Multiple-reflection time-of-flight mass spectrometry for in situ applications
NASA Astrophysics Data System (ADS)
Dickel, T.; Plaß, W. R.; Lang, J.; Ebert, J.; Geissel, H.; Haettner, E.; Jesch, C.; Lippert, W.; Petrick, M.; Scheidenberger, C.; Yavor, M. I.
2013-12-01
Multiple-reflection time-of-flight mass spectrometers (MR-TOF-MS) have recently been installed at different low-energy radioactive ion beam facilities. They are used as isobar separators with high ion capacity and as mass spectrometers with high mass resolving power and accuracy for short-lived nuclei. Furthermore, MR-TOF-MS have a huge potential for applications in other fields, such as chemistry, biology, medicine, space science, and homeland security. The development, commissioning and results of an MR-TOF-MS is presented, which serves as proof-of-principle to show that very high mass resolving powers (∼105) can be achieved in a compact device (length ∼30 cm). Based on this work, an MR-TOF-MS for in situ application has been designed. For the first time, this device combines very high mass resolving power (>105), mobility, and an atmospheric pressure inlet in one instrument. It will enable in situ measurements without sample preparation at very high mass accuracy. Envisaged applications of this mobile MR-TOF-MS are discussed.
Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Heilmann, Martin; Yang, Jianfeng; Dai, Xi; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin
2016-11-23
Using advanced two-photon excitation confocal microscopy, associated with time-resolved spectroscopy, we characterize InGaN/GaN multiple quantum wells on nanorod heterostructures and demonstrate the passivation effect of a KOH treatment. High-quality InGaN/GaN nanorods were fabricated using nanosphere lithography as a candidate material for light-emitting diode devices. The depth- and time-resolved characterization at the nanoscale provides detailed carrier dynamic analysis helpful for understanding the optical properties. The nanoscale spatially resolved images of InGaN quantum well and defects were acquired simultaneously. We demonstrate that nanorod etching improves light extraction efficiency, and a proper KOH treatment has been found to reduce the surface defects efficiently and enhance the luminescence. The optical characterization techniques provide depth-resolved and time-resolved carrier dynamics with nanoscale spatially resolved mapping, which is crucial for a comprehensive and thorough understanding of nanostructured materials and provides novel insight into the improvement of materials fabrication and applications.
Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt
2002-08-20
High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.
Multiplexed fragaria chloroplast genome sequencing
W. Njuguna; A. Liston; R. Cronn; N.V. Bassil
2010-01-01
A method to sequence multiple chloroplast genomes using ultra high throughput sequencing technologies was recently described. Complete chloroplast genome sequences can resolve phylogenetic relationships at low taxonomic levels and identify informative point mutations and indels. The objective of this research was to sequence multiple Fragaria...
De Groote, Sandra L; Blecic, Deborah D; Martin, Kristin
2013-04-01
Libraries require efficient and reliable methods to assess journal use. Vendors provide complete counts of articles retrieved from their platforms. However, if a journal is available on multiple platforms, several sets of statistics must be merged. Link-resolver reports merge data from all platforms into one report but only record partial use because users can access library subscriptions from other paths. Citation data are limited to publication use. Vendor, link-resolver, and local citation data were examined to determine correlation. Because link-resolver statistics are easy to obtain, the study library especially wanted to know if they correlate highly with the other measures. Vendor, link-resolver, and local citation statistics for the study institution were gathered for health sciences journals. Spearman rank-order correlation coefficients were calculated. There was a high positive correlation between all three data sets, with vendor data commonly showing the highest use. However, a small percentage of titles showed anomalous results. Link-resolver data correlate well with vendor and citation data, but due to anomalies, low link-resolver data would best be used to suggest titles for further evaluation using vendor data. Citation data may not be needed as it correlates highly with other measures.
Castañar, Laura; Garcia, Manuela; Hellemann, Erich; Nolis, Pau; Gil, Roberto R; Parella, Teodor
2016-11-18
A novel approach for the fast and efficient structural discrimination of molecules containing multiple stereochemical centers is described. A robust J-resolved HSQC experiment affording highly resolved 1 J CH / 1 T CH splittings along the indirect dimension and homodecoupled 1 H signals in the detected dimension is proposed. The experiment enables in situ distinction of both isotropic and anisotropic components of molecules dissolved in compressed PMMA gels, allowing a rapid and direct one-shot determination of accurate residual dipolar coupling constants from a single NMR spectrum.
NASA Astrophysics Data System (ADS)
Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.
2013-09-01
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.; ...
2017-02-20
Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.
Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less
Shaw, Jared B; Gorshkov, Mikhail V; Wu, Qinghao; Paša-Tolić, Ljiljana
2018-05-01
Mass spectrometric characterization of large biomolecules, such as intact proteins, requires the specificity afforded by ultrahigh resolution mass measurements performed at both the intact mass and product ion levels. Although the performance of time-of-flight mass analyzers is steadily increasing, the choice of mass analyzer for large biomolecules (e.g., proteins >50 kDa) is generally limited to the Fourier transform family of mass analyzers such as Orbitrap and ion cyclotron resonance (FTICR-MS), with the latter providing unmatched mass resolving power and measurement accuracy. Yet, protein analyses using FTMS are largely hindered by the low acquisition rates of spectra with ultrahigh resolving power. Frequency multiple detection schemes enable FTICR-MS to overcome this fundamental barrier and achieve resolving powers and acquisition speeds 4× greater than the limits imposed by magnetic field strength. Here we expand upon earlier work on the implementation of this technique for biomolecular characterization. We report the coupling of 21T FTICR-MS, 4X frequency multiplication, ion trapping field harmonization technology, and spectral data processing methods to achieve unprecedented acquisition rates and resolving power in mass spectrometry of large intact proteins. Isotopically resolved spectra of multiply charged ubiquitin ions were acquired using detection periods as short as 12 ms. Large proteins such as apo-transferrin (MW = 78 kDa) and monoclonal antibody (MW = 150 kDa) were isotopically resolved with detection periods of 384 and 768 ms, respectively. These results illustrate the future capability of accurate characterization of large proteins on time scales compatible with online separations.
Babcock, Hazen P
2018-01-29
This work explores the use of industrial grade CMOS cameras for single molecule localization microscopy (SMLM). We show that industrial grade CMOS cameras approach the performance of scientific grade CMOS cameras at a fraction of the cost. This makes it more economically feasible to construct high-performance imaging systems with multiple cameras that are capable of a diversity of applications. In particular we demonstrate the use of industrial CMOS cameras for biplane, multiplane and spectrally resolved SMLM. We also provide open-source software for simultaneous control of multiple CMOS cameras and for the reduction of the movies that are acquired to super-resolution images.
De Groote, Sandra L.; Blecic, Deborah D.; Martin, Kristin
2013-01-01
Objective: Libraries require efficient and reliable methods to assess journal use. Vendors provide complete counts of articles retrieved from their platforms. However, if a journal is available on multiple platforms, several sets of statistics must be merged. Link-resolver reports merge data from all platforms into one report but only record partial use because users can access library subscriptions from other paths. Citation data are limited to publication use. Vendor, link-resolver, and local citation data were examined to determine correlation. Because link-resolver statistics are easy to obtain, the study library especially wanted to know if they correlate highly with the other measures. Methods: Vendor, link-resolver, and local citation statistics for the study institution were gathered for health sciences journals. Spearman rank-order correlation coefficients were calculated. Results: There was a high positive correlation between all three data sets, with vendor data commonly showing the highest use. However, a small percentage of titles showed anomalous results. Discussion and Conclusions: Link-resolver data correlate well with vendor and citation data, but due to anomalies, low link-resolver data would best be used to suggest titles for further evaluation using vendor data. Citation data may not be needed as it correlates highly with other measures. PMID:23646026
NASA Astrophysics Data System (ADS)
Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.
2018-02-01
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
Multiplicity of High-z Submillimeter Galaxies from Cosmological Simulations
NASA Astrophysics Data System (ADS)
Ball, David; Narayanan, Desika; Hopkins, Philip F.; Turk, Matthew
2015-01-01
Sub-millimeter galaxies (or SMG's) are some of the most luminous galaxies in the universe, yet are nearly invisible in the optical. Theorists have long struggled to simulate SMG's and accurately match their spectral properties and abundance to observations. Recent high-resolution observations, however, suggest that what were previously thought to be single sub-millimeter sources on the sky, may break up into multiple components when viewed with sufficient resolving power. Here, we present a combination of high-resolution cosmological hydrodynamic zoom simulations of massive galaxies in formation with a new dust radiative transfer package in order to understand this multiplicity in simulated SMGs. We find that multiplicity is a natural element of SMG formation as numerous subhalos bombard the central during its peak growth phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun
Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generatormore » based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)« less
Development of a High Angular Resolution Diffusion Imaging Human Brain Template
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-01-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528
Muthu, Pravin; Lutz, Stefan
2016-04-05
Fast, simple and cost-effective methods for detecting and quantifying pharmaceutical agents in patients are highly sought after to replace equipment and labor-intensive analytical procedures. The development of new diagnostic technology including portable detection devices also enables point-of-care by non-specialists in resource-limited environments. We have focused on the detection and dose monitoring of nucleoside analogues used in viral and cancer therapies. Using deoxyribonucleoside kinases (dNKs) as biosensors, our chemometric model compares observed time-resolved kinetics of unknown analytes to known substrate interactions across multiple enzymes. The resulting dataset can simultaneously identify and quantify multiple nucleosides and nucleoside analogues in complex sample mixtures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resolving z ~2 galaxy using adaptive coadded source plane reconstruction
NASA Astrophysics Data System (ADS)
Sharma, Soniya; Richard, Johan; Kewley, Lisa; Yuan, Tiantian
2018-06-01
Natural magnification provided by gravitational lensing coupled with Integral field spectrographic observations (IFS) and adaptive optics (AO) imaging techniques have become the frontier of spatially resolved studies of high redshift galaxies (z>1). Mass models of gravitational lenses hold the key for understanding the spatially resolved source–plane (unlensed) physical properties of the background lensed galaxies. Lensing mass models very sensitively control the accuracy and precision of source-plane reconstructions of the observed lensed arcs. Effective source-plane resolution defined by image-plane (observed) point spread function (PSF) makes it challenging to recover the unlensed (source-plane) surface brightness distribution.We conduct a detailed study to recover the source-plane physical properties of z=2 lensed galaxy using spatially resolved observations from two different multiple images of the lensed target. To deal with PSF’s from two data sets on different multiple images of the galaxy, we employ a forward (Source to Image) approach to merge these independent observations. Using our novel technique, we are able to present a detailed analysis of the source-plane dynamics at scales much better than previously attainable through traditional image inversion methods. Moreover, our technique is adapted to magnification, thus allowing us to achieve higher resolution in highly magnified regions of the source. We find that this lensed system is highly evident of a minor merger. In my talk, I present this case study of z=2 lensed galaxy and also discuss the applications of our algorithm to study plethora of lensed systems, which will be available through future telescopes like JWST and GMT.
Relaxation of water infiltration pulses observed with GPR
NASA Astrophysics Data System (ADS)
Hantschel, Lisa; Hemmer, Benedikt; Roth, Kurt
2017-04-01
We observe the relaxation of infiltration pulses in sandy soil with ground-penetrating radar (GPR). The spatial distribution of water in the infiltration area and its temporal evolution is represented by ordinary reflections at layer boundaries as well as multiple reflections at the wetting front and the pulse boundaries. The structure of these highly resolved signals are reproduced by numerical simulations of electromagnetic wave propagation. The temporally highly resolved electrical fields reveal the origin also of complex reflection signals. The usage of these more complex signals might allow a more detailed representation of the infiltration process by direct analysis as well as in combination with inversion techniques.
A Survey of the High Order Multiplicity of Nearby Solar-Type Binary Stars with Robo-AO
2015-01-20
auxiliary images are not used for astrometry or photometry , but are helpful for verifying compan- ion detection and for resolving the 180◦ ambiguity of...pair Ba,Bb was resolved by Robo-AO three times at 0.′′16 with Δi = 0.87m, Δr = 0.97m, and Δz = 0.52m. This corresponds to a mass for Bb of ∼0.6M. We...known quintuple system. The component E (STF 2032AE, E=HIP 79551=GJ 615.2C) is resolved here at 0.′′4 (but not for the first time : Ea,Eb=YSC 152
Arroyo-Camejo, Silvia; Adam, Marie-Pierre; Besbes, Mondher; Hugonin, Jean-Paul; Jacques, Vincent; Greffet, Jean-Jacques; Roch, Jean-François; Hell, Stefan W; Treussart, François
2013-12-23
Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.
Development of a high angular resolution diffusion imaging human brain template.
Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos
2014-05-01
Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wagner, Jenny; Liesenborgs, Jori; Tessore, Nicolas
2018-04-01
Context. Local gravitational lensing properties, such as convergence and shear, determined at the positions of multiply imaged background objects, yield valuable information on the smaller-scale lensing matter distribution in the central part of galaxy clusters. Highly distorted multiple images with resolved brightness features like the ones observed in CL0024 allow us to study these local lensing properties and to tighten the constraints on the properties of dark matter on sub-cluster scale. Aim. We investigate to what precision local magnification ratios, J, ratios of convergences, f, and reduced shears, g = (g1, g2), can be determined independently of a lens model for the five resolved multiple images of the source at zs = 1.675 in CL0024. We also determine if a comparison to the respective results obtained by the parametric modelling tool Lenstool and by the non-parametric modelling tool Grale can detect biases in the models. For these lens models, we analyse the influence of the number and location of the constraints from multiple images on the lens properties at the positions of the five multiple images of the source at zs = 1.675. Methods: Our model-independent approach uses a linear mapping between the five resolved multiple images to determine the magnification ratios, ratios of convergences, and reduced shears at their positions. With constraints from up to six multiple image systems, we generate Lenstool and Grale models using the same image positions, cosmological parameters, and number of generated convergence and shear maps to determine the local values of J, f, and g at the same positions across all methods. Results: All approaches show strong agreement on the local values of J, f, and g. We find that Lenstool obtains the tightest confidence bounds even for convergences around one using constraints from six multiple-image systems, while the best Grale model is generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass corrections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches. Conclusions: Our results agree with previous findings, support the light-traces-mass assumption, and the merger hypothesis for CL0024. Comparing the different approaches can detect model biases. The model-independent approach determines the local lens properties to a comparable precision in less than one second.
NASA Astrophysics Data System (ADS)
Kraus, S.; Kluska, J.; Kreplin, A.; Bate, M.; Harries, T.; Hofmann, K.-H.; Hone, E.; Monnier, J.; Weigelt, G.; Anugu, N.; de Wit, W.-J..; Wittkowski, M.
2017-12-01
High-mass stars exhibit a significantly higher multiplicity frequency than low-mass stars, likely reflecting differences in how they formed. Theory suggests that high-mass binaries may form by the fragmentation of self-gravitational discs or by alternative scenarios such as disc-assisted capture. Near-infrared interferometric observations reveal the high-mass young stellar object IRAS 17216-3801 to be a close high-mass protobinary with a separation of 0.058 arcseconds ( 170 au). This is the closest high-mass protobinary system imaged to date. We also resolve near- infrared excess emission around the individual stars, which is associated with hot dust in circumstellar discs. These discs are strongly misaligned with respect to the binary separation vector, indicating that tidal forces have not yet had time to realign. We measure a higher accretion rate towards the circumsecondary disc, confirming a hydrodynamic effect where the secondary star disrupts the primary star’s accretion stream and effectively limits the mass that the primary star can accrete. NACO L'-band imaging may also have resolved the circumbinary disc that feeds the accretion onto the circumstellar discs. This discovery demonstrates the unique capabilities of the VLTI, creating exciting new opportunities to study the dynamical processes that govern the architecture of close multiple systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldoretta, E. J.; Gies, D. R.; Henry, T. J.
2015-01-01
We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additionalmore » targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.« less
TOLNet - A Tropospheric Ozone Lidar Profiling Network for Satellite Continuity and Process Studies
NASA Technical Reports Server (NTRS)
Newchurch, Michael J.; Kuang, Shi; Wang, Lihua; LeBlanc, Thierry; Alvarez II, Raul J.; Langford, Andrew O.; Senff, Christoph J.; Brown, Steve; Johnson, Bryan; Burris, John F.;
2015-01-01
NASA initiated an interagency ozone lidar observation network under the name TOLNet to promote cooperative multiple-station ozone-lidar observations to provide highly time-resolved (few minutes) tropospheric-ozone vertical profiles useful for air-quality studies, model evaluation, and satellite validation.
Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian
2017-05-05
Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian
2017-05-01
Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.
Kinematics, turbulence, and star formation of z ˜ 1 strongly lensed galaxies seen with MUSE
NASA Astrophysics Data System (ADS)
Patrício, V.; Richard, J.; Carton, D.; Contini, T.; Epinat, B.; Brinchmann, J.; Schmidt, K. B.; Krajnović, D.; Bouché, N.; Weilbacher, P. M.; Pelló, R.; Caruana, J.; Maseda, M.; Finley, H.; Bauer, F. E.; Martinez, J.; Mahler, G.; Lagattuta, D.; Clément, B.; Soucail, G.; Wisotzki, L.
2018-06-01
We analyse a sample of eight highly magnified galaxies at redshift 0.6 < z < 1.5 observed with MUSE, exploring the resolved properties of these galaxies at sub-kiloparsec scales. Combining multiband HST photometry and MUSE spectra, we derive the stellar mass, global star formation rates (SFRs), extinction and metallicity from multiple nebular lines, concluding that our sample is representative of z ˜ 1 star-forming galaxies. We derive the 2D kinematics of these galaxies from the [O II ] emission and model it with a new method that accounts for lensing effects and fits multiple images simultaneously. We use these models to calculate the 2D beam-smearing correction and derive intrinsic velocity dispersion maps. We find them to be fairly homogeneous, with relatively constant velocity dispersions between 15 and 80 km s-1 and Gini coefficient of {≲ }0.3. We do not find any evidence for higher (or lower) velocity dispersions at the positions of bright star-forming clumps. We derive resolved maps of dust attenuation and attenuation-corrected SFRs from emission lines for two objects in the sample. We use this information to study the relation between resolved SFR and velocity dispersion. We find that these quantities are not correlated, and the high-velocity dispersions found for relatively low star-forming densities seems to indicate that, at sub-kiloparsec scales, turbulence in high-z discs is mainly dominated by gravitational instability rather than stellar feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, J.B.; Maisey, M.N.
1978-11-01
Accessory hepatic lobules are an uncommon occurrence. In a gallium scan, a highly mobile, asymptomatic liver lobule gave rise to diagnostic confusion. It was resolved by the use of multiple radiopharmaceuticals.
Design Optimization through M.A.S.H. Analysis
ERIC Educational Resources Information Center
Ringholz, David
2005-01-01
In the classroom, it is often challenging to find new ways to approach and present complex material. This is particularly true in design education, where innovation is highly valued and often required. A student developing a design for a new product has to successfully resolve multiple variables simultaneously while refining his/her own…
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
Mueller, C.; Marx, A.; Epp, S. W.; Zhong, Y.; Kuo, A.; Balo, A. R.; Soman, J.; Schotte, F.; Lemke, H. T.; Owen, R. L.; Pai, E. F.; Pearson, A. R.; Olson, J. S.; Anfinrud, P. A.; Ernst, O. P.; Dwayne Miller, R. J.
2015-01-01
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs. PMID:26798825
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography.
Mueller, C; Marx, A; Epp, S W; Zhong, Y; Kuo, A; Balo, A R; Soman, J; Schotte, F; Lemke, H T; Owen, R L; Pai, E F; Pearson, A R; Olson, J S; Anfinrud, P A; Ernst, O P; Dwayne Miller, R J
2015-09-01
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linac Coherent Light Source (LCLS, Menlo Park, California, USA). The chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.
Effects of multiple scattering on time- and depth-resolved signals in airborne lidar systems
NASA Technical Reports Server (NTRS)
Punjabi, A.; Venable, D. D.
1986-01-01
A semianalytic Monte Carlo radiative transfer model (SALMON) is employed to probe the effects of multiple-scattering events on the time- and depth-resolved lidar signals from homogeneous aqueous media. The effective total attenuation coefficients in the single-scattering approximation are determined as functions of dimensionless parameters characterizing the lidar system and the medium. Results show that single-scattering events dominate when these parameters are close to their lower bounds and that when their values exceed unity multiple-scattering events dominate.
Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging
NASA Astrophysics Data System (ADS)
Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier
2017-07-01
Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.
WE-FG-207B-04: Noise Suppression for Energy-Resolved CT Via Variance Weighted Non-Local Filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, J; Zhu, L
Purpose: The photon starvation problem is exacerbated in energy-resolved CT, since the detected photons are shared by multiple energy channels. Using pixel similarity-based non-local filtration, we aim to produce accurate and high-resolution energy-resolved CT images with significantly reduced noise. Methods: Averaging CT images reconstructed from different energy channels reduces noise at the price of losing spectral information, while conventional denoising techniques inevitably degrade image resolution. Inspired by the fact that CT images of the same object at different energies share the same structures, we aim to reduce noise of energy-resolved CT by averaging only pixels of similar materials - amore » non-local filtration technique. For each CT image, an empirical exponential model is used to calculate the material similarity between two pixels based on their CT values and the similarity values are organized in a matrix form. A final similarity matrix is generated by averaging these similarity matrices, with weights inversely proportional to the estimated total noise variance in the sinogram of different energy channels. Noise suppression is achieved for each energy channel via multiplying the image vector by the similarity matrix. Results: Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. On a low-dose acquisition at 15 mA of the Catphan©600 phantom, our method achieves the same image spatial resolution as a high-dose scan at 80 mA with a noise standard deviation (STD) lower by a factor of >2. Compared with another non-local noise suppression algorithm (ndiNLM), the proposed algorithms obtains images with substantially improved resolution at the same level of noise reduction. Conclusion: We propose a noise-suppression method for energy-resolved CT. Our method takes full advantage of the additional structural information provided by energy-resolved CT and preserves image values at each energy level. Research reported in this publication was supported by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R21EB019597. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less
Nd:AlN polycrystalline ceramics: A candidate media for tunable, high energy, near IR lasers
NASA Astrophysics Data System (ADS)
Wieg, A. T.; Grossnickle, M. J.; Kodera, Y.; Gabor, N. M.; Garay, J. E.
2016-09-01
We present processing and characterization of Nd-doped aluminum nitride (Nd:AlN) polycrystalline ceramics. We compare ceramics with significant segregation of Nd to those exhibiting minimal segregation. Spatially resolved photoluminescence maps reveal a strong correlation between homogeneous Nd doping and spatially homogeneous light emission. The spectroscopically resolved light emission lines show excellent agreement with the expected Nd electronic transitions. Notably, the lines are significantly broadened, producing near IR emission (˜1077 nm) with a remarkable ˜100 nm bandwidth at room temperature. We attribute the broadened lines to a combination of effects: multiple Nd-sites, anisotropy of AlN and phonon broadening. These broadened, overlapping lines in a media with excellent thermal conductivity have potential for Nd-based, tunable lasers with high average power.
Extensive data on biota and the physical/chemical environment were collected across the lower St. Louis River in 2004-2007 as part of multiple studies undertaken by EPA. The 2005-2007 work provides a spatially highly-resolved assessment of conditions across the system, while the ...
NASA Astrophysics Data System (ADS)
Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.
2015-11-01
A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.
Serous retinal detachment accompanied by MEWDS in a myopic patient with dome-shaped macula.
Shin, Min Kyu; Byon, Ik Soo; Park, Sung Who; Lee, Ji Eun
2014-01-01
Macular serous retinal detachment (MSRD) is a rare complication in highly myopic patients with an inferior staphyloma, tilted disc, or dome-shaped macula. Multiple evanescent white dot syndrome (MEWDS) presents with sudden visual loss and multiple yellowish dots that resolve spontaneously within several weeks. The authors report the development and spontaneous resolution of subretinal fluid accompanied by MEWDS in a myopic patient with a dome-shaped macula. Dysfunction of the retinal pigment epithelium due to MEWDS likely induced temporary MSRD in this patient. Copyright 2014, SLACK Incorporated.
Chandra/ACIS Observations of the 30 Doradus Star-Forming Complex
NASA Astrophysics Data System (ADS)
Townsley, Leisa; Broos, Patrick; Feigelson, Eric; Burrows, David; Chu, You-Hua; Garmire, Gordon; Griffiths, Richard; Maeda, Yoshitomo; Pavlov, George; Tsuboi, Yohko
2002-04-01
30 Doradus is the archetype giant extragalactic H II region, a massive star-forming complex in the Large Magellanic Cloud. We examine high-spatial-resolution X-ray images and spectra of the essential parts of 30 Doradus, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level, allowing spectral analysis of bright constituents; other OB/Wolf-Rayet binaries and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the composite SNR containing a 16-msec pulsar. The spectrally soft superbubble structures seen by ROSAT are dramatically imaged by Chandra; we explore the spectral differences they exhibit. Taken together, the components of 30 Doradus give us an excellent microscopic view of high-energy phenomena seen on larger scales in more distant galaxies as starbursts and galactic winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yuqing; Cai, Shuhui; Yang, Yu
2016-03-14
High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this methodmore » are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Qingliang; Guo Zhouyi; Wei Huajiang
2011-10-31
Depth-resolved monitoring with differentiation and quantification of glucose diffusion in healthy and abnormal esophagus tissues has been studied in vitro. Experiments have been performed using human normal esophagus and esophageal squamous cell carcinoma (ESCC) tissues by the optical coherence tomography (OCT). The images have been continuously acquired for 120 min in the experiments, and the depth-resolved and average permeability coefficients of the 40 % glucose solution have been calculated by the OCT amplitude (OCTA) method. We demonstrate the capability of the OCT technique for depth-resolved monitoring, differentiation, and quantifying of glucose diffusion in normal esophagus and ESCC tissues. It ismore » found that the permeability coefficients of the 40 % glucose solution are not uniform throughout the normal esophagus and ESCC tissues and increase from (3.30 {+-} 0.09) Multiplication-Sign 10{sup -6} and (1.57 {+-} 0.05) Multiplication-Sign 10{sup -5} cm s{sup -1} at the mucous membrane of normal esophagus and ESCC tissues to (1.82 {+-} 0.04) Multiplication-Sign 10{sup -5} and (3.53 {+-} 0.09) Multiplication-Sign 10{sup -5} cm s{sup -1} at the submucous layer approximately 742 {mu}m away from the epithelial surface of normal esophagus and ESCC tissues, respectively. (optical coherence tomography)« less
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave
Dyachenko, Sergey A.; A. Silantyev, Denis
2017-01-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced. PMID:28690418
New conformal mapping for adaptive resolving of the complex singularities of Stokes wave.
Lushnikov, Pavel M; Dyachenko, Sergey A; A Silantyev, Denis
2017-06-01
A new highly efficient method is developed for computation of travelling periodic waves (Stokes waves) on the free surface of deep water. A convergence of numerical approximation is determined by the complex singularities above the free surface for the analytical continuation of the travelling wave into the complex plane. An auxiliary conformal mapping is introduced which moves singularities away from the free surface thus dramatically speeding up numerical convergence by adapting the numerical grid for resolving singularities while being consistent with the fluid dynamics. The efficiency of that conformal mapping is demonstrated for the Stokes wave approaching the limiting Stokes wave (the wave of the greatest height) which significantly expands the family of numerically accessible solutions. It allows us to provide a detailed study of the oscillatory approach of these solutions to the limiting wave. Generalizations of the conformal mapping to resolve multiple singularities are also introduced.
Resolving Rapid Variation in Energy for Particle Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haut, Terry Scot; Ahrens, Cory Douglas; Jonko, Alexandra
2016-08-23
Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracymore » and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.« less
Software defined photon counting system for time resolved x-ray experiments.
Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J
2007-01-01
The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.
Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO
Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.
2012-01-01
In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647
Modeling Coherent Structures in Canopy Flows
NASA Astrophysics Data System (ADS)
Luhar, Mitul
2017-11-01
It is well known that flows over vegetation canopies are characterized by the presence of energetic coherent structures. Since the mean profile over dense canopies exhibits an inflection point, the emergence of such structures is often attributed to a Kelvin-Helmholtz instability. However, though stability analyses provide useful mechanistic insights into canopy flows, they are limited in their ability to generate predictions for spectra and coherent structure. The present effort seeks to address this limitation by extending the resolvent formulation (McKeon and Sharma, 2010, J. Fluid Mech.) to canopy flows. Under the resolvent formulation, the turbulent velocity field is expressed as a superposition of propagating modes, identified via a gain-based (singular value) decomposition of the Navier-Stokes equations. A key advantage of this approach is that it reconciles multiple mechanisms that lead to high amplification in turbulent flows, including modal instability, transient growth, and critical-layer phenomena. Further, individual high-gain modes can be combined to generate more complete models for coherent structure and velocity spectra. Preliminary resolvent-based model predictions for canopy flows agree well with existing experiments and simulations.
Biological tissue imaging with a position and time sensitive pixelated detector.
Jungmann, Julia H; Smith, Donald F; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A
2012-10-01
We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512 × 512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to biomolecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiologic concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740 × 740 nm(2) on the sample surface) and a spatial resolving power of 6 μm with a microscope mode laser field of view of 100-335 μm. Automated, large-area imaging is demonstrated and the Timepix' potential for fast, large-area image acquisition is highlighted.
NASA Astrophysics Data System (ADS)
Leroux, Romain; Chatellier, Ludovic; David, Laurent
2018-01-01
This article is devoted to the estimation of time-resolved particle image velocimetry (TR-PIV) flow fields using a time-resolved point measurements of a voltage signal obtained by hot-film anemometry. A multiple linear regression model is first defined to map the TR-PIV flow fields onto the voltage signal. Due to the high temporal resolution of the signal acquired by the hot-film sensor, the estimates of the TR-PIV flow fields are obtained with a multiple linear regression method called orthonormalized partial least squares regression (OPLSR). Subsequently, this model is incorporated as the observation equation in an ensemble Kalman filter (EnKF) applied on a proper orthogonal decomposition reduced-order model to stabilize it while reducing the effects of the hot-film sensor noise. This method is assessed for the reconstruction of the flow around a NACA0012 airfoil at a Reynolds number of 1000 and an angle of attack of {20}°. Comparisons with multi-time delay-modified linear stochastic estimation show that both the OPLSR and EnKF combined with OPLSR are more accurate as they produce a much lower relative estimation error, and provide a faithful reconstruction of the time evolution of the velocity flow fields.
Development of a low-cost multiple diode PIV laser for high-speed flow visualization
NASA Astrophysics Data System (ADS)
Bhakta, Raj; Hargather, Michael
2017-11-01
Particle imaging velocimetry (PIV) is an optical visualization technique that typically incorporates a single high-powered laser to illuminate seeded particles in a fluid flow. Standard PIV lasers are extremely costly and have low frequencies that severely limit its capability in high speed, time-resolved imaging. The development of a multiple diode laser system consisting of continuous lasers allows for flexible high-speed imaging with a wider range of test parameters. The developed laser system was fabricated with off-the-shelf parts for approximately 500. A series of experimental tests were conducted to compare the laser apparatus to a standard Nd:YAG double-pulsed PIV laser. Steady and unsteady flows were processed to compare the two systems and validate the accuracy of the multiple laser design. PIV results indicate good correlation between the two laser systems and verifies the construction of a precise laser instrument. The key technical obstacle to this approach was laser calibration and positioning which will be discussed. HDTRA1-14-1-0070.
Rodrigo, Daniel; Tittl, Andreas; Ait-Bouziad, Nadine; John-Herpin, Aurelian; Limaj, Odeta; Kelly, Christopher; Yoo, Daehan; Wittenberg, Nathan J; Oh, Sang-Hyun; Lashuel, Hilal A; Altug, Hatice
2018-06-04
A multitude of biological processes are enabled by complex interactions between lipid membranes and proteins. To understand such dynamic processes, it is crucial to differentiate the constituent biomolecular species and track their individual time evolution without invasive labels. Here, we present a label-free mid-infrared biosensor capable of distinguishing multiple analytes in heterogeneous biological samples with high sensitivity. Our technology leverages a multi-resonant metasurface to simultaneously enhance the different vibrational fingerprints of multiple biomolecules. By providing up to 1000-fold near-field intensity enhancement over both amide and methylene bands, our sensor resolves the interactions of lipid membranes with different polypeptides in real time. Significantly, we demonstrate that our label-free chemically specific sensor can analyze peptide-induced neurotransmitter cargo release from synaptic vesicle mimics. Our sensor opens up exciting possibilities for gaining new insights into biological processes such as signaling or transport in basic research as well as provides a valuable toolkit for bioanalytical and pharmaceutical applications.
Subaru Near Infrared Coronagraphic Images of T Tauri
NASA Astrophysics Data System (ADS)
Mayama, Satoshi; Tamura, Motohide; Hayashi, Masahiko; Itoh, Yoichi; Fukagawa, Misato; Suto, Hiroshi; Ishii, Miki; Murakawa, Koji; Oasa, Yumiko; Hayashi, Saeko S.; Yamashita, Takuya; Morino, Junichi; Oya, Shin; Naoi, Takahiro; Pyo, Tae-Soo; Nishikawa, Takayuki; Kudo, Tomoyuki; Usuda, Tomonori; Ando, Hiroyasu; Miyama, Shoken M.; Kaifu, Norio
2006-04-01
High angular resolution near-infrared (JHK) adaptive optics images of T Tau were obtained with the infrared camera Coronagraphic Imager with Adaptive Optics (CIAO) mounted on the 8.2m Subaru Telescope in 2002 and 2004. The images resolve a complex circumstellar structure around a multiple system. We resolved T Tau Sa and Sb as well as T Tau N and S. The estimated orbit of T Tau Sb indicates that it is probably bound to T Tau Sa. The K band flux of T Tau S decreased by ˜ 1.7 Jy in 2002 November compared with that in 2001 mainly because T Tau Sa became fainter. The arc-like ridge detected in our near-infrared images is consistent with what is seen at visible wavelengths, supporting the interpretation in previous studies that the arc is part of the cavity wall seen relatively pole-on. Halo emission is detected out to ˜2''from T Tau N. This may be light scattered off the common envelope surrounding the T Tauri multiple system.
Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing
2018-03-14
Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.
Duplantier, Allen J.; van Hoek, Monique L.
2013-01-01
Diabetic patients often have ulcers on their lower-limbs that are infected by multiple biofilm-forming genera of bacteria, and the elimination of the biofilm has proven highly successful in resolving such wounds in patients. To that end, antimicrobial peptides have shown potential as a new anti-biofilm approach. The single human cathelicidin peptide LL-37 has been shown to have antimicrobial and anti-biofilm activity against multiple Gram-positive and Gram-negative human pathogens, and have wound-healing effects on the host. The combination of the anti-biofilm effect and wound-healing properties of LL-37 may make it highly effective in resolving polymicrobially infected wounds when topically applied. Such a peptide or its derivatives could be a platform from which to develop new therapeutic strategies to treat biofilm-mediated infections of wounds. This review summarizes known mechanisms that regulate the endogenous levels of LL-37 and discusses the anti-biofilm, antibacterial, and immunological effects of deficient vs. excessive concentrations of LL-37 within the wound environment. Here, we review recent advances in understanding the therapeutic potential of this peptide and other clinically advanced peptides as a potential topical treatment for polymicrobial infected wounds. PMID:23840194
Optimizing the Laser-Pulse Configuration for Coherent Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V.; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Dogariu, Arthur; Huang, Yu; Scully, Marlan O.
2007-04-01
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.
Optimizing the laser-pulse configuration for coherent Raman spectroscopy.
Pestov, Dmitry; Murawski, Robert K; Ariunbold, Gombojav O; Wang, Xi; Zhi, Miaochan; Sokolov, Alexei V; Sautenkov, Vladimir A; Rostovtsev, Yuri V; Dogariu, Arthur; Huang, Yu; Scully, Marlan O
2007-04-13
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.
Speckle Interferometry at the Blanco and SOAR Telescopes in 2008 and 2009
NASA Technical Reports Server (NTRS)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.
2010-01-01
The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and Southern Astrophysical Research (SOAR) 4 m telescopes in Chile are presented. A tot al of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is delta m approximately 4.2 at 0.15 degree separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.
SPECKLE INTERFEROMETRY AT THE BLANCO AND SOAR TELESCOPES IN 2008 AND 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei; Mason, Brian D.; Hartkopf, William I.
2010-02-15
The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and SOAR 4 m telescopes in Chile are presented. A total of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is {delta}m {approx} 4.2 at 0.''15 separation. These data were obtained with a new electron-multiplication CCD camera; datamore » processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.« less
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, C.; Marx, A.; Epp, S. W.
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less
Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography
Mueller, C.; Marx, A.; Epp, S. W.; ...
2015-08-18
We present a crystallography chip enabling in situ room temperature crystallography at microfocus synchrotron beamlines and X-ray free-electron laser (X-FEL) sources. Compared to other in situ approaches, we observe extremely low background and high diffraction data quality. The chip design is robust and allows fast and efficient loading of thousands of small crystals. The ability to load a large number of protein crystals, at room temperature and with high efficiency, into prescribed positions enables high throughput automated serial crystallography with microfocus synchrotron beamlines. In addition, we demonstrate the application of this chip for femtosecond time-resolved serial crystallography at the Linacmore » Coherent Light Source (LCLS, Menlo Park, California, USA). As a result, the chip concept enables multiple images to be acquired from each crystal, allowing differential detection of changes in diffraction intensities in order to obtain high signal-to-noise and fully exploit the time resolution capabilities of XFELs.« less
Fluorescence lifetime plate reader: Resolution and precision meet high-throughput
Petersen, Karl J.; Peterson, Kurt C.; Muretta, Joseph M.; Higgins, Sutton E.; Gillispie, Gregory D.; Thomas, David D.
2014-01-01
We describe a nanosecond time-resolved fluorescence spectrometer that acquires fluorescence decay waveforms from each well of a 384-well microplate in 3 min with signal-to-noise exceeding 400 using direct waveform recording. The instrument combines high-energy pulsed laser sources (5–10 kHz repetition rate) with a photomultiplier and high-speed digitizer (1 GHz) to record a fluorescence decay waveform after each pulse. Waveforms acquired from rhodamine or 5-((2-aminoethyl)amino) naphthalene-1-sulfonic acid dyes in a 384-well plate gave lifetime measurements 5- to 25-fold more precise than the simultaneous intensity measurements. Lifetimes as short as 0.04 ns were acquired by interleaving with an effective sample rate of 5 GHz. Lifetime measurements resolved mixtures of single-exponential dyes with better than 1% accuracy. The fluorescence lifetime plate reader enables multiple-well fluorescence lifetime measurements with an acquisition time of 0.5 s per well, suitable for high-throughput fluorescence lifetime screening applications. PMID:25430092
Dual-comb spectroscopy of laser-induced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy
Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less
Pagan, Darren C.; Miller, Matthew P.
2016-09-01
A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less
Characterization of Harmonic Signal Acquisition with Parallel Dipole and Multipole Detectors
NASA Astrophysics Data System (ADS)
Park, Sung-Gun; Anderson, Gordon A.; Bruce, James E.
2018-04-01
Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a powerful instrument for the study of complex biological samples due to its high resolution and mass measurement accuracy. However, the relatively long signal acquisition periods needed to achieve high resolution can serve to limit applications of FTICR-MS. The use of multiple pairs of detector electrodes enables detection of harmonic frequencies present at integer multiples of the fundamental cyclotron frequency, and the obtained resolving power for a given acquisition period increases linearly with the order of harmonic signal. However, harmonic signal detection also increases spectral complexity and presents challenges for interpretation. In the present work, ICR cells with independent dipole and harmonic detection electrodes and preamplifiers are demonstrated. A benefit of this approach is the ability to independently acquire fundamental and multiple harmonic signals in parallel using the same ions under identical conditions, enabling direct comparison of achieved performance as parameters are varied. Spectra from harmonic signals showed generally higher resolving power than spectra acquired with fundamental signals and equal signal duration. In addition, the maximum observed signal to noise (S/N) ratio from harmonic signals exceeded that of fundamental signals by 50 to 100%. Finally, parallel detection of fundamental and harmonic signals enables deconvolution of overlapping harmonic signals since observed fundamental frequencies can be used to unambiguously calculate all possible harmonic frequencies. Thus, the present application of parallel fundamental and harmonic signal acquisition offers a general approach to improve utilization of harmonic signals to yield high-resolution spectra with decreased acquisition time. [Figure not available: see fulltext.
Planar near-nozzle velocity measurements during a single high-pressure fuel injection
NASA Astrophysics Data System (ADS)
Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas
2015-09-01
In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.
NASA Astrophysics Data System (ADS)
Nath, Vishwesh; Schilling, Kurt G.; Blaber, Justin A.; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.
2017-02-01
Crossing fibers are prevalent in human brains and a subject of intense interest for neuroscience. Diffusion tensor imaging (DTI) can resolve tissue orientation but is blind to crossing fibers. Many advanced diffusion-weighted magnetic resolution imaging (MRI) approaches have been presented to extract crossing-fibers from high angular resolution diffusion imaging (HARDI), but the relative sensitivity and specificity of approaches remains unclear. Here, we examine two leading approaches (PAS and q-ball) in the context of a large-scale, single subject reproducibility study. A single healthy individual was scanned 11 times with 96 diffusion weighted directions and 10 reference volumes for each of five b-values (1000, 1500, 2000, 2500, 3000 s/mm2) for a total of 5830 volumes (over the course of three sessions). We examined the reproducibility of the number of fibers per voxel, volume fraction, and crossing-fiber angles. For each method, we determined the minimum resolvable angle for each acquisition. Reproducibility of fiber counts per voxel was generally high ( 80% consensus for PAS and 70% for q-ball), but there was substantial bias between individual repetitions and model estimated with all data ( 10% lower consensus for PAS and 15% lower for q-ball). Both PAS and q-ball predominantly discovered fibers crossing at near 90 degrees, but reproducibility was higher for PAS across most measures. Within voxels with low anisotropy, q-ball finds more intra-voxel structure; meanwhile, PAS resolves multiple fibers at greater than 75 degrees for more voxels. These results can inform researchers when deciding between HARDI approaches or interpreting findings across studies.
Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.
von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich
2009-09-01
Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.
The neural basis of stereotypic impact on multiple social categorization.
Hehman, Eric; Ingbretsen, Zachary A; Freeman, Jonathan B
2014-11-01
Perceivers extract multiple social dimensions from another's face (e.g., race, emotion), and these dimensions can become linked due to stereotypes (e.g., Black individuals → angry). The current research examined the neural basis of detecting and resolving conflicts between top-down stereotypes and bottom-up visual information in person perception. Participants viewed faces congruent and incongruent with stereotypes, via variations in race and emotion, while neural activity was measured using fMRI. Hand movements en route to race/emotion responses were recorded using mouse-tracking to behaviorally index individual differences in stereotypical associations during categorization. The medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) showed stronger activation to faces that violated stereotypical expectancies at the intersection of multiple social categories (i.e., race and emotion). These regions were highly sensitive to the degree of incongruency, exhibiting linearly increasing responses as race and emotion became stereotypically more incongruent. Further, the ACC exhibited greater functional connectivity with the lateral fusiform cortex, a region implicated in face processing, when viewing stereotypically incongruent (relative to congruent) targets. Finally, participants with stronger behavioral tendencies to link race and emotion stereotypically during categorization showed greater dorsolateral prefrontal cortex activation to stereotypically incongruent targets. Together, the findings provide insight into how conflicting stereotypes at the nexus of multiple social dimensions are resolved at the neural level to accurately perceive other people. Copyright © 2014 Elsevier Inc. All rights reserved.
High-Accurate, Physics-Based Wake Simulation Techniques
2015-01-27
to accepting the use of computational fluid dynamics models to supplement some of the research. The scientists Lewellen and Lewellen [13] in 1996...resolved in today’s climate es- pecially concerning CFD and experimental. Multiple programs have been established such as the Aircraft Vortex Spacing ...step the entire matrix is solved at once creating inconsistencies when applied to the physics of a fluid mechanics problem where information changes
Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis.
Mei, Feng; Fancy, Stephen P J; Shen, Yun-An A; Niu, Jianqin; Zhao, Chao; Presley, Bryan; Miao, Edna; Lee, Seonok; Mayoral, Sonia R; Redmond, Stephanie A; Etxeberria, Ainhoa; Xiao, Lan; Franklin, Robin J M; Green, Ari; Hauser, Stephen L; Chan, Jonah R
2014-08-01
Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.
Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array
Luthman, Anna Siri; Dumitru, Sebastian; Quiros‐Gonzalez, Isabel; Joseph, James
2017-01-01
Abstract The ability to resolve multiple fluorescent emissions from different biological targets in video rate applications, such as endoscopy and intraoperative imaging, has traditionally been limited by the use of filter‐based imaging systems. Hyperspectral imaging (HSI) facilitates the detection of both spatial and spectral information in a single data acquisition, however, instrumentation for HSI is typically complex, bulky and expensive. We sought to overcome these limitations using a novel robust and low cost HSI camera based on a spectrally resolved detector array (SRDA). We integrated this HSI camera into a wide‐field reflectance‐based imaging system operating in the near‐infrared range to assess the suitability for in vivo imaging of exogenous fluorescent contrast agents. Using this fluorescence HSI (fHSI) system, we were able to accurately resolve the presence and concentration of at least 7 fluorescent dyes in solution. We also demonstrate high spectral unmixing precision, signal linearity with dye concentration and at depth in tissue mimicking phantoms, and delineate 4 fluorescent dyes in vivo. Our approach, including statistical background removal, could be directly generalised to broader spectral ranges, for example, to resolve tissue reflectance or autofluorescence and in future be tailored to video rate applications requiring snapshot HSI data acquisition. PMID:28485130
Advance in multi-hit detection and quantization in atom probe tomography.
Da Costa, G; Wang, H; Duguay, S; Bostel, A; Blavette, D; Deconihout, B
2012-12-01
The preferential retention of high evaporation field chemical species at the sample surface in atom-probe tomography (e.g., boron in silicon or in metallic alloys) leads to correlated field evaporation and pronounced pile-up effects on the detector. The latter severely affects the reliability of concentration measurements of current 3D atom probes leading to an under-estimation of the concentrations of the high-field species. The multi-hit capabilities of the position-sensitive time-resolved detector is shown to play a key role. An innovative method based on Fourier space signal processing of signals supplied by an advance delay-line position-sensitive detector is shown to drastically improve the time resolving power of the detector and consequently its capability to detect multiple events. Results show that up to 30 ions on the same evaporation pulse can be detected and properly positioned. The major impact of this new method on the quantization of chemical composition in materials, particularly in highly-doped Si(B) samples is highlighted.
Wang, Jin
2005-03-01
With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.
Bright-White Beetle Scales Optimise Multiple Scattering of Light
NASA Astrophysics Data System (ADS)
Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia
2014-08-01
Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.
Compiler-assisted multiple instruction rollback recovery using a read buffer
NASA Technical Reports Server (NTRS)
Alewine, N. J.; Chen, S.-K.; Fuchs, W. K.; Hwu, W.-M.
1993-01-01
Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe computers to provide rapid recovery from transient processor failures. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs have also been developed which remove rollback data hazards directly with data-flow transformations. This paper focuses on compiler-assisted techniques to achieve multiple instruction rollback recovery. We observe that some data hazards resulting from instruction rollback can be resolved efficiently by providing an operand read buffer while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations indicate improved efficiency over previous hardware-based and compiler-based schemes.
Method for enhancing the resolving power of ion mobility separations over a limited mobility range
Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D
2014-09-23
A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.
Shen, Bing; Yu, Li; Liu, Kai; ...
2017-06-01
We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt 2In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5. Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2In 7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2In 7. A comparison of the common features of the electronic structure of CePt 2In 7 and CeCoIn5 indicates that CeCoIn 5 shows a muchmore » stronger band renormalization effect than CePt 2In 7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.« less
WFIRST: Resolving the Milky Way Galaxy
NASA Astrophysics Data System (ADS)
Kalirai, Jason; Conroy, Charlie; Dressler, Alan; Geha, Marla; Levesque, Emily; Lu, Jessica; Tumlinson, Jason
2018-01-01
WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. In this poster, we describe the activities of the WFIRST Science Investigation Team (SIT), "Resolving the Milky Way with WFIRST". Notional programs guiding our analysis include targeting sightlines to establish the first well-resolved large scale maps of the Galactic bulge aand central region, pockets of star formation in the disk, benchmark star clusters, and halo substructure and ultra faint dwarf satellites. As an output of this study, our team is building optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of Milky Way environments including new astrometric studies; and strategies and automated algorithms to find substructure and dwarf galaxies in the Milky Way through the WFIRST High Latitude Survey.
High-quality slab-based intermixing method for fusion rendering of multiple medical objects.
Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil
2016-01-01
The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Panagiotopoulos, Paris; Kolesik, Miroslav; Moloney, Jerome V.
2016-09-01
We numerically investigate the scaling behavior of midinfrared filaments at extremely high input energies. It is shown that, given sufficient power, kilometer-scale, low-loss atmospheric filamentation is attainable by prechirping the pulse. Fully resolved four-dimensional (x y z t ) simulations show that, while in a spatially imperfect beam the modulation instability can lead to multiple hot-spot formation, the individual filaments are still stabilized by the recently proposed mechanism that relies on the temporal walk-off of short-wavelength radiation.
Neutron Capture Experiments Using the DANCE Array at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dashdorj, D.; MonAme Scientific Research Center, Ulaanbaatar; Mitchell, G. E.
2009-03-31
The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectramore » for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.« less
Impact of doping on the carrier dynamics in graphene
Kadi, Faris; Winzer, Torben; Knorr, Andreas; Malic, Ermin
2015-01-01
We present a microscopic study on the impact of doping on the carrier dynamics in graphene, in particular focusing on its influence on the technologically relevant carrier multiplication in realistic, doped graphene samples. Treating the time- and momentum-resolved carrier-light, carrier-carrier, and carrier-phonon interactions on the same microscopic footing, the appearance of Auger-induced carrier multiplication up to a Fermi level of 300 meV is revealed. Furthermore, we show that doping favors the so-called hot carrier multiplication occurring within one band. Our results are directly compared to recent time-resolved ARPES measurements and exhibit an excellent agreement on the temporal evolution of the hot carrier multiplication for n- and p-doped graphene. The gained insights shed light on the ultrafast carrier dynamics in realistic, doped graphene samples. PMID:26577536
OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Lewis C. Jr.; Tokovinin, Andrei; Mason, Brian D.
2015-10-15
Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primariesmore » of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color–magnitude diagram and discuss each multiple system individually.« less
Sarma, M K; Nagarajan, R; Macey, P M; Kumar, R; Villablanca, J P; Furuyama, J; Thomas, M A
2014-06-01
Echo-planar J-resolved spectroscopic imaging is a fast spectroscopic technique to record the biochemical information in multiple regions of the brain, but for clinical applications, time is still a constraint. Investigations of neural injury in obstructive sleep apnea have revealed structural changes in the brain, but determining the neurochemical changes requires more detailed measurements across multiple brain regions, demonstrating a need for faster echo-planar J-resolved spectroscopic imaging. Hence, we have extended the compressed sensing reconstruction of prospectively undersampled 4D echo-planar J-resolved spectroscopic imaging to investigate metabolic changes in multiple brain locations of patients with obstructive sleep apnea and healthy controls. Nonuniform undersampling was imposed along 1 spatial and 1 spectral dimension of 4D echo-planar J-resolved spectroscopic imaging, and test-retest reliability of the compressed sensing reconstruction of the nonuniform undersampling data was tested by using a brain phantom. In addition, 9 patients with obstructive sleep apnea and 11 healthy controls were investigated by using a 3T MR imaging/MR spectroscopy scanner. Significantly reduced metabolite differences were observed between patients with obstructive sleep apnea and healthy controls in multiple brain regions: NAA/Cr in the left hippocampus; total Cho/Cr and Glx/Cr in the right hippocampus; total NAA/Cr, taurine/Cr, scyllo-Inositol/Cr, phosphocholine/Cr, and total Cho/Cr in the occipital gray matter; total NAA/Cr and NAA/Cr in the medial frontal white matter; and taurine/Cr and total Cho/Cr in the left frontal white matter regions. The 4D echo-planar J-resolved spectroscopic imaging technique using the nonuniform undersampling-based acquisition and compressed sensing reconstruction in patients with obstructive sleep apnea and healthy brain is feasible in a clinically suitable time. In addition to brain metabolite changes previously reported by 1D MR spectroscopy, our results show changes of additional metabolites in patients with obstructive sleep apnea compared with healthy controls. © 2014 by American Journal of Neuroradiology.
Large-Eddy Simulation of Turbulent Wall-Pressure Fluctuations
NASA Technical Reports Server (NTRS)
Singer, Bart A.
1996-01-01
Large-eddy simulations of a turbulent boundary layer with Reynolds number based on displacement thickness equal to 3500 were performed with two grid resolutions. The computations were continued for sufficient time to obtain frequency spectra with resolved frequencies that correspond to the most important structural frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with the wall-pressure fluctuations revealed similar behavior for both simulations. The primary differences were associated with the lack of resolution of the high-frequency data in the coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent the spanwise coherence of the cross-spectral density.
π Berry phase and Zeeman splitting of Weyl semimetal TaP
Hu, J.; Liu, J. Y.; Graf, D.; ...
2016-01-04
Here, the recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state,more » including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted.« less
ERIC Educational Resources Information Center
Weighall, Anna R.
2008-01-01
Research with adults has shown that ambiguous spoken sentences are resolved efficiently, exploiting multiple cues--including referential context--to select the intended meaning. Paradoxically, children appear to be insensitive to referential cues when resolving ambiguous sentences, relying instead on statistical properties intrinsic to the…
Stephens, Jessica D; Rogers, Willie L; Heyduk, Karolina; Cruse-Sanders, Jennifer M; Determann, Ron O; Glenn, Travis C; Malmberg, Russell L
2015-04-01
The North American carnivorous pitcher plant genus Sarracenia (Sarraceniaceae) is a relatively young clade (<3 million years ago) displaying a wide range of morphological diversity in complex trapping structures. This recently radiated group is a promising system to examine the structural evolution and diversification of carnivorous plants; however, little is known regarding evolutionary relationships within the genus. Previous attempts at resolving the phylogeny have been unsuccessful, most likely due to few parsimony-informative sites compounded by incomplete lineage sorting. Here, we applied a target enrichment approach using multiple accessions to assess the relationships of Sarracenia species. This resulted in 199 nuclear genes from 75 accessions covering the putative 8-11 species and 8 subspecies/varieties. In addition, we recovered 42kb of plastome sequence from each accession to estimate a cpDNA-derived phylogeny. Unsurprisingly, the cpDNA had few parsimony-informative sites (0.5%) and provided little information on species relationships. In contrast, use of the targeted nuclear loci in concatenation and coalescent frameworks elucidated many relationships within Sarracenia even with high heterogeneity among gene trees. Results were largely consistent for both concatenation and coalescent approaches. The only major disagreement was with the placement of the purpurea complex. Moreover, results suggest an Appalachian massif biogeographic origin of the genus. Overall, this study highlights the utility of target enrichment using multiple accessions to resolve relationships in recently radiated taxa. Copyright © 2015 Elsevier Inc. All rights reserved.
On using the Multiple Signal Classification algorithm to study microbaroms
NASA Astrophysics Data System (ADS)
Marcillo, O. E.; Blom, P. S.; Euler, G. G.
2016-12-01
Multiple Signal Classification (MUSIC) (Schmidt, 1986) is a well-known high-resolution algorithm used in array processing for parameter estimation. We report on the application of MUSIC to infrasonic array data in a study of the structure of microbaroms. Microbaroms can be globally observed and display energy centered around 0.2 Hz. Microbaroms are an infrasonic signal generated by the non-linear interaction of ocean surface waves that radiate into the ocean and atmosphere as well as the solid earth in the form of microseisms. Microbaroms sources are dynamic and, in many cases, distributed in space and moving in time. We assume that the microbarom energy detected by an infrasonic array is the result of multiple sources (with different back-azimuths) in the same bandwidth and apply the MUSIC algorithm accordingly to recover the back-azimuth and trace velocity of the individual components. Preliminary results show that the multiple component assumption in MUSIC allows one to resolve the fine structure in the microbarom band that can be related to multiple ocean surface phenomena.
Poor phonetic perceivers are affected by cognitive load when resolving talker variability
Antoniou, Mark; Wong, Patrick C. M.
2015-01-01
Speech training paradigms aim to maximise learning outcomes by manipulating external factors such as talker variability. However, not all individuals may benefit from such manipulations because subject-external factors interact with subject-internal ones (e.g., aptitude) to determine speech perception and/or learning success. In a previous tone learning study, high-aptitude individuals benefitted from talker variability, whereas low-aptitude individuals were impaired. Because increases in cognitive load have been shown to hinder speech perception in mixed-talker conditions, it has been proposed that resolving talker variability requires cognitive resources. This proposal leads to the hypothesis that low-aptitude individuals do not use their cognitive resources as efficiently as those with high aptitude. Here, high- and low-aptitude subjects identified pitch contours spoken by multiple talkers under high and low cognitive load conditions established by a secondary task. While high-aptitude listeners outperformed low-aptitude listeners across load conditions, only low-aptitude listeners were impaired by increased cognitive load. The findings suggest that low-aptitude listeners either have fewer available cognitive resources or are poorer at allocating attention to the signal. Therefore, cognitive load is an important factor when considering individual differences in speech perception and training paradigms. PMID:26328675
Poor phonetic perceivers are affected by cognitive load when resolving talker variability.
Antoniou, Mark; Wong, Patrick C M
2015-08-01
Speech training paradigms aim to maximise learning outcomes by manipulating external factors such as talker variability. However, not all individuals may benefit from such manipulations because subject-external factors interact with subject-internal ones (e.g., aptitude) to determine speech perception and/or learning success. In a previous tone learning study, high-aptitude individuals benefitted from talker variability, whereas low-aptitude individuals were impaired. Because increases in cognitive load have been shown to hinder speech perception in mixed-talker conditions, it has been proposed that resolving talker variability requires cognitive resources. This proposal leads to the hypothesis that low-aptitude individuals do not use their cognitive resources as efficiently as those with high aptitude. Here, high- and low-aptitude subjects identified pitch contours spoken by multiple talkers under high and low cognitive load conditions established by a secondary task. While high-aptitude listeners outperformed low-aptitude listeners across load conditions, only low-aptitude listeners were impaired by increased cognitive load. The findings suggest that low-aptitude listeners either have fewer available cognitive resources or are poorer at allocating attention to the signal. Therefore, cognitive load is an important factor when considering individual differences in speech perception and training paradigms.
Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime
Skrodzki, P. J.; Burger, M.; Jovanovic, I.
2017-10-06
High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. Here, we investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficienciesmore » for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr. Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr, emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.« less
Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrodzki, P. J.; Burger, M.; Jovanovic, I.
High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. Here, we investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficienciesmore » for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr. Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr, emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.« less
Multielevation calibration of frequency-domain electromagnetic data
Minsley, Burke J.; Kass, M. Andy; Hodges, Greg; Smith, Bruce D.
2014-01-01
Systematic calibration errors must be taken into account because they can substantially impact the accuracy of inverted subsurface resistivity models derived from frequency-domain electromagnetic data, resulting in potentially misleading interpretations. We have developed an approach that uses data acquired at multiple elevations over the same location to assess calibration errors. A significant advantage is that this method does not require prior knowledge of subsurface properties from borehole or ground geophysical data (though these can be readily incorporated if available), and is, therefore, well suited to remote areas. The multielevation data were used to solve for calibration parameters and a single subsurface resistivity model that are self consistent over all elevations. The deterministic and Bayesian formulations of the multielevation approach illustrate parameter sensitivity and uncertainty using synthetic- and field-data examples. Multiplicative calibration errors (gain and phase) were found to be better resolved at high frequencies and when data were acquired over a relatively conductive area, whereas additive errors (bias) were reasonably resolved over conductive and resistive areas at all frequencies. The Bayesian approach outperformed the deterministic approach when estimating calibration parameters using multielevation data at a single location; however, joint analysis of multielevation data at multiple locations using the deterministic algorithm yielded the most accurate estimates of calibration parameters. Inversion results using calibration-corrected data revealed marked improvement in misfit, lending added confidence to the interpretation of these models.
Hierarchy of Modes in an Interacting One-Dimensional System
NASA Astrophysics Data System (ADS)
Tsyplyatyev, O.; Schofield, A. J.; Jin, Y.; Moreno, M.; Tan, W. K.; Ford, C. J. B.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.
2015-05-01
Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral weights of the excitations theoretically, and we observe evidence for second-level excitations experimentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of R2/L2, where R is a length scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.
Observation of a hierarchy of modes in an interacting one-dimensional system
NASA Astrophysics Data System (ADS)
Ford, Christopher; Moreno, Maria; Jin, Yiqing; Tan, Wooi Kiat; Griffiths, Jon; Farrer, Ian; Jones, Geb; Anthore, Anne; Ritchie, David; Tsyplyatyev, Oleksandr; Schofield, Andrew
2015-03-01
Studying interacting fermions in 1D at high energy, we find a hierarchy in the spectral weights of the excitations theoretically and we observe evidence for second-level excitations experimentally. Diagonalising a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of 2 /L2 , where is a length-scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalised single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power-laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from/to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.
Chandra/ACIS Spectra of the 30 Doradus Star Forming Region
NASA Astrophysics Data System (ADS)
Townsley, L.; Broos, P.; Feigelson, E.; Burrows, D.; Chu, Y.-H.; Garmire, G.; Griffiths, R.; Maeda, Y.; Tsuboi, Y.
2000-12-01
We present the first high-spatial-resolution X-ray spectra of constituents of the 30 Doradus star-forming region in the Large Magellanic Cloud, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Our continuing efforts to remove the spectral effects of CCD charge transfer inefficiency (CTI) due to radiation damage are described. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level by ACIS, allowing spectral analysis of several constituents. Other Wolf-Rayet stars and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the plerion SNR recently shown by X-ray observations to contain a 16-msec pulsar (Marshall et al., ApJ 499, L179). The spectrally soft superbubble structures seen by ROSAT are visible in the Chandra image; a composite spectrum, improved with CTI correction, is presented. Support for this effort was provided by NASA contract NAS8-38252 to Gordon Garmire, the ACIS Principal Investigator.
Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane
NASA Astrophysics Data System (ADS)
Golan, Yonatan; Sherman, Eilon
2017-06-01
The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.
NASA Astrophysics Data System (ADS)
Palumbo, Michael Louis; Kannappan, Sheila; Snyder, Elaine; Eckert, Kathleen; Norman, Dara; Fraga, Luciano; Quint, Bruno; Amram, Philippe; Mendes de Oliveira, Claudia; RESOLVE Team
2018-01-01
We identify and characterize a population of compact dwarf starburst galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe the possibility that these galaxies are related to “blue nuggets,” a class of intensely star-forming and compact galaxies previously identified at high redshift. Blue nuggets are thought to form as the result of intense compaction events that drive fresh gas to their centers. They are expected to display prolate morphology and rotation along their minor axes. We report IFU observations of three of our compact dwarf starburst galaxies, from which we construct high-resolution velocity fields, examining the evidence for minor axis or otherwise misaligned rotation. We find multiple cases of double nuclei in our sample, which may be indicative of a merger origin as in some blue nugget formation scenarios. We compare the masses, radii, gas-to-stellar mass ratios, star formation rates, stellar surface mass densities, and environmental contexts of our sample to expectations for blue nuggets.
NASA Astrophysics Data System (ADS)
Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.
2017-12-01
We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.
NASA Astrophysics Data System (ADS)
Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe
2017-12-01
A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks, vortical structures and complex geometries.
Single-molecule dilution and multiple displacement amplification for molecular haplotyping.
Paul, Philip; Apgar, Josh
2005-04-01
Separate haploid analysis is frequently required for heterozygous genotyping to resolve phase ambiguity or confirm allelic sequence. We demonstrate a technique of single-molecule dilution followed by multiple strand displacement amplification to haplotype polymorphic alleles. Dilution of DNA to haploid equivalency, or a single molecule, is a simple method for separating di-allelic DNA. Strand displacement amplification is a robust method for non-specific DNA expansion that employs random hexamers and phage polymerase Phi29 for double-stranded DNA displacement and primer extension, resulting in high processivity and exceptional product length. Single-molecule dilution was followed by strand displacement amplification to expand separated alleles to microgram quantities of DNA for more efficient haplotype analysis of heterozygous genes.
Evidence for extensive methane venting on the southeastern U.S. Atlantic margin
Brothers, L.L.; Van Dover, C.L.; German, C.R.; Kaiser, C.L.; Yoerger, D.R.; Ruppel, C.D.; Lobecker, E.; Skarke, A.D.; Wagner, J.K.S.
2013-01-01
We present the first evidence for widespread seabed methane venting along the southeastern United States Atlantic margin beyond the well-known Blake Ridge diapir seep. Recent ship- and autonomous underwater vehicle (AUV)–collected data resolve multiple water-column anomalies (>1000 m height) and extensive new chemosynthetic seep communities at the Blake Ridge and Cape Fear diapirs. These results indicate that multiple, highly localized fluid conduits punctuate the areally extensive Blake Ridge gas hydrate province, and enable the delivery of significant amounts of methane to the water column. Thus, there appears to be an abundance of seabed fluid flux not previously ascribed to the Atlantic margin of the United States.
NASA Astrophysics Data System (ADS)
Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.
2016-07-01
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.
ERIC Educational Resources Information Center
Shuhgalter, A.
The countries of Hungary and Poland are steadily moving along the road of transition from their recent totalitarian past to modern capitalist democracies. Hungary and Poland are changing, developing economies based on new principles, resolving multiple social issues, and patching the projection from their history that still casts a shadow on the…
NASA Astrophysics Data System (ADS)
Rosu-Hamzescu, Mihnea; Polonschii, Cristina; Oprea, Sergiu; Popescu, Dragos; David, Sorin; Bratu, Dumitru; Gheorghiu, Eugen
2018-06-01
Electro-optical measurements, i.e., optical waveguides and plasmonic based electrochemical impedance spectroscopy (P-EIS), are based on the sensitive dependence of refractive index of electro-optical sensors on surface charge density, modulated by an AC electrical field applied to the sensor surface. Recently, P-EIS has emerged as a new analytical tool that can resolve local impedance with high, optical spatial resolution, without using microelectrodes. This study describes a high speed image acquisition and processing system for electro-optical measurements, based on a high speed complementary metal-oxide semiconductor (CMOS) sensor and a field-programmable gate array (FPGA) board. The FPGA is used to configure CMOS parameters, as well as to receive and locally process the acquired images by performing Fourier analysis for each pixel, deriving the real and imaginary parts of the Fourier coefficients for the AC field frequencies. An AC field generator, for single or multi-sine signals, is synchronized with the high speed acquisition system for phase measurements. The system was successfully used for real-time angle-resolved electro-plasmonic measurements from 30 Hz up to 10 kHz, providing results consistent to ones obtained by a conventional electrical impedance approach. The system was able to detect amplitude variations with a relative variation of ±1%, even for rather low sampling rates per period (i.e., 8 samples per period). The PC (personal computer) acquisition and control software allows synchronized acquisition for multiple FPGA boards, making it also suitable for simultaneous angle-resolved P-EIS imaging.
Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.; ...
2018-02-15
Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.
Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.
Abhinav, Kumar; Yeh, Fang-Cheng; Mansouri, Alireza; Zadeh, Gelareh; Fernandez-Miranda, Juan C.
2015-01-01
Conventional white matter (WM) imaging approaches, such as diffusion tensor imaging (DTI), have been used to preoperatively identify the location of affected WM tracts in patients with intracranial tumors in order to maximize the extent of resection and potentially reduce postoperative morbidity. DTI, however, has limitations that include its inability to resolve multiple crossing fibers and its susceptibility to partial volume effects. Therefore, recent focus has shifted to more advanced WM imaging techniques such as high-definition fiber tractography (HDFT). In this paper, we illustrate the application of HDFT, which in our preliminary experience has enabled accurate depiction of perilesional tracts in a 3-dimensional manner in multiple anatomical compartments including edematous zones around high-grade gliomas. This has facilitated accurate surgical planning. This is illustrated by using case examples of patients with glioblastoma multiforme. We also discuss future directions in the role of these techniques in surgery for gliomas. PMID:26117712
Homans, S W; Dwek, R A; Fernandes, D L; Rademacher, T W
1984-01-01
A general property of the high-resolution proton NMR spectra of oligosaccharides is the appearance of low-field well-resolved resonances corresponding to the anomeric (H1) and H2 protons. The remaining skeletal protons resonate in the region 3-4 ppm, giving rise to an envelope of poorly resolved resonances. Assignments can be made from the H1 and H2 protons to their J-coupled neighbors (H2 and H3) within this main envelope by using 1H-1H correlated spectroscopy. However, the tight coupling (J congruent to delta) between further protons results in poor spectral dispersion with consequent assignment ambiguities. We describe here three-step two-dimensional relayed correlation spectroscopy and show how it can be used to correlate the resolved anomeric (H1) and H2 protons with remote (H4, H5) protons directly through a linear network of couplings using sequential magnetization transfer around the oligosaccharide rings. Resonance assignments are then obtained by inspection of cross-peaks that appear in well-resolved regions of the two-dimensional spectrum. This offers a general solution to the assignment problem in oligosaccharides and, importantly, these assignments will subsequently allow for the three-dimensional solution conformation to be determined by using one-dimensional and two-dimensional nuclear Overhauser experiments. PMID:6593701
Resolving the Circumgalactic Medium in the NEPHTHYS Simulations
NASA Astrophysics Data System (ADS)
Richardson, Mark Lawrence Albert; Devriendt, Julien; Slyz, Adrianne; Rosdahl, Karl Joakim; Kimm, Taysun
2018-01-01
NEPHTHYS is a RAMSES Cosmological-zoom galaxy simulation suite investigating the impact of stellar feedback (winds, radiation, and type Ia and II SNe) on z > 1 ~L* galaxies and their environments. NEPHTHYS has ~10 pc resolution in the galaxy, where the scales driving star formation and the interaction of stellar feedback with the ISM can begin to be resolved. As outflows, winds, and radiation permeate through the circumgalactic medium (CGM) they can heat or cool gas, and deposit metals throughout the CGM. Such material in the CGM is seen by spectroscopic studies of distant quasars, where CGM gas of foreground galaxies is observed in absorption. It is still unclear what the origin and evolution of this gas is. To help answer this, NEPHTHYS includes additional refinement in the CGM, refining it to an unrivaled 80 pc resolution. I will discuss how this extra resolution is crucial for resolving the complex structure of outflows and accretion in the CGM. Specifically, the metal mass and covering fraction of metals and high energy ions is increased, while the better resolved outflows leads to a decrease in the overall baryon content of galaxy halos, and individual outflow events can have larger velocities. Our results suggest that absorption observations of CGM are tracing a clumpy column of gas with multiple kinematic components.
Power, J F
2009-06-01
Light profile microscopy (LPM) is a direct method for the spectral depth imaging of thin film cross-sections on the micrometer scale. LPM uses a perpendicular viewing configuration that directly images a source beam propagated through a thin film. Images are formed in dark field contrast, which is highly sensitive to subtle interfacial structures that are invisible to reference methods. The independent focusing of illumination and imaging systems allows multiple registered optical sources to be hosted on a single platform. These features make LPM a powerful multi-contrast (MC) imaging technique, demonstrated in this work with six modes of imaging in a single instrument, based on (1) broad-band elastic scatter; (2) laser excited wideband luminescence; (3) coherent elastic scatter; (4) Raman scatter (three channels with RGB illumination); (5) wavelength resolved luminescence; and (6) spectral broadband scatter, resolved in immediate succession. MC-LPM integrates Raman images with a wider optical and morphological picture of the sample than prior art microprobes. Currently, MC-LPM resolves images at an effective spectral resolution better than 9 cm(-1), at a spatial resolution approaching 1 microm, with optics that operate in air at half the maximum numerical aperture of the prior art microprobes.
Multiple-Sensor Discrimination of Closely-Spaced Objects on a Ballistic Trajectory
2015-05-18
Nominal System Architecture ..................................................................................... 8 2 Simulation Environment... architecture ........................................................................................... 8 Figure 2. Simulation environment developed...uncertainty band for one or multiple sensors within the observation architecture . Resolving targets from one sensor image to another can prove difficult
Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry.
Lento, Cristina; Wilson, Derek J
2017-05-21
Many important chemical and biochemical phenomena proceed on sub-second time scales before entering equilibrium. In this mini-review, we explore the history and recent advancements of time-resolved mass spectrometry (TRMS) for the characterization of millisecond time-scale chemical reactions and biochemical processes. TRMS allows for the simultaneous tracking of multiple reactants, intermediates and products with no chromophoric species required, high sensitivity and temporal resolution. The method has most recently been used for the characterization of several short-lived reaction intermediates in rapid chemical reactions. Most of the reactions that occur in living organisms are accelerated by enzymes, with pre-steady state kinetics only attainable using time-resolved methods. TRMS has been increasingly used to monitor the conversion of substrates to products and the resulting changes to the enzyme during catalytic turnover. Early events in protein folding systems have also been elucidated, along with the characterization of dynamics and transient secondary structures in intrinsically disordered proteins. In this review, we will highlight representative examples where TRMS has been applied to study these phenomena.
Compiler-assisted multiple instruction rollback recovery using a read buffer
NASA Technical Reports Server (NTRS)
Alewine, Neal J.; Chen, Shyh-Kwei; Fuchs, W. Kent; Hwu, Wen-Mei W.
1995-01-01
Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe computers to provide rapid recovery from transient processor failures. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs have also been developed which remove rollback data hazards directly with data-flow transformations. This paper describes compiler-assisted techniques to achieve multiple instruction rollback recovery. We observe that some data hazards resulting from instruction rollback can be resolved efficiently by providing an operand read buffer while others are resolved more efficiently with compiler transformations. The compiler-assisted scheme presented consists of hardware that is less complex than shadow files, history files, history buffers, or delayed write buffers, while experimental evaluation indicates performance improvement over compiler-based schemes.
Quantitative, spectrally-resolved intraoperative fluorescence imaging
Valdés, Pablo A.; Leblond, Frederic; Jacobs, Valerie L.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.
2012-01-01
Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the first time. Moreover, we present images from human surgery which detect residual tumor not evident with state-of-the-art vFI. The wide-field qFI technique has broad implications for intraoperative surgical guidance because it provides near real-time quantitative assessment of multiple fluorescent biomarkers across the operative field. PMID:23152935
NASA Astrophysics Data System (ADS)
Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong
2016-10-01
The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.
Mello, Michelle M; Armstrong, Sarah J; Greenberg, Yelena; McCotter, Patricia I; Gallagher, Thomas H
2016-12-01
To implement a communication-and-resolution program (CRP) in a setting in which liability insurers and health care facilities must collaborate to resolve incidents involving a facility and separately insured clinicians. Six hospitals and clinics and a liability insurer in Washington State. Sites designed and implemented CRPs and contributed information about cases and operational challenges over 20 months. Data were qualitatively analyzed. Data from interviews with personnel responsible for CRP implementation were triangulated with data on program cases collected by sites and notes recorded during meetings with sites and among project team members. Sites experienced small victories in resolving particular cases and streamlining some working relationships, but they were unable to successfully implement a collaborative CRP. Barriers included the insurer's distance from the point of care, passive rather than active support from top leaders, coordinating across departments and organizations, workload, nonparticipation by some physicians, and overcoming distrust. Operating CRPs where multiple organizations must collaborate can be highly challenging. Success likely requires several preconditions, including preexisting trust among organizations, active leadership engagement, physicians' commitment to participate, mechanisms for quickly transmitting information to insurers, tolerance for missteps, and clear protocols for joint investigations and resolutions. © Health Research and Educational Trust.
Spatially resolved multicomponent gels
NASA Astrophysics Data System (ADS)
Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.
2015-10-01
Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.
Vector electric field measurement via position-modulated Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.
2017-10-01
High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.
X-ray emission from high temperature plasmas
NASA Technical Reports Server (NTRS)
Harries, W. L.
1977-01-01
The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.
Next-generation sequencing for genetic testing of familial colorectal cancer syndromes.
Simbolo, Michele; Mafficini, Andrea; Agostini, Marco; Pedrazzani, Corrado; Bedin, Chiara; Urso, Emanuele D; Nitti, Donato; Turri, Giona; Scardoni, Maria; Fassan, Matteo; Scarpa, Aldo
2015-01-01
Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve homopolymeric DNA regions not adequately assessed by NGS. The implementation of NGS approaches in routine diagnostics of familial CRC is cost-effective and significantly reduces diagnostic turnaround times.
Overtone Mobility Spectrometry (Part 2): Theoretical Considerations of Resolving Power
Valentine, Stephen J.; Stokes, Sarah T.; Kurulugama, Ruwan T.; Nachtigall, Fabiane M.; Clemmer, David E.
2009-01-01
The transport of ions through multiple drift regions is modeled in order to develop an equation that is useful for an understanding of the resolving power of an overtone mobility spectrometry (OMS) technique. It is found that resolving power is influenced by a number of experimental variables, including those that define ion mobility spectrometry (IMS) resolving power: drift field (E), drift region length (L), and buffer gas temperature (T). However, unlike IMS, the resolving power of OMS is also influenced by the number of drift regions (n), harmonic frequency value (m), and the phase number (ϕ) of the applied drift field. The OMS resolving power dependence upon the new OMS variables (n, m, and ϕ) scales differently than the square root dependence of the E, L, and T variables in IMS. The results provide insight about optimal instrumental design and operation. PMID:19230705
Interference-free coherence dynamics of gas-phase molecules using spectral focusing.
Wrzesinski, Paul J; Roy, Sukesh; Gord, James R
2012-10-08
Spectral focusing using broadband femtosecond pulses to achieve highly selective measurements has been employed for numerous applications in spectroscopy and microspectroscopy. In this work we highlight the use of spectral focusing for selective excitation and detection of gas-phase species. Furthermore, we demonstrate that spectral focusing, coupled with time-resolved measurements based upon probe delay, allows the observation of interference-free coherence dynamics of multiple molecules and gas-phase temperature making this technique ideal for gas-phase measurements of reacting flows and combustion processes.
Multiple heteroatom substitution to graphene nanoribbon
Meyer, Ernst
2018-01-01
Substituting heteroatoms into nanostructured graphene elements, such as graphene nanoribbons, offers the possibility for atomic engineering of electronic properties. To characterize these substitutions, functionalized atomic force microscopy (AFM)—a tool to directly resolve chemical structures—is one of the most promising tools, yet the chemical analysis of heteroatoms has been rarely performed. We synthesized multiple heteroatom-substituted graphene nanoribbons and showed that AFM can directly resolve elemental differences and can be correlated to the van der Waals radii, as well as the modulated local electron density caused by the substitution. This elemental-sensitive measurement takes an important step in the analysis of functionalized two-dimensional carbon materials. PMID:29662955
Resolved Star Formation in Galaxies Using Slitless Spectroscopy
NASA Astrophysics Data System (ADS)
Pirzkal, Norbert; Finkelstein, Steven L.; Larson, Rebecca L.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Tilvi, Vithal; FIGS Team
2018-06-01
The ability to spatially resolve individual star-formation regions in distant galaxies and simultaneously extract their physical properties via emission lines is a critical step forward in studying the evolution of galaxies. While efficient, deep slitless spectroscopic observations offer a blurry view of the summed properties of galaxies. We present our studies of resolved star formation over a wide range of redshifts, including high redshift Ly-a sources. The unique capabilities of the WFC3 IR Grism and our two-dimensional emission line method (EM2D) allows us to accurately identify the specific spatial origin of emission lines in galaxies, thus creating a spatial map of star-formation sites in any given galaxy. This method requires the use of multiple position angles on the sky to accurately derive both the location and the observed wavelengths of these emission lines. This has the added benefit of producing better defined redshifts for these sources. Building on our success in applying the EM2D method towards galaxies with [OII]. [OIII], and Ha emission lines, we have also applied EM2D to high redshift (z>6) Ly-a emitting galaxies. We are also able to produce accurate 2D emission line maps (MAP2D) of the Ly-a emission in WFC3 IR grism observations, looking for evidence that a significant amount of resonant scattering is taking place in high redshift galaxies such as in a newly identified z=7.5 Faint Infrared Galaxy Survey (FIGS) Ly-a galaxy.
Polycythaemia: an unusual presentation of multiple myeloma.
Hutchison, Elaine J; Taverna, Josephine A; Yu, Qi; Yeager, Andrew M
2016-09-20
In contrast to anaemia, polycythaemia is a distinctly uncommon finding in patients with multiple myeloma. We describe the presence of otherwise unexplained polycythaemia in a 57-year-old Caucasian man who was found to have IgG κ multiple myeloma. After treatment of myeloma, the polycythaemia resolved. We reviewed previous reports of polycythaemia associated with multiple myeloma and discuss potential pathophysiological mechanisms that link these 2 conditions. 2016 BMJ Publishing Group Ltd.
Lee, Yoon Ho; Lee, Tae Kyung; Kim, Hongki; Song, Inho; Lee, Jiwon; Kang, Saewon; Ko, Hyunhyub; Kwak, Sang Kyu; Oh, Joon Hak
2018-03-01
In insect eyes, ommatidia with hierarchical structured cornea play a critical role in amplifying and transferring visual signals to the brain through optic nerves, enabling the perception of various visual signals. Here, inspired by the structure and functions of insect ommatidia, a flexible photoimaging device is reported that can simultaneously detect and record incoming photonic signals by vertically stacking an organic photodiode and resistive memory device. A single-layered, hierarchical multiple-patterned back reflector that can exhibit various plasmonic effects is incorporated into the organic photodiode. The multiple-patterned flexible organic photodiodes exhibit greatly enhanced photoresponsivity due to the increased light absorption in comparison with the flat systems. Moreover, the flexible photoimaging device shows a well-resolved spatiotemporal mapping of optical signals with excellent operational and mechanical stabilities at low driving voltages below half of the flat systems. Theoretical calculation and scanning near-field optical microscopy analyses clearly reveal that multiple-patterned electrodes have much stronger surface plasmon coupling than flat and single-patterned systems. The developed methodology provides a versatile and effective route for realizing high-performance optoelectronic and photonic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
RESOLVED GIANT MOLECULAR CLOUDS IN NEARBY SPIRAL GALAXIES: INSIGHTS FROM THE CANON CO (1-0) SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan Meyer, Jennifer; Koda, Jin; Mooney, Thomas
We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 Multiplication-Sign 10{sup 5} M{sub Sun} in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and {sup 12}CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H{sub 2} mass (or X{sub CO})more » for each galaxy is 1-2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, all within a factor of two of the Milky Way disk value ({approx}2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X{sub CO} trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.« less
High Speed Computational Ghost Imaging via Spatial Sweeping
NASA Astrophysics Data System (ADS)
Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai
2017-03-01
Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.
High-speed femtosecond pump-probe spectroscopy with a smart pixel detector array.
Bourquin, S; Prasankumar, R P; Kärtner, F X; Fujimoto, J G; Lasser, T; Salathé, R P
2003-09-01
A new femtosecond pump-probe spectroscopy technique is demonstrated that permits the high-speed, parallel acquisition of pump-probe measurements at multiple wavelengths. This is made possible by use of a novel, two-dimensional smart pixel detector array that performs amplitude demodulation in real time on each pixel. This detector array can not only achieve sensitivities comparable with lock-in amplification but also simultaneously performs demodulation of probe transmission signals at multiple wavelengths, thus permitting rapid time- and wavelength-resolved femtosecond pump-probe spectroscopy. Measurements on a thin sample of bulk GaAs are performed across 58 simultaneous wavelengths. Differential probe transmission changes as small as approximately 2 x 10(-4) can be measured over a 5-ps delay scan in only approximately 3 min. This technology can be applied to a wide range of pump-probe measurements in condensed matter, chemistry, and biology.
NASA Astrophysics Data System (ADS)
Yu, Yi-Zhong
1995-01-01
Conjugated organic and polymeric materials usually have large, nonresonant third order optical nonlinearity due to correlations of their delocalized pi -electrons. Most materials studied so far show positive values of third order nonlinear susceptibility when all frequencies that generate the third order effect are below any optical transition. A new class of organic molecules, namely indole squarylium (ISQ) and anilinium squarylium (BSQ), exhibit negative < gamma(-omega_4;omega_1, omega_2,omega_3)> when all three frequencies, omega_1, omega_2 and omega_3, lie below the first electronic transition. Although quantum many-electron calculations based on multiple-excitation configuration interaction have shown that the negative third order coefficient is essentially due to the contribution from high-lying two-photon states, the field of experimental studies exploring the microscopic origins of the negative
Bakas, P; Tzouma, C; Creatsa, M; Boutas, I; Hassiakos, D
2016-01-01
To report a rare case of maternal hyperthyroidism after intrauterine insemination due to hypertrophic action of hCG. A 36-year-old woman after successful intrauterine insemination and triplet pregnancy, developed hyperthyroidism with resistance to medical treatment. All signs of hyperthyroidism resolved and the results of thyroid function tests returned to normal without any medication after embryo meiosis. De novo maternal hyperthyroidism may develop during pregnancy as a result of pathological stimulation of the thyroid gland from the high levels of hCG hormone that can be seen in multiple pregnancies. The risk of hyperthyroidism is related to the number of fetuses. Reversibility of symptomatology can be seen after fetal reduction of multiple pregnancies.
NASA Astrophysics Data System (ADS)
Gerega, Anna; Milej, Daniel; Weigl, Wojciech; Botwicz, Marcin; Zolek, Norbert; Kacprzak, Michal; Wierzejski, Wojciech; Toczylowska, Beata; Mayzner-Zawadzka, Ewa; Maniewski, Roman; Liebert, Adam
2012-08-01
Optical technique based on diffuse reflectance measurement combined with indocyanine green (ICG) bolus tracking is extensively tested as a method for clinical assessment of brain perfusion in adults at the bedside. Methodology of multiwavelength and time-resolved detection of fluorescence light excited in the ICG is presented and advantages of measurements at multiple wavelengths are discussed. Measurements were carried out: 1. on a physical homogeneous phantom to study the concentration dependence of the fluorescence signal, 2. on the phantom to simulate the dynamic inflow of ICG at different depths, and 3. in vivo on surface of the human head. Pattern of inflow and washout of ICG in the head of healthy volunteers after intravenous injection of the dye was observed for the first time with time-resolved instrumentation at multiple emission wavelengths. The multiwavelength detection of fluorescence signal confirms that at longer emission wavelengths, probability of reabsorption of the fluorescence light by the dye itself is reduced. Considering different light penetration depths at different wavelengths, and the pronounced reabsorption at longer wavelengths, the time-resolved multiwavelength technique may be useful in signal decomposition, leading to evaluation of extra- and intracerebral components of the measured signals.
Fan, Qiuyun; Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Van Dijk, Koene R A; Buckner, Randy L; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L
2014-11-01
One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.
Ren, Ren; Sun, Yazhou; Zhao, Yue; Geiser, David
2016-01-01
Abstract A comprehensive and reliable eukaryotic tree of life is important for many aspects of biological studies from comparative developmental and physiological analyses to translational medicine and agriculture. Both gene-rich and taxon-rich approaches are effective strategies to improve phylogenetic accuracy and are greatly facilitated by marker genes that are universally distributed, well conserved, and orthologous among divergent eukaryotes. In this article, we report the identification of 943 low-copy eukaryotic genes and we show that many of these genes are promising tools in resolving eukaryotic phylogenies, despite the challenges of determining deep eukaryotic relationships. As a case study, we demonstrate that smaller subsets of ∼20 and 52 genes could resolve controversial relationships among widely divergent taxa and provide strong support for deep relationships such as the monophyly and branching order of several eukaryotic supergroups. In addition, the use of these genes resulted in fungal phylogenies that are congruent with previous phylogenomic studies that used much larger datasets, and successfully resolved several difficult relationships (e.g., forming a highly supported clade with Microsporidia, Mitosporidium and Rozella sister to other fungi). We propose that these genes are excellent for both gene-rich and taxon-rich analyses and can be applied at multiple taxonomic levels and facilitate a more complete understanding of the eukaryotic tree of life. PMID:27604879
NASA Astrophysics Data System (ADS)
Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn
2017-09-01
The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.
Bammer, Roland; Hope, Thomas A.; Aksoy, Murat; Alley, Marcus T.
2012-01-01
Exact knowledge of blood flow characteristics in the major cerebral vessels is of great relevance for diagnosing cerebrovascular abnormalities. This involves the assessment of hemodynamically critical areas as well as the derivation of biomechanical parameters such as wall shear stress and pressure gradients. A time-resolved, 3D phase-contrast (PC) MRI method using parallel imaging was implemented to measure blood flow in three dimensions at multiple instances over the cardiac cycle. The 4D velocity data obtained from 14 healthy volunteers were used to investigate dynamic blood flow with the use of multiplanar reformatting, 3D streamlines, and 4D particle tracing. In addition, the effects of magnetic field strength, parallel imaging, and temporal resolution on the data were investigated in a comparative evaluation at 1.5T and 3T using three different parallel imaging reduction factors and three different temporal resolutions in eight of the 14 subjects. Studies were consistently performed faster at 3T than at 1.5T because of better parallel imaging performance. A high temporal resolution (65 ms) was required to follow dynamic processes in the intracranial vessels. The 4D flow measurements provided a high degree of vascular conspicuity. Time-resolved streamline analysis provided features that have not been reported previously for the intracranial vasculature. PMID:17195166
Evidence for Unresolved Exoplanet-hosting Binaries in Gaia DR2
NASA Astrophysics Data System (ADS)
Evans, Daniel F.
2018-05-01
This note describes an effort to detect additional stellar sources in known transiting exoplanet (TEP) systems, which are unresolved or barely resolved in the Gaia Data Release 2 (DR2) catalogue. The presence of multiple unresolved stars in photometric and spectroscopic observations of a transiting planetary system biases measurements of the planet's radius, mass, and atmospheric conditions. In addition to the effect on individual planetary systems, the presence of unresolved stars across the sample of known exoplanets biases our overall understanding of planetary systems, due to the systematic underestimation of both masses and radii. This work uses the Astrometric Goodness of Fit in the Along-Scan direction (GOF_AL) and the Astrometric Excess Noise as indicators of poorly-resolved binaries. Many known close binaries in the exoplanet host star sample have highly significant GOF_AL and Astrometric Excess Noise values, such as WASP-20AB with Astrometric Excess Noise significant at $4720\\sigma$ and GOF_AL=124.
Probing Gas Stripping with Resolved Star-Formation Maps of Virgo Filament Galaxies
NASA Astrophysics Data System (ADS)
Collova, Natasha
2018-01-01
We are conducting a multi-wavelength study of the gas in galaxies at a variety of positions in the cosmic web surrounding the Virgo cluster, one of the best studied regions of high density in the Universe. Galaxies are very likely pre-processed in filaments before falling into clusters, and our goal is to understand how galaxies are altered as they move through the cosmic web and enter the densest regions. We present spatially-resolved H-alpha imaging results from the KPNO 0.9-m and INT 2.54-m telescopes for a preliminary sample of 30 galaxies. We will combine the star-formation maps with observations of molecular and atomic gas to calculate gas consumption timescales, characterize multiple phases of the galactic gas, and look for signatures of environmentally-driven depletion. This work is supported in part by NSF grant AST-1716657.
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; Liu, Yijin; Grey, Clare P; Strobridge, Fiona C; Tyliszczak, Tolek; Celestre, Rich; Denes, Peter; Joseph, John; Krishnan, Harinarayan; Maia, Filipe R N C; Kilcoyne, A L David; Marchesini, Stefano; Leite, Talita Perciano Costa; Warwick, Tony; Padmore, Howard; Cabana, Jordi; Shapiro, David A
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.
NASA Astrophysics Data System (ADS)
Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih
2013-01-01
In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.
Resolving the ambiguities: An industrial hygiene Indoor Air Quality (IAQ) symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammage, R.B.
1995-01-01
Resolving the Ambiguities: An Industrial Hygiene (IAQ) Symposium was a one-day event designed to inform practicing industrial hygienists about highlight presentations made at Indoor Air `93. A broad range of topics was presented by invited speakers. Topics included were attempts to deal with guidelines and standards, questionnaires, odors and sensory irritation, respiratory allergies, neuroses, sick building syndrome (SBS), and multiple chemical sensitivity (MCS).
NASA Astrophysics Data System (ADS)
Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.
2018-03-01
With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.
Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi
2012-01-01
Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.
Advanced flow MRI: emerging techniques and applications
Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.
2016-01-01
Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696
Spectrally resolved digital holography using a white light LED
NASA Astrophysics Data System (ADS)
Claus, D.; Pedrini, G.; Buchta, D.; Osten, W.
2017-06-01
This paper introduces the concept of spectrally resolved digital holography. The measurement principle and the analysis of the data will be discussed in detail. The usefulness of spectrally resolved digital holography is demonstrated for colour imaging and optical metrology with regards to the recovery of modulus information and phase information, respectively. The phase information will be used to measure the shape of an object via the application of the dual wavelength method. Based on the large degree of data available, multiple speckle de-correlated dual wavelength phase maps can be obtained, which when averaged result in a signal to noise ratio improvement.
Low Complexity Track Initialization and Fusion for Multi-Modal Sensor Networks
2012-11-08
feature was demonstrated via the simulations. Aerospace 2011work further documents our investigation of multiple target tracking filters in...bounds that determine how well a sensor network can resolve and localize multiple targets as a function of the operating parameters such as sensor...probability density (PHD) filter for binary measurements using proximity sensors. 15. SUBJECT TERMS proximity sensors, PHD filter, multiple
SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sana, H.; Le Bouquin, J.-B.; Duvert, G.
2014-11-01
Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperturemore » Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly discovered pairs HD 168112 and CPD–47°2963. This lends strong support to the universality of the wind-wind collision scenario to explain the non-thermal emission from O-type stars.« less
Schmid, Volker J; Cremer, Marion; Cremer, Thomas
2017-07-01
Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.
Abhinav, Kumar; Yeh, Fang-Cheng; Mansouri, Alireza; Zadeh, Gelareh; Fernandez-Miranda, Juan C
2015-09-01
Conventional white matter (WM) imaging approaches, such as diffusion tensor imaging (DTI), have been used to preoperatively identify the location of affected WM tracts in patients with intracranial tumors in order to maximize the extent of resection and potentially reduce postoperative morbidity. DTI, however, has limitations that include its inability to resolve multiple crossing fibers and its susceptibility to partial volume effects. Therefore, recent focus has shifted to more advanced WM imaging techniques such as high-definition fiber tractography (HDFT). In this paper, we illustrate the application of HDFT, which in our preliminary experience has enabled accurate depiction of perilesional tracts in a 3-dimensional manner in multiple anatomical compartments including edematous zones around high-grade gliomas. This has facilitated accurate surgical planning. This is illustrated by using case examples of patients with glioblastoma multiforme. We also discuss future directions in the role of these techniques in surgery for gliomas. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu
The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutralmore » physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.« less
Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
So, Peter T.
2016-03-01
Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.
Garamszegi, Sara; Franzosa, Eric A.; Xia, Yu
2013-01-01
A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology. PMID:24339775
Garamszegi, Sara; Franzosa, Eric A; Xia, Yu
2013-01-01
A central challenge in host-pathogen systems biology is the elucidation of general, systems-level principles that distinguish host-pathogen interactions from within-host interactions. Current analyses of host-pathogen and within-host protein-protein interaction networks are largely limited by their resolution, treating proteins as nodes and interactions as edges. Here, we construct a domain-resolved map of human-virus and within-human protein-protein interaction networks by annotating protein interactions with high-coverage, high-accuracy, domain-centric interaction mechanisms: (1) domain-domain interactions, in which a domain in one protein binds to a domain in a second protein, and (2) domain-motif interactions, in which a domain in one protein binds to a short, linear peptide motif in a second protein. Analysis of these domain-resolved networks reveals, for the first time, significant mechanistic differences between virus-human and within-human interactions at the resolution of single domains. While human proteins tend to compete with each other for domain binding sites by means of sequence similarity, viral proteins tend to compete with human proteins for domain binding sites in the absence of sequence similarity. Independent of their previously established preference for targeting human protein hubs, viral proteins also preferentially target human proteins containing linear motif-binding domains. Compared to human proteins, viral proteins participate in more domain-motif interactions, target more unique linear motif-binding domains per residue, and contain more unique linear motifs per residue. Together, these results suggest that viruses surmount genome size constraints by convergently evolving multiple short linear motifs in order to effectively mimic, hijack, and manipulate complex host processes for their survival. Our domain-resolved analyses reveal unique signatures of pleiotropy, economy, and convergent evolution in viral-host interactions that are otherwise hidden in the traditional binary network, highlighting the power and necessity of high-resolution approaches in host-pathogen systems biology.
High Temperature Mechanisms for Venus Exploration
NASA Astrophysics Data System (ADS)
Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven
Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New Frontiers AO release. Scalable high temperature motor, resolver and bearing developments allow for creation of long lasting sample acquisition systems, booms, robot arms and even mobility systems that operate outside of an environment-controlled landed platform on the surface of Venus. The SR and BLDC motors are no longer expected to limit the life of Venus surface operations. With the accompanying high temperature bearing and other mechanisms development, surface operations will be limited only by available power. Therefore, the motor and resolver's capability to survive for hours (and potentially longer) in the environment is a major benefit to future Venus science missions and they also allow time for communication ground loops to optimize sample target selection and the possibility for acquiring multiple samples from the surface. The extreme temperature motors, resolver and other high temperature mechanisms therefore revolutionize the exploration of Venus.
Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems
NASA Astrophysics Data System (ADS)
Blonigan, Patrick J.; Wang, Qiqi
2018-02-01
Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.
Revealing Secrets of Triple Asteroid Systems with SPHERE
NASA Astrophysics Data System (ADS)
Yang, Bin; Wahhaj, Zahed; Beauvalet, Laurene; Marchis, Franck; Dumas, Christophe; Marsset, Michaël
2015-11-01
A multiple-asteroid system provides otherwise unattainable information about the intrinsic properties of the system itself as well as its formation and evolution. Comparative spectroscopy and imaging of two large multiple main-belt asteroids: (93) Minerva and (130) Elektra were performed using the newly commissioned Spectro-Polarimetric High-contrast Exoplanet Research instrument (SPHERE) on ESO's 8.2-m VLT. A new moon (S/2014 (130) 1), of the known binary asteroid (130) Elektra, was discovered based on the SPHERE observations, making (130) Elektra the sixth triple system detected in the asteroid belt. We will present the component-resolved near infrared spectra, from 0.9 to 1.6 micron, of the Minerva and the Elektra triple systems. We will also present the orbital solution and the dynamical simulations on the two moons of (130) Elektra.
BrachyView: multiple seed position reconstruction and comparison with CT post-implant dosimetry
NASA Astrophysics Data System (ADS)
Alnaghy, S.; Loo, K. J.; Cutajar, D. L.; Jalayer, M.; Tenconi, C.; Favoino, M.; Rietti, R.; Tartaglia, M.; Carriero, F.; Safavi-Naeini, M.; Bucci, J.; Jakubek, J.; Pospisil, S.; Zaider, M.; Lerch, M. L. F.; Rosenfeld, A. B.; Petasecca, M.
2016-05-01
BrachyView is a novel in-body imaging system utilising high-resolution pixelated silicon detectors (Timepix) and a pinhole collimator for brachytherapy source localisation. Recent studies have investigated various options for real-time intraoperative dynamic dose treatment planning to increase the quality of implants. In a previous proof-of-concept study, the justification of the pinhole concept was shown, allowing for the next step whereby multiple active seeds are implanted into a PMMA phantom to simulate a more realistic clinical scenario. In this study, 20 seeds were implanted and imaged using a lead pinhole of 400 μ m diameter. BrachyView was able to resolve the seed positions within 1-2 mm of expected positions, which was verified by co-registering with a full clinical post-implant CT scan.
NASA Astrophysics Data System (ADS)
Berger, J.-P.; Monnier, J. D.; Millan-Gabet, R.; Renard, S.; Pedretti, E.; Traub, W.; Bechet, C.; Benisty, M.; Carleton, N.; Haguenauer, P.; Kern, P.; Labeye, P.; Longa, F.; Lacasse, M.; Malbet, F.; Perraut, K.; Ragland, S.; Schloerb, P.; Schuller, P. A.; Thiébaut, E.
2011-05-01
Context. Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Aims: Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. Methods: We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. Results.We obtained the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ ~ 1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of ~ 8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Conclusions: Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.
ORMAN: optimal resolution of ambiguous RNA-Seq multimappings in the presence of novel isoforms.
Dao, Phuong; Numanagić, Ibrahim; Lin, Yen-Yi; Hach, Faraz; Karakoc, Emre; Donmez, Nilgun; Collins, Colin; Eichler, Evan E; Sahinalp, S Cenk
2014-03-01
RNA-Seq technology is promising to uncover many novel alternative splicing events, gene fusions and other variations in RNA transcripts. For an accurate detection and quantification of transcripts, it is important to resolve the mapping ambiguity for those RNA-Seq reads that can be mapped to multiple loci: >17% of the reads from mouse RNA-Seq data and 50% of the reads from some plant RNA-Seq data have multiple mapping loci. In this study, we show how to resolve the mapping ambiguity in the presence of novel transcriptomic events such as exon skipping and novel indels towards accurate downstream analysis. We introduce ORMAN ( O ptimal R esolution of M ultimapping A mbiguity of R N A-Seq Reads), which aims to compute the minimum number of potential transcript products for each gene and to assign each multimapping read to one of these transcripts based on the estimated distribution of the region covering the read. ORMAN achieves this objective through a combinatorial optimization formulation, which is solved through well-known approximation algorithms, integer linear programs and heuristics. On a simulated RNA-Seq dataset including a random subset of transcripts from the UCSC database, the performance of several state-of-the-art methods for identifying and quantifying novel transcripts, such as Cufflinks, IsoLasso and CLIIQ, is significantly improved through the use of ORMAN. Furthermore, in an experiment using real RNA-Seq reads, we show that ORMAN is able to resolve multimapping to produce coverage values that are similar to the original distribution, even in genes with highly non-uniform coverage. ORMAN is available at http://orman.sf.net
2015-12-15
UXO community . NAME Total Number: PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Irma Shamatava 0.50 0.50 1 Resolving and Discriminating...Distinguishing an object of interest from innocuous items is the main problem that the UXO community is facing currently. This inverse problem...innocuous items is the main problem that the UXO community is facing currently. This inverse problem demands fast and accurate representation of
Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Turski, Andrzej J.
2011-11-01
The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.
Multi-isotope SPECT imaging of the 225Ac decay chain: feasibility studies
NASA Astrophysics Data System (ADS)
Robertson, A. K. H.; Ramogida, C. F.; Rodríguez-Rodríguez, C.; Blinder, Stephan; Kunz, Peter; Sossi, Vesna; Schaffer, Paul
2017-06-01
Effective use of the {}225Ac decay chain in targeted internal radioimmunotherapy requires the retention of both {}225Ac and progeny isotopes at the target site. Imaging-based pharmacokinetic tests of these pharmaceuticals must therefore separately yet simultaneously image multiple isotopes that may not be colocalized despite being part of the same decay chain. This work presents feasibility studies demonstrating the ability of a microSPECT/CT scanner equipped with a high energy collimator to simultaneously image two components of the {}225Ac decay chain: {}221Fr (218 keV) and {}213Bi (440 keV). Image quality phantoms were used to assess the performance of two collimators for simultaneous {}221Fr and {}213Bi imaging in terms of contrast and noise. A hotrod resolution phantom containing clusters of thin rods with diameters ranging between 0.85 and 1.70 mm was used to assess resolution. To demonstrate ability to simultaneously image dynamic {}221Fr and {}213Bi activity distributions, a phantom containing a {}213Bi generator from {}225Ac was imaged. These tests were performed with two collimators, a high-energy ultra-high resolution (HEUHR) collimator and an ultra-high sensitivity (UHS) collimator. Values consistent with activity concentrations determined independently via gamma spectroscopy were observed in high activity regions of the images. In hotrod phantom images, the HEUHR collimator resolved all rods for both {}221Fr and {}213Bi images. With the UHS collimator, no rods were resolvable in {}213Bi images and only rods ⩾1.3 mm were resolved in {}221Fr images. After eluting the {}213Bi generator, images accurately visualized the reestablishment of transient equilibrium of the {}225Ac decay chain. The feasibility of evaluating the pharmacokinetics of the {}225Ac decay chain in vivo has been demonstrated. This presented method requires the use of a high-performance high-energy collimator.
Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies.
Zuo, Lijian; Shi, Xueliang; Jo, Sae Byeok; Liu, Yun; Lin, Fracis; Jen, Alex K-Y
2018-04-01
Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and V OC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub-cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A unified understanding of (γ, n) and (n, γ) reactions and direct neutron-multiplicity sorting
NASA Astrophysics Data System (ADS)
Utsunomiya, Hiroaki; Goriely, Stephane; m, Therese Renstrø; Katayama, Seitaro; Gheorghe, Ioana; Filipescu, Dan; Belyshev, Sergey; Varlamov, Vladimir
2017-09-01
We discuss the γ-ray strength function toward a unified understanding of (γ,n) and (n,γ) reactions and propose a novel technique of direct neutron-multiplicity sorting to resolve the long-standing discrepancy between the Livermore and Scalya data of partial photoneutron cross sections.
Resolvent-Techniques for Multiple Exercise Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Sören, E-mail: christensen@math.uni-kiel.de; Lempa, Jukka, E-mail: jukka.lempa@hioa.no
2015-02-15
We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristicsmore » of the problems can be identified more explicitly. We illustrate the main results with explicit examples.« less
Age estimates for the late quaternary high sea-stands
NASA Astrophysics Data System (ADS)
Smart, Peter L.; Richards, David A.
A database of more than 300 published alpha-counted uranium-series ages has been compiled for coral reef terraces formed by Late Pleistocene high sea-stands. The database was screened to eliminate unreliable age estimates ( {230Th }/{232Th } < 20, calcite > 5%) and those without quoted without quoted errors, and a distributed error frequency curve was produced. This curve can be considered as a finite mixture model comprising k component normal distributions each with a weighting α. By using an expectation maximising algorithm, the mean and standard deviation of the component distributions, each corresponding to a high sea level event, were estimated. Eight high sea-stands with mean and standard deviations of 129.0 ± 33.0, 123.0 ± 13.0, 102.5 ± 2.0, 81.5 ± 5.0, 61.5 ± 6.0, 50.0 ± 1.0, 40.5 ± 5.0 and 33.0 ± 2.5 ka were resolved. The standard deviations are generally larger than the values quoted for individual age estimates. Whilst this may be due to diagenetic effects, especially for the older corals, it is argued that in many cases geological evidence clearly indicates that the high stands are multiple events, often not resolvable at sites with low rates of uplift. The uranium-series dated coral-reef terrace chronology shows good agreement with independent chronologies derived for Antarctic ice cores, although the resolution for the latter is better. Agreement with orbitally-tuned deep-sea core records is also good, but it is argued that Isotope Stage 5e is not a single event, as recorded in the cores, but a multiple event spanning some 12 ka. The much earlier age for Isotope Stage 5e given by Winograd et al. (1988) is not supported by the coral reef data, but further mass-spectrometric uranium-series dating is needed to permit better chronological resolution.
Guo, Shuguang; Zhang, Jun; Wang, Lei; Nelson, J Stuart; Chen, Zhongping
2004-09-01
Conventional polarization-sensitive optical coherence tomography (PS-OCT) can provide depth-resolved Stokes parameter measurements of light reflected from turbid media. A new algorithm that takes into account changes in the optical axis is introduced to provide depth-resolved birefringence and differential optical axis orientation images by use of fiber-based PS-OCT. Quaternion, a convenient mathematical tool, is used to represent an optical element and simplify the algorithm. Experimental results with beef tendon and rabbit tendon and muscle show that this technique has promising potential for imaging the birefringent structure of multiple-layer samples with varying optical axes.
Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles
NASA Astrophysics Data System (ADS)
Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.
2015-11-01
MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.
When Can Clades Be Potentially Resolved with Morphology?
Bapst, David W.
2013-01-01
Morphology-based phylogenetic analyses are the only option for reconstructing relationships among extinct lineages, but often find support for conflicting hypotheses of relationships. The resulting lack of phylogenetic resolution is generally explained in terms of data quality and methodological issues, such as character selection. A previous suggestion is that sampling ancestral morphotaxa or sampling multiple taxa descended from a long-lived, unchanging lineage can also yield clades which have no opportunity to share synapomorphies. This lack of character information leads to a lack of ‘intrinsic’ resolution, an issue that cannot be solved with additional morphological data. It is unclear how often we should expect clades to be intrinsically resolvable in realistic circumstances, as intrinsic resolution must increase as taxonomic sampling decreases. Using branching simulations, I quantify intrinsic resolution across several models of morphological differentiation and taxonomic sampling. Intrinsically unresolvable clades are found to be relatively frequent in simulations of both extinct and living taxa under realistic sampling scenarios, implying that intrinsic resolution is an issue for morphology-based analyses of phylogeny. Simulations which vary the rates of sampling and differentiation were tested for their agreement to observed distributions of durations from well-sampled fossil records and also having high intrinsic resolution. This combination only occurs in those datasets when differentiation and sampling rates are both unrealistically high relative to branching and extinction rates. Thus, the poor phylogenetic resolution occasionally observed in morphological phylogenetics may result from a lack of intrinsic resolvability within groups. PMID:23638034
A compressed sensing approach for resolution improvement in fiber-bundle based endomicroscopy
NASA Astrophysics Data System (ADS)
Dumas, John P.; Lodhi, Muhammad A.; Bajwa, Waheed U.; Pierce, Mark C.
2018-02-01
Endomicroscopy techniques such as confocal, multi-photon, and wide-field imaging have all been demonstrated using coherent fiber-optic imaging bundles. While the narrow diameter and flexibility of fiber bundles is clinically advantageous, the number of resolvable points in an image is conventionally limited to the number of individual fibers within the bundle. We are introducing concepts from the compressed sensing (CS) field to fiber bundle based endomicroscopy, to allow images to be recovered with more resolvable points than fibers in the bundle. The distal face of the fiber bundle is treated as a low-resolution sensor with circular pixels (fibers) arranged in a hexagonal lattice. A spatial light modulator is located conjugate to the object and distal face, applying multiple high resolution masks to the intermediate image prior to propagation through the bundle. We acquire images of the proximal end of the bundle for each (known) mask pattern and then apply CS inversion algorithms to recover a single high-resolution image. We first developed a theoretical forward model describing image formation through the mask and fiber bundle. We then imaged objects through a rigid fiber bundle and demonstrate that our CS endomicroscopy architecture can recover intra-fiber details while filling inter-fiber regions with interpolation. Finally, we examine the relationship between reconstruction quality and the ratio of the number of mask elements to the number of fiber cores, finding that images could be generated with approximately 28,900 resolvable points for a 1,000 fiber region in our platform.
Innovative Techniques to Predict Atmospheric Effects on Sensor Performance
2009-10-15
since acquiring the MRO data, extensive tabulation of all of the data from all visible satellites (generally, non- resolved ) was also accomplished...efficient code has been written to run multiple OSC simulations in less time . Data from many passes of the same satellite is useful for SOI, whether it is...the data analyzed. Questions about the data were resolved using OSC to determine solar phase angle (SPA), range, time of penumbra entrance/exit and
Single-Shot Spectrally Resolved UV Rayleigh Scattering Measurements in High Speed Flow
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.
1996-01-01
A single-shot UV molecular Rayleigh scattering technique to measure velocity in high speed flow is described. The beam from an injection-seeded, frequency quadrupled Nd:YAG laser (266 nm) is focused to a line in a free air jet with velocities up to Mach 1.3. Rayleigh scattered light is imaged through a planar mirror Fabry-Perot interferometer onto a Charged Coupled Device (CCD) array detector. Some laser light is also simultaneously imaged through the Fabry-Perot to provide a frequency reference. Two velocity measurements are obtained from each image. Multiple-pulse data are also given. The Rayleigh scattering velocity data show good agreement with velocities calculated from isentropic flow relations.
Zhang, Guang Lan; Keskin, Derin B.; Lin, Hsin-Nan; Lin, Hong Huang; DeLuca, David S.; Leppanen, Scott; Milford, Edgar L.; Reinherz, Ellis L.; Brusic, Vladimir
2014-01-01
Human leukocyte antigens (HLA) are important biomarkers because multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world’s populations, benefiting both global public health and personalized health care. PMID:25505899
Multimodality and nanoparticles in medical imaging
Huang, Wen-Yen; Davis, Jason J.
2015-01-01
A number of medical imaging techniques are used heavily in the provision of spatially resolved information on disease and physiological status and accordingly play a critical role in clinical diagnostics and subsequent treatment. Though, for most imaging modes, contrast is potentially enhanced through the use of contrast agents or improved hardware or imaging protocols, no single methodology provides, in isolation, a detailed mapping of anatomy, disease markers or physiological status. In recent years, the concept of complementing the strengths of one imaging modality with those of another has come to the fore and been further bolstered by the development of fused instruments such as PET/CT and PET/MRI stations. Coupled with the continual development in imaging hardware has been a surge in reports of contrast agents bearing multiple functionality, potentially providing not only a powerful and highly sensitised means of co-localising physiological/disease status and anatomy, but also the tracking and delineation of multiple markers and indeed subsequent or simultaneous highly localized therapy (“theragnostics”). PMID:21409202
Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications
NASA Astrophysics Data System (ADS)
Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.
2015-06-01
We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including: the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half-maximum (FWHM) across the entire dynamic range, and a noise floor about 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.
Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications
Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.
2014-01-01
We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications. PMID:25937684
Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.
Barber, W C; Wessel, J C; Nygard, E; Iwanczyk, J S
2015-06-01
We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.
Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin
2016-01-01
Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis. PMID:27213594
Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin
2016-06-28
Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.
Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.
Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing
2010-05-04
High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.
Unstable and multiple pulsing can be invisible to ultrashort pulse measurement techniques
Rhodes, Michelle A.; Guang, Zhe; Trebino, Rick
2016-12-29
Here, multiple pulsing occurs in most ultrashort-pulse laser systems when pumped at excessively high powers, and small fluctuations in pump power in certain regimes can cause unusual variations in the temporal separations of sub-pulses. Unfortunately, the ability of modern intensity-and-phase pulse measurement techniques to measure such unstable multi-pulsing has not been studied. Here we report calculations and simulations finding that allowing variations in just the relative phase of a satellite pulse causes the second pulse to completely disappear from a spectral interferometry for direct electric field reconstruction (SPIDER) measurement. We find that, although neither frequency-resolved optical gating (FROG) nor autocorrelationmore » can determine the precise properties of satellite pulses due to the presence of instability, they always succeed in, at least, seeing the satellite pulses. Also, additional post-processing of the measured FROG trace can determine the correct approximate relative height of the satellite pulse and definitively indicate the presence of unstable multiple-pulsing.« less
Unstable and multiple pulsing can be invisible to ultrashort pulse measurement techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, Michelle A.; Guang, Zhe; Trebino, Rick
Here, multiple pulsing occurs in most ultrashort-pulse laser systems when pumped at excessively high powers, and small fluctuations in pump power in certain regimes can cause unusual variations in the temporal separations of sub-pulses. Unfortunately, the ability of modern intensity-and-phase pulse measurement techniques to measure such unstable multi-pulsing has not been studied. Here we report calculations and simulations finding that allowing variations in just the relative phase of a satellite pulse causes the second pulse to completely disappear from a spectral interferometry for direct electric field reconstruction (SPIDER) measurement. We find that, although neither frequency-resolved optical gating (FROG) nor autocorrelationmore » can determine the precise properties of satellite pulses due to the presence of instability, they always succeed in, at least, seeing the satellite pulses. Also, additional post-processing of the measured FROG trace can determine the correct approximate relative height of the satellite pulse and definitively indicate the presence of unstable multiple-pulsing.« less
KeyWare: an open wireless distributed computing environment
NASA Astrophysics Data System (ADS)
Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir
1995-12-01
Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.
Trapezium Systems and Stellar Jets in 30 Doradus
NASA Astrophysics Data System (ADS)
Walborn, Nolan
1999-07-01
30 Doradus is the nearest and best resolved extragalactic starburst, hence a paradigm for the phenomenon. Recent NICMOS observations of the new stellar generation being triggered by the outflows from R136 establish 30 Dor as a prime region for investigation of massive-star formation as well. Since 1" already subtends 50, 000 AU at 50 kpc, HST makes unique contributions to the study of 30 Dor. A recent groundbased spectral-classification study has provided new insights into the stellar content of 30 Dor, but many of the targets are resolved into multiple systems in the available WFPC2 images. We propose to obtain spatially resolved STIS blue spectroscopy of some of the newly found multiple systems, which is essential to determine accurate stellar tempertures and masses. Several systems each in the new and previous stellar generations are included. The HST spatial resolution also reduces the contamination of t he stellar spectra by the nebula r emission lines, which is a critical advantage. We also propose dithered PC nebular-line images of the young Trapezium systems Knots 1-3, which interact strongly with the surrounding interstellar medium, forming several parsec-scale jets. Finally, we shall do two WFPC2 pointings with continuum filters, to complete the coverage of the field, which currently limits the search for multiple systems and the illuminating comparisons with IR and other data.
Polysemy and the Taxonomic Constraint: Children's Representation of Words That Label Multiple Kinds
ERIC Educational Resources Information Center
Srinivasan, Mahesh; Snedeker, Jesse
2014-01-01
How do children resolve the problem of indeterminacy when learning a new word? By one account, children adopt a "taxonomic assumption" and expect the word to denote only members of a particular taxonomic category. According to one version of this constraint, young children should represent polysemous words that label multiple kinds--for…
A scalable multi-photon coincidence detector based on superconducting nanowires.
Zhu, Di; Zhao, Qing-Yuan; Choi, Hyeongrak; Lu, Tsung-Ju; Dane, Andrew E; Englund, Dirk; Berggren, Karl K
2018-06-04
Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to large numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a sixteen-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon events in a four-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.
A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors
Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner
2014-01-01
The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255
A multi-resolution approach for an automated fusion of different low-cost 3D sensors.
Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner
2014-04-24
The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1992-01-01
Estimation of the Doppler centroid ambiguity is a necessary element of the signal processing for SAR systems with large antenna pointing errors. Without proper resolution of the Doppler centroid estimation (DCE) ambiguity, the image quality will be degraded in the system impulse response function and the geometric fidelity. Two techniques for resolution of DCE ambiguity for the spaceborne SAR are presented; they include a brief review of the range cross-correlation technique and presentation of a new technique using multiple pulse repetition frequencies (PRFs). For SAR systems, where other performance factors control selection of the PRF's, an algorithm is devised to resolve the ambiguity that uses PRF's of arbitrary numerical values. The performance of this multiple PRF technique is analyzed based on a statistical error model. An example is presented that demonstrates for the Shuttle Imaging Radar-C (SIR-C) C-band SAR, the probability of correct ambiguity resolution is higher than 95 percent for antenna attitude errors as large as 3 deg.
Dara, Ravi C.; Tiwari, Aseem K.; Pandey, Prashant; Arora, Dinesh
2015-01-01
Liver transplant procedure acts as a challenge for transfusion services in terms of specialized blood components, serologic problems, and immunologic effects of transfusion. Red cell alloimmunization in patients awaiting a liver transplant complicate the process by undue delay or unavailability of compatible red blood cell units. Compatible blood units can be provided by well-equipped immunohematology laboratory, which has expertise in resolving these serological problems. This report illustrates resolution of a case with multiple alloantibodies using standard techniques, particularly rare antisera. Our case re-emphasizes the need for universal antibody screening in all patients as part of pretransfusion testing, which helps to identify atypical antibodies and plan for appropriate transfusion support well in time. We recommend that the centers, especially the ones that perform complex procedures like solid organ transplants and hematological transplants should have the necessary immunohematological reagents including rare antisera to resolve complex cases of multiple antibodies as illustrated in this case. PMID:25722585
Koepfli, Klaus-Peter; Deere, Kerry A; Slater, Graham J; Begg, Colleen; Begg, Keith; Grassman, Lon; Lucherini, Mauro; Veron, Geraldine; Wayne, Robert K
2008-01-01
Background Adaptive radiation, the evolution of ecological and phenotypic diversity from a common ancestor, is a central concept in evolutionary biology and characterizes the evolutionary histories of many groups of organisms. One such group is the Mustelidae, the most species-rich family within the mammalian order Carnivora, encompassing 59 species classified into 22 genera. Extant mustelids display extensive ecomorphological diversity, with different lineages having evolved into an array of adaptive zones, from fossorial badgers to semi-aquatic otters. Mustelids are also widely distributed, with multiple genera found on different continents. As with other groups that have undergone adaptive radiation, resolving the phylogenetic history of mustelids presents a number of challenges because ecomorphological convergence may potentially confound morphologically based phylogenetic inferences, and because adaptive radiations often include one or more periods of rapid cladogenesis that require a large amount of data to resolve. Results We constructed a nearly complete generic-level phylogeny of the Mustelidae using a data matrix comprising 22 gene segments (~12,000 base pairs) analyzed with maximum parsimony, maximum likelihood and Bayesian inference methods. We show that mustelids are consistently resolved with high nodal support into four major clades and three monotypic lineages. Using Bayesian dating techniques, we provide evidence that mustelids underwent two bursts of diversification that coincide with major paleoenvironmental and biotic changes that occurred during the Neogene and correspond with similar bursts of cladogenesis in other vertebrate groups. Biogeographical analyses indicate that most of the extant diversity of mustelids originated in Eurasia and mustelids have colonized Africa, North America and South America on multiple occasions. Conclusion Combined with information from the fossil record, our phylogenetic and dating analyses suggest that mustelid diversification may have been spurred by a combination of faunal turnover events and diversification at lower trophic levels, ultimately caused by climatically driven environmental changes. Our biogeographic analyses show Eurasia as the center of origin of mustelid diversity and that mustelids in Africa, North America and South America have been assembled over time largely via dispersal, which has important implications for understanding the ecology of mustelid communities. PMID:18275614
Xu, Jianling; Yang, Jiaqi; Zhao, Nan; Sheng, Lianxi; Zhao, Yuanhui; Tang, Zhanhui
2011-12-01
The physical, chemical, and biological indices of aircraft liquid wastes collected from multiple airplanes at Longjia Airport, Changchun, China were measured according to "Integrated Wastewater Discharge Standard," evaluating treatment efficiency of resolvable sanitizing liquid. The results indicate that, after being treated by the resolvable sanitizing liquid, the indices of all first-class pollutants met the requirements of the standard, while among the second-class pollutants, the suspension content, biochemical oxygen demand after 5 days, and chemical oxygen demand as well as the contents of amino nitrogen, total phosphorus, anionic surfactants, total copper, absorbable organic halogen, and phenolic compounds did not reach the discharge standard. Particularly, the level of fecal coliform bacteria in the aircraft liquid wastes can meet the standard specification by adding more than 1 mL/L resolvable sanitizing liquid. The aircraft wastewater treated by resolvable sanitizing liquid cannot be directly discharged back into the environment as well as urban drainage systems.
Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits.
Meng, Chengbo; Zhou, Jingheng; Papaneri, Amy; Peddada, Teja; Xu, Karen; Cui, Guohong
2018-04-25
To achieve simultaneous measurement of multiple cellular events in molecularly defined groups of neurons in vivo, we designed a spectrometer-based fiber photometry system that allows for spectral unmixing of multiple fluorescence signals recorded from deep brain structures in behaving animals. Using green and red Ca 2+ indicators differentially expressed in striatal direct- and indirect-pathway neurons, we were able to simultaneously monitor the neural activity in these two pathways in freely moving animals. We found that the activities were highly synchronized between the direct and indirect pathways within one hemisphere and were desynchronized between the two hemispheres. We further analyzed the relationship between the movement patterns and the magnitude of activation in direct- and indirect-pathway neurons and found that the striatal direct and indirect pathways coordinately control the dynamics and fate of movement. Published by Elsevier Inc.
von Olshausen, Philipp; Rohrbach, Alexander
2013-10-15
Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.
Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.
Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less
Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.
2013-01-01
The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Lang, Stephen; Hou, Arthur Y.; Zhang, Minghua; Simpson, Joanne
2008-01-01
Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.
Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006
NASA Astrophysics Data System (ADS)
Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio
2016-04-01
We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.
Temporally flickering nanoparticles for compound cellular imaging and super resolution
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Danan, Yossef; Meir, Rinat; Meiri, Amihai; Zalevsky, Zeev
2016-03-01
This work presents the use of flickering nanoparticles for imaging biological samples. The method has high noise immunity, and it enables the detection of overlapping types of GNPs, at significantly sub-diffraction distances, making it attractive for super resolving localization microscopy techniques. The method utilizes a lock-in technique at which the imaging of the sample is done using a time-modulated laser beam that match the number of the types of gold nanoparticles (GNPs) that label a given sample, and resulting in the excitation of the temporal flickering of the scattered light at known temporal frequencies. The final image where the GNPs are spatially separated is obtained using post processing where the proper spectral components corresponding to the different modulation frequencies are extracted. This allows the simultaneous super resolved imaging of multiple types of GNPs that label targets of interest within biological samples. Additionally applying the post-processing algorithm of the K-factor image decomposition algorithm can further improve the performance of the proposed approach.
Miller, Effie K; Trivelas, Nicholas E; Maugeri, Pearson T; Blaesi, Elizabeth J; Shafaat, Hannah S
2017-07-05
The assembly mechanism of the Mn/Fe ligand-binding oxidases (R2lox), a family of proteins that are homologous to the nonheme diiron carboxylate enzymes, has been investigated using time-resolved techniques. Multiple heterobimetallic intermediates that exhibit unique spectral features, including visible absorption bands and exceptionally broad electron paramagnetic resonance signatures, are observed through optical and magnetic resonance spectroscopies. On the basis of comparison to known diiron species and model compounds, the spectra have been attributed to (μ-peroxo)-Mn III /Fe III and high-valent Mn/Fe species. Global spectral analysis coupled with isotopic substitution and kinetic modeling reveals elementary rate constants for the assembly of Mn/Fe R2lox under aerobic conditions. A complete reaction mechanism for cofactor maturation that is consistent with experimental data has been developed. These results suggest that the Mn/Fe cofactor can perform direct C-H bond abstraction, demonstrating the potential for potent chemical reactivity that remains unexplored.
Time-Resolved Kinetic Chirped-Pulse Rotational Spectroscopy in a Room-Temperature Flow Reactor
Zaleski, Daniel P.; Harding, Lawrence B.; Klippenstein, Stephen J.; ...
2017-12-01
Chirped-pulse Fourier transform millimeter-wave spectroscopy is a potentially powerful tool for studying chemical reaction dynamics and kinetics. Branching ratios of multiple reaction products and intermediates can be measured with unprecedented chemical specificity; molecular isomers, conformers, and vibrational states have distinct rotational spectra. Here we demonstrate chirped-pulse spectroscopy of vinyl cyanide photoproducts in a flow tube reactor at ambient temperature of 295 K and pressures of 1-10 mu bar. This in situ and time-resolved experiment illustrates the utility of this novel approach to investigating chemical reaction dynamics and kinetics. Following 193 nm photodissociation of CH2CHCN, we observe rotational relaxation of energizedmore » HCN, HNC, and HCCCN photoproducts with 10 mu s time resolution and sample the vibrational population distribution of HCCCN. The experimental branching ratio HCN/HCCCN is compared with a model based on RRKM theory using high-level ab initio calculations, which were in turn validated by comparisons to Active Thermochemical Tables enthalpies.« less
Eta Carinae: Viewed from Multiple Vantage Points
NASA Technical Reports Server (NTRS)
Gull, Theodore
2007-01-01
The central source of Eta Carinae and its ejecta is a massive binary system buried within a massive interacting wind structure which envelops the two stars. However the hot, less massive companion blows a small cavity in the very massive primary wind, plus ionizes a portion of the massive wind just beyond the wind-wind boundary. We gain insight on this complex structure by examining the spatially-resolved Space Telescope Imaging Spectrograph (STIS) spectra of the central source (0.1") with the wind structure which extends out to nearly an arcsecond (2300AU) and the wind-blown boundaries, plus the ejecta of the Little Homunculus. Moreover, the spatially resolved Very Large Telescope/UltraViolet Echelle Spectrograph (VLT/UVES) stellar spectrum (one arcsecond) and spatially sampled spectra across the foreground lobe of the Homunculus provide us vantage points from different angles relative to line of sight. Examples of wind line profiles of Fe II, and the.highly excited [Fe III], [Ne III], [Ar III] and [S III)], plus other lines will be presented.
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; ...
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign
NASA Astrophysics Data System (ADS)
Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.
2017-12-01
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.
Irrational exuberance for resolved species trees.
Hahn, Matthew W; Nakhleh, Luay
2016-01-01
Phylogenomics has largely succeeded in its aim of accurately inferring species trees, even when there are high levels of discordance among individual gene trees. These resolved species trees can be used to ask many questions about trait evolution, including the direction of change and number of times traits have evolved. However, the mapping of traits onto trees generally uses only a single representation of the species tree, ignoring variation in the gene trees used to construct it. Recognizing that genes underlie traits, these results imply that many traits follow topologies that are discordant with the species topology. As a consequence, standard methods for character mapping will incorrectly infer the number of times a trait has evolved. This phenomenon, dubbed "hemiplasy," poses many problems in analyses of character evolution. Here we outline these problems, explaining where and when they are likely to occur. We offer several ways in which the possible presence of hemiplasy can be diagnosed, and discuss multiple approaches to dealing with the problems presented by underlying gene tree discordance when carrying out character mapping. Finally, we discuss the implications of hemiplasy for general phylogenetic inference, including the possible drawbacks of the widespread push for "resolved" species trees. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Bao, Yuanwu; Chen, Ceng; Newburg, David S.
2012-01-01
Defining the biologic roles of human milk oligosaccharides (HMOS) requires an efficient, simple, reliable, and robust analytical method for simultaneous quantification of oligosaccharide profiles from multiple samples. The HMOS fraction of milk is a complex mixture of polar, highly branched, isomeric structures that contain no intrinsic facile chromophore, making their resolution and quantification challenging. A liquid chromatography-mass spectrometry (LC-MS) method was devised to resolve and quantify 11 major neutral oligosaccharides of human milk simultaneously. Crude HMOS fractions are reduced, resolved by porous graphitic carbon HPLC with a water/acetonitrile gradient, detected by mass spectrometric specific ion monitoring, and quantified. The HPLC separates isomers of identical molecular weights allowing 11 peaks to be fully resolved and quantified by monitoring mass to charge (m/z) ratios of the deprotonated negative ions. The standard curves for each of the 11 oligosaccharides is linear from 0.078 or 0.156 to 20 μg/mL (R2 > 0.998). Precision (CV) ranges from 1% to 9%. Accuracy is from 86% to 104%. This analytical technique provides sensitive, precise, accurate quantification for each of the 11 milk oligosaccharides and allows measurement of differences in milk oligosaccharide patterns between individuals and at different stages of lactation. PMID:23068043
Quantifying the size-resolved dynamics of indoor bioaerosol transport and control.
Kunkel, S A; Azimi, P; Zhao, H; Stark, B C; Stephens, B
2017-09-01
Understanding the bioaerosol dynamics of droplets and droplet nuclei emitted during respiratory activities is important for understanding how infectious diseases are transmitted and potentially controlled. To this end, we conducted experiments to quantify the size-resolved dynamics of indoor bioaerosol transport and control in an unoccupied apartment unit operating under four different HVAC particle filtration conditions. Two model organisms (Escherichia coli K12 and bacteriophage T4) were aerosolized under alternating low and high flow rates to roughly represent constant breathing and periodic coughing. Size-resolved aerosol sampling and settle plate swabbing were conducted in multiple locations. Samples were analyzed by DNA extraction and quantitative polymerase chain reaction (qPCR). DNA from both organisms was detected during all test conditions in all air samples up to 7 m away from the source, but decreased in magnitude with the distance from the source. A greater fraction of T4 DNA was recovered from the aerosol size fractions smaller than 1 μm than E. coli K12 at all air sampling locations. Higher efficiency HVAC filtration also reduced the amount of DNA recovered in air samples and on settle plates located 3-7 m from the source. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Search for Feo and Pyroxene on MERCURY?S Surface
NASA Astrophysics Data System (ADS)
Sprague, Ann L.; Emery, Joshua P.
Results from spectral observations of Mercury's surface in the wavelength range 0.8 to 5.5 micrometers will be reported. The data were obtained at the NASA Infrared Telescope Facility on Mauna Kea Hawaii. We used SpeX a long slit imaging system developed at the IRTF for high resolving power spatially resolved spectroscopy throughout the solar system. We aligned the spectral slit with Mercury's geographic longitude and systematically moved it across the Earth-facing disk to obtain multiple disk-resolved spectral images. The entire data set provides spatial coverage of the Earth-facing disk limited only by atmospheric turbulence and the diffraction limit for each wavelength. We used SpeX in two spectral regions in the R 2000 mode. In the first case between 0.8 and 2.5 micrometer to search for the 0.9 to 1.0 micrometer reflectance absorption feature caused by the Fe2+ electronic transfer in FeO. We also measured the 4.5 to 5.5 micrometer flux from Mercury. This is a region of diagnostic features caused by the presence of volume scattering in pyroxene and olivine. These data will be compared to previous observations that showed an anomalous emission feature at 5.5 micrometer and to others that exhibited a feature closely resembling that from pyroxene.
NASA Astrophysics Data System (ADS)
Richardson, Chris T.; Kannappan, Sheila; Moffett, Amanda J.; RESOLVE survey team
2018-06-01
Metal poor star forming galaxies sit on the far left wing of the BPT diagram just below traditional demarcation lines. The basic approach to reproducing their emission lines by coupling photoionization models to stellar population synthesis models underestimates the observed [O III] / Hβ ratio by a factor 0.3-0.5 dex. We classified galaxies as metal poor in the REsolved Spectroscopy of a Local VolumE (RESOLVE) survey and the Environmental COntext (ECO) catalog by using the IZI code based off of Bayesian inference. We used a variety of stellar population synthesis codes to generate SEDs covering a range of starburst ages and metallicities including both secular and binary stellar evolution. Here, we show that multiple SPS codes can produce SEDs hard enough to reduce the offset assuming that simple, and perhaps unjustified, nebular conditions hold. Adopting more realistic nebular conditions shows that, despite the recent emphasis placed on binary evolution to fit high O III ratios, none of our SEDs can reduce the offset. We propose several new solutions including using ensembles of nebular clouds and improved microphysics to address this issue. This work is supported by National Science Foundation awards OCI-1053575, though XSEDE award TG-AST140040, and NSF awards AST-0955368 and CISE/ACI-1156614.
NASA Technical Reports Server (NTRS)
Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Sharon, Keren
2014-01-01
We present a detailed analysis of multi-wavelength Hubble Space Telescope/Wide Field Camera 3 (WFC3) imaging and Keck/OSIRIS near-infrared adaptive optics-assisted integral field spectroscopy for a highly magnified lensed galaxy at z = 1.70. This young starburst is representative of ultraviolet-selected star-forming galaxies (SFGs) at z approx. 2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100 pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction and there is a clear signature of a tidal tail. We constrain the age, reddening, star formation rate, and stellar mass of the star-forming clumps from spectral energy distribution (SED) modeling of the WFC3 photometry and measure their H(alpha) luminosity, metallicity, and outflow properties from the OSIRIS data.With strong star-formation-driven outflows in four clumps, RCSGA0327 is the first high-redshift SFG at stellar mass <10(exp 10) Stellar Mass with spatially resolved stellar winds. We compare the H(alpha) luminosities, sizes, and dispersions of the star-forming regions with other high-z clumps as well as local giant H(II) regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local universe. Spatially resolved SED modeling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system that is not detected in H(alpha) emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.
Super-resolved Mirau digital holography by structured illumination
NASA Astrophysics Data System (ADS)
Ganjkhani, Yasaman; Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Moradi, Ali-Reza
2017-12-01
In this paper, we apply structured illumination toward super-resolved 3D imaging in a common-path digital holography arrangement. Digital holographic microscopy (DHM) provides non-invasive 3D images of transparent samples as well as 3D profiles of reflective surfaces. A compact and vibration-immune arrangement for DHM may be obtained through the use of a Mirau microscope objective. However, high-magnification Mirau objectives have a low working distance and are expensive. Low-magnification ones, on the other hand, suffer from low lateral resolution. Structured illumination has been widely used for resolution improvement of intensity images, but the technique can also be readily applied to DHM. We apply structured illumination to Mirau DHM by implementing successive sinusoidal gratings with different orientations onto a spatial light modulator (SLM) and forming its image on the specimen. Moreover, we show that, instead of different orientations of 1D gratings, alternative single 2D gratings, e.g. checkerboard or hexagonal patterns, can provide resolution enhancement in multiple directions. Our results show a 35% improvement in the resolution power of the DHM. The presented arrangement has the potential to serve as a table-top device for high resolution holographic microscopy.
Retrospective environmental biomonitoring - Mussel Watch expanded
NASA Astrophysics Data System (ADS)
Schöne, Bernd R.; Krause, Richard A.
2016-09-01
Monitoring bioavailable contaminants and determining baseline conditions in aquatic environments has become an important aspect of ecology and ecotoxicology. Since the mid-1970s and the initiation of the Mussel Watch program, this has been successfully accomplished with bivalve mollusks. These (mostly) sessile organisms reliably and proportionately record changes of a range of organic and inorganic pollutants occurring in the water, food or sediment. The great majority of studies have measured the concentration of pollutants in soft tissues and, to a much lesser extent, in whole shells or fractions thereof. Both approaches come with several drawbacks. Neither soft tissues nor whole shells can resolve temporal changes of the pollution history, except through the analysis of multiple specimens collected at different times. Soft tissues and shell fractions provide time-averaged data spanning months or years, and whole shells time-averaged data over the entire lifespan of the animal. Even with regular sampling of multiple specimens over long intervals of time, the resulting chronology may not faithfully resolve short-term changes of water quality. Compounding the problem, whole shell averages tend to be non-arithmetic and non-linear, because shell growth rate varies through seasons and lifetime, and different shell layers often vary ultrastructurally and can thus be chemically different from each other. Mussel Watch could greatly benefit from the potential of bivalve shells in providing high-resolution, temporally aligned archives of environmental variability. So far, only circa a dozen studies have demonstrated that the sclerochronological approach - i.e., combined growth pattern and high-resolution chemical analyses - can provide sub-seasonally to annually resolved time-series documenting the history of pollution over centuries and even millennia. On the other hand, the sclerochronological community has failed to fully appreciate that the formation of the shell and its chemical composition is controlled by the soft parts and that a robust interpretation of the shell record requires a detailed understanding of bivalve physiology, behavior and ecology. This review attempts to bring together the Mussel Watch and sclerochronology communities and lay the foundation of a new subdiscipline of the Mussel Watch: retrospective environmental biomonitoring. For this purpose, we provide an overview of seminal work from both fields and outline potential future research directions.
NASA Astrophysics Data System (ADS)
Peach, Ken; Ekdahl, Carl
2014-02-01
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Gu, Liping; Jones, A Daniel; Last, Robert L
2012-01-01
Amino acids extracted from a biological matrix can be resolved and measured using a 6-min per sample method through high-performance liquid chromatography with a short C18 column and rapid gradient using the ion-pairing reagent perfluoroheptanoic acid. LC-tandem mass spectrometry with multiple reaction monitoring (MRM) transitions selective for each compound allows simultaneous quantification of the 20 proteinogenic amino acids and 5 metabolically related compounds. Distinct MRM transitions were also established for selective detection of the isomers leucine/isoleucine and threonine/homoserine.
Noise shielding by a hot subsonic jet
NASA Technical Reports Server (NTRS)
Vijayaraghavan, A.; Parthasarathy, S. P.
1981-01-01
An analysis is conducted of the shielding of the noise emitted by a high speed round jet by a hot, subsonic, semicircular jet. A plane wave front in the primary jet is resolved into elementary plane waves which undergo multiple reflections at the jet boundaries of the primary and the shielding jets. The jet boundaries are idealized to be vortex sheets. The far field sound is evaluated asymptotically by a superposition of the waves that penetrate the shielding jet. The angular directivities are plotted for several values of jet temperature and velocity to examine the effectiveness of shielding by the semicircular jet layer.
NASA Astrophysics Data System (ADS)
McKellar, A. R. W.; Billinghurst, B. E.
2010-02-01
Thiophosgene (Cl2CS) is a favorite model system for studies of vibrational dynamics. But there are no previous rotationally-resolved infrared studies because the spectra are very congested due to its (relatively) large mass and multiple isotopic species. Here we report a detailed gas-phase study of the ν2 (˜504 cm-1) and ν4 (˜471 cm-1) fundamental bands, based on spectra obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 FT spectrometer.
Multiple-energy Techniques in Industrial Computerized Tomography
DOE R&D Accomplishments Database
Schneberk, D.; Martz, H.; Azevedo, S.
1990-08-01
Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.
Yang, Ye; Fan, Teresa W-M; Lane, Andrew N; Higashi, Richard M
2017-07-11
Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different elemental isotopes can trace the allocation of e.g. C and N atoms through the network. Such dual-label experiments however challenge the resolution of conventional mass spectrometers, which must distinguish the neutron mass differences among different elemental isotopes. This requires ultrahigh resolution Fourier transform mass spectrometry (UHR-FTMS). When combined with direct infusion nano-electrospray ion source (nano-ESI), UHR-FTMS can provide rapid, global, and quantitative analysis of all possible mass isotopologues of metabolites. Unfortunately, very low mass polar metabolites such as amino acids can be difficult to analyze by current models of UHR-FTMS, plus the high salt content present in typical cell or tissue polar extracts may cause unacceptable ion suppression for sources such as nano-ESI. Here we describe a modified method of ethyl chloroformate (ECF) derivatization of amino acids to enable rapid quantitative analysis of stable isotope labeled amino acids using nano-ESI UHR-FTMS. This method showed excellent linearity with quantifiable limits in the low nanomolar range represented in microgram quantities of biological specimens, which results in extracts with total analyte abundances in the low to sub-femtomole range. We have applied this method to profile amino acids and their labeling patterns in 13 C and 2 H doubly labeled PC9 cell extracts, cancerous and non-cancerous tissue extracts from a lung cancer patient and their protein hydrolysates as well as plasma extracts from mice fed with a liquid diet containing 13 C 6 -glucose (Glc). The multi-element isotopologue distributions provided key insights into amino acid metabolism and intracellular pools in human lung cancer tissues in high detail. The 13 C labeling of Asp and Glu revealed de novo synthesis of these amino acids from 13 C 6 -Glc via the Krebs cycle, specifically the elevated level of 13 C 3 -labeled Asp and Glu in cancerous versus non-cancerous lung tissues was consistent with enhanced pyruvate carboxylation. In addition, tracking the fate of double tracers, ( 13 C 6 -Glc + 2 H 2 -Gly or 13 C 6 -Glc + 2 H 3 -Ser) in PC9 cells clearly resolved pools of Ser and Gly synthesized de novo from 13 C 6 -Glc ( 13 C 3 -Ser and 13 C 2 -Gly) versus Ser and Gly derived from external sources ( 2 H 3 -Ser, 2 H 2 -Gly). Moreover the complex 2 H labeling patterns of the latter were results of Ser and Gly exchange through active Ser-Gly one-carbon metabolic pathway in PC9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bentham, H. L. M.; Morgan, J. V.; Angus, D. A.
2016-12-01
The UK has a large volume of high level and intermediate level radioactive waste and government policy is to dispose of this waste in a Geological Disposal Facility (GDF). This will be a highly-engineered facility capable of isolating radioactive waste within multiple protective barriers, deep underground, to ensure that no harmful quantities of radioactivity ever reach the surface environment. Although no specific GDF site in the UK has been chosen, granite is one of the candidate host rocks due to its strength, in engineering terms, and because of its low permeability in consideration of groundwater movement. We design time-lapse seismic surveys to characterise geological models of naturally fractured granite with GDF-related tunnel damage zones at a potential disposal depth of 1000 m (the UK GDF might be shallower). Additionally, we use effective medium models to calculate the velocity change when the fracture density is increased in the damage zones, and find a reduction of 60 m/s in P-wave velocity when the fracture density is doubled. Next, we simulate seismic surveys and apply 3D Full Waveform Inversion (FWI) to see how well we can recover the low-velocity damage zones. Furthermore we evaluate the effectiveness of using a survey design consisting of surface and tunnel receivers (a combined array) to resolve the target. After applying FWI we find the velocity anomaly within the damage zone can be resolved to within 2 m/s (3%) and the shape of the damage zone is resolved to 12.5 m (within a single grid cell). Using the combined array we are able to resolve the anomaly strength and shape more completely. When we add further complexity to the model by including tunnel infrastructure, we conclude the combined array is essential in recovering the tunnel damage zone. Our findings show that it is beneficial to use 3D FWI and novel survey designs for characterising subtle variations as may be present in granite, information that could assist in the GDF site selection process and also with GDF design.
Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues
NASA Astrophysics Data System (ADS)
Zheng, Wei
2014-11-01
Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.
Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Alewine, Neal Jon
1993-01-01
Multiple instruction rollback (MIR) is a technique to provide rapid recovery from transient processor failures and was implemented in hardware by researchers and slow in mainframe computers. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs were also developed which remove rollback data hazards directly with data flow manipulations, thus eliminating the need for most data redundancy hardware. Compiler-assisted techniques to achieve multiple instruction rollback recovery are addressed. It is observed that data some hazards resulting from instruction rollback can be resolved more efficiently by providing hardware redundancy while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations were conducted which indicate improved efficiency over previous hardware-based and compiler-based schemes. Various enhancements to the compiler transformations and to the data redundancy hardware developed for the compiler-assisted MIR scheme are described and evaluated. The final topic deals with the application of compiler-assisted MIR techniques to aid in exception repair and branch repair in a speculative execution architecture.
Role of acyl carrier protein isoforms in plant lipid metabolism: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohlrogge, J.B.
1989-01-01
Previous research from my lab has revealed that several higher plant species have multiple isoforms of acyl carrier protein (ACP) and therefore this trait appears highly conserved among higher plants. This level of conservation suggests that the existence of ACP isoforms is not merely the results of neutral gene duplications. We have developed techniques to examine a wider range of species. Acyl carrier proteins can be labelled very specifically and to high specific activity using H-palmitate and the E. coli enzyme acyl-ACP synthetase. Isoforms were then resolved by western blotting and native PAGE of H-palmitate labelled ACP's. Multiple isoforms ofmore » ACP were observed the leaf tissue of the monocots Avena sativa and Hordeum vulgare and dicots including Arabidopsis thallina, Cuphea wrightii, and Brassica napus. Lower vascular plants including the cycad, Dioon edule, Ginkgo biloba, the gymnosperm Pinus, the fern Anernia phyllitidis and Psilotum nudum, the most primitive known extant vascular plant, were also found to have multiple ACP isoforms as were the nonvascular liverwort, Marchantia and moss, Polytrichum. Therefore, the development of ACP isoforms occurred early in evolution. However, the uniellular alge Chlamydomonas and Dunaliella and the photosynthetic cyanobacteria Synechocystis and Agmnellum have only a single elecrophotetic form of ACP. Thus, multiple forms of ACP do not occur in all photosynthetic organisms but may be associated with multicellular plants.« less
Ion Mobility Separation of Variant Histone Tails Extending to the “Middle-down” Range
Shvartsburg, Alexandre A.; Zheng, Yupeng; Smith, Richard D.; Kelleher, Neil L.
2012-01-01
Differential ion mobility spectrometry (FAIMS) can baseline-resolve multiple variants of post-translationally modified peptides extending to the 3 - 4 kDa range, which differ in the localization of a PTM as small as acetylation. Essentially orthogonal separations for different charge states expand the total peak capacity in proportion to the number of observed states that increases for longer polypeptides. This might enable resolving localization variants for yet larger peptides and even intact proteins. PMID:22559289
Time-domain multiple-quantum NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitekamp, Daniel P.
1982-11-01
The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.
2017-07-31
Report: High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows The views, opinions and/or...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching...High-Energy, High-Pulse-Rate Light Sources for Enhanced Time -Resolved Tomographic PIV of Unsteady & Turbulent Flows Report Term: 0-Other Email
Understanding healthcare professionals' self-efficacy to resolve interprofessional conflict.
Sexton, Martha; Orchard, Carole
2016-05-01
Conflict within interprofessional healthcare teams, when not effectively resolved, has been linked to detrimental consequences; however, effective conflict resolution has been shown to enhance team performance, increase patient safety, and improve patient outcomes. Alarmingly, knowledge of healthcare professionals' ability to resolve conflict has been limited, largely due to the challenges that arise when researchers attempt to observe a conflict occurring in real time. Research literature has identified three central components that seem to influence healthcare professional's perceived ability to resolve conflict: communication competence, problem-solving ability, and conflict resolution education and training. The purpose of this study was to investigate the impact of communication competence, problem-solving ability, and conflict resolution education and training on healthcare professionals' perceived ability to resolve conflicts. This study employed a cross-sectional survey design. Multiple regression analyses demonstrated that two of the three central components-conflict resolution education and training and communication competence-were found to be statistically significant predictors of healthcare professionals' perceived ability to resolve conflict. Implications include a call to action for clinicians and academicians to recognize the importance of communication competence and conflict resolution education and training as a vital area in interprofessional pre- and post-licensure education and collaborative practice.
Redundancy management of multiple KT-70 inertial measurement units applicable to the space shuttle
NASA Technical Reports Server (NTRS)
Cook, L. J.
1975-01-01
Results of an investigation of velocity failure detection and isolation for 3 inertial measuring units (IMU) and 2 inertial measuring units (IMU) configurations are presented. The failure detection and isolation algorithm performance was highly successful and most types of velocity errors were detected and isolated. The failure detection and isolation algorithm also included attitude FDI but was not evaluated because of the lack of time and low resolution in the gimbal angle synchro outputs. The shuttle KT-70 IMUs will have dual-speed resolvers and high resolution gimbal angle readouts. It was demonstrated by these tests that a single computer utilizing a serial data bus can successfully control a redundant 3-IMU system and perform FDI.
Schönhuth, Susana; Vukic, Jasna; Sanda, Radek; Yang, Lei; Mayden, Richard L
2018-06-15
The phylogenetic relationships and classification of the freshwater fish order Cypriniformes, like many other species-rich groups of vertebrates, has evolved over time with some consistency and inconsistencies of relationships across various studies. Within Cypriniformes, the Holarctic family Leuciscidae is one of the most widely distributed and highly diverse monophyletic groups of cyprinoids. Despite several studies conducted on this group, alternative hypotheses exist as to the composition and relationships within Leuciscidae. Here we assess the extent, composition, phylogenetic relationships, and taxonomy of this highly diverse group of fishes, using multiple mitochondrial and nuclear loci and a comprehensive and dense taxonomic sampling. Analyses of 418 specimens (410 species) resolve a well-supported Leuciscidae including 362 specimens (358 taxa) in six well-supported subfamilies/major clades: Pseudaspininae/Far East Asian clade (FEA); Laviniinae/North American Western clade (WC); Plagopterinae/North American Creek Chub-Plagopterin clade (CC-P); Leuciscinae/Eurasian Old World clade (OW) (minus Phoxinus) plus North American Notemigonus; Phoxininae/Eurasian Phoxinus clade (PHX); and Pogonichthyinae/North American clade (NA) including all remaining leuciscids. Within Leuciscidae, neither the traditional phoxinins (Phoxinus, FEA, Nearctic genera) nor all Nearctic genera (minus Notemigonus) are resolved as monophyletic; whereas the WC and CC-P form two independent lineages from remaining North American cyprinoids. A close relationship exists between Eurasian Phoxinus, NA, and OW clades, while FEA is the sister group to all remaining Leuciscidae. Major lineages resolved within these six subfamilies are mostly congruent with some previous studies. Our results suggests a complex evolutionary history of this diverse and widespread group of fishes. Copyright © 2018. Published by Elsevier Inc.
Is the Young UY Auriga System a Triple?
NASA Astrophysics Data System (ADS)
Wittal, Matthew; Prato, Lisa A.; Schaefer, Gail; Ciardi, David R.; Thomas, Allen; Biddle, Lauren; Avilez, Ian; Muzzio, Ryan; Patience, Jennifer; Beichman, Charles
2017-01-01
In an effort to understand the nature of the young binary, UY Aur, we examined the variable behavior of the entire, unresolved 0.9 arcsecond system, as well as the behavior of the angularly resolved, individual A and B components. UY Aur is an approximately 2 Myr old, classical T Tauri in the Taurus-Auriga star forming region and is one of a handful of young systems to host a primordial circumbinary disk, as well as individual circumstellar disks. Using the the facility infrared, high-resolution NIRSPEC spectrograph behind the adaptive optics system at the 10-meter Keck II telescope, we observed a dramatic change in the spectra of UY Aur B between 2003 and 2010. We also identified flux variability in the individual components of 1—2 magnitudes, particularly in the secondary star, on the basis of historical photometry. Thermal dust and line emission observed with millimeter interferometry indicates complex dynamical behavior of the circumbinary and circumstellar dust and led Tang et al. (2014) to speculate that UY Aur B may itself be a binary. Our adaptive optics imaging with the Keck II telescope showed no evidence for a close companion to the B component, although the marked change in our spectra of this star suggest that it could be a spectroscopic binary. We are currently limited by the paucity of angularly resolved observations, both photometric and spectroscopic, hampering the interpretation of the data. High-cadence, angularly resolved spectroscopy and photometry will be required to confirm the potential higher-order multiplicity of this system. This research was supported in part by NSF grants AST-1461200 and AST-1313399.
Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok
2010-03-01
Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.
Selecting Resolving Agents with Respect to Their Eutectic Compositions.
Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér
2016-03-01
In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent. © 2016 Wiley Periodicals, Inc.
Biris, Alexandru S.; Boldor, Dorin; Palmer, Jason; Monroe, William T.; Mahmood, Meena; Dervishi, Enkeleda; Xu, Yang; Li, Zhongrui; Galanzha, Ekaterina I.; Zharov, Vladimir P.
2016-01-01
Nanophotothermolysis with long laser pulses for treatment of scattered cancer cells and their clusters is introduced with the main focus on real-time monitoring of temperature dynamics inside and around individual cancer cells labeled with carbon nanotubes. This technique utilizes advanced time- and spatially-resolved thermal radiometry imaging for the visualization of laser-induced temperature distribution in multiple-point absorbing targets. The capability of this approach was demonstrated for monitoring of thermal effects under long laser exposure (from millisecond to seconds, wavelength 1064 nm, maximum power 1 W) of cervical cancer HeLa cells labeled with carbon nanotubes in vitro. The applications are discussed with a focus on the nanophotothermolysis of small tumors, tumor margins, or micrometastases under the guidance of near-IR and microwave radiometry. PMID:19405720
Respiratory motion resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK)
Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng
2017-01-01
Purpose To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. Methods The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel ROtating Cartesian K-space (ROCK) reordering method was designed that incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in 6 healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. Results The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2×1.2×1.6mm3 and 8 respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a −12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2±4.5% for the diaphragm, 8.2±4.9% and 8.9±5.1% for the right and left kidney. Conclusion The proposed 4D-MRI technique could provide high resolution, high quality, respiratory motion resolved 4D images with good soft-tissue contrast and are free of the “stitching” artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. PMID:28133752
Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK).
Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng
2017-04-01
To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm 3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. © 2017 American Association of Physicists in Medicine.
Impulsively Induced Jets from Viscoelastic Films for High-Resolution Printing
NASA Astrophysics Data System (ADS)
Turkoz, Emre; Perazzo, Antonio; Kim, Hyoungsoo; Stone, Howard A.; Arnold, Craig B.
2018-02-01
Understanding jet formation from non-Newtonian fluids is important for improving the quality of various printing and dispensing techniques. Here, we use a laser-based nozzleless method to investigate impulsively formed jets of non-Newtonian fluids. Experiments with a time-resolved imaging setup demonstrate multiple regimes during jet formation that can result in zero, single, or multiple drops per laser pulse. These regimes depend on the ink thickness, ink rheology, and laser energy. For optimized printing, it is desirable to select parameters that result in a single-drop breakup; however, the strain-rate dependent rheology of these inks makes it challenging to determine these conditions a priori. Rather, we present a methodology for characterizing these regimes using dimensionless parameters evaluated from the process parameters and measured ink rheology that are obtained prior to printing and, so, offer a criterion for a single-drop breakup.
Li, Hu; Leavengood, John M.; Chapman, Eric G.; Burkhardt, Daniel; Song, Fan; Jiang, Pei; Liu, Jinpeng; Cai, Wanzhi
2017-01-01
Hemiptera, the largest non-holometabolous order of insects, represents approximately 7% of metazoan diversity. With extraordinary life histories and highly specialized morphological adaptations, hemipterans have exploited diverse habitats and food sources through approximately 300 Myr of evolution. To elucidate the phylogeny and evolutionary history of Hemiptera, we carried out the most comprehensive mitogenomics analysis on the richest taxon sampling to date covering all the suborders and infraorders, including 34 newly sequenced and 94 published mitogenomes. With optimized branch length and sequence heterogeneity, Bayesian analyses using a site-heterogeneous mixture model resolved the higher-level hemipteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha, Heteroptera))). Ancestral character state reconstruction and divergence time estimation suggest that the success of true bugs (Heteroptera) is probably due to angiosperm coevolution, but key adaptive innovations (e.g. prognathous mouthpart, predatory behaviour, and haemelytron) facilitated multiple independent shifts among diverse feeding habits and multiple independent colonizations of aquatic habitats. PMID:28878063
Strategies for Time-resolved X-ray Diffraction of Phase Transitions with Laser Compression
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.; Palmer, N.; Petre, R. B.; Rygg, J. R.; Sorce, C.; Collins, G. W.; Boehly, T. R.
2017-10-01
As part of a program to document kinetics of phase transitions under laser-driven dynamic compression, we are designing a platform to make multiple x-ray diffraction measurements during a single laser experiment. Our plans include experimental development at Omega-EP and eventual implementation at NIF. We will present our strategy for designing a robust platform that can effectively document a wide variety of phase transformations by utilizing both streaked and multiple-frame imaging detectors. Preliminary designs utilize a novel CMOS detector designed by Sandia National Lab. Our initial experiments include scoping studies that will focus on photometrics and shielding requirements in the high EMP environment close to the target. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC, LLNL-ABS-734470.
Read buffer optimizations to support compiler-assisted multiple instruction retry
NASA Technical Reports Server (NTRS)
Alewine, N. J.; Fuchs, W. K.; Hwu, W. M.
1993-01-01
Multiple instruction retry is a recovery mechanism for transient processor faults. We previously developed a compiler-assisted approach to multiple instruction ferry in which a read buffer of size 2N (where N represents the maximum instruction rollback distance) was used to resolve some data hazards while the compiler resolved the remaining hazards. The compiler-assisted scheme was shown to reduce the performance overhead and/or hardware complexity normally associated with hardware-only retry schemes. This paper examines the size and design of the read buffer. We establish a practical lower bound and average size requirement for the read buffer by modifying the scheme to save only the data required for rollback. The study measures the effect on the performance of a DECstation 3100 running ten application programs using six read buffer configurations with varying read buffer sizes. Two alternative configurations are shown to be the most efficient and differed depending on whether split-cycle-saves are assumed. Up to a 55 percent read buffer size reduction is achievable with an average reduction of 39 percent given the most efficient read buffer configuration and a variety of applications.
TITAN's multiple-reflection time-of-flight isobar separator
NASA Astrophysics Data System (ADS)
Reiter, Moritz Pascal; Titan Collaboration
2016-09-01
At the ISAC facility located at TRIUMF exotic nuclei are produced by the ISOL method. Exotic nuclei are separated by a magnetic separator and transported to TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). TITAN is a system of multiple ion traps for high precision mass measurements and in-trap decay spectroscopy. Although ISAC can deliver some of the highest yields for even many of the most exotic species many measurements suffer from a strong isobaric background. This background often prevents the high precision measurement of the species of interest. To overcome this limitation an additional isobar separator based on the Multiple-Reflection Time-Of-Flight Mass Spectrometry (MR-TOF-MS) technique has been developed for TITAN. Mass selection is achieved using dynamic re-trapping of the species of interest after a time-of-flight analysis in an electrostatic isochronous reflector system. Additionally the MR-TOF-MS will, on its own, enable mass measurements of very short-lived nuclides that are weakly produced. Being able to measure all isobars of a given mass number at the same time the MR-TOF-MS can be used for beam diagnostics or determination of beam compositions. Results from the offline commissioning showing mass resolving power and separation power will be presented.
Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components
Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...
Multi-Wavelength Photomagnetic Imaging for Oral Cancer
NASA Astrophysics Data System (ADS)
Marks, Michael
In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.
NASA Astrophysics Data System (ADS)
Hardy, Robert; Pates, Jackie; Quinton, John
2016-04-01
The importance of developing new techniques to study soil movement cannot be underestimated especially those that integrate new technology. Currently there are limited empirical data available about the movement of individual soil particles, particularly high quality time-resolved data. Here we present a new technique which allows multiple individual soil particles to be traced in real time under simulated rainfall conditions. The technique utilises fluorescent videography in combination with a fluorescent soil tracer, which is based on natural particles. The system has been successfully used on particles greater than ~130 micrometres diameter. The technique uses HD video shot at 50 frames per second, providing extremely high temporal (0.02 s) and spatial resolution (sub-millimetre) of a particle's location without the need to perturb the system. Once the tracer has been filmed then the images are processed and analysed using a particle analysis and visualisation toolkit written in python. The toolkit enables the creation of 2 and 3-D time-resolved graphs showing the location of 1 or more particles. Quantitative numerical analysis of a pathway (or collection of pathways) is also possible, allowing parameters such as particle speed and displacement to be assessed. Filming the particles removes the need to destructively sample material and has many side-benefits, reducing the time, money and effort expended in the collection, transport and laboratory analysis of soils, while delivering data in a digital form which is perfect for modern computer-driven analysis techniques. There are many potential applications for the technique. High resolution empirical data on how soil particles move could be used to create, parameterise and evaluate soil movement models, particularly those that use the movement of individual particles. As data can be collected while rainfall is occurring it may offer the ability to study systems under dynamic conditions(rather than rainfall of a constant intensity), which are more realistic and this was one motivations behind the development of this technique.
KAMO: towards automated data processing for microcrystals.
Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki
2018-05-01
In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. open access.
Centralized Planning for Multiple Exploratory Robots
NASA Technical Reports Server (NTRS)
Estlin, Tara; Rabideau, Gregg; Chien, Steve; Barrett, Anthony
2005-01-01
A computer program automatically generates plans for a group of robotic vehicles (rovers) engaged in geological exploration of terrain. The program rapidly generates multiple command sequences that can be executed simultaneously by the rovers. Starting from a set of high-level goals, the program creates a sequence of commands for each rover while respecting hardware constraints and limitations on resources of each rover and of hardware (e.g., a radio communication terminal) shared by all the rovers. First, a separate model of each rover is loaded into a centralized planning subprogram. The centralized planning software uses the models of the rovers plus an iterative repair algorithm to resolve conflicts posed by demands for resources and by constraints associated with the all the rovers and the shared hardware. During repair, heuristics are used to make planning decisions that will result in solutions that will be better and will be found faster than would otherwise be possible. In particular, techniques from prior solutions of the multiple-traveling- salesmen problem are used as heuristics to generate plans in which the paths taken by the rovers to assigned scientific targets are shorter than they would otherwise be.
Escherichia coli DNA polymerase I can disrupt G-quadruplex structures during DNA replication.
Teng, Fang-Yuan; Hou, Xi-Miao; Fan, San-Hong; Rety, Stephane; Dou, Shuo-Xing; Xi, Xu-Guang
2017-12-01
Non-canonical four-stranded G-quadruplex (G4) DNA structures can form in G-rich sequences that are widely distributed throughout the genome. The presence of G4 structures can impair DNA replication by hindering the progress of replicative polymerases (Pols), and failure to resolve these structures can lead to genetic instability. In the present study, we combined different approaches to address the question of whether and how Escherichia coli Pol I resolves G4 obstacles during DNA replication and/or repair. We found that E. coli Pol I-catalyzed DNA synthesis could be arrested by G4 structures at low protein concentrations and the degree of inhibition was strongly dependent on the stability of the G4 structures. Interestingly, at high protein concentrations, E. coli Pol I was able to overcome some kinds of G4 obstacles without the involvement of other molecules and could achieve complete replication of G4 DNA. Mechanistic studies suggested that multiple Pol I proteins might be implicated in G4 unfolding, and the disruption of G4 structures requires energy derived from dNTP hydrolysis. The present work not only reveals an unrealized function of E. coli Pol I, but also presents a possible mechanism by which G4 structures can be resolved during DNA replication and/or repair in E. coli. © 2017 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Murillo, N. M.; van Dishoeck, E. F.; Tobin, J. J.; Fedele, D.
2016-07-01
Context. Multiplicity is common in field stars and among protostellar systems. Models suggest two paths of formation: turbulent fragmentation and protostellar disk fragmentation. Aims: We attempt to find whether or not the coevality frequency of multiple protostellar systems can help to better understand their formation mechanism. The coevality frequency is determined by constraining the relative evolutionary stages of the components in a multiple system. Methods: Spectral energy distributions (SEDs) for known multiple protostars in Perseus were constructed from literature data. Herschel PACS photometric maps were used to sample the peak of the SED for systems with separations ≥7″, a crucial aspect in determining the evolutionary stage of a protostellar system. Inclination effects and the surrounding envelope and outflows were considered to decouple source geometry from evolution. This together with the shape and derived properties from the SED was used to determine each system's coevality as accurately as possible. SED models were used to examine the frequency of non-coevality that is due to geometry. Results: We find a non-coevality frequency of 33 ± 10% from the comparison of SED shapes of resolved multiple systems. Other source parameters suggest a somewhat lower frequency of non-coevality. The frequency of apparent non-coevality that is due to random inclination angle pairings of model SEDs is 17 ± 0.5%. Observations of the outflow of resolved multiple systems do not suggest significant misalignments within multiple systems. Effects of unresolved multiples on the SED shape are also investigated. Conclusions: We find that one-third of the multiple protostellar systems sampled here are non-coeval, which is more than expected from random geometric orientations. The other two-thirds are found to be coeval. Higher order multiples show a tendency to be non-coeval. The frequency of non-coevality found here is most likely due to formation and enhanced by dynamical evolution.
Sources of fine particle composition in the northeastern US
NASA Astrophysics Data System (ADS)
Song, Xin-Hua; Polissar, Alexandr V.; Hopke, Philip K.
Fine particle composition data obtained at three sampling sites in the northeastern US were studied using a relatively new type of factor analysis, positive matrix factorization (PMF). The three sites are Washington, DC, Brigantine, NJ and Underhill, VT. The PMF method uses the estimates of the error in the data to provide optimal point-by-point weighting and permits efficient treatment of missing and below detection limit values. It also imposes the non-negativity constraint on the factors. Eight, nine and 11 sources were resolved from the Washington, Brigantine and Underhill data, respectively. The factors were normalized by using aerosol fine mass concentration data through multiple linear regression so that the quantitative source contributions for each resolved factor were obtained. Among the sources resolved at the three sites, six are common. These six sources exhibit not only similar chemical compositions, but also similar seasonal variations at all three sites. They are secondary sulfate with a high concentration of S and strong seasonal variation trend peaking in summer time; coal combustion with the presence of S and Se and its seasonal variation peaking in winter time; oil combustion characterized by Ni and V; soil represented by Al, Ca, Fe, K, Si and Ti; incinerator with the presence of Pb and Zn; sea salt with the high concentrations of Na and S. Among the other sources, nitrate (dominated by NO 3-) and motor vehicle (with high concentrations of organic carbon (OC) and elemental carbon (EC), and with the presence of some soil dust components) were obtained for the Washington data, while the three additional sources for the Brigantine data were nitrate, motor vehicle and wood smoke (OC, EC, K). At the Underhill site, five other sources were resolved. They are wood smoke, Canadian Mn, Canadian Cu smelter, Canadian Ni smelter, and another salt source with high concentrations of Cl and Na. A nitrate source similar to that found at the other sites could not be obtained at Underhill since NO 3- was not measured at this site. Generally, most of the sources at the three sites showed similar chemical composition profiles and seasonal variation patterns. The study indicated that PMF was a powerful factor analysis method to extract sources from the ambient aerosol concentration data.
Imaging graphite in air by scanning tunneling microscopy - Role of the tip
NASA Technical Reports Server (NTRS)
Colton, R. J.; Baker, S. M.; Driscoll, R. J.; Youngquist, M. G.; Baldeschwieler, J. D.; Kaiser, W. J.
1988-01-01
Atomically resolved images of highly oriented pyrolytic graphite (HOPG) in air at point contact have been obtained. Direct contact between tip and sample or contact through a contamination layer provides a conduction mechanism in addition to the exponential tunneling mechanism responsible for scanning tunneling microscopy (STM) imaging. Current-voltage (I-V) spectra were obtained while scanning in the current imaging mode with the feedback circuit interrupted in order to study the graphite imaging mechanism. Multiple tunneling tips are probably responsible for images without the expected hexagonal or trigonal symmetry. The observations indicate that the use of HOPG for testing and calibration of STM instrumentation may be misleading.
Recurring priapism may be a symptom of voiding dysfunction – case report and literature review
de Jesus, Lisieux Eyer; Teixeira, Leonardo; Bertelli, André
2016-01-01
ABSTRACT Recurring priapism is rare in pre-pubertal children and may be attributed to multiple causes. We propose that voiding dysfunction (VD) may also justify this symptom and detail a clinical case of recurring stuttering priapism associated to overactive bladder that completely resolved after usage of anticholinergics and urotherapy. Sacral parasympathetic activity is responsible for detrusor contraction and for spontaneous erections and a relationship between erections and bladder status has been proved in healthy subjects (morning erections) and models of medullar trauma. High bladder pressures and/or volumes, voiding incoordination and posterior urethritis can potentially trigger reflex erections. PMID:27256196
NASA Technical Reports Server (NTRS)
Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George
2011-01-01
This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events
Sprites and Early ionospheric VLF perturbations
NASA Astrophysics Data System (ADS)
Haldoupis, Christos; Amvrosiadi, Nino; Cotts, Ben; van der Velde, Oscar; Chanrion, Olivier; Neubert, Torsten
2010-05-01
Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ~ 50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter-receiver VLF links with great circle paths (GCPs) passing near a sprite-producing thunderstorm were available. In this setup, the multiple links act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF link that can miss several of them, a fact that was overlooked in past studies. The evidence shows that sprites are accompanied by early VLF perturbations in a one-to-one correspondence. This implies that the sprite generation mechanism may cause also sub-ionospheric conductivity disturbances that produce early VLF events. However, the one-to-one "sprite to early" event relationship, if viewed conversely as "early to sprite", appears not to be always reciprocal. This is because the number of early events detected in some cases was considerably larger than the number of sprites. Since the great majority of the early events not accompanied by sprites was caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite-watch detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.
Episodic radiations in the fly tree of life
Wiegmann, Brian M.; Trautwein, Michelle D.; Winkler, Isaac S.; Barr, Norman B.; Kim, Jung-Wook; Lambkin, Christine; Bertone, Matthew A.; Cassel, Brian K.; Bayless, Keith M.; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Pape, Thomas; Sinclair, Bradley J.; Skevington, Jeffrey H.; Blagoderov, Vladimir; Caravas, Jason; Kutty, Sujatha Narayanan; Schmidt-Ott, Urs; Kampmeier, Gail E.; Thompson, F. Christian; Grimaldi, David A.; Beckenbach, Andrew T.; Courtney, Gregory W.; Friedrich, Markus; Meier, Rudolf; Yeates, David K.
2011-01-01
Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation—lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)—and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y. PMID:21402926
Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2017-01-01
Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.
Measurements of Turbulence Convection Speeds in Multistream Jets Using Time-Resolved PIV
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2017-01-01
Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.
Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs
NASA Astrophysics Data System (ADS)
Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.
2014-03-01
The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.
Meerow, Alan W.; Noblick, Larry; Borrone, James W.; Couvreur, Thomas L. P.; Mauro-Herrera, Margarita; Hahn, William J.; Kuhn, David N.; Nakamura, Kyoko; Oleas, Nora H.; Schnell, Raymond J.
2009-01-01
Background The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the “abominable mysteries” of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. Methodology/Principal Findings We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. Conclusions/Significance This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family. PMID:19806212
Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.
Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A
2011-04-01
Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.
Maddali, S.; Calvo-Almazan, I.; Almer, J.; ...
2018-03-21
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddali, S.; Calvo-Almazan, I.; Almer, J.
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this datamore » set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. Lastly, we use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.« less
Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.
Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F
2017-10-16
The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.
Maddali, S; Calvo-Almazan, I; Almer, J; Kenesei, P; Park, J-S; Harder, R; Nashed, Y; Hruszkewycz, S O
2018-03-21
Coherent X-ray photons with energies higher than 50 keV offer new possibilities for imaging nanoscale lattice distortions in bulk crystalline materials using Bragg peak phase retrieval methods. However, the compression of reciprocal space at high energies typically results in poorly resolved fringes on an area detector, rendering the diffraction data unsuitable for the three-dimensional reconstruction of compact crystals. To address this problem, we propose a method by which to recover fine fringe detail in the scattered intensity. This recovery is achieved in two steps: multiple undersampled measurements are made by in-plane sub-pixel motion of the area detector, then this data set is passed to a sparsity-based numerical solver that recovers fringe detail suitable for standard Bragg coherent diffraction imaging (BCDI) reconstruction methods of compact single crystals. The key insight of this paper is that sparsity in a BCDI data set can be enforced by recognising that the signal in the detector, though poorly resolved, is band-limited. This requires fewer in-plane detector translations for complete signal recovery, while adhering to information theory limits. We use simulated BCDI data sets to demonstrate the approach, outline our sparse recovery strategy, and comment on future opportunities.
NASA Astrophysics Data System (ADS)
Peterson, David; Coumou, David; Shannon, Steven
2015-11-01
Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.
Artificial insemination in captive Whooping Cranes: Results from genetic analyses
Jones, K.L.; Nicolich, Jane M.
2001-01-01
Artificial insemination has been used frequently in the captive whooping crane (Grus americana) population. In the 1980s, it was necessary at times to inseminate females with semen from several males during the breeding season or with semen from multiple males simultaneously due to unknown sperm viability of the breeding males. The goals of this study were to apply microsatellite DNA profiles to resolve uncertain paternities and to use these results to evaluate the current paternity assignment assumptions used by captive managers. Microsatellite DNA profiles were successful in resolving 20 of 23 paternity questions. When resolved paternities were coupled with data on insemination timing, substantial information was revealed on fertilization timing in captive whooping cranes. Delayed fertilization from inseminations 6+ days pre-oviposition suggests capability of sperm storage.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
Song, Jiao; Liu, Xuejun; Wu, Jiejun; Meehan, Michael J; Blevitt, Jonathan M; Dorrestein, Pieter C; Milla, Marcos E
2013-02-15
We have developed an ultra-performance liquid chromatography-multiple reaction monitoring/mass spectrometry (UPLC-MRM/MS)-based, high-content, high-throughput platform that enables simultaneous profiling of multiple lipids produced ex vivo in human whole blood (HWB) on treatment with calcium ionophore and its modulation with pharmacological agents. HWB samples were processed in a 96-well plate format compatible with high-throughput sample processing instrumentation. We employed a scheduled MRM (sMRM) method, with a triple-quadrupole mass spectrometer coupled to a UPLC system, to measure absolute amounts of 122 distinct eicosanoids using deuterated internal standards. In a 6.5-min run, we resolved and detected with high sensitivity (lower limit of quantification in the range of 0.4-460 pg) all targeted analytes from a very small HWB sample (2.5 μl). Approximately 90% of the analytes exhibited a dynamic range exceeding 1000. We also developed a tailored software package that dramatically sped up the overall data quantification and analysis process with superior consistency and accuracy. Matrix effects from HWB and precision of the calibration curve were evaluated using this newly developed automation tool. This platform was successfully applied to the global quantification of changes on all 122 eicosanoids in HWB samples from healthy donors in response to calcium ionophore stimulation. Copyright © 2012 Elsevier Inc. All rights reserved.
Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.
Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S
2001-04-01
Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per second was 1.6 times that at 60,000 counts per second. This feasibility study showed that the HYPER electronic concept works; it can significantly increase the count-rate capability and dose efficiency of gamma cameras. In a larger clinical camera, multiple HYPER-Anger circuits may be implemented to further improve the imaging counting rates that we have shown by multiple times. This technology would facilitate the use of gamma cameras for radionuclide therapy dosimetry imaging, cardiac first-pass imaging, and positron coincidence imaging and the simultaneous acquisition of transmission and emission data using different isotopes with less cross-contamination between transmission and emission data.
A Spatially Resolved Study of the GRB 020903 Host Galaxy
NASA Astrophysics Data System (ADS)
Thorp, Mallory D.; Levesque, Emily M.
2018-03-01
GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.
Carrigg, Bronwyn; Parry, Louise; Baker, Elise; Shriberg, Lawrence D; Ballard, Kirrie J
2016-10-05
This study describes the phenotype in a large family with a strong, multigenerational history of severe speech sound disorder (SSD) persisting into adolescence and adulthood in approximately half the cases. Aims were to determine whether a core phenotype, broader than speech, separated persistent from resolved SSD cases; and to ascertain the uniqueness of the phenotype relative to published cases. Eleven members of the PM family (9-55 years) were assessed across cognitive, language, literacy, speech, phonological processing, numeracy, and motor domains. Between group comparisons were made using the Mann-Whitney U-test (p < 0.01). Participant performances were compared to normative data using standardized tests and to the limited published data on persistent SSD phenotypes. Significant group differences were evident on multiple speech, language, literacy, phonological processing, and verbal intellect measures without any overlapping scores. Persistent cases performed within the impaired range on multiple measures. Phonological memory impairment and subtle literacy weakness were present in resolved SSD cases. A core phenotype distinguished persistent from resolved SSD cases that was characterized by a multiple verbal trait disorder, including Childhood Apraxia of Speech. Several phenotypic differences differentiated the persistent SSD phenotype in the PM family from the few previously reported studies of large families with SSD, including the absence of comorbid dysarthria and marked orofacial apraxia. This study highlights how comprehensive phenotyping can advance the behavioral study of disorders, in addition to forming a solid basis for future genetic and neural studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary.
Main, Robert; Yang, I-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H
2018-05-01
Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as 'interstellar lenses' to localize pulsar emission regions 1,2 . Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts 3-5 . As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants 6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the 'black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow 7-9 . During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses 10 .
Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary
NASA Astrophysics Data System (ADS)
Main, Robert; Yang, I.-Sheng; Chan, Victor; Li, Dongzi; Lin, Fang Xi; Mahajan, Nikhil; Pen, Ue-Li; Vanderlinde, Keith; van Kerkwijk, Marten H.
2018-05-01
Radio pulsars scintillate because their emission travels through the ionized interstellar medium along multiple paths, which interfere with each other. It has long been realized that, independent of their nature, the regions responsible for the scintillation could be used as `interstellar lenses' to localize pulsar emission regions1,2. Most such lenses, however, resolve emission components only marginally, limiting results to statistical inferences and detections of small positional shifts3-5. As lenses situated close to their source offer better resolution, it should be easier to resolve emission regions of pulsars located in high-density environments such as supernova remnants6 or binaries in which the pulsar's companion has an ionized outflow. Here we report observations of extreme plasma lensing in the `black widow' pulsar, B1957+20, near the phase in its 9.2-hour orbit at which its emission is eclipsed by its companion's outflow7-9. During the lensing events, the observed radio flux is enhanced by factors of up to 70-80 at specific frequencies. The strongest events clearly resolve the emission regions: they affect the narrow main pulse and parts of the wider interpulse differently. We show that the events arise naturally from density fluctuations in the outer regions of the outflow, and we infer a resolution of our lenses that is comparable to the pulsar's radius, about 10 kilometres. Furthermore, the distinct frequency structures imparted by the lensing are reminiscent of what is observed for the repeating fast radio burst FRB 121102, providing observational support for the idea that this source is observed through, and thus at times strongly magnified by, plasma lenses10.
Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.
1998-01-01
A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700
Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M
2001-08-24
An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.
Li, Yan; Buch, Jesse S; Rosenberger, Frederick; DeVoe, Don L; Lee, Cheng S
2004-02-01
An integrated protein concentration/separation system, combining non-native isoelectric focusing (IEF) with sodium dodecyl sulfate (SDS) gel electrophoresis on a polymer microfluidic chip, is reported. The system provides significant analyte concentration and extremely high resolving power for separated protein mixtures. The ability to introduce and isolate multiple separation media in a plastic microfluidic network is one of two key requirements for achieving multidimensional protein separations. The second requirement lies in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from IEF, focused proteins are electrokinetically transferred into an array of orthogonal microchannels and further resolved by SDS gel electrophoresis in a parallel and high-throughput format. Resolved protein analytes are monitored using noncovalent, environment-sensitive, fluorescent probes such as Sypro Red. In comparison with covalently labeling proteins, the use of Sypro staining during electrophoretic separations not only presents a generic detection approach for the analysis of complex protein mixtures such as cell lysates but also avoids additional introduction of protein microheterogeneity as the result of labeling reaction. A comprehensive 2-D protein separation is completed in less than 10 min with an overall peak capacity of approximately 1700 using a chip with planar dimensions of as small as 2 cm x 3 cm. Significant enhancement in the peak capacity can be realized by simply raising the density of microchannels in the array, thereby increasing the number of IEF fractions further analyzed in the size-based separation dimension.
NASA Astrophysics Data System (ADS)
Williamson, A.; Cummins, P. R.; Newman, A. V.; Benavente, R. F.
2016-12-01
The 2015 Illapel, Chile earthquake was recorded over a wide range of seismic, geodetic and oceanographic instruments. The USGS assigned magnitude 8.3 earthquake produced a tsunami that was recorded trans-oceanically at both tide gauges and deep-water tsunami pressure sensors. The event also generated surface deformation along the Chilean coast that was recovered through ascending and descending paths of the Sentinel-1A satellite. Additionally, seismic waves were recorded across various global seismic networks. While the determination of the rupture source through seismic and geodetic means is now commonplace and has been studied extensively in this fashion for the Illapel event, the use of tsunami datasets in the inversion process, rather than purely as a forward validation of models, is less common. In this study, we evaluate the use of both near and far field tsunami pressure gauges in the source inversion process, examining their contribution to seismic and geodetic joint inversions- as well as examine the contribution of dispersive and elastic loading parameters on the numerical tsunami propagation. We determine that the inclusion of near field tsunami pressure gauges assists in resolving the degree of slip in the near-trench environment, where purely geodetic inversions lose most resolvability. The inclusion of a far-field dataset has the potential to add further confidence to tsunami inversions, however at a high computational cost. When applied to the Illapel earthquake, this added near-trench resolvability leads to a better estimation of tsunami arrival times at near field gauges and contributes understanding to the wide variation in tsunamigenic slip present along the highly active Peru-Chile trench.
B(H) has a pure state that is not multiplicative on any masa.
Akemann, Charles; Weaver, Nik
2008-04-08
Assuming the continuum hypothesis, we prove that Bernoulli function(H) has a pure state whose restriction to any masa is not pure. This resolves negatively old conjectures of Kadison and Singer and of Anderson.
NASA Astrophysics Data System (ADS)
Apai, Dániel; Kasper, Markus; Skemer, Andrew; Hanson, Jake R.; Lagrange, Anne-Marie; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Vigan, Arthur
2016-03-01
Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (˜3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b-c planet pair agrees to about 1%.
NASA Astrophysics Data System (ADS)
Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.
2017-06-01
We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.
Perineal Pseudoaneurysm from Traumatic Foley Removal Leads to Recurrent Life-Threatening Hematuria.
Liang, Lorraine Min-Shan; Xue, Jingbing; Erturk, Erdal
2015-01-01
Hematuria resulting from urethral traumatic catheter insertion and removal is often encountered. Usually, hematuria resolves with conservative measures. We report a case of traumatic Foley removal leading to intermittent life-threatening hematuria resulting in blood loss anemia requiring multiple transfusions and multiple episodes of hypotension requiring pressors. A pelvic angiogram revealed a pseudoaneurysm of the left pudendal artery, which was treated with microcoil embolization leading to resolution of bleeding.
Optical Survey of the Tumble Rates of Retired GEO Satellites
2014-09-01
objects while the sun- satellite -observer geometry was most favorable; typically over a one- to two-hour period, repeated multiple times over the course of...modeling and simulation of the optical characteristics of the satellite can help to resolve ambigu- ities. This process was validated on spacecraft for... satellite -observer geometry was most favorable; typically over a one- to two-hour period, repeated multiple times over the course of weeks. By
NASA Astrophysics Data System (ADS)
Stewart, Elaine M.; Coan, Mary R.; Captain, Janine; Santiago-Bond, Josephine
2016-09-01
In-Situ Resource Utilization (ISRU) is a key NASA initiative to exploit resources at the site of planetary exploration for mission-critical consumables, propellants, and other supplies. The Resource Prospector mission, part of ISRU, is scheduled to launch in 2020 and will include a rover and lander hosting the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload for extracting and analyzing lunar resources, particularly low molecular weight volatiles for fuel, air, and water. RESOLVE contains the Lunar Advanced Volatile Analysis (LAVA) subsystem with a Gas Chromatograph-Mass Spectrometer (GC-MS). RESOLVE subsystems, including the RP15 rover and LAVA, are in NASA's Engineering Test Unit (ETU) phase to assure that all vital components of the payload are space-flight rated and will perform as expected during the mission. Integration and testing of LAVA mass spectrometry verified reproducibility and accuracy of the candidate MS for detecting nitrogen, oxygen, and carbon dioxide. The RP15 testing comprised volatile analysis of water-doped simulant regolith to enhance integration of the RESOLVE payload with the rover. Multiple tests show the efficacy of the GC to detect 2% and 5% water-doped samples.
High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates
NASA Astrophysics Data System (ADS)
Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.
2013-09-01
The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.
NASA Astrophysics Data System (ADS)
Dawadi, Mahesh B.; Twagirayezu, Sylvestre; Perry, David S.; Billinghurst, Brant E.
2015-09-01
The high-resolution rotationally resolved Fourier-transform infrared spectrum of the NO2 in-plane rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. About 1773 transitions reaching the upper state levels m‧ = 0; Ka‧ ⩽ 7;J‧ ⩽ 50 have been assigned using an automated ground-state combination difference program together with the traditional Loomis-Wood approach. These data from the lowest torsional state, m‧ = 0, were fit using the six-fold torsion-rotation program developed by Ilyushin et al. (2010). The analysis reveals that the rotational energy level structure in the upper vibrational state is similar to that of the ground vibrational state, but the sign and magnitude of high-order constants are significantly changed suggesting the presence of multiple perturbations.
A resolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence
NASA Astrophysics Data System (ADS)
Zhou, Yong; Brasseur, James G.; Juneja, Anurag
2001-09-01
Large-eddy simulation (LES) of boundary-layer flows has serious deficiencies near the surface when a viscous sublayer either does not exist (rough walls) or is not practical to resolve (high Reynolds numbers). In previous work, we have shown that the near-surface errors arise from the poor performance of algebraic subfilter-scale (SFS) models at the first several grid levels, where integral scales are necessarily under-resolved and the turbulence is highly anisotropic. In under-resolved turbulence, eddy viscosity and similarity SFS models create a spurious feedback loop between predicted resolved-scale (RS) velocity and modeled SFS acceleration, and are unable to simultaneously capture SFS acceleration and RS-SFS energy flux. To break the spurious coupling in a dynamically meaningful manner, we introduce a new modeling strategy in which the grid-resolved subfilter velocity is estimated from a separate dynamical equation containing the essential inertial interactions between SFS and RS velocity. This resolved SFS (RSFS) velocity is then used as a surrogate for the complete SFS velocity in the SFS stress tensor. We test the RSFS model by comparing LES of highly under-resolved anisotropic buoyancy-generated homogeneous turbulence with a corresponding direct numerical simulation (DNS). The new model successfully suppresses the spurious feedback loop between RS velocity and SFS acceleration, and greatly improves model predictions of the anisotropic structure of SFS acceleration and resolved velocity fields. Unlike algebraic models, the RSFS model accurately captures SFS acceleration intensity and RS-SFS energy flux, even during the nonequilibrium transient, and properly partitions SFS acceleration between SFS stress divergence and SFS pressure force.
Long-range barcode labeling-sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Zhang, Tao; Singh, Kanwar K.
Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.
The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling
NASA Astrophysics Data System (ADS)
Thornes, Tobias; Duben, Peter; Palmer, Tim
2016-04-01
At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.
NASA Astrophysics Data System (ADS)
Verma, Siddhartha; Blanquart, Guillaume; P. K. Yeung Collaboration
2011-11-01
Accurate simulation of high Schmidt number scalar transport in turbulent flows is essential to studying pollutant dispersion, weather, and several oceanic phenomena. Batchelor's theory governs scalar transport in such flows, but requires further validation at high Schmidt and high Reynolds numbers. To this end, we use a new approach with the velocity field fully resolved, but the scalar field only partially resolved. The grid used is fine enough to resolve scales up to the viscous-convective subrange where the decaying slope of the scalar spectrum becomes constant. This places the cutoff wavenumber between the Kolmogorov scale and the Batchelor scale. The subgrid scale terms, which affect transport at the supergrid scales, are modeled under the assumption that velocity fluctuations are negligible beyond this cutoff wavenumber. To ascertain the validity of this technique, we performed a-priori testing on existing DNS data. This Velocity-Resolved LES (VR-LES) technique significantly reduces the computational cost of turbulent simulations of high Schmidt number scalars, and yet provides valuable information of the scalar spectrum in the viscous-convective subrange.
Multiple mating and clutch size in invertebrate brooders versus pregnant vertebrates
Avise, John C.; Tatarenkov, Andrey; Liu, Jin-Xian
2011-01-01
We summarize the genetic literature on polygamy rates and sire numbers per clutch in invertebrate animals that brood their offspring and then compare findings with analogous data previously compiled for vertebrate species displaying viviparity or other pregnancy-like syndromes. As deduced from molecular parentage analyses of several thousand broods from more than 100 “pregnant” species, invertebrate brooders had significantly higher mean incidences of multiple mating than pregnant vertebrates, a finding generally consistent with the postulate that clutch size constrains successful mate numbers in species with extended parental care. However, we uncovered no significant correlation in invertebrates between brood size and genetically deduced rates of multiple mating by the incubating sex. Instead, in embryo-gestating animals otherwise as different as mammals and mollusks, polygamy rates and histograms of successful mates per brooder proved to be strikingly similar. Most previous studies have sought to understand why gestating parents have so many mates and such high incidences of successful multiple mating; an alternative perspective based on logistical constraints turns the issue on its head by asking why mate numbers and polygamy rates are much lower than they theoretically could be, given the parentage-resolving power of molecular markers and the huge sizes of many invertebrate broods. PMID:21709247
Material separation in x-ray CT with energy resolved photon-counting detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki
Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experimentsmore » using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting acquisition) or a 2-D space (for contrast agents using energy resolved photon-counting acquisition and all materials using dual-kVp acquisition) as a measure of the degree of separation. Compared to dual-kVp techniques, an energy resolved detector provided a larger separation and the ability to separate different target materials using measurements acquired in different energy window pairs with a single x-ray exposure. Conclusions: We concluded that x-ray CT with an energy resolved photon-counting detector with more than two energy windows allows the separation of more than two types of materials, e.g., soft-tissue-like, bone-like, and one or more materials with K-edges in the energy range of interest. Separating material types using energy resolved photon-counting detectors has a number of advantages over dual-kVp CT in terms of the degree of separation and the number of materials that can be separated simultaneously.« less
High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
Seiriki, Kaoru; Kasai, Atsushi; Hashimoto, Takeshi; Schulze, Wiebke; Niu, Misaki; Yamaguchi, Shun; Nakazawa, Takanobu; Inoue, Ken-Ichi; Uezono, Shiori; Takada, Masahiko; Naka, Yuichiro; Igarashi, Hisato; Tanuma, Masato; Waschek, James A; Ago, Yukio; Tanaka, Kenji F; Hayata-Takano, Atsuko; Nagayasu, Kazuki; Shintani, Norihito; Hashimoto, Ryota; Kunii, Yasuto; Hino, Mizuki; Matsumoto, Junya; Yabe, Hirooki; Nagai, Takeharu; Fujita, Katsumasa; Matsuda, Toshio; Takuma, Kazuhiro; Baba, Akemichi; Hashimoto, Hitoshi
2017-06-21
Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Katsuki, Hiroyuki; Ohmori, Kenji
2016-09-28
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
Systemic Multiple Aneurysms Caused by Vascular Ehlers-Danlos Syndrome.
Gui, Xinyu; Li, Fangda; Wu, Lingeer; Zheng, Yuehong
2016-07-01
Systemic multiple aneurysms are rare and usually associated with collagen tissue disease, such as Ehlers-Danlos syndrome (EDS) or Marfan syndrome. In the present case, we describe a 39-year-old male patient with systemic multiple aneurysms and acute intraperitoneal hemorrhage who was clinically diagnosed with vascular EDS. Coil embolization of the distal segment of the common hepatic artery was performed, which resolved the patient's symptoms. With this case presentation, we aim to increase the awareness of vascular EDS among clinicians and emphasize the extreme fragility of the arteries in patients with vascular EDS. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei; Horch, Elliott P., E-mail: atokovinin@ctio.noao.edu, E-mail: horche2@southernct.edu
Statistical characterization of secondary subsystems in binaries helps to distinguish between various scenarios of multiple-star formation. The Differential Speckle Survey Instrument was used at the Gemini-N telescope for several hours in 2015 July to probe the binarity of 25 secondary components in nearby solar-type binaries. Six new subsystems were resolved, with meaningful detection limits for the remaining targets. The large incidence of secondary subsystems agrees with other similar studies. The newly resolved subsystem HIP 115417 Ba,Bb causes deviations in the observed motion of the outer binary from which an astrometric orbit of Ba,Bb with a period of 117 years ismore » deduced.« less
Periodicity in Age-Resolved Populations
NASA Astrophysics Data System (ADS)
Esipov, Sergei
We discuss the interplay between the non-linear diffusion and age-resolved population dynamics. Depending on the age properties of collective migration the system may exhibit continuous joint expansion of all ages or continuous expansion with age segregation. Between these two obvious limiting regimes there is an interesting window of periodic expansion, which has been previously used by us in modeling bacterial colonies of Proteus mirabilis. In order to test whether the age-dependent collective migration leads to periodicity in other systems we performed a Fourier analysis of historical data on ethnic expansions and found multiple co-existing periods of activity.
Gildea, Richard J; Winter, Graeme
2018-05-01
Combining X-ray diffraction data from multiple samples requires determination of the symmetry and resolution of any indexing ambiguity. For the partial data sets typical of in situ room-temperature experiments, determination of the correct symmetry is often not straightforward. The potential for indexing ambiguity in polar space groups is also an issue, although methods to resolve this are available if the true symmetry is known. Here, a method is presented to simultaneously resolve the determination of the Patterson symmetry and the indexing ambiguity for partial data sets. open access.
Distinguishing Signatures of Multipathway Conformational Transitions
NASA Astrophysics Data System (ADS)
Pierse, Christopher A.; Dudko, Olga K.
2017-02-01
The folding and binding of biomolecules into functional conformations are thought to be commonly mediated by multiple pathways rather than a unique route. Yet even in experiments where one can "see" individual conformational transitions, their stochastic nature generally precludes one from determining whether the transitions occurred through one or multiple pathways. We establish model-free, observable signatures in the response of macromolecules to force that unambiguously identify multiple pathways—even when the pathways themselves cannot be resolved. The unified analytical description reveals that, through multiple pathways, the response of molecules to external forces can be shaped in diverse ways, resulting in a rich design space for a tailored biological function already at the single-molecule level.
Prediction of fruit and vegetable intake: The importance of contextualizing motivation.
Evans, Rachel; Kawabata, Masato; Thomas, Shirley
2015-09-01
Motivation is identified as a key antecedent of self-regulated behaviour, such as eating fruit and vegetables. However, inaccurate measurement of this construct may lead to poor prediction of behaviour and inflate the impact of post-motivational factors, such as planning, in models of health behaviour. This study explored the properties of a newly identified measure of motivation, termed behavioural resolve (Rhodes & Horne, 2013, Psychol. Sport Exerc., 14, 455-460), in relation to intention, planning, and fruit and vegetable intake (FVI). Prospective self-report survey. University students living in the United Kingdom completed two online surveys. The first assessed demographic and predictor variables (intention, behavioural resolve, action planning, and coping planning). The second, completed approximately 2 weeks later, measured average daily FVI and perceived experience of obstacles to FVI. At Time 1, there were 195 respondents, with 139 providing follow-up data. All predictor variables were significantly correlated with FVI. Two independent multiple hierarchical regression analyses revealed that both intention and behavioural resolve were significant predictors of FVI, but behavioural resolve explained greater FVI variance (40.1%) than intention (36.4%). Furthermore, action planning showed incremental predictive utility over intention, but not behavioural resolve, in predicting FVI. The results indicated that motivation is an important determinant of FVI for students, with behavioural resolve demonstrating advantages over intention as a measure of this domain and a predictor of FVI behaviour. © 2014 The British Psychological Society.
2006-07-01
parameters such as motion (e.g., Meitzler, Kistner et al ., 1998), multiple observers (Rotman, 1989), scene obscurants (Rotman, Gordan, & Kowalczyk...1989), clutter (Tidhar et al ., 1994), and multiple targets (Rotman, Gordan, & Kowalczyk, 1989) and selective visual attention2. As such, it is...resolvable cycles, N, of a bar pattern (i.e., a square wave) on a target (Johnson, 1958), or complexity (e.g., Tidhar et al ., 1994). Such metrics
Perineal Pseudoaneurysm from Traumatic Foley Removal Leads to Recurrent Life-Threatening Hematuria
Xue, Jingbing; Erturk, Erdal
2015-01-01
Abstract Hematuria resulting from urethral traumatic catheter insertion and removal is often encountered. Usually, hematuria resolves with conservative measures. We report a case of traumatic Foley removal leading to intermittent life-threatening hematuria resulting in blood loss anemia requiring multiple transfusions and multiple episodes of hypotension requiring pressors. A pelvic angiogram revealed a pseudoaneurysm of the left pudendal artery, which was treated with microcoil embolization leading to resolution of bleeding. PMID:27579388
Beyond triple collocation: Applications to satellite soil moisture
USDA-ARS?s Scientific Manuscript database
Triple collocation is now routinely used to resolve the exact (linear) relationships between multiple measurements and/or representations of a geophysical variable that are subject to errors. It has been utilized in the context of calibration, rescaling and error characterisation to allow comparison...
Geospatial evaluations of potato production systems in Maine
USDA-ARS?s Scientific Manuscript database
Maine consistently ranks in the top ten potato (Solanum tuberosum L.) production areas though yields are substantially lower than the mid- and western USA. Geospatial frameworks help resolve patterns and trends in production environments (at multiple scales) that may enable improvements in adaptive ...
Comparison of intersecting pedestrian flows based on experiments
NASA Astrophysics Data System (ADS)
Zhang, J.; Seyfried, A.
2014-07-01
Intersections of pedestrian flows feature multiple types, varying in the numbers of flow directions as well as intersecting angles. In this article results from intersecting flow experiments with two different intersecting angles are compared. To analyze the transport capabilities the Voronoi method is used to resolve the fine structure of the resulting velocity-density relations and spatial dependence of the measurements. The fundamental diagrams of various flow types are compared and show no apparent difference with respect to the intersecting angle 90° and 180°. This result indicates that head-on conflicts of different types of flow have the same influence on the transport properties of the system, which demonstrates the high self-organization capabilities of pedestrians.
Integrated Multi-process Microfluidic Systems for Automating Analysis
Yang, Weichun; Woolley, Adam T.
2010-01-01
Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343
Spin ordering and electronic texture in the bilayer iridate Sr3Ir2O7
NASA Astrophysics Data System (ADS)
Dhital, Chetan; Khadka, Sovit; Yamani, Z.; de la Cruz, Clarina; Hogan, T. C.; Disseler, S. M.; Pokharel, Mani; Lukas, K. C.; Tian, Wei; Opeil, C. P.; Wang, Ziqiang; Wilson, Stephen D.
2012-09-01
Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr3Ir2O7 is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined TAF=280 K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below T*≈70 K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d Jeff=1/2 Mott phase.
Ocular Lyme borreliosis as a rare presentation of unilateral vision loss.
Patterson-Fortin, Jeffrey; Kohli, Anita; Suarez, Maria J; Miller, P Elliott
2016-04-25
Ocular Lyme borreliosis is a rare manifestation of Lyme disease. We describe a case of an 80-year-old woman who presented with a 1-month history of unilateral painless central vision loss. Based on a temporal artery biopsy, she was initially diagnosed with giant cell arteritis and treated with a 3-day course of high-dose intravenous steroids. A more detailed history uncovered multiple previous treatments for Lyme disease and residence in an endemic Lyme area. The patient was subsequently diagnosed with ocular Lyme borreliosis and treated with intravenous antibiotics. After 5 weeks of treatment, unilateral vision loss did not progress and optic disc oedema resolved. 2016 BMJ Publishing Group Ltd.
Huelnhagen, Till; Hezel, Fabian; Serradas Duarte, Teresa; Pohlmann, Andreas; Oezerdem, Celal; Flemming, Bert; Seeliger, Erdmann; Prothmann, Marcel; Schulz-Menger, Jeanette; Niendorf, Thoralf
2017-06-01
Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo. Magn Reson Med 77:2381-2389, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.
We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.
Paparini, Andrea; Yang, Rongchang; Chen, Linda; Tong, Kaising; Gibson-Kueh, Susan; Lymbery, Alan; Ryan, Una M
2017-11-01
Currently, the systematics, biology and epidemiology of piscine Cryptosporidium species are poorly understood. Here, we compared Sanger ‒ and next-generation ‒ sequencing (NGS), of piscine Cryptosporidium, at the 18S rRNA and actin genes. The hosts comprised 11 ornamental fish species, spanning four orders and eight families. The objectives were: to (i) confirm the rich genetic diversity of the parasite and the high frequency of mixed infections; and (ii) explore the potential of NGS in the presence of complex genetic mixtures. By Sanger sequencing, four main genotypes were obtained at the actin locus, while for the 18S locus, seven genotypes were identified. At both loci, NGS revealed frequent mixed infections, consisting of one highly dominant variant plus substantially rarer genotypes. Both sequencing methods detected novel Cryptosporidium genotypes at both loci, including a novel and highly abundant actin genotype that was identified by both Sanger sequencing and NGS. Importantly, this genotype accounted for 68·9% of all NGS reads from all samples (249 585/362 372). The present study confirms that aquarium fish can harbour a large and unexplored Cryptosporidium genetic diversity. Although commonly used in molecular parasitology studies, nested PCR prevents quantitative comparisons and thwarts the advantages of NGS, when this latter approach is used to investigate multiple infections.
Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K
1994-04-01
A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.
Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin
2014-02-15
The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.
ED(MF)n: Humidity-Convection Feedbacks in a Mass Flux Scheme Based on Resolved Size Densities
NASA Astrophysics Data System (ADS)
Neggers, R.
2014-12-01
Cumulus cloud populations remain at least partially unresolved in present-day numerical simulations of global weather and climate, and accordingly their impact on the larger-scale flow has to be represented through parameterization. Various methods have been developed over the years, ranging in complexity from the early bulk models relying on a single plume to more recent approaches that attempt to reconstruct the underlying probability density functions, such as statistical schemes and multiple plume approaches. Most of these "classic" methods capture key aspects of cumulus cloud populations, and have been successfully implemented in operational weather and climate models. However, the ever finer discretizations of operational circulation models, driven by advances in the computational efficiency of supercomputers, is creating new problems for existing sub-grid schemes. Ideally, a sub-grid scheme should automatically adapt its impact on the resolved scales to the dimension of the grid-box within which it is supposed to act. It can be argued that this is only possible when i) the scheme is aware of the range of scales of the processes it represents, and ii) it can distinguish between contributions as a function of size. How to conceptually represent this knowledge of scale in existing parameterization schemes remains an open question that is actively researched. This study considers a relatively new class of models for sub-grid transport in which ideas from the field of population dynamics are merged with the concept of multi plume modelling. More precisely, a multiple mass flux framework for moist convective transport is formulated in which the ensemble of plumes is created in "size-space". It is argued that thus resolving the underlying size-densities creates opportunities for introducing scale-awareness and scale-adaptivity in the scheme. The behavior of an implementation of this framework in the Eddy Diffusivity Mass Flux (EDMF) model, named ED(MF)n, is examined for a standard case of subtropical marine shallow cumulus. We ask if a system of multiple independently resolved plumes is able to automatically create the vertical profile of bulk (mass) flux at which the sub-grid scale transport balances the imposed larger-scale forcings in the cloud layer.
A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species.
Perumal, Deepak; Lim, Chu Sing; Chow, Vincent T K; Sakharkar, Kishore R; Sakharkar, Meena K
2008-09-10
Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.
NASA Astrophysics Data System (ADS)
Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.; Bedzyk, M.; Glebov, V.; Sorce, C.; Gatu Johnson, M.; Rinderknecht, H. G.; Zylstra, A. B.; Sangster, T. C.; Regan, S. P.; Kwan, T.; Le, A.; Simakov, A. N.; Taitano, W. T.; Chacòn, L.; Keenan, B.; Shah, R.; Sutcliffe, G.; Petrasso, R. D.
2016-11-01
A Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D3He, and T3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of Ti(t) and Te(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun
2018-06-01
This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sio, H.; Frenje, J. A.; Katz, J.
Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D 3He, and T 3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, theirmore » time differences, and measurements of T i(t) and T e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.« less
Sio, H.; Frenje, J. A.; Katz, J.; ...
2016-09-14
Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D 3He, and T 3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, theirmore » time differences, and measurements of T i(t) and T e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chichibu, S. F., E-mail: chichibulab@yahoo.co.jp; Ishikawa, Y.; Furusawa, K.
2015-09-21
Appropriate-amount Si-doping in the well layers significantly improved the luminescence efficiency of Al{sub 0.68}Ga{sub 0.32}N/Al{sub 0.77}Ga{sub 0.23}N multiple quantum wells. To understand the mechanisms, spatio-time-resolved cathodoluminescence measurements and self-consistent Schrödinger-Poisson calculations were carried out. The increase in the luminescence lifetime at room temperature, which reflects the decrease in the concentration of nonradiative recombination centers (NRCs), was correlated with increased terrace width of Si-doped wells. The results suggest the importance of H{sub 3}SiNH{sub 2} doping-reactant formation that gives rise to enhanced decomposition of NH{sub 3} and provides wetting conditions by surface Si-N bonds, which reduce the total energy and concentration ofmore » NRCs composed of cation vacancies.« less
More evidence for a one-to-one correlation between Sprites and Early VLF perturbations
NASA Astrophysics Data System (ADS)
Haldoupis, C.; Amvrosiadi, N.; Cotts, B. R. T.; van der Velde, O. A.; Chanrion, O.; Neubert, T.
2010-07-01
Past studies have shown a correlation between sprites and early VLF perturbations, but the reported correlation varies widely from ˜50% to 100%. The present study resolves these large discrepancies by analyzing several case studies of sprite and narrowband VLF observations, in which multiple transmitter-receiver VLF pairs with great circle paths (GCPs) passing near a sprite-producing thunderstorm were available. In this setup, the multiple paths act in a complementary way that makes the detection of early VLF perturbations much more probable compared to a single VLF path that can miss several of them, a fact that was overlooked in past studies. The evidence shows that visible sprite occurrences are accompanied by early VLF perturbations in a one-to-one correspondence. This implies that the sprite generation mechanism may cause also sub-ionospheric conductivity disturbances that produce early VLF events. However, the one-to-one visible sprite to early VLF event correspondence, if viewed conversely, appears not to be always reciprocal. This is because the number of early events detected in some case studies was considerably larger than the number of visible sprites. Since the great majority of the early events not accompanied by visible sprites appeared to be caused by positive cloud to ground (+CG) lightning discharges, it is possible that sprites or sprite halos were concurrently present in these events as well but were missed by the sprite-watch camera detection system. In order for this option to be resolved we need more studies using highly sensitive optical systems capable of detecting weaker sprites, sprite halos and elves.
Quantifying the Precipitation Loss of Radiation Belt Electrons During a Rapid Dropout Event
NASA Astrophysics Data System (ADS)
Pham, K. H.; Tu, W.; Xiang, Z.
2017-10-01
Relativistic electron flux in the radiation belt can drop by orders of magnitude within the timespan of hours. In this study, we used the drift-diffusion model that includes azimuthal drift and pitch angle diffusion of electrons to simulate low-altitude electron distribution observed by POES/MetOp satellites for rapid radiation belt electron dropout event occurring on 1 May 2013. The event shows fast dropout of MeV energy electrons at L > 4 over a few hours, observed by the Van Allen Probes mission. By simulating the electron distributions observed by multiple POES satellites, we resolve the precipitation loss with both high spatial and temporal resolutions and a range of energies. We estimate the pitch angle diffusion coefficients as a function of energy, pitch angle, and L-shell and calculate corresponding electron lifetimes during the event. The simulation results show fast electron precipitation loss at L > 4 during the electron dropout, with estimated electron lifetimes on the order of half an hour for MeV energies. The electron loss rate shows strong energy dependence with faster loss at higher energies, which suggest that this dropout event is dominated by quick and localized scattering process that prefers higher energy electrons. The improved temporal and spatial resolutions of electron precipitation rates provided by multiple low-altitude observations can resolve fast-varying electron loss during rapid electron dropouts (over a few hours), which occur too fast for a single low-altitude satellite. The capability of estimating the fast-varying electron lifetimes during rapid dropout events is an important step in improving radiation belt model accuracy.
Klainbart, Sigal; Segev, Gilad; Loeb, Emmanuel; Melamed, Dana; Aroch, Itamar
2008-07-01
Two cases of secondary, inappropriate polycythaemia caused by renal adenocarcinoma in domestic shorthair cats, are described. The cats were 9 and 12 years old and both were presented because of generalised seizures presumably due to hyperviscosity. Both cats had a markedly increased haematocrit (0.770 and 0.632 l/l) and thrombocytosis (744 x 10(9)/l and 926 x 10(9)/l). An abdominal ultrasound revealed a mass in the cranial pole of one kidney in both cats. Serum erythropoietin (EPO) concentration was within the reference interval (RI) in both cats but was inappropriately high considering the markedly increased haematocrit. The cats were initially stabilised and managed by multiple phlebotomies and intravenous fluid therapy and underwent nephrectomy of the affected kidney later on. Both the polycythaemia and thrombocytosis resolved following surgery. Postoperative serum EPO concentration, measured in one cat, decreased markedly. Histopathology of the affected kidneys confirmed a diagnosis of renal adenocarcinoma. Both cats were stable for an 8-month follow-up period; however, one cat had developed a stable chronic kidney disease (CKD), while the other was represented 8 months postoperatively due to dyspnoea, and had radiographic evidence of lung metastasis, presumably because of the spread of the original renal tumour and was euthanased. Initial stabilisation of polycythaemic cats should include multiple phlebotomies. Nephrectomy should be considered in cats with secondary, inappropriate, renal adenocarcinoma-related polycythaemia when only one kidney is affected by the tumour, and provided that the other kidney's function is satisfactory. Nephrectomy should be expected to resolve the polycythaemia and lead to normalisation of serum EPO concentration.
Lee, Peter; Bollensdorff, Christian; Quinn, T. Alexander; Wuskell, Joseph P.; Loew, Leslie M.; Kohl, Peter
2011-01-01
Background Simultaneous optical mapping of multiple electrophysiologically relevant parameters in living myocardium is desirable for integrative exploration of mechanisms underlying heart rhythm generation under normal and pathophysiologic conditions. Current multiparametric methods are technically challenging, usually involving multiple sensors and moving parts, which contributes to high logistic and economic thresholds that prevent easy application of the technique. Objective The purpose of this study was to develop a simple, affordable, and effective method for spatially resolved, continuous, simultaneous, and multiparametric optical mapping of the heart, using a single camera. Methods We present a new method to simultaneously monitor multiple parameters using inexpensive off-the-shelf electronic components and no moving parts. The system comprises a single camera, commercially available optical filters, and light-emitting diodes (LEDs), integrated via microcontroller-based electronics for frame-accurate illumination of the tissue. For proof of principle, we illustrate measurement of four parameters, suitable for ratiometric mapping of membrane potential (di-4-ANBDQPQ) and intracellular free calcium (fura-2), in an isolated Langendorff-perfused rat heart during sinus rhythm and ectopy, induced by local electrical or mechanical stimulation. Results The pilot application demonstrates suitability of this imaging approach for heart rhythm research in the isolated heart. In addition, locally induced excitation, whether stimulated electrically or mechanically, gives rise to similar ventricular propagation patterns. Conclusion Combining an affordable camera with suitable optical filters and microprocessor-controlled LEDs, single-sensor multiparametric optical mapping can be practically implemented in a simple yet powerful configuration and applied to heart rhythm research. The moderate system complexity and component cost is destined to lower the threshold to broader application of functional imaging and to ease implementation of more complex optical mapping approaches, such as multiparametric panoramic imaging. A proof-of-principle application confirmed that although electrically and mechanically induced excitation occur by different mechanisms, their electrophysiologic consequences downstream from the point of activation are not dissimilar. PMID:21459161
Hand-held optoacoustic probe for three-dimensional imaging of human morphology and function
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Razansky, Daniel
2014-03-01
We report on a hand-held imaging probe for real-time optoacoustic visualization of deep tissues in three dimensions. The proposed solution incorporates a two-dimensional array of ultrasonic sensors densely distributed on a spherical surface, whereas illumination is performed coaxially through a cylindrical cavity in the array. Visualization of three-dimensional tomographic data at a frame rate of 10 images per second is enabled by parallel recording of 256 time-resolved signals for each individual laser pulse along with a highly efficient GPUbased real-time reconstruction. A liquid coupling medium (water), enclosed in a transparent membrane, is used to guarantee transmission of the optoacoustically generated waves to the ultrasonic detectors. Excitation at multiple wavelengths further allows imaging spectrally distinctive tissue chromophores such as oxygenated and deoxygenated haemoglobin. The performance is showcased by video-rate tracking of deep tissue vasculature and three-dimensional measurements of blood oxygenenation in a healthy human volunteer. The flexibility provided by the hand-held hardware design, combined with the real-time operation, makes the developed platform highly usable for both small animal research and clinical imaging in multiple indications, including cancer, inflammation, skin and cardiovascular diseases, diagnostics of lymphatic system and breast
In vivo small animal micro-CT using nanoparticle contrast agents
Ashton, Jeffrey R.; West, Jennifer L.; Badea, Cristian T.
2015-01-01
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research. PMID:26581654
Time-Resolved Measurements in Optoelectronic Microbioanalysis
NASA Technical Reports Server (NTRS)
Bearman, Gregory; Kossakovski, Dmitri
2003-01-01
A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.
Liu, Haiguang; Spence, John C H
2014-11-01
Crystallographic auto-indexing algorithms provide crystal orientations and unit-cell parameters and assign Miller indices based on the geometric relations between the Bragg peaks observed in diffraction patterns. However, if the Bravais symmetry is higher than the space-group symmetry, there will be multiple indexing options that are geometrically equivalent, and hence many ways to merge diffraction intensities from protein nanocrystals. Structure factor magnitudes from full reflections are required to resolve this ambiguity but only partial reflections are available from each XFEL shot, which must be merged to obtain full reflections from these 'stills'. To resolve this chicken-and-egg problem, an expectation maximization algorithm is described that iteratively constructs a model from the intensities recorded in the diffraction patterns as the indexing ambiguity is being resolved. The reconstructed model is then used to guide the resolution of the indexing ambiguity as feedback for the next iteration. Using both simulated and experimental data collected at an X-ray laser for photosystem I in the P63 space group (which supports a merohedral twinning indexing ambiguity), the method is validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Daniel
8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics inmore » complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.« less
This paper explores the potential of time-frequency wavelet analysis in resolving beach bacteria concentration and possible explanatory variables across multiple time scales with temporal information still preserved. The wavelet scalograms of E. coli concentrations and the explan...
Bridging the Divide: Cross-Cultural Mediation
ERIC Educational Resources Information Center
Mahan, Laura N.; Mahuna, Joshua M.
2017-01-01
The article strives to contribute to the growing field of conflict resolution by analyzing contrasting cross-cultural perceptions through insights from multiple areas to resolve intercultural conflicts and disputes. Western-centric mediation techniques are dissected in juxtaposition to indigenous methodologies in degrees of (1) substantiality and…
Can Positron 2D-ACAR Resolve the Electronic Structure of HIGH-Tc Superconductors?
NASA Astrophysics Data System (ADS)
Chan, L. P.; Lynn, K. G.; Harshman, D. R.
We examine the ability of the positron Two-Dimensional Angular Correlation Annihilation Radiation (2D-ACAR) technique to resolve the electronic structures of high-Tc cuprate superconductors. Following a short description of the technique, discussions of the theoretical assumptions, data analysis and experimental considerations, in relation to the high-Tc superconductors, are given. We briefly review recent 2D-ACAR experiments on YBa2Cu3O7-x, Bi2Sr2CaCuO8+δ and La2-xSrxCuO4. The 2D-ACAR technique is useful in resolving the band crossings associated with the layers of the superconductors that are preferentially sampled by the positrons. Together with other Fermi surface measurements (namely angle-resolved photoemission), 2D-ACAR can resolve some of the electronic structures of high-Tc cuprate superconductors. In addition, 2D-ACAR measurements of YBa2Cu3O7-x and Bi2Sr2CaCuO8+δ also reveal an interesting temperature dependence in the fine structures, and a change in the positron lifetime in the former.
Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region
NASA Astrophysics Data System (ADS)
Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan
2016-03-01
Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.
Minnix, Jennifer A; Romero, Catherine; Joiner, Thomas E; Weinberg, Elizabeth F
2007-11-01
This study aims to investigate factors related to suicide in a unique clinical population with more chronic psychopathology than many outpatient samples. One hundred and five adult outpatients were included in the current study. We predicted that higher scores on the resolved plans and preparation (RPP) factor of the Beck Suicide Scale [Beck, A.T., Kovacs, M., Weissman, M., (1979). Assessment of suicidal intention: The scale for suicidal ideation. Journal of Consulting and Clinical Psychology 47, 343-352] would predict multiple attempter status even after accounting for co-morbid diagnoses and suicidal ideation (SI) factor scores. Additionally, we predicted that the scores on the RPP factor would decrease less over time than scores on the SI factor. Results were consistent with both hypotheses, suggesting that RPP factor scores were uniquely predictive of status as a multiple attempter and were more stable over time. Mental health diagnoses were rendered without the use of a structured interview and therefore no reliability data were collected.
Multiplicity in Early Stellar Evolution
NASA Astrophysics Data System (ADS)
Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.
Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.
Merlos Rodrigo, Miguel Angel; Molina-López, Jorge; Jimenez Jimenez, Ana Maria; Planells Del Pozo, Elena; Adam, Pavlina; Eckschlager, Tomas; Zitka, Ondrej; Richtera, Lukas; Adam, Vojtech
2017-01-01
The translation of metallothioneins (MTs) is one of the defense strategies by which organisms protect themselves from metal-induced toxicity. MTs belong to a family of proteins comprising MT-1, MT-2, MT-3, and MT-4 classes, with multiple isoforms within each class. The main aim of this study was to determine the behavior of MT in dependence on various externally modelled environments, using electrochemistry. In our study, the mass distribution of MTs was characterized using MALDI-TOF. After that, adsorptive transfer stripping technique with differential pulse voltammetry was selected for optimization of electrochemical detection of MTs with regard to accumulation time and pH effects. Our results show that utilization of 0.5 M NaCl, pH 6.4, as the supporting electrolyte provides a highly complicated fingerprint, showing a number of non-resolved voltammograms. Hence, we further resolved the voltammograms exhibiting the broad and overlapping signals using curve fitting. The separated signals were assigned to the electrochemical responses of several MT complexes with zinc(II), cadmium(II), and copper(II), respectively. Our results show that electrochemistry could serve as a great tool for metalloproteomic applications to determine the ratio of metal ion bonds within the target protein structure, however, it provides highly complicated signals, which require further resolution using a proper statistical method, such as curve fitting. PMID:28287470
Review of modelling air pollution from traffic at street-level - The state of the science.
Forehead, H; Huynh, N
2018-06-13
Traffic emissions are a complex and variable cocktail of toxic chemicals. They are the major source of atmospheric pollution in the parts of cities where people live, commute and work. Reducing exposure requires information about the distribution and nature of emissions. Spatially and temporally detailed data are required, because both the rate of production and the composition of emissions vary significantly with time of day and with local changes in wind, traffic composition and flow. Increasing computer processing power means that models can accept highly detailed inputs of fleet, fuels and road networks. The state of the science models can simulate the behaviour and emissions of all the individual vehicles on a road network, with resolution of a second and tens of metres. The chemistry of the simulated emissions is also highly resolved, due to consideration of multiple engine processes, fuel evaporation and tyre wear. Good results can be achieved with both commercially available and open source models. The extent of a simulation is usually limited by processing capacity; the accuracy by the quality of traffic data. Recent studies have generated real time, detailed emissions data by using inputs from novel traffic sensing technologies and data from intelligent traffic systems (ITS). Increasingly, detailed pollution data is being combined with spatially resolved demographic or epidemiological data for targeted risk analyses. Copyright © 2018 Elsevier Ltd. All rights reserved.
De Santis, Riccardo; Ancora, Massimo; De Massis, Fabrizio; Ciammaruconi, Andrea; Zilli, Katiuscia; Di Giannatale, Elisabetta; Pittiglio, Valentina; Fillo, Silvia; Lista, Florigio
2013-10-01
Brucellosis, one of the most important re-emerging zoonoses in many countries, is caused by bacteria belonging to the genus Brucella. Furthermore these bacteria represent potential biological warfare agents and the identification of species and biovars of field strains may be crucial for tracing back source of infection, allowing to discriminate naturally occurring outbreaks instead of bioterrorist events. In the last years, multiple-locus variable-number tandem repeat analysis (MLVA) has been proposed as complement of the classical biotyping methods and it has been applied for genotyping large collections of Brucella spp. At present, the MLVA band profiles may be resolved by automated or manual procedures. The Lab on a chip technology represents a valid alternative to standard genotyping techniques (as agarose gel electrophoresis) and it has been previously used for Brucella genotyping. Recently, a new high-throughput genotyping analysis system based on capillary gel electrophoresis, the QIAxcel, has been described. The aim of the study was to evaluate the ability of two DNA sizing equipments, the QIAxcel System and the Lab chip GX, to correctly call alleles at the sixteen loci including one frequently used MLVA assay for Brucella genotyping. The results confirmed that these technologies represent a meaningful advancement in high-throughput Brucella genotyping. Considering the accuracy required to confidently resolve loci discrimination, QIAxcel shows a better ability to measure VNTR allele sizes compared to LabChip GX.
Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.
Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K
2017-03-01
Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.
[Design of flat field holographic concave grating for near-infrared spectrophotometer].
Xiang, Xian-Yi; Wen, Zhi-Yu
2008-07-01
Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.
NASA Astrophysics Data System (ADS)
Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Fasoli, B.; Bares, R.; o'Keefe, D.; Song, T.; Huang, J.; Horel, J.; Crosman, E.; Ehleringer, J. R.
2015-12-01
This study addresses the need for robust highly-resolved emissions and concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are dependent on proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present emissions inventories and modeled concentrations for CO2 and CAPs: carbon monoxide (CO), lead (Pb), nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), and sulfur oxides (SOx) for Salt Lake County, Utah. We compare the resulting concentrations against stationary and mobile measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at an hourly, building and road link resolution as well as hourly gridded emissions with a 0.002o x 0.002o spatial resolution. Two methods for deriving criteria pollutant emission inventories were compared. One was constructed using methods similar to Hestia but downscales total emissions based on the 2011 National Emissions Inventory (NEI). The other used Emission Modeling Clearinghouse spatial and temporal surrogates to downscale the NEI data from annual and county-level resolution to hourly and 0.002o x 0.002o grid cells. The gridded emissions from both criteria pollutant methods were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The CALPUFF dispersion model was used to transport emissions and estimate air pollutant concentrations at an hourly 0.002o x 0.002o resolution. The resulting concentrations were spatially compared in the same manner as the emissions. Modeled results were compared against stationary measurements and from equipment mounted atop a light rail car in the Salt Lake City area. The comparison between both approaches to emissions estimation and resulting concentrations highlights spatial locations and hours of high variability and uncertainty.
2012-10-01
requirements de - fined by the public sector. CRADAs leverage private sector resources and knowledge to meet the needs of government agencies at no financial...situations helps resolve barriers to cooperation. The evolution of CRA- DAs offers insight into how DOD can interact with multiple partners in a mutually...actions among multiple private power companies, the public sector (at Federal, state, local, and tribal levels), and third parties (hos- pitals
DeWalt, Emma L.; Begue, Victoria J.; Ronau, Judith A.; Sullivan, Shane Z.; Das, Chittaranjan; Simpson, Garth J.
2013-01-01
Polarization-resolved second-harmonic generation (PR-SHG) microscopy is described and applied to identify the presence of multiple crystallographic domains within protein-crystal conglomerates, which was confirmed by synchrotron X-ray diffraction. Principal component analysis (PCA) of PR-SHG images resulted in principal component 2 (PC2) images with areas of contrasting negative and positive values for conglomerated crystals and PC2 images exhibiting uniformly positive or uniformly negative values for single crystals. Qualitative assessment of PC2 images allowed the identification of domains of different internal ordering within protein-crystal samples as well as differentiation between multi-domain conglomerated crystals and single crystals. PR-SHG assessments of crystalline domains were in good agreement with spatially resolved synchrotron X-ray diffraction measurements. These results have implications for improving the productive throughput of protein structure determination through early identification of multi-domain crystals. PMID:23275165
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang; Chu, Shengqi; Sun, Tianxi
A confocal fluorescence endstation for depth-resolved micro-X-ray absorption spectroscopy is described. A polycapillary half-lens defines the incident beam path and a second polycapillary half-lens at 90° defines the probe sample volume. An automatic alignment program based on an evolutionary algorithm is employed to make the alignment procedure efficient. This depth-resolved system was examined on a general X-ray absorption spectroscopy (XAS) beamline at the Beijing Synchrotron Radiation Facility. Sacrificial red glaze (AD 1368–1644) china was studied to show the capability of the instrument. As a mobile endstation to be applied on multiple beamlines, the confocal system can improve the function andmore » flexibility of general XAS beamlines, and extend their capabilities to a wider user community.« less
Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan
2005-07-10
We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apai, Dániel; Skemer, Andrew; Hanson, Jake R.
Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysismore » approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (∼3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b–c planet pair agrees to about 1%.« less
Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques
NASA Astrophysics Data System (ADS)
Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan
2018-04-01
DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.
Low surface energy polymeric release coating for improved contact print lithography
NASA Astrophysics Data System (ADS)
Mancini, David P.; Resnick, Douglas J.; Gehoski, Kathleen A.; Popovich, Laura L.; Chang, Daniel
2002-03-01
Contact printing has been used for decades in many various lithography applications in the microelectronic industry. While vacuum contact printing processes offer sub-micron resolution and high throughput, they often suffer from some important drawbacks. One of the most common problems is degradation in both resolution and defect density which occurs when the same mask si used for multiple exposures without frequent mask cleans. This is largely due to the relatively high surface energy of both quartz and chrome and the tendency of most photoresists to adhere to these surfaces. As a result, when a mask and wafer are pressed into intimate contact, resist will tend to stick to the mask creating a defect on the wafer, effectively propagating defects to subsequent wafers. In this study, DuPont Teflon AF 1601S is used as a photomask coating and evaluated for its ability to act as a release agent and reduce defects while maintaining resolution for multiple exposures. Teflon AF is an amorphous, transparent, low surface energy, polymeric material that can be spin coated into a thin conformal film. Tests have shown that when using an uncoated mask in vacuum contact, resolution of 0.75 micrometers dense lines is severely degraded after less than 10 consecutive exposures. However, when the mask is coated, 0.75 micrometers dense lines were successfully resolved using vacuum contact for over 200 exposures without cleaning. In addition, it has been demonstrated that Teflon AF coatings impart to a mask a self-cleaning capability, since particles tend to stick to the photoresist rather than the mask. A coated mask, which was purposefully contaminated with particulates, resolved 0.75 micrometers dense lines on all but the first wafer of a series of 25 consecutive exposures. The patented mask releases layer process has successfully been demonstrated with a positive novolak resist. Additional data which describes the system chemistry, dilution and coating process, and film morphology are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brogan, C. L.; Hunter, T. R.; Indebetouw, R.
2016-12-01
We present Very Large Array and Atacama Large Millimeter/submillimeter Array imaging of the deeply embedded protostellar cluster NGC 6334I from 5 cm to 1.3 mm at angular resolutions as fine as 0.″17 (220 au). The dominant hot core MM1 is resolved into seven components at 1.3 mm, clustered within a radius of 1000 au. Four of the components have brightness temperatures >200 K, radii ∼300 au, minimum luminosities ∼10{sup 4} L {sub ⊙}, and must be centrally heated. We term this new phenomenon a “hot multi-core.” Two of these objects also exhibit compact free–free emission at longer wavelengths, consistent withmore » a hypercompact H ii region (MM1B) and a jet (MM1D). The spatial kinematics of the water maser emission centered on MM1D are consistent with it being the origin of the high-velocity bipolar molecular outflow seen in CO. The close proximity of MM1B and MM1D (440 au) suggests a proto-binary or a transient bound system. Several components of MM1 exhibit steep millimeter spectral energy distributions indicative of either unusual dust spectral properties or time variability. In addition to resolving MM1 and the other hot core (MM2) into multiple components, we detect five new millimeter and two new centimeter sources. Water masers are detected for the first time toward MM4A, confirming its membership in the protocluster. With a 1.3 mm brightness temperature of 97 K coupled with a lack of thermal molecular line emission, MM4A appears to be a highly optically thick 240 L {sub ⊙} dust core, possibly tracing a transient stage of massive protostellar evolution. The nature of the strongest water maser source CM2 remains unclear due to its combination of non-thermal radio continuum and lack of dust emission.« less
NASA Astrophysics Data System (ADS)
Brogan, C. L.; Hunter, T. R.; Cyganowski, C. J.; Chandler, C. J.; Friesen, R.; Indebetouw, R.
2016-12-01
We present Very Large Array and Atacama Large Millimeter/submillimeter Array imaging of the deeply embedded protostellar cluster NGC 6334I from 5 cm to 1.3 mm at angular resolutions as fine as 0.″17 (220 au). The dominant hot core MM1 is resolved into seven components at 1.3 mm, clustered within a radius of 1000 au. Four of the components have brightness temperatures >200 K, radii ˜300 au, minimum luminosities ˜104 L ⊙, and must be centrally heated. We term this new phenomenon a “hot multi-core.” Two of these objects also exhibit compact free-free emission at longer wavelengths, consistent with a hypercompact H II region (MM1B) and a jet (MM1D). The spatial kinematics of the water maser emission centered on MM1D are consistent with it being the origin of the high-velocity bipolar molecular outflow seen in CO. The close proximity of MM1B and MM1D (440 au) suggests a proto-binary or a transient bound system. Several components of MM1 exhibit steep millimeter spectral energy distributions indicative of either unusual dust spectral properties or time variability. In addition to resolving MM1 and the other hot core (MM2) into multiple components, we detect five new millimeter and two new centimeter sources. Water masers are detected for the first time toward MM4A, confirming its membership in the protocluster. With a 1.3 mm brightness temperature of 97 K coupled with a lack of thermal molecular line emission, MM4A appears to be a highly optically thick 240 L ⊙ dust core, possibly tracing a transient stage of massive protostellar evolution. The nature of the strongest water maser source CM2 remains unclear due to its combination of non-thermal radio continuum and lack of dust emission.
Fulton, Tara Lynn; Strobeck, Curtis
2010-04-07
Despite decades of study, some aspects of Phocidae (Pinnipedia, Carnivora) phylogeny still remain unresolved. Using the largest novel dataset to date, including all extant phocids and comprising 15 nuclear and 13 mitochondrial genes, we illustrate the utility of including multiple individuals per species in resolving rapid radiations, and provide new insight into phocid phylogeny. In line with longstanding morphological views, Pusa is recovered as monophyletic for the first time with genetic data. The data are also used to explore the relationship between genetic distance and taxonomic rank. Intraspecific sampling also highlights the discrepancy between molecular and morphological rates of evolution within Phocidae.
Tsonev, Latchezar I; Hirsh, Allen G
2016-10-14
We have previously described a liquid chromatographic (LC) method for uncoupling controlled, wide range pH gradients and simultaneous controlled gradients of a non-buffering solute on ion exchange resins (Hirsh and Tsonev, 2012) [1]. Here we report the application of this two dimensional LC technique to the problem of resolving Human Transferrin (HT) isoforms. This important iron transporting protein should theoretically occur in several thousand glycoforms, but only about a dozen have been reported. Using dual simultaneous independent gradients (DSIGs) of acetonitrile (ACN) and pH on a mixed bed stationary phase (SP) consisting of a mixture of an anion exchange resin and a reversed phase (RP) resin we partially resolve about 60 isoforms. These are likely to be partially refolded glycoforms generated by interaction of HT with the highly hydrophobic RP SP, as well as distinct folded glycoforms. Thus this study should have interesting implications for both glycoform separation and the study of protein folding. Copyright © 2016 Elsevier B.V. All rights reserved.
Perkins, Bradford G; Nesbitt, David J
2007-08-09
Energy transfer dynamics at the gas-liquid interface have been probed with a supersonic molecular beam of CO2 and a clean perfluorinated-liquid surface in vacuum. High-resolution infrared spectroscopy measures both the rovibrational state populations and the translational distributions for the scattered CO2 flux. The present study investigates collision dynamics as a function of incident angle (thetainc = 0 degrees, 30 degrees, 45 degrees, and 60 degrees), where column-integrated quantum state populations are detected along the specular-scattering direction (i.e., thetascat approximately thetainc). Internal state rovibrational and Doppler translational distributions in the scattered CO2 yield clear evidence for nonstatistical behavior, providing quantum-state-resolved support for microscopic branching of the gas-liquid collision dynamics into multiple channels. Specifically, the data are remarkably well described by a two-temperature model, which can be associated with both a trapping desorption (TD) component emerging at the surface temperature (Trot approximately TS) and an impulsive scattering (IS) component appearing at hyperthermal energies (Trot > TS). The branching ratio between the TD and IS channels is found to depend strongly on thetainc, with the IS component growing dramatically with increasingly steeper angle of incidence.
The quest for four-dimensional imaging in plant cell biology: it's just a matter of time
Domozych, David S.
2012-01-01
Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381
Choe, Eun Yeong; Song, Je Eun; Park, Kyeong Hye; Seok, Hannah; Lee, Eun Jig; Lim, Sung-Kil; Rhee, Yumie
2012-09-01
Pregnancy and lactation-associated osteoporosis (PLO) is very rare, but it can cause severe vertebral compression fractures with disabling back pain. PLO patients have commonly been treated with antiresorptive agents against high bone turnover. There are, however, some concerns regarding the use of bisphosphonates: (1) PLO occurs during the first pregnancy with a high possibility of recurrence during the second pregnancy, (2) long-term outcomes of bisphosphonates in PLO are lacking, and (3) there is a possibility of bisphosphonates accumulated in the bones crossing the placenta. Therefore, alternative therapies must be considered. We analyzed the effect of teriparatide (TPTD), the human recombinant parathyroid hormone (1-34), for 18 months in three women with PLO. Multiple vertebral fractures with severe back pain appeared within 6 months after their first childbirth. Two of them had a family history of osteoporosis. Lactation was discontinued immediately after diagnosis of PLO. Calcium carbonate, cholecalciferol, and TPTD were prescribed. The back pain immediately resolved. Bone mineral density (BMD) increased by 14.5-25.0% (mean 19.5%) at the lumbar spine and by 9.5-16.7% (mean 13.1%) at the femoral neck, after 18 months of treatment. The final Z scores in these PLO patients were nearly normalized. Two women had a second baby without any complication. BMD significantly improved after 18 months of treatment with TPTD without further fractures. In conclusion, TPTD should be considered to avoid long-term morbidity in young patients with PLO and is highly encouraged for use in PLO patients with multiple vertebral fractures.
2010-01-01
Interferometer, which allowed the binary components to be spatially resolved for the first time . The interferometric observations lead to the detection of a... resolved for the first time . The interferometric observations lead to the detection of a secondary, about 3 mag fainter than the primary. The possible...114.3084–54 356.5029 54 175.3724 30 6.472± 0.008 6.721± 0.008 6.820± 0.009 0.249 0.099 Table B.2. All-sky UBV photometry of o Cas with known times of ob
Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.
Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E
2009-11-20
In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.
Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank
2008-10-01
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.
2013-01-01
Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217
The Relationship between Multiple Intelligences and Writing Skill of Medical Students in Iran
ERIC Educational Resources Information Center
Rad, Rezvan Sajjadi; Khojasteh, Laleh; Kafipour, Reza
2014-01-01
The problem which this research intended to resolve is that beside many differences between individuals' characteristics that might impact their language learning process, there's often a different neglected component which is "Intelligence". Although there are several researches about the relationship between students' multiple…
Deferring Totality: An Anti-Dialectic Theory of Identity
ERIC Educational Resources Information Center
Powell, David M.; Noel, Jana
2010-01-01
Using Derrida's concept of deferring totality, Deleuze's concept of the logic of multiplicities, and Butler's "sliding scale," this paper presents an anti-dialectic theory of identity, one that recognizes the permanent deferral of the very concept of identity--a non-synthesized, non-resolved identity--that values the hybridity of identities.…
Female Aggression and Violence: A Case Study
ERIC Educational Resources Information Center
Martin, Penelope E.
2012-01-01
Aggression and violence among adolescent females has received extension attention throughout the nation. Girls often employ relationally aggressive behaviors to resolve conflict, which often leads to physical aggression. The purpose of this study was to examine a girl fight from multiple perspectives to gain a better understanding of the causes…
Bringing to Life Transformative Ideas: A Blueprint for Trustees
ERIC Educational Resources Information Center
Whitman, Janet
2012-01-01
To bring major initiatives to fruition, trustees, administrators, faculty members, and donors must all be effectively engaged. By broadening a project's impact, the concerns of board members and other constituencies may be addressed and resolved to the satisfaction of all. An institution must provide sufficient time and multiple opportunities for…
Putting multiple use and sustained yield into a landscape context
Thomas R. Crow
2002-01-01
When managing natural resources, foresters, wildlife biologists, and other practitioners need to consider a vast array of technical information, along with a multitude of values, opinions, and perspectives - many of which may be in conflict and therefore difficult to resolve. Ongoing discussions about ecosystem management, conserving biological diversiry, adaptive...
Multiple Systems for Cognitive Control: Evidence from a Hybrid Prime-Simon Task
ERIC Educational Resources Information Center
Schlaghecken, Friederike; Refaat, Malik; Maylor, Elizabeth A.
2011-01-01
Cognitive control resolves conflicts between appropriate and inappropriate response tendencies. Is this achieved by a unitary all-purpose conflict control system, or do independent subsystems deal with different aspects of conflicting information? In a fully factorial hybrid prime-Simon task, participants responded to the identity of targets…
USDA-ARS?s Scientific Manuscript database
DNA-based phylogenetic analyses have resolved the fungal genus Fusarium into multiple species complexes. The F. incarnatum-equiseti species complex (FIESC) includes fusaria associated with several diseases of agriculturally important crops, including cereals. Although members of FIESC are considered...
ABSTRACT
Biologic data support the presence of multiple species in the genus Cryptosporidium, but
a recent analysis of the available genetic data has suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxono...
ERIC Educational Resources Information Center
Hu, Qian
2011-01-01
Most of challenges facing today's government cannot be resolved without collaborative efforts from multiple non-state stakeholders, organizations, and active participation from citizens. Collaborative governance has become an important form of management practice. Yet the success of this inclusive management approach depends on whether government…
Making Peace: A Narrative Study of a Bilingual Liaison, a School and a Community.
ERIC Educational Resources Information Center
Hones, Donald F.
1999-01-01
Explores the role of bilingual liaisons in resolving conflicts and building bridges of understanding between schools and diverse communities, discussing the representation of individuals' voices and narrative forms that engage readers aesthetically and critically; addressing multiple conflicts affecting the lives of minority language students,…
NASA Astrophysics Data System (ADS)
Brandeker, Alexis; Liseau, René; Artymowicz, Pawel; Jayawardhana, Ray
2001-11-01
Since a majority of young low-mass stars are members of multiple systems, the study of their stellar and disk configurations is crucial to our understanding of both star and planet formation processes. Here we present near-infrared adaptive optics observations of the young multiple star system VW Chamaeleon. The previously known 0.7" binary is clearly resolved already in our raw J- and K-band images. We report the discovery of a new faint companion to the secondary, at an apparent separation of only 0.1", or 16 AU. Our high-resolution photometric observations also make it possible to measure the J-K colors of each of the three components individually. We detect an infrared excess in the primary, consistent with theoretical models of a circumprimary disk. Analytical and numerical calculations of orbital stability show that VW Cha may be a stable triple system. Using models for the age and total mass of the secondary pair, we estimate the orbital period to be 74 yr. Thus, follow-up astrometric observations might yield direct dynamical masses within a few years and constrain evolutionary models of low-mass stars. Our results demonstrate that adaptive optics imaging in conjunction with deconvolution techniques is a powerful tool for probing close multiple systems. Based on observations collected at the European Southern Observatory, Chile.
Sebastian, Raul; Ghanem, Omar; Diroma, Frank; Milner, Stephen M; Gerold, Kevin B; Price, Leigh A
2015-05-01
Multiple factors place burn patients at a high risk of pneumothorax development. Currently, no specific recommendations for the management of pneumothorax in large total body surface area (TBSA) burn patients exist. We present a case of a major burn patient who developed pneumothorax after central line insertion. After the traditional large bore (24 Fr) chest tube failed to resolve the pneumothorax, the pneumothorax was ultimately managed by a percutaneous placed pigtail catheter thoracostomy placement and resulted in its complete resolution. We will review the current recommendations of pneumothorax treatment and will highlight on the use of pigtail catheters in pneumothorax management in burn patients. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Scalability of transport parameters with pore sizes in isodense disordered media
NASA Astrophysics Data System (ADS)
Reginald, S. William; Schmitt, V.; Vallée, R. A. L.
2014-09-01
We study light multiple scattering in complex disordered porous materials. High internal phase emulsion-based isodense polystyrene foams are designed. Two types of samples, exhibiting different pore size distributions, are investigated for different slab thicknesses varying from L = 1 \\text{mm} to 10 \\text{mm} . Optical measurements combining steady-state and time-resolved detection are used to characterize the photon transport parameters. Very interestingly, a clear scalability of the transport mean free path \\ellt with the average size of the pores S is observed, featuring a constant velocity of the transport energy in these isodense structures. This study strongly motivates further investigations into the limits of validity of this scalability as the scattering strength of the system increases.
NASA Astrophysics Data System (ADS)
Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik
2015-11-01
A two-dimensional computational model for assessment of rolling contact fatigue induced by discrete rail surface irregularities, especially in the context of so-called squats, is presented. Dynamic excitation in a wide frequency range is considered in computationally efficient time-domain simulations of high-frequency dynamic vehicle-track interaction accounting for transient non-Hertzian wheel-rail contact. Results from dynamic simulations are mapped onto a finite element model to resolve the cyclic, elastoplastic stress response in the rail. Ratcheting under multiple wheel passages is quantified. In addition, low cycle fatigue impact is quantified using the Jiang-Sehitoglu fatigue parameter. The functionality of the model is demonstrated by numerical examples.
Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J
2014-11-01
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.
NASA Astrophysics Data System (ADS)
McKellar, A. R. W.; Billinghurst, B. E.
2010-03-01
Thiophosgene (Cl 2CS) is a favorite model system for studies of photophysics, vibrational dynamics, and intersystem interaction effects. But there are no previous rotationally-resolved infrared studies because the spectra are very congested due to hot bands and multiple isotopic species. This paper reports a detailed study of the ν2 (˜504 cm -1) and ν4 (˜471 cm -1) fundamental bands for the two most abundant isotopomers, 35Cl 2CS and 35Cl 37ClCS, based on spectra with observed line widths of ˜0.0008 cm -1 obtained at the Canadian Light Source far-infrared beamline using synchrotron radiation and a Bruker IFS125 Fourier transform spectrometer.
Zhang, Xiao-Chao; Wei, Zhen-Wei; Gong, Xiao-Yun; Si, Xing-Yu; Zhao, Yao-Yao; Yang, Cheng-Dui; Zhang, Si-Chun; Zhang, Xin-Rong
2016-04-29
Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis.
Enhanced polarization of (11-22) semi-polar InGaN nanorod array structure
NASA Astrophysics Data System (ADS)
Athanasiou, M.; Smith, R. M.; Hou, Y.; Zhang, Y.; Gong, Y.; Wang, T.
2015-10-01
By means of a cost effective nanosphere lithography technique, an InGaN/GaN multiple quantum well structure grown on (11-22) semipolar GaN has been fabricated into two dimensional nanorod arrays which form a photonic crystal (PhC) structure. Such a PhC structure demonstrates not only significantly increased emission intensity, but also an enhanced polarization ratio of the emission. This is due to an effective inhibition of the emission in slab modes and then redistribution to the vertical direction, thus minimizing the light scattering processes that lead to randomizing of the optical polarization. The PhC structure is designed based on a standard finite-difference-time-domain simulation, and then optically confirmed by detailed time-resolved photoluminescence measurements. The results presented pave the way for the fabrication of semipolar InGaN/GaN based emitters with both high efficiency and highly polarized emission.
NASA Astrophysics Data System (ADS)
Gies, Douglas R.
2017-11-01
Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.
Servomotor and Controller Having Large Dynamic Range
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott
2007-01-01
A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).
Attipa, Charalampos; Neofytou, Kyriaki; Yiapanis, Christos; Martínez-Orellana, Pamela; Baneth, Gad; Nachum-Biala, Yaarit; Brooks-Brownlie, Harriet; Solano-Gallego, Laia; Tasker, Séverine
2017-01-01
A 6-year-old female neutered domestic shorthair cat from Cyprus was presented with multiple ulcerated skin nodules. Cytology and histopathology of the lesions revealed granulomatous dermatitis with intracytoplasmic organisms, consistent with amastigotes of Leishmania species. Biochemistry identified a mild hyperproteinaemia. Blood extraction and PCR detected Leishmania species, Hepatozoon species and ' Candidatus Mycoplasma haemominutum' (CMhm) DNA. Subsequent sequencing identified Hepatozoon felis . Additionally, the rRNA internal transcribed spacer 1 locus of Leishmania infantum was partially sequenced and phylogeny showed it to cluster with species derived from dogs in Italy and Uzbekistan, and a human in France. Allopurinol treatment was administered for 6 months. Clinical signs resolved in the second month of treatment with no deterioration 8 months post-treatment cessation. Quantitative PCR and ELISA were used to monitor L infantum blood DNA and antibody levels. The cat had high L infantum DNA levels pretreatment that gradually declined during treatment but increased 8 months post-treatment cessation. Similarly, ELISA revealed high levels of antibodies pretreatment, which gradually declined during treatment and increased slightly 8 months post-treatment cessation. The cat remained PCR positive for CMhm and Hepatozoon species throughout the study. There was no clinical evidence of relapse 24 months post-treatment. To our knowledge, this is the first clinical report of a cat with leishmaniosis with H felis and CMhm coinfections. The high L infantum DNA levels post-treatment cessation might indicate that although the lesions had resolved, prolonged or an alternative treatment could have been considered.
Attipa, Charalampos; Neofytou, Kyriaki; Yiapanis, Christos; Martínez-Orellana, Pamela; Baneth, Gad; Nachum-Biala, Yaarit; Brooks-Brownlie, Harriet; Solano-Gallego, Laia; Tasker, Séverine
2017-01-01
Case summary A 6-year-old female neutered domestic shorthair cat from Cyprus was presented with multiple ulcerated skin nodules. Cytology and histopathology of the lesions revealed granulomatous dermatitis with intracytoplasmic organisms, consistent with amastigotes of Leishmania species. Biochemistry identified a mild hyperproteinaemia. Blood extraction and PCR detected Leishmania species, Hepatozoon species and ‘Candidatus Mycoplasma haemominutum’ (CMhm) DNA. Subsequent sequencing identified Hepatozoon felis. Additionally, the rRNA internal transcribed spacer 1 locus of Leishmania infantum was partially sequenced and phylogeny showed it to cluster with species derived from dogs in Italy and Uzbekistan, and a human in France. Allopurinol treatment was administered for 6 months. Clinical signs resolved in the second month of treatment with no deterioration 8 months post-treatment cessation. Quantitative PCR and ELISA were used to monitor L infantum blood DNA and antibody levels. The cat had high L infantum DNA levels pretreatment that gradually declined during treatment but increased 8 months post-treatment cessation. Similarly, ELISA revealed high levels of antibodies pretreatment, which gradually declined during treatment and increased slightly 8 months post-treatment cessation. The cat remained PCR positive for CMhm and Hepatozoon species throughout the study. There was no clinical evidence of relapse 24 months post-treatment. Relevance and novel information To our knowledge, this is the first clinical report of a cat with leishmaniosis with H felis and CMhm coinfections. The high L infantum DNA levels post-treatment cessation might indicate that although the lesions had resolved, prolonged or an alternative treatment could have been considered. PMID:29163980
Fuentes-Pardo, Angela P; Ruzzante, Daniel E
2017-10-01
Whole-genome resequencing (WGR) is a powerful method for addressing fundamental evolutionary biology questions that have not been fully resolved using traditional methods. WGR includes four approaches: the sequencing of individuals to a high depth of coverage with either unresolved or resolved haplotypes, the sequencing of population genomes to a high depth by mixing equimolar amounts of unlabelled-individual DNA (Pool-seq) and the sequencing of multiple individuals from a population to a low depth (lcWGR). These techniques require the availability of a reference genome. This, along with the still high cost of shotgun sequencing and the large demand for computing resources and storage, has limited their implementation in nonmodel species with scarce genomic resources and in fields such as conservation biology. Our goal here is to describe the various WGR methods, their pros and cons and potential applications in conservation biology. WGR offers an unprecedented marker density and surveys a wide diversity of genetic variations not limited to single nucleotide polymorphisms (e.g., structural variants and mutations in regulatory elements), increasing their power for the detection of signatures of selection and local adaptation as well as for the identification of the genetic basis of phenotypic traits and diseases. Currently, though, no single WGR approach fulfils all requirements of conservation genetics, and each method has its own limitations and sources of potential bias. We discuss proposed ways to minimize such biases. We envision a not distant future where the analysis of whole genomes becomes a routine task in many nonmodel species and fields including conservation biology. © 2017 John Wiley & Sons Ltd.
Size-resolved particle emission factors for individual ships
NASA Astrophysics Data System (ADS)
Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias
2011-07-01
In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.
NASA Astrophysics Data System (ADS)
Valocchi, A. J.; Laleian, A.; Werth, C. J.
2017-12-01
Perturbation of natural subsurface systems by fluid inputs may induce geochemical or microbiological reactions that change porosity and permeability, leading to complex coupled feedbacks between reaction and transport processes. Some examples are precipitation/dissolution processes associated with carbon capture and storage and biofilm growth associated with contaminant transport and remediation. We study biofilm growth due to mixing controlled reaction of multiple substrates. As biofilms grow, pore clogging occurs which alters pore-scale flow paths thus changing the mixing and reaction. These interactions are challenging to quantify using conventional continuum-scale porosity-permeability relations. Pore-scale models can accurately resolve coupled reaction, biofilm growth and transport processes, but modeling at this scale is not feasible for practical applications. There are two approaches to address this challenge. Results from pore-scale models in generic pore structures can be used to develop empirical relations between porosity and continuum-scale parameters, such as permeability and dispersion coefficients. The other approach is to develop a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled by a suitable method that ensures continuity of flux across the interface. Thus, regions of high reactivity where flow alteration occurs are resolved at the pore scale for accuracy while regions of low reactivity are resolved at the continuum scale for efficiency. This approach thus avoids the need for empirical upscaling relations in regions with strong feedbacks between reaction and porosity change. We explore and compare these approaches for several two-dimensional cases.
Tracking Hadean processes in modern basalts with 142-Neodymium
NASA Astrophysics Data System (ADS)
Horan, M. F.; Carlson, R. W.; Walker, R. J.; Jackson, M.; Garçon, M.; Norman, M.
2018-02-01
The short-lived 146Sm→142 Nd isotope system (t1/2 = 103 Ma) provides constraints on the timing and processes of terrestrial silicate fractionation during the early Hadean. Although some Archean terranes preserve variability in 142Nd/144Nd, no anomalies have been resolved previously in young rocks. This study provides high precision 142Nd/144Nd data on a suite of ocean island basalts from Samoa and Hawaii previously shown to have variable depletions in 182W/184W that are inversely correlated with 3He/4He ratios. Improved analytical techniques and multiple replicate analyses of Nd show a variation in μ142 Nd values between -1.3 and +2.7 in the suite, relative to the JNdi standard. Given the reproducibility of the standard (±2.9 ppm, 2 SD), two Samoan samples exhibit resolved variability in their 142Nd/144Nd ratios outside of their 95% confidence intervals, suggesting minor variability in the Samoan hotspot. One sample from Samoa has a higher μ142 Nd of +2.7, outside the 95% confidence interval (±1.0 ppm) of the average of the JNdi standard. Limited, but resolved, variation in 142Nd/144Nd within the suite suggests the preservation of early Hadean silicate differentiation in the sources of at least some basalts from Samoa. Larger variations of 182W/184W and 3He/4He ratios in the same samples suggest that metal-silicate separation and mantle outgassing left a more persistent imprint on the accessible mantle compared to 142Nd/144Nd ratios which are impacted by early silicate differentiation.
A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift
NASA Astrophysics Data System (ADS)
Beuchert, T.; Markowitz, A. G.; Krauß, F.; Miniutti, G.; Longinotti, A. L.; Guainazzi, M.; de La Calle Pérez, I.; Malkan, M.; Elvis, M.; Miyaji, T.; Hiriart, D.; López, J. M.; Agudo, I.; Dauser, T.; Garcia, J.; Kreikenbohm, A.; Kadler, M.; Wilms, J.
2015-12-01
Context. The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of active galactic nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Aims: Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV broad line region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. Methods: We examine six Suzaku and 12 Swift observations from a 2008 campaign spanning five weeks. We use a model accounting for the complex spectral interplay of three absorbers with different levels of ionization. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR to X-ray spectral energy distribution (SED) to test for reddening by dust. Results: The 2008 absorption event is due to moderately-ionized (log ξ ~ 1.2-1.4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. Conclusions: The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.
NASA Astrophysics Data System (ADS)
Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Mallia, D. V.; Fasoli, B.; Bares, R.; Catharine, D.; O'Keeffe, D.; Song, Y.; Huang, J.; Horel, J.; Crosman, E.; Hoch, S.; Ehleringer, J. R.
2016-12-01
We address the need for robust highly-resolved emissions and trace gas concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are the result of proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria air pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present a contemporary (2010-2015) emissions inventory and modeled CO2 and carbon monoxide (CO) concentrations for Salt Lake County, Utah. We compare emissions transported by a dispersion model against stationary measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at hourly, building and road-link resolutions, as well as on an hourly gridded scale. The emissions were scaled using annual Energy Information Administration (EIA) fuel consumption data. We derived a CO emissions inventory using methods similar to Hestia, downscaling total county emissions from the 2011 Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The gridded CO emissions were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The Stochastic Time-Inverted Lagrangian Trasport (STILT) dispersion model was used to transport emissions and estimate pollutant concentrations at an hourly resolution. Modeled results were compared against stationary measurements in the Salt Lake County area. This comparison highlights spatial locations and hours of high variability and uncertainty. Sensitivity to biological fluxes as well as to specific economic sectors was tested by varying their contributions to modeled concentrations and calibrating their emissions.
NASA Astrophysics Data System (ADS)
An, Lin; Shen, Tueng T.; Wang, Ruikang K.
2011-10-01
This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm2 with single scan and 7 × 8 mm2 for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm2 with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration.
Freeman, Robin; Dean, Ben; Kirk, Holly; Leonard, Kerry; Phillips, Richard A.; Perrins, Chris M.; Guilford, Tim
2013-01-01
Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover. PMID:23635496
NASA Astrophysics Data System (ADS)
Fan, W.; Bassett, D.; Denolle, M.; Shearer, P. M.; Ji, C.; Jiang, J.
2017-12-01
The 2006 Mw 7.8 Java earthquake was a tsunami earthquake, exhibiting frequency-dependent seismic radiation along strike. High-frequency global back-projection results suggest two distinct rupture stages. The first stage lasted 65 s with a rupture speed of 1.2 km/s, while the second stage lasted from 65 to 150 s with a rupture speed of 2.7 km/s. In addition, P-wave high-frequency radiated energy and fall-off rates indicate a rupture transition at 60 s. High-frequency radiators resolved with back-projection during the second stage spatially correlate with splay fault traces mapped from residual free-air gravity anomalies. These splay faults also collocate with a major tsunami source associated with the earthquake inferred from tsunami first-crest back-propagation simulation. These correlations suggest that the splay faults may have been reactivated during the Java earthquake, as has been proposed for other tsunamigenic earthquakes, such as the 1944 Mw 8.1 Tonankai earthquake in the Nankai Trough.
Decision making for multiple utilization of water resources in New Zealand
NASA Astrophysics Data System (ADS)
Memon, Pyar Ali
1989-09-01
The Clutha is the largest river in New Zealand. The last two decades have witnessed major conflicts centered on the utilization of the water resources of the upper Clutha river. These conflicts have by no means been finally resolved. The focus of this article is on institutional arrangements for water resource management on the Clutha, with particular reference to the decision-making processes that have culminated in the building of the high dam. It critically evaluates recent experiences and comments on future prospects for resolving resource use conflicts rationally through planning for multiple utilization in a climate of market led policies of the present government. The study demonstrates the inevitable conflicts that can arise within a public bureaucracy that combines dual responsibilities for policy making and operational functions. Hitherto, central government has been able to manipulate the water resource allocation process to its advantage because of a lack of clear separation between its two roles as a policy maker and developer. The conflicts that have manifested themselves during the last two decades over the Clutha should be seen as part of a wider public debate during the last two decades concerning resource utilization in New Zealand. The Clutha controversy was preceded by comparable concerns over the rising of the level of Lake Manapouri during the 1960s and has been followed by the debate over the “think big” resource development projects during the 1980s. The election of the fourth Labour government in 1983 has heralded a political and economic policy shift in New Zealand towards minimizing the role of public intervention in resource allocation and major structural reforms in the relative roles of central and regional government in resource management. The significance of these changes pose important implications for the future management of the Clutha.
The resolved stellar populations around 12 Type IIP supernovae
NASA Astrophysics Data System (ADS)
Maund, Justyn R.
2017-08-01
Core-collapse supernovae (SNe) are found in regions associated with recent massive star formation. The stellar population observed around the location of a SN can be used as a probe of the origins of the progenitor star. We apply a Bayesian mixture model to fit isochrones to the massive star population around 12 Type IIP SNe, for which constraints on the progenitors are also available from fortuitous pre-explosion images. Using the high-resolution Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3, we study the massive star population found within 100 pc of each of our target SNe. For most of the SNe in our sample, we find that there are multiple age components in the surrounding stellar populations. In the cases of SNe 2003gd and 2005cs, we find that the progenitor does not come from the youngest stellar population component and, in fact, these relatively low mass progenitors (˜8 M⊙) are found in close proximity to stars as massive as 15 and 50-60 M⊙, respectively. Overall, the field extinction (Galactic and host) derived for these populations is ˜0.3 mag higher than the extinction that was generally applied in previously reported progenitor analyses. We also find evidence, in particular for SN 2004dj, for significant levels of differential extinction. Our analysis for SN 2008bk suggests a significantly lower extinction for the population than the progenitor, but the lifetime of the population and mass determined from pre-explosion images agree. Overall, assuming that the appropriate age component can be suitably identified from the multiple stellar population components present, we find that our Bayesian approach to studying resolved stellar populations can match progenitor masses determined from direct imaging to within ±3 M⊙.
Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei
2015-01-01
Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442
Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei
2015-03-23
Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.
Mori, Shunsuke; Fujiyama, Shigetoshi
2015-01-01
Accompanying the increased use of biological and non-biological antirheumatic drugs, a greater number of cases of hepatitis B virus (HBV) reactivation have been reported in inactive hepatitis B surface antigen (HBsAg) carriers and also in HBsAg-negative patients who have resolved HBV infection. The prevalence of resolved infection varies in rheumatic disease patients, ranging from 7.3% to 66%. Through an electronic search of the PubMed database, we found that among 712 patients with resolved infection in 17 observational cohort studies, 12 experienced HBV reactivation (1.7%) during biological antirheumatic therapy. Reactivation rates were 2.4% for etanercept therapy, 0.6% for adalimumab, 0% for infliximab, 8.6% for tocilizumab, and 3.3% for rituximab. Regarding non-biological antirheumatic drugs, HBV reactivation was observed in 10 out of 327 patients with resolved infection from five cohort studies (3.2%). Most of these patients received steroids concomitantly. Outcomes were favorable in rheumatic disease patients. A number of recommendations have been established, but most of the supporting evidence was derived from the oncology and transplantation fields. Compared with patients in these fields, rheumatic disease patients continue treatment with multiple immunosuppressants for longer periods. Optimal frequency and duration of HBV-DNA monitoring and reliable markers for discontinuation of nucleoside analogues should be clarified for rheumatic disease patients with resolved HBV infection. PMID:26420955
A surprising dynamical mass for V773 Tau B
Boden, Andrew F.; Torres, Guillermo; Duchene, Gaspard; ...
2012-02-10
Here, we report on new high-resolution imaging and spectroscopy on the multiple T Tauri star system V773 Tau over the 2003-2009 period. With these data we derive relative astrometry, photometry between the A and B components, and radial velocity (RV) of the A-subsystem components. Combining these new data with previously published astrometry and RVs, we update the relative A-B orbit model. This updated orbit model, the known system distance, and A-subsystem parameters yield a dynamical mass for the B component for the first time. Remarkably, the derived B dynamical mass is in the range 1.7-3.0 M⊙. This is much highermore » than previous estimates and suggests that like A, B is also a multiple stellar system. Among these data, spatially resolved spectroscopy provides new insight into the nature of the B component. Similar to A, these near-IR spectra indicate that the dominant source in B is of mid-K spectral type. If B is in fact a multiple star system as suggested by the dynamical mass estimate, the simplest assumption is that B is composed of similar ~1.2 M ⊙ pre-main-sequence stars in a close (<1 AU) binary system. This inference is supported by line-shape changes in near-IR spectroscopy of B, tentatively interpreted as changing RV among components in V773 Tau B. Relative photometry indicates that B is highly variable in the near-IR. The most likely explanation for this variability is circum-B material resulting in variable line-of-sight extinction. The distribution of this material must be significantly affected by both the putative B multiplicity and the A-B orbit.« less
Extremely Efficient Multiple Electron-hole Pair Generation in Carbon Nanotube Photodiodes
NASA Astrophysics Data System (ADS)
Gabor, Nathaniel
2010-03-01
The efficient generation of multiple electron-hole (e-h) pairs from a single photon could improve the efficiency of photovoltaic solar cells beyond standard thermodynamic limits [1] and has been the focus of much recent work in semiconductor nanomaterials [2,3]. In single walled carbon nanotubes (SWNTs), the small Fermi velocity and low dielectric constant suggests that electron-electron interactions are very strong and that high-energy carriers should efficiently generate e-h pairs. Here, I will discuss observations of highly efficient generation of e-h pairs due to impact excitation in SWNT p-n junction photodiodes [4]. To investigate optoelectronic transport properties of individual SWNT photodiodes, we focus a laser beam over the device while monitoring the electronic characteristics. Optical excitation into the second electronic subband E22 ˜ 2 EGAP leads to striking photocurrent steps in the device I-VSD characteristics that occur at voltage intervals of the band gap energy EGAP/ e. Spatially and spectrally resolved photocurrent combined with temperature-dependent studies suggest that these steps result from efficient generation of multiple e-h pairs from a single hot E22 carrier. We conclude that in the SWNT photodiode, a single photon with energy greater than 2EGAP is converted into multiple e-h pairs, leading to enhanced photocurrent and increased photo-conversion efficiency. [1] W. Shockley, and H. J. Queisser, Journal of Applied Physics 32, 510 (1961). [2] R. D. Schaller, and V. I. Klimov, Physical Review Letters 92 (18), 186601 (2004). [3] R. J. Ellingson, et al, Nano Letters, 5 (5), 865-871 (2005). [4] Nathaniel M. Gabor, Zhaohui Zhong, Ken Bosnick, Jiwoong Park, and Paul McEuen, Science, 325, 1367 (2009).
Kurien, Biji T; Scofield, R Hal
2009-01-01
Protein blotting is an invaluable technique in immunology to detect and characterize proteins of low abundance. Proteins resolved on sodium dodecyl sulfate (SDS) polyacrylamide gels are normally transferred electrophoretically to adsorbent membranes such as nitrocellulose or polyvinylidene diflouride membranes. Here, we describe the nonelectrophroretic transfer of the Ro 60 (or SSA) autoantigen, 220- and 240-kD spectrin antigens, and prestained molecular weight standards from SDS polyacrylamide gels to obtain up to 12 immunoblots from a single gel and multiple sera.
Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna
2016-05-01
To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.
Caire, William; Nair, Rajasree; Bridges, Debbie
2011-01-01
We report a case of splenic abscess with multiple brain abscesses caused by Streptococcus intermedius in a healthy young man without any identifiable risk factors, which resolved with percutaneous drainage and antibiotics. Streptococcus intermedius, a member of the Streptococcus anginosus group, is a common commensal organism of the oral cavity and gastrointestinal tract, and it is a known cause of deep-seated infections. Suppurative infections caused by Streptococcus anginosus group are sometimes associated with bacteremia, but hematogenous spread of infection from an occult source leading to concurrent splenic abscess and multiple brain abscesses has never been previously reported in a healthy young individual. PMID:21738290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, G.; Nagai, M., E-mail: mnagai@mp.es.osaka-u.ac.jp, E-mail: ashida@mp.es.osaka-u.ac.jp; Ashida, M., E-mail: mnagai@mp.es.osaka-u.ac.jp, E-mail: ashida@mp.es.osaka-u.ac.jp
We estimated the carrier multiplication efficiency in the most common solar-cell material, Si, by using optical-pump/terahertz-probe spectroscopy. Through close analysis of time-resolved data, we extracted the exact number of photoexcited carriers from the sheet carrier density 10 ps after photoexcitation, excluding the influences of spatial diffusion and surface recombination in the time domain. For incident photon energies greater than 4.0 eV, we observed enhanced internal quantum efficiency due to carrier multiplication. The evaluated value of internal quantum efficiency agrees well with the results of photocurrent measurements. This optical method allows us to estimate the carrier multiplication and surface recombination of carriersmore » quantitatively, which are crucial for the design of the solar cells.« less
Lunar Advanced Volatile Analysis Subsystem: Pressure Transducer Trade Study
NASA Technical Reports Server (NTRS)
Kang, Edward Shinuk
2017-01-01
In Situ Resource Utilization (ISRU) is a key factor in paving the way for the future of human space exploration. The ability to harvest resources on foreign astronomical objects to produce consumables and propellant offers potential reduction in mission cost and risk. Through previous missions, the existence of water ice at the poles of the moon has been identified, however the feasibility of water extraction for resources remains unanswered. The Resource Prospector (RP) mission is currently in development to provide ground truth, and will enable us to characterize the distribution of water at one of the lunar poles. Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is the primary payload on RP that will be used in conjunction with a rover. RESOLVE contains multiple instruments for systematically identifying the presence of water. The main process involves the use of two systems within RESOLVE: the Oxygen Volatile Extraction Node (OVEN) and Lunar Advanced Volatile Analysis (LAVA). Within the LAVA subsystem, there are multiple calculations that depend on accurate pressure readings. One of the most important instances where pressure transducers (PT) are used is for calculating the number of moles in a gas transfer from the OVEN subsystem. As a critical component of the main process, a mixture of custom and commercial off the shelf (COTS) PTs are currently being tested in the expected operating environment to eventually down select an option for integrated testing in the LAVA engineering test unit (ETU).
Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.
Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech
2017-12-15
Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.
Doppler centroid estimation ambiguity for synthetic aperture radars
NASA Technical Reports Server (NTRS)
Chang, C. Y.; Curlander, J. C.
1989-01-01
A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.
Weak ergodicity of population evolution processes.
Inaba, H
1989-10-01
The weak ergodic theorems of mathematical demography state that the age distribution of a closed population is asymptotically independent of the initial distribution. In this paper, we provide a new proof of the weak ergodic theorem of the multistate population model with continuous time. The main tool to attain this purpose is a theory of multiplicative processes, which was mainly developed by Garrett Birkhoff, who showed that ergodic properties generally hold for an appropriate class of multiplicative processes. First, we construct a general theory of multiplicative processes on a Banach lattice. Next, we formulate a dynamical model of a multistate population and show that its evolution operator forms a multiplicative process on the state space of the population. Subsequently, we investigate a sufficient condition that guarantees the weak ergodicity of the multiplicative process. Finally, we prove the weak and strong ergodic theorems for the multistate population and resolve the consistency problem.
NASA Astrophysics Data System (ADS)
Tito, M. A.; Pusep, Yu A.
2018-01-01
Time-resolved magneto-photoluminescence was employed to study the magnetic field induced quantum phase transition separating two phases with different distributions of electrons over quantum wells in an aperiodic multiple quantum well, embedded in a wide AlGaAs parabolic quantum well. Intensities, broadenings and recombination times attributed to the photoluminescence lines emitted from individual quantum wells of the multiple quantum well structure were measured as a function of the magnetic field near the transition. The presented data manifest themselves to the magnetic field driven migration of the free electrons between the quantum wells of the studied multiple quantum well structure. The observed charge transfer was found to influence the screening of the multiple quantum well and disorder potentials. Evidence of the localization of the electrons in the peripheral quantum wells in strong magnetic field is presented.
Time-resolved neutron imaging at ANTARES cold neutron beamline
NASA Astrophysics Data System (ADS)
Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.
2015-07-01
In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10/P07008/mmedia. The videos are given as supplementary material linked to the main article.
The ability to understand and manage ecological changes caused by anthropogenic stressors is often impeded by a lack of sufficient information to resolve pattern and change with sufficient resolution and extent. Increasingly, different types of environmental data are available t...
Making the Right Choices: Ethical Judgments among Educational Leaders
ERIC Educational Resources Information Center
Eyal, Ori; Berkovich, Izhak; Schwartz, Talya
2011-01-01
Purpose: Scholars have adopted a multiple ethical paradigms approach in an attempt to better understand the bases upon which everyday ethical dilemmas are resolved by educational leaders. The aim of this study is to examine the ethical considerations in ethical judgments of aspiring principals. Design/methodology/approach: To examine the ethical…
USDA-ARS?s Scientific Manuscript database
The lack of energy closure has been a longstanding issue with Eddy Covariance (EC). Multiple mechanisms have been proposed to explain the discrepancies in energy balance including diurnal energy storage changes, advection of energy, and larger scale turbulent processes that cannot be resolved by fi...
ERIC Educational Resources Information Center
Staver, John R.
2010-01-01
Science and religion exhibit multiple relationships as ways of knowing. These connections have been characterized as cousinly, mutually respectful, non-overlapping, competitive, proximate-ultimate, dominant-subordinate, and opposing-conflicting. Some of these ties create stress, and tension between science and religion represents a significant…
USDA-ARS?s Scientific Manuscript database
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made. The two varieties within C. neoform...
NASA Technical Reports Server (NTRS)
1978-01-01
The plan schedule and status of multiple objectives to be achieved in the development, manufacture, installation, and maintenance of two solar heated hot water prototype systems and two heat exchangers are reported. A computer program developed to resolve problems and evaluate system performance is described.
Super-resolved Parallel MRI by Spatiotemporal Encoding
Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio
2016-01-01
Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293
Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.
Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa; Allen, Samantha L; Chapagain, Prem P; Gerstman, Bernard S; Regmi, Chola K; Piatkevich, Kiryl D; Verkhusha, Vladislav V; Joo, Taiha; Jimenez, Ralph
2016-08-04
Far-red fluorescent proteins are critical for in vivo imaging applications, but the relative importance of structure versus dynamics in generating large Stokes-shifted emission is unclear. The unusually red-shifted emission of TagRFP675, a derivative of mKate, has been attributed to the multiple hydrogen bonds with the chromophore N-acylimine carbonyl. We characterized TagRFP675 and point mutants designed to perturb these hydrogen bonds with spectrally resolved transient grating and time-resolved fluorescence (TRF) spectroscopies supported by molecular dynamics simulations. TRF results for TagRFP675 and the mKate/M41Q variant show picosecond time scale red-shifts followed by nanosecond time blue-shifts. Global analysis of the TRF spectra reveals spectrally distinct emitting states that do not interconvert during the S1 lifetime. These dynamics originate from photoexcitation of a mixed ground-state population of acylimine hydrogen bond conformers. Strategically tuning the chromophore environment in TagRFP675 might stabilize the most red-shifted conformation and result in a variant with a larger Stokes shift.
Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L
2008-10-01
Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardoyan, G.; Rao, Nageswara S; Towlsey, D.
In recent years, the computer networking community has seen a steady growth in bandwidth-delay products (BDPs). Several TCP variants were created to combat the shortcomings of legacy TCP when it comes to operation in high-BDP environments. These variants, among which are CUBIC, STCP, and H-TCP, have been extensively studied in some empirical contexts, and some analytical models exist for CUBIC and STCP. However, since these studies have been conducted, BDPs have risen even more, and new bulk data transfer tools have emerged that utilize multiple parallel TCP streams. In view of these new developments, it is imperative to revisit themore » question: Which congestion control algorithms are best adapted to current networking environments? In order to help resolve this question, we contribute the following: (i) using first principles, we develop a general throughput-prediction framework that takes into account buffer sizes and maximum window constraints; (ii) we validate the models using measurements and achieve low prediction errors; (iii) we note differences in TCP dynamics between two experimental configurations and find one of them to be significantly more deterministic than the other; we also find that CUBIC and H-TCP outperform STCP, especially when multiple streams are used; and (iv) we present preliminary results for modelling multiple TCP streams for CUBIC and STCP.« less
Giddings, J C
1995-05-26
While the use of multiple dimensions in separation systems can create very high peak capacities, the effectiveness of the enhanced peak capacity in resolving large numbers of components depends strongly on whether the distribution of component peaks is ordered or disordered. Peak overlap is common in disordered distributions, even with a very high peak capacity. It is therefore of great importance to understand the origin of peak order/disorder in multidimensional separations and to address the question of whether any control can be exerted over observed levels of order and disorder and thus separation efficacy. It is postulated here that the underlying difference between ordered and disordered distributions of component peaks in separation systems is related to sample complexity as measured by a newly defined parameter, the sample dimensionality s, and by the derivative dimensionality s'. It is concluded that the type and degree of order and disorder is determined by the relationship of s (or s') to the dimensionality n of the separation system employed. Thus for some relatively simple samples (defined as having small s values), increased order and a consequent enhancement of resolution can be realized by increasing n. The resolution enhancement is in addition to the normal gain in resolving power resulting from the increased peak capacity of multidimensional systems. However, for other samples (having even smaller s values), an increase in n provides no additional benefit in enhancing component separability.
Random phase detection in multidimensional NMR.
Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C
2011-10-04
Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.
Protoplanetary Disks in Multiple Star Systems
NASA Astrophysics Data System (ADS)
Harris, Robert J.
Most stars are born in multiple systems, so the presence of a stellar companion may commonly influence planet formation. Theory indicates that companions may inhibit planet formation in two ways. First, dynamical interactions can tidally truncate circumstellar disks. Truncation reduces disk lifetimes and masses, leaving less time and material for planet formation. Second, these interactions might reduce grain-coagulation efficiency, slowing planet formation in its earliest stages. I present three observational studies investigating these issues. First is a spatially resolved Submillimeter Array (SMA) census of disks in young multiple systems in the Taurus-Auriga star-forming region to study their bulk properties. With this survey, I confirmed that disk lifetimes are preferentially decreased in multiples: single stars have detectable millimeter-wave continuum emission twice as often as components of multiples. I also verified that millimeter luminosity (proportional to disk mass) declines with decreasing stellar separation. Furthermore, by measuring resolved-disk radii, I quantitatively tested tidal-truncation theories: results were mixed, with a few disks much larger than expected. I then switch focus to the grain-growth properties of disks in multiple star systems. By combining SMA, Combined Array for Research in Millimeter Astronomy (CARMA), and Jansky Very Large Array (VLA) observations of the circumbinary disk in the UZ Tau quadruple system, I detected radial variations in the grain-size distribution: large particles preferentially inhabit the inner disk. Detections of these theoretically predicted variations have been rare. I related this to models of grain coagulation in gas disks and find that our results are consistent with growth limited by radial drift. I then present a study of grain growth in the disks of the AS 205 and UX Tau multiple systems. By combining SMA, Atacama Large Millimeter/submillimeter Array (ALMA), and VLA observations, I detected radial variations of the grain-size distribution in the AS 205 A disk, but not in the UX Tau A disk. I find that some combination of radial drift and fragmentation limits growth in the AS 205 A disk. In the final chapter, I summarize my findings that, while multiplicity clearly influences bulk disk properties, it does not obviously inhibit grain growth. Other investigations are suggested.
Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity
Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.; ...
2015-03-03
Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of themore » Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less
Big Data in Reciprocal Space: Sliding Fast Fourier Transforms for Determining Periodicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevan, Rama K.; Belianinov, Alex; Gianfrancesco, Anthony G.
Significant advances in atomically resolved imaging of crystals and surfaces have occurred in the last decade allowing unprecedented insight into local crystal structures and periodicity. Yet, the analysis of the long-range periodicity from the local imaging data, critical to correlation of functional properties and chemistry to the local crystallography, remains a challenge. Here, we introduce a Sliding Fast Fourier Transform (FFT) filter to analyze atomically resolved images of in-situ grown La5/8Ca3/8MnO3 films. We demonstrate the ability of sliding FFT algorithm to differentiate two sub-lattices, resulting from a mixed-terminated surface. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) of themore » Sliding FFT dataset reveal the distinct changes in crystallography, step edges and boundaries between the multiple sub-lattices. The method is universal for images with any periodicity, and is especially amenable to atomically resolved probe and electron-microscopy data for rapid identification of the sub-lattices present.« less
Polarization recovery through scattering media.
de Aguiar, Hilton B; Gigan, Sylvain; Brasselet, Sophie
2017-09-01
The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.
Kagawa, Masayuki; Sasaki, Noriyuki; Suzumura, Kazuki; Matsui, Takemi
2015-01-01
Disturbed sleep has become more common in recent years. To increase the quality of sleep, undergoing sleep observation has gained interest as an attempt to resolve possible problems. In this paper, we evaluate a non-restrictive and non-contact method for classifying real-time sleep stages and report on its potential applications. The proposed system measures body movements and respiratory signals of a sleeping person using a multiple 24-GHz microwave radar placed beneath the mattress. We determined a body-movement index to identify wake and sleep periods, and fluctuation indices of respiratory intervals to identify sleep stages. For identifying wake and sleep periods, the rate agreement between the body-movement index and the reference result using the R&K method was 83.5 ± 6.3%. One-minute standard deviations, one of the fluctuation indices of respiratory intervals, had a high degree of contribution and showed a significant difference across the three sleep stages (REM, LIGHT, and DEEP; p <; 0.001). Although the degree that the 5-min fractal dimension contributed-another fluctuation index-was not as high as expected, its difference between REM and DEEP sleep was significant (p <; 0.05). We applied a linear discriminant function to classify wake or sleep periods and to estimate the three sleep stages. The accuracy was 79.3% for classification and 71.9% for estimation. This is a novel system for measuring body movements and body-surface movements that are induced by respiration and for measuring high sensitivity pulse waves using multiple radar signals. This method simplifies measurement of sleep stages and may be employed at nursing care facilities or by the general public to increase sleep quality.
False negative rates in Drosophila cell-based RNAi screens: a case study
2011-01-01
Background High-throughput screening using RNAi is a powerful gene discovery method but is often complicated by false positive and false negative results. Whereas false positive results associated with RNAi reagents has been a matter of extensive study, the issue of false negatives has received less attention. Results We performed a meta-analysis of several genome-wide, cell-based Drosophila RNAi screens, together with a more focused RNAi screen, and conclude that the rate of false negative results is at least 8%. Further, we demonstrate how knowledge of the cell transcriptome can be used to resolve ambiguous results and how the number of false negative results can be reduced by using multiple, independently-tested RNAi reagents per gene. Conclusions RNAi reagents that target the same gene do not always yield consistent results due to false positives and weak or ineffective reagents. False positive results can be partially minimized by filtering with transcriptome data. RNAi libraries with multiple reagents per gene also reduce false positive and false negative outcomes when inconsistent results are disambiguated carefully. PMID:21251254
Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments
NASA Astrophysics Data System (ADS)
Lane, Peter C. R.; Gobet, Fernand
2013-03-01
Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the `speciated non-dominated sorting genetic algorithm' for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.
Pena, S D; Barreto, G; Vago, A R; De Marco, L; Reinach, F C; Dias Neto, E; Simpson, A J
1994-01-01
Low-stringency single specific primer PCR (LSSP-PCR) is an extremely simple PCR-based technique that detects single or multiple mutations in gene-sized DNA fragments. A purified DNA fragment is subjected to PCR using high concentrations of a single specific oligonucleotide primer, large amounts of Taq polymerase, and a very low annealing temperature. Under these conditions the primer hybridizes specifically to its complementary region and nonspecifically to multiple sites within the fragment, in a sequence-dependent manner, producing a heterogeneous set of reaction products resolvable by electrophoresis. The complex banding pattern obtained is significantly altered by even a single-base change and thus constitutes a unique "gene signature." Therefore LSSP-PCR will have almost unlimited application in all fields of genetics and molecular medicine where rapid and sensitive detection of mutations and sequence variations is important. The usefulness of LSSP-PCR is illustrated by applications in the study of mutants of smooth muscle myosin light chain, analysis of a family with X-linked nephrogenic diabetes insipidus, and identity testing using human mitochondrial DNA. Images PMID:8127912
Resolving occlusion and segmentation errors in multiple video object tracking
NASA Astrophysics Data System (ADS)
Cheng, Hsu-Yung; Hwang, Jenq-Neng
2009-02-01
In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.
Multiple Stellar Flybys Sculpting the Circumstellar Architecture in RW Aurigae
NASA Astrophysics Data System (ADS)
Rodriguez, Joseph E.; Loomis, Ryan; Cabrit, Sylvie; Haworth, Thomas J.; Facchini, Stefano; Dougados, Catherine; Booth, Richard A.; Jensen, Eric L. N.; Clarke, Cathie J.; Stassun, Keivan G.; Dent, William R. F.; Pety, Jérôme
2018-06-01
We present high-resolution ALMA Band 6 and 7 observations of the tidally disrupted protoplanetary disks of the RW Aurigae binary. Our observations reveal tidal streams in addition to the previously observed tidal arm around RW Aur A. The observed configuration of tidal streams surrounding RW Aur A and B is incompatible with a single star–disk tidal encounter, suggesting that the RW Aurigae system has undergone multiple flyby interactions. We also resolve the circumstellar disks around RW Aur A and B, with CO radii of 58 au and 38 au consistent with tidal truncation, and 2.5 times smaller dust emission radii. The disks appear misaligned by 12° or 57°. Using new photometric observations from the American Association of Variable Star Observers (AAVSO) and the All Sky Automated Survey for SuperNovae (ASAS-SN) archives, we have also identified an additional dimming event of the primary that began in late 2017 and is currently ongoing. With over a century of photometric observations, we are beginning to explore the same spatial scales as ALMA.
Are X-rays the key to integrated computational materials engineering?
Ice, Gene E.
2015-11-01
The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less
High Dynamic Velocity Range Particle Image Velocimetry Using Multiple Pulse Separation Imaging
Persoons, Tim; O’Donovan, Tadhg S.
2011-01-01
The dynamic velocity range of particle image velocimetry (PIV) is determined by the maximum and minimum resolvable particle displacement. Various techniques have extended the dynamic range, however flows with a wide velocity range (e.g., impinging jets) still challenge PIV algorithms. A new technique is presented to increase the dynamic velocity range by over an order of magnitude. The multiple pulse separation (MPS) technique (i) records series of double-frame exposures with different pulse separations, (ii) processes the fields using conventional multi-grid algorithms, and (iii) yields a composite velocity field with a locally optimized pulse separation. A robust criterion determines the local optimum pulse separation, accounting for correlation strength and measurement uncertainty. Validation experiments are performed in an impinging jet flow, using laser-Doppler velocimetry as reference measurement. The precision of mean flow and turbulence quantities is significantly improved compared to conventional PIV, due to the increase in dynamic range. In a wide range of applications, MPS PIV is a robust approach to increase the dynamic velocity range without restricting the vector evaluation methods. PMID:22346564
NASA Astrophysics Data System (ADS)
Joshi, Narahari V.; Medina, Honorio; Barboza, J. M.; Colantuoni, Gladys; Quintero, Maritza
2004-07-01
Chondrocytes, obtained from testosterone treated human articular cartilage, were examined by a recently developed Multiple Beam Interference Microscopy (MBIM) attached to a confocal set up, Video-enhanced differential interference microphotography and also by cinematography. In the MBIM, the intensity of the transmitted pattern is given by the Airy function which increases the contrast dramatically as the coefficient of the reflectance of the parallel plates increases. Moreover, in this configuration, the beam passes several times through a specific organelle and increases its optical path difference both because of the increase in the trajectory and refractive index (high density) of the organelle. The improved contrast enhances the resolving power of the system and makes visible several structural details of sub micron dimensions like nucleolus, retraction fibers, podia, etc. which are not possible to reveal with such a clarity by conventional techniques such as bright field, phase contrast or DIC. This technique permits to detect the oscillatory and rotational motions of unstained cilia for the first time. The frequency of oscillations was found to be 0.8 Hz.
Unrecognized magic mushroom abuse in a 28-year-old man.
McClintock, Ryan L; Watts, David J; Melanson, Scott
2008-10-01
A 28-year-old man with a history of drug and alcohol abuse presented multiple times to the hospital over 2 months with an elusive constellation of symptoms, resolving spontaneously in each instance. This patient required a high level of care for management and stabilization, including 3 emergency department visits, 2 medical floor admissions, and 1 intensive care unit admission. In both the emergency department and inpatient setting, all laboratory and imaging study results, including gas chromatography/mass spectrophotometry of the urine, were negative/normal. A definitive diagnosis eluded multiple emergency medicine, critical care, and consulting physicians. His symptoms included altered mental status, vomiting, diaphoresis, and mydriasis. The patient later admitted using mushrooms to a nurse. In the absence of confirmatory testing, but supported by exclusionary and anecdotal data, we believe that our patient's symptoms are consistent with Psilocybe mushroom toxicity. We feel that had this been considered initially, the correct diagnosis would have led to a better utilization of resources, and we want to remind emergency physicians of the possibility of mushroom abuse in any similar clinical setting.
NASA Astrophysics Data System (ADS)
Kawaguchi, S.; Takemoto, M.; Osaka, K.; Nishibori, E.; Moriyoshi, C.; Kubota, Y.; Kuroiwa, Y.; Sugimoto, K.
2017-08-01
In this study, we developed a user-friendly automatic powder diffraction measurement system for Debye-Scherrer geometry using a capillary sample at beamline BL02B2 of SPring-8. The measurement system consists of six one-dimensional solid-state (MYTHEN) detectors, a compact auto-sampler, wide-range temperature control systems, and a gas handling system. This system enables to do the automatic measurement of temperature dependence of the diffraction patterns for multiple samples. We introduced two measurement modes in the MYTHEN system and developed new attachments for the sample environment such as a gas handling system. The measurement modes and the attachments can offer in situ and/or time-resolved measurements in an extended temperature range between 25 K and 1473 K and various gas atmospheres and pressures. The results of the commissioning and performance measurements using reference materials (NIST CeO2 674b and Si 640c), V2O3 and Ti2O3, and a nanoporous coordination polymer are presented.
Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun
2014-12-01
Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
Kundu, Amartya; Fitzgibbons, Timothy P
2015-09-24
Sinus bradycardia has been reported after administration of pulse dose steroids, although most cases have occurred in children and are asymptomatic. We report a case of acute symptomatic sinus bradycardia due to pulse dose steroids in a woman with multiple sclerosis. Interestingly, this patient also suffered from inappropriate sinus tachycardia due to autonomic involvement of multiple sclerosis. A 48-year-old Caucasian woman with multiple sclerosis and chronic palpitations due to inappropriate sinus tachycardia was prescribed a 5-day course of intravenous methylprednisolone for treatment of an acute flare. Immediately following the fourth dose of intravenous methylprednisolone, she developed dyspnea, chest heaviness, and lightheadedness. She was referred to the emergency department where an electrocardiogram showed marked sinus bradycardia (40 beats per minute). Initial laboratory test results, including a complete blood count, basic metabolic profile and cardiac biomarkers, were normal. She was admitted for observation on telemetry monitoring. Her heart rate gradually increased and her symptoms resolved. Her outpatient dose of atenolol, taken for symptomatic inappropriate sinus tachycardia, was resumed. Our patient's acute symptoms were attributed to symptomatic sinus bradycardia due to pulse dose steroid treatment. Although several theories have been suggested to explain this phenomenon, the exact mechanism still remains unknown. It does not warrant any specific treatment, as it is a self-limiting side effect that resolves after discontinuing steroid infusion. Young patients who are free of any active cardiac conditions can safely be administered pulse dose steroids without monitoring. However, older patients with active cardiac conditions should have heart rate and blood pressure monitoring during infusion. Our patient also suffered from inappropriate sinus tachycardia, a manifestation of autonomic involvement of multiple sclerosis that has not been previously described. This case has implications for the pathogenesis and treatment of dysautonomia in patients with multiple sclerosis.
HST/WFPC2 Photometry in the 30 Doradus Nebula Beyond R136
NASA Astrophysics Data System (ADS)
Barbá, R. H.; Walborn, N. R.
30 Doradus is the nearest and hence best resolved extragalactic starburst. Knowledge of its stellar content is vital to the interpretation of more distant starbursts, as well as to fundamental astrophysical problems such as the IMF, stellar mass limits, stellar evolution, and the structure of giant H II regions. In spite of the relative proximity of 30 Dor, it is essential to apply the highest possible spatial resolution to disentangle compact multiple systems and groups, which are characteristic of massive young regions and a source of systematic errors in astrophysical inferences if they are not resolved. Recents studies of the stellar content of 30 Doradus with HST/WFPC2 have concentrated on the central cluster core, R136 (Hunter et al. 1995, 1996, 1997; Nota et al. 1998). Followup HST/FOS spectroscopy was performed in and around R136 to a radius of about 15 arcsec, and the most spectacular concentration of the most massive young stars known was discovered (Massey & Hunter 1998; Heap et al. 1998). However, R136 and its immediate surroundings account for only a third to a half of the ionization of 30 Dor. Other very massive stars and stellar systems are distributed throughout the several-arcminute extent of the Nebula. They include objects both older and younger than R136; there is evidence that the formation of the latter has been triggered by the energetic activity of R136. So far, these important surrounding populations have been investigated only with groundbased observations (Parker 1993; Walborn & Blades 1997). In the latter spectral classification study, five spatially and/or temporally distinct stellar components were isolated within the Nebula. But numerous multiple systems remain unresolved in these populations, particularly in the younger ones. In this paper, we report HST/WFPC2 photometry of the 30 Doradus stellar content surrounding R136, with emphasis on the numerous multiple systems and compact clusterings found there. Of particular interest are systems in the bright nebular filaments where current massive-star formation is taking place, as revealed by both groundbased and HST/NICMOS infrared images. Special attention is given to the objects included in the above groundbased spectral-classification studies. Magnitudes and colors are derived for the newly resolved components of the multiple systems, while their ages and evolutionary status will be inferred insofar as possible. However, it is well known that the effective temperatures and masses of hot stars are degenerate when derived from photometry alone. Hence, this project is viewed as preparation for followup spatially resolved spectroscopy with HST/STIS, in order to advance our knowledge of the entire stellar content of 30 Doradus to the current state of the art, as is warranted by its unique status.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yukun; Wang, Shuai; Feng, Lungang
In this study, gallium nitride (GaN) based light-emitting diodes (LEDs) with single and multiple hole-reservoir layers (HRLs) inserted in the electron-blocking layer (EBL) have been investigated numerically and experimentally. According to simulation results, a better electron confinement and a higher hole injection level can be achieved by the multiple HRLs inserted in the EBL region. To further reveal the underlying mechanism of hole injection enhancement experimentally, the active regions were intentionally designed to emit photons with three different wavelengths of 440 nm, 460 nm, and 480 nm, respectively. Based on the experimental results of photoluminescence (PL) and time-resolved PL (TRPL) measurements conducted atmore » 298 K, the remarkable enhancement (148%) of PL intensities and significant increase in the decay times of the quantum wells close to p-GaN can be obtained. Therefore, the mechanism is proposed that carriers are able to reserve in the EBL region with multiple HRLs for a much longer time. Meanwhile, carriers could diffuse into the active region by tunnelling and/or thermo-electronic effect and then recombine efficiently, leading to the better carrier reservoir effect and higher hole injection in LEDs. As a result, by inserting multiple HRLs in the EBL region instead of single HRL, the experimental external quantum efficiency is enhanced by 19.8%, while the serious droop ratio is markedly suppressed from 37.0% to 27.6% at the high current injection of 100 A/cm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Zhao, Ziyue; Gan, Xiaochuan; Zou, Zhi; Ma, Liqun
2018-01-01
The dynamic envelope measurement plays very important role in the external dimension design for high-speed train. Recently there is no digital measurement system to solve this problem. This paper develops an optoelectronic measurement system by using monocular digital camera, and presents the research of measurement theory, visual target design, calibration algorithm design, software programming and so on. This system consists of several CMOS digital cameras, several luminous targets for measuring, a scale bar, data processing software and a terminal computer. The system has such advantages as large measurement scale, high degree of automation, strong anti-interference ability, noise rejection and real-time measurement. In this paper, we resolve the key technology such as the transformation, storage and calculation of multiple cameras' high resolution digital image. The experimental data show that the repeatability of the system is within 0.02mm and the distance error of the system is within 0.12mm in the whole workspace. This experiment has verified the rationality of the system scheme, the correctness, the precision and effectiveness of the relevant methods.
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-01-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency. PMID:28225028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kan-Sheng; Xu, Rui; Luu, Norman S.
Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-basedmore » lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 degrees C, this work advances lithium-ion battery technology into unprecedented regimes of operation.« less
Stacking multiple connecting functional materials in tandem organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong
2017-02-01
Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.
Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C
2017-04-12
Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.
Basic performance of Mg co-doped new scintillator used for TOF-DOI-PET systems
NASA Astrophysics Data System (ADS)
Kobayashi, Takahiro; Yamamoto, Seiichi; Okumura, Satoshi; Yeom, Jung Yeol; Kamada, Kei; Yoshikawa, Akira
2017-01-01
Phoswich depth-of-interaction (DOI) detectors utilizing multiple scintillators with different decay time are a useful device for developing a high spatial resolution, high sensitivity PET scanner. However, in order to apply pulse shape discrimination (PSD), there are not many combinations of scintillators for which phoswich technique can be implemented. Ce doped Gd3Ga3Al2O12 (GFAG) is a recently developed scintillator with a fast decay time. This scintillator is similar to Ce doped Gd3Al2Ga3O12 (GAGG), which is a promising scintillator for PET detector with high light yield. By stacking these scintillators, it may be possible to realize a high spatial resolution and high timing resolution phoswich DOI detector. Such phoswich DOI detector may be applied to time-of-flight (TOF) systems with high timing performance. Therefore, in this study, we tested the basic performance of the new scintillator -GFAG for use in a TOF phoswich detector. The measured decay time of a GFAG element of 2.9 mmx2.9 mmx10 mm in dimension, which was optically coupled to a photomultiplier tube (PMT), was faster (66 ns) than that of same sized GAGG (103 ns). The energy resolution of the GFAG element was 5.7% FWHM which was slightly worse than that of GAGG with 4.9% FWHM for 662 keV gamma photons without saturation correction. Then we assembled the GFAG and the GAGG crystals in the depth direction to form a 20 mm long phoswich element (GFAG/GAGG). By pulse shape analysis, the two types of scintillators were clearly resolved. Measured timing resolution of a pair of opposing GFAG/GAGG phoswich scintillator coupled to Silicon Photomultipliers (Si-PM) was good with coincidence resolving time of 466 ps FWHM. These results indicate that the GFAG combined with GAGG can be a candidate for TOF-DOI-PET systems.
Wei, Liping; Yan, Wenrong; Ho, Derek
2017-12-04
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.
Yan, Wenrong; Ho, Derek
2017-01-01
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568
Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten
2015-02-03
The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.
Dynamics of multiple-goal pursuit.
Louro, Maria J; Pieters, Rik; Zeelenberg, Marcel
2007-08-01
The authors propose and test a model of multiple-goal pursuit that specifies how individuals allocate effort among multiple goals over time. The model predicts that whether individuals decide to step up effort, coast, abandon the current goal, or switch to pursue another goal is determined jointly by the emotions that flow from prior goal progress and the proximity to future goal attainment, and proximally determined by changes in expectancies about goal attainment. Results from a longitudinal diary study and 2 experiments show that positive and negative goal-related emotions can have diametrically opposing effects on goal-directed behavior, depending on the individual's proximity to goal attainment. The findings resolve contrasting predictions about the influence of positive and negative emotions in volitional behavior, critically amend the goal gradient hypothesis, and provide new insights into the dynamics and determinants of multiple-goal pursuit.
Psonis, Nikolaos; Antoniou, Aglaia; Karameta, Emmanouela; Leaché, Adam D; Kotsakiozi, Panayiota; Darriba, Diego; Kozlov, Alexey; Stamatakis, Alexandros; Poursanidis, Dimitris; Kukushkin, Oleg; Jablonski, Daniel; Crnobrnja-Isailović, Jelka; Gherghel, Iulian; Lymberakis, Petros; Poulakakis, Nikos
2018-08-01
The Balkan Peninsula constitutes a biodiversity hotspot with high levels of species richness and endemism. The complex geological history of the Balkans in conjunction with the climate evolution are hypothesized as the main drivers generating this biodiversity. We investigated the phylogeography, historical demography, and population structure of closely related wall-lizard species from the Balkan Peninsula and southeastern Europe to better understand diversification processes of species with limited dispersal ability, from Late Miocene to the Holocene. We used several analytical methods integrating genome-wide SNPs (ddRADseq), microsatellites, mitochondrial and nuclear DNA data, as well as species distribution modelling. Phylogenomic analysis resulted in a completely resolved species level phylogeny, population level analyses confirmed the existence of at least two cryptic evolutionary lineages and extensive within species genetic structuring. Divergence time estimations indicated that the Messinian Salinity Crisis played a key role in shaping patterns of species divergence, whereas intraspecific genetic structuring was mainly driven by Pliocene tectonic events and Quaternary climatic oscillations. The present work highlights the effectiveness of utilizing multiple methods and data types coupled with extensive geographic sampling to uncover the evolutionary processes that shaped the species over space and time. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushkar, Yulia
The goal of this project was to demonstrate time resolved analysis of the electronic structure dynamic using techniques of miniature X-ray emission spectrometers. The focus was on development of easy/fast to set up, portable, cost efficient, good energy resolution, good sensitivity, dispersive (particularly suitable for time resolved analysis) system. These mile stones were achieved and miniXES spectrometer for the Mn Kβ range was reported. Contrary to pointby- point detection, the miniXES setup allows a complete emission spectrum to be recorded following each laser excitation, Fig. 1. miniXES system compares favorably with other realization of a dispersive XES spectrometer with cylindricallymore » bent analyzers. Setup reported by others has disadvantages of high cost (which limits its re-creation by other researchers) and lower (0.55 eV) energy resolution (at 6490 eV). The energy resolution of our miniXES system is 0.30 eV. Additional advantage of portability allowed us to use miniXES at multiple beamlines at APS (ANL): 20-ID, 14-ID and 7-ID. Moreover, in March 2013 PI transported the Mn Kβ spectrometer (which fits into a small hand luggage bag) to SLS (Switzerland) and set it up there for the TR-XES beamtime. Our spectrometer works with 2D-PSD (Pilatus-100) which is a standard detector available via equipment pool at synchrotron sources.« less
Biener, Gabriel; Stoneman, Michael R; Acbas, Gheorghe; Holz, Jessica D; Orlova, Marianna; Komarova, Liudmila; Kuchin, Sergei; Raicu, Valerică
2013-12-27
Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth. Here, we demonstrate an optical micro-spectroscopic scheme that employs a laser beam shaped into a line to excite in parallel multiple sample voxels. The method presents dramatically increased sensitivity and/or acquisition speed and, at the same time, has excellent spatial and spectral resolution, similar to point-scan configurations. When applied to FRET imaging using an oligomeric FRET construct expressed in living cells and consisting of a FRET acceptor linked to three donors, the technique based on line-shaped excitation provides higher accuracy compared to the point-scan approach, and it reduces artifacts caused by photobleaching and other undesired photophysical effects.
An airborne robotic platform for mapping thermal structure in surface water bodies
NASA Astrophysics Data System (ADS)
Thompson, S. E.; Chung, M.; Detweiler, C.; Ore, J. P.
2015-12-01
The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally resolved observations of the thermal structure of lakes and rivers remains challenging. For relatively shallow water bodies, observations of water temperature from aerial platforms are attractive: they do not require shoreline access, they can be quickly and easily deployed and redeployed, facilitating repeated sampling, and they can rapidly move between measurement locations, allowing multiple measurements to be made during single flights. However, they are also subject to well-known limitations including payload, flight duration and operability, and their effectiveness as a mobile platform for thermal sensing is still poorly characterized. In this talk, I will introduce an aerial thermal sensing platform that enables water temperature measurements to be made and spatially located throughout a water column, and present preliminary results from initial field experiments comparing in-situ temperature observations to those made from the UAS platform. The results highlight the potential scalability of the platform to provide high-resolution 3D thermal mapping of a ~1 ha lake in 2-3 flights (circa 1 hour), sufficient to resolve diurnal variations. Operability constraints and key needs for further development are also identified.
An adaptive semi-Lagrangian advection model for transport of volcanic emissions in the atmosphere
NASA Astrophysics Data System (ADS)
Gerwing, Elena; Hort, Matthias; Behrens, Jörn; Langmann, Bärbel
2018-06-01
The dispersion of volcanic emissions in the Earth atmosphere is of interest for climate research, air traffic control and human wellbeing. Current volcanic emission dispersion models rely on fixed-grid structures that often are not able to resolve the fine filamented structure of volcanic emissions being transported in the atmosphere. Here we extend an existing adaptive semi-Lagrangian advection model for volcanic emissions including the sedimentation of volcanic ash. The advection of volcanic emissions is driven by a precalculated wind field. For evaluation of the model, the explosive eruption of Mount Pinatubo in June 1991 is chosen, which was one of the largest eruptions in the 20th century. We compare our simulations of the climactic eruption on 15 June 1991 to satellite data of the Pinatubo ash cloud and evaluate different sets of input parameters. We could reproduce the general advection of the Pinatubo ash cloud and, owing to the adaptive mesh, simulations could be performed at a high local resolution while minimizing computational cost. Differences to the observed ash cloud are attributed to uncertainties in the input parameters and the course of Typhoon Yunya, which is probably not completely resolved in the wind data used to drive the model. The best results were achieved for simulations with multiple ash particle sizes.
Schneider, Falk; Waithe, Dominic; Galiani, Silvia; Bernardino de la Serna, Jorge; Sezgin, Erdinc; Eggeling, Christian
2018-06-19
The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.
Reduction of time-resolved space-based CCD photometry developed for MOST Fabry Imaging data*
NASA Astrophysics Data System (ADS)
Reegen, P.; Kallinger, T.; Frast, D.; Gruberbauer, M.; Huber, D.; Matthews, J. M.; Punz, D.; Schraml, S.; Weiss, W. W.; Kuschnig, R.; Moffat, A. F. J.; Walker, G. A. H.; Guenther, D. B.; Rucinski, S. M.; Sasselov, D.
2006-04-01
The MOST (Microvariability and Oscillations of Stars) satellite obtains ultraprecise photometry from space with high sampling rates and duty cycles. Astronomical photometry or imaging missions in low Earth orbits, like MOST, are especially sensitive to scattered light from Earthshine, and all these missions have a common need to extract target information from voluminous data cubes. They consist of upwards of hundreds of thousands of two-dimensional CCD frames (or subrasters) containing from hundreds to millions of pixels each, where the target information, superposed on background and instrumental effects, is contained only in a subset of pixels (Fabry Images, defocused images, mini-spectra). We describe a novel reduction technique for such data cubes: resolving linear correlations of target and background pixel intensities. This step-wise multiple linear regression removes only those target variations which are also detected in the background. The advantage of regression analysis versus background subtraction is the appropriate scaling, taking into account that the amount of contamination may differ from pixel to pixel. The multivariate solution for all pairs of target/background pixels is minimally invasive of the raw photometry while being very effective in reducing contamination due to, e.g. stray light. The technique is tested and demonstrated with both simulated oscillation signals and real MOST photometry.
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Chung, T. J.
2001-01-01
A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.
Multi-energy SXR cameras for magnetically confined fusion plasmas (invited)
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.; Tritz, K.; Stutman, D.; Stratton, B.; Efthimion, P.
2016-11-01
A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (Te, nZ, ΔZeff, and ne,fast). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium- to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness.
A multi-cone x-ray imaging Bragg crystal spectrometer
Bitter, M.; Hill, K. W.; Gao, Lan; ...
2016-08-26
This article describes a new x-ray imaging Bragg crystal spectrometer, which—in combination with a streak camera or a gated strip detector—can be used for time-resolved measurements of x-ray line spectra at the National Ignition Facility and other high power laser facilities. The main advantage of this instrument is that it produces perfect images of a point source for each wavelength in a selectable spectral range and that the detector plane can be perpendicular to the crystal surface or inclined by an arbitrary angle with respect to the crystal surface. Furthermore, these unique imaging properties are obtained by bending the x-raymore » diffracting crystal into a certain shape, which is generated by arranging multiple cones with different aperture angles on a common nodal line.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidicmore » channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.« less
Extreme AO Observations of Two Triple Asteroid Systems with SPHERE
NASA Astrophysics Data System (ADS)
Yang, B.; Wahhaj, Z.; Beauvalet, L.; Marchis, F.; Dumas, C.; Marsset, M.; Nielsen, E. L.; Vachier, F.
2016-04-01
We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.
2014-11-15
A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnosticsmore » are used to constrain analysis, increasing the accuracy of interpretation.« less
[System of ns time-resolved spectroscopy diagnosis and radioprotection].
Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo
2014-06-01
Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.
High-performance time-resolved fluorescence by direct waveform recording.
Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D
2010-10-01
We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.
Children's Interpretation of Ambiguous Behavior: Evidence for a "Boys Are Bad" Bias.
ERIC Educational Resources Information Center
Heyman, Gail D.
2001-01-01
Investigated whether 7- to 9-year-olds use gender category to resolve uncertainty when evaluating behavior. Subjects were shown pictures of unfamiliar children and were told that each had performed a behavior open to multiple interpretations. When the unfamiliar peers were male, both male and female subjects were more likely to remember behaviors…
USDA-ARS?s Scientific Manuscript database
Multiple sources of data in combination are essential for species delimitation and classification of difficult taxonomic groups. Here we investigate a cicada taxon with unusual cryptic diversity and we attempt to resolve seemingly contradictory data sets. Cicada songs act as species-specific premati...
The Educational Leader's Alchemy: Creating the Gold Within
ERIC Educational Resources Information Center
Sytsma, Sandra
2009-01-01
In going ahead and showing the way, leading can be seen as a process of changing. The busyness of day-to-day leadership in schools and other educational facilities bears witness to the necessity of leaders' "thinking on their feet" as they strive to resolve multiple issues. However, the constant pressure or stress of this lifestyle has its price…
Critical Challenges in California Community Colleges: An Interview with Carl Ehmann
ERIC Educational Resources Information Center
Frost, Robert A.
2009-01-01
This interview took place in several meetings over a period of two weeks in late spring, 2008. Carl Ehmann had spent the past five months working with multiple California community college districts to resolve numerous, and multilevel, shortages in senior leadership positions. Robert A. Frost and Ehmann had come into contact through Frost's…
SDSS-IV MaNGA: the spectroscopic discovery of strongly lensed galaxies
NASA Astrophysics Data System (ADS)
Talbot, Michael S.; Brownstein, Joel R.; Bolton, Adam S.; Bundy, Kevin; Andrews, Brett H.; Cherinka, Brian; Collett, Thomas E.; More, Anupreeta; More, Surhud; Sonnenfeld, Alessandro; Vegetti, Simona; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.
2018-06-01
We present a catalogue of 38 spectroscopically detected strong galaxy-galaxy gravitational lens candidates identified in the Sloan Digital Sky Survey IV (SDSS-IV). We were able to simulate narrow-band images for eight of them demonstrating evidence of multiple images. Two of our systems are compound lens candidates, each with two background source-planes. One of these compound systems shows clear lensing features in the narrow-band image. Our sample is based on 2812 galaxies observed by the Mapping Nearby Galaxies at APO (MaNGA) integral field unit (IFU). This Spectroscopic Identification of Lensing Objects (SILO) survey extends the methodology of the Sloan Lens ACS Survey (SLACS) and BOSS Emission-Line Survey (BELLS) to lower redshift and multiple IFU spectra. We searched ˜1.5 million spectra, of which 3065 contained multiple high signal-to-noise ratio background emission-lines or a resolved [O II] doublet, that are included in this catalogue. Upon manual inspection, we discovered regions with multiple spectra containing background emission-lines at the same redshift, providing evidence of a common source-plane geometry which was not possible in previous SLACS and BELLS discovery programs. We estimate more than half of our candidates have an Einstein radius ≳ 1.7 arcsec, which is significantly greater than seen in SLACS and BELLS. These larger Einstein radii produce more extended images of the background galaxy increasing the probability that a background emission-line will enter one of the IFU spectroscopic fibres, making detection more likely.
Multiple, short-lived "stellar prominences" on the O giant ξ Persei: a magnetic star?
NASA Astrophysics Data System (ADS)
Sudnik, N.; Henrichs, H. F.
2018-01-01
We present strong evidence for a rotation period of 2.0406 d of the O giant ξ Persei, derived from the NIV λ1718 wind line in 12 yr of IUE data. We predict that ξ Per has a magnetic dipole field, with superposed variable magnetic prominences. Favorable dates for future magnetic measurements can be predicted. We also analysed time-resolved HeII 4686 spectra from a campaign in 1989 by using the same simplified model as before for λ Cephei, in terms of multiple spherical blobs attached to the surface, called stellar prominences (Sudnik & Henrichs, 2016). These represent transient multiple magnetic loops on the surface, for which we find lifetimes of mostly less than 5 h.
Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction
NASA Astrophysics Data System (ADS)
Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.
2014-12-01
Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.
Zhao, Ming; Huang, Run; Peng, Leilei
2012-11-19
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium.
Zhao, Ming; Huang, Run; Peng, Leilei
2012-01-01
Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium. PMID:23187535
Carcagno, Samuele; Plack, Christopher J
2011-08-01
Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.
Testing subleading multiple soft graviton theorem for CHY prescription
NASA Astrophysics Data System (ADS)
Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay
2018-01-01
In arXiv:1707.06803 we derived the subleading multiple soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. In this paper we verify this explicitly using the CHY formula for tree level scattering amplitudes of arbitrary number of gravitons in Einstein gravity. We pay special care to fix the signs of the amplitudes and resolve an apparent discrepancy between our general results in arXiv:1707.06803 and previous results on soft graviton theorem from CHY formula.
The Evolution of SINEs and LINEs in the genus Chironomus (Diptera).
Papusheva, Ekaterina; Gruhl, Mary C; Berezikov, Eugene; Groudieva, Tatiana; Scherbik, Svetlana V; Martin, Jon; Blinov, Alexander; Bergtrom, Gerald
2004-03-01
Genomic DNA amplification from 51 species of the family Chironomidae shows that most contain relatives of NLRCth1 LINE and CTRT1 SINE retrotransposons first found in Chironomus thummi. More than 300 cloned PCR products were sequenced. The amplified region of the reverse transcriptase gene in the LINEs is intact and highly conserved, suggesting active elements. The SINEs are less conserved, consistent with minimal/no selection after transposition. A mitochondrial gene phylogeny resolves the Chironomus genus into six lineages (Guryev et al. 2001). LINE and SINE phylogenies resolve five of these lineages, indicating their monophyletic origin and vertical inheritance. However, both the LINE and the SINE tree topologies differ from the species phylogeny, resolving the elements into "clusters I-IV" and "cluster V" families. The data suggest a descent of all LINE and SINE subfamilies from two major families. Based on the species phylogeny, a few LINEs and a larger number of SINEs are cladisitically misplaced. Most misbranch with LINEs or SINEs from species with the same families of elements. From sequence comparisons, cladistically misplaced LINEs and several misplaced SINEs arose by convergent base substitutions. More diverged SINEs result from early transposition and some are derived from multiple source SINEs in the same species. SINEs from two species (C. dorsalis, C. pallidivittatus), expected to belong to the clusters I-IV family, branch instead with cluster V family SINEs; apparently both families predate separation of cluster V from clusters I-IV species. Correlation of the distribution of active SINEs and LINEs, as well as similar 3' sequence motifs in CTRT1 and NLRCth1, suggests coevolving retrotransposon pairs in which CTRT1 transposition depends on enzymes active during NLRCth1 LINE mobility.
Uncertainty in dual permeability model parameters for structured soils.
Arora, B; Mohanty, B P; McGuire, J T
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.
Uncertainty in dual permeability model parameters for structured soils
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences
2010-01-01
Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of Lamiales. PMID:21073690
Quattrini, Andrea M; Faircloth, Brant C; Dueñas, Luisa F; Bridge, Tom C L; Brugler, Mercer R; Calixto-Botía, Iván F; DeLeo, Danielle M; Forêt, Sylvain; Herrera, Santiago; Lee, Simon M Y; Miller, David J; Prada, Carlos; Rádis-Baptista, Gandhi; Ramírez-Portilla, Catalina; Sánchez, Juan A; Rodríguez, Estefanía; McFadden, Catherine S
2018-03-01
Anthozoans (e.g., corals, anemones) are an ecologically important and diverse group of marine metazoans that occur from shallow to deep waters worldwide. However, our understanding of the evolutionary relationships among the ~7,500 species within this class is hindered by the lack of phylogenetically informative markers that can be reliably sequenced across a diversity of taxa. We designed and tested 16,306 RNA baits to capture 720 ultraconserved element loci and 1,071 exon loci. Library preparation and target enrichment were performed on 33 taxa from all orders within the class Anthozoa. Following Illumina sequencing and Trinity assembly, we recovered 1,774 of 1,791 targeted loci. The mean number of loci recovered from each species was 638 ± 222, with more loci recovered from octocorals (783 ± 138 loci) than hexacorals (475 ± 187 loci). Parsimony informative sites ranged from 26 to 49% for alignments at differing hierarchical taxonomic levels (e.g., Anthozoa, Octocorallia, Hexacorallia). The per cent of variable sites within each of three genera (Acropora, Alcyonium, and Sinularia) for which multiple species were sequenced ranged from 4.7% to 30%. Maximum-likelihood analyses recovered highly resolved trees with topologies matching those supported by other studies, including the monophyly of the order Scleractinia. Our results demonstrate the utility of this target-enrichment approach to resolve phylogenetic relationships from relatively old to recent divergences. Redesigning the baits with improved affinities to capture loci within each subclass will provide a valuable toolset to address systematic questions, further our understanding of the timing of diversifications and help resolve long-standing controversial relationships in the class Anthozoa. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Reynolds, D. J.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Halloran, P. R.; Sayer, M. D. J.
2017-11-01
The lack of long-term, highly resolved (annual to subannual) and absolutely dated baseline records of marine variability extending beyond the instrumental period (last 50-100 years) hinders our ability to develop a comprehensive understanding of the role the ocean plays in the climate system. Specifically, without such records, it remains difficult to fully quantify the range of natural climate variability mediated by the ocean and to robustly attribute recent changes to anthropogenic or natural drivers. Here we present a 211 year (1799-2010 C.E.; all dates hereafter are Common Era) seawater temperature (SWT) reconstruction from the northeast Atlantic Ocean derived from absolutely dated, annually resolved, oxygen isotope ratios recorded in the shell carbonate (δ18Oshell) of the long-lived marine bivalve mollusk Glycymeris glycymeris. The annual record was calibrated using subannually resolved δ18Oshell values drilled from multiple shells covering the instrumental period. Calibration verification statistics and spatial correlation analyses indicate that the δ18Oshell record contains significant skill at reconstructing Northeast Atlantic Ocean mean summer SWT variability associated with changes in subpolar gyre dynamics and the North Atlantic Current. Reconciling differences between the δ18Oshell data and corresponding growth increment width chronology demonstrates that 68% of the variability in G. glycymeris shell growth can be explained by the combined influence of biological productivity and SWT variability. These data suggest that G. glycymeris can provide seasonal to multicentennial absolutely dated baseline records of past marine variability that will lead to the development of a quantitative understanding of the role the marine environment plays in the global climate system.
Mapping Tropical Forest Mosaics with C- and L-band SAR: First Results from Osa Peninsula, Costa Rica
NASA Astrophysics Data System (ADS)
Pinto, N.; Hensley, S.; Aguilar-Amuchastegui, N.; Broadbent, E. N.; Ahmed, R.
2016-12-01
In tropical countries, economic incentives and improved infrastructure are creating forest mosaics where small-scale farming and industrial plantations are embedded within and potentially replacing native ecosystems. Practices such as agroforestry, slash-and-burn cultivation, and oil palm monocultures bring widely different impacts on carbon stocks. Characterizing these production systems is not only critical to ascribe deforestation to particular drivers, but also essential to understand the impact of macroeconomic scenarios, national policies, and land tenure schemes on carbon fluxes. The last decade has experienced a dramatic improvement in the extent and consistency of tree cover and gross deforestation products from optical imagery. At the same time, recent work shows that Synthetic Aperture Radar (SAR) can complement optical data and reveal structural types that cannot be easily resolved with reflectance measurements alone. While these results demonstrate the validity of sensor fusion methodologies, they typically rely on local classifications or even manual delineation and as such they cannot support large-scale investigations. Furthermore, there have been few attempts to exploit PolInSAR or multiple wavelengths that can provide critical information to resolve natural and anthropogenic land cover types. We report results from our research at Costa Rica's Osa Peninsula. This site is ideal for algorithm development as it includes a highly diverse tropical forest within Corcovado National Park, as well as agroforestry zones, mangroves, and palm plantations. We first integrate SAR backscatter and coherence data from NASA's L-band UAVSAR, JAXA's ALOS/PALSAR, and ESA's Sentinel to produce a map of structural types. Second, we assess whether coherence measurements and PolInSAR retrievals can be used to resolve forest stand differences at 30m resolution and disitinguish between primary and secondary forest sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-01-01
The ability to determine noninvasively microphysical parameters (MPPs) of skin characteristic of malignant melanoma was demonstrated. The MPPs were the melanin content in dermis, saturation of tissue with blood vessels, and concentration and effective size of tissue scatterers. The proposed method was based on spatially resolved spectral measurements of skin diffuse reflectance and multiple regressions between linearly independent measurement components and skin MPPs. The regressions were established by modeling radiation transfer in skin with a wide variation of its MPPs. Errors in the determination of skin MPPs were estimated using fiber-optic measurements of its diffuse reflectance at wavelengths of commercially available semiconductor diode lasers (578, 625, 660, 760, and 806 nm) at source-detector separations of 0.23-1.38 mm.
Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity
Dendrou, Calliope A.; Cortes, Adrian; Shipman, Lydia; Evans, Hayley G.; Attfield, Kathrine E.; Jostins, Luke; Barber, Thomas; Kaur, Gurman; Kuttikkatte, Subita Balaram; Leach, Oliver A.; Desel, Christiane; Faergeman, Soren L.; Cheeseman, Jane; Neville, Matt J.; Sawcer, Stephen; Compston, Alastair; Johnson, Adam R.; Everett, Christine; Bell, John I.; Karpe, Fredrik; Ultsch, Mark; Eigenbrot, Charles; McVean, Gil; Fugger, Lars
2017-01-01
Thousands of genetic variants have been identified that contribute to the development of complex diseases, but determining how to fully elucidate their biological consequences for translation into clinical benefit is challenging. Conflicting evidence regarding the functional impact of genetic variants in the tyrosine kinase 2 (TYK2) gene, which is differentially associated with common autoimmune diseases, currently obscures the potential of TYK2 as a therapeutic target. We aimed to resolve this conflict by performing genetic meta-analysis across disorders, subsequent molecular, cellular, in vivo and structural functional follow-up and epidemiological studies. Our data revealed a protective homozygous effect that defined a signaling optimum between autoimmunity and immunodeficiency and identified TYK2 as a potential drug target for multiple autoimmune disorders. PMID:27807284
Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods
NASA Astrophysics Data System (ADS)
Mounir, Christian; Schimpke, Tilman; Rossbach, Georg; Avramescu, Adrian; Strassburg, Martin; Schwarz, Ulrich T.
2017-01-01
We investigate the optical emission properties of the active InGaN shell of high aspect-ratio InGaN/GaN core-shell microrods (μRods) by confocal quasi-resonant polarization-resolved and excitation density dependent micro-photoluminescence (μPL). The active shell, multiple thin InGaN/GaN quantum wells (MQWs), was deposited on GaN μRods selectively grown by metal organic vapor phase epitaxy on patterned SiO2/n-GaN/sapphire template. High spatial resolution mappings reveal a very homogeneous emission intensity along the whole μRods including the tip despite a red-shift of 30 nm from the base to the tip along the 8.6 μm-long m-plane sidewalls. Looking at the Fabry-Perot interference fringes superimposed on the μPL spectra, we get structural information on the μRods. A high degree of linear polarization (DLP) of 0.6-0.66 is measured on the lower half of the m-plane side facets with a slight decrease toward the tip. We observe the typical drop of the DLP with an excitation density caused by degenerate filling of valence bands (Fermi regime). Local internal quantum efficiencies (IQEs) of 55 ±11 % up to 73 ±7 % are estimated on the m-plane facet from measurements at low temperature. Finally, simultaneously fitting the DLP and IQE as a function of the excitation density, we determine the carrier density inside the active region and the recombination rate coefficients of the m-plane MQWs. We show that phase-space filling and the background carrier density have to be included in the recombination rate model.
NASA Astrophysics Data System (ADS)
Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.
2011-12-01
In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).
Exposing the structure of an Arctic food web.
Wirta, Helena K; Vesterinen, Eero J; Hambäck, Peter A; Weingartner, Elisabeth; Rasmussen, Claus; Reneerkens, Jeroen; Schmidt, Niels M; Gilg, Olivier; Roslin, Tomas
2015-09-01
How food webs are structured has major implications for their stability and dynamics. While poorly studied to date, arctic food webs are commonly assumed to be simple in structure, with few links per species. If this is the case, then different parts of the web may be weakly connected to each other, with populations and species united by only a low number of links. We provide the first highly resolved description of trophic link structure for a large part of a high-arctic food web. For this purpose, we apply a combination of recent techniques to describing the links between three predator guilds (insectivorous birds, spiders, and lepidopteran parasitoids) and their two dominant prey orders (Diptera and Lepidoptera). The resultant web shows a dense link structure and no compartmentalization or modularity across the three predator guilds. Thus, both individual predators and predator guilds tap heavily into the prey community of each other, offering versatile scope for indirect interactions across different parts of the web. The current description of a first but single arctic web may serve as a benchmark toward which to gauge future webs resolved by similar techniques. Targeting an unusual breadth of predator guilds, and relying on techniques with a high resolution, it suggests that species in this web are closely connected. Thus, our findings call for similar explorations of link structure across multiple guilds in both arctic and other webs. From an applied perspective, our description of an arctic web suggests new avenues for understanding how arctic food webs are built and function and of how they respond to current climate change. It suggests that to comprehend the community-level consequences of rapid arctic warming, we should turn from analyses of populations, population pairs, and isolated predator-prey interactions to considering the full set of interacting species.
NASA Astrophysics Data System (ADS)
Gately, Conor; Hutyra, Lucy
2016-04-01
In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.
NASA Astrophysics Data System (ADS)
Gately, C.; Hutyra, L.; Sue Wing, I.; Peterson, S.; Janetos, A.
2015-12-01
In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.
NASA Astrophysics Data System (ADS)
Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.
2016-02-01
Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.
Super-multiplex vibrational imaging
NASA Astrophysics Data System (ADS)
Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei
2017-04-01
The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.
NASA Astrophysics Data System (ADS)
Essen, Helmut; Brehm, Thorsten; Boehmsdorff, Stephan
2007-10-01
Interferometric Synthetic Aperture Radar has the capability to provide the user with the 3-D-Information of land surfaces. To gather data with high height estimation accuracy it is necessary to use a wide interferometric baseline or a high radar frequency. However the problem of resolving the phase ambiguity at smaller wavelengths is more critical than at longer wavelengths, as the unambiguous height interval is inversely proportional to the radar wavelength. To solve this shortcoming, a multiple baseline approach can be used with a number of neighbouring horns and an increasing baselength going from narrow to wide. The narrowest, corresponding to adjacent horns, is then assumed to be unambiguous in phase. This initial interferogram is used as a starting point for the algorithm, which in the next step, unwraps the interferogram with the next wider baseline using the coarse height information to solve the phase ambiguities. This process is repeated consecutively until the interferogram with highest precision is unwrapped. On the expense of this multi-channel-approach the algorithm is simple and robust, and even the amount of processing time is reduced considerably, compared to traditional methods. The multiple baseline approach is especially adequate for millimeterwave radars as antenna horns with relatively small aperture can be used, while a sufficient 3-dB beamwidth is maintained. The paper describes the multiple baseline algorithm and shows the results of tests on real data and a synthetic area. Possibilities and limitations of this approach are discussed. Examples of digital elevation maps derived from measured data at millimeterwaves are shown.
Passive ranging redundancy reduction in diurnal weather conditions
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Abbott, A. Lynn; Szu, Harold H.
2013-05-01
Ambiguity in binocular ranging (David Marr's paradox) may be resolved by using two eyes moving from side to side behind an optical bench while integrating multiple views. Moving a head from left to right with one eye closed can also help resolve the foreground and background range uncertainty. That empirical experiment implies redundancy in image data, which may be reduced by adopting a 3-D camera imaging model to perform compressive sensing. Here, the compressive sensing concept is examined from the perspective of redundancy reduction in images subject to diurnal and weather variations for the purpose of resolving range uncertainty at all weather conditions such as the dawn or dusk, the daytime with different light level or the nighttime at different spectral band. As an example, a scenario at an intersection of a country road at dawn/dusk is discussed where the location of the traffic signs needs to be resolved by passive ranging to answer whether it is located on the same side of the road or the opposite side, which is under the influence of temporal light/color level variation. A spectral band extrapolation via application of Lagrange Constrained Neural Network (LCNN) learning algorithm is discussed to address lost color restoration at dawn/dusk. A numerical simulation is illustrated along with the code example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki
2007-01-15
A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Ming; Deng, Yi
2015-02-06
El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less
NASA Technical Reports Server (NTRS)
Ponseggi, B. G. (Editor); Johnson, H. C. (Editor)
1985-01-01
Papers are presented on the picosecond electronic framing camera, photogrammetric techniques using high-speed cineradiography, picosecond semiconductor lasers for characterizing high-speed image shutters, the measurement of dynamic strain by high-speed moire photography, the fast framing camera with independent frame adjustments, design considerations for a data recording system, and nanosecond optical shutters. Consideration is given to boundary-layer transition detectors, holographic imaging, laser holographic interferometry in wind tunnels, heterodyne holographic interferometry, a multispectral video imaging and analysis system, a gated intensified camera, a charge-injection-device profile camera, a gated silicon-intensified-target streak tube and nanosecond-gated photoemissive shutter tubes. Topics discussed include high time-space resolved photography of lasers, time-resolved X-ray spectrographic instrumentation for laser studies, a time-resolving X-ray spectrometer, a femtosecond streak camera, streak tubes and cameras, and a short pulse X-ray diagnostic development facility.
Multicolor Photometry and Time-resolved Spectroscopy of Two sdBV Stars
NASA Astrophysics Data System (ADS)
Reed, M. D.; O'Toole, S. J.; Telting, J. H.; Østensen, R. H.; Heber, U.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; LaCluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Bean, J.
2012-03-01
Observational mode constraints have mostly been lacking for short period pulsating sdB stars, yet such identifications are vital to constrain models. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining radial velocity (RV) and multicolor measurements has also been shown as an effective means of constraining mode identifications. We present preliminary results for Feige 48 and EC 01541-1409 using both time-resolved spectroscopy and multicolor photometry and an initial examination of their pulsation modes using the atmospheric codes BRUCE and KYLIE.
An improved genome assembly uncovers prolific tandem repeats in Atlantic cod.
Tørresen, Ole K; Star, Bastiaan; Jentoft, Sissel; Reinar, William B; Grove, Harald; Miller, Jason R; Walenz, Brian P; Knight, James; Ekholm, Jenny M; Peluso, Paul; Edvardsen, Rolf B; Tooming-Klunderud, Ave; Skage, Morten; Lien, Sigbjørn; Jakobsen, Kjetill S; Nederbragt, Alexander J
2017-01-18
The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual. The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yi, E-mail: yiguo@usc.edu; Zhu, Yinghua; Lingala, Sajan Goud
Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm{sup 3}, FOV 22 × 22 × 4.2 cm{sup 3}, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm{sup 3}, and broader coverage 22 × 22 × 19 cm{sup 3}. Temporal resolution was 5 smore » for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.« less