.
A method of estimating GPS instrumental biases with a convolution algorithm
NASA Astrophysics Data System (ADS)
Li, Qi; Ma, Guanyi; Lu, Weijun; Wan, Qingtao; Fan, Jiangtao; Wang, Xiaolan; Li, Jinghua; Li, Changhua
2018-03-01
This paper presents a method of deriving the instrumental differential code biases (DCBs) of GPS satellites and dual frequency receivers. Considering that the total electron content (TEC) varies smoothly over a small area, one ionospheric pierce point (IPP) and four more nearby IPPs were selected to build an equation with a convolution algorithm. In addition, unknown DCB parameters were arranged into a set of equations with GPS observations in a day unit by assuming that DCBs do not vary within a day. Then, the DCBs of satellites and receivers were determined by solving the equation set with the least-squares fitting technique. The performance of this method is examined by applying it to 361 days in 2014 using the observation data from 1311 GPS Earth Observation Network (GEONET) receivers. The result was crosswise-compared with the DCB estimated by the mesh method and the IONEX products from the Center for Orbit Determination in Europe (CODE). The DCB values derived by this method agree with those of the mesh method and the CODE products, with biases of 0.091 ns and 0.321 ns, respectively. The convolution method's accuracy and stability were quite good and showed improvements over the mesh method.
Sinnott, Carol; Hugh, Sheena Mc; Boyce, Maria B; Bradley, Colin P
2015-03-01
Using clinical guidelines in the management of patients with multimorbidity can lead to the prescription of multiple and sometimes conflicting medications. To explore how GPs make decisions when prescribing for multimorbid patients, with a view to informing intervention design. In-depth qualitative interviews incorporating chart-stimulated recall with purposively sampled GPs in the Republic of Ireland. Grounded theory analysis with iterative theory development. Twenty GPs were interviewed about 51 multimorbid cases. In these cases, GPs integrated information from multiple sources including the patient, specialists, and evidence-based medicine. Difficulties arose when recommendations or preferences conflicted, to which GPs responded by 'satisficing': accepting care that they deemed satisfactory and sufficient for a particular patient. Satisficing was manifest as relaxing targets for disease control, negotiating compromise with the patient, or making 'best guesses' about the most appropriate course of action to take. In multimorbid patients perceived as stable, GPs preferred to 'maintain the status quo' rather than rationalise medications, even in cases with significant polypharmacy. Proactive changes in medications were facilitated by continuity of care, sufficient consultation time, and open lines of communication with the patient, other healthcare professionals, and other GPs. GPs respond to conflicts in the management of multimorbid patients by making compromises between patient-centred and evidence-based care. These findings will be used to inform interventions that aim to care in multimorbidity. © British Journal of General Practice 2015.
Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying
NASA Astrophysics Data System (ADS)
Elsobeiey, M.
2017-10-01
The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.
Is the role as gatekeeper still feasible? A survey among Dutch general practitioners.
Wammes, Joost Johan Godert; Jeurissen, Patrick Paulus Theodoor; Verhoef, Lise Maria; Assendelft, Willem J J; Westert, Gert P; Faber, Marjan J
2014-10-01
In the 2012 International Health Policy Survey by the Commonwealth Fund, 57% of Dutch GPs indicated that Dutch patients receive too much health care. This is an unexpected finding, given the clear gatekeeper role of Dutch GPs and recent efforts strengthening this role. The study aims to explore where perceived overuse of care prevails and to identify factors associated with too much care at the entry point of Dutch health care. An American survey exploring perceptions of the amount of care among primary care providers was modified for relevance to the Dutch health system. We further included additional factors possibly related to overuse based on 12 interviews with Dutch GPs. The survey was sent to a random sample of 600 GPs. Dutch GPs (N = 157; response rate 26.2%) indicated that patients receive (much) too much care in general hospitals, primary care, GP cooperatives as well as private clinics. The Dutch responding GPs showed a relatively demand-satisfying attitude, which contributed to the delivery of too much care, often leading to deviation from guidelines and professional norms. The increasing availability of diagnostic facilities was identified as an additional factor contributing to the provision of unnecessary care. Finally, funding gaps between primary care and hospitals impede cooperation and coordination, provoking unnecessary care. Our results--most notably regarding the demand-satisfying attitude of responding GPs--call into question the classical view of the guidance and gatekeeper role of GPs in the Dutch health care system. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack
2001-01-01
The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.
NASA Astrophysics Data System (ADS)
Sun, Xiucong; Han, Chao; Chen, Pei
2017-10-01
Spaceborne Global Positioning System (GPS) receivers are widely used for orbit determination of low-Earth-orbiting (LEO) satellites. With the improvement of measurement accuracy, single-frequency receivers are recently considered for low-cost small satellite missions. In this paper, a Schmidt-Kalman filter which processes single-frequency GPS measurements and broadcast ephemerides is proposed for real-time precise orbit determination of LEO satellites. The C/A code and L1 phase are linearly combined to eliminate the first-order ionospheric effects. Systematic errors due to ionospheric delay residual, group delay variation, phase center variation, and broadcast ephemeris errors, are lumped together into a noise term, which is modeled as a first-order Gauss-Markov process. In order to reduce computational complexity, the colored noise is considered rather than estimated in the orbit determination process. This ensures that the covariance matrix accurately represents the distribution of estimation errors without increasing the dimension of the state vector. The orbit determination algorithm is tested with actual flight data from the single-frequency GPS receiver onboard China's small satellite Shi Jian-9A (SJ-9A). Preliminary results using a 7-h data arc on October 25, 2012 show that the Schmidt-Kalman filter performs better than the standard Kalman filter in terms of accuracy.
Processing of Swarm Accelerometer Data into Thermospheric Neutral Densities
NASA Astrophysics Data System (ADS)
Doornbos, E.; Siemes, C.; Encarnacao, J.; Peřestý, R.; Grunwaldt, L.; Kraus, J.; Holmdahl Olsen, P. E.; van den IJssel, J.; Flury, J.; Apelbaum, G.
2015-12-01
The Swarm satellites were launched on 22 November 2013 and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers are not only used for locating the position and time of the magnetic measurements, but also for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities and potentially winds can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. These disturbances have caused a significant delay of the accelerometer data release. In this presentation, we describe the new three-stage processing that is required for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The third stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We describe the methods used in each stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set, which covers the geomagnetic storm on 17 March 2015.
Precise Point Positioning Using Triple GNSS Constellations in Various Modes
Afifi, Akram; El-Rabbany, Ahmed
2016-01-01
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart. PMID:27240376
Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
Afifi, Akram; El-Rabbany, Ahmed
2016-05-28
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart.
NASA Astrophysics Data System (ADS)
Bock, O.; Doerflinger, E.; Masson, F.; Walpersdorf, A.; Van-Baelen, J.; Tarniewicz, J.; Troller, M.; Somieski, A.; Geiger, A.; Bürki, B.
A dense network of 17 dual frequency GPS receivers has been operated for two weeks during June 2001 within a 20 km × 20 km area around Marseille, France, as part of the ESCOMPTE field campaign ([Cros et al., 2004. The ESCOMPTE program: an overview. Atmos. Res. 69, 241-279]; http://medias.obs-mip.fr/escompte). The goal of this GPS experiment was to provide GPS data allowing for tomographic inversions and their validation within a well-documented observing period (the ESCOMPTE campaign). Simultaneous water vapor radiometer, solar spectrometer, Raman lidar and radiosonde data are used for comparison and validation. In this paper, we highlight the motivation, issues and describe the GPS field experiment. Some first results of integrated water vapor retrievals from GPS and the other sensing techniques are presented. The strategies for GPS data processing and tomographic inversions are discussed.
Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment
NASA Technical Reports Server (NTRS)
Conrad, Patrick R.; Naasz, Bo J.
2007-01-01
The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.
Operation of a single-channel, sequential Navstar GPS receiver in a helicopter mission environment
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Hamlin, J. R.
1984-01-01
It is pointed out that the future utilization of the Navstar Global Positioning System (GPS) by civil helicopters will provide an enhanced performance not obtainable with current navigations systems. GPS will supply properly equipped users with extremely accurate three-dimensional position and velocity information anywhere in the world. Preliminary studies have been conducted to investigate differential GPS concept mechanizations and cost, and to theoretically predict navigation performance and the impact of degradation of the GPS C/A code for national security considerations. The obtained results are encouraging, but certain improvements are needed. As a second step in the program, a single-channel sequential GPS navigator was installed and operated in the NASA SH-3G helicopter. A series of flight tests were conducted. It is found that performance of the Navstar GPS Z-set is quite acceptable to support area navigation and nonprecision approach operations.
NASA Technical Reports Server (NTRS)
Laube, Samuel J. P.
1987-01-01
Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.
DOT National Transportation Integrated Search
2011-06-01
The Executive Steering Group (ESG) of the National Executive Committee (EXCOM) for : Space-Based Positioning, Navigation, and Timing (PNT) directed the National Space-Based : PNT Systems Engineering Forum (NPEF) to conduct an assessment of the effect...
RoadLIFE GPS : software application for processing GPS data from US550 in northwestern New Mexico.
DOT National Transportation Integrated Search
2008-04-01
Public-private partnerships as an alternative means of delivering goods and services are receiving increased attention as state departments of transportation consider ways to maximize limited resources. In 1998 the New Mexico Department of Transporta...
NASA Technical Reports Server (NTRS)
Ho, C.; Wilson, B.; Mannucci, A.; Lindqwister, U.; Yuan, D.
1997-01-01
Global ionospheric mapping (GIM) is a new, emerging technique for determining global ionospheric TEC (total electron content) based on measurements from a worldwide network of Global Positioning System (GPS) receivers.
Office of Space Flight standard spaceborne Global Positioning System user equipment project
NASA Technical Reports Server (NTRS)
Saunders, Penny E.
1991-01-01
The Global Positioning System (GPS) provides users autonomous, real-time navigation capability. A vehicle equipped with GPS user equipment can receive and process signals transmitted by a constellation of GPS satellites and derive from the resulting measurements the vehicle's position and velocity. Specified accuracies range from 16 to 76 meters and 0.1 to 1.0 meters/second for position and velocity, respectively. In a rendezvous and docking scenario, the use of a technique called relative GPS can provide range and range rate accuracies on the order of 1 meter and 0.01 meters/second, respectively. Relative GPS requires both vehicles to be equipped with GPS user equipment and a data communication link for transmission of GPS data and GPS satellite selection coordination information. Through coordinated satellite selection, GPS measurement errors common to both users are cancelled and improved relative position and velocity accuracies are achieved. The background, the design approach, the expected performance and capabilities, the development plan, and the project status are described. In addition, a description of relative GPS, the possible GPS hardware and software configurations, and its application to automated rendezvous and capture are presented.
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.
2002-01-01
With the increasing pressures to allow wireless devices on aircraft, the susceptibility of aircraft receivers to interference from Portable Electronic Devices (PEDs) becomes an increasing concern. Many investigations were conducted in the past, with limited success, to quantify device emissions, path loss, and receiver interference susceptibility thresholds. This paper outlines the recent effort in determining the receiver susceptibility thresholds for ILS, VOR and GPS systems. The effort primarily consists of analysis of data available openly as reported in many RTCA and ICAO documents as well as manufacturers data on receiver sensitivity. Shortcomings with the susceptibility threshold data reported in the RTCA documents are presented, and an approach for an in-depth study is suggested. In addition, intermodulation products were observed and demonstrated in a laboratory experiment when multiple PEDs were in the proximity of each other. These intermodulation effects generate spurious frequencies that may fall within aircraft communication or navigation bands causing undesirable effects. Results from a preliminary analysis are presented that show possible harmful combinations of PEDs and the potentially affected aircraft bands.
Jaakkimainen, R Liisa; Bondy, Susan J; Parkovnick, Meredith; Barnsley, Jan
2014-10-01
To compare how the infectious disease outbreaks H1N1 and severe acute respiratory syndrome (SARS) affected community-based GPs and FPs. A mailed survey sent after the H1N1 outbreak compared with the results of similar survey completed after the SARS outbreak. Greater Toronto area in Ontario. A total of 183 randomly selected GPs and FPs who provided office-based care. The perceptions of GPs and FPs on how serious infectious disease outbreaks affected their clinical work and personal lives; their preparedness for a serious infectious disease outbreak; and the types of information they want to receive and the sources they wanted to receive information from during a serious infectious disease outbreak. The responses from this survey were compared with the responses of GPs and FPs in the greater Toronto area who completed a similar survey in 2003 after the SARS outbreak. After the H1N1 outbreak, GPs and FPs still had substantial concerns about the effects of serious infectious disease outbreaks on the health of their family members. Physicians made changes to various office practices in order to manage and deal with patients with serious infectious diseases. They expressed concerns about the effects of an infectious disease on the provision of health care services. Also, physicians wanted to quickly receive accurate information from the provincial government and their medical associations. Serious community-based infectious diseases are a personal concern for GPs and FPs, and have considerable effects on their clinical practice. Further work examining the timely flow of relevant information through different health care sectors and government agencies still needs to be undertaken. Copyright© the College of Family Physicians of Canada.
NASA Astrophysics Data System (ADS)
Rude, C. M.; Li, J. D.; Gowanlock, M.; Herring, T.; Pankratius, V.
2016-12-01
Surface subsidence due to depletion of groundwater can lead to permanent compaction of aquifers and damaged infrastructure. However, studies of such effects on a large scale are challenging and compute intensive because they involve fusing a variety of data sets beyond direct measurements from groundwater wells, such as gravity change measurements from the Gravity Recovery and Climate Experiment (GRACE) or surface displacements measured by GPS receivers. Our work therefore leverages Amazon cloud computing to enable these types of analyses spanning the entire continental US. Changes in groundwater storage are inferred from surface displacements measured by GPS receivers stationed throughout the country. Receivers located on bedrock are anti-correlated with changes in water levels from elastic deformation due to loading, while stations on aquifers correlate with groundwater changes due to poroelastic expansion and compaction. Correlating linearly detrended equivalent water thickness measurements from GRACE with linearly detrended and Kalman filtered vertical displacements of GPS stations located throughout the United States helps compensate for the spatial and temporal limitations of GRACE. Our results show that the majority of GPS stations are negatively correlated with GRACE in a statistically relevant way, as most GPS stations are located on bedrock in order to provide stable reference locations and measure geophysical processes such as tectonic deformations. Additionally, stations located on the Central Valley California aquifer show statistically significant positive correlations. Through the identification of positive and negative correlations, deformation phenomena can be classified as loading or poroelastic expansion due to changes in groundwater. This method facilitates further studies of terrestrial water storage on a global scale. This work is supported by NASA AIST-NNX15AG84G (PI: V. Pankratius) and Amazon.
Bornhöft, Lena; Larsson, Maria E H; Thorn, Jörgen
2015-01-01
Primary Care Triage is a patient sorting system used in some primary health care clinics (PHCCs) in Sweden where patients with musculoskeletal disorders (MSD) are triaged directly to physiotherapists. The purpose of this study was to investigate whether sorting/triaging patients seeking a PHCC for MSD directly to physiotherapists affects their utilization of medical services at the clinic for the MSD and to determine whether the effects of the triaging system vary for different sub-groups of patients. A retrospective case-control study design was used at two PHCCs. At the intervention clinic, 656 patients with MSD were initially triaged to physiotherapists. At the control clinic, 1673 patients were initially assessed by general practitioners (GPs). The main outcome measures were the number of patients continuing to visit GPs after the initial assessment, the number of patients receiving referrals to specialists/external examinations, doctors' notes for sick-leave or prescriptions for analgesics during one year, all for the original MSD. Significantly fewer patients triaged to physiotherapists required multiple GP visits for the MSD or received MSD-related referrals to specialists/external examinations, sick-leave recommendations or prescriptions during the following year compared to the GP-assessed group. This applies to all sub-groups except for the group with lower extremity disorders, which did not reach significance for either multiple GP visits or sick-leave recommendations. The reduced utilization of medical services by patients with MSD who were triaged to physiotherapists at a PHCC is likely due to altered management of MSD with initial assessment by physiotherapists.
A Performance Improvement Method for Low-Cost Land Vehicle GPS/MEMS-INS Attitude Determination
Cong, Li; Li, Ercui; Qin, Honglei; Ling, Keck Voon; Xue, Rui
2015-01-01
Global positioning system (GPS) technology is well suited for attitude determination. However, in land vehicle application, low-cost single frequency GPS receivers which have low measurement quality are often used, and external factors such as multipath and low satellite visibility in the densely built-up urban environment further degrade the quality of the GPS measurements. Due to the low-quality receivers used and the challenging urban environment, the success rate of the single epoch ambiguity resolution for dynamic attitude determination is usually quite low. In this paper, a micro-electro-mechanical system (MEMS)—inertial navigation system (INS)-aided ambiguity resolution method is proposed to improve the GPS attitude determination performance, which is particularly suitable for land vehicle attitude determination. First, the INS calculated baseline vector is augmented with the GPS carrier phase and code measurements. This improves the ambiguity dilution of precision (ADOP), resulting in better quality of the unconstrained float solution. Second, the undesirable float solutions caused by large measurement errors are further filtered and replaced using the INS-aided ambiguity function method (AFM). The fixed solutions are then obtained by the constrained least squares ambiguity decorrelation (CLAMBDA) algorithm. Finally, the GPS/MEMS-INS integration is realized by the use of a Kalman filter. Theoretical analysis of the ADOP is given and experimental results demonstrate that our proposed method can significantly improve the quality of the float ambiguity solution, leading to high success rate and better accuracy of attitude determination. PMID:25760057
NASA Technical Reports Server (NTRS)
Park, Young W.; Montez, Moises N.
1994-01-01
A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.
Measuring precise sea level from a buoy using the global positioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocken, C.; Kelecy, T.M.; Born, G.H.
1990-11-01
High-accuracy sea surface positioning is required for sea floor geodesy, satellite altimeter verification, and the study of sea level. An experiment to study the feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was conducted. A GPS-equipped buoy (floater) was deployed off the Scripps pier at La Jolla, California during December 13-15, 1989. Two reference GPS receivers were placed on land, one within {approximately}100 m of the floater, and the other about 80 km inland at the laser ranging site on Monument Peak. The position of the floater was determined relative to the land-fixed receivers using:more » (a) kinematic GPS processing software developed at the National Geodetic Survey (NGS), and (b) the Jet Propulsion Laboratory's GIPSY (GPS Inferred Positioning SYstem) software. Sea level and ocean wave spectra were calculated from GPPS measurements. These results were compared to measurements made with a NOAA tide gauge and a Paros{trademark} pressure transducer (PPT). GPS sea level for the short 100-m baseline agrees with the PPT sea level at the 1-cm level and has an rms variation of 5 mm over a period of 4 hours. Agreement between results with the two independent GPS analyses is on the order of a few millimeters. Processing of the longer Monument Peak - floater baseline is in progress and will require orbit adjustments and tropospheric modeling to obtain results comparable to the short baseline.« less
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1991-01-01
Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.
Gps monitoring of the la valette landslide (french alps) with two mono-frequency receivers
NASA Astrophysics Data System (ADS)
Squarzoni, C.; Delacourt, C.; Allemand, P.
2003-04-01
In the last years, the Global Positioning System techniques have been more and more employed in landslide monitoring. Here we present an application of the GPS techniques on the La Valette landslide, located in the Ubaye Valley in the southern French Alps. This complex landslide is composed by an upper part affected essentially by rotational mechanism, a central part with a generally translational movement and a lower part, occasionally transforming in mud flow in coincidence with strong rainfall events. Displacement rates are in average of a few centimetres per month and can reach one centimetre per day during spring. GPS data presented in this study have been acquired with a couple of mono-frequency GPS receivers Magellan ProMARK X-CM associated with multipath-resistant antennas and processed with the Magellan post-processing software MSTAR. Nine points have been set in the whole zone, seven of them in the moving area, one in a stable area near the landslide and one on the facing slope, used as reference point. For each measure, one GPS receiver is placed on the base point and the second one is placed on each monitored point for one-hour sessions. The baseline between base and monitored point ranges from 480 and 1660 m. Nine campaigns of measure have been made between October 2000 and October 2002, to follow the evolution of the surface displacements. The GPS results have been compared with the distance-meter measurements achieved on the same site by RTM Service (Restauration des Terrains de Montagne). The velocities obtained by the two methods are similar. The advantage of the GPS technique is the obtention of the real 3D displacement vector. These measurements have been combined with SAR interferometric data in order to derive a 3D map of the deformation.
Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery
NASA Astrophysics Data System (ADS)
Dahle, C.; Arnold, D.; Jäggi, A.
2017-06-01
The Swarm mission consists of three identical satellites equipped with GPS receivers and orbiting in near-polar low Earth orbits. Thus, they can be used to determine the Earth's gravity field by means of high-low satellite-to-satellite tracking (hl-SST). However, first results by several groups have revealed systematic errors both in precise science orbits and resulting gravity field solutions which are caused by ionospheric disturbances affecting the quality of Swarm GPS observations. Looking at gravity field solutions, the errors lead to systematic artefacts located in two bands north and south of the geomagnetic equator. In order to reduce these artefacts, erroneous GPS observations can be identified and rejected before orbit and gravity field processing, but this may also lead to slight degradations of orbit and low degree gravity field coefficient quality. Since the problems were believed to be receiver-specific, the GPS tracking loop bandwidths onboard Swarm have been widened several times starting in May 2015. The influence of these tracking loop updates on Swarm orbits and, particularly, gravity field solutions is investigated in this work. The main findings are that the first updates increasing the bandwidth from 0.25 Hz to 0.5 Hz help to significantly improve the quality of Swarm gravity fields and that the improvements are even larger than those achieved by GPS data rejection. It is also shown that these improvements are indeed due to an improved quality of GPS observations around the geomagnetic equator, and not due to missing observations in these regions. As the ionospheric activity is rather low in the most recent months, the effect of the tracking loop updates in summer 2016 cannot be properly assessed yet. Nevertheless, the quality of Swarm gravity field solutions has already improved after the first updates which is especially beneficial in view of filling the upcoming gap between the GRACE and GRACE Follow-on missions with hl-SST gravity products.
Hamrosi, Kim K; Raynor, David K; Aslani, Parisa
2014-01-01
Providing written medicine information to consumers enables them to make informed decisions about their medicines, playing an important role in educating and improving health literacy. In Australia, standardized written medicine information called Consumer Medicine Information (CMI) is available for medicines as package inserts, computer prints, or leaflets. Consumers want and read CMI, but may not always ask for it. General practitioners (GPs) and pharmacists are an important source of written medicine information, yet may not always provide CMI in their practice. To examine and compare the awareness, use and provision of CMI by consumers, pharmacists and general practitioners (GPs). Based on previous studies, structured questionnaires were developed and administered to a national sample of consumers (phone survey); community pharmacists and GPs (postal surveys) about utilization of CMI. Descriptive, comparative and logistic regression analyses were conducted. The respondents comprised of 349 pharmacists, 181 GPs and 1000 consumers. Two-thirds of consumers, nearly all (99%) pharmacists and 90% of GPs were aware of CMI. About 88% of consumers reported receiving CMI as a package insert, however most pharmacists (99%) and GPs (56%) reported providing computer-generated CMI. GPs' and pharmacists' main reason for providing CMI was on patient request. Reasons for not providing were predominantly because consumers were already taking the medicine, concerns regarding difficulty understanding the information, or potential non-adherence. Of the 691 consumers reportedly reading CMI, 35% indicated concerns after reading. Factors associated with reading included gender, type of CMI received and frequency of provision. Consumers want and read information about their medicines, especially when received from their GP or pharmacist. Healthcare professionals report usually discussing CMI when providing it to patients, although continued improvements in dissemination rates are desirable. Regular use of CMI remains a challenge, and ongoing strategies to promote CMI use are necessary to improve uptake of CMI in Australia. Copyright © 2014 Elsevier Inc. All rights reserved.
Preliminary study of GPS orbit determination accuracy achievable from worldwide tracking data
NASA Technical Reports Server (NTRS)
Larden, D. R.; Bender, P. L.
1982-01-01
The improvement in the orbit accuracy if high accuracy tracking data from a substantially larger number of ground stations is available was investigated. Observations from 20 ground stations indicate that 20 cm or better accuracy can be achieved for the horizontal coordinates of the GPS satellites. With this accuracy, the contribution to the error budget for determining 1000 km baselines by GPS geodetic receivers would be only about 1 cm.
Global navigation satellite system receiver for weak signals under all dynamic conditions
NASA Astrophysics Data System (ADS)
Ziedan, Nesreen Ibrahim
The ability of the Global Navigation Satellite System (GNSS) receiver to work under weak signal and various dynamic conditions is required in some applications. For example, to provide a positioning capability in wireless devices, or orbit determination of Geostationary and high Earth orbit satellites. This dissertation develops Global Positioning System (GPS) receiver algorithms for such applications. Fifteen algorithms are developed for the GPS C/A signal. They cover all the receiver main functions, which include acquisition, fine acquisition, bit synchronization, code and carrier tracking, and navigation message decoding. They are integrated together, and they can be used in any software GPS receiver. They also can be modified to fit any other GPS or GNSS signals. The algorithms have new capabilities. The processing and memory requirements are considered in the design to allow the algorithms to fit the limited resources of some applications; they do not require any assisting information. Weak signals can be acquired in the presence of strong interfering signals and under high dynamic conditions. The fine acquisition, bit synchronization, and tracking algorithms are based on the Viterbi algorithm and Extended Kalman filter approaches. The tracking algorithms capabilities increase the time to lose lock. They have the ability to adaptively change the integration length and the code delay separation. More than one code delay separation can be used in the same time. Large tracking errors can be detected and then corrected by a re-initialization and an acquisition-like algorithms. Detecting the navigation message is needed to increase the coherent integration; decoding it is needed to calculate the navigation solution. The decoding algorithm utilizes the message structure to enable its decoding for signals with high Bit Error Rate. The algorithms are demonstrated using simulated GPS C/A code signals, and TCXO clocks. The results have shown the algorithms ability to reliably work with 15 dB-Hz signals and acceleration over 6 g.
A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)
2000-01-01
The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes.
Disciplined rubidium oscillator with GPS selective availability
NASA Technical Reports Server (NTRS)
Dewey, Wayne P.
1993-01-01
A U.S. Department of Defense decision for continuous implementation of GPS Selective Availability (S/A) has made it necessary to modify Rubidium oscillator disciplining methods. One such method for reducing the effects of S/A on the oscillator disciplining process was developed which achieves results approaching pre-S/A GPS. The Satellite Hopping algorithm used in minimizing the effects of S/A on the oscillator disciplining process is described, and the results of using this process to those obtained prior to the implementation of S/A are compared. Test results are from a TrueTime Rubidium based Model GPS-DC timing receiver.
A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer
NASA Technical Reports Server (NTRS)
Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin
2007-01-01
In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.
Handling cycle slips in GPS data during ionospheric plasma bubble events
NASA Astrophysics Data System (ADS)
Banville, S.; Langley, R. B.; Saito, S.; Yoshihara, T.
2010-12-01
During disturbed ionospheric conditions such as the occurrence of plasma bubbles, the phase and amplitude of the electromagnetic waves transmitted by GPS satellites undergo rapid fluctuations called scintillation. When this phenomenon is observed, GPS receivers are more prone to signal tracking interruptions, which prevent continuous measurement of the total electron content (TEC) between a satellite and the receiver. In order to improve TEC monitoring, a study was conducted with the goal of reducing the effects of signal tracking interruptions by correcting for "cycle slips," an integer number of carrier wavelengths not measured by the receiver during a loss of signal lock. In this paper, we review existing cycle-slip correction methods, showing that the characteristics associated with ionospheric plasma bubbles (rapid ionospheric delay fluctuations, data gaps, increased noise, etc.) prevent reliable correction of cycle slips. Then, a reformulation of the "geometry-free" model conventionally used for ionospheric studies with GPS is presented. Geometric information is used to obtain single-frequency estimates of TEC variations during momentary L2 signal interruptions, which also provides instantaneous cycle-slip correction capabilities. The performance of this approach is assessed using data collected on Okinawa Island in Japan during a plasma bubble event that occurred on 23 March 2004. While an improvement in the continuity of TEC time series is obtained, we question the reliability of any cycle-slip correction technique when discontinuities on both GPS legacy frequencies occur simultaneously for more than a few seconds.
PPS GPS: What Is It? And How Do I Get It
1994-06-01
Positioning Service, Selective Availabilit B.PRICE CODIE 17. SECURITY CLASSIFICATION II. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20...the TEC Water Detection Response Team which operates in remote areas of the world. These activities, require the GPS receiver to be capable of removing
Ionospheric Modeling: Development, Verification and Validation
2005-09-01
facilitate the automated processing of a large network of GPS receiver data. 4.; CALIBRATION AND VALIDATION OF IONOSPHERIC SENSORS We have been...NOFS Workshop, Estes Park, CO, January 2005. W. Rideout, A. Coster, P. Doherty, MIT Haystack Automated Processing of GPS Data to Produce Worldwide TEC
NASA Technical Reports Server (NTRS)
Schrama, E.
1990-01-01
The concept of a Global Positioning System (GPS) receiver as a tracking facility and a gradiometer as a separate instrument on a low orbiting platform offers a unique tool to map the Earth's gravitational field with unprecedented accuracies. The former technique allows determination of the spacecraft's ephemeris at any epoch to within 3 to 10 cm, the latter permits the measurement of the tensor of second order derivatives of the gravity field to within 0.01 to 0.0001 Eotvos units depending on the type of gradiometer. First, a variety of error sources in gradiometry where emphasis is placed on the rotational problem pursuing as well a static as a dynamic approach is described. Next, an analytical technique is described and applied for an error analysis of gravity field parameters from gradiometer and GPS observation types. Results are discussed for various configurations proposed on Topex/Poseidon, Gravity Probe-B, and Aristoteles, indicating that GPS only solutions may be computed up to degree and order 35, 55, and 85 respectively, whereas a combined GPS/gradiometer experiment on Aristoteles may result in an acceptable solution up to degree and order 240.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrend, Dirk; Imfeld, Hans L.; /SLAC
2005-08-17
The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal loggingmore » (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.« less
GPS/MEMS IMU/Microprocessor Board for Navigation
NASA Technical Reports Server (NTRS)
Gender, Thomas K.; Chow, James; Ott, William E.
2009-01-01
A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.
Maintenance of Time and Frequency in the DSN Using the Global Positioning System
NASA Technical Reports Server (NTRS)
Clements, P. A.; Kirk, A.; Borutzki, S. E.
1985-01-01
The Deep Space Network must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. The DSN has three tracking complexes, located approximately equidistantly around the Earth. Various methods are used to coordinate the clocks among the three complexes. These methods include Loran-C, TV Line 10, very long baseline interferometry (VLBI), and the Global Positioning System (GPS). The GPS is becoming increasingly important because of the accuracy, precision, and rapid availability of the data; GPS receivers have been installed at each of the DSN complexes and are used to obtain daily time offsets between the master clock at each site and UTC(USNO/NBS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN frequency and timing system (DFT). A brief history of the GPS timing receivers in the DSN, a description of the data and information flow, data on the performance of the DSN master clocks and GPS measurement system, and a description of hydrogen maser frequency steering using these data are presented.
Observations with the GISMOS Airborne Radio Occultation System
NASA Astrophysics Data System (ADS)
Muradyan, Paytsar; Haase, Jennifer; Garrison, James; Lulich, Tyler; Xie, Feiqin
2010-05-01
The spatial sample density of temperature and moisture profiles derived from the current spaceborne GPS radio occultation (RO) constellation is limited by the number of occultation satellites in operation. With the current RO satellite configuration, only one RO profile per day is typically available in a 160,000 square kilometer area in the mid-latitude and tropics and slightly more in high latitudes. The airborne RO technique, which has the GPS receiver onboard an airplane, offers flexibility and much denser sampling for targeted observation within 400 km of the aircraft, and provides comparable high vertical resolution to that of the spaceborne case. With an airborne system, targeted measurements can be planned in an optimal geometry to study the accuracy of RO measurements in the lower troposphere where strong vertical gradients in moisture might lead to disruption of signal tracking. These dense measurements can also be used to test assimilation techniques of refractivity and lower tropospheric moisture derived from RO data. In February 2008, the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS), developed at Purdue University, was successfully deployed on the NSF HIAPER aircraft for series of research flights in the Gulf of Mexico coastal region to validate the airborne observing system. During this campaign, occultation observations were collected in conjunction with supplemental radiosonde and dropsonde soundings. RO signals were recorded using side-looking GPS antennas and dual frequency GPS receivers. However, these conventional phase-locked-loop GPS receivers cannot always track the signal in the lower troposphere, where there are rapid phase accelerations caused by highly variable moisture structures. To extend the observations deeper into the atmosphere, the raw signal from occulting satellites is recorded at 10MHz sampling interval by a GPS recording system (GRS). Open-loop (OL) tracking, which replaces the traditional GPS receiver feedback loop using an a priori estimate of Doppler frequency, was implemented in a software receiver and the data was post-processed after the flight. Such an extensive dataset can be of importance in studies aimed at improving signal processing performance for spaceborne as well as airborne RO measurements. We present data from the February 2008 campaign, and show several examples of occultations with clear atmospheric signals in the excess phase and Doppler. Many recordings that were made with conventional receivers descend below 5 km in the atmosphere. With an OL tracking procedure using the data recorded by the GRS, the measurements extended deeper into the atmosphere (~ 2km above surface). Raytracing was used to simulate the atmospheric excess phase profile from a nearby radiosonde sounding. The excess phase profiles acquired with both closed-loop and open-loop tracking show consistent patterns compared to the radiosonde observations.
Spatio-Temporal Pattern Mining on Trajectory Data Using Arm
NASA Astrophysics Data System (ADS)
Khoshahval, S.; Farnaghi, M.; Taleai, M.
2017-09-01
Preliminary mobile was considered to be a device to make human connections easier. But today the consumption of this device has been evolved to a platform for gaming, web surfing and GPS-enabled application capabilities. Embedding GPS in handheld devices, altered them to significant trajectory data gathering facilities. Raw GPS trajectory data is a series of points which contains hidden information. For revealing hidden information in traces, trajectory data analysis is needed. One of the most beneficial concealed information in trajectory data is user activity patterns. In each pattern, there are multiple stops and moves which identifies users visited places and tasks. This paper proposes an approach to discover user daily activity patterns from GPS trajectories using association rules. Finding user patterns needs extraction of user's visited places from stops and moves of GPS trajectories. In order to locate stops and moves, we have implemented a place recognition algorithm. After extraction of visited points an advanced association rule mining algorithm, called Apriori was used to extract user activity patterns. This study outlined that there are useful patterns in each trajectory that can be emerged from raw GPS data using association rule mining techniques in order to find out about multiple users' behaviour in a system and can be utilized in various location-based applications.
Compressing and querying multiple GPS traces for transportation planning.
DOT National Transportation Integrated Search
2013-07-01
In recent years, there has been a significant increase in the number of vehicles which have been equipped with : GPS devices. These devices generate huge volumes of trace data, and information extracted from these traces : could significantly help tr...
GPS-based satellite tracking system for precise positioning
NASA Technical Reports Server (NTRS)
Yunck, T. P.; Melbourne, W. G.; Thornton, C. L.
1985-01-01
NASA is developing a Global Positioning System (GPS) based measurement system to provide precise determination of earth satellite orbits, geodetic baselines, ionospheric electron content, and clock offsets between worldwide tracking sites. The system will employ variations on the differential GPS observing technique and will use a network of nine fixed ground terminals. Satellite applications will require either a GPS flight receiver or an on-board GPS beacon. Operation of the system for all but satellite tracking will begin by 1988. The first major satellite application will be a demonstration of decimeter accuracy in determining the altitude of TOPEX in the early 1990's. By then the system is expected to yield long-baseline accuracies of a few centimeters and instantaneous time synchronization to 1 ns.
Geostar - Navigation location system
NASA Astrophysics Data System (ADS)
Keyser, Donald A.
The author describes the Radiodetermination Satellite Service (RDSS). The initial phase of the RDSS provides for a unique service enabling central offices and headquarters to obtain position-location information and receive short digital messages from mobile user terminals throughout the contiguous United States, southern Canada, and northern Mexico. The system employs a spread-spectrum, CDMA modulation technique allowing multiple customers to use the system simultaneously, without preassigned coordination with fellow users. Position location is currently determined by employing an existing radio determination receiver, such as Loran-C, GPS, or Transit, in the mobile user terminal. In the early 1990s position location will be determined at a central earth station by time-differential ranging of the user terminals via two or more geostationary satellites. A brief overview of the RDSS system architecture is presented with emphasis on the user terminal and its diverse applications.
VLBI observations to the APOD satellite
NASA Astrophysics Data System (ADS)
Sun, Jing; Tang, Geshi; Shu, Fengchun; Li, Xie; Liu, Shushi; Cao, Jianfeng; Hellerschmied, Andreas; Böhm, Johannes; McCallum, Lucia; McCallum, Jamie; Lovell, Jim; Haas, Rüdiger; Neidhardt, Alexander; Lu, Weitao; Han, Songtao; Ren, Tianpeng; Chen, Lue; Wang, Mei; Ping, Jinsong
2018-02-01
The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10 cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1 s integration time of the correlator output is on the level of 0.1 ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.
GPS Eye-in-the-Sky Software Takes Closer Look Below
NASA Technical Reports Server (NTRS)
2006-01-01
At NASA, GPS is a vital resource for scientific research aimed at understanding and protecting Earth. The Agency employs the band of GPS satellites for such functions as mapping Earth s ionosphere and developing earthquake-prediction tools. Extending this worldly wisdom beyond Earth, NASA researchers are even discussing the possibility of developing global positioning satellites around Mars, in anticipation of future manned missions. Despite all of its terrestrial accomplishments, traditional GPS still has its limitations. The Space Agency is working to address these with many new advances, including a "Global Differential GPS" technology that instantaneously provides a position to within 4 inches horizontally and 8 inches vertically, anywhere on Earth. According to NASA's Jet Propulsion Laboratory, no other related system provides the same combination of accuracy and coverage. Furthermore, traditional GPS cannot communicate beyond latitudes of 75deg. That means that most of Greenland and Antarctica cannot receive GPS signals. The Global Differential GPS technology approaches this area of the world using several different GPS signals. These signals overlap to compensate for the gaps in coverage. Now, scientists working in the extreme northernmost and southernmost areas of the world can have access to the same GPS technology that other scientists around the world rely on.
NASA Astrophysics Data System (ADS)
Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.
2015-12-01
Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.
Time Transfer by Laser Link T2L2: First Results of the 2010 Campaign
2010-11-01
stations are also equipped by GPS and TWSTFT devices, this campaign should allow the performance comparisons between these systems operating with...Europe and Asia, GPS and TWSTFT links, and cold atomic fountains. Objectives of this second international campaign go from the comparison between T2L2...configuration in the ground setup (the time and frequency distribution has been changed, such as the two laser stations, the GPS receiver, the TWSTFT station
The use of financial incentives in Australian general practice.
Kecmanovic, Milica; Hall, Jane P
2015-05-18
To examine the uptake of financial incentive payments in general practice, and identify what types of practitioners are more likely to participate in these schemes. Analysis of data on general practitioners and GP registrars from the Medicine in Australia - Balancing Employment and Life (MABEL) longitudinal panel survey of medical practitioners in Australia, from 2008 to 2011. Income received by GPs from government incentive schemes and grants and factors associated with the likelihood of claiming such incentives. Around half of GPs reported receiving income from financial incentives in 2008, and there was a small fall in this proportion by 2011. There was considerable movement into and out of the incentives schemes, with more GPs exiting than taking up grants and payments. GPs working in larger practices with greater administrative support, GPs practising in rural areas and those who were principals or partners in practices were more likely to use grants and incentive payments. Administrative support available to GPs appears to be an increasingly important predictor of incentive use, suggesting that the administrative burden of claiming incentives is large and not always worth the effort. It is, therefore, crucial to consider such costs (especially relative to the size of the payment) when designing incentive payments. As market conditions are also likely to influence participation in incentive schemes, the impact of incentives can change over time and these schemes should be reviewed regularly.
NASA Astrophysics Data System (ADS)
Gu, Yanchao; Fan, Dongming; You, Wei
2017-07-01
Eleven GPS crustal vertical displacement (CVD) solutions for 110 IGS08/IGS14 core stations provided by the International Global Navigation Satellite Systems Service Analysis Centers are compared with seven Gravity Recovery and Climate Experiment (GRACE)-modeled CVD solutions. The results of the internal comparison of the GPS solutions from multiple institutions imply large uncertainty in the GPS postprocessing. There is also evidence that GRACE solutions from both different institutions and different processing approaches (mascon and traditional spherical harmonic coefficients) show similar results, suggesting that GRACE can provide CVD results of good internal consistency. When the uncertainty of the GPS data is accounted for, the GRACE data can explain as much as 50% of the actual signals and more than 80% of the GPS annual signals. Our study strongly indicates that GRACE data have great potential to correct the nontidal loading in GPS time series.
First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.
Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao
2015-11-13
GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.
NASA Technical Reports Server (NTRS)
Oaks, O. J.; Reid, Wilson; Wright, James; Duffey, Christopher; Williams, Charles; Warren, Hugh; Zeh, Tom; Buisson, James
1996-01-01
The Naval Research Laboratory (NRL) in the development of timing systems for remote locations, had a technical requirement for a Y code (SA/AS) Global Positioning System (GPS) precise time transfer receiver (TTR) which could be used both in a stationary mode or mobile mode. A contract was awarded to the Stanford Telecommunication Corporation (STEL) to build such a device. The Eastern Range (ER) als had a requirement for such a receiver and entered into the contract with NRL for the procurement of additional receivers. The Moving Vehicle Experiment (MVE) described in this paper is the first in situ test of the STEL Model 5401C Time Transfer System in both stationary and mobile operations. The primary objective of the MVE was to test the timing accuracy of the newly developed GPS TTR aboard a moving vessel. To accomplish this objective, a joint experiment was performed with personnel from NRL and the er at the Atlantic Undersea Test and Evaluation Center (AUTEC) test range at Andros Island. Results and discussion of the test are presented in this paper.
General practitioners' knowledge and concern about electromagnetic fields.
Berg-Beckhoff, Gabriele; Breckenkamp, Jürgen; Larsen, Pia Veldt; Kowall, Bernd
2014-12-01
Our aim is to explore general practitioners' (GPs') knowledge about EMF, and to assess whether different knowledge structures are related to the GPs' concern about EMF. Random samples were drawn from lists of GPs in Germany in 2008. Knowledge about EMF was assessed by seven items. A latent class analysis was conducted to identify latent structures in GPs' knowledge. Further, the GPs' concern about EMF health risk was measured using a score comprising six items. The association between GPs' concern about EMF and their knowledge was analysed using multiple linear regression. In total 435 (response rate 23.3%) GPs participated in the study. Four groups were identified by the latent class analysis: 43.1% of the GPs gave mainly correct answers; 23.7% of the GPs answered low frequency EMF questions correctly; 19.2% answered only the questions relating EMF with health risks, and 14.0% answered mostly "don't know". There was no association between GPs' latent knowledge classes or between the number of correct answers given by the GPs and their EMF concern, whereas the number of incorrect answers was associated with EMF concern. Greater EMF concern in subjects with more incorrect answers suggests paying particular attention to misconceptions regarding EMF in risk communication.
How are patients with heart failure treated in primary care? .
Vaillant-Roussel, Hélène; Pereira, Bruno; Gibot-Boeuf, Sylvaine; Eschalier, Romain; Dubray, Claude; Boussageon, Rémy; Vorilhon, Philippe
2018-05-24
The aim of this study was to assess the adherence of general practitioners (GPs) to guidelines in patients with heart failure with reduced ejection fraction (HFrEF) and to describe GPs' prescribing behavior regarding patients with heart failure with preserved ejection fraction (HFpEF). Cross-sectional study as part of the ETIC trial. Five classes of drugs were described: angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs); β-blockers (BBs); mineralocorticoid receptor antagonists (MRAs); diuretics (thiazide or loop diuretics); and digoxin. 178 patients were studied: their mean age was 73.5 years (± 10.6). Of the 128 patients with HFpEF, 81.3% received ACEIs or ARBs, 63.3% received BBs, 13.3% received MRAs, 75.8% received diuretics, and 12.5% received digoxin. Of the 50 patients with HFrEF, 84% received ACEIs or ARBs, 74% received BBs, 20% received MRAs, 76% received diuretics, and 2% received digoxin. 25% of the patients were given a drug in accordance with the recommendations for drug class but not a drug authorized for the HFrEF indication. Among the patients with HFrEF who were treated in accordance with the recommendations, target doses were achieved in 1/3 given ACEIs/ARBs, 1/4 given BBs, and 1/2 given MRAs. Only 6% of the patients had a perfect Global Adherence Indicator-3 (GAI-3) with all target doses achieved. Several drugs were prescribed even though they were not recommended, and few patients were treated optimally. It seems to be necessary to develop a pragmatic tool to help GPs and cardiologists in optimizing treatment. .
Analysis of strong scintillation events by using GPS data at low latitudes
NASA Astrophysics Data System (ADS)
Forte, Biagio; Jakowski, Norbert; Wilken, Volker
2010-05-01
Drifting structures charaterised by inhomogeneities in the spatial electron density distribution at ionospheric heights originate scintillation of radio waves propagating through. The fractional electron density fluctuations and the corresponding scintillation levels may reach extreme values at low latitudes during high solar activity. Strong scintillation events have disruptive effects on a number of technological applications. In particular, operations and services based on GPS signals and receivers may experience severe disruption due to a significant degradation of the signal-to-noise ratio, eventually leading to signal loss of lock. Experimental scintillation data collected in the Asian sector at low latitudes by means of a GPS dual frequency receiver under moderate solar activity (2006) have been analysed. The GPS receiver is particularly modified in firmware in order to record power estimates on the C/A code as well as on the carriers L1 and L2. Strong scintillation activity is recorded in the post-sunset period (saturating S4 and SI as high as 20 dB). An overview of these events is presented, by taking into account scintillation impact on the signal intensity, phase, and dynamics. In particular, the interpretation of these events based on a refined scattering theory is provided with possible consequences for standard scintillation models.
Comparison of IRI-Plas and IONOLAB Slant Total Electron Content for Disturbed Days of Ionosphere
NASA Astrophysics Data System (ADS)
Shukurov, Seymur; Gulyaeva, Tamara; Arikan, Feza; Necat Deviren, M.; Tuna, Hakan; Arikan, Orhan
Variabilities due to geomagnetic, and seismic activities in ionosphere can be observed by using Total Electron Content (TEC). TEC estimated on a path between a dual-frequency Global Positioning System (GPS) receiver and a GPS satellite at a given date and time is called Slant TEC (STEC). STEC contains the variability of ionosphere on a given path, therefore it is a useful variable to identify the anisotropicity. IONOLAB group has developed a novel method for STEC estimation (IONOLAB-STEC) from GPS phase delay recordings resolving the phase ambiguity and calculating IONOLAB-BIAS as receiver interfrequency bias. International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) is the standard climatic model of ionosphere. IONOLAB group automatized the computation of STEC between a GPS satellite and receiver for a given date. In this study, IRI-Plas-STEC and IONOLAB-STEC are compared for geomagnetically active storm days and for the days prior to earthquakes over Turkey using Symmetric Kullback-Liebler Distance (SKLD). It is observed that IRI-Plas-STEC and IONOLAB-STEC are very similar for magnetically quiet days, and IRI-Plas-STEC provides a background ionosphere. This study is supported by the joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.
DOT National Transportation Integrated Search
2017-03-30
This workshop presentation discusses space based receiver applications, NASA developed receivers, the TriG receiver, on-orbit assessment parameters, the TriG GNSS-RO antenna gain pattern, the GNSS-RO antenna beam Earth grazing coverage area, assessme...
Keurhorst, Myrna; van Beurden, Ivonne; Anderson, Peter; Heinen, Maud; Akkermans, Reinier; Wensing, Michel; Laurant, Miranda
2014-04-17
General practitioners with more positive role security and therapeutic commitment towards patients with hazardous or harmful alcohol consumption are more involved and manage more alcohol-related problems than others. In this study we evaluated the effects of our tailored multi-faceted improvement implementation programme on GPs' role security and therapeutic commitment and, in addition, which professional related factors influenced the impact of the implementation programme. In a cluster randomised controlled trial, 124 GPs from 82 Dutch general practices were randomised to either the intervention or control group. The tailored, multi-faceted programme included combined physician, organisation, and patient directed alcohol-specific implementation strategies to increase role security and therapeutic commitment in GPs. The control group was mailed the national guideline and patients received feedback letters. Questionnaires were completed before and 12 months after start of the programme. We performed linear multilevel regression analysis to evaluate effects of the implementation programme. Participating GPs were predominantly male (63%) and had received very low levels of alcohol related education before start of the study (0.4 h). The programme increased therapeutic commitment (p = 0.005; 95%-CI 0.13 - 0.73) but not role security (p = 0.58; 95%-CI -0.31 - 0.54). How important GPs thought it was to improve their care for problematic alcohol consumption, and the GPs' reported proportion of patients asked about alcohol consumption at baseline, contributed to the effect of the programme on therapeutic commitment. A tailored, multi-faceted programme aimed at improving GP management of patients with hazardous and harmful alcohol consumption improved GPs' therapeutic commitment towards patients with alcohol-related problems, but failed to improve GPs' role security. How important GPs thought it was to improve their care for problematic alcohol consumption, and the GPs' reported proportion of patients asked about alcohol consumption at baseline, both increased the impact of the programme on therapeutic commitment. It might be worthwhile to monitor proceeding of role security and therapeutic commitment throughout the year after the implementation programme, to see whether the programme is effective on short term but faded out on the longer term. ClinicalTrials.gov Identifier: NCT00298220.
Time aspects of the European Complement to GPS: Continental and transatlantic experimental phases
NASA Technical Reports Server (NTRS)
Uhrich, Pierre J. M.; Juompan, B.; Tourde, R.; Brunet, M.; Dutrey, J.-F.
1995-01-01
The CNES project of a European Complement to GPS (CE-GPS) is conceived to fulfill the needs of Civil Aviation for a non-precise approach phase with GPS as sole navigation means. This generates two missions: a monitoring mission - alarm of failure - ,and a navigation mission - generating a GPS-like signal on board the geostationary satellites. The host satellites will be the Inmarsat constellation. The CE-GPS missions lead to some time requirements, mainly the accuracy of GPS time restitution and of monitoring clock synchronization. To demonstrate that the requirements of the CE-GPS could be achieved, including the time aspects, an experiment has been scheduled over the Last two years, using a part of the Inmarsat II F-2 payload and specially designed ground stations based on 10 channels GPS receivers. This paper presents a review of the results obtained during the continental phase of the CE-GPS experiment with two stations in France, along with some experimental results obtained during the transatlantic phase (three stations in France, French Guyana, and South Africa). It describes the synchronization of the monitoring clocks using the GPS Common-view or the C- to L-Band transponder of the Inmarsat satellite, with an estimated accuracy better than 10 ns (1 sigma).
The GPS Burst Detector W-Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrady, D.D.; Phipps, P.
1994-08-01
The NAVSTAR satellites have two missions: navigation and nuclear detonation detection. The main objective of this paper is to describe one of the key elements of the Nuclear Detonation Detection System (NDS), the Burst Detector W-Sensor (BDW) that was developed for the Air Force Space and Missle Systems Center, its mission on GPS Block IIR, and how it utilizes GPS timing signals to precisely locate nuclear detonations (NUDET). The paper will also cover the interface to the Burst Detector Processor (BDP) which links the BDW to the ground station where the BDW is controlled and where data from multiple satellitesmore » are processed to determine the location of the NUDET. The Block IIR BDW is the culmination of a development program that has produced a state-of-the-art, space qualified digital receiver/processor that dissipates only 30 Watts, weighs 57 pounds, and has a 12in. {times} l4.2in. {times} 7.16in. footprint. The paper will highlight several of the key multilayer printed circuit cards without which the required power, weight, size, and radiation requirements could not have been met. In addition, key functions of the system software will be covered. The paper will be concluded with a discussion of the high speed digital signal processing and algorithm used to determine the time-of-arrival (TOA) of the electromagnetic pulse (EMP) from the NUDET.« less
A multiresolution inversion for imaging the ionosphere
NASA Astrophysics Data System (ADS)
Yin, Ping; Zheng, Ya-Nan; Mitchell, Cathryn N.; Li, Bo
2017-06-01
Ionospheric tomography has been widely employed in imaging the large-scale ionospheric structures at both quiet and storm times. However, the tomographic algorithms to date have not been very effective in imaging of medium- and small-scale ionospheric structures due to limitations of uneven ground-based data distributions and the algorithm itself. Further, the effect of the density and quantity of Global Navigation Satellite Systems data that could help improve the tomographic results for the certain algorithm remains unclear in much of the literature. In this paper, a new multipass tomographic algorithm is proposed to conduct the inversion using intensive ground GPS observation data and is demonstrated over the U.S. West Coast during the period of 16-18 March 2015 which includes an ionospheric storm period. The characteristics of the multipass inversion algorithm are analyzed by comparing tomographic results with independent ionosonde data and Center for Orbit Determination in Europe total electron content estimates. Then, several ground data sets with different data distributions are grouped from the same data source in order to investigate the impact of the density of ground stations on ionospheric tomography results. Finally, it is concluded that the multipass inversion approach offers an improvement. The ground data density can affect tomographic results but only offers improvements up to a density of around one receiver every 150 to 200 km. When only GPS satellites are tracked there is no clear advantage in increasing the density of receivers beyond this level, although this may change if multiple constellations are monitored from each receiving station in the future.
Global Positioning System (GPS): Current status and possible nursery uses
Dick Karsky
2002-01-01
The GPS (Global Positioning System) is a worldwide satellite-positioning system that was funded, installed, and continues to be operated by the U.S. Department of Defense. The navigation signals are provided free and can be used by anyone who has the equipment necessary to receive them.
DOT National Transportation Integrated Search
1993-11-01
Twelve general aviation pilots flew a Beechcraft Baron on 93 non-precision instrument approaches using a nondifferential : GPS receiver nodifled to satisfy selected functional requirements specified in TS0-C129. : The purposes of the effort were to d...
Rosewell, Alexander; Patel, Mahomed; Viney, Kerri; Marich, Andrew; Lawrence, Glenda L
2010-03-01
The NSW Department of Health (NSW Health) faxed health alerts to general medical practitioners during measles outbreaks in March and May 2006. We conducted a retrospective cohort study of randomly selected general practitioners (GPs) (1 per medical practice) in New South Wales to investigate the effectiveness of faxing health alerts to GPs during a communicable disease outbreak. Fax transmission data allowed comparison of GPs sent and not sent the measles alert for self-reported awareness and practice actions aimed at the prevention and control of measles. A total of 328 GPs participated in the study. GPs who were sent the alert were more likely to be aware of the measles outbreak (RR 1.18, 95% CI 1.02, 1.38). When analysed by whether a fax had been received from either NSW Health or the Australian General Practice Network, GPs who reported receiving a faxed measles alert were more likely to be aware of the outbreak (RR 2.56, 95% CI 1.84, 3.56), to offer vaccination to susceptible staff (RR 6.46, 95% CI 2.49, 16.78), and be aware of other infection control recommendations. Respondents reported that the faxed alerts were useful with 65% reporting that the alerts had reminded them to consider measles in the differential diagnosis. This study shows that faxed health alerts were useful for preparing GPs to respond effectively to a communicable disease outbreak. The fax alert system could be improved by ensuring that all general practices in New South Wales are included in the faxstream database and that their contact details are updated regularly.
NASA Technical Reports Server (NTRS)
2008-01-01
As Global Positioning Satellite (GPS) applications become more prevalent for land- and air-based vehicles, GPS applications for space vehicles will also increase. The Applied Technology Directorate of Kennedy Space Center (KSC) has developed a lightweight, low-cost GPS Metric Tracking Unit (GMTU), the first of two steps in developing a lightweight, low-cost Space-Based Tracking and Command Subsystem (STACS) designed to meet Range Safety's link margin and latency requirements for vehicle command and telemetry data. The goals of STACS are to improve Range Safety operations and expand tracking capabilities for space vehicles. STACS will track the vehicle, receive commands, and send telemetry data through the space-based asset, which will dramatically reduce dependence on ground-based assets. The other step was the Low-Cost Tracking and Data Relay Satellite System (TDRSS) Transceiver (LCT2), developed by the Wallops Flight Facility (WFF), which allows the vehicle to communicate with a geosynchronous relay satellite. Although the GMTU and LCT2 were independently implemented and tested, the design collaboration of KSC and WFF engineers allowed GMTU and LCT2 to be integrated into one enclosure, leading to the final STACS. In operation, GMTU needs only a radio frequency (RF) input from a GPS antenna and outputs position and velocity data to the vehicle through a serial or pulse code modulation (PCM) interface. GMTU includes one commercial GPS receiver board and a custom board, the Command and Telemetry Processor (CTP) developed by KSC. The CTP design is based on a field-programmable gate array (FPGA) with embedded processors to support GPS functions.
Assessment Study of Using Online (CSRS) GPS-PPP Service for Mapping Applications in Egypt
NASA Astrophysics Data System (ADS)
Abd-Elazeem, Mohamed; Farah, Ashraf; Farrag, Farrag
2011-09-01
Many applications in navigation, land surveying, land title definitions and mapping have been made simpler and more precise due to accessibility of Global Positioning System (GPS) data, and thus the demand for using advanced GPS techniques in surveying applications has become essential. The differential technique was the only source of accurate positioning for many years, and remained in use despite of its cost. The precise point positioning (PPP) technique is a viable alternative to the differential positioning method in which a user with a single receiver can attain positioning accuracy at the centimeter or decimeter scale. In recent years, many organizations introduced online (GPS-PPP) processing services capable of determining accurate geocentric positions using GPS observations. These services provide the user with receiver coordinates in free and unlimited access formats via the internet. This paper investigates the accuracy of the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) (CSRS-PPP) service supervised by the Geodetic Survey Division (GSD), Canada. Single frequency static GPS observations have been collected at three points covering time spans of 60, 90 and 120 minutes. These three observed sites form baselines of 1.6, 7, and 10 km, respectively. In order to assess the CSRS-PPP accuracy, the discrepancies between the CSRS-PPP estimates and the regular differential GPS solutions were computed. The obtained results illustrate that the PPP produces a horizontal error at the scale of a few decimeters; this is accurate enough to serve many mapping applications in developing countries with a savings in both cost and experienced labor.
Combination of GPS and GLONASS IN PPP algorithms and its effect on site coordinates determination
NASA Astrophysics Data System (ADS)
Hefty, J.; Gerhatova, L.; Burgan, J.
2011-10-01
Precise Point Positioning (PPP) approach using the un-differenced code and phase GPS observations, precise orbits and satellite clocks is an important alternative to the analyses based on double differences. We examine the extension of the PPP method by introducing the GLONASS satellites into the processing algorithms. The procedures are demonstrated on the software package ABSOLUTE developed at the Slovak University of Technology. Partial results, like ambiguities and receiver clocks obtained from separate solutions of the two GNSS are mutually compared. Finally, the coordinate time series from combination of GPS and GLONASS observations are compared with GPS-only solutions.
Multi-Gnss Receiver for Aerospace Navigation and Positioning Applications
NASA Astrophysics Data System (ADS)
Peres, T. R.; Silva, J. S.; Silva, P. F.; Carona, D.; Serrador, A.; Palhinha, F.; Pereira, R.; Véstias, M.
2014-03-01
The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS) market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial) grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne), such as Georeferencing and Unmanned Aerial Vehicle (UAV) navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.
NASA Technical Reports Server (NTRS)
Pavlis, Erricos C.
1994-01-01
An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.
NASA Technical Reports Server (NTRS)
Dickey, J. M.
2010-01-01
In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.
[Attitudes of general practitioners to pharmaceutical sales representatives in Sousse].
Ben Abdelaziz, A; Harrabi, I; Rahmani, S; Ghedira, A; Gaha, K; Ghannem, H
2003-01-01
The therapeutic knowledge of physicians is the corner stone to the rational use of medicines; however information about medicines is generally obtained from the pharmaceutical industry via their sales representatives (reps). We aimed to identify general practitioners' (GPs) attitudes to pharmaceutical reps and the information they provide. We surveyed 140 GPs using a self-administered questionnaire. The response rate was 78% (72 GPs from the public sector and 68 from the private sector). About 10% of the GPs said they received daily visits from pharmaceutical reps; 84% of GPs considered them an efficient source of information and 31% said they might change their therapeutic prescribing following visits from these reps. Because of their positive perception of pharmaceutical reps, GPs are susceptible to the information they provide. Controlling the validity of the therapeutic information imparted by the pharmaceutical industry is thus a fundamental component of the programme for the rational use of medicines.
A Low Cost GPS System for Real-Time Tracking of Sounding Rockets
NASA Technical Reports Server (NTRS)
Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)
2001-01-01
In an effort to minimize the need for costly, complex, tracking radars, the German Space Operations Center has set up a research project for GPS based tracking of sounding rockets. As part of this project, a GPS receiver based on commercial technology for terrestrial applications has been modified to allow its use under the highly dynamical conditions of a sounding rocket flight. In addition, new antenna concepts are studied as an alternative to proven but costly wrap-around antennas.
Preliminary study of GPS orbit determination accuracy achievable from worldwide tracking data
NASA Technical Reports Server (NTRS)
Larden, D. R.; Bender, P. L.
1983-01-01
The improvement in the orbit accuracy if high accuracy tracking data from a substantially larger number of ground stations is available was investigated. Observations from 20 ground stations indicate that 20 cm or better accuracy can be achieved for the horizontal coordinates of the GPS satellites. With this accuracy, the contribution to the error budget for determining 1000 km baselines by GPS geodetic receivers would be only about 1 cm. Previously announced in STAR as N83-14605
Airborne Pseudolites in a Global Positioning System (GPS) Degraded Environment
2011-03-01
continuously two types of encoded pseudo-random noise (PRN) signals via using two center frequencies 4 in the L- band , namely L1 (1575.42 MHz) and L2...Jovanevic, Aleksandar, Nikhil Bhaita, Joseph Noronha, Brijesh Sirpatil, Michael Kirchner, and Deepak Saxena. “ Piercing the Veil ”. GPS World, 30–37, March...difficulties in receiver design. • Pseudolites can operate either at GPS L1, L2 and L5, or any other available frequency band . Similarly, other parameters to
Leahy, Dorothy; Lyons, Aoife; Dahm, Matthias; Quinlan, Diarmuid; Bradley, Colin
2017-11-01
Text messaging has become more prevalent in general practice as a tool with which to communicate with patients. The main objectives were to assess the extent, growth, and perceived risks and benefits of text messaging by GPs to communicate with patients, and assess patients' attitudes towards receiving text messages from their GP. A mixed methods study, using surveys, a review, and a focus group, was conducted in both urban and rural practices in the south-west of Ireland. A telephone survey of 389 GPs was conducted to ascertain the prevalence of text messaging. Subsequently, the following were also carried out: additional telephone surveys with 25 GPs who use text messaging and 26 GPs who do not, a written satisfaction survey given to 78 patients, a review of the electronic information systems of five practices, and a focus group with six GPs to ascertain attitudes towards text messaging. In total, 38% ( n = 148) of the surveyed GPs used text messaging to communicate with patients and 62% ( n = 241) did not. Time management was identified as the key advantage of text messaging among GPs who used it (80%; n = 20) and those who did not (50%; n = 13). Confidentiality was reported as the principal concern among both groups, at 32% ( n = 8) and 69% ( n = 18) respectively. Most patients (99%; n = 77) were happy to receive text messages from their GP. The GP focus group identified similar issues and benefits in terms of confidentiality and time management. Data were extracted from the IT systems of five consenting practices and the number of text messages sent during the period from January 2013 to March 2016 was generated. This increased by 40% per annum. Collaborative efforts are required from relevant policymakers to address data protection and text messaging issues so that GPs can be provided with clear guidelines to protect patient confidentiality. © British Journal of General Practice 2017.
Jacob, Louis; Kostev, Karel
2017-07-01
The aim of this study was to analyze prescription patterns and the cost of migraine treatments in general practices (GPs) and neurological practices (NPs) in Germany. This study included 43,149 patients treated in GPs and 13,674 patients treated in NPs who were diagnosed with migraine in 2015. Ten different families of migraine therapy were included in the analysis: triptans, analgesics, anti-emetics, beta-blockers, antivertigo products, gastroprokinetics, anti-epileptics, calcium channel blockers, tricyclic antidepressants, and other medications (all other classes used in the treatment of migraine including homeopathic medications). The share of migraine therapies and their costs were estimated for GPs and NPs. The mean age was 44.4 years in GPs and 44.1 years in NPs. Triptans and analgesics were the 2 most commonly prescribed families of drugs in all patients and in the 9 specific subgroups. Interestingly, triptans were more commonly prescribed in NPs than in GPs (30.9% to 55.0% vs. 30.0% to 44.7%), whereas analgesics were less frequently given in NPs than in GPs (11.5% to 17.2% vs. 35.3% to 42.4%). Finally, the share of patients who received no therapy was higher in NPs than in GPs (33.9% to 58.4% vs. 27.5% to 37.9%). The annual cost per patient was €66.04 in GPs and €94.71 in NPs. Finally, the annual cost per patient increased with age and was higher in women and in individuals with private health insurance coverage than in men and individuals with public health insurance coverage. Triptans and analgesics were the 2 most commonly prescribed drugs for the treatment of migraine. Furthermore, approximately 30% to 40% of patients did not receive any therapy. Finally, the annual cost per patient was higher in NPs than in GPs. © 2016 World Institute of Pain.
A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System
NASA Technical Reports Server (NTRS)
Lindqwister, U. J.; Freedman, A. P.; Blewitt, G.
1992-01-01
Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years.
GPS Navigation Above 76,000 km for the MMS Mission
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell
2016-01-01
NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.
EMPACT 3D: an advanced EMI discrimination sensor for CONUS and OCONUS applications
NASA Astrophysics Data System (ADS)
Keranen, Joe; Miller, Jonathan S.; Schultz, Gregory; Sander-Olhoeft, Morgan; Laudato, Stephen
2018-04-01
We recently developed a new, man-portable, electromagnetic induction (EMI) sensor designed to detect and classify small, unexploded sub-munitions and discriminate them from non-hazardous debris. The ability to distinguish innocuous metal clutter from potentially hazardous unexploded ordnance (UXO) and other explosive remnants of war (ERW) before excavation can significantly accelerate land reclamation efforts by eliminating time spent removing harmless scrap metal. The EMI sensor employs a multi-axis transmitter and receiver configuration to produce data sufficient for anomaly discrimination. A real-time data inversion routine produces intrinsic and extrinsic anomaly features describing the polarizability, location, and orientation of the anomaly under test. We discuss data acquisition and post-processing software development, and results from laboratory and field tests demonstrating the discrimination capability of the system. Data acquisition and real-time processing emphasize ease-of-use, quality control (QC), and display of discrimination results. Integration of the QC and discrimination methods into the data acquisition software reduces the time required between sensor data collection and the final anomaly discrimination result. The system supports multiple concepts of operations (CONOPs) including: 1) a non-GPS cued configuration in which detected anomalies are discriminated and excavated immediately following the anomaly survey; 2) GPS integration to survey multiple anomalies to produce a prioritized dig list with global anomaly locations; and 3) a dynamic mapping configuration supporting detection followed by discrimination and excavation of targets of interest.
Link calibration against receiver calibration: an assessment of GPS time transfer uncertainties
NASA Astrophysics Data System (ADS)
Rovera, G. D.; Torre, J.-M.; Sherwood, R.; Abgrall, M.; Courde, C.; Laas-Bourez, M.; Uhrich, P.
2014-10-01
We present a direct comparison between two different techniques for the relative calibration of time transfer between remote time scales when using the signals transmitted by the Global Positioning System (GPS). Relative calibration estimates the delay of equipment or the delay of a time transfer link with respect to reference equipment. It is based on the circulation of some travelling GPS equipment between the stations in the network, against which the local equipment is measured. Two techniques can be considered: first a station calibration by the computation of the hardware delays of the local GPS equipment; second the computation of a global hardware delay offset for the time transfer between the reference points of two remote time scales. This last technique is called a ‘link’ calibration, with respect to the other one, which is a ‘receiver’ calibration. The two techniques require different measurements on site, which change the uncertainty budgets, and we discuss this and related issues. We report on one calibration campaign organized during Autumn 2013 between Observatoire de Paris (OP), Paris, France, Observatoire de la Côte d'Azur (OCA), Calern, France, and NERC Space Geodesy Facility (SGF), Herstmonceux, United Kingdom. The travelling equipment comprised two GPS receivers of different types, along with the required signal generator and distribution amplifier, and one time interval counter. We show the different ways to compute uncertainty budgets, leading to improvement factors of 1.2 to 1.5 on the hardware delay uncertainties when comparing the relative link calibration to the relative receiver calibration.
Guyennon, Nicolas; Cerretto, Giancarlo; Tavella, Patrizia; Lahaye, François
2009-08-01
In recent years, many national timing laboratories have installed geodetic Global Positioning System receivers together with their traditional GPS/GLONASS Common View receivers and Two Way Satellite Time and Frequency Transfer equipment. Many of these geodetic receivers operate continuously within the International GNSS Service (IGS), and their data are regularly processed by IGS Analysis Centers. From its global network of over 350 stations and its Analysis Centers, the IGS generates precise combined GPS ephemeredes and station and satellite clock time series referred to the IGS Time Scale. A processing method called Precise Point Positioning (PPP) is in use in the geodetic community allowing precise recovery of GPS antenna position, clock phase, and atmospheric delays by taking advantage of these IGS precise products. Previous assessments, carried out at Istituto Nazionale di Ricerca Metrologica (INRiM; formerly IEN) with a PPP implementation developed at Natural Resources Canada (NRCan), showed PPP clock solutions have better stability over short/medium term than GPS CV and GPS P3 methods and significantly reduce the day-boundary discontinuities when used in multi-day continuous processing, allowing time-limited, campaign-style time-transfer experiments. This paper reports on follow-on work performed at INRiM and NRCan to further characterize and develop the PPP method for time transfer applications, using data from some of the National Metrology Institutes. We develop a processing procedure that takes advantage of the improved stability of the phase-connected multi-day PPP solutions while allowing the generation of continuous clock time series, more applicable to continuous operation/monitoring of timing equipment.
L-Band Ionosphere Scintillations Observed by A GNSS Receiver Array at HAARP
NASA Astrophysics Data System (ADS)
Morton, Y.; Pelgrum, W.; van Graas, F.
2011-12-01
As we enter a new solar maximum period, GNSS receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to gain better understandings of scintillation effects on GNSS signals. During the past decade, many GPS receivers have been deployed around the globe to monitor ionosphere scintillations. Most of these GPS receivers are commercial receivers whose tracking mechanisms are not designed to operate under ionosphere scintillation. When strong scintillations occur, these receivers will either generate erroneous outputs or completely lose lock. Even when the scintillation is mild, the tracking loop outputs are not true representation of the signal parameters due the tracking loop transfer function. High quality, unprocessed GNSS receiver front end raw IF samples collected during ionosphere scintillations are necessary to produce realistic scintillation signal parameter estimations. In this presentation, we will update our effort in establishing a unique GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns conducted in 2011 will be presented. Additionally, we will also highlight and contrast the artificial heating experiment results with observations of natural scintillation events captured by our receivers using an automatic event trigger mechanism during the past year. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.
Streit, Sven; Verschoor, Marjolein; Rodondi, Nicolas; Bonfim, Daiana; Burman, Robert A; Collins, Claire; Biljana, Gerasimovska Kitanovska; Gintere, Sandra; Gómez Bravo, Raquel; Hoffmann, Kathryn; Iftode, Claudia; Johansen, Kasper L; Kerse, Ngaire; Koskela, Tuomas H; Peštić, Sanda Kreitmayer; Kurpas, Donata; Mallen, Christian D; Maisoneuve, Hubert; Merlo, Christoph; Mueller, Yolanda; Muth, Christiane; Šter, Marija Petek; Petrazzuoli, Ferdinando; Rosemann, Thomas; Sattler, Martin; Švadlenková, Zuzana; Tatsioni, Athina; Thulesius, Hans; Tkachenko, Victoria; Torzsa, Peter; Tsopra, Rosy; Canan, Tuz; Viegas, Rita P A; Vinker, Shlomo; de Waal, Margot W M; Zeller, Andreas; Gussekloo, Jacobijn; Poortvliet, Rosalinde K E
2017-04-20
In oldest-old patients (>80), few trials showed efficacy of treating hypertension and they included mostly the healthiest elderly. The resulting lack of knowledge has led to inconsistent guidelines, mainly based on systolic blood pressure (SBP), cardiovascular disease (CVD) but not on frailty despite the high prevalence in oldest-old. This may lead to variation how General Practitioners (GPs) treat hypertension. Our aim was to investigate treatment variation of GPs in oldest-olds across countries and to identify the role of frailty in that decision. Using a survey, we compared treatment decisions in cases of oldest-old varying in SBP, CVD, and frailty. GPs were asked if they would start antihypertensive treatment in each case. In 2016, we invited GPs in Europe, Brazil, Israel, and New Zealand. We compared the percentage of cases that would be treated per countries. A logistic mixed-effects model was used to derive odds ratio (OR) for frailty with 95% confidence intervals (CI), adjusted for SBP, CVD, and GP characteristics (sex, location and prevalence of oldest-old per GP office, and years of experience). The mixed-effects model was used to account for the multiple assessments per GP. The 29 countries yielded 2543 participating GPs: 52% were female, 51% located in a city, 71% reported a high prevalence of oldest-old in their offices, 38% and had >20 years of experience. Across countries, considerable variation was found in the decision to start antihypertensive treatment in the oldest-old ranging from 34 to 88%. In 24/29 (83%) countries, frailty was associated with GPs' decision not to start treatment even after adjustment for SBP, CVD, and GP characteristics (OR 0.53, 95%CI 0.48-0.59; ORs per country 0.11-1.78). Across countries, we found considerable variation in starting antihypertensive medication in oldest-old. The frail oldest-old had an odds ratio of 0.53 of receiving antihypertensive treatment. Future hypertension trials should also include frail patients to acquire evidence on the efficacy of antihypertensive treatment in oldest-old patients with frailty, with the aim to get evidence-based data for clinical decision-making.
NASA Astrophysics Data System (ADS)
Savastano, Giorgio; Komjathy, Attila; Verkhoglyadova, Olga; Wei, Yong; Mazzoni, Augusto; Crespi, Mattia
2017-04-01
Tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances are studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Navigation Satellite Systems (GNSS). Here, we present results using a new approach, named VARION (Variometric Approach for Real-Time Ionosphere Observation), and for the first time, we estimate slant TEC (sTEC) variations in a real-time scenario from GPS and Galileo constellations. Specifically, we study the 2016 New Zealand tsunami event using GNSS receivers with multi-constellation tracking capabilities located in the Pacific region. We compare sTEC estimates obtained using GPS and Galileo constellations. The efficiency of the real-time sTEC estimation using the VARION algorithm has been demonstrated for the 2012 Haida Gwaii tsunami event. TEC variations induced by the tsunami event are computed using 56 GPS receivers in Hawai'i. We observe TEC perturbations with amplitudes up to 0.25 TEC units and traveling ionospheric disturbances moving away from the epicenter at a speed of about 316 m/s. We present comparisons with the real-time tsunami model MOST (Method of Splitting Tsunami) provided by the NOAA Center for Tsunami Research. We observe variations in TEC that correlate well in time and space with the propagating tsunami waves. We conclude that the integration of different satellite constellations is a crucial step forward to increasing the reliability of real-time tsunami detection systems using ground-based GNSS receivers as an augmentation to existing tsunami early warning systems.
Evaluation of a GPS used in conjunction with aerial telemetry
Olexa, E.M.; Gogan, P.J.P.; Podruzny, K.M.; Eiler, John; Alcorn, Doris J.; Neuman, Michael R.
2001-01-01
We investigated the use of a non-correctable Global Positioning System (NGPS) in association with aerial telemetry to determine animal locations. Average error was determined for 3 components of the location process: use of a NGPS receiver on the ground, use of a NGPS receiver in a aircraft while flying over a visual marker, and use of the same receiver while flying over a location determined by standard aerial telemetry. Average errors were 45.3, 88.1 and 137.4 m, respectively. A directional bias of <35 m was present for the telemetry component only. Tests indicated that use of NGPS to determine aircraft, and thereby animal, location is an efficient alternative to interpolation from topographic maps. This method was more accurate than previously reported Long-Range Navigation system, version C (LORAN-C) and Argos satellite telemetry. It has utility in areas where animal-borne GPS receivers are not practical due to a combination of topography, canopy coverage, weight or cost of animal-borne GPS units. Use of NGPS technology in conjunction with aerial telemetry will provide the location accuracy required for identification of gross movement patterns and coarse-grained habitat use.
Building a GPS Receiver for Space Lessons Learned
NASA Technical Reports Server (NTRS)
Sirotzky, Steve; Heckler, G. W.; Boegner, G.; Roman, J.; Wennersten, M.; Butler, R.; Davis, M.; Lanham, A.; Winternitz, L.; Thompson, W.;
2008-01-01
Over the past 4 years the Component Systems and Hardware branch at NASA GSFC has pursued an inhouse effort to build a unique space-flight GPS receiver. This effort has resulted in the Navigator GPS receiver. Navigator's first flight opportunity will come with the STS-125 HST-SM4 mission in August 2008. This paper covers the overall hardware design for the receiver and the difficulties encountered during the transition from the breadboard design to the final flight hardware design. Among the different lessons learned, the paper stresses the importance of selecting and verifying parts that are appropriate for space applications, as well as what happens when these parts are not accurately characterized by their datasheets. Additionally, the paper discusses what analysis needs to be performed when deciding system frequencies and filters. The presentation also covers how to prepare for thermal vacuum testing, and problems that may arise during vibration testing. It also contains what criteria should be considered when determining which portions of a design to create in-house, and which portions to license from a third party. Finally, the paper shows techniques which have proven to be extraordinarily helpful in debugging and analysis.
Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing
NASA Astrophysics Data System (ADS)
Paziewski, Jacek; Sieradzki, Rafał; Wielgosz, Paweł
2015-09-01
Two overlapping frequencies—L1/E1 and L5/E5a—in GPS and Galileo systems support the creation of mixed double-differences in a tightly combined relative positioning model. On the other hand, a tightly combined model makes it necessary to take into account receiver intersystem bias, which is the difference in receiver hardware delays. This bias is present in both carrier-phase and pseudorange observations. Earlier research showed that using a priori knowledge of earlier-calibrated ISB to correct GNSS observations has significant impact on ambiguity resolution and, therefore, precise positioning results. In previous research concerning ISB estimation conducted by the authors, small oscillations in phase ISB time series were detected. This paper investigates this effect present in the GPS-Galileo-IOV ISB time series. In particular, ISB short-term temporal stability and its dependence on the number of Galileo satellites used in the ISB estimation was examined. In this contribution we investigate the amplitude and frequency of the detected ISB time series oscillations as well as their potential source. The presented results are based on real observational data collected on a zero baseline with the use of different sets of GNSS receivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishi, Takahiro; Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.jp; Ueki, Nami
Purpose: This study aimed to evaluate the prognostic significance of the modified Glasgow Prognostic Score (mGPS) in patients with non-small cell lung cancer (NSCLC) who received stereotactic body radiation therapy (SBRT). Methods and Materials: Data from 165 patients who underwent SBRT for stage I NSCLC with histologic confirmation from January 1999 to September 2010 were collected retrospectively. Factors, including age, performance status, histology, Charlson comorbidity index, mGPS, and recursive partitioning analysis (RPA) class based on sex and T stage, were evaluated with regard to overall survival (OS) using the Cox proportional hazards model. The impact of the mGPS on causemore » of death and failure patterns was also analyzed. Results: The 3-year OS was 57.9%, with a median follow-up time of 3.5 years. A higher mGPS correlated significantly with poor OS (P<.001). The 3-year OS of lower mGPS patients was 66.4%, whereas that of higher mGPS patients was 44.5%. On multivariate analysis, mGPS and RPA class were significant factors for OS. A higher mGPS correlated significantly with lung cancer death (P=.019) and distant metastasis (P=.013). Conclusions: The mGPS was a significant predictor of clinical outcomes for SBRT in NSCLC patients.« less
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Lichten, Stephen M.; Davis, Edgar S.; Theiss, Harold L.
1993-01-01
Topex/Poseidon, a cooperative satellite mission between United States and France, aims to determine global ocean circulation patterns and to study their influence on world climate through precise measurements of sea surface height above the geoid with an on-board altimeter. To achieve the mission science aims, a goal of 13-cm orbit altitude accuracy was set. Topex/Poseidon includes a Global Positioning System (GPS) precise orbit determination (POD) system that has now demonstrated altitude accuracy better than 5 cm. The GPS POD system includes an on-board GPS receiver and a 6-station GPS global tracking network. This paper reviews early GPS results and discusses multi-mission capabilities available from a future enhanced global GPS network, which would provide ground-based geodetic and atmospheric calibrations needed for NASA deep space missions while also supplying tracking data for future low Earth orbiters. Benefits of the enhanced global GPS network include lower operations costs for deep space tracking and many scientific and societal benefits from the low Earth orbiter missions, including improved understanding of ocean circulation, ocean-weather interactions, the El Nino effect, the Earth thermal balance, and weather forecasting.
Response of Global Navigation Satellite System receivers to known shaking between 0.2 and 20 Hertz
Langbein, John; Evans, John R.; Blume, Fredrick; Johanson, Ingrid
2014-01-01
Similar to Wang and others (2012), we also examined the GPS displacement records using standard spectral techniques. However, we extended their work by evaluating several models of GNSS receivers using a variety of input frequencies. Because our shake table was limited on acceleration and displacement, we did not attempt to duplicate the high shaking associated with high magnitude earthquakes. However, because our shake table could measure the table displacement, we could directly compare the measured GPS displacements with the true displacements.
Working together--primary care doctors' and nurses' attitudes to collaboration.
Hansson, Anders; Arvemo, Tobias; Marklund, Bertil; Gedda, Birgitta; Mattsson, Bengt
2010-02-01
Multidisciplinary teamwork is recommended for various disorders and it has been suggested that it is a way to meet the new challenges and demands facing general practitioners (GPs) in modern society. Attempts to introduce the method in primary care have failed partly due to GPs' unwillingness to participate. The aim of this study was to measure attitudes towards collaboration among GPs and district nurses (DN) and to investigate whether there is a correlation between a positive attitude toward collaboration and high self-esteem in the professional role. The Jefferson Scale of Attitudes toward Physician Nurse Collaboration and the Professional Self-Description Form (PSDF) was used to study a cohort of 600 GPs and DNs in Västra Götaland region. The purpose was to map differences and correlations of attitude between DNs and GPs, between male and female GPs, and between older and younger DNs and GPs. Four hundred and one answers were received. DNs (mean 51.7) were significantly more positive about collaboration than GPs (mean 49.4). There was no difference between younger and older, male and female GPs. DNs scored higher on the PSDF-scale than GPs. DNs were slightly more positive about collaboration than GPs. A positive attitude towards collaboration did not seem to be a part of the GPs' professional role to the same extent as it is for DNs. Professional norms seem to have more influence on attitudes than do gender roles. DNs seem more confident in their profession than GPs.
A statistical characterization of the Galileo-to-GPS inter-system bias
NASA Astrophysics Data System (ADS)
Gioia, Ciro; Borio, Daniele
2016-11-01
Global navigation satellite system operates using independent time scales and thus inter-system time offsets have to be determined to enable multi-constellation navigation solutions. GPS/Galileo inter-system bias and drift are evaluated here using different types of receivers: two mass market and two professional receivers. Moreover, three different approaches are considered for the inter-system bias determination: in the first one, the broadcast Galileo to GPS time offset is used to align GPS and Galileo time scales. In the second, the inter-system bias is included in the multi-constellation navigation solution and is estimated using the measurements available. Finally, an enhanced algorithm using constraints on the inter-system bias time evolution is proposed. The inter-system bias estimates obtained with the different approaches are analysed and their stability is experimentally evaluated using the Allan deviation. The impact of the inter-system bias on the position velocity time solution is also considered and the performance of the approaches analysed is evaluated in terms of standard deviation and mean errors for both horizontal and vertical components. From the experiments, it emerges that the inter-system bias is very stable and that the use of constraints, modelling the GPS/Galileo inter-system bias behaviour, significantly improves the performance of multi-constellation navigation.
Ricci-Cabello, Ignacio; Olry de Labry-Lima, Antonio; Bolívar-Muñoz, Julia; Pastor-Moreno, Guadalupe; Bermudez-Tamayo, Clara; Ruiz-Pérez, Isabel; Quesada-Jiménez, Fermín; Moratalla-López, Enrique; Domínguez-Martín, Susana; de los Ríos-Álvarez, Ana M; Cruz-Vela, Pilar; Prados-Quel, Miguel A; López-De Hierro, José A
2013-10-23
In the last decades the presence of social inequalities in diabetes care has been observed in multiple countries, including Spain. These inequalities have been at least partially attributed to differences in diabetes self-management behaviours. Communication problems during medical consultations occur more frequently to patients with a lower educational level. The purpose of this cluster randomized trial is to determine whether an intervention implemented in a General Surgery, based in improving patient-provider communication, results in a better diabetes self-management in patients with lower educational level. A secondary objective is to assess whether telephone reinforcement enhances the effect of such intervention. We report the design and implementation of this on-going study. The study is being conducted in a General Practice located in a deprived neighbourhood of Granada, Spain. Diabetic patients 18 years old or older with a low educational level and inadequate glycaemic control (HbA1c > 7%) were recruited. General Practitioners (GPs) were randomised to three groups: intervention A, intervention B and control group. GPs allocated to intervention groups A and B received training in communication skills and are providing graphic feedback about glycosylated haemoglobin levels. Patients whose GPs were allocated to group B are additionally receiving telephone reinforcement whereas patients from the control group are receiving usual care. The described interventions are being conducted during 7 consecutive medical visits which are scheduled every three months. The main outcome measure will be HbA1c; blood pressure, lipidemia, body mass index and waist circumference will be considered as secondary outcome measures. Statistical analysis to evaluate the effectiveness of the interventions will include multilevel regression analysis with three hierarchical levels: medical visit level, patient level and GP level. The results of this study will provide new knowledge about possible strategies to promote a better diabetes self-management in a particularly vulnerable group. If effective, this low cost intervention will have the potential to be easily incorporated into routine clinical practice, contributing to decrease health inequalities in diabetic patients. Clinical Trials U.S. National Institutes of Health, NCT01849731.
Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva
2015-01-01
For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943
Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit
NASA Technical Reports Server (NTRS)
Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.
2016-01-01
The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements.
NASA Astrophysics Data System (ADS)
Rada, C.; Schoof, C.; King, M. A.; Flowers, G. E.; Haber, E.
2017-12-01
Subglacial drainage is known to play an important role in glacier dynamics trough its influence on basal sliding. However, drainage is also one of the most poorly understood process in glacier flow due to the difficulties of observing, identifying and modeling the physics involved. In an effort to improve understanding of subglacial processes, we have monitored a small, approximately 100 m thick surge-type alpine glacier for nine years. Over 300 boreholes were instrumented with pressure transducers over a 0.5 km² in its upper ablation area, in addition to a weather station and a permanent GPS array consisting on 16 dual-frequency receivers within the study area. We study the influence of the subglacial drainage system on the glacier surface velocity. However, pressure variations in the drainage system during the melt season are dominated by diurnal oscillations.Therefore, GPS solutions have to be computed at sub-diurnal time intervals in order to explore the effects of transient diurnal pressure variations. Due to the small displacements of the surface of the glacier over those periods (4-10 cm/day), sub-diurnal solutions are dominated by errors, making it impossible to observe the diurnal variations in glacier motion. We have found that the main source of error is GPS multipath. This error source does largely cancel out when solutions are computed over 24 hour periods (or more precisely, over a sidereal day), but solution precisions decrease quickly when computed over shorter periods of time. Here we present an inverse problem approach to remove GPS multipath errors on glaciers, and use the reconstructed glacier motion to explore how the subglacial drainage morphology and effective pressure influence glacier dynamics at multiple time scales.
Evaluation of a GPS Receiver for Code and Carrier-Phase Time and Frequency Transfer
2010-11-01
2], and carrier-phase [3]. NIST also employs GPS time transfer as the backup link to Two Way Satellite Time and Frequency Transfer ( TWSTFT ) [4...4] D. Kirchner, 1999, “Two-Way Satellite Time and Frequency Transfer ( TWSTFT ): Principle, Implementation, and Current Performance,” Review of
NASA Astrophysics Data System (ADS)
Jaworski, Leszek; Swiatek, Anna; Zdunek, Ryszard
2013-09-01
The problem of insufficient accuracy of EGNOS correction for the territory of Poland, located at the edge of EGNOS range is well known. The EEI PECS project (EGNOS EUPOS Integration) assumes improving the EGNOS correction by using the GPS observations from Polish ASG-EUPOS stations. One of the EEI project tasks was the identification of EGNOS performance limitations over Poland and services for EGNOSS-EUPOS combination. The two sets of data were used for those goals: statistical, theoretical data obtained using the SBAS simulator software, real data obtained during the measurements. The real measurements were managed as two types of measurements: static and dynamic. Static measurements are continuously managing using Septentrio PolaRx2 receiver. The SRC permanent station works in IMAGE/PERFECT project. Dynamic measurements were managed using the Mobile GPS Laboratory (MGL). Receivers (geodetic and navigation) were working in two modes: determining navigation position from standalone GPS, determining navigation position from GPS plus EGNOS correction. The paper presents results of measurements' analyses and conclusions based on which the next tasks in EEI project are completed
Stability characterization of two multi-channel GPS receivers for accurate frequency transfer.
NASA Astrophysics Data System (ADS)
Taris, F.; Uhrich, P.; Thomas, C.; Petit, G.; Jiang, Z.
In recent years, wide-spread use of the GPS common-view technique has led to major improvements, making it possible to compare remote clocks at their full level of performance. For integration times of 1 to 3 days, their frequency differences are consistently measured to about one part in 1014. Recent developments in atomic frequency standards suggest, however, that this performance may no longer be sufficient. The caesium fountain LPTF FO1, built at the BNM-LPTF, Paris, France, shows a short-term white frequency noise characterized by an Allen deviation σy(τ = 1 s) = 5×10-14 and a type B uncertainty of 2×10-15. To compare the frequencies of such highly stable standards would call for GPS common-view results to be averaged over times far exceeding the intervals of their optimal performance. Previous studies have shown the potential of carrier-phase and code measurements from geodetic GPS receivers for clock frequency comparisons. The experiment related here is an attempt to see the stability limit that could be reached using this technique.
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin
2013-04-01
We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.
Przemyslaw, Baranski; Pawel, Strumillo
2012-01-01
The paper presents an algorithm for estimating a pedestrian location in an urban environment. The algorithm is based on the particle filter and uses different data sources: a GPS receiver, inertial sensors, probability maps and a stereo camera. Inertial sensors are used to estimate a relative displacement of a pedestrian. A gyroscope estimates a change in the heading direction. An accelerometer is used to count a pedestrian's steps and their lengths. The so-called probability maps help to limit GPS inaccuracy by imposing constraints on pedestrian kinematics, e.g., it is assumed that a pedestrian cannot cross buildings, fences etc. This limits position inaccuracy to ca. 10 m. Incorporation of depth estimates derived from a stereo camera that are compared to the 3D model of an environment has enabled further reduction of positioning errors. As a result, for 90% of the time, the algorithm is able to estimate a pedestrian location with an error smaller than 2 m, compared to an error of 6.5 m for a navigation based solely on GPS. PMID:22969321
Topside ionospheric irregularities as seen from multisatellite observations
NASA Astrophysics Data System (ADS)
Zakharenkova, Irina; Astafyeva, Elvira
2015-01-01
use in situ data from CHAMP and DMSP satellites, along with data of GPS receiver onboard CHAMP satellite and ground-based GPS receivers to study the occurrence and global distribution of ionospheric irregularities during the main phase of the geomagnetic storm of 29-31 August 2004 (minimum Dst excursion of -128 nT). Using the CHAMP GPS measurements, we created maps of GPS phase fluctuation activity and found two specific zones of the most intense irregularities: (1) the region of the auroral oval at high latitudes of both hemispheres and (2) the low latitudes/equatorial region between Africa and South America. At high latitudes, the topside ionospheric irregularities appeared to be more intensive in the southern hemisphere, which is, most likely, due to seasonal variations in the interhemispheric field-aligned currents system. An analysis of multi-instrumental observations reveals reinforcement of the equatorial ionization anomaly after sunset in Atlantic sector on 30 August and formation of the significant plasma depletions and irregularities over a large longitudinal range. Equatorial irregularities were also found in the morning sector at the recovery phase of the storm. In addition to low Earth orbit (LEO) GPS measurements, we analyze the LEO in situ measurements, and we show that these two techniques cannot be interchangeable in all cases because of the altitudinal extent of plasma irregularities. Overall, we demonstrate that the LEO GPS technique can serve a useful tool for detection of the topside ionospheric irregularities during space weather events and may essentially contribute to other methods based on various instruments.
Terrestrial Reference Frame from GPS and SLR
NASA Astrophysics Data System (ADS)
Weiss, Jan; Bertiger, Willy; Desai, Shailen; Haines, Bruce; Sibois, Aurore
2015-04-01
We present strategies for realizing the terrestrial reference frame (TRF) using tracking data from terrestrial GPS receivers alone and in tandem with the GRACE and LAGEOS satellites. We generate solutions without apriori ties to the International Terrestrial Reference Frame (ITRF). Our approach relies on processing multi-day orbit arcs to take advantage of the satellite dynamics, GPS receiver and transmitter calibrations derived from low-Earth orbiter (LEO) data, and estimation strategies tuned for realizing a stable and accurate TRF. We furthermore take advantage of the geometric diversity provided by GPS tracking from GRACE, and explore the impacts of including ground-based satellite laser range (SLR) measurements to LAGEOS-1 and -2 with local ties relating the two geodetic techniques. We process data from 2003-2014 and compute Helmert transformations relative to ITRF/IGb08. With GPS alone we achieve a 3D origin offset and rate of <7 mm and <1 mm/yr, and reduce the offset to <4 mm when GRACE is included in the global solutions. Scale bias and rate are 3.1 ppb and 0.01 ppb/yr in either solution. Including SLR tracking from 11 ground stations to the LAGEOS satellites from 2012-2014 yields a reduction in scale bias of 0.5-1.0 ppb depending on the weight assigned to the SLR measurements. However, scatter is increased due to the relatively sparse SLR tracking network. We conclude with approaches for improving the TRF realized from GPS and SLR combined at the measurement level.
Flexible Control and Interprocess Communication on the Rogue GPS Receiver
NASA Technical Reports Server (NTRS)
Blau, R.
1999-01-01
The Rogue receivers are a series of custom high-accuracy Global Positioning System receivers being developed at NASA's Jet Propulsion Laboratory. This thesis describes two additions to the RogueOS, a custom operation system developed for these recievers.
Suzuki, Shuichi; Desai, Urvi; Strizek, Alena; Ivanova, Jasmina; Garcia-Horton, Viviana; Cai, Zhihong; Schmerold, Luke; Liu, Xinyue; Perez-Nieves, Magaly
2018-06-01
This study's objective was to describe characteristics, treatment patterns, and economic outcomes of type 2 diabetes mellitus (T2DM) patients initiating injectable antidiabetic medications in Japan. Adults (≥ 18 years) with T2DM, ≥ 2 claims for injectable antidiabetics between 1 August 2011 and 31 July 2015 (first claim = index date), no evidence of type 1 diabetes mellitus, ≤ 1 claim for insulin, no claims for GLP-1RA before index, and continuous enrollment for 6 months before (baseline) and 12 months after index (follow-up) were selected from the Japan Medical Center Database. Patient characteristics and outcomes during the baseline and follow-up periods were described overall and by provider, using the proxy setting of index medication [hospital (including outpatient departments) for specialists; clinic for general practitioner (GP)]. Of the 2683 patients included (mean age: 50 years, 67% male), 1879 (70%) initiated injectable antidiabetics with specialists and 804 (30%) with GPs. The specialist cohort had a significantly greater comorbidity burden, but lower HbA1c levels during baseline, and was more likely to receive intensified treatment at index than the GP cohort. Almost 40% of patients (almost 30% of GP cohort) did not use antidiabetics during baseline; the remaining patients received oral medications, primarily from GPs. During follow-up, patients used the index medication for approximately 7 months. Independent of specialist vs. GP setting, patients received antidiabetics and medications for T2DM-related comorbidities and complications during the baseline and follow-up periods from the same provider, primarily GPs. The overall average healthcare costs were ¥350,404 during baseline and ¥1,856,727 during follow-up. In Japan, most T2DM patients initiated injectable antidiabetics with specialists vs. GPs. There were considerable differences in characteristics of patients treated by specialists vs. GPs. After initiation, injectable antidiabetics were largely prescribed by GPs. Future research should evaluate the factors associated with different provider practices and communication channels between specialists and GPs to improve patient management. Eli Lilly and Co.
Multi-GNSS Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Al-Shaery, A.; Zhang, S.; Lim, S.; Rizos, C.
2012-04-01
The multi-GNSS era has began attracting more attention with the declaration of full operational capability of GLONASS , with a 24 satellites being set to 'healthy' on December 8th 2011 (IAC, 2011). This means that GPS is no longer the only GNSS that provides global positioning coverage. This status brings benefits for GNSS users in areas (e.g. 'urban canyon' environments or in deep open cut mines) where the number of visible satellites is limited because of shadowing effects. In such areas adding more functioning satellites, which is one of the aiding solutions, becomes easier, at no extra cost. The inclusion of GLONASS observations in positioning solutions will increase the available number of satellites and thus positioning accuracy may improve as a result of enhanced overall satellite geometry. Such an aiding solution is increasingly attractive due to the successful revitalisation of GLONASS. Another motivation is the availability of improved GLONASS orbits from the IGS and individual analysis centres of the IGS. The increasing availability of receivers with GPS/GLONASS tracking capability on the market is an additional motive. Consequently, most networks of continuously operating reference stations (CORS) are now equipped with receivers that can track both GPS and GLONASS satellite signals, and therefore network-based positioning with combined GPS and GLONASS observations is possible. However, adding GLONASS observations to GPS is not a straight forward process. This is attributable to a few system differences in reference frames for time and coordinates, and in signal structures. The first two differences are easy to deal with using well-defined conversion and transformation parameters (El-Mowafy, 2001). However, signal structure differences have some implications. The mathematical modelling of combined GPS/GLONASS observations is not performed as in the case of GPS-alone. Special care should be paid to such integration. Not only is the software part affected but also the hardware. Recent research has identified one of the challenges users may face if precise positioning is sought (Takac, 2009, Yamada et al., 2010, Wanninger, 2011). A user of heterogeneous receiver pairs will experience ambiguity fixing challenges due to inter-channel bias which cannot be cancelled by differencing GLONASS observations, pseudorange or carrier-phase. This paper outlines the opportunities and challenges of combining two currently fully operational GNSS systems (GPS and GLONASS) for precise positioning solutions. Discussion and analysis considering mathematical modelling challenges and users' selection of hardware constraints will be performed.
Gender differences among general practitioners in smoking cessation counseling practices.
O'Loughlin, Jennifer; Makni, Héla; Tremblay, Michèle; Karp, Igor
2007-01-01
To describe gender differences in smoking cessation counseling practices among general practitioners (GPs), and to investigate the association between training for cessation counseling and counseling practices according to gender. Data were collected in two cross-sectional mail surveys conducted in independent random samples of GPs in Montreal, the first in 1998, and the second in 2000. Respondents included 653 GPs (71% of 916 eligible). All indicators of smoking cessation counseling practices were more favorable among female GPs. Higher proportions of female GPs had received training (28% vs. 17%, p=0.002), and were aware of mailed print educational materials related to cessation counseling (81% vs. 57%, p<0.0001). Training among male GPs was associated with higher scores for ascertainment of smoking status (odds ratio (OR) (95% confidence interval)=1.69 (0.97, 2.96)), provision of advice (OR=2.20 (1.23, 3.95)), and provision of adjunct support (OR=2.86 (1.58, 5.16)). Training was not associated with counseling practices among female GPs. Female GPs may not benefit from formal cessation counseling training to the same extent as male GPs, possibly because they read and integrate the content of (easily available) print educational materials into their clinical practice to a greater extent than male GPs. The gender-specific impact of print educational material and formal training on cessation counseling should be evaluated among GPs.
Validation results of the IAG Dancer project for distributed GPS analysis
NASA Astrophysics Data System (ADS)
Boomkamp, H.
2012-12-01
The number of permanent GPS stations in the world has grown far too large to allow processing of all this data at analysis centers. The majority of these GPS sites do not even make their observation data available to the analysis centers, for various valid reasons. The current ITRF solution is still based on centralized analysis by the IGS, and subsequent densification of the reference frame via regional network solutions. Minor inconsistencies in analysis methods, software systems and data quality imply that this centralized approach is unlikely to ever reach the ambitious accuracy objectives of GGOS. The dependence on published data also makes it clear that a centralized approach will never provide a true global ITRF solution for all GNSS receivers in the world. If the data does not come to the analysis, the only alternative is to bring the analysis to the data. The IAG Dancer project has implemented a distributed GNSS analysis system on the internet in which each receiver can have its own analysis center in the form of a freely distributed JAVA peer-to-peer application. Global parameters for satellite orbits, clocks and polar motion are solved via a distributed least squares solution among all participating receivers. A Dancer instance can run on any computer that has simultaneous access to the receiver data and to the public internet. In the future, such a process may be embedded in the receiver firmware directly. GPS network operators can join the Dancer ITRF realization without having to publish their observation data or estimation products. GPS users can run a Dancer process without contributing to the global solution, to have direct access to the ITRF in near real-time. The Dancer software has been tested on-line since late 2011. A global network of processes has gradually evolved to allow stabilization and tuning of the software in order to reach a fully operational system. This presentation reports on the current performance of the Dancer system, and demonstrates the obvious benefits of distributed analysis of geodetic data in general. IAG Dancer screenshot
Functional description of signal processing in the Rogue GPS receiver
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1988-01-01
Over the past year, two Rogue GPS prototype receivers have been assembled and successfully subjected to a variety of laboratory and field tests. A functional description is presented of signal processing in the Rogue receiver, tracing the signal from RF input to the output values of group delay, phase, and data bits. The receiver can track up to eight satellites, without time multiplexing among satellites or channels, simultaneously measuring both group delay and phase for each of three channels (L1-C/A, L1-P, L2-P). The Rogue signal processing described requires generation of the code for all three channels. Receiver functional design, which emphasized accuracy, reliability, flexibility, and dynamic capability, is summarized. A detailed functional description of signal processing is presented, including C/A-channel and P-channel processing, carrier-aided averaging of group delays, checks for cycle slips, acquistion, and distinctive features.
NASA Astrophysics Data System (ADS)
Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian
2017-11-01
The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.
Vertical structure of medium-scale traveling ionospheric disturbances
NASA Astrophysics Data System (ADS)
Ssessanga, Nicholas; Kim, Yong Ha; Kim, Eunsol
2015-11-01
We develop an algorithm of computerized ionospheric tomography (CIT) to infer information on the vertical and horizontal structuring of electron density during nighttime medium-scale traveling ionospheric disturbances (MSTIDs). To facilitate digital CIT we have adopted total electron contents (TEC) from a dense Global Positioning System (GPS) receiver network, GEONET, which contains more than 1000 receivers. A multiplicative algebraic reconstruction technique was utilized with a calibrated IRI-2012 model as an initial solution. The reconstructed F2 peak layer varied in altitude with average peak-to-peak amplitude of ~52 km. In addition, the F2 peak layer anticorrelated with TEC variations. This feature supports a theory in which nighttime MSTID is composed of oscillating electric fields due to conductivity variations. Moreover, reconstructed TEC variations over two stations were reasonably close to variations directly derived from the measured TEC data set. Our tomographic analysis may thus help understand three-dimensional structure of MSTIDs in a quantitative way.
GPS-based precision orbit determination - A Topex flight experiment
NASA Technical Reports Server (NTRS)
Melbourne, William G.; Davis, Edgar S.
1988-01-01
Plans for a Topex/Poseiden flight experiment to test the accuracy of using GPS data for precision orbit determination of earth satellites are presented. It is expected that the GPS-based precision orbit determination will provide subdecimeter accuracies in the radial component of the Topex orbit when the extant gravity model is tuned for wavelengths longer than about 1000 kms. The concept, design, flight receiver, antenna system, ground processing, and data processing of GPS are examined. Also, an accurate quasi-geometric orbit determination approach called nondynamic or reduced dynamic tracking which relies on the use of the pseudorange and the carrier phase measurements to reduce orbit errors arising from mismodeled dynamics is discussed.
NASA Astrophysics Data System (ADS)
Peng, D. J.; Wu, B.
2012-01-01
With the availability of precise GPS ephemeris and clock solution, the ionospheric range delay is left as the dominant error sources in the post-processing of space-borne GPS data from single-frequency receivers. Thus, the removal of ionospheric effects is a major prerequisite for an improved orbit reconstruction of LEO satellites equipped with low cost single-frequency GPS receivers. In this paper, the use of Global Ionospheric Maps (GIM) in kinematic and dynamic orbit determination for LEO satellites with single-frequency GPS measurements is discussed first,and then, estimating the scale factor of ionosphere to remove the ionospheric effects in C/A code pseudo-range measurements in both kinematic and adynamia orbit defemination approaches is addressed. As it is known the ionospheric path delay of space-borne GPS signals is strongly dependent on the orbit altitudes of LEO satellites, we selected real space-borne GPS data from CHAMP, GRACE, TerraSAR-X and SAC-C satellites with altitudes between 300 km and 800 km as sample data in this paper. It is demonstrated that the approach of eliminating ionospheric effects in space-borne C/A code pseudo-range by estimating the scale factor of ionosphere is highly effective. Employing this approach, the accuracy of both kinematic and dynamic orbits can be improved notably. Among those five LEO satellites, CHAMP with the lowest orbit altitude has the most remarkable orbit accuracy improvements, which are 55.6% and 47.6% for kinematic and dynamic approaches, respectively. SAC-C with the highest orbit altitude has the least orbit accuracy improvements accordingly, which are 47.8% and 38.2%, respectively.
Chang’E-5T Orbit Determination Using Onboard GPS Observations
Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin
2017-01-01
In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang’E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard GPS data are evaluated in terms of tracking performance as well as observation quality. It is indicated that the onboard receiver can track 7–8 GPS satellites per epoch on average and the ratio of carrier to noise spectral density (C/N0) values are higher than 28 dB-Hz for 90% of all the observables. The C1 code errors are generally about 4.15 m but can be better than 2 m with C/N0 values over 36 dB-Hz. GPS-based Chang’E-5T OD is performed and the Helmert variance component estimation method is investigated to determine the weights of code and carrier phase observations. The results reveal that the orbit consistency is about 20 m. OD is furthermore analyzed with GPS data screened out according to different C/N0 thresholds. It is indicated that for the Chang’E-5T, the precision of OD is dominated by the number of observed satellite. Although increased C/N0 thresholds can improve the overall data quality, the available number of GPS observations is greatly reduced and the resulting orbit solution is poor. PMID:28587174
Chang'E-5T Orbit Determination Using Onboard GPS Observations.
Su, Xing; Geng, Tao; Li, Wenwen; Zhao, Qile; Xie, Xin
2017-06-01
In recent years, Global Navigation Satellite System (GNSS) has played an important role in Space Service Volume, the region enclosing the altitudes above 3000 km up to 36,000 km. As an in-flight test for the feasibility as well as for the performance of GNSS-based satellite orbit determination (OD), the Chinese experimental lunar mission Chang'E-5T had been equipped with an onboard high-sensitivity GNSS receiver with GPS and GLONASS tracking capability. In this contribution, the 2-h onboard GPS data are evaluated in terms of tracking performance as well as observation quality. It is indicated that the onboard receiver can track 7-8 GPS satellites per epoch on average and the ratio of carrier to noise spectral density (C/N0) values are higher than 28 dB-Hz for 90% of all the observables. The C1 code errors are generally about 4.15 m but can be better than 2 m with C/N0 values over 36 dB-Hz. GPS-based Chang'E-5T OD is performed and the Helmert variance component estimation method is investigated to determine the weights of code and carrier phase observations. The results reveal that the orbit consistency is about 20 m. OD is furthermore analyzed with GPS data screened out according to different C/N0 thresholds. It is indicated that for the Chang'E-5T, the precision of OD is dominated by the number of observed satellite. Although increased C/N0 thresholds can improve the overall data quality, the available number of GPS observations is greatly reduced and the resulting orbit solution is poor.
NASA Astrophysics Data System (ADS)
Namie, Hiromune; Morishita, Hisashi
The authors focused on the development of an indoor positioning system which is easy to use, portable and available for everyone. This system is capable of providing the correct position anywhere indoors, including onboard ships, and was invented in order to evaluate the availability of GPS indoors. Although the performance of GPS is superior outdoors, there has been considerable research regarding indoor GPS involving sensitive GPS, pseudolites (GPS pseudo satellite), RFID (Radio Frequency IDentification) tags, and wireless LAN .However, the positioning rate and the precision are not high enough for general use, which is the reason why these technologies have not yet spread to personal navigation systems. In this regard, the authors attempted to implement an indoor positioning system using cellular phones with built-in GPS and infrared light data communication functionality, which are widely used in Japan. GPS is becoming increasingly popular, where GPGGS sentences of the NMEA outputted from the GPS receiver provide spatiotemporal information including latitude, longitude, altitude, and time or ECEF xyz coordinates. As GPS applications grow rapidly, spatiotemporal data becomes key to the ubiquitous outdoor and indoor seamless positioning services at least for the entire area of Japan, as well as to becoming familiar with satellite positioning systems (e.g. GPS). Furthermore, the authors are also working on the idea of using PDAs (Personal Digital Assistants), as cellular phones with built-in GPS and PDA functionality are also becoming increasingly popular.
Global Positioning Svstem (GPS) on International Space Station (ISS) and Crew Return Vehicle (CRV)
NASA Technical Reports Server (NTRS)
Gomez, Susan F.
2002-01-01
Both the International Space Station and Crew Return Vehicle desired to have GPS on their vehicles due to improve state determination over traditional ground tracking techniques used in the past for space vehicles. Both also opted to use GPS for attitude determination to save the expense of a star tracker. Both vehicles have stringent pointing requirements for roll, pitch, and heading, making a sun or earth sensor not a viable option since the heading is undetermined. This paper discusses the technical challenges associated with the implementation of GPS on both of these vehicles. ISS and CRY use the same GPS receiver, but have faced different challenges since the mission of each is di fferent. ISS will be discussed first, then CRY. The flight experiments flown on the Space Shuttle in support of these efforts is also discussed.
Measuring the Earth to within an inch using GPS satellites
NASA Astrophysics Data System (ADS)
Blewitt, Geoffrey
1992-01-01
A recently developed technique for “measuring the Earth” was demonstrated in 1991 using data from an experiment involving a world-wide network of receivers that track satellites of the Global Positioning System (GPS). Recent results indicate that distances between points separated by as much as 10,000 km on the surface of the Earth can be determined at the 2 cm level, and that the position of the pole of rotation at the Earth's surface can be estimated daily to better than 2 cm. Achieving this level of accuracy in a reliable, economical way is an important step towards building our understanding of the Earth as a rotating, deforming body.Funded by NASA's Solid Earth Science Program, the Jet Propulsion Laboratory coordinated participation of many international institutions in a 3-week experiment in January-February 1991 called GPS for International Earth Rotation Service (IERS) and Geodynamics '91 (GIG'91). Twenty-one receivers developed by J PL and scores of commercial receivers were simultaneously deployed. Several independent groups around the world analyzed the data and presented results at meetings in the summer and fall of 1991.
First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University
Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao
2015-01-01
GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616
The NASA CYGNSS Small Satellite Constellation
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.
2017-12-01
The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.
GPs' opinions of public and industrial information regarding drugs: a cross-sectional study
2011-01-01
Background General Practitioners {GP} in Sweden prescribe more than 50% of all prescriptions. Scientific knowledge on the opinions of GPs regarding drug information has been sparse. Such knowledge could be valuable when designing evidence-based drug information to GPs. GPs' opinions on public- and industry-provided drug information are presented in this article. Methods A cross-sectional study using a questionnaire was answered by 368 GPs at 97 primary-health care centres {PHCC}. The centres were invited to participate by eight out of 29 drug and therapeutic committees {DTCs}. A multilevel model was used to analyse associations between opinions of GPs regarding drug information and whether the GPs worked in public sector or in a private enterprise, their age, sex, and work experience. PHCC and geographical area were included as random effects. Results About 85% of the GPs perceived they received too much information from the industry, that the quality of public information was high and useful, and that the main task of public authorities was to increase the GPs' knowledge of drugs. Female GPs valued information from public authorities to a much greater extent than male GPs. Out of the GPs, 93% considered the main task of the industry was to promote sales. Differences between the GPs' opinions between PHCCs were generally more visible than differences between areas. Conclusions Some kind of incentives could be considered for PHCCs that actively reduce drug promotion from the industry. That female GPs valued information from public authorities to a much greater extent than male GPs should be taken into consideration when designing evidence-based drug information from public authorities to make implementation easier. PMID:21867497
NASA Technical Reports Server (NTRS)
Axelrad, P.; Cox, A. E.; Crumpton, K. S.
1997-01-01
An algorithm is presented which uses observations of Global Positioning System (GPS) signals reflected from the ocean surface and acquired by a GPS receiver onboard an altimetric satellite to compute the ionospheric delay present in the altimeter measurement. This eliminates the requirement for a dual frequency altimeter for many Earth observing missions. A ground-based experiment is described which confirms the presence of these ocean-bounced signals and demonstrates the potential for altimeter ionospheric correction at the centimeter level.
2012-12-01
GPS receiver, the Ashtech ProMark 500; a 3.4-GHz radio modem, the FreeWave 3400-SMR; a display unit, the Magellan MobileMapper CX; a 12-V battery pack...Figure 8. Bottom view of the ProMark 500. 3.1 Survey Unit RTK GPS Setup The following are the procedures for setting up...the RTK GPS Survey Unit: 1. Connect the radio modem to the ProMark 500 with serial cable #7 and #8. Display Screen Scroll Button Power LED Log
Rail inspection system based on iGPS
NASA Astrophysics Data System (ADS)
Fu, Xiaoyan; Wang, Mulan; Wen, Xiuping
2018-05-01
Track parameters include gauge, super elevation, cross level and so on, which could be calculated through the three-dimensional coordinates of the track. The rail inspection system based on iGPS (indoor/infrared GPS) was composed of base station, receiver, rail inspection frame, wireless communication unit, display and control unit and data processing unit. With the continuous movement of the inspection frame, the system could accurately inspect the coordinates of rail; realize the intelligent detection and precision measurement. According to principle of angle intersection measurement, the inspection model was structured, and detection process was given.
2009-03-01
utilize L2 measurements via proprietary methods. The coarse/ acquisition (C/A) code transmitted on L1 is used for the vast majority of GPS position... code , which can be acquired and tracked by a GPS receiver. The satellites are in a near-circular orbit with a radius of 26,560 km. There are six orbital...planes, each with at least four satellites. The orbital planes have an inclination of 55◦ from the equator. [33, p . 33] The GPS satellite
Dual RF Astrodynamic GPS Orbital Navigator Satellite
NASA Technical Reports Server (NTRS)
Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn
2009-01-01
Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.
GPS Integrity Channel RTCA Working Group recommendations
NASA Astrophysics Data System (ADS)
Kalafus, Rudolph M.
Recommendations made by a working group established by the Radio Technical Commission for Aeronautics are presented for the design of a wide-area broadcast service to provide indications on the status of GPS satellites. The integrity channel requirements and operational goals are outlined. Six integrity channel system concepts are considered and system design and time-to-alarm considerations are examined. The recommended system includes the broadcast of a coarse range measurement for each satellite which will enable the on-board GPS receiver to determine whether or not the navigation accuracy is within prescribed limits.
NASA Technical Reports Server (NTRS)
Axelrad, Penina; Speed, Eden; Leitner, Jesse A. (Technical Monitor)
2002-01-01
This report summarizes the efforts to date in processing GPS measurements in High Earth Orbit (HEO) applications by the Colorado Center for Astrodynamics Research (CCAR). Two specific projects were conducted; initialization of the orbit propagation software, GEODE, using nominal orbital elements for the IMEX orbit, and processing of actual and simulated GPS data from the AMSAT satellite using a Doppler-only batch filter. CCAR has investigated a number of approaches for initialization of the GEODE orbit estimator with little a priori information. This document describes a batch solution approach that uses pseudorange or Doppler measurements collected over an orbital arc to compute an epoch state estimate. The algorithm is based on limited orbital element knowledge from which a coarse estimate of satellite position and velocity can be determined and used to initialize GEODE. This algorithm assumes knowledge of nominal orbital elements, (a, e, i, omega, omega) and uses a search on time of perigee passage (tau(sub p)) to estimate the host satellite position within the orbit and the approximate receiver clock bias. Results of the method are shown for a simulation including large orbital uncertainties and measurement errors. In addition, CCAR has attempted to process GPS data from the AMSAT satellite to obtain an initial estimation of the orbit. Limited GPS data have been received to date, with few satellites tracked and no computed point solutions. Unknown variables in the received data have made computations of a precise orbit using the recovered pseudorange difficult. This document describes the Doppler-only batch approach used to compute the AMSAT orbit. Both actual flight data from AMSAT, and simulated data generated using the Satellite Tool Kit and Goddard Space Flight Center's Flight Simulator, were processed. Results for each case and conclusion are presented.
The need for GPS standardization
NASA Technical Reports Server (NTRS)
Lewandowski, Wlodzimierz W.; Petit, Gerard; Thomas, Claudine
1992-01-01
A desirable and necessary step for improvement of the accuracy of Global Positioning System (GPS) time comparisons is the establishment of common GPS standards. For this reason, the CCDS proposed the creation of a special group of experts with the objective of recommending procedures and models for operational time transfer by GPS common-view method. Since the announcement of the implementation of Selective Availability at the end of last spring, action has become much more urgent and this CCDS Group on GPS Time Transfer Standards has now been set up. It operates under the auspices of the permanent CCDS Working Group on TAI and works in close cooperation with the Sub-Committee on Time of the Civil GPS Service Interface Committee (CGSIC). Taking as an example the implementation of SA during the first week of July 1991, this paper illustrates the need to develop urgently at least two standardized procedures in GPS receiver software: monitoring GPS tracks with a common time scale and retaining broadcast ephemeris parameters throughout the duration of a track. Other matters requiring action are the adoption of common models for atmospheric delay, a common approach to hardware design and agreement about short-term data processing. Several examples of such deficiencies in standardization are presented.
Auxiliary VHF transmitter to aid recovery of solar Argos/GPS PTTs
Christopher P. Hansen; Mark A. Rumble; R. Scott Gamo; Joshua J. Millspaugh
2014-01-01
While conducting greater sage-grouse (Centrocercus urophasianus) research, we found that solar-powered global positioning systems platform transmitter terminals (GPS PTTs) can be lost if the solar panel does not receive adequate sunlight. Thus, we developed 5-g (mortality sensor included; Prototype A) and 9.8-g (no mortality sensor; Prototype B) auxiliary very high...
Recent Activities in Spaceborne GPS
NASA Technical Reports Server (NTRS)
Yunck, T. P.
1995-01-01
After years of patient advocacy and paper studies by a diverse corps of enthusiasts, spaceborne GPS has at last become a presence in the world of flight projects. Owing to rapidly declining hardware costs, and the high value of autonomous onboard positioning, timing, and attitude determination, basic navigation receivers are coming to be seen as almost indispensable to future low earth orbiters.
Update on GPS Modernization Efforts
2015-06-02
Bilateral Agreements • Adjacent Band Interference • International Committee On Global Navigation Satellite Systems ( GNSS ) Department of...Receivers • Distribute PRNs for the World - 120 for US and 90 for GNSS International Cooperation • 57 Authorized Allied Users - 25+ Years of...Cooperation • GNSS -Europe - Galilee - China - COMPASS -Russia - GLONASS - Japan - QZSS - India- IRNSS 5 GPS Modernization Program SPACE AND MISSILE
Development of a real time bistatic radar receiver using signals of opportunity
NASA Astrophysics Data System (ADS)
Rainville, Nicholas
Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.
Crumley, A B C; McMillan, D C; McKernan, M; McDonald, A C; Stuart, R C
2006-03-13
There is increasing evidence that the presence of an ongoing systemic inflammatory response is associated with poor outcome in patients with advanced cancer. The aim of the present study was to examine whether an inflammation-based prognostic score (Glasgow Prognostic score, GPS) was associated with survival, in patients with inoperable gastro-oesophageal cancer. Patients diagnosed with inoperable gastro-oesophageal carcinoma and who had measurement of albumin and C-reactive protein concentrations, at the time of diagnosis, were studied (n=258). Clinical information was obtained from a gastro-oesophageal cancer database and analysis of the case notes. Patients with both an elevated C-reactive protein (>10 mg l(-1)) and hypoalbuminaemia (<35 g l(-1)) were allocated a GPS score of 2. Patients in whom only one of these biochemical abnormalities was present were allocated a GPS score of 1, and patients with a normal C-reactive protein and albumin were allocated a score of 0. On multivariate survival analysis, age (hazard ratio (HR) 1.22, 95% CI 1.02-1.46, P<0.05), stage (HR 1.55, 95% CI 1.30-1.83, P<0.001), the GPS (HR 1.51, 95% CI 1.22-1.86, P<0.001) and treatment (HR 2.53, 95% CI 1.80-3.56, P<0.001) were significant independent predictors of cancer survival. A 12-month cancer-specific survival in patients with stage I/II disease receiving active treatment was 67 and 60% for a GPS of 0 and 1, respectively. For stage III/IV disease, 12 months cancer-specific survival was 57, 25 and 12% for a GPS of 0, 1 and 2, respectively. In the present study, the GPS predicted cancer-specific survival, independent of stage and treatment received, in patients with inoperable gastro-oesophageal cancer. Moreover, the GPS may be used in combination with conventional staging techniques to improve the prediction of survival in patients with inoperable gastro-oesophageal cancer.
Toward shared care for people with cancer: developing the model with patients and GPs.
Hall, Susan J; Samuel, Leslie M; Murchie, Peter
2011-10-01
The number of people surviving cancer for extended periods is increasing. Consequently, due to workload and quality issues, there is considerable interest in alternatives to traditional secondary care-led cancer follow-up. To explore the views of potential recipients of shared follow-up of cancer. To conduct a modelling exercise for shared follow-up and to explore the opinions and experiences of both the patients and GPs involved. Semi-structured audio-taped telephone or face-to-face interviews were conducted with 18 patients with a range of cancers currently attending for structured follow-up in secondary care. Six GPs and five patients (four with melanoma and one with stable metastatic colorectal cancer) took part in a shared follow-up modelling exercise. During the modelling exercise, the GPs attended 4 review meetings, which included brief training seminars, and at the conclusion 10 individuals took part in semi-structured audio-taped telephone or face-to-face interviews. Many rural patients, and some urban patients, would appreciate follow-up being available nearer to home with the associated benefits of time saved and easier parking and continuity of care. Patients have concerns related to the level of extra training received by the GP and loss of contact with their consultant. GPs have concerns about gaining and maintaining the clinical skills needed to conduct follow-up, especially if the numbers of patients seen are small. They also have concerns about lack of support from other GPs, and some administrative and organizational issues. Many patients would be willing to have GPs share their cancer follow-up with the caveat that they had received extra training and were appropriately supported by secondary care specialists. Patients attending shared care clinics appreciated a local service and longer appointment times. GPs stress the importance of maintaining their own clinical skills and reliable clinical and administrative support from secondary care.
Timing Calibration of the USA Experiment
NASA Astrophysics Data System (ADS)
Ray, P. S.; Wood, K. S.; Bandyopadhyay, R. M.; Fritz, G.; Hertz, P.; Kowalski, M. P.; Lovellette, M. N.; Wolff, M. T.; Yentis, D.; Bloom, E.; Focke, W.; Giebels, B.; Godfrey, G.; Reilly, K. T.; Saz Parkinson, P.; Shabad, G.; Scargle, J.; Backer, D.; Somer, A.; USA Experiment Science Working Group
2000-10-01
The USA Experiment on ARGOS is an X-ray proportional counter timing experiment, launched in January 1999, which is carrying out a broad program studying X-ray binaries, rotation-powered pulsars, and other bright X-ray sources. Photon events are time tagged to an accuracy of 2 μ s by reference to an onboard GPS receiver built by Boeing (then Rockwell International). Unfortunately, the GPS receiver has an anomaly that causes it to drop out of lock after a few hours. We describe the procedures developed to work around the GPS anomaly and recover accurate absolute time. Simultaneous observations of several rotation-powered pulsars with RXTE were made for comparison with contemporaneous radio timing measurements and to explore time transfer from satellite to satellite. Basic research in X-ray Astronomy at the Naval Research Laboratory is supported by NRL/ONR. Work on USA at SLAC is supported by Department of Energy contract DE-AC03-76SF00515.
Paperless migrants and Norwegian general practitioners.
Aarseth, Svein; Kongshavn, Trygve; Maartmann-Moe, Kjell; Hjortdahl, Per
2016-06-01
In Norway, the rights of paperless migrants are restricted. We wished to investigate the extent to which Norwegian general practitioners give treatment to this group and their grounds for doing so, as well as to identify the health problems that were presented. In 2010, an online questionnaire was distributed to 3 994 general practitioners who were members of the Norwegian Medical Association. Altogether 1 027 GPs responded. Of these, 237 (23 %) reported to have treated paperless migrants. Mental problems, pregnancy-related issues and respiratory ailments were the most frequently reported reasons for contact. Of the 237 GPs who reported to have treated paperless migrants, altogether 166 (70 %) stated that they would continue to receive these patients. The fact that most of the GPs who had treated paperless migrants would continue to receive this patient group and thus provide health services beyond this group’s entitlements, we regard as a wish to comply with the Code of Ethics for Norwegian doctors.
NASA Technical Reports Server (NTRS)
Blewitt, Geoffrey
1989-01-01
A technique for resolving the ambiguities in the GPS carrier phase data (which are biased by an integer number of cycles) is described which can be applied to geodetic baselines up to 2000 km in length and can be used with dual-frequency P code receivers. The results of such application demonstrated that a factor of 3 improvement in baseline accuracy could be obtained, giving centimeter-level agreement with coordinates inferred by very-long-baseline interferometry in the western United States. It was found that a method using pseudorange data is more reliable than one using ionospheric constraints for baselines longer than 200 km. It is recommended that future GPS networks have a wide spectrum of baseline lengths (ranging from baselines shorter than 100 km to those longer than 1000 km) and that GPS receivers be used which can acquire dual-frequency P code data.
Al Murri, A M; Bartlett, J M S; Canney, P A; Doughty, J C; Wilson, C; McMillan, D C
2006-01-30
Prediction of outcome in patients with metastatic breast cancer remains problematical. The present study evaluated the value of an inflammation-based score (Glasgow Prognostic Score, GPS) in patients with metastatic breast cancer. The GPS was constructed as follows: patients with both an elevated C-reactive protein (>10 mg l(-1)) and hypoalbuminaemia (<35 g l(-1)) were allocated a score of 2. Patients in whom only one or none of these biochemical abnormalities was present were allocated a score of 1 or 0, respectively. In total, 96 patients were studied. During follow-up 51 patients died of their cancer. On multivariate analysis of the GPS and treatment received, only the GPS (HR 2.26, 95% CI 1.45-3.52, P<0.001) remained significantly associated with cancer-specific survival. The presence of a systemic inflammatory response (the GPS) appears to be a useful indicator of poor outcome independent of treatment in patients with metastatic breast cancer.
The Accidental Tide Gauge: A GPS Reflection Case Study from Kachemak Bay, Alaska
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Ray, Richard D.; Nievinski, Felipe G..; Freymueller, Jeffrey T.
2013-01-01
For the last decade, it has been known that reflected GPS signals observed with specialized instruments could be used to measure sea level. In this letter, data from an existing geodeticquality GPS site near Kachemak Bay, Alaska, are analyzed for a one-year time period. Daily sea-level variations are more than 7 m. Tidal coefficients have been estimated and compared with coefficients estimated from records from a traditional tide gauge at Seldovia Harbor, approximately 30 km away. The GPS and Seldovia estimates of M(sub 2) and S(sub 2) coefficients agree to better than 2%; much of this residual can be attributed to true differences in the tide over 30 km as it propagates up Kachemak Bay. For daily mean sea levels the agreement is 2.3 cm. Because a standard geodetic GPS receiver/antenna is used, this GPS instrument can measure long-term sea-level changes in a stable terrestrial reference frame.
2010-03-01
readily met by standard single frequency GPS receiver modules as used in car navigation systems or latest generation cell phones. However...different strategies can now be applied as shown in Figure 5. btbξ SPP bξδ iξ itbiβ (a) Over-all solution btbξ SPP bξδ iξ it nn ,1−β 1− nt1 −nξ nξ nt (b... cells . The mass of the complete logging unit did not exceed 100 g. Some receivers additionally featured 3 axis MEMS accelerometers. Mounting on the
Gait Profile Score in multiple sclerosis patients with low disability.
Morel, Eric; Allali, Gilles; Laidet, Magali; Assal, Frédéric; Lalive, Patrice H; Armand, Stéphane
2017-01-01
Gait abnormalities are subtle in multiple sclerosis (MS) patients with low disability and need to be better determined. As a biomechanical approach, the Gait Profile Score (GPS) is used to assess gait quality by combining nine gait kinematic variables in one single value. This study aims i) to establish if the GPS can detect gait impairments and ii) to compare GPS with discrete spatiotemporal and kinematic parameters in low-disabled MS patients. Thirty-four relapsing-remitting MS patients with an Expanded Disability Status Scale (EDSS) score ≤2 (mean age 36.32±8.72 years; 12 men, 22 women; mean EDSS 1.19±0.8) and twenty-two healthy controls (mean age 36.85±7.87 years; 6 men, 16 women) matched for age, weight, height, body mass index and gender underwent an instrumented gait analysis. No significant difference in GPS values and in spatiotemporal parameters was found between patients and controls. However patients showed a significant alteration at the ankle and pelvis level. GPS fails to identify gait abnormalities in low-disabled MS patients, although kinematic analysis revealed subtle gait alterations. Future studies should investigate other methods to assess gait impairments with a gait score in low-disabled MS patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Leydon, Geraldine M; Stuart, Beth; Summers, Rachael H; Little, Paul; Ekberg, Stuart; Stevenson, Fiona; Chew-Graham, Carolyn A; Brindle, Lucy; Heritage, John; Drew, Paul; Moore, Michael V
2018-03-23
To establish: a) feasibility of training GPs in a communication intervention to solicit additional patient concerns early in the consultation, using specific lexical formulations ("do you have 'any' vs. 'some' other concerns?") noting the impact on consultation length, and b) whether patients attend with multiple concerns and whether they voiced them in the consultation. A mixed-methods three arm RCT feasibility study to assess the feasibility of the communication intervention. Intervention fidelity was high. GPs can be trained to solicit additional concerns early in the consultation (once patients have presented their first concern). Whilst feasible the particular lexical variation of 'any' vs 'some' seemed to have no bearing on the number of patient concerns elicited, on consultation length or on patient satisfaction. The level of missing questionnaire data was low, suggesting patients found completion of questionnaires acceptable. GPs can solicit for additional concerns without increasing consultation length, but the particular wording, specifically 'any' vs. 'some' may not be as important as the placement of the GP solicitation. GPs can solicit early for additional concerns and GPs can establish patients' additional concerns in the opening of the consultation, which can help to plan and prioritise patients multiple concerns. Copyright © 2018. Published by Elsevier B.V.
Driver, Robert J; Handforth, Catherine; Radhakrishna, Ganesh; Bennett, Michael I; Ford, Alexander C; Everett, Simon M
2018-03-01
Optimizing the timing of esophageal stent insertion is a challenge, partly due to difficulty predicting survival in advanced malignancy. The Glasgow prognostic score (GPS) is a validated tool for predicting survival in a number of cancers. To assess the utility of the GPS in predicting 30-day mortality and overall survival postesophageal stent insertion. Patients at a tertiary referral center who had received an esophageal stent for palliation of dysphagia were included if they had a measurement of albumin and C-reactive protein (CRP) in the week preceding the procedure (n=209). Patients with both an elevated CRP (>10 mg/L) and hypoalbuminemia (<35 g/L) were given a GPS score of 2 (GPS2). Patients with only one of these abnormalities were assigned as GPS1 and those with normal CRP and albumin were assigned as GPS0. Clinical and pathologic parameters were also collected to assess for potential confounding factors in the survival analysis. Increasing GPS was associated with 30-day mortality; for patients with GPS0, 30-day mortality was 5% (2/43), for GPS1 it was 23% (26/114), and for GPS2 it was 33% (17/52). The adjusted hazard ratio for overall poststent mortality was 1.6 (95% confidence interval, 1.1-2.4; P=0.02) for GPS1 and 2.4 (95% confidence interval, 1.5-3.8; P<0.001) for GPS2 patients compared with GPS0. GPS is an independent prognostic factor of 30-day mortality and overall survival after esophageal stent insertion. It is a potential adjunct to clinical assessment in identifying those patients at high-risk of short-term mortality poststent.
"GP Psych Opinion": evaluation of a psychiatric consultation service.
Simpson, Alex E; Emmerson, W Brett; Frost, Aaron D J; Powell, Jacinta L
2005-07-18
To evaluate a hospital-based psychiatric consultation service for patients referred by general practitioners (GPs), and the effect on its use of a focused marketing strategy aimed at GPs. Postal survey of GPs in the catchment area (inner north Brisbane, Queensland), September to November 2003; and assessment of referrals, March to August 2003. Patient referrals, satisfaction among GPs who had referred, and awareness and opinions of the service among GPs who had not referred, compared with results of a similar survey conducted before marketing. In the 6 months after marketing, 43 patients were referred by 23 GPs, an average of 7.2 patients per month, compared with 2.5 per month in the first 12 months of the service. Survey responses were received from 13 of 36 GPs who had referred patients and 97 of 282 GPs who had not (response rate, 35%). Satisfaction among GPs who had referred remained high, and 12/13 felt the service should continue. Among GPs who had not referred, 76% were aware of the service, up from 26% in the previous survey, and 99% liked the concept of the service. Given the ongoing low utilisation of this service, we question whether this model is accepted by most GPs in our district. Possibly, they prefer more traditional models, where treatment is taken over by psychiatrists in the public or private system. We believe there is a need to increase the capacity and scope of publicly funded services to treat mental health problems.
NASA Astrophysics Data System (ADS)
Reuveni, Y.; Leontiev, A.
2016-12-01
Using GPS satellites signals, we can study atmospheric processes and coupling mechanisms, which can help us understand the physical conditions in the upper atmosphere that might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by geodetic stations on the ground are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy Precipitable Water Vapor (PWV) using collocated pressure and temperature measurements on the ground. Here, we present the use of Israel's geodetic GPS receivers network for extracting tropospheric zenith path delays combined with near Real Time (RT) METEOSAT-10 Water Vapor (WV) and surface temperature pixel intensity values (7.3 and 12.1 channels, respectively) in order to obtain absolute IWV (kg/m2) or PWV (mm) map distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS Zenith Total Delays (ZTD) and METEOSAT-10 surface temperature data compared with available radiosonde Precipitable IWV/PWV absolute values. The presented strategy can provide unprecedented temporal and special IWV/PWV distribution, which is needed as part of the accurate and comprehensive initial conditions provided by upper-air observation systems at temporal and spatial resolutions consistent with the models assimilating them.
Simultaneous total electron content and all-sky camera measurements of an auroral arc
NASA Astrophysics Data System (ADS)
Kintner, P. M.; Kil, H.; Deehr, C.; Schuck, P.
2002-07-01
We present an example of Global Positioning System (GPS) derived total electron content (TEC) and all-sky camera (ASC) images that show increases of TEC by ~10 × 1016 electrons m-2 (10 TEC units) occurring simultaneously with auroral light in ASC images. The TEC example appears to be an E region density enhancement produced by two discrete auroral arcs occurring in the late morning auroral oval at 1000 LT. This suggests that GPS signal TEC measurements can be used to detect individual auroral arcs and that individual discrete auroral arcs are responsible for some high-latitude phase scintillations. The specific auroral feature detected was a poleward moving auroral form believed to occur in the polar cap where the ionosphere is convecting antisunward. The magnitude of the rate of change of TEC (dTEC/dt) is comparable to that previously reported. However, the timescales associated with the event, the order of 1 min, suggest that the data sampling technique commonly used by chain GPS TEC receivers (averaging and time decimation) will undersample E region TEC perturbations produced by active auroral displays. The localized nature of this example implies that L1 ranging errors of at least 1.6 m will be introduced by auroral arcs into systems relying on differential GPS for navigation or augmentation. Although the TEC and auroral arcs presented herein occurred in the late morning auroral oval, we expect that the effects of discrete auroral arcs on GPS TEC and subsequent ranging errors should occur at all local times. Furthermore, GPS receivers can be used to detect individual discrete arcs.
Geocenter Coordinates from a Combined Processing of LEO and Ground-based GPS Observations
NASA Astrophysics Data System (ADS)
Männel, Benjamin; Rothacher, Markus
2017-04-01
The GPS observations provided by the global IGS (International GNSS Service) tracking network play an important role for the realization of a unique terrestrial reference frame that is accurate enough to allow the monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board Low Earth Orbiters (LEO) might help to further improve the realization of the terrestrial reference frame and the estimation of the geocenter coordinates, GPS satellite orbits and Earth rotation parameters (ERP). To assess the scope of improvement, we processed a network of 50 globally distributed and stable IGS-stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of three years (2010-2012). To ensure fully consistent solutions the zero-difference phase observations of the ground stations and LEOs were processed in a common least-square adjustment, estimating GPS orbits, LEO orbits, station coordinates, ERPs, site-specific tropospheric delays, satellite and receiver clocks and ambiguities. We present the significant impact of the individual LEOs and a combination of all four LEOs on geocenter coordinates derived by using a translational approach (also called network shift approach). In addition, we present geocenter coordinates derived from the same set of GPS observations by using a unified approach. This approach combines the translational and the degree-one approach by estimating translations and surface deformations simultaneously. Based on comparisons against each other and against geocenter time series derived by other techniques the effect of the selected approach is assessed.
Improving general practitioner clinical records with a quality assurance minimal intervention.
Del Mar, C B; Lowe, J B; Adkins, P; Arnold, E; Baade, P
1998-01-01
BACKGROUND: Although good medical records have been associated with good care, there is considerable room for their improvement in general practice. AIM: To improve the quality of general practice medical records at minimal cost. METHOD: A total of 150 randomly sampled general practitioners (GPs) in suburban Brisbane, Australia, were randomized in a controlled trial to receive or not receive an intervention. The intervention consisted of 6 to 12 one-hour monthly meetings when the pairs of GPs assessed samples of each other's medical records using a 12-item instrument. This was developed previously by a process of consensus of general practice teachers. Mean scores of 10 medical records selected at random from before the intervention started and one year later were compared. RESULTS: After the intervention, the increase in the total score (for which the maximum possible was 18) for the intervention GPs (from a baseline of 11.5 to 12.3) was not significantly greater than for the controls (from 11.4 to 11.7). Legibility and being able to determine the doctor's assessment of the consultation were significantly improved. The post-intervention increase of 1.06 (9.3%) of the total scores of the 47% of intervention GPs who complied with the intervention was significantly greater than that for the controls. CONCLUSION: The quality assurance activity improved some components of the quality of GPs' clinical records. However, the improvement was small, and the search for activities for Australian GPs that demonstrate an improvement in the quality of their practice must continue. Images p1311-a PMID:9747547
Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC
NASA Astrophysics Data System (ADS)
Pinto Jayawardena, Talini S.; Chartier, Alex T.; Spencer, Paul; Mitchell, Cathryn N.
2016-01-01
GPS-based ionospheric tomography is a well-known technique for imaging the total electron content (TEC) between GPS satellites and receivers. However, as an integral measurement of electron concentration, TEC typically encompasses both the ionosphere and plasmasphere, masking signatures from the topside ionosphere-plasmasphere due to the dominant ionosphere. Imaging these regions requires a technique that isolates TEC in the topside ionosphere-plasmasphere. Multi-Instrument Data Analysis System (MIDAS) employs tomography to image the electron distribution in the ionosphere. Its implementation for regions beyond is yet to be seen due to the different dynamics present above the ionosphere. This paper discusses the extension of MIDAS to image these altitudes using GPS phase-based TEC measurements and follows the work by Spencer and Mitchell (2011). Plasma is constrained to dipole field lines described by Euler potentials, resulting in a distribution symmetrical about the geomagnetic equator. A simulation of an empirical plasmaspheric model by Gallagher et al. (1988) is used to verify the technique by comparing reconstructions of the simulation with the empirical model. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is used as GPS receiver locations. The verification is followed by a validation of the modified MIDAS algorithm, where the regions' TEC is reconstructed from COSMIC GPS phase measurements and qualitatively compared with previous studies using Jason-1 and COSMIC data. Results show that MIDAS can successfully image features/trends of the topside ionosphere-plasmasphere observed in other studies, with deviations in absolute TEC attributed to differences in data set properties and the resolution of the images.
Using Doppler Shifts of GPS Signals To Measure Angular Speed
NASA Technical Reports Server (NTRS)
Campbell, Charles E., Jr.
2006-01-01
A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.
GPS Ocean Reflection Experiment (GORE) Wind Explorer (WindEx) Instrument Design and Development
NASA Astrophysics Data System (ADS)
Ganoe, G.
2004-12-01
This paper describes the design and development of the WindEx instrument, and the technology implemented by it. The important design trades will be covered along with the justification for the options selected. An evaluation of the operation of the instrument, and plans for continued development and enhancements will also be given. The WindEx instrument consists of a processor that receives data from an included GPS Surface reflection receiver, and computes ocean surface wind speeds in real time utilizing an algorithm developed at LaRC by Dr. Stephen J. Katzberg. The WindEx performs a windspeed server function as well as acting as a repository for the client moving map applications, and providing a web page with instructions on the installation and use of the WindEx system. The server receives the GPS reflection data produced by the receiver, performs wind speed processing, then makes the wind speed data available as a moving map display to requesting client processors on the aircraft network. The client processors are existing systems used by the research personnel onboard. They can be configured to be WINDEX clients by downloading the Java client application from the WINDEX server. The client application provides a graphical display of a moving map that shows the aircraft position along with the position of the reflection point from the surface of the ocean where the wind speed is being estimated, and any coastlines within the field of view. Information associated with the reflection point includes the estimated wind speed, and a confidence factor that gives the researcher an idea about the reliability of the wind speed measurement. The instrument has been installed on one of NOAA's Hurricane Hunters, a Gulfstream IV, whose nickname is "Gonzo". Based at MacDill AFB, Florida, "Gonzo" flies around the periphery of the storm deploying GPS-based dropsondes which measure local winds. The dropsondes are the "gold-standard" for determining surface winds, but can only be deployed sparingly. The GPS WindEx system allows for a continuous map between dropsonde releases as well as monitoring the ocean surface for suspicious areas. The GPS technique is insensitive to clouds or rain and can give information concerning surface conditions not available to the flight crew.
Evaluation and Preliminary Results of the New USNO PPS Timing Receiver
2000-11-01
timing receiver, one may currently obtain raw pseudorange and carrier-phase data by periodically downloading such data from a flashcard . Several...preliminary experiments have been performed using data collected from the prototype TTR- 12 receivers’ flashcards and geodetic GPS carrier-phase techniques
DOT National Transportation Integrated Search
2016-10-14
Overview: -Tests executed week of 25 July with 14 GNSS receivers ; -Representative set of equipment from chamber testing from each receiver category (except space) ; -Receivers tested were USG provided ; -Same test instrumentation for wired as with r...
Codeless GPS Applications to Multi-Path: CGAMP
NASA Technical Reports Server (NTRS)
Macdoran, P. F.; Miller, R. B.; Jenkins, D.; Lemmon, J.; Gold, K.; Schreiner, W.; Snyder, G.
1990-01-01
Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection.
NASA Technical Reports Server (NTRS)
Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.
2017-01-01
As reported in a companion work, in its first phase, NASA's 2015 highly elliptic Magnetospheric Multiscale (MMS) mission set a record for the highest altitude operational use of on-board GPS-based navigation, returning state estimates at 12 Earth radii. In early 2017 MMS transitioned to its second phase which doubled the apogee distance to 25 Earth radii, approaching halfway to the Moon. This paper will present results for GPS observability and navigation performance achieved in MMS Phase 2. Additionally, it will provide simulation results predicting the performance of the MMS navigation system applied to a pair of concept missions at Lunar distances. These studies will demonstrate how high-sensitivity GPS (or GNSS) receivers paired with onboard navigation software, as in MMS-Navigation system, can extend the envelope of autonomous onboard GPS navigation far from the Earth.
GPS source solution of the 2004 Parkfield earthquake.
Houlié, N; Dreger, D; Kim, A
2014-01-17
We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95(th) percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm.
GPS source solution of the 2004 Parkfield earthquake
Houlié, N.; Dreger, D.; Kim, A.
2014-01-01
We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm. PMID:24434939
Immunization-based scores as independent prognostic predictors in soft tissue sarcoma patients
Jiang, Shan-Shan; Jiang, Long; Weng, De-Sheng; Li, Yuan-fang; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Zhou, Zhi-Wei; Xia, Jian-Chuan
2017-01-01
Background: The purpose of this study was to examine and compare the prognostic value of different immunization-based scoring systems in patients with soft tissue sarcoma (STS). Methods: We conducted a retrospective study evaluating a cohort of 165 patients diagnosed with STS between July 2007 and July 2014. The relative Glasgow prognostic score (GPS) of these patients was calculated using 3 different systems: the traditional GPS system (tGPS), the modified GPS system 1 (m1GPS), and the modified GPS system 2 (m2GPS). Then, we evaluated the relationships between each GPS system and clinicopathological characteristics. The mean follow-up for survivors in the cohort was 73.7 months as of March 2015. Results: The most favorable overall survival (OS) rate was associated with the score 0 groups, and the poorest progression-free survival (PFS) rate was associated with the score 2 groups, regardless of which system was used to calculate the score. Specifically, the m1GPS provided the greatest accuracy in predicting OS and PFS. Moreover, the same effect was observed in a separate analysis restricted to patients with metastases. Remarkably, in patients with a score of 2 as measured by all 3 systems, local treatment resulted in a poorer prognosis compared to patients with a score of 2 who did not receive local treatment. Conclusion: The GPS is a valuable prognostic marker and has the capability to predict the appropriate treatment strategy for STS patients with metastases. The modified GPS systems demonstrated superior prognostic and predictive value compared with the traditional GPS system. PMID:28367240
Kaner, Eileen; Rapley, Tim; May, Carl
2006-08-01
Brief alcohol intervention is influenced by patients' personal characteristics as well as their clinical risk. Risk-drinkers from higher social-status groups are less likely to receive brief intervention from GPs than those from lower social-status groups. Thus GPs' perception of social similarity or distance may influence brief intervention. To explore the role that GPs' drinking behaviour plays in their recognition of alcohol-related risk in patients. A qualitative interview study with 29 GPs recruited according to maximum variation sampling. All interviews were audio-recorded and transcribed verbatim. Analysis was inductive with constant comparison within and between themes plus deviant case analysis. Analysis developed until category saturation was reached. GPs described a range of personal drinking practices that broadly mirrored population drinking patterns. Many saw themselves as part of mainstream society, sharing in culturally sanctioned behaviour. For some GPs, shared drinking practices could increase empathy for patients who drank, and facilitate discussion about alcohol. However, several GPs regarded themselves as distinct from 'others', separating their own drinking from that of patients. Several GPs described a form of bench-marking, wherein only patients who drank more, or differently, to themselves were felt to be 'at risk'. Alcohol is clearly a complex and emotive health and social issue and GPs are not immune to its effects. For some GPs' shared drinking behaviour can act as a window of opportunity enabling insight on alcohol issues and facilitating discussion. However, other GPs may see through the glass more darkly and selectively recognize risk only in those patients who are least like them.