Sample records for multiple horizontal transfers

  1. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species.

    PubMed

    Baker, Kate S; Dallman, Timothy J; Field, Nigel; Childs, Tristan; Mitchell, Holly; Day, Martin; Weill, François-Xavier; Lefèvre, Sophie; Tourdjman, Mathieu; Hughes, Gwenda; Jenkins, Claire; Thomson, Nicholas

    2018-04-13

    Horizontal gene transfer has played a role in developing the global public health crisis of antimicrobial resistance (AMR). However, the dynamics of AMR transfer through bacterial populations and its direct impact on human disease is poorly elucidated. Here, we study parallel epidemic emergences of multiple Shigella species, a priority AMR organism, in men who have sex with men to gain insight into AMR emergence and spread. Using genomic epidemiology, we show that repeated horizontal transfer of a single AMR plasmid among Shigella enhanced existing and facilitated new epidemics. These epidemic patterns contrasted with slighter, slower increases in disease caused by organisms with vertically inherited (chromosomally encoded) AMR. This demonstrates that horizontal transfer of AMR directly affects epidemiological outcomes of globally important AMR pathogens and highlights the need for integration of genomic analyses into all areas of AMR research, surveillance and management.

  2. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    PubMed

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-05

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi

    PubMed Central

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C.; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-01-01

    Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  4. Multiple recent horizontal transfers of a large genomic region in cheese making fungi.

    PubMed

    Cheeseman, Kevin; Ropars, Jeanne; Renault, Pierre; Dupont, Joëlle; Gouzy, Jérôme; Branca, Antoine; Abraham, Anne-Laure; Ceppi, Maurizio; Conseiller, Emmanuel; Debuchy, Robert; Malagnac, Fabienne; Goarin, Anne; Silar, Philippe; Lacoste, Sandrine; Sallet, Erika; Bensimon, Aaron; Giraud, Tatiana; Brygoo, Yves

    2014-01-01

    While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti--called Wallaby--present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes.

  5. Multiple recent horizontal transfers of a large genomic region in cheese making fungi

    PubMed Central

    Cheeseman, Kevin; Ropars, Jeanne; Renault, Pierre; Dupont, Joëlle; Gouzy, Jérôme; Branca, Antoine; Abraham, Anne-Laure; Ceppi, Maurizio; Conseiller, Emmanuel; Debuchy, Robert; Malagnac, Fabienne; Goarin, Anne; Silar, Philippe; Lacoste, Sandrine; Sallet, Erika; Bensimon, Aaron; Giraud, Tatiana; Brygoo, Yves

    2014-01-01

    While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti—called Wallaby—present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes. PMID:24407037

  6. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    PubMed

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Widespread of horizontal gene transfer in the human genome.

    PubMed

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  8. Horizontal Gene Transfer and the History of Life

    PubMed Central

    Daubin, Vincent; Szöllősi, Gergely J.

    2016-01-01

    Microbes acquire DNA from a variety of sources. The last decades, which have seen the development of genome sequencing, have revealed that horizontal gene transfer has been a major evolutionary force that has constantly reshaped genomes throughout evolution. However, because the history of life must ultimately be deduced from gene phylogenies, the lack of methods to account for horizontal gene transfer has thrown into confusion the very concept of the tree of life. As a result, many questions remain open, but emerging methodological developments promise to use information conveyed by horizontal gene transfer that remains unexploited today. PMID:26801681

  9. [Analysis of horizontal transfer gene of Bombyx mori NPV].

    PubMed

    Duan, Hai-Rong; Qiu, De-Bin; Gong, Cheng-Liang; Huang, Mo-Li

    2011-06-01

    For research on genetic characters and evolutionary origin of the genome of baculoviruses, a comprehensive homology search and phylogenetic analysis of the complete genomes of Bombyx mori NPV and Bombyx mori were used. Three horizontally transferred genes (inhibitor of apoptosis, chitinase, and UDP-glucosyltransferase) were identified, and there was evidence that all of these genes were derived from the insect host. The results of analysis showed lots of differences between the features of horizontal transferred genes and the ones of whole genomic genes, such as nucleotide composition, codon usagebias and selection pressure. These results reconfirmed that the horizontally transferred genes are exogenous. The analysis of gene function suggested that horizontally transferred genes acquired from an ancestral host insect can increase the efficiency of baculoviruses transmission.

  10. Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages.

    PubMed

    Mahelka, Václav; Krak, Karol; Kopecký, David; Fehrer, Judith; Šafář, Jan; Bartoš, Jan; Hobza, Roman; Blavet, Nicolas; Blattner, Frank R

    2017-02-14

    The movement of nuclear DNA from one vascular plant species to another in the absence of fertilization is thought to be rare. Here, nonnative rRNA gene [ribosomal DNA (rDNA)] copies were identified in a set of 16 diploid barley ( Hordeum ) species; their origin was traceable via their internal transcribed spacer (ITS) sequence to five distinct Panicoideae genera, a lineage that split from the Pooideae about 60 Mya. Phylogenetic, cytogenetic, and genomic analyses implied that the nonnative sequences were acquired between 1 and 5 Mya after a series of multiple events, with the result that some current Hordeum sp. individuals harbor up to five different panicoid rDNA units in addition to the native Hordeum rDNA copies. There was no evidence that any of the nonnative rDNA units were transcribed; some showed indications of having been silenced via pseudogenization. A single copy of a Panicum sp. rDNA unit present in H. bogdanii had been interrupted by a native transposable element and was surrounded by about 70 kbp of mostly noncoding sequence of panicoid origin. The data suggest that horizontal gene transfer between vascular plants is not a rare event, that it is not necessarily restricted to one or a few genes only, and that it can be selectively neutral.

  11. Horizontal gene transfer in the acquisition of novel traits by metazoans

    PubMed Central

    Boto, Luis

    2014-01-01

    Horizontal gene transfer is accepted as an important evolutionary force modulating the evolution of prokaryote genomes. However, it is thought that horizontal gene transfer plays only a minor role in metazoan evolution. In this paper, I critically review the rising evidence on horizontally transferred genes and on the acquisition of novel traits in metazoans. In particular, I discuss suspected examples in sponges, cnidarians, rotifers, nematodes, molluscs and arthropods which suggest that horizontal gene transfer in metazoans is not simply a curiosity. In addition, I stress the scarcity of studies in vertebrates and other animal groups and the importance of forthcoming studies to understand the importance and extent of horizontal gene transfer in animals. PMID:24403327

  12. Involvement of β-carbonic anhydrase (β-CA) genes in bacterial genomic islands and horizontal transfer to protists.

    PubMed

    Zolfaghari Emameh, Reza; Barker, Harlan R; Hytönen, Vesa P; Parkkila, Seppo

    2018-05-25

    Genomic islands (GIs) are a type of mobile genetic element (MGE) that are present in bacterial chromosomes. They consist of a cluster of genes which produce proteins that contribute to a variety of functions, including, but not limited to, regulation of cell metabolism, anti-microbial resistance, pathogenicity, virulence, and resistance to heavy metals. The genes carried in MGEs can be used as a trait reservoir in times of adversity. Transfer of genes using MGEs, occurring outside of reproduction, is called horizontal gene transfer (HGT). Previous literature has shown that numerous HGT events have occurred through endosymbiosis between prokaryotes and eukaryotes.Beta carbonic anhydrase (β-CA) enzymes play a critical role in the biochemical pathways of many prokaryotes and eukaryotes. We have previously suggested horizontal transfer of β-CA genes from plasmids of some prokaryotic endosymbionts to their protozoan hosts. In this study, we set out to identify β-CA genes that might have transferred between prokaryotic and protist species through HGT in GIs. Therefore, we investigated prokaryotic chromosomes containing β-CA-encoding GIs and utilized multiple bioinformatics tools to reveal the distinct movements of β-CA genes among a wide variety of organisms. Our results identify the presence of β-CA genes in GIs of several medically and industrially relevant bacterial species, and phylogenetic analyses reveal multiple cases of likely horizontal transfer of β-CA genes from GIs of ancestral prokaryotes to protists. IMPORTANCE The evolutionary process is mediated by mobile genetic elements (MGEs), such as genomic islands (GIs). A gene or set of genes in the GIs are exchanged between and within various species through horizontal gene transfer (HGT). Based on the crucial role that GIs can play in bacterial survival and proliferation, they were introduced as the environmental- and pathogen-associated factors. Carbonic anhydrases (CAs) are involved in many critical

  13. International transferability of accident modification functions for horizontal curves.

    PubMed

    Elvik, Rune

    2013-10-01

    Studies of the relationship between characteristics of horizontal curves and accident rate have been reported in several countries. The characteristic most often studied is the radius of a horizontal curve. Functions describing the relationship between the radius of horizontal curves and accident rate have been developed in Australia, Canada, Denmark, Germany, Great Britain, New Zealand, Norway, Portugal, Sweden, and the United States. Other characteristics of horizontal curves that have been studied include deflection angle, curve length, the presence of transition curves, super-elevation in curves and distance to adjacent curves. This paper assesses the international transferability of mathematical functions (accident modification functions) that have been developed to relate the radius of horizontal curves to their accident rate. The main research problem is whether these functions are similar, which enhances international transferability, or dissimilar, which reduces international transferability. Accident modification functions for horizontal curve radius developed in the countries listed above are synthesised. The sensitivity of the functions to other characteristics of curves than radius is examined. Accident modification functions developed in different countries have important similarities. The functions diverge with respect to accident rate in the sharpest curves. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Massive horizontal transfer of transposable elements in insects

    PubMed Central

    Peccoud, Jean; Loiseau, Vincent; Cordaux, Richard

    2017-01-01

    Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution. PMID:28416702

  15. The chromosomal organization of horizontal gene transfer in bacteria.

    PubMed

    Oliveira, Pedro H; Touchon, Marie; Cury, Jean; Rocha, Eduardo P C

    2017-10-10

    Bacterial adaptation is accelerated by the acquisition of novel traits through horizontal gene transfer, but the integration of these genes affects genome organization. We found that transferred genes are concentrated in only ~1% of the chromosomal regions (hotspots) in 80 bacterial species. This concentration increases with genome size and with the rate of transfer. Hotspots diversify by rapid gene turnover; their chromosomal distribution depends on local contexts (neighboring core genes), and content in mobile genetic elements. Hotspots concentrate most changes in gene repertoires, reduce the trade-off between genome diversification and organization, and should be treasure troves of strain-specific adaptive genes. Most mobile genetic elements and antibiotic resistance genes are in hotspots, but many hotspots lack recognizable mobile genetic elements and exhibit frequent homologous recombination at flanking core genes. Overrepresentation of hotspots with fewer mobile genetic elements in naturally transformable bacteria suggests that homologous recombination and horizontal gene transfer are tightly linked in genome evolution.Horizontal gene transfer (HGT) is an important mechanism for genome evolution and adaptation in bacteria. Here, Oliveira and colleagues find HGT hotspots comprising  ~ 1% of the chromosomal regions in 80 bacterial species.

  16. Horizontal transfer of potential mobile units in phytoplasmas

    PubMed Central

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2013-01-01

    Phytoplasmas are uncultivated phytopathogenic bacteria that cause diseases in a wide range of economically important plants. Through secretion of effector proteins, they are able to manipulate their plant hosts to facilitate their multiplication and dispersal by insect vectors. The genome sequences of several phytoplasmas have been characterized to date and a group of putative composite transposons called potential mobile units (PMUs) are found in these highly reduced genomes. Recently, our team reported the genome sequence and comparative analysis of a peanut witches’ broom (PnWB) phytoplasma, the first representative of the phytoplasma 16SrII group. Comparisons between the species phylogeny and the phylogenies of the PMU genes revealed that the PnWB PMU is likely to have been transferred from the 16SrI group. This indicates that PMUs are not only the DNA unit for transposition within a genome, but also for horizontal transfer among divergent phytoplasma lineages. Given the association of PMUs with effector genes, the mobility of PMUs across genomes has important implications for phytoplasma ecology and evolution. PMID:24251068

  17. Horizontal transfer of potential mobile units in phytoplasmas.

    PubMed

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2013-09-01

    Phytoplasmas are uncultivated phytopathogenic bacteria that cause diseases in a wide range of economically important plants. Through secretion of effector proteins, they are able to manipulate their plant hosts to facilitate their multiplication and dispersal by insect vectors. The genome sequences of several phytoplasmas have been characterized to date and a group of putative composite transposons called potential mobile units (PMUs) are found in these highly reduced genomes. Recently, our team reported the genome sequence and comparative analysis of a peanut witches' broom (PnWB) phytoplasma, the first representative of the phytoplasma 16SrII group. Comparisons between the species phylogeny and the phylogenies of the PMU genes revealed that the PnWB PMU is likely to have been transferred from the 16SrI group. This indicates that PMUs are not only the DNA unit for transposition within a genome, but also for horizontal transfer among divergent phytoplasma lineages. Given the association of PMUs with effector genes, the mobility of PMUs across genomes has important implications for phytoplasma ecology and evolution.

  18. A new computational method for the detection of horizontal gene transfer events.

    PubMed

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In recent years, the increase in the amounts of available genomic data has made it easier to appreciate the extent by which organisms increase their genetic diversity through horizontally transferred genetic material. Such transfers have the potential to give rise to extremely dynamic genomes where a significant proportion of their coding DNA has been contributed by external sources. Because of the impact of these horizontal transfers on the ecological and pathogenic character of the recipient organisms, methods are continuously sought that are able to computationally determine which of the genes of a given genome are products of transfer events. In this paper, we introduce and discuss a novel computational method for identifying horizontal transfers that relies on a gene's nucleotide composition and obviates the need for knowledge of codon boundaries. In addition to being applicable to individual genes, the method can be easily extended to the case of clusters of horizontally transferred genes. With the help of an extensive and carefully designed set of experiments on 123 archaeal and bacterial genomes, we demonstrate that the new method exhibits significant improvement in sensitivity when compared to previously published approaches. In fact, it achieves an average relative improvement across genomes of between 11 and 41% compared to the Codon Adaptation Index method in distinguishing native from foreign genes. Our method's horizontal gene transfer predictions for 123 microbial genomes are available online at http://cbcsrv.watson.ibm.com/HGT/.

  19. Phylogenetic Analysis of the Incidence of lux Gene Horizontal Transfer in Vibrionaceae▿ †

    PubMed Central

    Urbanczyk, Henryk; Ast, Jennifer C.; Kaeding, Allison J.; Oliver, James D.; Dunlap, Paul V.

    2008-01-01

    Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib2 operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib2

  20. Microbial Evolution Is in the Cards: Horizontal Gene Transfer in the Classroom

    ERIC Educational Resources Information Center

    Kagle, Jeanne; Hay, Anthony G.

    2007-01-01

    Horizontal gene transfer, the exchange of genetic material between bacteria, is a potentially important factor in the degradation of synthetic compounds introduced to the environment and in the acquisition of other characteristics including antibiotic resistance. This game-based activity illustrates the role of horizontal gene transfer in the…

  1. Staphylococci on ICE: Overlooked agents of horizontal gene transfer.

    PubMed

    Sansevere, Emily A; Robinson, D Ashley

    2017-01-01

    Horizontal gene transfer plays a significant role in spreading antimicrobial resistance and virulence genes throughout the genus Staphylococcus , which includes species of clinical relevance to humans and animals. While phages and plasmids are the most well-studied agents of horizontal gene transfer in staphylococci, the contribution of integrative conjugative elements (ICEs) has been mostly overlooked. Experimental work demonstrating the activity of ICEs in staphylococci remained frozen for years after initial work in the 1980s that showed Tn 916 was capable of transfer from Enterococcus to Staphylococcus . However, recent work has begun to thaw this field. To date, 2 families of ICEs have been identified among staphylococci - Tn 916 that includes the Tn 5801 subfamily, and ICE 6013 that includes at least 7 subfamilies. Both Tn 5801 and ICE 6013 commonly occur in clinical strains of S. aureus . Tn 5801 is the most studied of the Tn 916 family elements in staphylococci and encodes tetracycline resistance and a protein that, when expressed in Escherichia coli , inhibits restriction barriers to incoming DNA. ICE 6013 is among the shortest known ICEs, but it still includes many uncharacterized open reading frames. This element uses an IS 30 -like transposase as its recombinase, providing some versatility in integration sites. ICE 6013 also conjugatively transfers among receptive S. aureus strains at relatively higher frequency than Tn 5801 . Continued study of these mobile genetic elements may reveal the full extent to which ICEs impact horizontal gene transfer and the evolution of staphylococci.

  2. Horizontal Gene Transfers in Mycoplasmas (Mollicutes).

    PubMed

    Citti, C; Dordet-Frisoni, E; Nouvel, L X; Kuo, C H; Baranowski, E

    2018-04-12

    The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.

  3. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer.

    PubMed

    Boto, Luis

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  4. On the need for widespread horizontal gene transfers under genome size constraint.

    PubMed

    Isambert, Hervé; Stein, Richard R

    2009-08-25

    While eukaryotes primarily evolve by duplication-divergence expansion (and reduction) of their own gene repertoire with only rare horizontal gene transfers, prokaryotes appear to evolve under both gene duplications and widespread horizontal gene transfers over long evolutionary time scales. But, the evolutionary origin of this striking difference in the importance of horizontal gene transfers remains by and large a mystery. We propose that the abundance of horizontal gene transfers in free-living prokaryotes is a simple but necessary consequence of two opposite effects: i) their apparent genome size constraint compared to typical eukaryote genomes and ii) their underlying genome expansion dynamics through gene duplication-divergence evolution, as demonstrated by the presence of many tandem and block repeated genes. In principle, this combination of genome size constraint and underlying duplication expansion should lead to a coalescent-like process with extensive turnover of functional genes. This would, however, imply the unlikely, systematic reinvention of functions from discarded genes within independent phylogenetic lineages. Instead, we propose that the long-term evolutionary adaptation of free-living prokaryotes must have resulted in the emergence of efficient non-phylogenetic pathways to circumvent gene loss. This need for widespread horizontal gene transfers due to genome size constraint implies, in particular, that prokaryotes must remain under strong selection pressure in order to maintain the long-term evolutionary adaptation of their "mutualized" gene pool, beyond the inevitable turnover of individual prokaryote species. By contrast, the absence of genome size constraint for typical eukaryotes has presumably relaxed their need for widespread horizontal gene transfers and strong selection pressure. Yet, the resulting loss of genetic functions, due to weak selection pressure and inefficient gene recovery mechanisms, must have ultimately favored the

  5. Horizontal gene transfer between bacteria.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2007-01-01

    Horizontal gene transfer (HGT) refers to the acquisition of foreign genes by organisms. The occurrence of HGT among bacteria in the environment is assumed to have implications in the risk assessment of genetically modified bacteria which are released into the environment. First, introduced genetic sequences from a genetically modified bacterium could be transferred to indigenous micro-organisms and alter their genome and subsequently their ecological niche. Second, the genetically modified bacterium released into the environment might capture mobile genetic elements (MGE) from indigenous micro-organisms which could extend its ecological potential. Thus, for a risk assessment it is important to understand the extent of HGT and genome plasticity of bacteria in the environment. This review summarizes the present state of knowledge on HGT between bacteria as a crucial mechanism contributing to bacterial adaptability and diversity. In view of the use of GM crops and microbes in agricultural settings, in this mini-review we focus particularly on the presence and role of MGE in soil and plant-associated bacteria and the factors affecting gene transfer.

  6. Horizontal Transfer of Spinosad in Coptotermes formosanus (Isoptera: Rhinotermitidae).

    PubMed

    Bhatta, D; Henderson, G

    2016-08-01

    Slow-acting and nonrepellent termiticides are possible candidates for nestmate to nestmate transfer called horizontal transfer. For the horizontal transfer study of spinosad, Coptotermes formosanus Shiraki was released in sand and soil at 1, 25, and 50 ppm Entrust(®) for 1 h and then mixed with healthy untreated termites for 21 d at the ratio of 1:1. Donor and recipient termites began to contact and groom each other immediately after release. Mortality of termites was recorded at 1, 3, 7, and 14 d after treatment. Spinosad was more effectively transferred in sand than in soil. In sand at 25 and 50 ppm, significantly high mortality of donors and recipients was observed after 7 d. When termites were exposed to treated soil at day 21, all three concentrations resulted in significantly higher mortality compared to the control. In our laboratory study, spinosad was effectively transferred by donor termites. Transfer of spinosad depended on its bioavailability and concentration. Further study is needed to address its effects against C. formosanus under field conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Horizontal transfers of Mariner transposons between mammals and insects.

    PubMed

    Oliveira, Sarah G; Bao, Weidong; Martins, Cesar; Jurka, Jerzy

    2012-09-26

    Active transposable elements (TEs) can be passed between genomes of different species by horizontal transfer (HT). This may help them to avoid vertical extinction due to elimination by natural selection or silencing. HT is relatively frequent within eukaryotic taxa, but rare between distant species. Closely related Mariner-type DNA transposon families, collectively named as Mariner-1_Tbel families, are present in the genomes of two ants and two mammalian genomes. Consensus sequences of the four families show pairwise identities greater than 95%. In addition, mammalian Mariner1_BT family shows a close evolutionary relationship with some insect Mariner families. Mammalian Mariner1_BT type sequences are present only in species from three groups including ruminants, tooth whales (Odontoceti), and New World leaf-nosed bats (Phyllostomidae). Horizontal transfer accounts for the presence of Mariner_Tbel and Mariner1_BT families in mammals. Mariner_Tbel family was introduced into hedgehog and tree shrew genomes approximately 100 to 69 million years ago (MYA). Most likely, these TE families were transferred from insects to mammals, but details of the transfer remain unknown.

  8. Alignment-free detection of horizontal gene transfer between closely related bacterial genomes.

    PubMed

    Domazet-Lošo, Mirjana; Haubold, Bernhard

    2011-09-01

    Bacterial epidemics are often caused by strains that have acquired their increased virulence through horizontal gene transfer. Due to this association with disease, the detection of horizontal gene transfer continues to receive attention from microbiologists and bioinformaticians alike. Most software for detecting transfer events is based on alignments of sets of genes or of entire genomes. But despite great advances in the design of algorithms and computer programs, genome alignment remains computationally challenging. We have therefore developed an alignment-free algorithm for rapidly detecting horizontal gene transfer between closely related bacterial genomes. Our implementation of this algorithm is called alfy for "ALignment Free local homologY" and is freely available from http://guanine.evolbio.mpg.de/alfy/. In this comment we demonstrate the application of alfy to the genomes of Staphylococcus aureus. We also argue that-contrary to popular belief and in spite of increasing computer speed-algorithmic optimization is becoming more, not less, important if genome data continues to accumulate at the present rate.

  9. Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization.

    PubMed

    Ettensohn, Charles A

    2014-05-01

    It is widely accepted that biomineralized structures appeared independently in many metazoan clades during the Cambrian. How this occurred, and whether it involved the parallel co-option of a common set of biochemical and developmental pathways (i.e., a shared biomineralization "toolkit"), are questions that remain unanswered. Here, I provide evidence that horizontal gene transfer supported the evolution of biomineralization in some metazoans. I show that Msp130 proteins, first described as proteins expressed selectively by the biomineral-forming primary mesenchyme cells of the sea urchin embryo, have a much wider taxonomic distribution than was previously appreciated. Msp130 proteins are present in several invertebrate deuterostomes and in one protostome clade (molluscs). Surprisingly, closely related proteins are also present in many bacteria and several algae, and I propose that msp130 genes were introduced into metazoan lineages via multiple, independent horizontal gene transfer events. Phylogenetic analysis shows that the introduction of an ancestral msp130 gene occurred in the sea urchin lineage more than 250 million years ago and that msp130 genes underwent independent, parallel duplications in each of the metazoan phyla in which these genes are found. © 2014 Wiley Periodicals, Inc.

  10. Recent horizontal transfer of mellifera subfamily mariner transposons into insect lineages representing four different orders shows that selection acts only during horizontal transfer.

    PubMed

    Lampe, David J; Witherspoon, David J; Soto-Adames, Felipe N; Robertson, Hugh M

    2003-04-01

    We report the isolation and sequencing of genomic copies of mariner transposons involved in recent horizontal transfers into the genomes of the European earwig, Forficula auricularia; the European honey bee, Apis mellifera; the Mediterranean fruit fly, Ceratitis capitata; and a blister beetle, Epicauta funebris, insects from four different orders. These elements are in the mellifera subfamily and are the second documented example of full-length mariner elements involved in this kind of phenomenon. We applied maximum likelihood methods to the coding sequences and determined that the copies in each genome were evolving neutrally, whereas reconstructed ancestral coding sequences appeared to be under selection, which strengthens our previous hypothesis that the primary selective constraint on mariner sequence evolution is the act of horizontal transfer between genomes.

  11. Horizontal gene transfer in parasitic plants.

    PubMed

    Davis, Charles C; Xi, Zhenxiang

    2015-08-01

    Horizontal gene transfer (HGT) between species has been a major focus of plant evolutionary research during the past decade. Parasitic plants, which establish a direct connection with their hosts, have provided excellent examples of how these transfers are facilitated via the intimacy of this symbiosis. In particular, phylogenetic studies from diverse clades indicate that parasitic plants represent a rich system for studying this phenomenon. Here, HGT has been shown to be astonishingly high in the mitochondrial genome, and appreciable in the nuclear genome. Although explicit tests remain to be performed, some transgenes have been hypothesized to be functional in their recipient species, thus providing a new perspective on the evolution of novelty in parasitic plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei

    PubMed Central

    2013-01-01

    Background In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). Results In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. Conclusions HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional. PMID:23914989

  13. Reducing economic risk in areally anisotropic formations with multiple-lateral horizontal wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.; Economides, M.J.; Frick, T.P.

    1995-12-31

    Well orientation is critical to horizontal well performance in areally anisotropic reservoirs. A horizontal well, drilled normal to the direction of maximum permeability, will have higher productivity than one drilled in any other arbitrary direction. Currently, horizontal permeability magnitudes and even indications of direction are rarely measured in the field. Based on well performance modeling and economic evaluation, this study attempts to determine the relative attractiveness of horizontal wells with multiple-laterals. The work exposes the economic risk in ignoring horizontal permeability magnitudes and directions and demonstrates the importance of adequate reservoir testing. A new rationalization for multiple-lateral horizontal wells ismore » the reduction of the economic risk associated with poor reservoir characterization in areally anisotropic formations while increasing the incremental net present value (NPV) over single-horizontal wells.« less

  14. Accidental Genetic Engineers: Horizontal Sequence Transfer from Parasitoid Wasps to Their Lepidopteran Hosts

    PubMed Central

    Schneider, Sean E.; Thomas, James H.

    2014-01-01

    We show here that 105 regions in two Lepidoptera genomes appear to derive from horizontally transferred wasp DNA. We experimentally verified the presence of two of these sequences in a diverse set of silkworm (Bombyx mori) genomes. We hypothesize that these horizontal transfers are made possible by the unusual strategy many parasitoid wasps employ of injecting hosts with endosymbiotic polydnaviruses to minimize the host's defense response. Because these virus-like particles deliver wasp DNA to the cells of the host, there has been much interest in whether genetic information can be permanently transferred from the wasp to the host. Two transferred sequences code for a BEN domain, known to be associated with polydnaviruses and transcriptional regulation. These findings represent the first documented cases of horizontal transfer of genes between two organisms by a polydnavirus. This presents an interesting evolutionary paradigm in which host species can acquire new sequences from parasitoid wasps that attack them. Hymenoptera and Lepidoptera diverged ∼300 MYA, making this type of event a source of novel sequences for recipient species. Unlike many other cases of horizontal transfer between two eukaryote species, these sequence transfers can be explained without the need to invoke the sequences ‘hitchhiking’ on a third organism (e.g. retrovirus) capable of independent reproduction. The cellular machinery necessary for the transfer is contained entirely in the wasp genome. The work presented here is the first such discovery of what is likely to be a broader phenomenon among species affected by these wasps. PMID:25296163

  15. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xuejun; College of Biology and Chemical Engineering, Panzhihua University, Panzhihua 617000; Ye, Shichao

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model ismore » able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)« less

  16. Molecular Evolution and Mosaicism of Leptospiral Outer Membrane Proteins Involves Horizontal DNA Transfer

    PubMed Central

    Haake, David A.; Suchard, Marc A.; Kelley, Melissa M.; Dundoo, Manjula; Alt, David P.; Zuerner, Richard L.

    2004-01-01

    Leptospires belong to a genus of parasitic bacterial spirochetes that have adapted to a broad range of mammalian hosts. Mechanisms of leptospiral molecular evolution were explored by sequence analysis of four genes shared by 38 strains belonging to the core group of pathogenic Leptospira species: L. interrogans, L. kirschneri, L. noguchii, L. borgpetersenii, L. santarosai, and L. weilii. The 16S rRNA and lipL32 genes were highly conserved, and the lipL41 and ompL1 genes were significantly more variable. Synonymous substitutions are distributed throughout the ompL1 gene, whereas nonsynonymous substitutions are clustered in four variable regions encoding surface loops. While phylogenetic trees for the 16S, lipL32, and lipL41 genes were relatively stable, 8 of 38 (20%) ompL1 sequences had mosaic compositions consistent with horizontal transfer of DNA between related bacterial species. A novel Bayesian multiple change point model was used to identify the most likely sites of recombination and to determine the phylogenetic relatedness of the segments of the mosaic ompL1 genes. Segments of the mosaic ompL1 genes encoding two of the surface-exposed loops were likely acquired by horizontal transfer from a peregrine allele of unknown ancestry. Identification of the most likely sites of recombination with the Bayesian multiple change point model, an approach which has not previously been applied to prokaryotic gene sequence analysis, serves as a model for future studies of recombination in molecular evolution of genes. PMID:15090524

  17. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  18. Panspermia and horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Klyce, Brig

    2009-08-01

    Evidence that extremophiles are hardy and ubiquitous is helping to make panspermia a respectable theory. But even if life on Earth originally came from space, biologists assume that the subsequent evolution of life is still governed by the darwinian paradigm. In this review we show how panspermia could amend darwinism and point to a cosmic source for, not only extremophiles but, all of life. This version of panspermia can be called "strong panspermia." To support this theory we will discuss recent evidence pertaining to horizontal gene transfer, viruses, genes apparently older than the Earthly evolution of the features they encode, and primate-specific genes without identifiable precursors.

  19. Dynamic monitoring of horizontal gene transfer in soil

    NASA Astrophysics Data System (ADS)

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.

    2015-12-01

    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  20. Multiple recent horizontal transfers of the cox1 intron in Solanaceae and extended co-conversion of flanking exons

    PubMed Central

    2011-01-01

    Background The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intron's promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element. Results Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1. Re-examination of all published cox1 genes uncovered additional cases of extended co-conversion and identified a rare case of putative intron loss, accompanied by full retention of the CCT. Conclusions We infer that the cox1 intron was separately and recently acquired by at least three different lineages of Solanaceae. The striking identity of the intron and CCT from two of these lineages suggests that one of these three intron captures may have occurred by a within-family transfer event. This is consistent with previous evidence that horizontal transfer in plants is biased towards phylogenetically local events. The discovery

  1. An ancient trans-kingdom horizontal transfer of Penelope -like retroelements from arthropods to conifers

    Treesearch

    Xuan Lin; Nurul Faridi; Claudio Casola

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In  eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to  move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively  ...

  2. Horizontal gene transfer in an acid mine drainage microbial community.

    PubMed

    Guo, Jiangtao; Wang, Qi; Wang, Xiaoqi; Wang, Fumeng; Yao, Jinxian; Zhu, Huaiqiu

    2015-07-04

    Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance. Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT. Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

  3. Detecting Horizontal Gene Transfer between Closely Related Taxa

    PubMed Central

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-01-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on “unusual” sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain. PMID:26439115

  4. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    PubMed Central

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  5. Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus

    PubMed Central

    2011-01-01

    We have recently reported numerous cases of horizontal transfers of transposable elements between species of drosophilids. These studies revealed a substantial number of horizontal transfers between species of the subgroup melanogaster of the genus Drosophila and between these species and species of the genus Zaprionus. In this review, these transfers and similar, previously reported events are discussed and reanalysed to portray the interrelationships between the species that allowed the occurrence of so many horizontal transfers. The paper also addresses problems that may arise in drawing inferences about the time period during which the horizontal transfers occurred and the factors that may be associated with these transfers are discussed. PMID:22312591

  6. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    PubMed

    Dana, Catherine E; Glauber, Kristine M; Chan, Titus A; Bridge, Diane M; Steele, Robert E

    2012-01-01

    Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp) that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  7. 13. DETAIL OF BEVEL GEAR TRANSFERRING HORIZONTAL DRIVE FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF BEVEL GEAR TRANSFERRING HORIZONTAL DRIVE FROM MAIN WATERWHEEL SHAFT TO VERTICAL SHAFT DRIVING COFFEE HUSKING MILL ON SECOND FLOOR - Hacienda Cafetalera Santa Clara, Coffee Mill, KM 19, PR Route 372, Hacienda La Juanita, Yauco Municipio, PR

  8. VHICA, a New Method to Discriminate between Vertical and Horizontal Transposon Transfer: Application to the Mariner Family within Drosophila.

    PubMed

    Wallau, Gabriel Luz; Capy, Pierre; Loreto, Elgion; Le Rouzic, Arnaud; Hua-Van, Aurélie

    2016-04-01

    Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually independent species, through so-called horizontal transposon transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically supported methods that can be applied to multiple species sequence data sets. Here, we developed a new automated method available as a R package "vhica" that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA (Vertical and Horizontal Inheritance Consistence Analysis) method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Genome-wide identification of horizontal gene transfer in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different lineages, breaks species boundaries and generates new biological diversity. In eukaryotes, despite potential barriers, like the nuclear envelope and multicellularity, HGT may be facilitated by t...

  10. Complexity of genetic sequences modified by horizontal gene transfer and degraded-DNA uptake

    NASA Astrophysics Data System (ADS)

    Tremberger, George; Dehipawala, S.; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    Horizontal gene transfer has been a major vehicle for efficient transfer of genetic materials among living species and could be one of the sources for noncoding DNA incorporation into a genome. Our previous study of lnc- RNA sequence complexity in terms of fractal dimension and information entropy shows a tight regulation among the studied genes in numerous diseases. The role of sequence complexity in horizontal transferred genes was investigated with Mealybug in symbiotic relation with a 139K genome microbe and Deinococcus radiodurans as examples. The fractal dimension and entropy showed correlation R-sq of 0.82 (N = 6) for the studied Deinococcus radiodurans sequences. For comparison the Deinococcus radiodurans oxidative stress tolerant catalase and superoxide dismutase genes under extracellular dGMP growth condition showed R-sq ~ 0.42 (N = 6); and the studied arsenate reductase horizontal transferred genes for toxicity survival in several microorganisms showed no correlation. Simulation results showed that R-sq < 0.4 would be improbable at less than one percent chance, suggestive of additional selection pressure when compared to the R-sq ~ 0.29 (N = 21) in the studied transferred genes in Mealybug. The mild correlation of R-sq ~ 0.5 for fractal dimension versus transcription level in the studied Deinococcus radiodurans sequences upon extracellular dGMP growth condition would suggest that lower fractal dimension with less electron density fluctuation favors higher transcription level.

  11. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover

    PubMed Central

    2011-01-01

    Background Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes. Results We examine the transfer of cellulase genes to the free-living and beetle-associated nematode Pristionchus pacificus, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven Pristionchus species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of Pristionchus pacificus suggests these high evolutionary dynamics to be associated with copy number variations and positive selection. Conclusion We could demonstrate functional integration of acquired cellulase genes into the nematode

  12. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover.

    PubMed

    Mayer, Werner E; Schuster, Lisa N; Bartelmes, Gabi; Dieterich, Christoph; Sommer, Ralf J

    2011-01-13

    Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes. We examine the transfer of cellulase genes to the free-living and beetle-associated nematode Pristionchus pacificus, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven Pristionchus species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of Pristionchus pacificus suggests these high evolutionary dynamics to be associated with copy number variations and positive selection. We could demonstrate functional integration of acquired cellulase genes into the nematode's biology as predicted by theory

  13. Heat transfer to horizontal tubes immersed in a fluidized-bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Menart, J.; Hajicek, D.R.

    Experiments were carried out to measure the heat transfer rates to water-cooled horizontal tubes immersed in an atmospheric fluidized-bed combustor burning North Dakota lignite. The effect of bed temperature (T/sub B/ = 587 to 1205K), particle size (anti d/sub p/ = 0.544 to 2.335 mm), and fluidizing velocity (U = 0.73 to 2.58 m/s) on the heat transfer rate to horizontal tubes immersed in a fluidized-bed combustor (0.45 x 0.45 m) was investigated. Among existing correlations, correlations proposed by Glicksman and Decker (1980), Zabrodsky et al. (1980), Catipovic et al. (1980), Grewal (1981), and Bansal et al. (1980) are foundmore » to predict the present data quite well, when the contribution due to radiation is included. The radiative heat transfer is estimated as the difference between the heat transfer to an oxidized boiler tube and to a gold-plated tube. The relative contribution of radiation is found to be 11% for a bed of sand particles (anti d/sub p/ = 0.9 mm) operating at 1088K. 40 refs., 7 figs., 5 tabs.« less

  14. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation.

    PubMed

    Yang, Zhenzhen; Zhang, Yeting; Wafula, Eric K; Honaas, Loren A; Ralph, Paula E; Jones, Sam; Clarke, Christopher R; Liu, Siming; Su, Chun; Zhang, Huiting; Altman, Naomi S; Schuster, Stephan C; Timko, Michael P; Yoder, John I; Westwood, James H; dePamphilis, Claude W

    2016-10-24

    Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.

  15. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation

    PubMed Central

    Yang, Zhenzhen; Zhang, Yeting; Wafula, Eric K.; Honaas, Loren A.; Ralph, Paula E.; Jones, Sam; Clarke, Christopher R.; Liu, Siming; Su, Chun; Zhang, Huiting; Altman, Naomi S.; Schuster, Stephan C.; Timko, Michael P.; Yoder, John I.; dePamphilis, Claude W.

    2016-01-01

    Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia. Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium—the organ of parasitic plants—and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants. PMID:27791104

  16. Heat Transfer from a Horizontal Cylinder Rotating in Oil

    NASA Technical Reports Server (NTRS)

    Seban, R. A.; Johnson, H. A.

    1959-01-01

    Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.

  17. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes

    PubMed Central

    Kordis, Dusan; Gubensek, Franc

    1998-01-01

    We have shown previously by Southern blot analysis that Bov-B long interspersed nuclear elements (LINEs) are present in different Viperidae snake species. To address the question as to whether Bov-B LINEs really have been transmitted horizontally between vertebrate classes, the analysis has been extended to a larger number of vertebrate, invertebrate, and plant species. In this paper, the evolutionary origin of Bov-B LINEs is shown unequivocally to be in Squamata. The previously proposed horizontal transfer of Bov-B LINEs in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The horizontal transfer of Bov-B LINEs from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution. The ancestor of Colubroidea snakes is a possible donor of Bov-B LINEs to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINEs in Ruminantia and the fossil data of Ruminantia to be 40–50 My ago. The phylogenetic relationships of Bov-B LINEs from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINEs have been maintained stably by vertical transmission since the origin of Squamata in the Mesozoic era. PMID:9724768

  18. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  19. Crosstalk between vertical and horizontal gene transfer: plasmid replication control by a conjugative relaxase

    PubMed Central

    Lorenzo-Díaz, Fabián; Fernández-López, Cris; Lurz, Rudi

    2017-01-01

    Abstract Horizontal gene transfer is a key process in the evolution of bacteria and also represents a source of genetic variation in eukaryotes. Among elements participating in gene transfer, thousands of small (<10 kb) mobile bacterial plasmids that replicate by the rolling circle mechanism represent a driving force in the spread of antibiotic resistances. In general, these plasmids are built as genetic modules that encode a replicase, an antibiotic-resistance determinant, and a relaxase that participates in their conjugative mobilization. Further, they control their relatively high copy number (∼30 copies per genome equivalent) by antisense RNAs alone or combined with a repressor protein. We report here that the MobM conjugative relaxase encoded by the promiscuous plasmid pMV158 participates in regulation of the plasmid copy number by transcriptional repression of the antisense RNA, thus increasing the number of plasmid molecules ready to be horizontally transferred (mobilization) and/or vertically inherited (replication). This type of crosstalk between genetic modules involved in vertical and horizontal gene flow has not been reported before. PMID:28525572

  20. Horizontal functional gene transfer from bacteria to fishes.

    PubMed

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W; He, Shun-Min; Huang, Da-Wei

    2015-12-22

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution.

  1. Horizontal gene transfer and mobile genetic elements in marine systems.

    PubMed

    Sobecky, Patricia A; Hazen, Tracy H

    2009-01-01

    The pool of mobile genetic elements (MGE) in microbial communities consists of viruses, plasmids, and associated elements (insertion sequences, transposons, and integrons) that are either self-transmissible or use mobile plasmids and viruses as vehicles for their dissemination. This mobilome facilitates the horizontal transfer of genes that promote the evolution and adaptation of microbial communities. Efforts to characterize MGEs from microbial populations resident in a variety of ecological habitats have revealed a surprisingly novel and seemingly untapped biodiversity. To better understand the impact of horizontal gene transfer (HGT), as well as the agents that promote HGT in marine ecosystems and to determine whether or not environmental parameters can effect the composition and structure of the mobilome in marine microbial communities, information on the distribution, diversity, and ecological traits of the marine mobilome is presented. In this chapter we discuss recent insights gained from different methodological approaches used to characterize the biodiversity and ecology of MGE in marine environments and their contributions to HGT. In addition, we present case studies that highlight specific HGT examples in coastal, open-ocean, and deep-sea marine ecosystems.

  2. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs.

    PubMed

    Zhou, Geyu; Zhou, Yu; Chen, Xi

    2017-01-01

    Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups' subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  3. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer.

    PubMed

    Borgeaud, Sandrine; Metzger, Lisa C; Scrignari, Tiziana; Blokesch, Melanie

    2015-01-02

    Natural competence for transformation is a common mode of horizontal gene transfer and contributes to bacterial evolution. Transformation occurs through the uptake of external DNA and its integration into the genome. Here we show that the type VI secretion system (T6SS), which serves as a predatory killing device, is part of the competence regulon in the naturally transformable pathogen Vibrio cholerae. The T6SS-encoding gene cluster is under the positive control of the competence regulators TfoX and QstR and is induced by growth on chitinous surfaces. Live-cell imaging revealed that deliberate killing of nonimmune cells via competence-mediated induction of T6SS releases DNA and makes it accessible for horizontal gene transfer in V. cholerae. Copyright © 2015, American Association for the Advancement of Science.

  4. Rampant Horizontal Transfer of SPIN Transposons in Squamate Reptiles

    PubMed Central

    Gilbert, Clément; Hernandez, Sharon S.; Flores-Benabib, Jaime; Smith, Eric N.; Feschotte, Cédric

    2012-01-01

    Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000–28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of

  5. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction

    PubMed Central

    Overballe-Petersen, Søren; Willerslev, Eske

    2014-01-01

    Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. PMID:25143190

  6. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers

    PubMed Central

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  7. Horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, Cimex lectularius L.; hemiptera: cimicidae.

    PubMed

    Akhtar, Yasmin; Isman, Murray B

    2013-01-01

    Horizontal transfer of insecticide occurs when insects contact or ingest an insecticide, return to an aggregation or a nest, and transfer the insecticide to other conspecific insects through contact. This phenomenon has been reported in a number of insects including social insects, however it has not been reported in bed bugs. Since horizontal transfer can facilitate the spread of insecticide into hard to reach spaces, it could contribute greatly to the management of these public health pests. To demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in C. lectularius, an exposed (donor) bed bug, following a 10-minute acquisition period, was placed with unexposed (recipient) bed bugs. Mortality data clearly demonstrates that diatomaceous earth (DE 51) was actively transferred from a single exposed bug to unexposed bugs in a concentration dependent manner. LC50 values varied from 24.4 mg at 48 h to 5.1 mg at 216 h when a single exposed bed bug was placed with 5 unexposed bed bugs. LT50 values also exhibited a concentration response. LT50 values varied from 1.8 days to 8.4 days when a 'donor' bug exposed to 20 and 5 mg of dust respectively was placed with 5 'recipient' bugs. Dust was also actively transferred from adult bed bugs to the nymphs. In addition we observed horizontal transfer of botanical insecticides including neem, ryania, and rotenone to varying degrees. Our data clearly demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, C. lectularius. Use of a fluorescent dust provided visual confirmation that contaminated bed bugs transfer dust to untreated bed bugs in harborage. This result is important because bedbugs live in hard-to-reach places and interaction between conspecifics can be exploited for delivery and dissemination of management products directed at this public health pest.

  8. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes

    PubMed Central

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches. PMID:26789284

  9. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes.

    PubMed

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.

  10. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction.

    PubMed

    Overballe-Petersen, Søren; Willerslev, Eske

    2014-10-01

    Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. © 2014 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  11. Post-Dryout Heat Transfer to a Refrigerant Flowing in Horizontal Evaporator Tubes

    NASA Astrophysics Data System (ADS)

    Mori, Hideo; Yoshida, Suguru; Kakimoto, Yasushi; Ohishi, Katsumi; Fukuda, Kenichi

    Studies of the post-dryout heat transfer were made based on the experimental data for HFC-134a flowing in horizontal smooth and spiral1y grooved (micro-fin) tubes and the characteristics of the post-dryout heat transfer were c1arified. The heat transfer coefficient at medium and high mass flow rates in the smooth tube was lower than the single-phase heat transfer coefficient of the superheated vapor flow, of which mass flow rate was given on the assumption that the flow was in a thermodynamic equilibrium. A prediction method of post-dryout heat transfer coefficient was developed to reproduce the measurement satisfactorily for the smooth tube. The post dryout heat transfer in the micro-fin tube can be regarded approximately as a superheated vapor single-phase heat transfer.

  12. Plasmid transfer by conjugation as a possible route of horizontal gene transfer and recombination in Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Horizontal gene transfer is an important component of evolution and adaptation of bacterial species. Xylella fastidiosa has the ability to incorporate exogenous DNA into its genome by homologous recombination at relatively high rates. This genetic recombination is believed to play a role in adaptati...

  13. Parallel Histories of Horizontal Gene Transfer Facilitated Extreme Reduction of Endosymbiont Genomes in Sap-Feeding Insects

    PubMed Central

    Sloan, Daniel B.; Nakabachi, Atsushi; Richards, Stephen; Qu, Jiaxin; Murali, Shwetha Canchi; Gibbs, Richard A.; Moran, Nancy A.

    2014-01-01

    Bacteria confined to intracellular environments experience extensive genome reduction. In extreme cases, insect endosymbionts have evolved genomes that are so gene-poor that they blur the distinction between bacteria and endosymbiotically derived organelles such as mitochondria and plastids. To understand the host’s role in this extreme gene loss, we analyzed gene content and expression in the nuclear genome of the psyllid Pachypsylla venusta, a sap-feeding insect that harbors an ancient endosymbiont (Carsonella) with one of the most reduced bacterial genomes ever identified. Carsonella retains many genes required for synthesis of essential amino acids that are scarce in plant sap, but most of these biosynthetic pathways have been disrupted by gene loss. Host genes that are upregulated in psyllid cells housing Carsonella appear to compensate for endosymbiont gene losses, resulting in highly integrated metabolic pathways that mirror those observed in other sap-feeding insects. The host contribution to these pathways is mediated by a combination of native eukaryotic genes and bacterial genes that were horizontally transferred from multiple donor lineages early in the evolution of psyllids, including one gene that appears to have been directly acquired from Carsonella. By comparing the psyllid genome to a recent analysis of mealybugs, we found that a remarkably similar set of functional pathways have been shaped by independent transfers of bacterial genes to the two hosts. These results show that horizontal gene transfer is an important and recurring mechanism driving coevolution between insects and their bacterial endosymbionts and highlight interesting similarities and contrasts with the evolutionary history of mitochondria and plastids. PMID:24398322

  14. Horizontal transfer of OC1 transposons in the Tasmanian devil.

    PubMed

    Gilbert, Clement; Waters, Paul; Feschotte, Cedric; Schaack, Sarah

    2013-02-27

    There is growing recognition that horizontal DNA transfer, a process known to be common in prokaryotes, is also a significant source of genomic variation in eukaryotes. Horizontal transfer of transposable elements (HTT) may be especially prevalent in eukaryotes given the inherent mobility, widespread occurrence, and prolific abundance of these elements in many eukaryotic genomes. Here, we provide evidence for a new case of HTT of the transposon family OposCharlie1 (OC1) in the Tasmanian devil, Sarcophilus harrisii. Bioinformatic analyses of OC1 sequences in the Tasmanian devil genome suggest that this transposon infiltrated the common ancestor of the Dasyuridae family ~17 million years ago. This estimate is corroborated by a PCR-based screen for the presence/absence of this family in Tasmanian devils and closely-related species. This case of HTT is the first to be reported in dasyurids. It brings the number of animal lineages independently invaded by OC1 to 12, and adds a fourth continent to the pandemic-like pattern of invasion of this transposon. In the context of these data, we discuss the evolutionary history of this transposon family and its potential impact on the diversification of marsupials.

  15. Horizontal transfer of OC1 transposons in the Tasmanian devil

    PubMed Central

    2013-01-01

    Background There is growing recognition that horizontal DNA transfer, a process known to be common in prokaryotes, is also a significant source of genomic variation in eukaryotes. Horizontal transfer of transposable elements (HTT) may be especially prevalent in eukaryotes given the inherent mobility, widespread occurrence, and prolific abundance of these elements in many eukaryotic genomes. Results Here, we provide evidence for a new case of HTT of the transposon family OposCharlie1 (OC1) in the Tasmanian devil, Sarcophilus harrisii. Bioinformatic analyses of OC1 sequences in the Tasmanian devil genome suggest that this transposon infiltrated the common ancestor of the Dasyuridae family ~17 million years ago. This estimate is corroborated by a PCR-based screen for the presence/absence of this family in Tasmanian devils and closely-related species. Conclusions This case of HTT is the first to be reported in dasyurids. It brings the number of animal lineages independently invaded by OC1 to 12, and adds a fourth continent to the pandemic-like pattern of invasion of this transposon. In the context of these data, we discuss the evolutionary history of this transposon family and its potential impact on the diversification of marsupials. PMID:23445260

  16. Single-embryo transfer versus multiple-embryo transfer.

    PubMed

    Gerris, Jan

    2009-01-01

    Despite the progress made in assisted reproductive technology, live birth rates remain disappointingly low. Multiple-embryo transfer has been an accepted practice with which to increase the success rate. This has led to a higher incidence of multiple-order births compared with natural conception, which not only increase the risk of mortality and morbidity to both mother and children but are also associated with social and economic consequences. Elective single-embryo transfer (eSET) was developed in an effort to increase singleton pregnancies in assisted reproduction. Studies comparing eSET with multiple-embryo transfer highlight the benefit of this approach and suggest that, with careful patient selection and the transfer of good-quality embryos, the risk of a multiple-order pregnancy can be reduced without significantly decreasing live birth rates. Although the use of eSET has gradually increased in clinical practice, its acceptance has been limited by factors such as availability of funding and awareness of the procedure. An open discussion of eSET is warranted in an effort to enable a broader understanding by physicians and patients of the merits of this approach. Ultimately, eSET may provide a more cost-effective, potentially safer approach to patients undergoing assisted reproduction technology.

  17. Horizontal Transfer of Diatomaceous Earth and Botanical Insecticides in the Common Bed Bug, Cimex lectularius L.; Hemiptera: Cimicidae

    PubMed Central

    Akhtar, Yasmin; Isman, Murray B.

    2013-01-01

    Background Horizontal transfer of insecticide occurs when insects contact or ingest an insecticide, return to an aggregation or a nest, and transfer the insecticide to other conspecific insects through contact. This phenomenon has been reported in a number of insects including social insects, however it has not been reported in bed bugs. Since horizontal transfer can facilitate the spread of insecticide into hard to reach spaces, it could contribute greatly to the management of these public health pests. Methodology/Results To demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in C. lectularius, an exposed (donor) bed bug, following a 10-minute acquisition period, was placed with unexposed (recipient) bed bugs. Mortality data clearly demonstrates that diatomaceous earth (DE 51) was actively transferred from a single exposed bug to unexposed bugs in a concentration dependent manner. LC50 values varied from 24.4 mg at 48 h to 5.1 mg at 216 h when a single exposed bed bug was placed with 5 unexposed bed bugs. LT50 values also exhibited a concentration response. LT50 values varied from 1.8 days to 8.4 days when a ‘donor’ bug exposed to 20 and 5 mg of dust respectively was placed with 5 ‘recipient’ bugs. Dust was also actively transferred from adult bed bugs to the nymphs. In addition we observed horizontal transfer of botanical insecticides including neem, ryania, and rotenone to varying degrees. Conclusion/Significance Our data clearly demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, C. lectularius. Use of a fluorescent dust provided visual confirmation that contaminated bed bugs transfer dust to untreated bed bugs in harborage. This result is important because bedbugs live in hard-to-reach places and interaction between conspecifics can be exploited for delivery and dissemination of management products directed at this public health pest. PMID:24086593

  18. Risks from GMOs due to horizontal gene transfer.

    PubMed

    Keese, Paul

    2008-01-01

    Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.

  19. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers.

    PubMed

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-05-02

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2016. This work is written by US Government employees and is in the public domain in the US.

  20. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    PubMed Central

    Rogers, Matthew B; Patron, Nicola J; Keeling, Patrick J

    2007-01-01

    Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA) are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes) of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group. PMID:17584924

  1. Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns.

    PubMed

    Wu, Baojun; Hao, Weilong

    2014-04-16

    Group I introns are highly dynamic and mobile, featuring extensive presence-absence variation and widespread horizontal transfer. Group I introns can invade intron-lacking alleles via intron homing powered by their own encoded homing endonuclease gene (HEG) after horizontal transfer or via reverse splicing through an RNA intermediate. After successful invasion, the intron and HEG are subject to degeneration and sequential loss. It remains unclear whether these mechanisms can fully address the high dynamics and mobility of group I introns. Here, we found that HEGs undergo a fast gain-and-loss turnover comparable with introns in the yeast mitochondrial 21S-rRNA gene, which is unexpected, as the intron and HEG are generally believed to move together as a unit. We further observed extensively mosaic sequences in both the introns and HEGs, and evidence of gene conversion between HEG-containing and HEG-lacking introns. Our findings suggest horizontal transfer and gene conversion can accelerate HEG/intron degeneration and loss, or rescue and propagate HEG/introns, and ultimately result in high HEG/intron turnover rate. Given that up to 25% of the yeast mitochondrial genome is composed of introns and most mitochondrial introns are group I introns, horizontal transfer and gene conversion could have served as an important mechanism in introducing mitochondrial intron diversity, promoting intron mobility and consequently shaping mitochondrial genome architecture.

  2. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer.

    PubMed

    Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R

    2015-01-02

    Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

  3. Horizontal gene transfer in silkworm, Bombyx mori.

    PubMed

    Zhu, Bo; Lou, Miao-Miao; Xie, Guan-Lin; Zhang, Guo-Qing; Zhou, Xue-Ping; Li, Bin; Jin, Gu-Lei

    2011-05-19

    The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT) maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes.

  4. Horizontal gene transfer in silkworm, Bombyx mori

    PubMed Central

    2011-01-01

    Background The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT) maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Results Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Conclusions Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes. PMID:21595916

  5. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns

    PubMed Central

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J.; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M.; Der, Joshua P.; Pittermann, Jarmila; Burge, Dylan O.; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W.; Crandall-Stotler, Barbara J.; Shaw, A. Jonathan; Deyholos, Michael K.; Soltis, Douglas E.; Graham, Sean W.; Windham, Michael D.; Langdale, Jane A.; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M.

    2014-01-01

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor—neochrome—that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns. PMID:24733898

  6. Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer

    PubMed Central

    2017-01-01

    Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT) has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations. PMID:28961177

  7. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus.

    PubMed

    Ma, Peng-Fei; Zhang, Yu-Xiao; Guo, Zhen-Hua; Li, De-Zhu

    2015-06-23

    In flowering plants, three genomes (nuclear, mitochondrial, and plastid) coexist and intracellular horizontal transfer of DNA is prevalent, especially from the plastid to the mitochondrion genome. However, the plastid genomes are generally conserved in evolution and have long been considered immune to foreign DNA. Recently, the opposite direction of DNA transfer from the mitochondrial to the plastid genome has been reported in two eudicot lineages. Here we sequenced 6 plastid genomes of bamboos, three of which are neotropical woody species and three are herbaceous ones. Several unusual features were found, including the duplication of trnT-GGU and loss of one copy of rps19 due to contraction of inverted repeats (IRs). The most intriguing was the ~2.7 kb insertion in the plastid IR regions in the three herbaceous bamboos. Furthermore, the insertion was documented to be horizontally transferred from the mitochondrial to the plastid genome. Our study provided evidence of the mitochondrial-to-plastid DNA transfer in the monocots, demonstrating again that this rare event does occur in other angiosperm lineages. However, the mechanism underlying the transfer remains obscure, and more studies in other plants may elucidate it in the future.

  8. Horizontal Gene Transfer to Endogenous Endophytic Bacteria from Poplar Improves Phytoremediation of Toluene

    PubMed Central

    Taghavi, Safiyh; Barac, Tanja; Greenberg, Bill; Borremans, Brigitte; Vangronsveld, Jaco; van der Lelie, Daniel

    2005-01-01

    Poplar, a plant species frequently used for phytoremediation of groundwater contaminated with organic solvents, was inoculated with the endophyte Burkholderia cepacia VM1468. This strain, whose natural host is yellow lupine, contains the pTOM-Bu61 plasmid coding for constitutively expressed toluene degradation. Noninoculated plants or plants inoculated with the soil bacterium B. cepacia Bu61(pTOM-Bu61) were used as controls. Inoculation of poplar had a positive effect on plant growth in the presence of toluene and reduced the amount of toluene released via evapotranspiration. These effects were more dramatic for VM1468, the endophytic strain, than for Bu61. Remarkably, none of the strains became established at detectable levels in the endophytic community, but there was horizontal gene transfer of pTOM-Bu61 to different members of the endogenous endophytic community, both in the presence and in the absence of toluene. This work is the first report of in planta horizontal gene transfer among plant-associated endophytic bacteria and demonstrates that such transfer could be used to change natural endophytic microbial communities in order to improve the remediation of environmental insults. PMID:16332840

  9. Horizontal transfer of fipronil is enhanced with increased group size in Coptotermes formosanus (Isoptera: Rhinotermitidae).

    PubMed

    Wang, Cai; Henderson, Gregg; Chen, Xuan; Gautam, Bal K

    2013-12-01

    Fipronil is a widely used insecticide for termite control. Although transfer of fipronil among termite cohorts has been investigated in previous studies, no study has yet focused on the influence of termite group size (density) on horizontal transfer. In this study, the mortality of donor and recipient Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) was compared among groups of 10, 25, and 50 workers. Most donor termites were dead within 20 h. There was a significantly higher mortality of recipient termites starting at 44 h when in bigger groups. LT50 and LT90 of recipient termites decreased with increase in group size, being significantly shorter in groups of 50 termites compared with groups of 10 termites. Moreover, the variance (within-group difference) of recipient mortality and lethal time estimations was lowest in the groups of 50 termites, indicating a more uniform horizontal transfer of fipronil by termites in bigger groups. Our findings suggest that group size has an influence on fipronil transfer among C. formosanus workers and should be considered as a variable of importance.

  10. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    PubMed Central

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  11. Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2018-03-03

    Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes. Recent discoveries indicate that the repertoire of donor bacterial species and of recipient eukaryotic hosts potentially are much wider than previously thought, including donor bacterial species, such as plant symbiotic nitrogen-fixing bacteria (e.g., Rhizobium etli) and animal bacterial pathogens (e.g., Bartonella henselae, Helicobacter pylori), and recipient species from virtually all eukaryotic clades. Here, we review the molecular pathways and potential mechanisms of these trans-kingdom HGT events and discuss their utilization in biotechnology and research.

  12. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

    PubMed Central

    Wybouw, Nicky; Dermauw, Wannes; Tirry, Luc; Stevens, Christian; Grbić, Miodrag; Feyereisen, René; Van Leeuwen, Thomas

    2014-01-01

    Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide. DOI: http://dx.doi.org/10.7554/eLife.02365.001 PMID:24843024

  13. Incorporation of Three-dimensional Radiative Transfer into a Very High Resolution Simulation of Horizontally Inhomogeneous Clouds

    NASA Astrophysics Data System (ADS)

    Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.

    2016-12-01

    A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be

  14. Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates.

    PubMed

    Goren-Ruck, Lior; Tsivion, David; Schvartzman, Mark; Popovitz-Biro, Ronit; Joselevich, Ernesto

    2014-03-25

    The guided growth of horizontal nanowires has so far been demonstrated on a limited number of substrates. In most cases, the nanowires are covalently bonded to the substrate where they grow and cannot be transferred to other substrates. Here we demonstrate the guided growth of well-aligned horizontal GaN nanowires on quartz and their subsequent transfer to silicon wafers by selective etching of the quartz while maintaining their alignment. The guided growth was observed on different planes of quartz with varying degrees of alignment. We characterized the crystallographic orientations of the nanowires and proposed a new mechanism of "dynamic graphoepitaxy" for their guided growth on quartz. The transfer of the guided nanowires enabled the fabrication of back-gated field-effect transistors from aligned nanowire arrays on oxidized silicon wafers and the production of crossbar arrays. The guided growth of transferrable nanowires opens up the possibility of massively parallel integration of nanowires into functional systems on virtually any desired substrate.

  15. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria.

    PubMed

    Dorman, Charles J

    2014-09-01

    Horizontal gene transfer plays an important role in the evolution of bacterial species, conferring new genetic traits on the recipient bacterium that extend its range of phenotypes and plasmids make important contributions to this process. However, the inappropriate expression of newly acquired genes may lead to a loss of competitive fitness, resulting in the elimination of the new gene-bacterium combination. It is thought that transcriptional silencing of horizontally acquired genes offers a route out of this dilemma and that nucleoid-associated proteins, especially those related to the H-NS protein, play a particularly important role in the silencing process. The discovery that many plasmids express orthologues of nucleoid-associated proteins adds an interesting dimension to current models of regulatory integration following lateral transfer of DNA. Other horizontally acquired genetic elements, such as genomic islands, also express nucleoid-associated proteins of their own. Here the interactions of H-NS-like nucleoid-associated proteins encoded by the core genome, genomic islands and plasmids are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants.

    PubMed

    Gao, Dongying; Chu, Ye; Xia, Han; Xu, Chunming; Heyduk, Karolina; Abernathy, Brian; Ozias-Akins, Peggy; Leebens-Mack, James H; Jackson, Scott A

    2018-02-01

    Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the An-RTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    PubMed

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Amoebozoa Possess Lineage-Specific Globin Gene Repertoires Gained by Individual Horizontal Gene Transfers

    PubMed Central

    Dröge, Jasmin; Buczek, Dorota; Suzuki, Yutaka; Makałowski, Wojciech

    2014-01-01

    The Amoebozoa represent a clade of unicellular amoeboid organisms that display a wide variety of lifestyles, including free-living and parasitic species. For example, the social amoeba Dictyostelium discoideum has the ability to aggregate into a multicellular fruiting body upon starvation, while the pathogenic amoeba Entamoeba histolytica is a parasite of humans. Globins are small heme proteins that are present in almost all extant organisms. Although several genomes of amoebozoan species have been sequenced, little is known about the phyletic distribution of globin genes within this phylum. Only two flavohemoglobins (FHbs) of D. discoideum have been reported and characterized previously while the genomes of Entamoeba species are apparently devoid of globin genes. We investigated eleven amoebozoan species for the presence of globin genes by genomic and phylogenetic in silico analyses. Additional FHb genes were identified in the genomes of four social amoebas and the true slime mold Physarum polycephalum. Moreover, a single-domain globin (SDFgb) of Hartmannella vermiformis, as well as two truncated hemoglobins (trHbs) of Acanthamoeba castellanii were identified. Phylogenetic evidence suggests that these globin genes were independently acquired via horizontal gene transfer from some ancestral bacteria. Furthermore, the phylogenetic tree of amoebozoan FHbs indicates that they do not share a common ancestry and that a transfer of FHbs from bacteria to amoeba occurred multiple times. PMID:25013378

  19. Simulations of buoyancy-generated horizontal roll vortices over multiple heating lines

    Treesearch

    W.E. Heilman

    1994-01-01

    A two-dimensional nonhydrostatic atmospheric model is used to simulate the boundary-layer circulations that develop from multiple lines of extremely high surface temperatures. Numerical simulations are carried out to investigate the role of buoyancy and ambient crossflow effects in generating horizontal roll vortices in the vicinity of adjacent wildland fire perimeters...

  20. Horizontal transfer of archaeal genes into the deinococcaceae: detection by molecular and computer-based approaches

    NASA Technical Reports Server (NTRS)

    Olendzenski, L.; Liu, L.; Zhaxybayeva, O.; Murphey, R.; Shin, D. G.; Gogarten, J. P.

    2000-01-01

    Members of the Deinococcaceae (e.g., Thermus, Meiothermus, Deinococcus) contain A/V-ATPases typically found in Archaea or Eukaryotes which were probably acquired by horizontal gene transfer. Two methods were used to quantify the extent to which archaeal or eukaryotic genes have been acquired by this lineage. Screening of a Meiothermus ruber library with probes made against Thermoplasma acidophilum DNA yielded a number of clones which hybridized more strongly than background. One of these contained the prolyl tRNA synthetase (RS) gene. Phylogenetic analysis shows the M. ruber and D. radiodurans prolyl RS to be more closely related to archaeal and eukaryal forms of this gene than to the typical bacterial type. Using a bioinformatics approach, putative open reading frames (ORFs) from the prerelease version of the D. radiodurans genome were screened for genes more closely related to archaeal or eukaryotic genes. Putative ORFs were searched against representative genomes from each of the three domains using automated BLAST. ORFs showing the highest matches against archaeal and eukaryotic genes were collected and ranked. Among the top-ranked hits were the A/V-ATPase catalytic and noncatalytic subunits and the prolyl RS genes. Using phylogenetic methods, ORFs were analyzed and trees assessed for evidence of horizontal gene transfer. Of the 45 genes examined, 20 showed topologies in which D. radiodurans homologues clearly group with eukaryotic or archaeal homologues, and 17 additional trees were found to show probable evidence of horizontal gene transfer. Compared to the total number of ORFs in the genome, those that can be identified as having been acquired from Archaea or Eukaryotes are relatively few (approximately 1%), suggesting that interdomain transfer is rare.

  1. Staphylococcus aureus genomics and the impact of horizontal gene transfer.

    PubMed

    Lindsay, Jodi A

    2014-03-01

    Whole genome sequencing and microarrays have revealed the population structure of Staphylococcus aureus, and identified epidemiological shifts, transmission routes, and adaptation of major clones. S. aureus genomes are highly diverse. This is partly due to a population structure of conserved lineages, each with unique combinations of genes encoding surface proteins, regulators, immune evasion and virulence pathways. Even more variable are the mobile genetic elements (MGE), which encode key proteins for antibiotic resistance, virulence and host-adaptation. MGEs can transfer at high frequency between isolates of the same lineage by horizontal gene transfer (HGT). There is increasing evidence that HGT is key to bacterial adaptation and success. Recent studies have shed light on new mechanisms of DNA transfer such as transformation, the identification of receptors for transduction, on integration of DNA pathways, mechanisms blocking transfer including CRISPR and new restriction systems, strategies for evasion of restriction barriers, as well as factors influencing MGE selection and stability. These studies have also lead to new tools enabling construction of genetically modified clinical S. aureus isolates. This review will focus on HGT mechanisms and their importance in shaping the evolution of new clones adapted to antibiotic resistance, healthcare, communities and livestock. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. New Correlation Methods of Evaporation Heat Transfer in Horizontal Microfine Tubes

    NASA Astrophysics Data System (ADS)

    Makishi, Osamu; Honda, Hiroshi

    A stratified flow model and an annular flow model of evaporation heat transfer in horizontal microfin tubes have been proposed. In the stratified flow model, the contributions of thin film evaporation and nucleate boiling in the groove above a stratified liquid were predicted by a previously reported numerical analysis and a newly developed correlation, respectively. The contributions of nucleate boiling and forced convection in the stratified liquid region were predicted by the new correlation and the Carnavos equation, respectively. In the annular flow model, the contributions of nucleate boiling and forced convection were predicted by the new correlation and the Carnavos equation in which the equivalent Reynolds number was introduced, respectively. A flow pattern transition criterion proposed by Kattan et al. was incorporated to predict the circumferential average heat transfer coefficient in the intermediate region by use of the two models. The predictions of the heat transfer coefficient compared well with available experimental data for ten tubes and four refrigerants.

  3. Phylogenetic study of Geitlerinema and Microcystis (Cyanobacteria) using PC-IGS and 16S-23S ITS as markers: investigation of horizontal gene transfer.

    PubMed

    Piccin-Santos, Viviane; Brandão, Marcelo Mendes; Bittencourt-Oliveira, Maria Do Carmo

    2014-08-01

    Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S-23S ITS) and phycocyanin intergenic spacer (PC-IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC-IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC-IGS and 16S-23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC-IGS. Thus, PC-IGS is a suitable marker, along with 16S-23S ITS for phylogenetic studies of cyanobacteria. © 2014 Phycological Society of America.

  4. Ecological networks to unravel the routes to horizontal transposon transfers.

    PubMed

    Venner, Samuel; Miele, Vincent; Terzian, Christophe; Biémont, Christian; Daubin, Vincent; Feschotte, Cédric; Pontier, Dominique

    2017-02-01

    Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.

  5. Replacing and Additive Horizontal Gene Transfer in Streptococcus

    PubMed Central

    Choi, Sang Chul; Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Stanhope, Michael J.; Siepel, Adam

    2012-01-01

    The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage (“replacing HGT”) and events that result in the addition of substantial new genomic material (“additive HGT”). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY–SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY–SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes. PMID:22617954

  6. Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes

    PubMed Central

    2011-01-01

    Background Legionella pneumophila is an intracellular pathogen of environmental protozoa. When humans inhale contaminated aerosols this bacterium may cause a severe pneumonia called Legionnaires' disease. Despite the abundance of dozens of Legionella species in aquatic reservoirs, the vast majority of human disease is caused by a single serogroup (Sg) of a single species, namely L. pneumophila Sg1. To get further insights into genome dynamics and evolution of Sg1 strains, we sequenced strains Lorraine and HL 0604 1035 (Sg1) and compared them to the available sequences of Sg1 strains Paris, Lens, Corby and Philadelphia, resulting in a comprehensive multigenome analysis. Results We show that L. pneumophila Sg1 has a highly conserved and syntenic core genome that comprises the many eukaryotic like proteins and a conserved repertoire of over 200 Dot/Icm type IV secreted substrates. However, recombination events and horizontal gene transfer are frequent. In particular the analyses of the distribution of nucleotide polymorphisms suggests that large chromosomal fragments of over 200 kbs are exchanged between L. pneumophila strains and contribute to the genome dynamics in the natural population. The many secretion systems present might be implicated in exchange of these fragments by conjugal transfer. Plasmids also play a role in genome diversification and are exchanged among strains and circulate between different Legionella species. Conclusion Horizontal gene transfer among bacteria and from eukaryotes to L. pneumophila as well as recombination between strains allows different clones to evolve into predominant disease clones and others to replace them subsequently within relatively short periods of time. PMID:22044686

  7. 27 CFR 24.282 - Multiple transfers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Multiple transfers. 24.282 Section 24.282 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... transfer record for all wine (including distilling material and vinegar stock) transferred by pipeline to...

  8. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  9. The Perchlorate Reduction Genomic Island: Mechanisms and Pathways of Evolution by Horizontal Gene Transfer.

    PubMed

    Melnyk, Ryan A; Coates, John D

    2015-10-26

    Perchlorate is a widely distributed anion that is toxic to humans, but serves as a valuable electron acceptor for several lineages of bacteria. The ability to utilize perchlorate is conferred by a horizontally transferred piece of DNA called the perchlorate reduction genomic island (PRI). We compared genomes of perchlorate reducers using phylogenomics, SNP mapping, and differences in genomic architecture to interrogate the evolutionary history of perchlorate respiration. Here we report on the PRI of 13 genomes of perchlorate-reducing bacteria from four different classes of Phylum Proteobacteria (the Alpha-, Beta-, Gamma- and Epsilonproteobacteria). Among the different phylogenetic classes, the island varies considerably in genetic content as well as in its putative mechanism and location of integration. However, the islands of the densely sampled genera Azospira and Magnetospirillum have striking nucleotide identity despite divergent genomes, implying horizontal transfer and positive selection within narrow phylogenetic taxa. We also assess the phylogenetic origin of accessory genes in the various incarnations of the island, which can be traced to chromosomal paralogs from phylogenetically similar organisms. These observations suggest a complex phylogenetic history where the island is rarely transferred at the class level but undergoes frequent and continuous transfer within narrow phylogenetic groups. This restricted transfer is seen directly by the independent integration of near-identical islands within a genus and indirectly due to the acquisition of lineage-specific accessory genes. The genomic reversibility of perchlorate reduction may present a unique equilibrium for a metabolism that confers a competitive advantage only in the presence of an electron acceptor, which although widely distributed, is generally present at low concentrations in nature.

  10. HTT-DB: horizontally transferred transposable elements database.

    PubMed

    Dotto, Bruno Reis; Carvalho, Evelise Leis; Silva, Alexandre Freitas; Duarte Silva, Luiz Fernando; Pinto, Paulo Marcos; Ortiz, Mauro Freitas; Wallau, Gabriel Luz

    2015-09-01

    Horizontal transfer of transposable (HTT) elements among eukaryotes was discovered in the mid-1980s. As then, >300 new cases have been described. New findings about HTT are revealing the evolutionary impact of this phenomenon on host genomes. In order to provide an up to date, interactive and expandable database for such events, we developed the HTT-DB database. HTT-DB allows easy access to most of HTT cases reported along with rich information about each case. Moreover, it allows the user to generate tables and graphs based on searches using Transposable elements and/or host species classification and export them in several formats. This database is freely available on the web at http://lpa.saogabriel.unipampa.edu.br:8080/httdatabase. HTT-DB was developed based on Java and MySQL with all major browsers supported. Tools and software packages used are free for personal or non-profit projects. bdotto82@gmail.com or gabriel.wallau@gmail.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  12. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  13. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates.

    PubMed

    Wisecaver, Jennifer H; Brosnahan, Michael L; Hackett, Jeremiah D

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

  14. CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.

    PubMed

    Watson, Bridget N J; Staals, Raymond H J; Fineran, Peter C

    2018-02-13

    A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum , CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted. IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through

  15. Horizontal transfer of transposons between and within crustaceans and insects

    PubMed Central

    2014-01-01

    Background Horizontal transfer of transposable elements (HTT) is increasingly appreciated as an important source of genome and species evolution in eukaryotes. However, our understanding of HTT dynamics is still poor in eukaryotes because the diversity of species for which whole genome sequences are available is biased and does not reflect the global eukaryote diversity. Results In this study we characterized two Mariner transposable elements (TEs) in the genome of several terrestrial crustacean isopods, a group of animals particularly underrepresented in genome databases. The two elements have a patchy distribution in the arthropod tree and they are highly similar (>93% over the entire length of the element) to insect TEs (Diptera and Hymenoptera), some of which were previously described in Ceratitis rosa (Crmar2) and Drosophila biarmipes (Mariner-5_Dbi). In addition, phylogenetic analyses and comparisons of TE versus orthologous gene distances at various phylogenetic levels revealed that the taxonomic distribution of the two elements is incompatible with vertical inheritance. Conclusions We conclude that the two Mariner TEs each underwent at least three HTT events. Both elements were transferred once between isopod crustaceans and insects and at least once between isopod crustacean species. Crmar2 was also transferred between tephritid and drosophilid flies and Mariner-5 underwent HT between hymenopterans and dipterans. We demonstrate that these various HTTs took place recently (most likely within the last 3 million years), and propose iridoviruses and/or Wolbachia endosymbionts as potential vectors of these transfers. PMID:24472097

  16. Horizontal transfer of transposons between and within crustaceans and insects.

    PubMed

    Dupeyron, Mathilde; Leclercq, Sébastien; Cerveau, Nicolas; Bouchon, Didier; Gilbert, Clément

    2014-01-29

    Horizontal transfer of transposable elements (HTT) is increasingly appreciated as an important source of genome and species evolution in eukaryotes. However, our understanding of HTT dynamics is still poor in eukaryotes because the diversity of species for which whole genome sequences are available is biased and does not reflect the global eukaryote diversity. In this study we characterized two Mariner transposable elements (TEs) in the genome of several terrestrial crustacean isopods, a group of animals particularly underrepresented in genome databases. The two elements have a patchy distribution in the arthropod tree and they are highly similar (>93% over the entire length of the element) to insect TEs (Diptera and Hymenoptera), some of which were previously described in Ceratitis rosa (Crmar2) and Drosophila biarmipes (Mariner-5_Dbi). In addition, phylogenetic analyses and comparisons of TE versus orthologous gene distances at various phylogenetic levels revealed that the taxonomic distribution of the two elements is incompatible with vertical inheritance. We conclude that the two Mariner TEs each underwent at least three HTT events. Both elements were transferred once between isopod crustaceans and insects and at least once between isopod crustacean species. Crmar2 was also transferred between tephritid and drosophilid flies and Mariner-5 underwent HT between hymenopterans and dipterans. We demonstrate that these various HTTs took place recently (most likely within the last 3 million years), and propose iridoviruses and/or Wolbachia endosymbionts as potential vectors of these transfers.

  17. Background Adjusted Alignment-Free Dissimilarity Measures Improve the Detection of Horizontal Gene Transfer.

    PubMed

    Tang, Kujin; Lu, Yang Young; Sun, Fengzhu

    2018-01-01

    Horizontal gene transfer (HGT) plays an important role in the evolution of microbial organisms including bacteria. Alignment-free methods based on single genome compositional information have been used to detect HGT. Currently, Manhattan and Euclidean distances based on tetranucleotide frequencies are the most commonly used alignment-free dissimilarity measures to detect HGT. By testing on simulated bacterial sequences and real data sets with known horizontal transferred genomic regions, we found that more advanced alignment-free dissimilarity measures such as CVTree and [Formula: see text] that take into account the background Markov sequences can solve HGT detection problems with significantly improved performance. We also studied the influence of different factors such as evolutionary distance between host and donor sequences, size of sliding window, and host genome composition on the performances of alignment-free methods to detect HGT. Our study showed that alignment-free methods can predict HGT accurately when host and donor genomes are in different order levels. Among all methods, CVTree with word length of 3, [Formula: see text] with word length 3, Markov order 1 and [Formula: see text] with word length 4, Markov order 1 outperform others in terms of their highest F 1 -score and their robustness under the influence of different factors.

  18. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo

    2018-02-01

    In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

  19. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    PubMed

    Kingston, Anthony W; Roussel-Rossin, Chloé; Dupont, Claire; Raleigh, Elisabeth A

    2015-01-01

    In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour.

  20. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island

    PubMed Central

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao

    2016-01-01

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity. PMID:27849579

  1. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    PubMed

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  2. Experimental study of the condensation heat transfer characteristics of CO2 in a horizontal microfin tube with a diameter of 4.95 mm

    NASA Astrophysics Data System (ADS)

    Son, Chang-Hyo; Oh, Hoo-Kyu

    2012-11-01

    The condensation heat transfer characteristics for CO2 flowing in a horizontal microfin tube were investigated by experiment with respect to condensation temperature and mass flux. The test section consists of a 2,400 mm long horizontal copper tube of 4.6 mm inner diameter. The experiments were conducted at refrigerant mass flux of 400-800 kg/m2s, and saturation temperature of 20-30 °C. The main experimental results showed that annular flow was highly dominated the majority of condensation flow in the horizontal microfin tube. The condensation heat transfer coefficient increases with decreasing saturation temperature and increasing mass flux. The experimental data were compared against previous heat transfer correlations. Most correlations failed to predict the experimental data. However, the correlation by Cavallini et al. showed relatively good agreement with experimental data in the microfin tube. Therefore, a new condensation heat transfer correlation is proposed with mean and average deviations of 3.14 and -7.6 %, respectively.

  3. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.

    PubMed

    Slot, Jason C; Rokas, Antonis

    2011-01-25

    Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK: Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Forced Convection Heat Transfer of Subcooled Liquid Nitrogen in Horizontal Tube

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Hata, K.; Kato, T.; Shiotsu, M.

    2008-03-01

    The knowledge of forced convection heat transfer of liquid hydrogen is important for the cooling design of a HTS superconducting magnet and a cold neutron moderator material. An experimental apparatus that could obtain forced flow without a pump was developed. As a first step of the study, the forced flow heat transfer of subcooled liquid nitrogen in a horizontal tube, instead of liquid hydrogen, was measured for the pressures ranging from 0.3 to 2.5 MPa. The inlet temperature was varied from 78 K to around its saturation temperature. The flow velocities were varied from 0.1 to 7 m/s. The heat transfer coefficients in the non-boiling region and the departure from nucleate boiling (DNB) heat fluxes were higher for higher flow velocity and higher subcooling. The measured values of Nu/Pr0.4 in the non-boiling region were proportional to Reynolds number (Re) to the power of 0.8. With a decrease in Re, Nu/Pr0.4 approached a constant value corresponding to that in a pool of liquid nitrogen. The correlation of DNB heat flux was derived that can describe the experimental data within ±15% difference.

  5. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the formmore » Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.« less

  6. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict

    PubMed Central

    Croucher, Nicholas J.; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D.; Fraser, Christophe

    2016-01-01

    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell–cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing “arms race.” Reduced rates of transformation have also been observed in cells infected by MGEs that

  7. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  8. Horizontal Transfers and Gene Losses in the Phospholipid Pathway of Bartonella Reveal Clues about Early Ecological Niches

    PubMed Central

    Zhu, Qiyun; Kosoy, Michael; Olival, Kevin J.; Dittmar, Katharina

    2014-01-01

    Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene—NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)—from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution. PMID:25106622

  9. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy

    PubMed Central

    Elmer, Jacob J.; Christensen, Matthew D.; Rege, Kaushal

    2014-01-01

    Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases. PMID:23994344

  10. Horizontal Gene Transfer is a Significant Driver of Gene Innovation in Dinoflagellates

    PubMed Central

    Wisecaver, Jennifer H.; Brosnahan, Michael L.; Hackett, Jeremiah D.

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314–1,563 depending on inference method) relative to all other organisms in the analysis (0–782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT. PMID:24259313

  11. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    NASA Astrophysics Data System (ADS)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2017-05-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  12. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes

    PubMed Central

    Danchin, Etienne G.J.; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Sokolova (Guzeeva), Elena; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T.

    2017-01-01

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus, representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus, respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum. PMID:29065523

  13. The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes.

    PubMed

    Danchin, Etienne G J; Perfus-Barbeoch, Laetitia; Rancurel, Corinne; Thorpe, Peter; Da Rocha, Martine; Bajew, Simon; Neilson, Roy; Guzeeva, Elena Sokolova; Da Silva, Corinne; Guy, Julie; Labadie, Karine; Esmenjaud, Daniel; Helder, Johannes; Jones, John T; den Akker, Sebastian Eves-van

    2017-10-23

    Nematodes have evolved the ability to parasitize plants on at least four independent occasions, with plant parasites present in Clades 1, 2, 10 and 12 of the phylum. In the case of Clades 10 and 12, horizontal gene transfer of plant cell wall degrading enzymes from bacteria and fungi has been implicated in the evolution of plant parasitism. We have used ribonucleic acid sequencing (RNAseq) to generate reference transcriptomes for two economically important nematode species, Xiphinema index and Longidorus elongatus , representative of two genera within the early-branching Clade 2 of the phylum Nematoda. We used a transcriptome-wide analysis to identify putative horizontal gene transfer events. This represents the first in-depth transcriptome analysis from any plant-parasitic nematode of this clade. For each species, we assembled ~30 million Illumina reads into a reference transcriptome. We identified 62 and 104 transcripts, from X. index and L. elongatus , respectively, that were putatively acquired via horizontal gene transfer. By cross-referencing horizontal gene transfer prediction with a phylum-wide analysis of Pfam domains, we identified Clade 2-specific events. Of these, a GH12 cellulase from X. index was analysed phylogenetically and biochemically, revealing a likely bacterial origin and canonical enzymatic function. Horizontal gene transfer was previously shown to be a phenomenon that has contributed to the evolution of plant parasitism among nematodes. Our findings underline the importance and the extensiveness of this phenomenon in the evolution of plant-parasitic life styles in this speciose and widespread animal phylum.

  14. Horizontal transfer of a ß-1,6-glucanase gene from an ancestral species of fungal endophyte to a cool-season grass host.

    PubMed

    Shinozuka, Hiroshi; Hettiarachchige, Inoka K; Shinozuka, Maiko; Cogan, Noel O I; Spangenberg, German C; Cocks, Benjamin G; Forster, John W; Sawbridge, Timothy I

    2017-08-22

    Molecular characterisation has convincingly demonstrated some types of horizontal gene transfer in eukaryotes, but nuclear gene transfer between distantly related eukaryotic groups appears to have been rare. For angiosperms (flowering plants), nuclear gene transfer events identified to date have been confined to genes originating from prokaryotes or other plant species. In this report, evidence for ancient horizontal transfer of a fungal nuclear gene, encoding a ß-1,6-glucanase enzyme for fungal cell wall degradation, into an angiosperm lineage is presented for the first time. The gene was identified from de novo sequencing and assembly of the genome and transcriptome of perennial ryegrass, a cool-season grass species. Molecular analysis confirmed the presence of the complete gene in the genome of perennial ryegrass. No corresponding sequence was found in other plant species, apart from members of the Poeae sub-tribes Loliinae and Dactylidinae. Evidence suggests that a common ancestor of the two sub-tribes acquired the gene from a species ancestral to contemporary grass-associated fungal endophytes around 9-13 million years ago. This first report of horizontal transfer of a nuclear gene from a taxonomically distant eukaryote to modern flowering plants provides evidence for a novel adaptation mechanism in angiosperms.

  15. {open_quotes}Horizontal{close_quotes} gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs - if at all - at an extremely low frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlueter, K.; Fuetterer, J.; Potrykus, I.

    1995-10-01

    The frequency of possible {open_quotes}horizontal{close_quotes} gene transfer between a plant and a tightly associated bacterial pathogen was studied in a model system consisting of transgenic Solanum tuberosum, containing a {beta}-lactamase gene linked to a pBR322 origin of replication, and Erwinia chrysanthemi. This experimental system offers optimal conditions for the detection of possible horizontal gene transfer events, even when they occur at very low frequency. Horizontal gene transfer was not detected under conditions mimicking a {open_quotes}natural{close_quotes} infection. The gradual, stepwise alteration of artificial, positive control conditions to idealized natural conditions, however, allowed the characterization of factors that affected gene transfer, andmore » revealed a gradual decrease of the gene transfer frequency from 6.3 x 10{sup -2} under optimal control conditions to a calculated 2.0 x 10{sub -17} under idealized natural conditions. These data, in combination with other published studies, argue that horizontal gene transfer is so rare as to be essentially irrelevant to any realistic assessment of the risk involved in release experiments involving transgenic plants. 22 refs., 3 figs., 2 tabs.« less

  16. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  17. Heat Transfer of HC290-OIL Mixtures in a Horizontal Condensing Micro-Fin Tube

    NASA Astrophysics Data System (ADS)

    Tong, M. W.; Dong, M. L.; Li, Y.

    Heat transfer coefficients was experimentally determined for a horizontal micro-fin tube (2m in length, 11.44mm ID) with HC290-oil mixtures. The oil is Suniso 3GS, which is a widely used oil in refrigerant systems. The micro-fin tube is a internally enhanced tube, which has 60 fins with a height of 0.25mm and 20° spiral angle. The condensation temperatures varied from 40° to 45° and the refrigerant mass flux was varied from 40kg/(m2s) to 220kg/(m2s). The results showed that the mean condensation heat transfer coefficients on the test section (inlet vapor quality 1, outlet vapor quality 0.1~0.25) decreased as the oil concentrations were increased and the condensation temperature had negligible effect on the heat transfer coefficients.

  18. AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.

    2017-12-01

    This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.

  19. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects

    PubMed Central

    Shelomi, Matan; Danchin, Etienne G. J.; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects’ digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832

  20. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    PubMed

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar

  1. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  2. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  3. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand and limestone are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125 K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient. The predicted values of heat transfer coefficient from the correlations proposed by Grewal andmore » Bansal et al. are found to be within + or - 25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included.« less

  4. Horizontal transfer of facultative endosymbionts is limited by host relatedness.

    PubMed

    Łukasik, Piotr; Guo, Huifang; van Asch, Margriet; Henry, Lee M; Godfray, H Charles J; Ferrari, Julia

    2015-10-01

    Heritable microbial symbionts can have important effects on many aspects of their hosts' biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  5. Horizontal nystagmus and multiple sclerosis using 3-Tesla magnetic resonance imaging.

    PubMed

    Iyer, P M; Fagan, A J; Meaney, J F; Colgan, N C; Meredith, S D; Driscoll, D O; Curran, K M; Bradley, D; Redmond, J

    2016-11-01

    Nystagmus in patients with multiple sclerosis (MS) is generally attributed to brainstem disease. Lesions in other regions may result in nystagmus. The identification of these other sites is enhanced by using 3-Tesla magnetic resonance imaging (3TMRI) due to increased signal-to-noise ratio. We sought to evaluate the distribution of structural lesions and disruption of tracts in patients with horizontal nystagmus secondary to MS using 3TMRI. Twenty-four patients (20 women, 4 men; age range 26-55 years) with horizontal nystagmus secondary to MS underwent 3TMRI brain scans; and 18 patients had diffusion tensor imaging (DTI) for tractography. Nystagmus was bidirectional in 11, right-sided in 6 and left-sided in 7. We identified 194 lesions in 20 regions within the neural integrator circuit in 24 patients; 140 were within the cortex and 54 were within the brainstem. Only two patients had no lesions in the cortex, and 9 had no lesions in the brainstem. There was no relationship between side of lesion and direction of nystagmus. Thirteen of 18 (72 %) had tract disruption with fractional anisotropy (FA) values below 0.2. FA was significantly lower in bidirectional compared to unidirectional nystagmus (p = 0.006). In MS patients with horizontal nystagmus, lesions in all cortical eye fields and their descending connections were evident. Technical improvements in tractography may help identify the specific site(s) resulting in nystagmus in MS.

  6. Influence of short incompatible practice on the Simon effect: transfer along the vertical dimension and across vertical and horizontal dimensions.

    PubMed

    Conde, Erick F Q; Fraga-Filho, Roberto Sena; Lameira, Allan Pablo; Mograbi, Daniel C; Riggio, Lucia; Gawryszewski, Luiz G

    2015-11-01

    In spatial compatibility and Simon tasks, the response is faster when stimulus and response locations are on the same side than when they are on opposite sides. It has been shown that a spatial incompatible practice leads to a subsequent modulation of the Simon effect along the horizontal dimension. It has also been reported that this modulation occurs both along and across vertical and horizontal dimensions, but only after intensive incompatible training (600 trials). In this work, we show that this modulatory effect can be obtained with a smaller number of incompatible trials, changing the spatial arrangement of the vertical response keys to obtain a stronger dimensional overlap between the spatial codes of stimuli and response keys. The results of Experiment 1 showed that 80 incompatible vertical trials abolished the Simon effect in the same dimension. Experiment 2 showed that a modulation of the vertical Simon effect could be obtained after 80 horizontal incompatible trials. Experiment 3 explored whether the transfer effect can also occur in a horizontal Simon task after a brief vertical spatial incompatibility task, and results were similar to the previous experiments. In conclusion, we suggest that the spatial arrangement between response key and stimulus locations may be critical to establish the short-term memory links that enable the transfer of learning between brief incompatible practices and the Simon effects, both along the vertical dimension and across vertical and horizontal dimensions.

  7. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.

    Some of the most damaging tree diseases are caused by pathogens that induce cankers, a stem deformation often lethal. To investigate the cause of this adaptation, we sequenced the genomes of poplar pathogens that do and do not cause cankers. We found a unique cluster of genes that produce secondary metabolites and are co-activated when the canker pathogen is grown on poplar wood and leaves. The gene genealogy is discordant with the species phylogeny, showing a signature of horizontal transfer from fungi associated with wood decay. Furthermore, genes encoding hemicellulose-degrading enzymes are up-regulated on poplar wood chips, with some havingmore » been acquired horizontally. In conclusion, we propose that adaptation to colonize poplar woody stems is the result of acquisition of these genes.« less

  8. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

    DOE PAGES

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.; ...

    2015-03-02

    Some of the most damaging tree diseases are caused by pathogens that induce cankers, a stem deformation often lethal. To investigate the cause of this adaptation, we sequenced the genomes of poplar pathogens that do and do not cause cankers. We found a unique cluster of genes that produce secondary metabolites and are co-activated when the canker pathogen is grown on poplar wood and leaves. The gene genealogy is discordant with the species phylogeny, showing a signature of horizontal transfer from fungi associated with wood decay. Furthermore, genes encoding hemicellulose-degrading enzymes are up-regulated on poplar wood chips, with some havingmore » been acquired horizontally. In conclusion, we propose that adaptation to colonize poplar woody stems is the result of acquisition of these genes.« less

  9. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles

    PubMed Central

    Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    2016-01-01

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development. PMID:27684368

  10. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.

    PubMed

    Fischer, Stefanie; Cornils, Kerstin; Speiseder, Thomas; Badbaran, Anita; Reimer, Rudolph; Indenbirken, Daniela; Grundhoff, Adam; Brunswig-Spickenheier, Bärbel; Alawi, Malik; Lange, Claudia

    The biological relevance of extracellular vesicles (EV) in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC) also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA) as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR) techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.

  11. A sensitive, support-vector-machine method for the detection of horizontal gene transfers in viral, archaeal and bacterial genomes.

    PubMed

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In earlier work, we introduced and discussed a generalized computational framework for identifying horizontal transfers. This framework relied on a gene's nucleotide composition, obviated the need for knowledge of codon boundaries and database searches, and was shown to perform very well across a wide range of archaeal and bacterial genomes when compared with previously published approaches, such as Codon Adaptation Index and C + G content. Nonetheless, two considerations remained outstanding: we wanted to further increase the sensitivity of detecting horizontal transfers and also to be able to apply the method to increasingly smaller genomes. In the discussion that follows, we present such a method, Wn-SVM, and show that it exhibits a very significant improvement in sensitivity compared with earlier approaches. Wn-SVM uses a one-class support-vector machine and can learn using rather small training sets. This property makes Wn-SVM particularly suitable for studying small-size genomes, similar to those of viruses, as well as the typically larger archaeal and bacterial genomes. We show experimentally that the new method results in a superior performance across a wide range of organisms and that it improves even upon our own earlier method by an average of 10% across all examined genomes. As a small-genome case study, we analyze the genome of the human cytomegalovirus and demonstrate that Wn-SVM correctly identifies regions that are known to be conserved and prototypical of all beta-herpesvirinae, regions that are known to have been acquired horizontally from the human host and, finally, regions that had not up to now been suspected to be horizontally transferred. Atypical region predictions for many eukaryotic viruses, including the alpha-, beta- and gamma-herpesvirinae, and 123 archaeal and bacterial genomes, have been made available online at http://cbcsrv.watson.ibm.com/HGT_SVM/.

  12. Horizontal and trophic transfer of diflubenzuron and fipronil among grasshoppers (Melanoplus sanguinipes) and between grasshoppers and darkling beetles (Tenebrionidae).

    PubMed

    Smith, D I; Lockwood, J A

    2003-04-01

    The possibility of horizontal transmission of diflubenzuron and fipronil was assessed in rangeland grasshoppers. Laboratory studies of Melanoplus sanguinipes demonstrated that fipronil was horizontally transferred at lethal levels (p < 0.05) via cannibalism through four passages when the initial dose applied to a food source was 250 times the label rate for rangeland grasshopper and locust control (label rate is 4 g AI/ha). Mortality was 100% on the first three passages through cannibalism. At 25 and 1 times the label rate, fipronil was lethal (p < 0.05) only on the first cannibalistic passage. Diflubenzuron generated significant (p < 0.05) mortality via horizontal transmission through two passages when the initial dose applied to a food source was 2,000 times the label rate for rangeland grasshopper control (label rate is 8.71 g AI/ha). There was 100% mortality in the first passage via cannibalism. At 250 and 25 times the label rate, diflubenzuron was lethal only on the first cannibalistic passage. Field applications of these two acridicides followed by collection of cadavers (Amphitornus coloradus and Ageneotettix deorum) that were fed to M. sanguinipes in the laboratory revealed that fipronil (25 times the label rate) generated significant (p < 0.05) mortality through two passages and diflubenzuron (label rate) caused no mortality via necrophagy. Tenebrionid beetles fed grasshopper cadavers collected from the field application of fipronil yielded 45% mortality, compared with 25% mortality in the controls. These findings suggest that horizontal and trophic transfer probably play a nominal ecotoxicological role in rangeland grasshopper control programs with diflubenzuron, but the transfer of fipronil to grasshoppers, scavengers, and natural enemies via necrophagy may increase both the efficacy of control programs and their environmental affects.

  13. Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Song, Yong Jae

    The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet

  14. Horizontal gene transfer from Agrobacterium to plants.

    PubMed

    Matveeva, Tatiana V; Lutova, Ludmila A

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named "cellular T-DNA" (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role.

  15. An Experimental Apparatus to Study Enhanced Condensation Heat Transfer of Steam on Horizontal Tubes.

    DTIC Science & Technology

    1982-06-01

    6-inches in diam- eter and 18-inches long and provides for condensing all excess steam. Two helically wound -oils of 3/8-inch copper tubing,- one 5 1...ml--13E lmoI EE EEEM NAVAL POSTGRADUATE SCHOOL Monterey, California SP27 1982 F THESIS AN EXPERIMENTAL APPARATUS TO STUDY ENHANCED CONDENSATION HEAT...Enhanced Condensation Heat Transfer June 1982 of Steam on Horizontal. Tubes & 081OWN ow,. NeWOormueT -. AUT@,a~4. CONTRACT ORt GOAMT NtUpMORA~e Raymond

  16. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer

    PubMed Central

    2014-01-01

    Background Besides gene duplication and de novo gene generation, horizontal gene transfer (HGT) is another important way of acquiring new genes. HGT may endow the recipients with novel phenotypic traits that are important for species evolution and adaption to new ecological niches. Parasitic systems expectedly allow the occurrence of HGT at relatively high frequencies due to their long-term physical contact. In plants, a number of HGT events have been reported between the organelles of parasites and the hosts, but HGT between host and parasite nuclear genomes has rarely been found. Results A thorough transcriptome screening revealed that a strictosidine synthase-like (SSL) gene in the root parasitic plant Orobanche aegyptiaca and the shoot parasitic plant Cuscuta australis showed much higher sequence similarities with those in Brassicaceae than with those in their close relatives, suggesting independent gene horizontal transfer events from Brassicaceae to these parasites. These findings were strongly supported by phylogenetic analysis and their identical unique amino acid residues and deletions. Intriguingly, the nucleus-located SSL genes in Brassicaceae belonged to a new member of SSL gene family, which were originated from gene duplication. The presence of introns indicated that the transfer occurred directly by DNA integration in both parasites. Furthermore, positive selection was detected in the foreign SSL gene in O. aegyptiaca but not in C. australis. The expression of the foreign SSL genes in these two parasitic plants was detected in multiple development stages and tissues, and the foreign SSL gene was induced after wounding treatment in C. australis stems. These data imply that the foreign genes may still retain certain functions in the recipient species. Conclusions Our study strongly supports that parasitic plants can gain novel nuclear genes from distantly related host species by HGT and the foreign genes may execute certain functions in the new hosts

  17. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer.

    PubMed

    Zhang, Dale; Qi, Jinfeng; Yue, Jipei; Huang, Jinling; Sun, Ting; Li, Suoping; Wen, Jian-Fan; Hettenhausen, Christian; Wu, Jinsong; Wang, Lei; Zhuang, Huifu; Wu, Jianqiang; Sun, Guiling

    2014-01-13

    Besides gene duplication and de novo gene generation, horizontal gene transfer (HGT) is another important way of acquiring new genes. HGT may endow the recipients with novel phenotypic traits that are important for species evolution and adaption to new ecological niches. Parasitic systems expectedly allow the occurrence of HGT at relatively high frequencies due to their long-term physical contact. In plants, a number of HGT events have been reported between the organelles of parasites and the hosts, but HGT between host and parasite nuclear genomes has rarely been found. A thorough transcriptome screening revealed that a strictosidine synthase-like (SSL) gene in the root parasitic plant Orobanche aegyptiaca and the shoot parasitic plant Cuscuta australis showed much higher sequence similarities with those in Brassicaceae than with those in their close relatives, suggesting independent gene horizontal transfer events from Brassicaceae to these parasites. These findings were strongly supported by phylogenetic analysis and their identical unique amino acid residues and deletions. Intriguingly, the nucleus-located SSL genes in Brassicaceae belonged to a new member of SSL gene family, which were originated from gene duplication. The presence of introns indicated that the transfer occurred directly by DNA integration in both parasites. Furthermore, positive selection was detected in the foreign SSL gene in O. aegyptiaca but not in C. australis. The expression of the foreign SSL genes in these two parasitic plants was detected in multiple development stages and tissues, and the foreign SSL gene was induced after wounding treatment in C. australis stems. These data imply that the foreign genes may still retain certain functions in the recipient species. Our study strongly supports that parasitic plants can gain novel nuclear genes from distantly related host species by HGT and the foreign genes may execute certain functions in the new hosts.

  18. Disruption of a horizontally transferred phytoene desaturase abolishes carotenoid accumulation and diapause in Tetranychus urticae

    PubMed Central

    Bryon, Astrid; Kurlovs, Andre H.; Greenhalgh, Robert; Riga, Maria; Grbić, Miodrag; Tirry, Luc; Osakabe, Masahiro; Vontas, John; Clark, Richard M.; Van Leeuwen, Thomas

    2017-01-01

    Carotenoids underlie many of the vibrant yellow, orange, and red colors in animals, and are involved in processes ranging from vision to protection from stresses. Most animals acquire carotenoids from their diets because de novo synthesis of carotenoids is primarily limited to plants and some bacteria and fungi. Recently, sequencing projects in aphids and adelgids, spider mites, and gall midges identified genes with homology to fungal sequences encoding de novo carotenoid biosynthetic proteins like phytoene desaturase. The finding of horizontal gene transfers of carotenoid biosynthetic genes to three arthropod lineages was unprecedented; however, the relevance of the transfers for the arthropods that acquired them has remained largely speculative, which is especially true for spider mites that feed on plant cell contents, a known source of carotenoids. Pigmentation in spider mites results solely from carotenoids. Using a combination of genetic approaches, we show that mutations in a single horizontally transferred phytoene desaturase result in complete albinism in the two-spotted spider mite, Tetranychus urticae, as well as in the citrus red mite, Panonychus citri. Further, we show that phytoene desaturase activity is essential for photoperiodic induction of diapause in an overwintering strain of T. urticae, consistent with a role for this enzyme in provisioning provitamin A carotenoids required for light perception. Carotenoid biosynthetic genes of fungal origin have therefore enabled some mites to forgo dietary carotenoids, with endogenous synthesis underlying their intense pigmentation and ability to enter diapause, a key to the global distribution of major spider mite pests of agriculture. PMID:28674017

  19. Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer.

    PubMed

    Yahara, Koji; Fukuyo, Masaki; Sasaki, Akira; Kobayashi, Ichizo

    2009-11-03

    Homing endonuclease genes are "selfish" mobile genetic elements whose endonuclease promotes the spread of its own gene by creating a break at a specific target site and using the host machinery to repair the break by copying and inserting the gene at this site. Horizontal transfer across the boundary of a species or population within which mating takes place has been thought to be necessary for their evolutionary persistence. This is based on the assumption that they will become fixed in a host population, where opportunities of homing will disappear, and become susceptible to degeneration. To test this hypothesis, we modeled behavior of a homing endonuclease gene that moves during meiosis through double-strand break repair. We mathematically explored conditions for persistence of the homing endonuclease gene and elucidated their parameter dependence as phase diagrams. We found that, if the cost of the pseudogene is lower than that of the homing endonuclease gene, the 2 forms can persist in a population through autonomous periodic oscillation. If the cost of the pseudogene is higher, 2 types of dynamics appear that enable evolutionary persistence: bistability dependent on initial frequency or fixation irrespective of initial frequency. The prediction of long persistence in the absence of horizontal transfer was confirmed by stochastic simulations in finite populations. The average time to extinction of the endonuclease gene was found to be thousands of meiotic generations or more based on realistic parameter values. These results provide a solid theoretical basis for an understanding of these and other extremely selfish elements.

  20. Evolutionary maintenance of selfish homing endonuclease genes in the absence of horizontal transfer

    PubMed Central

    Yahara, Koji; Fukuyo, Masaki; Sasaki, Akira; Kobayashi, Ichizo

    2009-01-01

    Homing endonuclease genes are “selfish” mobile genetic elements whose endonuclease promotes the spread of its own gene by creating a break at a specific target site and using the host machinery to repair the break by copying and inserting the gene at this site. Horizontal transfer across the boundary of a species or population within which mating takes place has been thought to be necessary for their evolutionary persistence. This is based on the assumption that they will become fixed in a host population, where opportunities of homing will disappear, and become susceptible to degeneration. To test this hypothesis, we modeled behavior of a homing endonuclease gene that moves during meiosis through double-strand break repair. We mathematically explored conditions for persistence of the homing endonuclease gene and elucidated their parameter dependence as phase diagrams. We found that, if the cost of the pseudogene is lower than that of the homing endonuclease gene, the 2 forms can persist in a population through autonomous periodic oscillation. If the cost of the pseudogene is higher, 2 types of dynamics appear that enable evolutionary persistence: bistability dependent on initial frequency or fixation irrespective of initial frequency. The prediction of long persistence in the absence of horizontal transfer was confirmed by stochastic simulations in finite populations. The average time to extinction of the endonuclease gene was found to be thousands of meiotic generations or more based on realistic parameter values. These results provide a solid theoretical basis for an understanding of these and other extremely selfish elements. PMID:19837694

  1. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure

    PubMed Central

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k−ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared. PMID:27458729

  2. Extensive Horizontal Gene Transfer during Staphylococcus aureus Co-colonization In Vivo

    PubMed Central

    McCarthy, Alex J.; Loeffler, Anette; Witney, Adam A.; Gould, Katherine A.; Lloyd, David H.; Lindsay, Jodi A.

    2014-01-01

    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. PMID:25260585

  3. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria

    PubMed Central

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-01-01

    Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986

  4. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria.

    PubMed

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-09-14

    The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.

  5. What tangled web: barriers to rampant horizontal gene transfer.

    PubMed

    Kurland, Charles G

    2005-07-01

    Dawkins in his The Selfish Gene(1) quite aptly applies the term "selfish" to parasitic repetitive DNA sequences endemic to eukaryotic genomes, especially vertebrates. Doolittle and Sapienza(2) as well as Orgel and Crick(3) enlivened this notion of selfish DNA with the identification of such repetitive sequences as remnants of mobile elements such as transposons. In addition, Orgel and Crick(3) associated parasitic DNA with a potential to outgrow their host genomes by propagating both vertically via conventional genome replication as well as infectiously by horizontal gene transfer (HGT) to other genomes. Still later, Doolittle(4) speculated that unchecked HGT between unrelated genomes so complicates phylogeny that the conventional representation of a tree of life would have to be replaced by a thicket or a web of life.(4) In contrast, considerable data now show that reconstructions based on whole genome sequences are consistent with the conventional "tree of life".(5-10) Here, we identify natural barriers that protect modern genome populations from the inroads of rampant HGT. Copyright (c) 2005 Wiley Periodicals, Inc.

  6. Evidence for common horizontal transmission of Wolbachia among butterflies and moths.

    PubMed

    Ahmed, Muhammad Z; Breinholt, Jesse W; Kawahara, Akito Y

    2016-05-27

    Wolbachia is one of the most widespread bacteria on Earth. Previous research on Wolbachia-host interactions indicates that the bacterium is typically transferred vertically, from mother to offspring, through the egg cytoplasm. Although horizontal transmission of Wolbachia from one species to another is reported to be common in arthropods, limited direct ecological evidence is available. In this study, we examine horizontal transmission of Wolbachia using a multilocus sequence typing (MLST) strains dataset and used Wolbachia and Lepidoptera genomes to search for evidence for lateral gene transfer (LGT) in Lepidoptera, one of the most diverse cosmopolitan insect orders. We constructed a phylogeny of arthropod-associated MLST Wolbachia strains and calibrated the age of Wolbachia strains associated with lepidopteran species. Our results reveal inter-specific, inter-generic, inter-familial, and inter-ordinal horizontal transmission of Wolbachia strains, without discernible geographic patterns. We found at least seven probable cases of horizontal transmission among 31 species within Lepidoptera and between Lepidoptera and other arthropod hosts. The divergence time analysis revealed that Wolbachia is recently (22.6-4.7 mya, 95 % HPD) introduced in Lepidoptera. Analysis of nine Lepidoptera genomes (Bombyx mori, Danaus plexippus, Heliconius melpomene, Manduca sexta, Melitaea cinxia, Papilio glaucus, P. polytes, P. xuthus and Plutella xylostella) yielded one possible instance of Wolbachia LGT. Our results provide evidence of high incidence of identical and multiple strains of Wolbachia among butterflies and moths, adding Lepidoptera to the growing body of evidence for common horizontal transmission of Wolbachia. This study demonstrates interesting dynamics of this remarkable and influential microorganism.

  7. Horizontal Transfer of Tetracycline Resistance Genes in the Subsurface of a Poultry Farm

    NASA Astrophysics Data System (ADS)

    You, Y.; Ward, M.; Hilpert, M.

    2008-12-01

    Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. At a poultry farm, we, together with Mr.~James Doolittle from USDA, measured the apparent subsurface electrical conductivity (ECa) using a EM38 meter. The resulting ECaR) associated with the poultry farm due to the fact that tetracycline (Tc) is one of the most frequently used antibiotics in food animal production and therefore is probably used at this farm. Soil and aquifer samples were taken from the farm. TcR bacteria were detected, with higher concentrations in the top layer of soil than in the aquifer. TcR bacteria were then enriched from a soil sample, and two classes of TcR genes were detected: tet(M) genes encoding ribosomal protection proteins and tet(L) genes encoding tet efflux pumps. Sequences of the PCR products were compared to known tet(M) and tet(L) genes in GenBank using BLASTN. Phylogenetic trees were also built based on the sequence information. The tet(M) genes found in our soil sample were highly similar to those located on transposons. In a soil microcosm experiment, we used the aforementioned soil sample as incubation medium as well as genetic donor (TcR soil bacteria), and a green fluorescent strain of E. coli as a model genetic recipient to study horizontal transfer of TcR genes from soil bacteria to naïve bacteria. Concentrations of inoculated E. coli were continuously monitored for 15 days, TcR E. coli isolated, and colony PCR performed. The tet(M) genes were found to be transferred to naïve E. coli. The highest horizontal transfer ratio, 0.62 transconjugant per recipient, was observed when Tc was supplemented to a soil microcosm at a concentration of 140 μg/kg soil. Modeling is also ongoing to obtain a better understanding of this complex phenomenon.

  8. The impact of horizontal gene transfer on the biology of Clostridium difficile.

    PubMed

    Roberts, Adam P; Allan, Elaine; Mullany, Peter

    2014-01-01

    Clostridium difficile infection (CDI) is now recognised as the main cause of healthcare associated diarrhoea. Over the recent years there has been a change in the epidemiology of CDI with certain related strains dominating infection. These strains have been termed hyper-virulent and have successfully spread across the globe. Many C. difficile strains have had their genomes completely sequenced allowing researchers to build up a very detailed picture of the contribution of horizontal gene transfer to the adaptive potential, through the acquisition of mobile DNA, of this organism. Here, we review and discuss the contribution of mobile genetic elements to the biology of this clinically important pathogen. © 2014 Elsevier Ltd All rights reserved.

  9. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenariosmore » are presented with calculations showing the application of such a metric.« less

  10. Foreign Plastid Sequences in Plant Mitochondria are Frequently Acquired Via Mitochondrion-to-Mitochondrion Horizontal Transfer

    PubMed Central

    Gandini, C. L.; Sanchez-Puerta, M. V.

    2017-01-01

    Angiosperm mitochondrial genomes (mtDNA) exhibit variable quantities of alien sequences. Many of these sequences are acquired by intracellular gene transfer (IGT) from the plastid. In addition, frequent events of horizontal gene transfer (HGT) between mitochondria of different species also contribute to their expanded genomes. In contrast, alien sequences are rarely found in plastid genomes. Most of the plant-to-plant HGT events involve mitochondrion-to-mitochondrion transfers. Occasionally, foreign sequences in mtDNAs are plastid-derived (MTPT), raising questions about their origin, frequency, and mechanism of transfer. The rising number of complete mtDNAs allowed us to address these questions. We identified 15 new foreign MTPTs, increasing significantly the number of those previously reported. One out of five of the angiosperm species analyzed contained at least one foreign MTPT, suggesting a remarkable frequency of HGT among plants. By analyzing the flanking regions of the foreign MTPTs, we found strong evidence for mt-to-mt transfers in 65% of the cases. We hypothesize that plastid sequences were initially acquired by the native mtDNA via IGT and then transferred to a distantly-related plant via mitochondrial HGT, rather than directly from a foreign plastid to the mitochondrial genome. Finally, we describe three novel putative cases of mitochondrial-derived sequences among angiosperm plastomes. PMID:28262720

  11. Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.; Goblirsch, G.

    Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand (d/sub p/ = 888 to 1484 ..mu..m) and limestone (d/sub p/ = 716 to 1895 ..mu..m) are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125/sup 0/K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient.more » The predicted values of heat transfer coefficient from the correlations proposed by Grewal (1981) and Bansal et al. (1980) are found to be within +-25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included. 5 figures, 5 tables.« less

  12. Polydactylous Transverse Erythronychia: Report of a Patient with Multiple Horizontal Red Bands Affecting the Fingernails.

    PubMed

    Chang, Carina; Beutler, Bryce D; Cohen, Philip R

    2017-06-01

    Redness of the nail plate-erythronychia-is a common condition involving one or multiple digits. It may affect the entire nail or present as longitudinal red bands that extend from the proximal nail fold to the distal tip of the nail plate. Rarely, red bands may traverse the nail bed horizontally. Although erythronychia is often idiopathic, it has also been associated with amyloidosis, Darier's disease, lichen planus, and various other cutaneous conditions. We describe the clinical features of a 64-year-old Caucasian man who presented with transverse and longitudinal erythronychia affecting his fingernails. In addition, we review the classification of erythronychia and summarize the acute and chronic conditions that have been associated with this clinical finding. The features of a man with polydactylous transverse and longitudinal erythronychia are presented. In addition, PubMed was used to search the following terms: erythronychia, longitudinal erythronychia, red lunulae, and subungual. All papers were reviewed, and relevant articles, along with their references, were evaluated. Informed consent was obtained from the patient for being included in the study. A 64-year-old Caucasian man with a past medical history significant for testicular cancer and pulmonary embolism presented with multiple horizontal pink-red bands affecting his fingernails. The discoloration was most prominent in the region distal to the lunula. In addition, the nails of the fifth digit of his left hand and third digit of his right hand featured longitudinal red bands extending from the distal curvature of the lunula to the free edge of the nail plate. A diagnosis of polydactylous longitudinal and transverse erythronychia, based on the clinical presentation, was established. Our patient's red bands were asymptomatic and he was not concerned about the cosmetic appearance of his nails; therefore, no additional investigation or treatment was required. Polydactylous transverse erythronychia is a

  13. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer.

    PubMed

    Bromberg, Raquel; Grishin, Nick V; Otwinowski, Zbyszek

    2016-06-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz.

  14. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer

    PubMed Central

    Grishin, Nick V.; Otwinowski, Zbyszek

    2016-01-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. PMID:27336403

  15. Influence of exogenous melatonin on horizontal transfer of Escherichia coli O157:H7 in experimentally infected sheep

    USDA-ARS?s Scientific Manuscript database

    The objective of the current research was to determine if exogenous melatonin would exert a “protective” effect on the gastrointestinal tract of sheep and prevent or reduce the horizontal transfer of E. coli O157:H7 from experimentally-infected to non-infected or “naïve” sheep. Sixteen crossbred ewe...

  16. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  17. High levels of multiple infections, recombination and horizontal transmission of Wolbachia in the Andricus mukaigawae (Hymenoptera; Cynipidae) communities.

    PubMed

    Yang, Xiao-Hui; Zhu, Dao-Hong; Liu, Zhiwei; Zhao, Ling; Su, Cheng-Yuan

    2013-01-01

    Wolbachia are maternally inherited endosymbiotic bacteria of arthropods and nematodes. In arthropods, they manipulate the reproduction of their hosts to facilitate their own spread in host populations, causing cytoplasmic incompatibility, parthenogenesis induction, feminization of genetic males and male-killing. In this study, we investigated Wolbachia infection and studied wsp (Wolbachia surface protein) sequences in three wasp species associated with the unisexual galls of A. mukaigawae with the aim of determining the transmission mode and the reason for multiple infections of Wolbachia. Frequency of Wolbachia infected populations for A. mukaigawae, Synergus japonicus (inquiline), and Torymus sp. (parasitoid) was 75%, 100%, and 100%, respectively. Multiple Wolbachia infections were detected in A. mukaigawae and S. japonicus, with 5 and 8 Wolbachia strains, respectively. The two host species shared 5 Wolbachia strains and were infected by identical strains in several locations, indicating horizontal transmission of Wolbachia. The transmission potentially takes place through gall tissues, which the larvae of both wasps feed on. Furthermore, three recombination events of Wolbachia were observed: the strains W8, W2 and W6 apparently have derived from W3 and W5a, W6 and W7, W4 and W9, respectively. W8 and W2 and their respective parental strains were detected in S. japonicus. W6 was detected with only one parent (W4) in S. japonicus; W9 was detected in Torymus sp., suggesting horizontal transmission between hosts and parasitoids. In conclusion, our research supports earlier studies that horizontal transmission of Wolbachia, a symbiont of the Rickettsiales order, may be plant-mediated or take place between hosts and parasitoids. Our research provides novel molecular evidence for multiple recombination events of Wolbachia in gall wasp communities. We suggest that genomic recombination and potential plant-mediated horizontal transmission may be attributable to the high

  18. Horizontal Dissemination of Antimicrobial Resistance Determinants in Multiple Salmonella Serotypes following Isolation from the Commercial Swine Operation Environment after Manure Application.

    PubMed

    Pornsukarom, Suchawan; Thakur, Siddhartha

    2017-10-15

    The aim of this study was to characterize the plasmids carrying antimicrobial resistance (AMR) determinants in multiple Salmonella serotypes recovered from the commercial swine farm environment after manure application on land. Manure and soil samples were collected on day 0 before and after manure application on six farms in North Carolina, and sequential soil samples were recollected on days 7, 14, and 21 from the same plots. All environmental samples were processed for Salmonella , and their plasmid contents were further characterized. A total of 14 isolates including Salmonella enterica serotypes Johannesburg ( n = 2), Ohio ( n = 2), Rissen ( n = 1), Typhimurium var5- ( n = 5), Worthington ( n = 3), and 4,12:i:- ( n = 1), representing different farms, were selected for plasmid analysis. Antimicrobial susceptibility testing was done by broth microdilution against a panel of 14 antimicrobials on the 14 confirmed transconjugants after conjugation assays. The plasmids were isolated by modified alkaline lysis, and PCRs were performed on purified plasmid DNA to identify the AMR determinants and the plasmid replicon types. The plasmids were sequenced for further analysis and to compare profiles and create phylogenetic trees. A class 1 integron with an ANT(2″)-Ia- aadA2 cassette was detected in the 50-kb IncN plasmids identified in S Worthington isolates. We identified 100-kb and 90-kb IncI1 plasmids in S Johannesburg and S Rissen isolates carrying the bla CMY-2 and tet (A) genes, respectively. An identical 95-kb IncF plasmid was widely disseminated among the different serotypes and across different farms. Our study provides evidence on the importance of horizontal dissemination of resistance determinants through plasmids of multiple Salmonella serotypes distributed across commercial swine farms after manure application. IMPORTANCE The horizontal gene transfer of antimicrobial resistance (AMR) determinants located on plasmids is considered to be the main reason for

  19. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Treesearch

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  20. Heat and Mass Transfer of Ammonia Gas Absorption into Falling Liquid Film on a Horizontal Tube

    NASA Astrophysics Data System (ADS)

    Inoue, Norihiro; Yabuuchi, Hironori; Goto, Masao; Koyama, Shigeru

    Heat and mass transfer coefficients during ammonia gas absorption into a falling liquid film formed by distilled water on a horizontal tube were obtained experimentally. The test absorber consists of 200 mm i.d., 600 mm long stainless steel shell, a 1 7.3 mm o.d., 14.9 mm i.d. stainless steel test tube with 600 mm working length mounted along the axis of shell, and a 12.7 mm o.d. pipe manifold of supplying the absorbent. In this paper, it was clear that heat and mass transfer coefficient could be enhanced by increasing the flow rate of absorbent and temperature difference between inlet absorbent and ammonia gas, also heat driven by the temperature difference have an effect on heat transfer of the fa1ling liquid film and mass transfer of vapor side. And the new correlation of heat transfer in dimensionless form was proposed by the temperature difference which was considered heat driven of vapor and liquid film side using a interface temperature of vapor and liquid phase. The new correlations of mass transfer on a interface of vapor and liquid phase in dimensionless form were proposed by using effect factors could be suppose from absorption phenomena.

  1. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    PubMed Central

    Boothby, Thomas C.; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R.; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Glasscock, Jarret; Goldstein, Bob

    2015-01-01

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  2. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade.

    PubMed

    Boothby, Thomas C; Tenlen, Jennifer R; Smith, Frank W; Wang, Jeremy R; Patanella, Kiera A; Nishimura, Erin Osborne; Tintori, Sophia C; Li, Qing; Jones, Corbin D; Yandell, Mark; Messina, David N; Glasscock, Jarret; Goldstein, Bob

    2015-12-29

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.

  3. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    PubMed Central

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  4. Heat transfer to small horizontal cylinders immersed in a fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, J.; Koundakjian, P.; Naylor, D.

    2006-10-15

    Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolatemore » down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.« less

  5. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.

    PubMed

    McCarthy, Alex J; Loeffler, Anette; Witney, Adam A; Gould, Katherine A; Lloyd, David H; Lindsay, Jodi A

    2014-09-25

    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment

    PubMed Central

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes HP; Huynen, Martijn A

    2006-01-01

    Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches. PMID:16472398

  7. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment.

    PubMed

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes H P; Huynen, Martijn A

    2006-02-10

    The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches.

  8. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    PubMed

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.

  9. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica

    PubMed Central

    Rumpho, Mary E.; Worful, Jared M.; Lee, Jungho; Kannan, Krishna; Tyler, Mary S.; Bhattacharya, Debashish; Moustafa, Ahmed; Manhart, James R.

    2008-01-01

    The sea slug Elysia chlorotica acquires plastids by ingestion of its algal food source Vaucheria litorea. Organelles are sequestered in the mollusc's digestive epithelium, where they photosynthesize for months in the absence of algal nucleocytoplasm. This is perplexing because plastid metabolism depends on the nuclear genome for >90% of the needed proteins. Two possible explanations for the persistence of photosynthesis in the sea slug are (i) the ability of V. litorea plastids to retain genetic autonomy and/or (ii) more likely, the mollusc provides the essential plastid proteins. Under the latter scenario, genes supporting photosynthesis have been acquired by the animal via horizontal gene transfer and the encoded proteins are retargeted to the plastid. We sequenced the plastid genome and confirmed that it lacks the full complement of genes required for photosynthesis. In support of the second scenario, we demonstrated that a nuclear gene of oxygenic photosynthesis, psbO, is expressed in the sea slug and has integrated into the germline. The source of psbO in the sea slug is V. litorea because this sequence is identical from the predator and prey genomes. Evidence that the transferred gene has integrated into sea slug nuclear DNA comes from the finding of a highly diverged psbO 3′ flanking sequence in the algal and mollusc nuclear homologues and gene absence from the mitochondrial genome of E. chlorotica. We demonstrate that foreign organelle retention generates metabolic novelty (“green animals”) and is explained by anastomosis of distinct branches of the tree of life driven by predation and horizontal gene transfer. PMID:19004808

  10. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  11. Linear increases in carbon nanotube density through multiple transfer technique.

    PubMed

    Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish

    2011-05-11

    We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.

  12. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin.

    PubMed

    Raji, Grace R; Sruthi, T V; Edatt, Lincy; Haritha, K; Sharath Shankar, S; Sameer Kumar, V B

    2017-10-01

    Recent studies indicate that horizontal transfer of genetic material can act as a communication tool between heterogenous populations of tumour cells, thus altering the chemosensitivity of tumour cells. The present study was designed to check whether the horizontal transfer of miRNAs released by cisplatin resistant (Cp-r) Hepatocarcinoma cells can alter the sensitivity of cervical cancer cells. For this exosomes secreted by cisplatin resistant and cisplatin sensitive HepG2 cells (EXres and EXsen) were isolated and characterised. Cytotoxicity analysis showed that EXres can make Hela cells resistant to cisplatin. Analysis of miR-106a/b levels in EXres and EXsen showed that their levels vary. Mechanistic studies showed that miR-106a/b play an important role in EXsen and EXres mediated change in chemosensitivity of Hela cells to cisplatin. Further SIRT1 was identified as a major target of miR-106a/b using in silico tools and this was proved by experimentation. Also the effect of miR-106a/b in chemosensitivity was seen to be dependent on regulation of SIRT1 by miR-106a/b. In brief, this study brings into light, the SIRT1 dependent mechanism of miR-106a/b mediated regulation of chemosensitivity upon the horizontal transfer from one cell type to another. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Understanding Horizontal Governance. Research Brief

    ERIC Educational Resources Information Center

    Ferguson, Daniel

    2009-01-01

    Horizontal governance is an umbrella term that covers a range of approaches to policy development, service delivery issues, and management practices. A horizontal initiative may take place across levels of government, across boundaries between units of a single department or agency or among multiple departments or agencies, or across public,…

  14. Evolution of Antifreeze Protein Genes in the Diatom Genus Fragilariopsis: Evidence for Horizontal Gene Transfer, Gene Duplication and Episodic Diversifying Selection

    PubMed Central

    Sorhannus, Ulf

    2011-01-01

    Hypotheses about horizontal transfer of antifreeze protein genes to ice-living diatoms were addressed using two different statistical methods available in the program Prunier. The role of diversifying selection in driving the differentiation of a set of antifreeze protein genes in the diatom genus Fragilariopsis was also investigated. Four horizontal gene transfer events were identified. Two of these took place between two major eukaryote lineages, that is from the diatom Chaetoceros neogracile to the copepod Stephos longipes and from a basidiomycete clade to a monophyletic group, consisting of the diatom species Fragilariopsis curta and Fragilariopsis cylindrus. The remaining two events included transfers from an ascomycete lineage to the proteobacterium Stigmatella aurantiaca and from the proteobacterium Polaribacter irgensii to a group composed of 4 proteobacterium species. After the Fragilariopsis lineage acquired the antifreeze protein gene from the basidiomycetes, it duplicated and went through episodic evolution, characterized by strong positive selection acting on short segments of the branches in the tree. This selection pattern suggests that the paralogs differentiated functionally over relatively short time periods. Taken together, the results obtained here indicate that the group of antifreeze protein genes considered here have a complex evolutionary history. PMID:22253534

  15. Transient Hypermutagenesis Accelerates the Evolution of Legume Endosymbionts following Horizontal Gene Transfer

    PubMed Central

    Remigi, Philippe; Capela, Delphine; Clerissi, Camille; Tasse, Léna; Torchet, Rachel; Bouchez, Olivier; Batut, Jacques; Cruveiller, Stéphane; Rocha, Eduardo P. C.; Masson-Boivin, Catherine

    2014-01-01

    Horizontal gene transfer (HGT) is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT. PMID:25181317

  16. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  17. Selecting multiple features delays perception, but only when targets are horizontally arranged.

    PubMed

    Lo, Shih-Yu

    2017-01-01

    Based on the finding that perception is lagged by attention split on multiple features (Lo et al., 2012), this study investigated how the feature-based lag effect interacts with the target spatial arrangement. Participants were presented with gratings the spatial frequencies of which constantly changed. The task was to monitor two gratings of the same or different colors and report their spatial frequencies right before the stimulus offset. The results showed a perceptual lag wherein the reported value was closer to the physical value some time prior to the stimulus offset. This lag effect was larger when the two gratings were of different colors than when they were the same color. Furthermore, the feature-based lag effect was statistically significant when the two gratings were horizontally arranged but not when they were vertically or diagonally arranged. A model is proposed to explain the effect of target arrangement: When targets are horizontally arranged, selecting an additional feature delays perception. When targets are vertically or diagonally arranged, target selection for the lower field is prioritized. This prioritization on the lower target might prompt observers to only select the lower target and ignore the upper one, and this causes more perceptual errors without delaying perception. © 2017 Elsevier B.V. All rights reserved.

  18. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis

    PubMed Central

    Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2017-01-01

    Abstract In established multiple sclerosis, tissue abnormality—as assessed using magnetization transfer ratio—increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1–5 mm and 6–10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1–5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus −0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple

  19. The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Rodríguez-Rojas, Alexandro; Yubero, Elva; Blázquez, Jesús

    2013-06-01

    Animal fodder is routinely complemented with antibiotics together with other food supplements to improve growth. For instance, sepiolite is currently used as a dietary coadjuvant in animal feed, as it increases animal growth parameters and improves meat and derived final product quality. This type of food additive has so far been considered innocuous for the development and spread of antibiotic resistance. In this study, we demonstrate that sepiolite promotes the direct horizontal transfer of antibiotic resistance plasmids between bacterial species. The conditions needed for plasmid transfer (sepiolite and friction forces) occur in the digestive tracts of farm animals, which routinely receive sepiolite as a food additive. Furthermore, this effect may be aggravated by the use of antibiotics supplied as growth promoters.

  20. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation

    PubMed Central

    Bliskovsky, Valery V.; Malagon, Francisco; Baker, James D.; Prince, Jeffrey S.; Klaus, James S.; Adhya, Sankar L.

    2017-01-01

    ABSTRACT Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. PMID:28096488

  1. SigHunt: horizontal gene transfer finder optimized for eukaryotic genomes.

    PubMed

    Jaron, Kamil S; Moravec, Jiří C; Martínková, Natália

    2014-04-15

    Genomic islands (GIs) are DNA fragments incorporated into a genome through horizontal gene transfer (also called lateral gene transfer), often with functions novel for a given organism. While methods for their detection are well researched in prokaryotes, the complexity of eukaryotic genomes makes direct utilization of these methods unreliable, and so labour-intensive phylogenetic searches are used instead. We present a surrogate method that investigates nucleotide base composition of the DNA sequence in a eukaryotic genome and identifies putative GIs. We calculate a genomic signature as a vector of tetranucleotide (4-mer) frequencies using a sliding window approach. Extending the neighbourhood of the sliding window, we establish a local kernel density estimate of the 4-mer frequency. We score the number of 4-mer frequencies in the sliding window that deviate from the credibility interval of their local genomic density using a newly developed discrete interval accumulative score (DIAS). To further improve the effectiveness of DIAS, we select informative 4-mers in a range of organisms using the tetranucleotide quality score developed herein. We show that the SigHunt method is computationally efficient and able to detect GIs in eukaryotic genomes that represent non-ameliorated integration. Thus, it is suited to scanning for change in organisms with different DNA composition. Source code and scripts freely available for download at http://www.iba.muni.cz/index-en.php?pg=research-data-analysis-tools-sighunt are implemented in C and R and are platform-independent. 376090@mail.muni.cz or martinkova@ivb.cz. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment.

    PubMed

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; He, Miao; Li, Dan; Chen, Jianmin

    2018-06-01

    Although widespread antibiotic resistance has been mostly attributed to the selective pressure generated by overuse and misuse of antibiotics, recent growing evidence suggests that chemicals other than antibiotics, such as certain metals, can also select and stimulate antibiotic resistance via both co-resistance and cross-resistance mechanisms. For instance, tetL, merE, and oprD genes are resistant to both antibiotics and metals. However, the potential de novo resistance induced by heavy metals at environmentally-relevant low concentrations (much below theminimum inhibitory concentrations [MICs], also referred as sub-inhibitory) has hardly been explored. This study investigated and revealed that heavy metals, namely Cu(II), Ag(I), Cr(VI), and Zn(II), at environmentally-relevant and sub-inhibitory concentrations, promoted conjugative transfer of antibiotic resistance genes (ARGs) between E. coli strains. The mechanisms of this phenomenon were further explored, which involved intracellular reactive oxygen species (ROS) formation, SOS response, increased cell membrane permeability, and altered expression of conjugation-relevant genes. These findings suggest that sub-inhibitory levels of heavy metals that widely present in various environments contribute to the resistance phenomena via facilitating horizontal transfer of ARGs. This study provides evidence from multiple aspects implicating the ecological effect of low levels of heavy metals on antibiotic resistance dissemination and highlights the urgency of strengthening efficacious policy and technology to control metal pollutants in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome.

    PubMed

    Roberts, Adam P; Kreth, Jens

    2014-01-01

    The oral microbiome is composed of a multitude of different species of bacteria, each capable of occupying one or more of the many different niches found within the human oral cavity. This community exhibits many types of complex interactions which enable it to colonize and rapidly respond to changes in the environment in which they live. One of these interactions is the transfer, or acquisition, of DNA within this environment, either from co-resident bacterial species or from exogenous sources. Horizontal gene transfer in the oral cavity gives some of the resident bacteria the opportunity to sample a truly enormous metagenome affording them considerable adaptive potential which may be key to survival in such a varying environment. In this review the underlying mechanisms of HGT are discussed in relation to the oral microbiome with numerous examples described where the direct acquisition of exogenous DNA has contributed to the fitness of the bacterial host within the human oral cavity.

  4. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis.

    PubMed

    Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2017-02-01

    In established multiple sclerosis, tissue abnormality-as assessed using magnetization transfer ratio-increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1-5 mm and 6-10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1-5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus -0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T 2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The

  5. Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer

    PubMed Central

    2011-01-01

    Background Brachyspira spp. colonize the intestines of some mammalian and avian species and show different degrees of enteropathogenicity. Brachyspira intermedia can cause production losses in chickens and strain PWS/AT now becomes the fourth genome to be completed in the genus Brachyspira. Results 15 classes of unique and shared genes were analyzed in B. intermedia, B. murdochii, B. hyodysenteriae and B. pilosicoli. The largest number of unique genes was found in B. intermedia and B. murdochii. This indicates the presence of larger pan-genomes. In general, hypothetical protein annotations are overrepresented among the unique genes. A 3.2 kb plasmid was found in B. intermedia strain PWS/AT. The plasmid was also present in the B. murdochii strain but not in nine other Brachyspira isolates. Within the Brachyspira genomes, genes had been translocated and also frequently switched between leading and lagging strands, a process that can be followed by different AT-skews in the third positions of synonymous codons. We also found evidence that bacteriophages were being remodeled and genes incorporated into them. Conclusions The accessory gene pool shapes species-specific traits. It is also influenced by reductive genome evolution and horizontal gene transfer. Gene-transfer events can cross both species and genus boundaries and bacteriophages appear to play an important role in this process. A mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacteriophages in combination with broad tropism. PMID:21816042

  6. Visualization and flow boiling heat transfer of hydrocarbons in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Yang, Zhuqiang; Bi, Qincheng; Guo, Yong; Liu, Zhaohui; Yan, Jianguo

    2013-07-01

    Visualizations of a specific hydrocarbon fuel in a horizontal tube with 2.0 mm inside diameter were investigated. The experiments were conducted at mass velocity of 213.4, 426.5 and 640.2 kg/ (m2ṡs), diabatic lengths of 140, 240 and 420 mm under the pressure from 2.0-2.7 MPa. In the sub-pressure conditions, bubbly, intermittent, stratified-wave, churn and annular flow patterns were observed. The frictional pressure drops were also measured to distinguish the patterns. The development of flow patterns and frictional pressure drop were positively related to the mass velocity and the heat flux. However, the diabatic length of the tube takes an important part in the process. The residence time of the fluid does not only affect the transition of the patterns but influence the composition of the fuel manifested by the fuel color and carbon deposit. The special observational phenomenon was obtained for the supercritical pressure fluid. The flow in the tube became fuzzier and pressure drop changed sharply near the pseudocritical point. The flow boiling heat transfer characteristics of the hydrocarbons were also discussed respectively. The curve of critical heat flux about onset of nucleate boiling was plotted with different mass velocities and diabatic tube lengths. And heat transfer characteristics of supercritical fuel were proved to be better than that in subcritical conditions.

  7. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  8. Horizontal gene transfer versus biostimulation: A strategy for bioremediation in Goa.

    PubMed

    Pasumarthi, Rajesh; Mutnuri, Srikanth

    2016-12-15

    Bioaugmentation, Biostimulation and Horizontal gene transfer (HGT) of catabolic genes have been proven for their role in bioremediation of hydrocarbons. It also has been proved that selection of either biostimulation or bioremediation varies for every contaminated site. The reliability of HGT compared to biostimulation and bioremediation was not tested. The present study focuses on reliability of biostimulatiion, bioaugmentation and HGT during biodegradation of Diesel oil and Non aqueous phase liquids (NAPL). Pseudomonas aeruginosa (AEBBITS1) having alkB and NDO genes was used for bioaugmentation and the experiment was conducted using seawater as medium. Based on Gas chromatography results diesel was found to be degraded to 100% in both presence and absence of AEBBITS1. Denturing gradient gel electrophoresis result showed same pattern in presence and absence of AEBBITS1 indicating no HGT. NAPL degradation was found to be more by Biostimulated Bioaugmentation compared to biostimulation and bioaugmentation alone. This proves that biostimulated bioaugmentation is better strategy for oil contamination (tarabll) in Velsao beach, Goa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multiple Pathways of Plasmid DNA Transfer in Helicobacter pylori

    PubMed Central

    Rohrer, Stefanie; Holsten, Lea; Weiss, Evelyn; Benghezal, Mohammed; Fischer, Wolfgang; Haas, Rainer

    2012-01-01

    Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species. PMID:23029142

  10. Multiple pathways of plasmid DNA transfer in Helicobacter pylori.

    PubMed

    Rohrer, Stefanie; Holsten, Lea; Weiss, Evelyn; Benghezal, Mohammed; Fischer, Wolfgang; Haas, Rainer

    2012-01-01

    Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species.

  11. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?

    PubMed Central

    Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J

    2004-01-01

    Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might

  12. Radiation exposure and performance of multiple burn LEO-GEO orbit transfer trajectories

    NASA Technical Reports Server (NTRS)

    Gorland, S. H.

    1985-01-01

    Many potential strategies exist for the transfer of spacecraft from low Earth orbit (LEO) to geosynchronous (GEO) orbit. One strategy has generally been utilized, that being a single impulsive burn at perigee and a GEO insertion burn at apogee. Multiple burn strategies were discussed for orbit transfer vehicles (OTVs) but the transfer times and radiation exposure, particularly for potentially manned missions, were used as arguments against those options. Quantitative results concerning the trip time and radiation encountered by multiple burn orbit transfer missions in order to establish the feasibility of manned missions, the vulnerability of electronics, and the shielding requirements are presented. The performance of these multiple burn missions is quantified in terms of the payload and propellant variances from the minimum energy mission transfer. The missions analyzed varied from one to eight perigee burns and ranged from a high thrust, 1 g acceleration, cryogenic hydrogen-oxygen chemical prpulsion system to a continuous burn, 0.001 g acceleration, hydrogen fueled resistojet propulsion system with a trip time of 60 days.

  13. Identification of another module involved in the horizontal transfer of the Haemophilus genomic island ICEHin1056.

    PubMed

    Juhas, Mario; Dimopoulou, Ioanna; Robinson, Esther; Elamin, Abdel; Harding, Rosalind; Hood, Derek; Crook, Derrick

    2013-09-01

    A significant part of horizontal gene transfer is facilitated by genomic islands. Haemophilus influenzae genomic island ICEHin1056 is an archetype of a genomic island that accounts for pandemic spread of antibiotics resistance. ICEHin1056 has modular structure and harbors modules involved in type IV secretion and integration. Previous studies have shown that ICEHin1056 encodes a functional type IV secretion system; however, other modules have not been characterized yet. Here we show that the module on the 5' extremity of ICEHin1056 consists of 15 genes that are well conserved in a number of related genomic islands. Furthermore by disrupting six genes of the investigated module of ICEHin1056 by site-specific mutagenesis we demonstrate that in addition to type IV secretion system module, the investigated module is also important for the successful conjugal transfer of ICEHin1056 from donor to recipient cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Characterization of a novel zinc transporter ZnuA acquired by Vibrio parahaemolyticus through horizontal gene transfer

    PubMed Central

    Liu, Ming; Yan, Meiying; Liu, Lizhang; Chen, Sheng

    2013-01-01

    Vibrio parahaemolyticus is a clinically important foodborne pathogen that causes acute gastroenteritis worldwide. It has been shown that horizontal gene transfer (HGT) contributes significantly to virulence development of V. parahaemolyticus. In this study, we identified a novel znuA homolog (vpa1307) that belongs to a novel subfamily of ZnuA, a bacterial zinc transporter. The vpa1307 gene is located upstream of the V. parahaemolyticus pathogenicity island (Vp-PAIs) in both tdh-positive and trh-positive V. parahaemolyticus strains. Phylogenetic analysis revealed the exogenous origin of vpa1307 with 40% of V. parahaemolyticus clinical isolates possessing this gene. The expression of vpa1307 gene in V. parahaemolyticus clinical strain VP3218 is induced under zinc limitation condition. Gene deletion and complementation assays confirmed that vpa1307 contributes to the growth of VP3218 under zinc depletion condition and that conserved histidine residues of Vpa1307 contribute to its activity. Importantly, vpa1307 contributes to the cytotoxicity of VP3218 in HeLa cells and a certain degree of virulence in murine model. These results suggest that the horizontally acquired znuA subfamily gene, vpa1307, contributes to the fitness and virulence of Vibrio species. PMID:24133656

  15. Characterization of a novel zinc transporter ZnuA acquired by Vibrio parahaemolyticus through horizontal gene transfer.

    PubMed

    Liu, Ming; Yan, Meiying; Liu, Lizhang; Chen, Sheng

    2013-01-01

    Vibrio parahaemolyticus is a clinically important foodborne pathogen that causes acute gastroenteritis worldwide. It has been shown that horizontal gene transfer (HGT) contributes significantly to virulence development of V. parahaemolyticus. In this study, we identified a novel znuA homolog (vpa1307) that belongs to a novel subfamily of ZnuA, a bacterial zinc transporter. The vpa1307 gene is located upstream of the V. parahaemolyticus pathogenicity island (Vp-PAIs) in both tdh-positive and trh-positive V. parahaemolyticus strains. Phylogenetic analysis revealed the exogenous origin of vpa1307 with 40% of V. parahaemolyticus clinical isolates possessing this gene. The expression of vpa1307 gene in V. parahaemolyticus clinical strain VP3218 is induced under zinc limitation condition. Gene deletion and complementation assays confirmed that vpa1307 contributes to the growth of VP3218 under zinc depletion condition and that conserved histidine residues of Vpa1307 contribute to its activity. Importantly, vpa1307 contributes to the cytotoxicity of VP3218 in HeLa cells and a certain degree of virulence in murine model. These results suggest that the horizontally acquired znuA subfamily gene, vpa1307, contributes to the fitness and virulence of Vibrio species.

  16. Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions

    USDA-ARS?s Scientific Manuscript database

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer and recombination, leading to diversity between strains and the categorization of X. fastidiosa into multiple subspecies. Although natural transformation is shown to occur at high rates in X. fa...

  17. Petrol and diesel exhaust particles accelerate the horizontal transfer of plasmid-mediated antimicrobial resistance genes.

    PubMed

    Zhang, Ye; Gu, April Z; Cen, Tianyu; Li, Xiangyang; Li, Dan; Chen, Jianmin

    2018-05-01

    Particles exhausted from petrol and diesel consumptions are major components of urban air pollution that can be exposed to human via direct inhalation or other routes due to atmospheric deposition into water and soil. Antimicrobial resistance is one of the most serious threats to modern health care. However, how the petrol and diesel exhaust particles affect the development and spread of antimicrobial resistance genes (ARGs) in various environments remain largely unknown. This study investigated the effects and potential mechanisms of four representative petrol and diesel exhaust particles, namely 97 octane petrol, 93 octane petrol, light diesel oil, and marine heavy diesel oil, on the horizontal transfer of ARGs between two opportunistic Escherichia coli (E. coli) strains, E. coli S17-1 (donor) and E. coli K12 (recipient). The results demonstrated that these four representative types of nano-scale particles induced concentration-dependent increases in conjugative transfer rates compared with the controls. The underlying mechanisms involved in the accelerated transfer of ARGs were also identified, including the generation of intracellular reactive oxygen species (ROS) and the consequent induction of oxidative stress, SOS response, changes in cell morphology, and the altered mRNA expression of membrane protein genes and those involved in the promotion of conjugative transfer. The findings provide new evidences and mechanistic insights into the antimicrobial resistance risks posed by petrol and diesel exhaust particles, and highlight the implications and need for stringent strategies on alternative fuels to mitigate air pollution and health risks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Blastocyst transfer in human in vitro fertilization. A solution to the multiple pregnancy epidemic.

    PubMed

    Vidaeff, A C; Racowsky, C; Rayburn, W F

    2000-07-01

    Since the 1950s, the incidence of twin gestation has doubled and the incidence of triplets has increased approximately sevenfold in the United States. Of extreme concern is the fact that many of these multiple pregnancies are iatrogenic: 35% of twin gestations and 77% of higher-order pregnancies are the result of some form of infertility therapy. Anything that can be done to reduce the number of these multiple pregnancies would benefit our patients and society. Great hope is placed on emerging blastocyst technology, which has the potential of achieving higher pregnancy rates per embryo transfer while reducing the risk of multiple pregnancy. We present the evolution of the blastocyst transfer concept and the technical aspects involved. The article also outlines the experience with blastocyst culture and transfer at Brigham and Women's Hospital, Boston, and describes identifiers for application of blastocyst transfer. The number of eight-cell embryos on day 3 is an independent marker for the selection of patients who would benefit from transfer on day 5. With no eight-cell embryos on day 3, 0% and 33% pregnancies resulted from day 5 vs. day 3 transfers, suggesting that these cases would not benefit from day 5 transfer. When at least one eight-cell embryo is available, there is no difference in ongoing pregnancy rates between day 5 and day 3 transfers, but there is a significant decrease in multiple gestations with day 5 transfers.

  19. Effect of mood states and infertility stress on patients' attitudes toward embryo transfer and multiple pregnancy.

    PubMed

    Newton, Christopher; Feyles, Valter; Asgary-Eden, Veronica

    2013-08-01

    To examine whether mood state or infertility stress influences perceptions of risk, preferences for embryo transfer, or views on multiple pregnancy. Observational cohort study. Hospital-based fertility clinic. One hundred seventy-six women participating in IVF treatment. None. Mood scores, ratings of risk, preference for multiple embryo transfer, and attitudes toward multiple pregnancy. Growing feelings of tension across the cycle corresponded with increases in the perceived riskiness of double-embryo transfer, but there was no change in strength of transfer preferences. Women experiencing negative moods, such as depression, viewed twin and triplet pregnancy as less likely, whereas increasing positive feelings across the cycle were associated with increasing desire for twin pregnancy. Overall, women perceived double- and triple-embryo transfer as less risky by cycle end than at cycle beginning and felt more certain about multiple-embryo transfer. The dyssynchrony observed among changes in mood, perceptions of risk, and transfer preferences challenges assumptions about the way medical risk information influences transfer preferences, and the findings suggest that mood states experienced during an IVF cycle might affect transfer preferences by influencing attitudes toward multiple pregnancy. Additional considerations beyond providing risk information are needed to facilitate effective patient decision making. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  20. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    PubMed Central

    Suh, Alexander; Witt, Christopher C.; Menger, Juliana; Sadanandan, Keren R.; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A.; Mudge, Joann; Edwards, Scott V.; Rheindt, Frank E.

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  1. Integrating Horizontal Gene Transfer and Common Descent to Depict Evolution and Contrast It with “Common Design”1

    PubMed Central

    GUILLERMO PAZ-Y-MIÑO-C; ESPINOSA, AVELINA

    2016-01-01

    Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life’s diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD+ as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking “common design” (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded. PMID:20021546

  2. Geographical Distribution of Genotypic and Phenotypic Markers Among Bacillus Anthracis Isolates and Related Species by Historical Movement and Horizontal Transfer

    DTIC Science & Technology

    2009-01-09

    LOPEZ P., ESPINOSA M., PIECHOWSAK M., SHUGAR D., WARREN R.: Uptake and fate of ΦW-14 DNA in competent Bacillus subtilis . J.Bacteriol. 149, 595–605...Among Bacillus anthracis Isolates and Related Species by Historical Movement and Horizontal Transfer J.L. KIELa, J.E. PARKERa, E.A. HOLWITTa, R.P...The geographical distribution of Bacillus anthracis strains and isolates bearing some of the same genetic markers as the Amerithrax Ames isolate was

  3. Calculation of critical heat transfer in horizontal evaporator pipes in cooling systems of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Aksenov, Andrey; Malysheva, Anna

    2018-03-01

    An exact calculation of the heat exchange of evaporative surfaces is possible only if the physical processes of hydrodynamics of two-phase flows are considered in detail. Especially this task is relevant for the design of refrigeration supply systems for high-rise buildings, where powerful refrigeration equipment and branched networks of refrigerants are used. On the basis of experimental studies and developed mathematical model of asymmetric dispersed-annular flow of steam-water flow in horizontal steam-generating pipes, a calculation formula has been obtained for determining the boundaries of the zone of improved heat transfer and the critical value of the heat flux density. A new theoretical approach to the solution of the problem of the flow structure of a two-phase flow is proposed. The applied method of dissipative characteristics of a two-phase flow in pipes and the principle of a minimum rate of entropy increase in stabilized flows made it possible to obtain formulas that directly reflect the influence of the viscous characteristics of the gas and liquid media on their distribution in the flow. The study showed a significant effect of gravitational forces on the nature of the phase distribution in the cross section of the evaporative tubes. At a mass velocity of a two-phase flow less than 700 kg / m2s, the volume content of the liquid phase near the upper outer generating lines of the tube is almost an order of magnitude lower than the lower one. The calculation of the heat transfer crisis in horizontal evaporative tubes is obtained. The calculated dependence is in good agreement with the experimental data of the author and a number of foreign researchers. The formula generalizes the experimental data for pipes with the diameter of 6-40 mm in the pressure of 2-7 MPa.

  4. Horizontal gene transfer does not occur between sFat-1 transgenic pigs and nontransgenic pigs.

    PubMed

    Tang, M X; Zheng, X M; Hou, J; Qian, L L; Jiang, S W; Cui, W T; Li, K

    2013-03-01

    We previously generated and characterized synthesized fatty acid desaturase-1 (sFat-1) transgenic pigs that had increased concentrations of ω-3 unsaturated fatty acid in their meat. The objective was to assess whether the inserted foreign gene in sFat-1 transgenic pigs was able to transfer and integrate into the genome of nontransgenic pigs by suckling or mating. Tests for suckling-mediated horizontal gene transfer (HGT) included sFat-1 transgenic sows nursing nontransgenic piglets and sFat-1 transgenic piglets suckling nontransgenic sows. Tests for mating-mediated HGT were performed by male sFat-1 transgenic pigs mated with nontransgenic females and female sFat-1 transgenic pigs mated with nontransgenic males. Polymerase chain reaction was used to detect the sFat-1 gene fragment in various tissues sampled from nontransgenic pigs. The foreign target gene sFat-1 was not detected in the genomic DNA of various tissues and organs sampled from nontransgenic pigs. Therefore, we concluded that HGT from transgenic pigs to wild type pigs via suckling or mating was unlikely. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Laplace transform analysis of a multiplicative asset transfer model

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Melatos, Andrew; Kieu, Tien

    2010-07-01

    We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.

  6. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors.

    PubMed

    Ruh, Mylène; Briand, Martial; Bonneau, Sophie; Jacques, Marie-Agnès; Chen, Nicolas W G

    2017-08-30

    Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally

  7. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences.

    PubMed

    Gilbert, Clément; Feschotte, Cédric

    2018-04-01

    It is becoming clear that most eukaryotic transposable elements (TEs) owe their evolutionary success in part to horizontal transfer events, which enable them to invade new species. Recent large-scale studies are beginning to unravel the mechanisms and ecological factors underlying this mode of transmission. Viruses are increasingly recognized as vectors in the process but also as a direct source of genetic material horizontally acquired by eukaryotic organisms. Because TEs and endogenous viruses are major catalysts of variation and innovation in genomes, we argue that horizontal inheritance has had a more profound impact in eukaryotic evolution than is commonly appreciated. To support this proposal, we compile a list of examples, including some previously unrecognized, whereby new host functions and phenotypes can be directly attributed to horizontally acquired TE or viral sequences. We predict that the number of examples will rapidly grow in the future as the prevalence of horizontal transfer in the life cycle of TEs becomes even more apparent, firmly establishing this form of non-Mendelian inheritance as a consequential facet of eukaryotic evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    NASA Astrophysics Data System (ADS)

    Alavi Fazel, S. Ali

    2017-09-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  9. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome.

    PubMed

    Wallau, Gabriel Luz; Vieira, Cristina; Loreto, Élgion Lúcio Silva

    2018-01-01

    All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.

  10. Bidirectional associations in multiplication memory: conditions of negative and positive transfer.

    PubMed

    Campbell, Jamie I D; Robert, Nicole D

    2008-05-01

    A variety of experimental evidence indicates that the memory representation for multiplication facts (e.g., 6 x 9 = 54) incorporates bidirectional links with a forward association from factors to product and a reverse association from product to factors. Surprisingly, the authors did not find evidence in Experiment 1 of facilitative transfer-of-practice from multiplication (6 x 9 = ?) to factoring (54 = ? x ?); in fact, multiplication practice produced item-specific interference with factoring. Similarly, the authors found no evidence in Experiment 2 that repetition of specific factoring problems (54 = ? x ?) facilitated performance of corresponding multiplication problems (6 x 9 = ?). In Experiment 3, participants practiced both multiplication and factoring and presented facilitative transfer in both directions. Thus, bidirectional facilitation occurred if both operations were practiced, but interference occurred when only one operation was practiced. We propose that this seemingly paradoxical behavior occurs because it is adaptive for the bidirectional retrieval structure to retain operational flexibility in the context of practicing both operations, whereas it is adaptive to specialize the memory representation for the practiced operation (i.e., factoring or multiplication) when only one operation is practiced.

  11. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land.

    PubMed

    Emiliani, Giovanni; Fondi, Marco; Fani, Renato; Gribaldo, Simonetta

    2009-02-16

    The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL), which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT) during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments) suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV.

  12. Comparative Analysis of the Peanut Witches'-Broom Phytoplasma Genome Reveals Horizontal Transfer of Potential Mobile Units and Effectors

    PubMed Central

    Lo, Wen-Sui; Lin, Chan-Pin; Kuo, Chih-Horng

    2013-01-01

    Phytoplasmas are a group of bacteria that are associated with hundreds of plant diseases. Due to their economical importance and the difficulties involved in the experimental study of these obligate pathogens, genome sequencing and comparative analysis have been utilized as powerful tools to understand phytoplasma biology. To date four complete phytoplasma genome sequences have been published. However, these four strains represent limited phylogenetic diversity. In this study, we report the shotgun sequencing and evolutionary analysis of a peanut witches'-broom (PnWB) phytoplasma genome. The availability of this genome provides the first representative of the 16SrII group and substantially improves the taxon sampling to investigate genome evolution. The draft genome assembly contains 13 chromosomal contigs with a total size of 562,473 bp, covering ∼90% of the chromosome. Additionally, a complete plasmid sequence is included. Comparisons among the five available phytoplasma genomes reveal the differentiations in gene content and metabolic capacity. Notably, phylogenetic inferences of the potential mobile units (PMUs) in these genomes indicate that horizontal transfer may have occurred between divergent phytoplasma lineages. Because many effectors are associated with PMUs, the horizontal transfer of these transposon-like elements can contribute to the adaptation and diversification of these pathogens. In summary, the findings from this study highlight the importance of improving taxon sampling when investigating genome evolution. Moreover, the currently available sequences are inadequate to fully characterize the pan-genome of phytoplasmas. Future genome sequencing efforts to expand phylogenetic diversity are essential in improving our understanding of phytoplasma evolution. PMID:23626855

  13. Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda.

    PubMed

    Barrera, Gloria Patricia; Belaich, Mariano Nicolás; Patarroyo, Manuel Alfonso; Villamizar, Laura Fernanda; Ghiringhelli, Pablo Daniel

    2015-11-25

    Baculoviruses are insect-associated viruses carrying large, circular double-stranded-DNA genomes with significant biotechnological applications such as biological pest control, recombinant protein production, gene delivery in mammals and as a model of DNA genome evolution. These pathogens infect insects from the orders Lepidoptera, Hymenoptera and Diptera, and have high species diversity which is expressed in their diverse biological properties including morphology, virulence or pathogenicity. Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall armyworm, represents a significant pest for agriculture in America; it is a host for baculoviruses such as the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Colombia strain, genotype A) having been classified as a Group II alphabaculovirus making it a very attractive target for bioinsecticidal use. Genome analysis by pyrosequencing revealed that SfMNPV ColA has 145 ORFs, 2 of which were not present in the other sequenced genotypes of the virus (SfMNPV-NicB, SfMNPV-NicG, SfMNPV-19 and SfMNPV-3AP2). An in-depth bioinformatics study showed that ORF023 and ORF024 were acquired by a recent homologous recombination process between Spodoptera frugiperda and Spodoptera litura (the Oriental leafworm moth) nucleopolyhedroviruses. Auxiliary genes are numerous in the affected locus which has a homologous region (hr3), a repetitive sequence associated with genome replication which became lost in SfColA along with 1 ORF. Besides, the mRNAs associated with two acquired genes appeared in the virus' life-cycle during the larval stage. Predictive studies concerning the theoretical proteins identified that ORF023 protein would be a phosphatase involved in DNA repair and that the ORF024 protein would be a membrane polypeptide associated with cell transport. The SfColA genome was thus revealed to be a natural recombinant virus showing evidence of recent horizontal gene transfer between different baculovirus species occurring

  14. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review.

    PubMed

    Shahi, Aiyoub; Ince, Bahar; Aydin, Sevcan; Ince, Orhan

    2017-06-01

    Petroleum sludge contains recalcitrant residuals. These compounds because of being toxic to humans and other organism are of the major concerns. Therefore, petroleum sludge should be safely disposed. Physicochemical methods which are used by this sector are mostly expensive and need complex devices. Bioremediation methods because of being eco-friendly and cost-effective overcome most of the limitations of physicochemical treatments. Microbial strains capable to degrade petroleum hydrocarbons are practically present in all soils and sediments and their population density increases in contact with contaminants. Bacterial strains cannot degrade alone all kinds of petroleum hydrocarbons, rather microbial consortium should collaborate with each other for degradation of petroleum hydrocarbon mixtures. Horizontal transfer of functional genes between bacteria plays an important role in increasing the metabolic potential of the microbial community. Therefore, selecting a suitable degrading gene and tracking its horizontal transfer would be a useful approach to evaluate the bioremediation process and to assess the bioremediation potential of contaminated sites.

  15. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  16. In Silico Evidence for the Horizontal Transfer of gsiB, a σΒ-Regulated Gene in Gram-Positive Bacteria, to Lactic Acid Bacteria ▿

    PubMed Central

    Asteri, Ioanna-Areti; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E.; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2011-01-01

    gsiB, coding for glucose starvation-inducible protein B, is a characteristic member of the σΒ stress regulon of Bacillus subtilis and several other Gram-positive bacteria. Here we provide in silico evidence for the horizontal transfer of gsiB in lactic acid bacteria that are devoid of the σΒ factor. PMID:21421783

  17. Study on solid liquid interface heat transfer of PCM under simultaneous charging and discharging (SCD) in horizontal cylinder annulus

    NASA Astrophysics Data System (ADS)

    Omojaro, Adebola Peter; Breitkopf, Cornelia

    2017-07-01

    Heat transfer performance during the simultaneous charging and discharging (SCD) operation process for phase change materials (PCM) contained inside the annulus of concentric horizontal cylinder was investigated. In the experimental set-up, the PCM inside the annulus serves as the heat sink along with an externally imposed forced cooling air. The obtained time wise temperature profile was used to determine the effects of different heat fluxes and the imposed forced convection cooling on the melt fraction values and the transition shift time from the observed conduction to natural convection heat transfer patterns. Furthermore, non-dimensional analysis was presented for the heat transfer at the interface to enable generalizing the result. Comparison of the results show that the SCD operation mode establish the condition that enables much PCM phase transition time and thus longer time of large latent heat transfer effect than the Partial and non simultaneous operations. Analysis results show that the variation of the heat flux for the SCD mode did not change the dominance of the natural convection over conduction heat transfers in the PCM. However, it significantly influences the commencement/transition shift time and melting rate while higher heat fluxes yields melt fraction that was 38-63% more for investigated process time. Variation with different cooling air flow rate shows more influences on the melt fraction than on the mode of heat transfer occurring in the PCM during melting. Available non-SCD modes correlation was shown to be insufficient to accurately predict interface heat transfer for the SCD modes.

  18. Analysis of horizontal genetic transfer in red algae in the post-genomics age

    PubMed Central

    Chan, Cheong Xin; Bhattacharya, Debashish

    2013-01-01

    The recently published genome of the unicellular red alga Porphyridium purpureum revealed a gene-rich, intron-poor species, which is surprising for a free-living mesophile. Of the 8,355 predicted protein-coding regions, up to 773 (9.3%) were implicated in horizontal genetic transfer (HGT) events involving other prokaryote and eukaryote lineages. A much smaller number, up to 174 (2.1%) showed unambiguous evidence of vertical inheritance. Together with other red algal genomes, nearly all published in 2013, these data provide an excellent platform for studying diverse aspects of algal biology and evolution. This novel information will help investigators test existing hypotheses about the impact of endosymbiosis and HGT on algal evolution and enable comparative analysis within a more-refined, hypothesis-driven framework that extends beyond HGT. Here we explore the impacts of this infusion of red algal genome data on addressing questions regarding the complex nature of algal evolution and highlight the need for scalable phylogenomic approaches to handle the forthcoming deluge of sequence information. PMID:24475368

  19. Type III Effector Diversification via Both Pathoadaptation and Horizontal Transfer in Response to a Coevolutionary Arms Race

    PubMed Central

    Ma, Wenbo; Dong, Frederick F. T; Stavrinides, John; Guttman, David S

    2006-01-01

    The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ∼45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range. PMID:17194219

  20. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle

    PubMed Central

    Sharma, Punita; Das De, Tanwee; Sharma, Swati; Kumar Mishra, Ashwani; Thomas, Tina; Verma, Sonia; Kumari, Vandana; Lata, Suman; Singh, Namita; Valecha, Neena; Chand Pandey, Kailash; Dixit, Rajnikant

    2015-01-01

    In prokaryotes, horizontal gene transfer (HGT) has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs) are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito. PMID:26998230

  1. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    PubMed

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.

  2. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss

    PubMed Central

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Guo, Xue; Xiao, Yunhua; Ma, Liyuan; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Zhang, Yuguang

    2017-01-01

    ABSTRACT Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillus thermosulfidooxidans. Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross

  3. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss.

    PubMed

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Guo, Xue; Xiao, Yunhua; Ma, Liyuan; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Zhang, Yuguang; Yin, Huaqun

    2017-04-01

    Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillus thermosulfidooxidans Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT

  4. Genomic study of the Type IVC secretion system in Clostridium difficile: understanding C. difficile evolution via horizontal gene transfer.

    PubMed

    Zhang, Wen; Cheng, Ying; Du, Pengcheng; Zhang, Yuanyuan; Jia, Hongbing; Li, Xianping; Wang, Jing; Han, Na; Qiang, Yujun; Chen, Chen; Lu, Jinxing

    2017-01-01

    Clostridium difficile, the etiological agent of Clostridium difficile infection (CDI), is a gram-positive, spore-forming bacillus that is responsible for ∼20% of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. Previous data have shown that a substantial proportion (11%) of the C. difficile genome consists of mobile genetic elements, including seven conjugative transposons. However, the mechanism underlying the formation of a mosaic genome in C. difficile is unknown. The type-IV secretion system (T4SS) is the only secretion system known to transfer DNA segments among bacteria. We searched genome databases to identify a candidate T4SS in C. difficile that could transfer DNA among different C. difficile strains. All T4SS gene clusters in C. difficile are located within genomic islands (GIs), which have variable lengths and structures and are all conjugative transposons. During the horizontal-transfer process of T4SS GIs within the C. difficile population, the excision sites were altered, resulting in different short-tandem repeat sequences among the T4SS GIs, as well as different chromosomal insertion sites and additional regions in the GIs.

  5. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars

    NASA Astrophysics Data System (ADS)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid

    2017-02-01

    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.

  6. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota.

    PubMed

    Deschamps, Philippe; Zivanovic, Yvan; Moreira, David; Rodriguez-Valera, Francisco; López-García, Purificación

    2014-06-12

    Horizontal gene transfer (HGT) is an important force in evolution, which may lead, among other things, to the adaptation to new environments by the import of new metabolic functions. Recent studies based on phylogenetic analyses of a few genome fragments containing archaeal 16S rRNA genes and fosmid-end sequences from deep-sea metagenomic libraries have suggested that marine planktonic archaea could be affected by high HGT frequency. Likewise, a composite genome of an uncultured marine euryarchaeote showed high levels of gene sequence similarity to bacterial genes. In this work, we ask whether HGT is frequent and widespread in genomes of these marine archaea, and whether HGT is an ancient and/or recurrent phenomenon. To answer these questions, we sequenced 997 fosmid archaeal clones from metagenomic libraries of deep-Mediterranean waters (1,000 and 3,000 m depth) and built comprehensive pangenomes for planktonic Thaumarchaeota (Group I archaea) and Euryarchaeota belonging to the uncultured Groups II and III Euryarchaeota (GII/III-Euryarchaeota). Comparison with available reference genomes of Thaumarchaeota and a composite marine surface euryarchaeote genome allowed us to define sets of core, lineage-specific core, and shell gene ortholog clusters for the two archaeal lineages. Molecular phylogenetic analyses of all gene clusters showed that 23.9% of marine Thaumarchaeota genes and 29.7% of GII/III-Euryarchaeota genes had been horizontally acquired from bacteria. HGT is not only extensive and directional but also ongoing, with high HGT levels in lineage-specific core (ancient transfers) and shell (recent transfers) genes. Many of the acquired genes are related to metabolism and membrane biogenesis, suggesting an adaptive value for life in cold, oligotrophic oceans. We hypothesize that the acquisition of an important amount of foreign genes by the ancestors of these archaeal groups significantly contributed to their divergence and ecological success. © The Author

  7. Widespread horizontal transfer of the cerato-ulmin gene between Ophiostoma novo-ulmi and Geosmithia species.

    PubMed

    Bettini, Priscilla P; Frascella, Arcangela; Kolařík, Miroslav; Comparini, Cecilia; Pepori, Alessia L; Santini, Alberto; Scala, Felice; Scala, Aniello

    2014-08-01

    Previous work had shown that a sequence homologous to the gene encoding class II hydrophobin cerato-ulmin from the fungus Ophiostoma novo-ulmi, the causal agent of Dutch Elm Disease (DED), was present in a strain of the unrelated species Geosmithia species 5 (Ascomycota: Hypocreales) isolated from Ulmus minor affected by DED. As both fungi occupy the same habitat, even if different ecological niches, the occurrence of horizontal gene transfer was proposed. In the present work we have analysed for the presence of the cerato-ulmin gene 70 Geosmithia strains representing 29 species, isolated from different host plants and geographic locations. The gene was found in 52.1 % of the strains derived from elm trees, while none of those isolated from nonelms possessed it. The expression of the gene in Geosmithia was also assessed by real time PCR in different growth conditions (liquid culture, solid culture, elm sawdust, dual culture with O. novo-ulmi), and was found to be extremely low in all conditions tested. On the basis of these results we propose that the cerato-ulmin gene is not functional in Geosmithia, but can be considered instead a marker of more extensive transfers of genetic material as shown in other fungi. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer.

    PubMed

    Goremykin, Vadim V; Salamini, Francesco; Velasco, Riccardo; Viola, Roberto

    2009-01-01

    The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.

  9. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer

    PubMed Central

    Novais, Carla; Tedim, Ana P.; Lanza, Val F.; Freitas, Ana R.; Silveira, Eduarda; Escada, Ricardo; Roberts, Adam P.; Al-Haroni, Mohammed; Baquero, Fernando; Peixe, Luísa; Coque, Teresa M.

    2016-01-01

    Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18, and ST78) in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works) with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180–280 kb) chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase) and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen. PMID

  10. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent withmore » the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.« less

  11. Uncovering Wolbachia Diversity upon Artificial Host Transfer

    PubMed Central

    Schneider, Daniela I.; Riegler, Markus; Arthofer, Wolfgang; Merçot, Hervé; Stauffer, Christian; Miller, Wolfgang J.

    2013-01-01

    The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system. PMID:24376534

  12. Uncovering Wolbachia diversity upon artificial host transfer.

    PubMed

    Schneider, Daniela I; Riegler, Markus; Arthofer, Wolfgang; Merçot, Hervé; Stauffer, Christian; Miller, Wolfgang J

    2013-01-01

    The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.

  13. Horizontal Transfer of phnAc Dioxygenase Genes within One of Two Phenotypically and Genotypically Distinctive Naphthalene-Degrading Guilds from Adjacent Soil Environments

    PubMed Central

    Wilson, Mark S.; Herrick, James B.; Jeon, Che Ok; Hinman, David E.; Madsen, Eugene L.

    2003-01-01

    Several distinct naphthalene dioxygenases have been characterized to date, which provides the opportunity to investigate the ecological significance, relative distribution, and transmission modes of the different analogs. In this study, we showed that a group of naphthalene-degrading isolates from a polycyclic aromatic hydrocarbon (PAH)-contaminated hillside soil were phenotypically and genotypically distinct from naphthalene-degrading organisms isolated from adjacent, more highly contaminated seep sediments. Mineralization of 14C-labeled naphthalene by soil slurries suggested that the in situ seep community was more acclimated to PAHs than was the in situ hillside community. phnAc-like genes were present in diverse naphthalene-degrading isolates cultured from the hillside soil, while nahAc-like genes were found only among isolates cultured from the seep sediments. The presence of a highly conserved nahAc allele among gram-negative isolates from the coal tar-contaminated seep area provided evidence for in situ horizontal gene transfer and was reported previously (J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, Appl. Environ. Microbiol. 63:2330-2337, 1997). Natural horizontal transfer of the phnAc sequence was also suggested by a comparison of the phnAc and 16S ribosomal DNA sequences of the hillside isolates. Analysis of metabolites produced by cell suspensions and patterns of amplicons produced by PCR analysis suggested both genetic and metabolic diversity among the naphthalene-degrading isolates of the contaminated hillside. These results provide new insights into the distribution, diversity, and transfer of phnAc alleles and increase our understanding of the acclimation of microbial communities to pollutants. PMID:12676698

  14. Role of the horizontal gene exchange in evolution of pathogenic Mycobacteria.

    PubMed

    Reva, Oleg; Korotetskiy, Ilya; Ilin, Aleksandr

    2015-01-01

    Mycobacterium tuberculosis is one of the most dangerous human pathogens, the causative agent of tuberculosis. While this pathogen is considered as extremely clonal and resistant to horizontal gene exchange, there are many facts supporting the hypothesis that on the early stages of evolution the development of pathogenicity of ancestral Mtb has started with a horizontal acquisition of virulence factors. Episodes of infections caused by non-tuberculosis Mycobacteria reported worldwide may suggest a potential for new pathogens to appear. If so, what is the role of horizontal gene transfer in this process? Availing of accessibility of complete genomes sequences of multiple pathogenic, conditionally pathogenic and saprophytic Mycobacteria, a genome comparative study was performed to investigate the distribution of genomic islands among bacteria and identify ontological links between these mobile elements. It was shown that the ancient genomic islands from M. tuberculosis still may be rooted to the pool of mobile genetic vectors distributed among Mycobacteria. A frequent exchange of genes was observed between M. marinum and several saprophytic and conditionally pathogenic species. Among them M. avium was the most promiscuous species acquiring genetic materials from diverse origins. Recent activation of genetic vectors circulating among Mycobacteria potentially may lead to emergence of new pathogens from environmental and conditionally pathogenic Mycobacteria. The species which require monitoring are M. marinum and M. avium as they eagerly acquire genes from different sources and may become donors of virulence gene cassettes to other micro-organisms.

  15. Interferential and horizontal therapies in chronic low back pain due to multiple vertebral fractures: a randomized, double blind, clinical study.

    PubMed

    Zambito, A; Bianchini, D; Gatti, D; Rossini, M; Adami, S; Viapiana, O

    2007-11-01

    Chronic low back pain due to multiple vertebral fractures is of difficult management. Electrical nerve stimulation is frequently used, but its efficacy has never been properly evaluated. In a randomized placebo-controlled clinical trial, we have shown that both interferential currents and horizontal therapy are more effective than placebo for functional. Multiple vertebral fractures almost invariably ensue in chronic low back pain that remains of difficult management. Electrical nerve stimulation is frequently used but its efficacy has never been properly evaluated. One hundred and fifteen women with chronic back pain due to previous multiple vertebral osteoporotic fractures (CBPMF) were randomly assigned to either interferential currents (IFT), horizontal therapy (HT) or sham HT administered for 30 minutes daily for 5 days per week for two weeks together with a standard exercise program. Efficacy assessment was obtained at baseline and at week 2, 6 and 14 and included a functional questionnaire (Backill), the standard visual analog scale (VAS) and the mean analgesic consumption. At week 2 a significant and similar improvement in both the VAS and Backill score was observed in the three groups. The two scores continued to improve in the two active groups with changes significantly (p < 0.001) greater than those observed in control patients at week 6 and 14. The use of analgesic medications improved only in the HT group. This randomized double-blind controlled study provides the first evidence that IFT and HT therapy are significantly effective in alleviating both pain and disability in patients with CBPMF.

  16. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer.

    PubMed

    Kotnik, Tadej

    2013-09-01

    Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism--cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT. © 2013 Elsevier B.V. All rights

  17. Horizontal Transfer Can Drive a Greater Transposable Element Load in Large Populations.

    PubMed

    Groth, Sam B; Blumenstiel, Justin P

    2017-01-01

    Genomes are comprised of contrasting domains of euchromatin and heterochromatin, and transposable elements (TEs) play an important role in defining these genomic regions. Therefore, understanding the forces that control TE abundance can help us understand the chromatin landscape of the genome. What determines the burden of TEs in populations? Some have proposed that drift plays a determining role. In small populations, mildly deleterious TE insertion alleles are allowed to fix, leading to increased copy number. However, it is not clear how the rate of exposure to new TE families, via horizontal transfer (HT), can contribute to broader patterns of genomic TE abundance. Here, using simulation and analytical approaches, we show that when the effects of drift are weak, exposure rate to new TE families via HT can be an important determinant of genomic copy number. If population exposure rate is proportional to population size, larger populations are expected to have a higher rate of exposure to rare HT events. This leads to the counterintuitive prediction that larger populations may carry a higher TE load. We also find that increased rates of recombination can lead to greater probabilities of TE establishment. This work has implications for our understanding of the evolution of chromatin landscapes, genome defense by RNA silencing, and recombination rates. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli.

    PubMed

    Ramisetty, Bhaskar Chandra Mohan; Santhosh, Ramachandran Sarojini

    2016-02-01

    Type II toxin-antitoxin systems (TAs) are small autoregulated bicistronic operons that encode a toxin protein with the potential to inhibit metabolic processes and an antitoxin protein to neutralize the toxin. Most of the bacterial genomes encode multiple TAs. However, the diversity and accumulation of TAs on bacterial genomes and its physiological implications are highly debated. Here we provide evidence that Escherichia coli chromosomal TAs (encoding RNase toxins) are 'acquired' DNA likely originated from heterologous DNA and are the smallest known autoregulated operons with the potential for horizontal propagation. Sequence analyses revealed that integration of TAs into the bacterial genome is unique and contributes to variations in the coding and/or regulatory regions of flanking host genome sequences. Plasmids and genomes encoding identical TAs of natural isolates are mutually exclusive. Chromosomal TAs might play significant roles in the evolution and ecology of bacteria by contributing to host genome variation and by moderation of plasmid maintenance. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Multiple Business Ownership in the Norwegian Farm Sector: Resource Transfer and Performance Consequences

    ERIC Educational Resources Information Center

    Alsos, Gry Agnete; Carter, Sara

    2006-01-01

    This paper examines the case of multiple business ownership in the Norwegian farming sector, focusing on the extent of resource transfer between farms and their newly created ventures and the subsequent effects on the performance of these new ventures. The results demonstrate that substantial resource transfer takes place, mediated both by the…

  20. Antimicrobial resistance, class 1 integrons, and horizontal transfer in Salmonella isolated from retail food in Henan, China.

    PubMed

    Yu, Tao; Jiang, Xiaojie; Zhou, Qiaohong; Wu, Junmei; Wu, Zhenbin

    2014-06-11

    Salmonellosis remains one of the most frequently occurring foodborne diseases worldwide, especially in developing countries. The increasing prevalence of multidrug resistance among Salmonella isolates from food has been an emerging problem in China. In this study, a total of 638 food samples including raw meat, seafood, vegetables, and cooked meat were collected in Henan province of China between July 2007 and August 2008 to determine the prevalence of Salmonella. These isolates were subjected to serotyping, antimicrobial susceptibility, presence of class 1 integrons, and horizontal transfer of integrons. The overall percentage of Salmonella prevalence was 9.7% (n = 62). Among these isolates, S. Anatum and S. Senftenberg were most common, and high rates of antimicrobial resistance were observed to sulfamethoxazole (90.3%), trimethoprim/sulfamethoxazole (87.1%), streptomycin (29.0%), and ciprofloxacin (25.8%). Class 1 integrons were detected in 16.1% of these isolates, and contained gene cassettes dfrA12-aadA2, dfrA1-aadA1, and dfrA1. Three Salmonella isolates could transfer their integrons and resistance genes to Escherichia coli by conjugation. Our findings indicate that the mobile DNA elements could play an important role in the dissemination of resistance determinants among those Salmonella isolates.

  1. Comparative genomics reveals cotton-specific virulence factors in flexible genomic regions in Verticillium dahliae and evidence of horizontal gene transfer from Fusarium.

    PubMed

    Chen, Jie-Yin; Liu, Chun; Gui, Yue-Jing; Si, Kai-Wei; Zhang, Dan-Dan; Wang, Jie; Short, Dylan P G; Huang, Jin-Qun; Li, Nan-Yang; Liang, Yong; Zhang, Wen-Qi; Yang, Lin; Ma, Xue-Feng; Li, Ting-Gang; Zhou, Lei; Wang, Bao-Li; Bao, Yu-Ming; Subbarao, Krishna V; Zhang, Geng-Yun; Dai, Xiao-Feng

    2018-01-01

    Verticillium dahliae isolates are most virulent on the host from which they were originally isolated. Mechanisms underlying these dominant host adaptations are currently unknown. We sequenced the genome of V. dahliae Vd991, which is highly virulent on its original host, cotton, and performed comparisons with the reference genomes of JR2 (from tomato) and VdLs.17 (from lettuce). Pathogenicity-related factor prediction, orthology and multigene family classification, transcriptome analyses, phylogenetic analyses, and pathogenicity experiments were performed. The Vd991 genome harbored several exclusive, lineage-specific (LS) genes within LS regions (LSRs). Deletion mutants of the seven genes within one LSR (G-LSR2) in Vd991 were less virulent only on cotton. Integration of G-LSR2 genes individually into JR2 and VdLs.17 resulted in significantly enhanced virulence on cotton but did not affect virulence on tomato or lettuce. Transcription levels of the seven LS genes in Vd991 were higher during the early stages of cotton infection, as compared with other hosts. Phylogenetic analyses suggested that G-LSR2 was acquired from Fusarium oxysporum f. sp. vasinfectum through horizontal gene transfer. Our results provide evidence that horizontal gene transfer from Fusarium to Vd991 contributed significantly to its adaptation to cotton and may represent a significant mechanism in the evolution of an asexual plant pathogen. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Multiple burn fuel-optimal orbit transfers: Numerical trajectory computation and neighboring optimal feedback guidance

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.

    1995-01-01

    This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.

  3. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.

    PubMed

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-09-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)-Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR-Cas maintenance and one of the causes of the patchy distribution of CRISPR-Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR-Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR-Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution.

  4. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.

    PubMed

    Li, Jinjin; Gao, Tianyang; Luo, Jianbin

    2018-03-01

    2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions.

  5. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes

    PubMed Central

    Gao, Tianyang; Luo, Jianbin

    2018-01-01

    Abstract 2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions. PMID:29593965

  6. Characterization of horizontally transferred β-fructofuranosidase (ScrB) genes in Agrilus planipennis.

    PubMed

    Zhao, C; Doucet, D; Mittapalli, O

    2014-12-01

    The emerald ash borer (Agrilus planipennis) is an important invasive insect pest of Fraxinus spp. that feeds on host tissues containing high levels of sucrose. However, little is known about how it digests sucrose. Here, using larval midgut transcriptome data and preliminary genome sequence efforts, two β-fructofuranosidase-encoding ScrB genes, AplaScrB-1 and AplaScrB-2, were identified, and proved to reside within the A. planipennis genome. Homology and phylogenetic analysis revealed that they were acquired by A. planipennis via horizontal gene transfer (HGT) from bacteria, possibly an event independent from that reported in bark beetles (eg ScrB genes). Microsynteny between A. planipennis DNA scaffold #2042940, which hosts AplaScrB-1, and a region in the Tribolium castaneum chromosome LG4 suggested that A. planipennis gained this gene after the separation of Buprestidae and Tenebrionidae. Although both of the putative AplaScrB proteins have conserved β-fructofuranosidase motifs, only AplaScrB-2 was predicted to be a secretory protein. Expression of AplaScrB-1 seemed constitutive during development and in all tissues examined, whereas AplaScrB-2 showed a peak expression in adults and in the midgut. We propose that acquisition of these genes by A. planipennis from bacteria is adaptive, and specifically AplaScrB-2 is involved in breaking down dietary sucrose to obtain energy for development. © 2014 The Royal Entomological Society.

  7. Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection

    NASA Astrophysics Data System (ADS)

    Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.

    2017-11-01

    The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.

  8. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats.

    PubMed

    Eyres, Isobel; Boschetti, Chiara; Crisp, Alastair; Smith, Thomas P; Fontaneto, Diego; Tunnacliffe, Alan; Barraclough, Timothy G

    2015-11-04

    Although prevalent in prokaryotes, horizontal gene transfer (HGT) is rarer in multicellular eukaryotes. Bdelloid rotifers are microscopic animals that contain a higher proportion of horizontally transferred, non-metazoan genes in their genomes than typical of animals. It has been hypothesized that bdelloids incorporate foreign DNA when they repair their chromosomes following double-strand breaks caused by desiccation. HGT might thereby contribute to species divergence and adaptation, as in prokaryotes. If so, we expect that species should differ in their complement of foreign genes, rather than sharing the same set of foreign genes inherited from a common ancestor. Furthermore, there should be more foreign genes in species that desiccate more frequently. We tested these hypotheses by surveying HGT in four congeneric species of bdelloids from different habitats: two from permanent aquatic habitats and two from temporary aquatic habitats that desiccate regularly. Transcriptomes of all four species contain many genes with a closer match to non-metazoan genes than to metazoan genes. Whole genome sequencing of one species confirmed the presence of these foreign genes in the genome. Nearly half of foreign genes are shared between all four species and an outgroup from another family, but many hundreds are unique to particular species, which indicates that HGT is ongoing. Using a dated phylogeny, we estimate an average of 12.8 gains versus 2.0 losses of foreign genes per million years. Consistent with the desiccation hypothesis, the level of HGT is higher in the species that experience regular desiccation events than those that do not. However, HGT still contributed hundreds of foreign genes to the species from permanently aquatic habitats. Foreign genes were mainly enzymes with various annotated functions that include catabolism of complex polysaccharides and stress responses. We found evidence of differential loss of ancestral foreign genes previously associated with

  9. Rate decline curves analysis of multiple-fractured horizontal wells in heterogeneous reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Jiahang; Wang, Xiaodong; Dong, Wenxiu

    2017-10-01

    In heterogeneous reservoir with multiple-fractured horizontal wells (MFHWs), due to the high density network of artificial hydraulic fractures, the fluid flow around fracture tips behaves like non-linear flow. Moreover, the production behaviors of different artificial hydraulic fractures are also different. A rigorous semi-analytical model for MFHWs in heterogeneous reservoirs is presented by combining source function with boundary element method. The model are first validated by both analytical model and simulation model. Then new Blasingame type curves are established. Finally, the effects of critical parameters on the rate decline characteristics of MFHWs are discussed. The results show that heterogeneity has significant influence on the rate decline characteristics of MFHWs; the parameters related to the MFHWs, such as fracture conductivity and length also can affect the rate characteristics of MFHWs. One novelty of this model is to consider the elliptical flow around artificial hydraulic fracture tips. Therefore, our model can be used to predict rate performance more accurately for MFHWs in heterogeneous reservoir. The other novelty is the ability to model the different production behavior at different fracture stages. Compared to numerical and analytic methods, this model can not only reduce extensive computing processing but also show high accuracy.

  10. Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric CoxI gene of Peperomia.

    PubMed

    Vaughn, J C; Mason, M T; Sper-Whitis, G L; Kuhlman, P; Palmer, J D

    1995-11-01

    We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants.

  11. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    PubMed

    Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I

    2015-10-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular

  12. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (apocynaceae).

    PubMed

    Straub, Shannon C K; Cronn, Richard C; Edwards, Christopher; Fishbein, Mark; Liston, Aaron

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae]) and found evidence of intracellular HGT for a 2.4-kb segment of mitochondrial DNA to the rps2-rpoC2 intergenic spacer of the plastome. The transferred region contains an rpl2 pseudogene and is flanked by plastid sequence in the mitochondrial genome, including an rpoC2 pseudogene, which likely provided the mechanism for HGT back to the plastome through double-strand break repair involving homologous recombination. The plastome insertion is restricted to tribe Asclepiadeae of subfamily Asclepiadoideae, whereas the mitochondrial rpoC2 pseudogene is present throughout the subfamily, which confirms that the plastid to mitochondrial HGT event preceded the HGT to the plastome. Although the plastome insertion has been maintained in all lineages of Asclepiadoideae, it shows minimal evidence of transcription in A. syriaca and is likely nonfunctional. Furthermore, we found recent gene conversion of the mitochondrial rpoC2 pseudogene in Asclepias by the plastid gene, which reflects continued interaction of these genomes.

  13. Rpn (YhgA-Like) Proteins of Escherichia coli K-12 and Their Contribution to RecA-Independent Horizontal Transfer.

    PubMed

    Kingston, Anthony W; Ponkratz, Christine; Raleigh, Elisabeth A

    2017-04-01

    Bacteria use a variety of DNA-mobilizing enzymes to facilitate environmental niche adaptation via horizontal gene transfer. This has led to real-world problems, like the spread of antibiotic resistance, yet many mobilization proteins remain undefined. In the study described here, we investigated the uncharacterized family of YhgA-like transposase_31 (Pfam PF04754) proteins. Our primary focus was the genetic and biochemical properties of the five Escherichia coli K-12 members of this family, which we designate RpnA to RpnE, where Rpn represents r ecombination- p romoting n uclease. We employed a conjugal system developed by our lab that demanded RecA-independent recombination following transfer of chromosomal DNA. Overexpression of RpnA (YhgA), RpnB (YfcI), RpnC (YadD), and RpnD (YjiP) increased RecA-independent recombination, reduced cell viability, and induced the expression of reporter of DNA damage. For the exemplar of the family, RpnA, mutational changes in proposed catalytic residues reduced or abolished all three phenotypes in concert. In vitro , RpnA displayed magnesium-dependent, calcium-stimulated DNA endonuclease activity with little, if any, sequence specificity and a preference for double-strand cleavage. We propose that Rpn/YhgA-like family nucleases can participate in gene acquisition processes. IMPORTANCE Bacteria adapt to new environments by obtaining new genes from other bacteria. Here, we characterize a set of genes that can promote the acquisition process by a novel mechanism. Genome comparisons had suggested the horizontal spread of the genes for the YhgA-like family of proteins through bacteria. Although annotated as transposase_31, no member of the family has previously been characterized experimentally. We show that four Escherichia coli K-12 paralogs contribute to a novel RecA-independent recombination mechanism in vivo For RpnA, we demonstrate in vitro action as a magnesium-dependent, calcium-stimulated nonspecific DNA endonuclease. The

  14. Neisseria infection of rhesus macaques as a model to study colonization, transmission, persistence, and horizontal gene transfer.

    PubMed

    Weyand, Nathan J; Wertheimer, Anne M; Hobbs, Theodore R; Sisko, Jennifer L; Taku, Nyiawung A; Gregston, Lindsay D; Clary, Susan; Higashi, Dustin L; Biais, Nicolas; Brown, Lewis M; Planer, Shannon L; Legasse, Alfred W; Axthelm, Michael K; Wong, Scott W; So, Magdalene

    2013-02-19

    The strict tropism of many pathogens for man hampers the development of animal models that recapitulate important microbe-host interactions. We developed a rhesus macaque model for studying Neisseria-host interactions using Neisseria species indigenous to the animal. We report that Neisseria are common inhabitants of the rhesus macaque. Neisseria isolated from the rhesus macaque recolonize animals after laboratory passage, persist in the animals for at least 72 d, and are transmitted between animals. Neisseria are naturally competent and acquire genetic markers from each other in vivo, in the absence of selection, within 44 d after colonization. Neisseria macacae encodes orthologs of known or presumed virulence factors of human-adapted Neisseria, as well as current or candidate vaccine antigens. We conclude that the rhesus macaque model will allow studies of the molecular mechanisms of Neisseria colonization, transmission, persistence, and horizontal gene transfer. The model can potentially be developed further for preclinical testing of vaccine candidates.

  15. Neisseria infection of rhesus macaques as a model to study colonization, transmission, persistence, and horizontal gene transfer

    PubMed Central

    Weyand, Nathan J.; Wertheimer, Anne M.; Hobbs, Theodore R.; Sisko, Jennifer L.; Taku, Nyiawung A.; Gregston, Lindsay D.; Clary, Susan; Higashi, Dustin L.; Biais, Nicolas; Brown, Lewis M.; Planer, Shannon L.; Legasse, Alfred W.; Axthelm, Michael K.; Wong, Scott W.; So, Magdalene

    2013-01-01

    The strict tropism of many pathogens for man hampers the development of animal models that recapitulate important microbe–host interactions. We developed a rhesus macaque model for studying Neisseria–host interactions using Neisseria species indigenous to the animal. We report that Neisseria are common inhabitants of the rhesus macaque. Neisseria isolated from the rhesus macaque recolonize animals after laboratory passage, persist in the animals for at least 72 d, and are transmitted between animals. Neisseria are naturally competent and acquire genetic markers from each other in vivo, in the absence of selection, within 44 d after colonization. Neisseria macacae encodes orthologs of known or presumed virulence factors of human-adapted Neisseria, as well as current or candidate vaccine antigens. We conclude that the rhesus macaque model will allow studies of the molecular mechanisms of Neisseria colonization, transmission, persistence, and horizontal gene transfer. The model can potentially be developed further for preclinical testing of vaccine candidates. PMID:23382234

  16. Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex.

    PubMed

    Tucker, Thomas R; Katz, Lawrence C

    2003-01-01

    To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.

  17. Polygalacturonase from Sitophilus oryzae: Possible horizontal transfer of a pectinase gene from fungi to weevils

    PubMed Central

    Shen, Zhicheng; Denton, Michael; Mutti, Navdeep; Pappan, Kirk; Kanost, Michael R.; Reese, John C.; Reeck, Gerald R.

    2003-01-01

    Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L.), and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus. PMID:15841240

  18. Polygalacturonase from Sitophilus oryzae: possible horizontal transfer of a pectinase gene from fungi to weevils.

    PubMed

    Shen, Zhicheng; Denton, Michael; Mutti, Navdeep; Pappan, Kirk; Kanost, Michael R; Reese, John C; Reeck, Gerald R

    2003-01-01

    Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L.), and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus.

  19. Think laterally: horizontal gene transfer from symbiotic microbes may extend the phenotype of marine sessile hosts

    PubMed Central

    Degnan, Sandie M.

    2014-01-01

    Since the origin of the animal kingdom, marine animals have lived in association with viruses, prokaryotes and unicellular eukaryotes, often as symbionts. This long and continuous interaction has provided ample opportunity not only for the evolution of intimate interactions such as sharing of metabolic pathways, but also for horizontal gene transfer (HGT) of non-metazoan genes into metazoan genomes. The number of demonstrated cases of inter-kingdom HGT is currently small, such that it is not yet widely appreciated as a significant player in animal evolution. Sessile marine invertebrates that vertically inherit bacterial symbionts, that have no dedicated germ line, or that bud or excise pluripotent somatic cells during their life history may be particularly receptive to HGT from their symbionts. Closer scrutiny of the growing number of genomes being accrued for these animals may thus reveal HGT as a regular source of novel variation that can function to extend the host phenotype metabolically, morphologically, or even behaviorally. Taxonomic identification of symbionts will help to address the intriguing question of whether past HGT events may constrain contemporary symbioses. PMID:25477875

  20. Genetic information transfer promotes cooperation in bacteria

    PubMed Central

    Dimitriu, Tatiana; Lotton, Chantal; Bénard-Capelle, Julien; Misevic, Dusan; Brown, Sam P.; Lindner, Ariel B.; Taddei, François

    2014-01-01

    Many bacterial species are social, producing costly secreted “public good” molecules that enhance the growth of neighboring cells. The genes coding for these cooperative traits are often propagated via mobile genetic elements and can be virulence factors from a biomedical perspective. Here, we present an experimental framework that links genetic information exchange and the selection of cooperative traits. Using simulations and experiments based on a synthetic bacterial system to control public good secretion and plasmid conjugation, we demonstrate that horizontal gene transfer can favor cooperation. In a well-mixed environment, horizontal transfer brings a direct infectious advantage to any gene, regardless of its cooperation properties. However, in a structured population transfer selects specifically for cooperation by increasing the assortment among cooperative alleles. Conjugation allows cooperative alleles to overcome rarity thresholds and invade bacterial populations structured purely by stochastic dilution effects. Our results provide an explanation for the prevalence of cooperative genes on mobile elements, and suggest a previously unidentified benefit of horizontal gene transfer for bacteria. PMID:25024219

  1. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    PubMed

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  2. Inhibition Plasticity in Older Adults: Practice and Transfer Effects Using a Multiple Task Approach.

    PubMed

    Wilkinson, Andrea J; Yang, Lixia

    2016-01-01

    OBJECTIVE. To examine plasticity of inhibition, as indexed by practice effects of inhibition tasks and the associated transfer effects, using a multiple task approach in healthy older adults. METHOD. Forty-eight healthy older adults were evenly assigned to either a practice group or a no-contact control group. All participants completed pretest (2.5 hours) and posttest (2 hours) sessions, with a 2-week interval in between. During the 2-week interval, only the practice group completed six 30-minute practice sessions (three sessions per week for two consecutive weeks) of three lab-based inhibition tasks. RESULTS. All three inhibition tasks demonstrated significant improvement across practice sessions, suggesting practice-induced plasticity. The benefit, however, only transferred to near-near tasks. The results are inconclusive with regard to the near-far and far-far transfer effects. DISCUSSION. This study further extends literature on practice effects of inhibition in older adults by using a multiple task approach. Together with previous work, the current study suggests that older adults are able to improve inhibition performance through practice and transfer the practice gains to tasks that overlap in both target cognitive ability and task structure (i.e., near-near tasks).

  3. Inhibition Plasticity in Older Adults: Practice and Transfer Effects Using a Multiple Task Approach

    PubMed Central

    Wilkinson, Andrea J.; Yang, Lixia

    2016-01-01

    Objective. To examine plasticity of inhibition, as indexed by practice effects of inhibition tasks and the associated transfer effects, using a multiple task approach in healthy older adults. Method. Forty-eight healthy older adults were evenly assigned to either a practice group or a no-contact control group. All participants completed pretest (2.5 hours) and posttest (2 hours) sessions, with a 2-week interval in between. During the 2-week interval, only the practice group completed six 30-minute practice sessions (three sessions per week for two consecutive weeks) of three lab-based inhibition tasks. Results. All three inhibition tasks demonstrated significant improvement across practice sessions, suggesting practice-induced plasticity. The benefit, however, only transferred to near-near tasks. The results are inconclusive with regard to the near-far and far-far transfer effects. Discussion. This study further extends literature on practice effects of inhibition in older adults by using a multiple task approach. Together with previous work, the current study suggests that older adults are able to improve inhibition performance through practice and transfer the practice gains to tasks that overlap in both target cognitive ability and task structure (i.e., near-near tasks). PMID:26885407

  4. Targeted and efficient transfer of multiple value-added genes into wheat varieties

    USDA-ARS?s Scientific Manuscript database

    With an objective to optimize an approach to transfer multiple value added genes to a wheat variety while maintaining and improving agronomic performance, two alleles with mutations in the acetolactate synthase (ALS) gene located on wheat chromosomes 6B and 6D providing tolerance to imidazolinone (I...

  5. Flower orientation enhances pollen transfer in bilaterally symmetrical flowers.

    PubMed

    Ushimaru, Atushi; Dohzono, Ikumi; Takami, Yasuoki; Hyodo, Fujio

    2009-07-01

    Zygomorphic flowers are usually more complex than actinomorphic flowers and are more likely to be visited by specialized pollinators. Complex zygomorphic flowers tend to be oriented horizontally. It is hypothesized that a horizontal flower orientation ensures effective pollen transfer by facilitating pollinator recognition (the recognition-facilitation hypothesis) and/or pollinator landing (the landing-control hypothesis). To examine these two hypotheses, we altered the angle of Commelina communis flowers and examined the efficiency of pollen transfer, as well as the behavior of their visitors. We exposed unmanipulated (horizontal-), upward-, and downward-facing flowers to syrphid flies (mostly Episyrphus balteatus), which are natural visitors to C. communis. The frequency of pollinator approaches and landings, as well as the amount of pollen deposited by E. balteatus, decreased for the downward-facing flowers, supporting both hypotheses. The upward-facing flowers received the same numbers of approaches and landings as the unmanipulated flowers, but experienced more illegitimate landings. In addition, the visitors failed to touch the stigmas or anthers on the upward-facing flowers, leading to reduced pollen export and receipt, and supporting the landing-control hypothesis. Collectively, our data suggested that the horizontal orientation of zygomorphic flowers enhances pollen transfer by both facilitating pollinator recognition and controlling pollinator landing position. These findings suggest that zygomorphic flowers which deviate from a horizontal orientation may have lower fitness because of decreased pollen transfer.

  6. Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast.

    PubMed

    Wu, Baojun; Buljic, Adnan; Hao, Weilong

    2015-10-01

    The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Influence of temperature on rate of uptake and subsequent horizontal transfer of [14C]fipronil by eastern subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Spomer, Neil A; Kamble, Shripat T; Warriner, Richard A; Davis, Robert W

    2008-06-01

    The effect of temperature on [14C]fipronil uptake and transfer from donor (D) to recipient (R) Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) workers was evaluated. Test chambers used in the fipronil uptake study were constructed from petri dishes containing autoclaved soil treated with 1 ppm [14C]fipronil (1.14 microCi of total radioactivity per petri dish), distilled water, and R. flavipes workers. Test chambers were held in environmental growth chambers preset at 12, 17, 22, 27, and 32 degrees C. For the fipronil transfer study, donor termites stained with Nile blue-A were exposed to soil treated with 1 ppm [14C]fipronil for 2 h. Donors were then combined with unexposed recipient termite workers at either 1D:5R, 1D:10R, or 1D:20R ratios. Test chambers consisted of a nest and feeding chamber connected by a piece of polyethylene tube and held in growth chambers at 12, 17, 22, 27, and 32 degrees C. Worker termites were sampled over time and the amount of [14C]fipronil present was measured by scintillation counting. Some degree of uptake and transfer occurred at all temperatures and ratios in this study. The highest level of uptake occurred by termites held at 22-32 degrees C, followed decreasingly by 17 and 12 degrees C. Maximum transfer of [14C]fipronil occurred at the higher ratios (1:5 > 1:10 > 1:20) of donors to recipients. Data presented in this study suggest that temperature is one of the key factors affecting the rate of uptake and subsequent horizontal transfer of [14C]fipronil in subterranean termites.

  8. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence

    NASA Astrophysics Data System (ADS)

    Furrer, Julien; Kramer, Frank; Marino, John P.; Glaser, Steffen J.; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding ˜10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  9. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence.

    PubMed

    Furrer, Julien; Kramer, Frank; Marino, John P; Glaser, Steffen J; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding approximately 10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  10. Horizontal gene transfer as adaptive response to heavy metal stress in subsurface microbial communities. Final report for period October 15, 1997 - October 15, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smets, B. F.

    Horizontal gene transfer as adaptive response to heavy metal stress in the presence of heavy metal stress was evaluated in oligotrophic subsurface soil laboratory scale microcosms. Increasing levels of cadmium (10, 100 and 1000 mM) were applied and an E. coli donor was used to deliver the target plasmids, pMOL187 and pMOL222, which contained the czc and ncc operons, and the helper plasmid RP4. Plasmid transfer was evaluated through monitoring of the heavy metal resistance and presence of the genes. The interactive, clearly revealed, effect of biological and chemical external factors on the extent of plasmid-DNA propagation in microbial communitiesmore » in contaminated soil environments was observed in this study. Additionally, P.putida LBJ 415 carrying a suicide construct was used to evaluate selective elimination of a plasmid donor.« less

  11. Horizontal Transfer of DNA from the Mitochondrial to the Plastid Genome and Its Subsequent Evolution in Milkweeds (Apocynaceae)

    PubMed Central

    Straub, Shannon C.K.; Cronn, Richard C.; Edwards, Christopher; Fishbein, Mark; Liston, Aaron

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae]) and found evidence of intracellular HGT for a 2.4-kb segment of mitochondrial DNA to the rps2–rpoC2 intergenic spacer of the plastome. The transferred region contains an rpl2 pseudogene and is flanked by plastid sequence in the mitochondrial genome, including an rpoC2 pseudogene, which likely provided the mechanism for HGT back to the plastome through double-strand break repair involving homologous recombination. The plastome insertion is restricted to tribe Asclepiadeae of subfamily Asclepiadoideae, whereas the mitochondrial rpoC2 pseudogene is present throughout the subfamily, which confirms that the plastid to mitochondrial HGT event preceded the HGT to the plastome. Although the plastome insertion has been maintained in all lineages of Asclepiadoideae, it shows minimal evidence of transcription in A. syriaca and is likely nonfunctional. Furthermore, we found recent gene conversion of the mitochondrial rpoC2 pseudogene in Asclepias by the plastid gene, which reflects continued interaction of these genomes. PMID:24029811

  12. Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube

    NASA Astrophysics Data System (ADS)

    Rollmann, P.; Spindler, K.; Müller-Steinhagen, H.

    2011-08-01

    The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between -30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini's correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.

  13. Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts

    PubMed Central

    Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; Solomon, Peter S.; Rusu, Anca G.; Marshall, Mhairi; Kazan, Kemal; Chakraborty, Sukumar; McDonald, Bruce A.; Manners, John M.

    2012-01-01

    Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens. PMID:23028337

  14. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    NASA Astrophysics Data System (ADS)

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-03-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  15. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers.

    PubMed

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A

    2017-03-24

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90 Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300-500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent.

  16. Redshifted Cherenkov Radiation for in vivo Imaging: Coupling Cherenkov Radiation Energy Transfer to multiple Förster Resonance Energy Transfers

    PubMed Central

    Bernhard, Yann; Collin, Bertrand; Decréau, Richard A.

    2017-01-01

    Cherenkov Radiation (CR), this blue glow seen in nuclear reactors, is an optical light originating from energetic β-emitter radionuclides. CR emitter 90Y triggers a cascade of energy transfers in the presence of a mixed population of fluorophores (which each other match their respective absorption and emission maxima): Cherenkov Radiation Energy Transfer (CRET) first, followed by multiple Förster Resonance Energy transfers (FRET): CRET ratios were calculated to give a rough estimate of the transfer efficiency. While CR is blue-weighted (300–500 nm), such cascades of Energy Transfers allowed to get a) fluorescence emission up to 710 nm, which is beyond the main CR window and within the near-infrared (NIR) window where biological tissues are most transparent, b) to amplify this emission and boost the radiance on that window: EMT6-tumor bearing mice injected with both a radionuclide and a mixture of fluorophores having a good spectral overlap, were shown to have nearly a two-fold radiance boost (measured on a NIR window centered on the emission wavelength of the last fluorophore in the Energy Transfer cascade) compared to a tumor injected with the radionuclide only. Some CR embarked light source could be converted into a near-infrared radiation, where biological tissues are most transparent. PMID:28338043

  17. Influence of different materials and techniques to transfer molding in multiple implants.

    PubMed

    Faria, Júlio C B; Cruz, Fernando L G; Silva-Concílio, Laís R; Neves, Ana C C

    2012-01-01

    The aim of this study was to compare different materials and techniques used in transfer molding of multiple implants, by evaluating the space between implants and superstructure. Four external hexagon implants were fixed in a master template and the same on a superstructure. Transfer molding of implants were done using the direct and indirect techniques, with transfers united or not, using the union chemically activated acrylic resin (QA) and other groups polymerized acrylic resin (FT), and sectioned and not split. The casts were made with polyether and models divided into 8 groups (n = 5). The space between the superstructure and the master implants was measured with a microscope and the data was analyzed statistically by Student's t test (p < 0.05). For the material of union there was no significant difference, except when the groups were compared with the resin Duralay QA (G4) and the resin Duolay FT (G8) and groups using resins Duolay QA (G5) and Duolay FT (G7) for the union of the transfers. When comparing the groups who had the union between the transfers and sectioned again united with those in which the union was not severed there was no statistically significant difference. QA resin was superior to the FT with respect to the union of transfers. Techniques with united transfers or not were similar.

  18. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  19. Pathogenicity Island-Directed Transfer of Unlinked Chromosomal Virulence Genes

    PubMed Central

    Chen, John; Ram, Geeta; Penadés, José R.; Brown, Stuart; Novick, Richard P.

    2014-01-01

    Summary In recent decades, the notorious pathogen Staphylococcus aureus has become progressively more contagious, more virulent and more resistant to antibiotics. This implies a rather dynamic evolutionary capability, representing a remarkable level of genomic plasticity, most probably maintained by horizontal gene transfer. Here we report that the staphylococcal pathogenicity islands have a dual role in gene transfer: they not only mediate their own transfer, but they can independently direct the transfer of unlinked chromosomal segments containing virulence genes. While transfer of the island itself requires specific helper phages, transfer of unlinked chromosomal segments does not, so that potentially any pac-type phage will serve. These results reveal that SaPIs can increase the horizontal exchange of accessory genes associated with disease, and may shape pathogen genomes beyond the confines of their attachment sites. PMID:25498143

  20. Problems with multiple use of transfer buffer in protein electrophoretic transfer.

    PubMed

    Dorri, Yaser; Kurien, Biji T; Scofield, R Hal

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.

  1. 3-D Inhomogeous Radiative Transfer Model using a Planar-stratified Forward RT Model and Horizontal Perturbation Series

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Gasiewski, A. J.

    2017-12-01

    A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model based upon a nonspherical hydrometeor scattering model is being developed at the University of Colorado at Boulder to facilitate forward radiative simulations for 3-dimensionally inhomogeneous clouds in severe weather. The HI-UMRT 3-D analytical solution is based on incorporating a planar-stratified 1-D UMRT algorithm within a horizontally inhomogeneous iterative perturbation scheme. Single-scattering parameters are computed using the Discrete Dipole Scattering (DDSCAT v7.3) program for hundreds of carefully selected nonspherical complex frozen hydrometeors from the NASA/GSFC DDSCAT database. The required analytic factorization symmetry of transition matrix in a normalized RT equation was analytically proved and validated numerically using the DDSCAT-based full Stokes matrix of randomly oriented hydrometeors. The HI-UMRT model thus inherits the properties of unconditional numerical stability, efficiency, and accuracy from the UMRT algorithm and provides a practical 3-D two-Stokes parameter radiance solution with Jacobian to be used within microwave retrievals and data assimilation schemes. In addition, a fast forward radar reflectivity operator with Jacobian based on DDSCAT backscatter efficiency computed for large hydrometeors is incorporated into the HI-UMRT model to provide applicability to active radar sensors. The HI-UMRT will be validated strategically at two levels: 1) intercomparison of brightness temperature (Tb) results with those of several 1-D and 3-D RT models, including UMRT, CRTM and Monte Carlo models, 2) intercomparison of Tb with observed data from combined passive and active spaceborne sensors (e.g. GPM GMI and DPR). The precise expression for determining the required number of 3-D iterations to achieve an error bound on the perturbation solution will be developed to facilitate the numerical verification of the HI-UMRT code complexity and computation performance.

  2. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer.

    PubMed

    Montaña, Sabrina; Schramm, Sareda T J; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes.

  3. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    NASA Astrophysics Data System (ADS)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-12-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  4. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer.

    PubMed

    Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E

    1995-05-01

    Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.

  5. An examination of natural convection between two horizontal walls

    NASA Astrophysics Data System (ADS)

    Martine, J.-P.

    Measurements were made of the turbulence magnitudes and characteristics of natural convective air flow between plates. The thermal and kinematic properties of the flows were determined for comparison with theoretical predictions. Three horizontal layers were identified, as were the principle parameters for a law of variations. A viscous film with heat transferred mainly by conduction, a thermal boundary layer where strong convective changes occurred, and a central isothermal mean layer where the temperature was convected as a passive scalar were characterized. The velocity structures, both horizontal and vertical, were defined in each region. The thermal gradients were strongest near the wall, to the extent that new thermometric instruments are necessary for direct instantaneous measurement of the discrete layers that might form in that region.

  6. Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection

    NASA Astrophysics Data System (ADS)

    Taji, S. G.; Parishwad, G. V.; Sane, N. K.

    2014-07-01

    This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52-5.78 W/m2 K) at 100 W for S = 5-12 mm. The ha is very small (1.12-1.8 W/m2 K) at 100 W for 2-4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2-4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8-10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is -0.32 %.

  7. Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.

    PubMed

    Marti, J; Capmany, J

    1996-12-20

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  8. Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources

    NASA Astrophysics Data System (ADS)

    Marti, Javier; Capmany, Jose

    1996-12-01

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  9. Heat transfer and fire spread

    Treesearch

    Hal E. Anderson

    1969-01-01

    Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

  10. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  11. Completion Design Considerations for a Horizontal Enhanced Geothermal System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William

    2015-09-02

    The petroleum industry has had considerable success in recent decades in developing unconventional shale plays using horizontal drilling and multi-zonal isolation and stimulation techniques to fracture tight formations to enable the commercial production of oil and gas. Similar well completions could be used in Enhanced Geothermal Systems (EGS) to create multiple fractures from horizontal wells. This study assesses whether well completion techniques used in the unconventional shale industry to create multi-stage fractures can be applied to an enhanced geothermal system, with a focus on the completion of the EGS injection well. This study assumes an Enhanced Geothermal System (EGS) consistingmore » of a central horizontal injection well flanked on each side by horizontal production wells, connected to the injection well by multiple fractures. The focus is on the design and completion of the horizontal well. For the purpose of developing design criteria, a reservoir temperature of 200 degrees C (392 degrees F) and an injection well flow rate of 87,000 barrels per day (160 kg/s), corresponding to production well flow rates of 43,500 barrels per day (80 kg/s) is assumed. The analysis found that 9-5/8 inches 53.5 pounds per foot (ppf) P110 casing string with premium connections meets all design criteria for the horizontal section of injection well. A P110 grade is fairly common and is often used in horizontal sections of shale development wells in petroleum operations. Next, several zonal isolation systems commonly used in the shale gas industry were evaluated. Three techniques were evaluated -- a 'plug and perf' design, a 'sand and perf' design, and a 'packer and port' design. A plug and perf system utilizes a cemented casing throughout the length of the injector wellbore. The sand and perf system is identical to the plug and perf system, but replaces packers with sand placed in the casing after stimulation to screen out the stimulated perforated zones and provide

  12. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini

    PubMed Central

    Koutsovoulos, Georgios; Laetsch, Dominik R.; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A.

    2016-01-01

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976–15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini. As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1–2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination. PMID:27035985

  13. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.

    PubMed

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A; Blaxter, Mark

    2016-05-03

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.

  14. Plasmid transfer by conjugation in Xylella fastidiosa.

    USDA-ARS?s Scientific Manuscript database

    Recombination and horizontal gene transfer have been implicated in the adaption of Xylella fastidiosa (Xf) to infect a wide variety of different plant species. There is evidence that certain strains of Xf carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as ...

  15. Pre_GI: a global map of ontological links between horizontally transferred genomic islands in bacterial and archaeal genomes

    PubMed Central

    Pierneef, Rian; Cronje, Louis; Bezuidt, Oliver; Reva, Oleg N.

    2015-01-01

    Abstract The Predicted Genomic Islands database (Pre_GI) is a comprehensive repository of prokaryotic genomic islands (islands, GIs) freely accessible at http://pregi.bi.up.ac.za/index.php . Pre_GI, Version 2015, catalogues 26 744 islands identified in 2407 bacterial/archaeal chromosomes and plasmids. It provides an easy-to-use interface which allows users the ability to query against the database with a variety of fields, parameters and associations. Pre_GI is constructed to be a web-resource for the analysis of ontological roads between islands and cartographic analysis of the global fluxes of mobile genetic elements through bacterial and archaeal taxonomic borders. Comparison of newly identified islands against Pre_GI presents an alternative avenue to identify their ontology, origin and relative time of acquisition. Pre_GI aims to aid research on horizontal transfer events and materials through providing data and tools for holistic investigation of migration of genes through ecological niches and taxonomic boundaries. Database URL: http://pregi.bi.up.ac.za/index.php , Version 2015 PMID:26200753

  16. Life inside a gall: closeness does not favour horizontal transmission of Rickettsia between a gall wasp and its parasitoid.

    PubMed

    Gualtieri, Liberata; Nugnes, Francesco; Nappo, Anna G; Gebiola, Marco; Bernardo, Umberto

    2017-07-01

    The incidence of horizontal transmission as a route for spreading symbiont infections is still being debated, but a common view is that horizontal transfers require intimate between-species relationships. Here we study a system that meets ideal requirements for horizontal transmission: the gall wasp Leptocybe invasa and its parasitoid Quadrastichus mendeli (Hymenoptera: Eulophidae). These wasps belong to the same subfamily, spend most of their lives inside the same minute gall and are both infected by Rickettsia, a maternally inherited endosymbiotic bacteria that infects several arthropods, sometimes manipulating their reproduction, like inducing thelytokous parthenogenesis in L. invasa. Despite intimate contact, close phylogenetic relationship and the parasitoid's host specificity, we show that host and parasitoid do not share the same Rickettsia. We provide indirect evidence that Rickettsia infecting Q. mendeli may be inducing thelytokous parthenogenesis, as the symbiont is densely present in the reproductive apparatus and is vertically transmitted. Phylogenetic analyses based on 16S and gltA placed this symbiont in the leech group. The confirmed and presumed parthenogenesis-inducing Rickettsia discovered so far only infect eulophid wasps, and belong to three different groups, suggesting multiple independent evolution of the parthenogenesis inducing phenotype. We also show some degree of cospeciation between Rickettsia and their eulophid hosts. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Heat transfer coefficient as parameter describing ability of insulating liquid to heat transfer

    NASA Astrophysics Data System (ADS)

    Nadolny, Zbigniew; Gościński, Przemysław; Bródka, Bolesław

    2017-10-01

    The paper presents the results of the measurements of heat transfer coefficient of insulating liquids used in transformers. The coefficient describes an ability of the liquid to heat transport. On the basis of the coefficient, effectiveness of cooling system of electric power devices can be estimated. Following liquids were used for the measurements: mineral oil, synthetic ester and natural ester. It was assumed that surface heat load is about 2500 W·m-2, which is equal the load of transformer windings. A height of heat element was 1.6 m, because it makes possible steady distribution of temperature on its surface. The measurements of heat transfer coefficient was made as a function of various position of heat element (vertical, horizontal). In frame of horizontal position of heat element, three suppositions were analysed: top, bottom, and side.

  18. Using Multiple Schedules during Functional Communication Training to Promote Rapid Transfer of Treatment Effects

    ERIC Educational Resources Information Center

    Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.

    2015-01-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and…

  19. Evolutionary Significance of Wolbachia-to-Animal Horizontal Gene Transfer: Female Sex Determination and the f Element in the Isopod Armadillidium vulgare.

    PubMed

    Cordaux, Richard; Gilbert, Clément

    2017-07-21

    An increasing number of horizontal gene transfer (HGT) events from bacteria to animals have been reported in the past years, many of which involve Wolbachia bacterial endosymbionts and their invertebrate hosts. Most transferred Wolbachia genes are neutrally-evolving fossils embedded in host genomes. A remarkable case of Wolbachia HGT for which a clear evolutionary significance has been demonstrated is the " f element", a nuclear Wolbachia insert involved in female sex determination in the terrestrial isopod Armadillidium vulgare . The f element represents an instance of bacteria-to-animal HGT that has occurred so recently that it was possible to infer the donor (feminizing Wolbachia closely related to the w VulC Wolbachia strain of A. vulgare ) and the mechanism of integration (a nearly complete genome inserted by micro-homology-mediated recombination). In this review, we summarize our current knowledge of the f element and discuss arising perspectives regarding female sex determination, unstable inheritance, population dynamics and the molecular evolution of the f element. Overall, the f element unifies three major areas in evolutionary biology: symbiosis, HGT and sex determination. Its characterization highlights the tremendous impact sex ratio distorters can have on the evolution of sex determination mechanisms and sex chromosomes in animals and plants.

  20. Analysis of bacterial genomes from an evolution experiment with horizontal gene transfer shows that recombination can sometimes overwhelm selection

    PubMed Central

    2018-01-01

    Few experimental studies have examined the role that sexual recombination plays in bacterial evolution, including the effects of horizontal gene transfer on genome structure. To address this limitation, we analyzed genomes from an experiment in which Escherichia coli K-12 Hfr (high frequency recombination) donors were periodically introduced into 12 evolving populations of E. coli B and allowed to conjugate repeatedly over the course of 1000 generations. Previous analyses of the evolved strains from this experiment showed that recombination did not accelerate adaptation, despite increasing genetic variation relative to asexual controls. However, the resolution in that previous work was limited to only a few genetic markers. We sought to clarify and understand these puzzling results by sequencing complete genomes from each population. The effects of recombination were highly variable: one lineage was mostly derived from the donors, while another acquired almost no donor DNA. In most lineages, some regions showed repeated introgression and others almost none. Regions with high introgression tended to be near the donors’ origin of transfer sites. To determine whether introgressed alleles imposed a genetic load, we extended the experiment for 200 generations without recombination and sequenced whole-population samples. Beneficial alleles in the recipient populations were occasionally driven extinct by maladaptive donor-derived alleles. On balance, our analyses indicate that the plasmid-mediated recombination was sufficiently frequent to drive donor alleles to fixation without providing much, if any, selective advantage. PMID:29385126

  1. The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces.

    PubMed

    League, Garrett P; Slot, Jason C; Rokas, Antonis

    2012-11-01

    The asparagine degradation pathway in the S288c laboratory strain of Saccharomyces cerevisiae is comprised of genes located at two separate loci. ASP1 is located on chromosome IV and encodes for cytosolic l-asparaginase I, whereas ASP3 contains a gene cluster located on chromosome XII comprised of four identical genes, ASP3-1, ASP3-2, ASP3-3, and ASP3-4, which encode for cell wall-associated l-asparaginase II. Interestingly, the ASP3 locus appears to be only present, in variable copy number, in S. cerevisiae strains isolated from laboratory or industrial environments and is completely absent from the genomes of 128 diverse fungal species. Investigation of the evolutionary history of ASP3 across these 128 genomes as well as across the genomes of 43 S. cerevisiae strains shows that ASP3 likely arose in a S. cerevisiae strain via horizontal gene transfer (HGT) from, or a close relative of, the wine yeast Wickerhamomyces anomalus, which co-occurs with S. cerevisiae in several biotechnological processes. Thus, because the ASP3 present in the S288c laboratory strain of S. cerevisiae is induced in response to nitrogen starvation, its acquisition may have aided yeast adaptation to artificial environments. Our finding that the ASP3 locus in S. cerevisiae originated via HGT further highlights the importance of gene sharing between yeasts in the evolution of their remarkable metabolic diversity. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid Phytomonas serpens.

    PubMed

    Ienne, Susan; Pappas, Georgios; Benabdellah, Karim; González, Antonio; Zingales, Bianca

    2012-04-01

    Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of γ-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas, Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Enhanced Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  4. MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells.

    PubMed

    Soley, Luna; Falank, Carolyne; Reagan, Michaela R

    2017-06-01

    Multiple myeloma remains an incurable disease, largely due to the tumor-supportive role of the bone marrow microenvironment. Bone marrow adipose tissue (BMAT) is one component of the fertile microenvironment which is believed to contribute to myeloma progression and drug resistance, as well as participate in a vicious cycle of osteolysis and tumor growth. MicroRNAs (miRNAs) have recently emerged as instrumental regulators of cellular processes that enable the development and dissemination of cancer. This review highlights the intersection between two emerging research fields and pursues the scientific and clinical implications of miRNA transfer between BMAT and myeloma cells. This review provides a concise and provocative summary of the evidence to support exosome-mediated transfer of tumor-supportive miRNAs. The work may prompt researchers to better elucidate the mechanisms by which this novel means of genetic communication between tumor cells and their environment could someday yield targeted therapeutics.

  5. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Detail, Vertical Cross Bracing-End Detail - Cumberland Covered Bridge, Spanning Mississinewa River, Matthews, Grant County, IN

  6. Using Multiple Schedules During Functional Communication Training to Promote Rapid Transfer of Treatment Effects

    PubMed Central

    Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.

    2016-01-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects from one setting to the next and from one therapist to the next. With two children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. PMID:26384141

  7. Using multiple schedules during functional communication training to promote rapid transfer of treatment effects.

    PubMed

    Fisher, Wayne W; Greer, Brian D; Fuhrman, Ashley M; Querim, Angie C

    2015-12-01

    Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and therapists. With 2 children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. © Society for the Experimental Analysis of Behavior.

  8. Multiple scattering effects with cyclical terms in active remote sensing of vegetated surface using vector radiative transfer theory

    USDA-ARS?s Scientific Manuscript database

    The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...

  9. In vitro transfer of multiple resistance observed in vivo during a Salmonella london epidemic.

    PubMed

    Lantos, J; Marjai, E

    1980-01-01

    Between 1976 and 1978, waves of Salmonella london infections conveyed by raw meat and meat products were observed. The strains isolated during the epidemic were first susceptible then developed multiple antibiotic resistance. The identical antibiotic resistance patterns of the strain and their more frequent occurrence in hospital environments indicated plasmid-mediated resistance. R-plasmid transfer, minimum inhibition concentration and resistance elimination were studied in representative strains. The resistant S. london strain and transconjugants of Escherichia coli rendered resistant were compared. The results proved that multiple resistance was plasmid-mediated.

  10. The network level reproduction number for infectious diseases with both vertical and horizontal transmission.

    PubMed

    Xue, Ling; Scoglio, Caterina

    2013-05-01

    A wide range of infectious diseases are both vertically and horizontally transmitted. Such diseases are spatially transmitted via multiple species in heterogeneous environments, typically described by complex meta-population models. The reproduction number, R0, is a critical metric predicting whether the disease can invade the meta-population system. This paper presents the reproduction number for a generic disease vertically and horizontally transmitted among multiple species in heterogeneous networks, where nodes are locations, and links reflect outgoing or incoming movement flows. The metapopulation model for vertically and horizontally transmitted diseases is gradually formulated from two species, two-node network models. We derived an explicit expression of R0, which is the spectral radius of a matrix reduced in size with respect to the original next generation matrix. The reproduction number is shown to be a function of vertical and horizontal transmission parameters, and the lower bound is the reproduction number for horizontal transmission. As an application, the reproduction number and its bounds for the Rift Valley fever zoonosis, where livestock, mosquitoes, and humans are the involved species are derived. By computing the reproduction number for different scenarios through numerical simulations, we found the reproduction number is affected by livestock movement rates only when parameters are heterogeneous across nodes. To summarize, our study contributes the reproduction number for vertically and horizontally transmitted diseases in heterogeneous networks. This explicit expression is easily adaptable to specific infectious diseases, affording insights into disease evolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effect of coordinate frame compatibility on the transfer of implicit and explicit learning across limbs

    PubMed Central

    Carroll, Timothy J.

    2016-01-01

    Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. PMID:27334955

  12. MicroRNA Transfer between Bone Marrow Adipose and Multiple Myeloma Cells

    PubMed Central

    Soley, Luna; Falank, Carolyne; Reagan, Michaela R.

    2017-01-01

    Purpose of Review Multiple myeloma remains an incurable disease, largely due to the tumor-supportive role of the bone marrow microenvironment. Bone marrow adipose tissue (BMAT) is one component of the fertile microenvironment which is believed to contribute to myeloma progression and drug resistance, as well as participate in a vicious cycle of osteolysis and tumor growth. Recent Findings MicroRNAs (miRNAs) have recently emerged as instrumental regulators of cellular processes that enable the development and dissemination of cancer. This review highlights the intersection between two emerging research fields and pursues the scientific and clinical implications of miRNA transfer between BMAT and myeloma cells. Summary This review provides a concise and provocative summary of the evidence to support exosome-mediated transfer of tumor-supportive miRNAs. The work may prompt researchers to better elucidate the mechanisms by which this novel means of genetic communication between tumor cells and their environment could someday yield targeted therapeutics. PMID:28432594

  13. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  14. The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs.

    PubMed

    Rizzi, Aurora; Raddadi, Noura; Sorlini, Claudia; Nordgrd, Lise; Nielsen, Kaare Magne; Daffonchio, Daniele

    2012-01-01

    The fate of dietary DNA in the gastrointestinal tract (GIT) of animals has gained renewed interest after the commercial introduction of genetically modified organisms (GMO). Among the concerns regarding GM food, are the possible consequences of horizontal gene transfer (HGT) of recombinant dietary DNA to bacteria or animal cells. The exposure of the GIT to dietary DNA is related to the extent of food processing, food composition, and to the level of intake. Animal feeding studies have demonstrated that a minor amount of fragmented dietary DNA may resist the digestive process. Mammals have been shown to take up dietary DNA from the GIT, but stable integration and expression of internalized DNA has not been demonstrated. Despite the ability of several bacterial species to acquire external DNA by natural transformation, in vivo transfer of dietary DNA to bacteria in the intestine has not been detected in the few experimental studies conducted so far. However, major methodological limitations and knowledge gaps of the mechanistic aspects of HGT calls for methodological improvements and further studies to understand the fate of various types of dietary DNA in the GIT.

  15. The effects of video-game training on broad cognitive transfer in multiple sclerosis: A pilot randomized controlled trial.

    PubMed

    Janssen, Alisha; Boster, Aaron; Lee, HyunKyu; Patterson, Beth; Prakash, Ruchika Shaurya

    2015-01-01

    Multiple sclerosis (MS) is a neurodegenerative disease of the central nervous system that results in diffuse nerve damage and associated physical and cognitive impairments. Of the few comprehensive rehabilitation options that exist for populations with lower baseline cognitive functioning, those that have been successful at eliciting broad cognitive improvements have focused on a multimodal training approach, emphasizing complex cognitive processing that utilizes multiple domains simultaneously. The current study sought to determine the feasibility of an 8-week, hybrid-variable priority training (HVT) program, with a secondary aim to assess the success of this training paradigm at eliciting broad cognitive transfer effects. Capitalizing on the multimodal training modalities offered by the Space Fortress platform, we compared the HVT strategy-based intervention with a waitlist control group, to primarily assess skill acquisition and secondarily determine presence of cognitive transfer. Twenty-eight participants met inclusionary criteria for the study and were randomized to either training or waitlist control groups. To assess broad transfer effects, a battery of neuropsychological tests was administered pre- and post-intervention. The results indicated an overall improvement in skill acquisition and evidence for the feasibility of the intervention, but a lack of broad transfer to tasks of cognitive functioning. Participants in the training group, however, did show improvements on a measure of spatial short-term memory. The current investigation provided support for the feasibility of a multimodal training approach, using the HVT strategy, within the MS population, but lacked broad transfer to multiple domains of cognitive functioning. Future improvements to obtain greater cognitive transfer efficacy would include a larger sample size, a longer course of training to evoke greater game score improvement, the inclusion of only cognitively impaired individuals, and

  16. Horizontal Transfer of Segments of the 16S rRNA Genes between Species of the Streptococcus anginosus Group

    PubMed Central

    Schouls, Leo M.; Schot, Corrie S.; Jacobs, Jan A.

    2003-01-01

    The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes. PMID:14645285

  17. NASP technology transfer

    NASA Technical Reports Server (NTRS)

    Morris, Charles

    1992-01-01

    It is the stated goal of this program, the National AeroSpace Plane (NASP) program, to develop and then demonstrate the technologies for single-stage-to-orbit flight and hypersonic cruise with airbreathing primary propulsion and horizontal takeoff and landing. This presentation is concerned with technology transfer in the context of the NASP program.

  18. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production

    PubMed Central

    Morin, Jean-Benoît; Gimenez, Philippe; Edouard, Pascal; Arnal, Pierrick; Jiménez-Reyes, Pedro; Samozino, Pierre; Brughelli, Matt; Mendiguchia, Jurdan

    2015-01-01

    Recent literature supports the importance of horizontal ground reaction force (GRF) production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG) activity of the vastus lateralis, rectus femoris, biceps femoris, and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024) between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability. PMID:26733889

  19. Effect of coordinate frame compatibility on the transfer of implicit and explicit learning across limbs.

    PubMed

    Poh, Eugene; Carroll, Timothy J; Taylor, Jordan A

    2016-09-01

    Insights into the neural representation of motor learning can be obtained by investigating how learning transfers to novel task conditions. We recently demonstrated that visuomotor rotation learning transferred strongly between left and right limbs when the task was performed in a sagittal workspace, which afforded a consistent remapping for the two limbs in both extrinsic and joint-based coordinates. In contrast, transfer was absent when performed in horizontal workspace, where the extrinsically defined perturbation required conflicting joint-based remapping for the left and right limbs. Because visuomotor learning is thought to be supported by both implicit and explicit forms of learning, however, it is unclear to what extent these distinct forms of learning contribute to interlimb transfer. In this study, we assessed the degree to which interlimb transfer, following visuomotor rotation training, reflects explicit vs. implicit learning by obtaining verbal reports of participants' aiming direction before each movement. We also determined the extent to which these distinct components of learning are constrained by the compatibility of coordinate systems by comparing transfer between groups of participants who reached to targets arranged in the horizontal and sagittal planes. Both sagittal and horizontal conditions displayed complete transfer of explicit learning to the untrained limb. In contrast, transfer of implicit learning was incomplete, but the sagittal condition showed greater transfer than the horizontal condition. These findings suggest that explicit strategies developed with one limb can be fully implemented in the opposite limb, whereas implicit transfer depends on the degree to which new sensorimotor maps are spatially compatible for the two limbs. Copyright © 2016 the American Physiological Society.

  20. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  1. Using complementary approaches to identify trans-domain nuclear gene transfers in the extremophile Galdieria sulphuraria (Rhodophyta).

    PubMed

    Pandey, Ravi S; Saxena, Garima; Bhattacharya, Debashish; Qiu, Huan; Azad, Rajeev K

    2017-02-01

    Identification of horizontal gene transfers (HGTs) has primarily relied on phylogenetic tree based methods, which require a rich sampling of sequenced genomes to ensure a reliable inference. Because the success of phylogenetic approaches depends on the breadth and depth of the database, researchers usually apply stringent filters to detect only the most likely gene transfers in the genomes of interest. One such study focused on a highly conservative estimate of trans-domain gene transfers in the extremophile eukaryote, Galdieria sulphuraria (Galdieri) Merola (Rhodophyta), by applying multiple filters in their phylogenetic pipeline. This led to the identification of 75 inter-domain acquisitions from Bacteria or Archaea. Because of the evolutionary, ecological, and potential biotechnological significance of foreign genes in algae, alternative approaches and pipelines complementing phylogenetics are needed for a more comprehensive assessment of HGT. We present here a novel pipeline that uncovered 17 novel foreign genes of prokaryotic origin in G. sulphuraria, results that are supported by multiple lines of evidence including composition-based, comparative data, and phylogenetics. These genes encode a variety of potentially adaptive functions, from metabolite transport to DNA repair. © 2016 Phycological Society of America.

  2. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated

    PubMed Central

    Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Katzir, Nurit; Portnoy, Vitaly; Belausov, Eduard; Hunter, Martha S.; Zchori-Fein, Einat

    2012-01-01

    Bacteria in the genus Rickettsia, best known as vertebrate pathogens vectored by blood-feeding arthropods, can also be found in phytophagous insects. The presence of closely related bacterial symbionts in evolutionarily distant arthropod hosts presupposes a means of horizontal transmission, but no mechanism for this transmission has been described. Using a combination of experiments with live insects, molecular analyses and microscopy, we found that Rickettsia were transferred from an insect host (the whitefly Bemisia tabaci) to a plant, moved inside the phloem, and could be acquired by other whiteflies. In one experiment, Rickettsia was transferred from the whitefly host to leaves of cotton, basil and black nightshade, where the bacteria were restricted to the phloem cells of the plant. In another experiment, Rickettsia-free adult whiteflies, physically segregated but sharing a cotton leaf with Rickettsia-plus individuals, acquired the Rickettsia at a high rate. Plants can serve as a reservoir for horizontal transmission of Rickettsia, a mechanism which may explain the occurrence of phylogenetically similar symbionts among unrelated phytophagous insect species. This plant-mediated transmission route may also exist in other insect–symbiont systems and, since symbionts may play a critical role in the ecology and evolution of their hosts, serve as an immediate and powerful tool for accelerated evolution. PMID:22113034

  3. Nonelectrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens to obtain 12 immunoblots.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Protein blotting is an invaluable technique in immunology to detect and characterize proteins of low abundance. Proteins resolved on sodium dodecyl sulfate (SDS) polyacrylamide gels are normally transferred electrophoretically to adsorbent membranes such as nitrocellulose or polyvinylidene diflouride membranes. Here, we describe the nonelectrophroretic transfer of the Ro 60 (or SSA) autoantigen, 220- and 240-kD spectrin antigens, and prestained molecular weight standards from SDS polyacrylamide gels to obtain up to 12 immunoblots from a single gel and multiple sera.

  4. Laminar forced convection from a rotating horizontal cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Chandran, Prabul; Venugopal, G.; Jaleel, H. Abdul; Rajkumar, M. R.

    2017-04-01

    The influence of non-dimensional rotational velocity, flow Reynolds number and Prandtl number of the fluid on laminar forced convection from a rotating horizontal cylinder subject to constant heat flux boundary condition is numerically investigated. The numerical simulations have been conducted using commercial Computational Fluid Dynamics package CFX available in ANSYS Workbench 14. Results are presented for the non-dimensional rotational velocity α ranging from 0 to 4, flow Reynolds number from 25 to 40 and Prandtl number of the fluid from 0.7 to 5.4. The rotational effects results in reduction in heat transfer compared to heat transfer from stationary heated cylinder due to thickening of boundary layer as consequence of the rotation of the cylinder. Heat transfer rate increases with increase in Prandtl number of the fluid.

  5. Incomplete Multisource Transfer Learning.

    PubMed

    Ding, Zhengming; Shao, Ming; Fu, Yun

    2018-02-01

    Transfer learning is generally exploited to adapt well-established source knowledge for learning tasks in weakly labeled or unlabeled target domain. Nowadays, it is common to see multiple sources available for knowledge transfer, each of which, however, may not include complete classes information of the target domain. Naively merging multiple sources together would lead to inferior results due to the large divergence among multiple sources. In this paper, we attempt to utilize incomplete multiple sources for effective knowledge transfer to facilitate the learning task in target domain. To this end, we propose an incomplete multisource transfer learning through two directional knowledge transfer, i.e., cross-domain transfer from each source to target, and cross-source transfer. In particular, in cross-domain direction, we deploy latent low-rank transfer learning guided by iterative structure learning to transfer knowledge from each single source to target domain. This practice reinforces to compensate for any missing data in each source by the complete target data. While in cross-source direction, unsupervised manifold regularizer and effective multisource alignment are explored to jointly compensate for missing data from one portion of source to another. In this way, both marginal and conditional distribution discrepancy in two directions would be mitigated. Experimental results on standard cross-domain benchmarks and synthetic data sets demonstrate the effectiveness of our proposed model in knowledge transfer from incomplete multiple sources.

  6. Ethical obligation for restricting the number of embryos transferred to women: combating the multiple-birth epidemic from in vitro fertilization.

    PubMed

    Van Voorhis, Bradley J; Ryan, Ginny L

    2010-07-01

    In vitro fertilization (IVF) is an increasingly effective and popular means of achieving pregnancy for infertile women, but contributes to a growing incidence of risky twin pregnancies. Despite studies demonstrating cost-effective means to achieve IVF pregnancy while strictly limiting the number of embryos transferred, multiple-embryo transfer remains the most common practice in the United States, and twin pregnancies continue to increase. IVF providers resist restricting these practices, arguing that this is counter to principles of procreative liberty, patient and professional autonomy, and free-market economics. We counter that physicians have a professional fiduciary responsibility to weigh issues of nonmaleficence to patients and just use of health care resources with patient desires. With oversight from professional organizations, providers should follow strict but medically appropriate restrictions on embryo transfer practices and work toward safer means of optimizing IVF outcomes than multiple-embryo transfer. Thieme Medical Publishers.

  7. A 3D mathematical model for the horizontal anode baking furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocaefe, Y.S.; Dernedde, E.; Kocaefe, D.

    In the aluminum industry, carbon anodes are baked in large horizontal or vertical ring-type furnaces. The anode quality depends strongly on the baking conditions (heating rate, soaking time and final anode temperature). A three-dimensional mathematical model has been developed for a horizontal anode baking furnace to assess the effects of different parameters on the baking process and to improve the furnace operation and design at Noranda Aluminum Smelter in New Madrid, Missouri. The commercial CFD code CFDS-FLOW3D is used to solve the governing differential equations. The model gives the temperature, velocity and concentration distributions in the flue, and the variationmore » of the temperature distribution with time in the pit. In this paper, a description of the 3D model for the horizontal anode baking furnace will be given. Some of the results from a case study will also be presented. The results show clearly the importance of flue geometry on the gas flow distribution in the flue and the heat transfer to the anodes.« less

  8. Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholten, Johannes C.; Culley, David E.; Brockman, Fred J.

    2007-01-05

    The sulfate reducing bacteria Desulfovibrio vulgaris and the methanogenic archaea Methanosarcina barkeri can grow syntrophically on lactate. In this study, three functionally unknown genes of D. vulgaris, DVU2103, DVU2104 and DVU2108, were found to be up-regulated 2-4 fold following the lifestyle shift from syntroph to sulfatereducer; moreover, none of these genes were regulated when D. vulgaris was grown alone in various pure culture conditions. These results suggest that these genes may play roles related to the lifestyle change of D. vulgaris from syntroph to sulfate reducer. This hypothesis is further supported by phylogenomic analyses showing that homologies of these genesmore » were only narrowly present in several groups of bacteria, most of which are restricted to a syntrophic life-style, such as Pelobacter carbinolicus, Syntrophobacter fumaroxidans, Syntrophomonas wolfei and Syntrophus aciditrophicus. Phylogenetic analysis showed that the genes tended to be clustered with archaeal genera, and they were rooted on archaeal species in the phylogenetic trees, suggesting that they originated from an archaeal methanogen and were horizontally transferred to a common ancestor of delta- Proteobacteria, Clostridia and Thermotogae. While lost in most species during evolution, these genes appear to have been retained in bacteria capable of syntrophic relationships, probably due to their providing a selective advantage. In addition, no significant bias in codon and amino acid usages was detected between these genes and the rest of the D. vulgaris genome, suggesting these gene transfers may have occurred early in the evolutionary history so that sufficient time has elapsed to allow an adaptation to the codon and amino acid usages of D. vulgaris. This report provides novel insights into the origin and evolution of bacterial genes involved in the syntrophic lifestyle.« less

  9. Forced convection and flow boiling with and without enhancement devices for top-side-heated horizontal channels

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Turknett, Jerry C.

    1989-01-01

    The effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly was studied. Studies are completed of the variations in the local (axial and circumferential) and mean heat transfer coefficients in horizontal, top-heated coolant channels with smooth walls and internal heat transfer enhancement devices. The working fluid is freon-11. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls; (2) examine the effect of channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel; and (3) develop and improved data reduction analysis. The case of the top-heated, horizontal flow channel with smooth wall (1.37 cm inside diameter, and 122 cm heated length) was completed. The data were reduced using a preliminary analysis based on the heated hydraulic diameter. Preliminary examination of the local heat transfer coefficient variations indicated that there are significant axial and circumferential variations. However, it appears that the circumferential variation is more significant than the axial ones. In some cases, the circumferential variations were as much as a factor of ten. The axial variations rarely exceeded a factor of three.

  10. Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci

    PubMed Central

    Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2000-01-01

    or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes. PMID:11092850

  11. Horizontal baffle for nuclear reactors

    DOEpatents

    Rylatt, John A.

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  12. Technique of nonvascularized toe phalangeal transfer and distraction lengthening in the treatment of multiple digit symbrachydactyly.

    PubMed

    Netscher, David T; Lewis, Eric V

    2008-06-01

    A combination of nonvascularized multiple toe phalangeal transfers, web space deepening, and distraction lengthening may provide excellent function in the child born with the oligodactylous type of symbrachydactyly. These techniques may reconstruct multiple digits, maintaining a wide and stable grip span with good prehension to the thumb. We detail the techniques of each of these 3 stages in reconstruction and describe appropriate patient selection. Potential complications are discussed. However, with strict attention to technical details, these complications can be minimized.

  13. Comprehensive genetic assessment of the human embryo: can empiric application of microarray comparative genomic hybridization reduce multiple gestation rate by single fresh blastocyst transfer?

    PubMed

    Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A

    2012-09-01

    The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also

  14. Ancestor of land plants acquired the DNA-3-methyladenine glycosylase (MAG) gene from bacteria through horizontal gene transfer.

    PubMed

    Fang, Huimin; Huangfu, Liexiang; Chen, Rujia; Li, Pengcheng; Xu, Shuhui; Zhang, Enying; Cao, Wei; Liu, Li; Yao, Youli; Liang, Guohua; Xu, Chenwu; Zhou, Yong; Yang, Zefeng

    2017-08-24

    The origin and evolution of land plants was an important event in the history of life and initiated the establishment of modern terrestrial ecosystems. From water to terrestrial environments, plants needed to overcome the enhanced ultraviolet (UV) radiation and many other DNA-damaging agents. Evolving new genes with the function of DNA repair is critical for the origin and radiation of land plants. In bacteria, the DNA-3-methyladenine glycosylase (MAG) recognizes of a variety of base lesions and initiates the process of the base excision repair for damaged DNA. The homologs of MAG gene are present in all major lineages of streptophytes, and both the phylogenic and sequence similarity analyses revealed that green plant MAG gene originated through an ancient horizontal gene transfer (HGT) event from bacteria. Experimental evidence demonstrated that the expression of the maize ZmMAG gene was induced by UV and zeocin, both of which are known as DNA-damaging agents. Further investigation revealed that Streptophyta MAG genes had undergone positive selection during the initial evolutionary period in the ancestor of land plants. Our findings demonstrated that the ancient HGT of MAG to the ancestor of land plants probably played an important role in preadaptation to DNA-damaging agents in terrestrial environments.

  15. Horizontal Collision Avoidance Systems Study

    DOT National Transportation Integrated Search

    1973-12-01

    This report presents the results of an analytical study of the merits and mechanization requirements of horizontal collision avoidance systems (CAS). The horizontal and combined horizontal/vertical maneuvers which provide adequate miss distance with ...

  16. Direct and Indirect Horizontal Transmission of the Antifungal Probiotic Bacterium Janthinobacterium lividum on Green Frog (Lithobates clamitans) Tadpoles.

    PubMed

    Rebollar, Eria A; Simonetti, Stephen J; Shoemaker, William R; Harris, Reid N

    2016-04-01

    Amphibian populations worldwide are being threatened by the disease chytridiomycosis, which is caused by Batrachochytrium dendrobatidis To mitigate the effects of B. dendrobatidis, bioaugmentation of antifungal bacteria has been shown to be a promising strategy. One way to implement bioaugmentation is through indirect horizontal transmission, defined as the transfer of bacteria from a host to the environment and to another host. In addition, direct horizontal transmission among individuals can facilitate the spread of a probiotic in a population. In this study, we tested whether the antifungal bacterium Janthinobacterium lividum could be horizontally transferred, directly or indirectly, in a laboratory experiment using Lithobates clamitans tadpoles. We evaluated the ability of J. lividumto colonize the tadpoles' skin and to persist through time using culture-dependent and culture-independent techniques. We also tested whether the addition of J. lividum affected the skin community in L. clamitans tadpoles. We found that transmission occurred rapidly by direct and indirect horizontal transmission, but indirect transmission that included a potential substrate was more effective. Even though J. lividum colonized the skin, its relative abundance on the tadpole skin decreased over time. The inoculation of J. lividum did not significantly alter the skin bacterial diversity of L. clamitans tadpoles, which was dominated by Pseudomonas Our results show that indirect horizontal transmission can be an effective bioaugmentation method. Future research is needed to determine the best conditions, including the presence of substrates, under which a probiotic can persist on the skin so that bioaugmentation becomes a successful strategy to mitigate chytridiomycosis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Direct and Indirect Horizontal Transmission of the Antifungal Probiotic Bacterium Janthinobacterium lividum on Green Frog (Lithobates clamitans) Tadpoles

    PubMed Central

    Simonetti, Stephen J.; Shoemaker, William R.; Harris, Reid N.

    2016-01-01

    Amphibian populations worldwide are being threatened by the disease chytridiomycosis, which is caused by Batrachochytrium dendrobatidis. To mitigate the effects of B. dendrobatidis, bioaugmentation of antifungal bacteria has been shown to be a promising strategy. One way to implement bioaugmentation is through indirect horizontal transmission, defined as the transfer of bacteria from a host to the environment and to another host. In addition, direct horizontal transmission among individuals can facilitate the spread of a probiotic in a population. In this study, we tested whether the antifungal bacterium Janthinobacterium lividum could be horizontally transferred, directly or indirectly, in a laboratory experiment using Lithobates clamitans tadpoles. We evaluated the ability of J. lividum to colonize the tadpoles' skin and to persist through time using culture-dependent and culture-independent techniques. We also tested whether the addition of J. lividum affected the skin community in L. clamitans tadpoles. We found that transmission occurred rapidly by direct and indirect horizontal transmission, but indirect transmission that included a potential substrate was more effective. Even though J. lividum colonized the skin, its relative abundance on the tadpole skin decreased over time. The inoculation of J. lividum did not significantly alter the skin bacterial diversity of L. clamitans tadpoles, which was dominated by Pseudomonas. Our results show that indirect horizontal transmission can be an effective bioaugmentation method. Future research is needed to determine the best conditions, including the presence of substrates, under which a probiotic can persist on the skin so that bioaugmentation becomes a successful strategy to mitigate chytridiomycosis. PMID:26873311

  18. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    PubMed

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  19. Characterizing Variability in Long Period Horizontal Tilt Noise Through Coherence Analysis

    NASA Astrophysics Data System (ADS)

    Rohde, M. D.; Ringler, A. T.; Hutt, C. R.; Wilson, D.; Holland, A. A.

    2016-12-01

    Tilt induced horizontal noise fundamentally limits a wide variety of seismological studies. This noise source is not well characterized or understood and the spatial variability has yet to be well constrained. Long-period (i.e., greater than 100 seconds period) horizontal seismic noise is generally known to be of greater magnitude than long-period vertical seismic noise due to tilt noise. As a result, many studies only make use of the vertical seismic wavefield as opposed to all three axes. The main source of long-period horizontal seismic noise is hypothesized to be tilt due to atmospheric pressure variation. Reducing horizontal tilt noise could lead to improved resolution of torsional earth modes and other long-period horizontal seismic signals that are often dominated by tilt noise, as well as better construction of seismic isolation systems for sensitive scientific experiments. We looked at a number of small aperture array configurations. For each array we installed eight Streckeisen STS-2 broadband seismometers in the Albuquerque Seismological Laboratory (ASL) underground vault. The data from these array configurations was used to characterize the long period horizontal tilt noise over a spatially small scale. Sensors were installed approximately 1 to 10 meters apart depending on the array configuration. Coherence as a function of frequency was calculated between sensors, of which we examine the frequency band between 10 and 500 seconds. We observed complexity in the pair-wise coherence with respect to frequency, seismometer axis, and time, even for spatially close sensors. We present some possible explanations for the large variability in our coherence observations and demonstrate how these results can be applied to find potentially low horizontal noise locations over small spatial scales, such as in stations with multiple co-located sensors within the Global Seismographic Network.

  20. Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels

    PubMed Central

    Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695

  1. Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2016-01-01

    An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.

  2. Horizontal EDNA miner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Justice, J.C.; Delli-Gatti, F.A.

    1985-12-03

    A mining machine is utilized for making original generally horizontal bores in coal seams, and for enlarging preexisting bores. A single cutting head is mounted for rotation about a first horizontal axis generally perpendicular to the dimension of elongation of the horizontal bore, and is pivotal about a second horizontal axis, parallel to the first axis, to change its cutting, vertical position within the bore. A non-rotatable body member, with side wall supports, is mounted posteriorly of the cutting head, and includes a conveyor mechanism and a power mechanism operatively connected to it. The machine can be sumped into amore » bore and then the cutting head rotated about the second axis to change the vertical position thereof, and then moved rearwardly, any cut material being continuously conveyed to the bore mouth by the conveyor mechanism. The amount of vertical movement during the pivoting action about the second axis is controlled in response to the automatic sensing of the thickness of the coal seam in which the machine operates.« less

  3. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, Terry D.

    1997-01-01

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  4. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  5. Fostering Analogical Transfer: The Multiple Components Approach to Algebra Word Problem Solving in a Chemistry Context

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing

    2012-01-01

    Holyoak and Koh (1987) and Holyoak (1984) propose four critical tasks for analogical transfer to occur in problem solving. A study was conducted to test this hypothesis by comparing a multiple components (MC) approach against worked examples (WE) in helping students to solve algebra word problems in chemistry classes. The MC approach incorporated…

  6. EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes.

    PubMed

    Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg

    2018-05-03

    Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.

  7. Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR

    PubMed Central

    Yang, Chaojie; Li, Peng; Su, Wenli; Li, Hao; Liu, Hongbo; Yang, Guang; Xie, Jing; Yi, Shengjie; Wang, Jian; Cui, Xianyan; Wu, Zhihao; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR) act as an adaptive RNA-mediated immune mechanism in bacteria. They can also be used for identification and evolutionary studies based on polymorphisms within the CRISPR locus. We amplified and analyzed 6 CRISPR loci from 237 Shigella strains belonging to the 4 species groups, as well as 13 Escherichia coli strains. The CRISPR-associated (cas) gene sequence arrays of these strains were screened and compared. The CRISPR sequences from Shigella were conserved among subtypes, suggesting that CRISPR may represent a new identification tool for the detection and discrimination of Shigella species. Secondary structure analysis showed a different stem-loop structure at the terminal repeat, suggesting a distinct recognition mechanism in the formation of crRNA. In addition, the presence of “self-target” spacers and polymorphisms within CRISPR in Shigella indicated a selective pressure for inhibition of this system, which has the potential to damage “self DNA.” Homology analysis of spacers showed that CRISPR might be involved in the regulation of virulence transmission. Phylogenetic analysis based on CRISPR sequences from Shigella and E. coli indicated that although phenotypic properties maintain convergent evolution, the 4 Shigella species do not represent natural groupings. Surprisingly, comparative analysis of Shigella repeats with other species provided new evidence for CRISPR horizontal transfer. Our results suggested that CRISPR analysis is applicable for the detection of Shigella species and for investigation of evolutionary relationships. PMID:26327282

  8. Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR.

    PubMed

    Yang, Chaojie; Li, Peng; Su, Wenli; Li, Hao; Liu, Hongbo; Yang, Guang; Xie, Jing; Yi, Shengjie; Wang, Jian; Cui, Xianyan; Wu, Zhihao; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR) act as an adaptive RNA-mediated immune mechanism in bacteria. They can also be used for identification and evolutionary studies based on polymorphisms within the CRISPR locus. We amplified and analyzed 6 CRISPR loci from 237 Shigella strains belonging to the 4 species groups, as well as 13 Escherichia coli strains. The CRISPR-associated (cas) gene sequence arrays of these strains were screened and compared. The CRISPR sequences from Shigella were conserved among subtypes, suggesting that CRISPR may represent a new identification tool for the detection and discrimination of Shigella species. Secondary structure analysis showed a different stem-loop structure at the terminal repeat, suggesting a distinct recognition mechanism in the formation of crRNA. In addition, the presence of "self-target" spacers and polymorphisms within CRISPR in Shigella indicated a selective pressure for inhibition of this system, which has the potential to damage "self DNA." Homology analysis of spacers showed that CRISPR might be involved in the regulation of virulence transmission. Phylogenetic analysis based on CRISPR sequences from Shigella and E. coli indicated that although phenotypic properties maintain convergent evolution, the 4 Shigella species do not represent natural groupings. Surprisingly, comparative analysis of Shigella repeats with other species provided new evidence for CRISPR horizontal transfer. Our results suggested that CRISPR analysis is applicable for the detection of Shigella species and for investigation of evolutionary relationships.

  9. APT Blanket Thermal Analyses of Top Horizontal Row 1 Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadday, M.A.

    1999-09-20

    The Accelerator Production of Tritium (APT) cavity flood system (CFS) is designed to be the primary safeguard for the integrity of the blanket modules during loss of coolant accidents (LOCAs). For certain large break LOCAs the CFS also provides backup for the residual heat removal systems (RHRs) in cooling the target assemblies. In the unlikely event that the internal flow passages in a blanket module or target assembly dryout, decay heat in the metal structures will be dissipated to the CFS through the module or assembly walls (i.e., rung outer walls). The target assemblies consist of tungsten targets encased inmore » steel conduits, and they can safely sustain high metal temperatures. Under internally dry conditions, the cavity flood fluid will cool the target assemblies with vigorous nucleate boiling on the external surfaces. However, the metal structures in the blanket modules consist of lead cladded in aluminum, and they have a long-term exposure temperature limit currently set to 150 degrees C. Simultaneous LOCAs in both the target and blanket heat removal systems (HRS) could result in dryout of the target ladders, as well as the horizontal blanket modules above the target. The cavity flood coolant would boil on the outside surfaces of the target ladder rungs, and the resultant steam could reduce the effectiveness of convection heat transfer from the blanket modules to the cavity flood coolant. A two-part analysis was conducted to ascertain if the cavity flood system can adequately cool the blanket modules above the targets, even when boiling is occurring on the outer surfaces of the target ladder rungs. The first part of the analysis was to model transient thermal conduction in the front top horizontal row 1 module (i.e. top horizontal modules nearest the incoming beam), while varying parametrically the convection heat transfer coefficient (htc) for the external surfaces exposed to the cavity flood flow. This part of the analysis demonstrated that the

  10. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer.

    PubMed

    Zhao, Qiang; Yue, Shengjie; Bilal, Muhammad; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-12-31

    Bacteria belonging to the genera Sphingomonas and Sphingobium are known for their ability to catabolize aromatic compounds. In this study, we analyzed the whole genome sequences of 26 strains in the genera Sphingomonas and Sphingobium to gain insight into dissemination of bioremediation capabilities, biodegradation potential, central pathways and genome plasticity. Phylogenetic analysis revealed that both Sphingomonas sp. strain BHC-A and Sphingomonas paucimobilis EPA505 should be placed in the genus Sphingobium. The bph and xyl gene cluster was found in 6 polycyclic aromatic hydrocarbons-degrading strains. Transposase and IS coding genes were found in the 6 gene clusters, suggesting the mobility of bph and xyl gene clusters. β-ketoadipate and homogentisate pathways were the main central pathways in Sphingomonas and Sphingobium strains. A large number of oxygenase coding genes were predicted in the 26 genomes, indicating a huge biodegradation potential of the Sphingomonas and Sphingobium strains. Horizontal gene transfer related genes and prophages were predicted in the analyzed strains, suggesting the ongoing evolution and shaping of the genomes. Analysis of the 26 genomes in this work contributes to the understanding of dispersion of bioremediation capabilities, bioremediation potential and genome plasticity in strains belonging to the genera Sphingomonas and Sphingobium. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Heat and Mass Transfer in a Falling Film Evaporator with Aqueous Lithium Bromide Solution

    NASA Astrophysics Data System (ADS)

    Olbricht, M.; Addy, J.; Luke, A.

    2016-09-01

    Horizontal tube bundles are often used as falling film evaporators in absorption chillers, especially for systems working at low pressure as H2O/LiBr. Experimental investigations are carried out in a falling film evaporator consisting of a horizontal tube bundle with eighty horizontal tubes installed in an absorption chiller because of a lack of consistent data for heat and mass transfer in the literature. The heat and mass transfer mechanisms and the flow pattern in the falling film are analysed and compared with correlations from literature. The deviations of the experimental data from those of the correlations are within a tolerance of 30%. These deviations may be explained by a change of the flow pattern at a lower Reynolds number than compared to the literature.

  12. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and interstation horizontal magnetic transfer function data: results from a synthetic case study

    NASA Astrophysics Data System (ADS)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-12-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low

  13. Multiple transfer standard for calibration and characterization of test setups for LED lamps and luminaires in industry

    NASA Astrophysics Data System (ADS)

    Sperling, A.; Meyer, M.; Pendsa, S.; Jordan, W.; Revtova, E.; Poikonen, T.; Renoux, D.; Blattner, P.

    2018-04-01

    Proper characterization of test setups used in industry for testing and traceable measurement of lighting devices by the substitution method is an important task. According to new standards for testing LED lamps, luminaires and modules, uncertainty budgets are requested because in many cases the properties of the device under test differ from the transfer standard used, which may cause significant errors, for example if a LED-based lamp is tested or calibrated in an integrating sphere which was calibrated with a tungsten lamp. This paper introduces a multiple transfer standard, which was designed not only to transfer a single calibration value (e.g. luminous flux) but also to characterize test setups used for LED measurements with additional provided and calibrated output features to enable the application of the new standards.

  14. Towards single embryo transfer? Modelling clinical outcomes of potential treatment choices using multiple data sources: predictive models and patient perspectives.

    PubMed

    Roberts, Sa; McGowan, L; Hirst, Wm; Brison, Dr; Vail, A; Lieberman, Ba

    2010-07-01

    In vitro fertilisation (IVF) treatments involve an egg retrieval process, fertilisation and culture of the resultant embryos in the laboratory, and the transfer of embryos back to the mother over one or more transfer cycles. The first transfer is usually of fresh embryos and the remainder may be cryopreserved for future frozen cycles. Most commonly in UK practice two embryos are transferred (double embryo transfer, DET). IVF techniques have led to an increase in the number of multiple births, carrying an increased risk of maternal and infant morbidity. The UK Human Fertilisation and Embryology Authority (HFEA) has adopted a multiple birth minimisation strategy. One way of achieving this would be by increased use of single embryo transfer (SET). To collate cohort data from treatment centres and the HFEA; to develop predictive models for live birth and twinning probabilities from fresh and frozen embryo transfers and predict outcomes from treatment scenarios; to understand patients' perspectives and use the modelling results to investigate the acceptability of twin reduction policies. A multidisciplinary approach was adopted, combining statistical modelling with qualitative exploration of patients' perspectives: interviews were conducted with 27 couples at various stages of IVF treatment at both UK NHS and private clinics; datasets were collated of over 90,000 patients from the HFEA registry and nearly 9000 patients from five clinics, both over the period 2000-5; models were developed to determine live birth and twin outcomes and predict the outcomes of policies for selecting patients for SET or DET in the fresh cycle following egg retrieval and fertilisation, and the predictions were used in simulations of treatments; two focus groups were convened, one NHS and one web based on a patient organisation's website, to present the results of the statistical analyses and explore potential treatment policies. The statistical analysis revealed no characteristics that

  15. Horizontal Gene Exchange in Environmental Microbiota

    PubMed Central

    Aminov, Rustam I.

    2011-01-01

    Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT. PMID:21845185

  16. Quantitative transfer of Salmonella Typhimurium LT2 during mechanical slicing of tomatoes as impacted by multiple processing variables.

    PubMed

    Wang, Haiqiang; Ryser, Elliot T

    2016-10-03

    Slicing of fresh produce can readily lead to pathogen cross-contamination with pre-sliced tomatoes having been linked to multistate outbreaks of salmonellosis in the United States. This study aimed to assess the impact of multiple processing variables on quantitative transfer of Salmonella during simulated commercial slicing of tomatoes. One red round tomato was inoculated with Salmonella Typhimurium LT2 at ~5logCFU/g and sliced using a manual or electric slicer, followed by 20 uninoculated tomatoes. Thereafter, the distribution of Salmonella on inoculated and uninoculated tomato slices was evaluated along with the transfer of Salmonella from different parts of the slicer. The impact of multiple processing variables including post-contamination hold time (0 and 30min), tomato wetness (dry and wet), processing room temperature (23, 10 and 4°C), slice thickness (0.48, 0.64, and 0.95cm), tomato variety (Torero, Rebelski, and Bigdena) and pre-wash treatment (no wash, tap water, and chlorine) was also investigated. The data were fitted to a two-parameter exponential decay model (Y=A⋅exp(BX)) with the percentage of Salmonella transferred to 20 uninoculated tomatoes then calculated. Salmonella populations on nine inoculated tomato slices ranged from 4.6±0.2 to 5.5±0.3logCFU/g, with higher populations on slices from the blossom and stem scar ends. However, Salmonella transfer to the previously uninoculated slices was similar (P>0.05), ranging from 2.1±0.2 to 3.4±0.2logCFU/g. Significantly fewer salmonellae transferred from the blade (3.4±0.4 log CFU, P≤0.05) than from the back and bottom plates (4.7±0.3 log CFU) or the whole manual slicer (5.2±0.2 log CFU) to the 20 uninoculated tomatoes. However, the blade was the primary contributor to Salmonella transfer for the electric slicer. Post-contamination hold time, processing temperature and tomato slice thickness did not significantly impact (P>0.05) the Salmonella transfer rate (parameter B) or the overall

  17. Selective pressure against horizontally acquired prokaryotic genes as a driving force of plastid evolution.

    PubMed

    Llorente, Briardo; de Souza, Flavio S J; Soto, Gabriela; Meyer, Cristian; Alonso, Guillermo D; Flawiá, Mirtha M; Bravo-Almonacid, Fernando; Ayub, Nicolás D; Rodríguez-Concepción, Manuel

    2016-01-11

    The plastid organelle comprises a high proportion of nucleus-encoded proteins that were acquired from different prokaryotic donors via independent horizontal gene transfers following its primary endosymbiotic origin. What forces drove the targeting of these alien proteins to the plastid remains an unresolved evolutionary question. To better understand this process we screened for suitable candidate proteins to recapitulate their prokaryote-to-eukaryote transition. Here we identify the ancient horizontal transfer of a bacterial polyphenol oxidase (PPO) gene to the nuclear genome of an early land plant ancestor and infer the possible mechanism behind the plastidial localization of the encoded enzyme. Arabidopsis plants expressing PPO versions either lacking or harbouring a plastid-targeting signal allowed examining fitness consequences associated with its subcellular localization. Markedly, a deleterious effect on plant growth was highly correlated with PPO activity only when producing the non-targeted enzyme, suggesting that selection favoured the fixation of plastid-targeted protein versions. Our results reveal a possible evolutionary mechanism of how selection against heterologous genes encoding cytosolic proteins contributed in incrementing plastid proteome complexity from non-endosymbiotic gene sources, a process that may also impact mitochondrial evolution.

  18. Evaluation of generalized heat-transfer coefficients in pilot AFBC units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.

    Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.

  19. Evaluation of generalized heat transfer coefficients in pilot AFBC units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grewal, N.S.

    Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.

  20. Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Arlid; Kohler, Christian; Dalehaug, Arvid

    2008-12-01

    was also compared, at selected locations on the frames. Small differences was found in the results from model to model. Finally, the effectiveness of the ISO cavity radiation algorithms was examined by comparing results from these algorithms to detailed radiation calculations (from both programs). Our results suggest that improvements in cavity heat transfer calculations can be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that incorporation of these strategies may be more important for improving the accuracy of results than the use of CFD modeling for horizontal cavities.« less

  1. [Gene transfer agent--a novel and widespread occurrence mechanism of gene exchange in ocean-a review].

    PubMed

    Cai, Haiyuan

    2012-01-01

    Gene Transfer Agent (GTA) particles are released by bacteria and resemble small, tailed bacteriophages. GTA particles contain small, random pieces of host DNA rather than GTA structural genes or a phage genome. Gene transfer mediated by GTA is efficient and species specific based on knowledge of currently best studied GTAs produced by 4 anaerobes. Genome sequencing projects have revealed a remarkable distribution of GTA gene clusters in the genomes of marine bacterioplankton, implying GTA may be an important mechanism for horizontal gene transfer in ocean. On basis of characterization of the 4 best studied GTAs, this review described GTAs released by numerically dominant marine bacteria, discussed their properties that were important for horizontal gene transfer in ocean, and gave future perspectives to advance GTA research.

  2. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.

    PubMed

    Leipe, Detlef D; Koonin, Eugene V; Aravind, L

    2004-10-08

    -forming repeats, such as WD40 and TPR, and enzymatic domains involved in signal transduction, including adenylate cyclases and kinases. By analogy to the AAA+ ATPases, it can be predicted that STAND NTPases use the C-terminal helical bundle as a "lever" to transmit the conformational changes brought about by NTP hydrolysis to effector domains. STAND NTPases represent a novel paradigm in signal transduction, whereby adaptor, regulatory switch, scaffolding, and, in some cases, signal-generating moieties are combined into a single polypeptide. The STAND class consists of 14 distinct families, and the evolutionary history of most of these families is riddled with dramatic instances of lineage-specific expansion and apparent horizontal gene transfer. The STAND NTPases are most abundant in developmentally and organizationally complex prokaryotes and eukaryotes. Transfer of genes for STAND NTPases from bacteria to eukaryotes on several occasions might have played a significant role in the evolution of eukaryotic signaling systems.

  3. Sequence and Structure Analysis of Distantly-Related Viruses Reveals Extensive Gene Transfer between Viruses and Hosts and among Viruses

    PubMed Central

    Caprari, Silvia; Metzler, Saskia; Lengauer, Thomas; Kalinina, Olga V.

    2015-01-01

    The origin and evolution of viruses is a subject of ongoing debate. In this study, we provide a full account of the evolutionary relationships between proteins of significant sequence and structural similarity found in viruses that belong to different classes according to the Baltimore classification. We show that such proteins can be found in viruses from all Baltimore classes. For protein families that include these proteins, we observe two patterns of the taxonomic spread. In the first pattern, they can be found in a large number of viruses from all implicated Baltimore classes. In the other pattern, the instances of the corresponding protein in species from each Baltimore class are restricted to a few compact clades. Proteins with the first pattern of distribution are products of so-called viral hallmark genes reported previously. Additionally, this pattern is displayed by the envelope glycoproteins from Flaviviridae and Bunyaviridae and helicases of superfamilies 1 and 2 that have homologs in cellular organisms. The second pattern can often be explained by horizontal gene transfer from the host or between viruses, an example being Orthomyxoviridae and Coronaviridae hemagglutinin esterases. Another facet of horizontal gene transfer comprises multiple independent introduction events of genes from cellular organisms into otherwise unrelated viruses. PMID:26492264

  4. Condensation of binary mixtures on horizontal tubes

    NASA Astrophysics Data System (ADS)

    Büchner, A.; Reif, A.; Rehfeldt, S.; Klein, H.

    2017-12-01

    The two most common models to describe the condensation of binary mixtures are the equilibrium model by Silver (Trans Inst Chem Eng 25:30-42, 1947) and the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937), which is stated by Webb et al. (Int J Heat Mass Transf 39:3147-3156, 1996) as more accurate. The film model describes the outer heat transfer coefficient by subdividing it into two separate resistances against the heat transfer. The resistance of the liquid condensate film on the tube can be calculated with equations for the condensation of pure substances for the analogous flow pattern and geometry using the property data of the mixture. The resistance in the gas phase can be described by a thermodynamic parameter Z and the single phase heat transfer coefficient α G . In this work measurements for condensation of the binary mixtures n-pentane/iso-octane and iso-propanol/water on horizontal tubes for free convection are carried out. The obtained results are compared with the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937). The comparison shows a rather big deviation between the theoretical model and the experimental results. To improve the prediction quality an own model based on dimensionless numbers is proposed, which describes the experimental results of this work significantly better than the film model.

  5. Horizontal electric fields from lightning return strokes

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.

    1988-01-01

    An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.

  6. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  7. Chalk play tops Gulf Coast horizontal scene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-18

    This paper reports on horizontal drilling in the Cretaceous Austin chalk of Texas which dominates news of U.S. Gulf Coast horizontal action. In spite of a significant decline in horizontal drilling in Texas-the Texas Railroad Commission reported a 15 unit decline in the number of permits to drill horizontal wells during the third quarter-operators in East and South Texas continue to expand plays and develop new ones. The Cretaceous Bruda may be gaining some respect as a horizontal target in Texas. Elsewhere on the Gulf Coast, Mississippi soon will see more action on the horizontal drilling front.

  8. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy

    NASA Astrophysics Data System (ADS)

    Levashova, N. T.; Mukhartova, Yu V.

    2018-01-01

    A three-dimensional (3D) model of solar radiation transfer in a non-uniform plant canopy was developed. It is based on radiative transfer equations and a so-called turbid medium assumption. The model takes into account the multiple scattering contributions of plant elements in radiation fluxes. These enable more accurate descriptions of plant canopy reflectance and transmission in different spectral bands. The model was applied to assess the effects of plant canopy heterogeneity on solar radiation transmission and to quantify the difference in a radiation transfer between photosynthetically active radiation PAR (=0.39-0.72 μm) and near infrared solar radiation NIR (Δλ = 0.72-3.00 μm). Comparisons of the radiative transfer fluxes simulated by the 3D model within a plant canopy consisted of sparsely planted fruit trees (plant area index, PAI - 0.96 m2 m-2) with radiation fluxes simulated by a one-dimensional (1D) approach, assumed horizontal homogeneity of plant and leaf area distributions, showed that, for sunny weather conditions with a high solar elevation angle, an application of a simplified 1D approach can result in an underestimation of transmitted solar radiation by about 22% for PAR, and by about 26% for NIR.

  9. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination

  10. Noncognitive Predictors of Academic Performance and Persistence in Horizontal and Vertical Transfer Students by Academic Level

    ERIC Educational Resources Information Center

    Davis, Christopher A.

    2010-01-01

    College students increasingly are transferring among institutions of higher education in pursuit of their educational goals. The existing research on transfer students, however, does not adequately explore the unique characteristics of this heterogeneous population. The literature on transfer students suggests that transfer students are at-risk…

  11. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR?

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2016-06-01

    Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both 13C and 15N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.

  12. Portable Horizontal-Drilling And Positioning Device

    NASA Technical Reports Server (NTRS)

    Smigocki, Edmund; Johnson, Clarence

    1988-01-01

    Portable horizontal-drilling and positioning device, constructed mainly of off-the-shelf components, accurately drills horizontal small holes in irregularly shaped objects. Holes precisely placed and drilled in objects that cannot be moved to shop area. New device provides three axes of movement while maintaining horizontal drilling.

  13. Horizontal exploitation of the Upper Cretaceous Austin Chalk of south Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, R.; Hand, L.; Dickerson, D.

    1990-05-01

    Horizontal drilling in the fractured Austin Chalk of south Texas has proven to be a viable technology for exploiting reserve opportunities in mature trends as well as in frontier areas. To date, the results of an interdisciplinary approach to the regional analysis of structure and stress regimes combined with studies of the depositional characteristics of the Austin Chalk and Eagleford Shale have been a success. Productive characteristics of the Austin Chalk indicate the influence of regional fractures on the preferential flow direction and partitioning in the Pearsall field area of the trend. Well bore orientation and inclination are designed suchmore » that multiple fracture swarms at several stratigraphic horizons are intersected with a single horizontal well bore. As a result of the greater frequency of fracture contacts with the well bore, there is a significant increase in the ultimate recovery of hydrocarbons in place. Conventional vertical drilling techniques are frequently ineffective at encountering these laterally partitioned fracture sets, resulting in lower volumes of recoverable hydrocarbons. Additionally, horizontal well bores may increase ultimate recovery of hydrocarbons by lowering the pressure gradient to the well bore and maximizing the reservoir energy.« less

  14. Optimal coordination of maximal-effort horizontal and vertical jump motions – a computer simulation study

    PubMed Central

    Nagano, Akinori; Komura, Taku; Fukashiro, Senshi

    2007-01-01

    Background The purpose of this study was to investigate the coordination strategy of maximal-effort horizontal jumping in comparison with vertical jumping, using the methodology of computer simulation. Methods A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Thirty-two Hill-type lower limb muscles were attached to the model. The excitation-contraction dynamics of the contractile element, the tissues around the joints to limit the joint range of motion, as well as the foot-ground interaction were implemented. Simulations were initiated from an identical standing posture for both motions. Optimal pattern of the activation input signal was searched through numerical optimization. For the horizontal jumping, the goal was to maximize the horizontal distance traveled by the body's center of mass. For the vertical jumping, the goal was to maximize the height reached by the body's center of mass. Results As a result, it was found that the hip joint was utilized more vigorously in the horizontal jumping than in the vertical jumping. The muscles that have a function of joint flexion such as the m. iliopsoas, m. rectus femoris and m. tibialis anterior were activated to a greater level during the countermovement in the horizontal jumping with an effect of moving the body's center of mass in the forward direction. Muscular work was transferred to the mechanical energy of the body's center of mass more effectively in the horizontal jump, which resulted in a greater energy gain of the body's center of mass throughout the motion. Conclusion These differences in the optimal coordination strategy seem to be caused from the requirement that the body's center of mass needs to be located above the feet in a vertical jumping, whereas this requirement is not so strict in a horizontal jumping. PMID:17543118

  15. Transferred interbacterial antagonism genes augment eukaryotic innate immune function.

    PubMed

    Chou, Seemay; Daugherty, Matthew D; Peterson, S Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L; Fritz-Laylin, Lillian K; Ferrin, Michael A; Harding, Brittany N; Jacobs-Wagner, Christine; Yang, X Frank; Vollmer, Waldemar; Malik, Harmit S; Mougous, Joseph D

    2015-02-05

    Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems.

  16. Genomic Data Quality Impacts Automated Detection of Lateral Gene Transfer in Fungi

    PubMed Central

    Dupont, Pierre-Yves; Cox, Murray P.

    2017-01-01

    Lateral gene transfer (LGT, also known as horizontal gene transfer), an atypical mechanism of transferring genes between species, has almost become the default explanation for genes that display an unexpected composition or phylogeny. Numerous methods of detecting LGT events all rely on two fundamental strategies: primary structure composition or gene tree/species tree comparisons. Discouragingly, the results of these different approaches rarely coincide. With the wealth of genome data now available, detection of laterally transferred genes is increasingly being attempted in large uncurated eukaryotic datasets. However, detection methods depend greatly on the quality of the underlying genomic data, which are typically complex for eukaryotes. Furthermore, given the automated nature of genomic data collection, it is typically impractical to manually verify all protein or gene models, orthology predictions, and multiple sequence alignments, requiring researchers to accept a substantial margin of error in their datasets. Using a test case comprising plant-associated genomes across the fungal kingdom, this study reveals that composition- and phylogeny-based methods have little statistical power to detect laterally transferred genes. In particular, phylogenetic methods reveal extreme levels of topological variation in fungal gene trees, the vast majority of which show departures from the canonical species tree. Therefore, it is inherently challenging to detect LGT events in typical eukaryotic genomes. This finding is in striking contrast to the large number of claims for laterally transferred genes in eukaryotic species that routinely appear in the literature, and questions how many of these proposed examples are statistically well supported. PMID:28235827

  17. Case Report: 35-Year Follow-up for Nonvascularized Toe Phalangeal Transfer for Multiple Digit Symbrachydactyly.

    PubMed

    Naran, Sanjay; Imbriglia, Joseph E

    2016-12-01

    Background: A case is discussed in which a young girl was born with symbrachydactyly of multiple digits in whom nonvascularized proximal toe phalanges were transferred to the aphalangic digits at the age of four. At 39 years of age, she presented incidentally to our clinic and was observed to have a very functional hand with mobile metacarpophalangeal joints in all reconstructed digits. Methods: We present a case report which is discussed in the context of long-term follow-up, and phalangeal growth in the absence of distraction, and a review of the current literature in regards to outcomes for this modality of treatment. Results: We document growth of the transplanted phalanges, despite surgery occurring after the reported optimum age of before 18 months, and the patient not undergoing distraction. The patient reported no donor site morbidity in regards to function or psychosocial impact. Furthermore, we observed active function at the metacarpophalangeal joints of all operated digits. Conclusions: We report the longest follow-up (35 years) following nonvascularized proximal toe phalangeal transfer for short finger type symbrachydactyly. We highlight the long-term functional outcome of nonvascularized toe phalangeal transfers, and present an overview of the current outcome literature for this type of procedure, advocating that nonvascularized toe phalangeal transfers remain a viable treatment option for select cases of symbrachydactyly.

  18. Near-term Horizontal Launch for Flexible Operations: Results of the DARPA/NASA Horizontal Launch Study

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Wilhite, Alan W.; Schaffer, Mark G.; Huebner, Lawrence D.; Voland, Randall T.; Voracek, David F.

    2012-01-01

    Horizontal launch has been investigated for 60 years by over 130 different studies. During this time only one concept, Pegasus, has ever been in operation. The attractiveness of horizontal launch is the capability to provide a "mobile launch pad" that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and provide precise placement for orbital intercept, rendezvous, or reconnaissance. A jointly sponsored study by DARPA and NASA, completed in 2011, explored the trade space of horizontal launch system concepts which included an exhaustive literature review of the past 70 years. The Horizontal Launch Study identified potential near- and mid-term concepts capable of delivering 15,000 lb payloads to a 28.5 due East inclination, 100 nautical-mile low-Earth orbit. Results are presented for a range of near-term system concepts selected for their availability and relatively low design, development, test, and evaluation (DDT&E) costs. This study identified a viable low-cost development path forward to make a robust and resilient horizontal launch capability a reality.

  19. Evolution and Multifarious Horizontal Transfer of an Alternative Biosynthetic Pathway for the Alternative Polyamine sym-Homospermidine*♦

    PubMed Central

    Shaw, Frances L.; Elliott, Katherine A.; Kinch, Lisa N.; Fuell, Christine; Phillips, Margaret A.; Michael, Anthony J.

    2010-01-01

    Polyamines are small flexible organic polycations found in almost all cells. They likely existed in the last universal common ancestor of all extant life, and yet relatively little is understood about their biological function, especially in bacteria and archaea. Unlike eukaryotes, where the predominant polyamine is spermidine, bacteria may contain instead an alternative polyamine, sym-homospermidine. We demonstrate that homospermidine synthase (HSS) has evolved vertically, primarily in the α-Proteobacteria, but enzymatically active, diverse HSS orthologues have spread by horizontal gene transfer to other bacteria, bacteriophage, archaea, eukaryotes, and viruses. By expressing diverse HSS orthologues in Escherichia coli, we demonstrate in vivo the production of co-products diaminopropane and N1-aminobutylcadaverine, in addition to sym-homospermidine. We show that sym-homospermidine is required for normal growth of the α-proteobacterium Rhizobium leguminosarum. However, sym-homospermidine can be replaced, for growth restoration, by the structural analogues spermidine and sym-norspermidine, suggesting that the symmetrical or unsymmetrical form and carbon backbone length are not critical for polyamine function in growth. We found that the HSS enzyme evolved from the alternative spermidine biosynthetic pathway enzyme carboxyspermidine dehydrogenase. The structure of HSS is related to lysine metabolic enzymes, and HSS and carboxyspermidine dehydrogenase evolved from the aspartate family of pathways. Finally, we show that other bacterial phyla such as Cyanobacteria and some α-Proteobacteria synthesize sym-homospermidine by an HSS-independent pathway, very probably based on deoxyhypusine synthase orthologues, similar to the alternative homospermidine synthase found in some plants. Thus, bacteria can contain alternative biosynthetic pathways for both spermidine and sym-norspermidine and distinct alternative pathways for sym-homospermidine. PMID:20194510

  20. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer

    PubMed Central

    D’Addabbo, Pietro; Caizzi, Ruggiero

    2016-01-01

    Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology. PMID:27213270

  1. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer.

    PubMed

    Palazzo, Antonio; Lovero, Domenica; D'Addabbo, Pietro; Caizzi, Ruggiero; Marsano, René Massimiliano

    2016-01-01

    Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology.

  2. Gene Transfers Shaped the Evolution of De Novo NAD+ Biosynthesis in Eukaryotes

    PubMed Central

    Ternes, Chad M.; Schönknecht, Gerald

    2014-01-01

    NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983

  3. Chromosomal transfers in mycoplasmas: when minimal genomes go mobile.

    PubMed

    Dordet-Frisoni, Emilie; Sagné, Eveline; Baranowski, Eric; Breton, Marc; Nouvel, Laurent Xavier; Blanchard, Alain; Marenda, Marc Serge; Tardy, Florence; Sirand-Pugnet, Pascal; Citti, Christine

    2014-11-25

    Horizontal gene transfer (HGT) is a main driving force of bacterial evolution and innovation. This phenomenon was long thought to be marginal in mycoplasmas, a large group of self-replicating bacteria characterized by minute genomes as a result of successive gene losses during evolution. Recent comparative genomic analyses challenged this paradigm, but the occurrence of chromosomal exchanges had never been formally addressed in mycoplasmas. Here, we demonstrated the conjugal transfer of large chromosomal regions within and among ruminant mycoplasma species, with the incorporation of the incoming DNA occurring by homologous recombination into the recipient chromosome. By combining classical mating experiments with high-throughput next-generation sequencing, we documented the transfer of almost every position of the mycoplasma chromosome. Mycoplasma conjugation relies on the occurrence of an integrative conjugative element (ICE) in at least one parent cell. While ICE propagates horizontally from ICE-positive to ICE-negative cells, chromosomal transfers (CTs) occurred in the opposite direction, from ICE-negative to ICE-positive cells, independently of ICE movement. These findings challenged the classical mechanisms proposed for other bacteria in which conjugative CTs are driven by conjugative elements, bringing into the spotlight a new means for rapid mycoplasma innovation. Overall, they radically change our current views concerning the evolution of mycoplasmas, with particularly far-reaching implications given that over 50 species are human or animal pathogens. Horizontal gene transfers (HGT) shape bacterial genomes and are key contributors to microbial diversity and innovation. One main mechanism involves conjugation, a process that allows the simultaneous transfer of significant amounts of DNA upon cell-to-cell contact. Recognizing and deciphering conjugal mechanisms are thus essential in understanding the impact of gene flux on bacterial evolution. We addressed

  4. Distribution of tetracycline resistance genes in anaerobic treatment of waste sludge: The role of pH in regulating tetracycline resistant bacteria and horizontal gene transfer.

    PubMed

    Huang, Haining; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Wan, Rui; Yang, Shouye

    2016-10-01

    Although pH value has been widely regarded as an important factor that affects resource recovery of waste sludge, the potential influence of diverse pHs on the distribution of tetracycline resistance genes (TRGs) during sludge anaerobic treatment is largely unknown. Here we reported that in the range of pH 4-10, 0.58-1.18 log unit increase of target TRGs was observed at pH 4, compared with that at pH 7, while 0.70-1.31 log unit further removal were obtained at pH 10. Mechanism study revealed that varied pHs not only altered the community structures of tetracycline resistant bacteria (TRB), but also changed their relative abundances, benefitting the propagation (acidic pHs) or attenuation (alkaline pHs) of TRB. Further investigation indicated that the amount and gene-possessing abilities of key genetic vectors for horizontal TRGs transfer were greatly promoted at acidic pHs but restricted under alkaline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi.

    PubMed

    Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Clavicipitaceae is a fungal group that comprises species that closely interact with plants as pathogens, parasites or symbionts. A key factor in these interactions is the ability of these fungi to synthesize toxic alkaloid compounds that contribute to the protection of the plant host against herbivores. Some of these compounds such as ergot alkaloids are toxic to humans and have caused important epidemics throughout history. The gene clusters encoding the proteins responsible for the synthesis of ergot alkaloids and lolines in Clavicipitaceae have been elucidated. Notably, homologs to these gene clusters can be found in distantly related species such as Aspergillus fumigatus and Penicillium expansum, which diverged from Clavicipitaceae more than 400 million years ago. We here use a phylogenetic approach to analyze the evolution of these gene clusters. We found that the gene clusters conferring the ability to synthesize ergot alkaloids and loline emerged first in Eurotiomycetes and were then likely transferred horizontally to Clavicipitaceae. Horizontal gene transfer is known to play a role in shaping the distribution of secondary metabolism clusters across distantly related fungal species. We propose that HGT events have played an important role in the capability of Clavicipitaceae to produce two key secondary metabolites that have enhanced the ability of these species to protect their plant hosts, therefore favoring their interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Nonlinear flow model of multiple fractured horizontal wells with stimulated reservoir volume including the quadratic gradient term

    NASA Astrophysics Data System (ADS)

    Ren, Junjie; Guo, Ping

    2017-11-01

    The real fluid flow in porous media is consistent with the mass conservation which can be described by the nonlinear governing equation including the quadratic gradient term (QGT). However, most of the flow models have been established by ignoring the QGT and little work has been conducted to incorporate the QGT into the flow model of the multiple fractured horizontal (MFH) well with stimulated reservoir volume (SRV). This paper first establishes a semi-analytical model of an MFH well with SRV including the QGT. Introducing the transformed pressure and flow-rate function, the nonlinear model of a point source in a composite system including the QGT is linearized. Then the Laplace transform, principle of superposition, numerical discrete method, Gaussian elimination method and Stehfest numerical inversion are employed to establish and solve the seepage model of the MFH well with SRV. Type curves are plotted and the effects of relevant parameters are analyzed. It is found that the nonlinear effect caused by the QGT can increase the flow capacity of fluid flow and influence the transient pressure positively. The relevant parameters not only have an effect on the type curve but also affect the error in the pressure calculated by the conventional linear model. The proposed model, which is consistent with the mass conservation, reflects the nonlinear process of the real fluid flow, and thus it can be used to obtain more accurate transient pressure of an MFH well with SRV.

  7. Horizontal and vertical dimensions of individualism-collectivism: a comparison of African Americans and European Americans.

    PubMed

    Komarraju, Meera; Cokley, Kevin O

    2008-10-01

    The current study examined ethnic differences in horizontal and vertical dimensions of individualism and collectivism among 96 African American and 149 European American college students. Participants completed the 32-item Singelis et al. (1995) Individualism/Collectivism Scale. Multivariate analyses of variance results yielded a main effect for ethnicity, with African Americans being significantly higher on horizontal individualism and European Americans being higher on horizontal collectivism and vertical individualism. A moderated multiple regression analysis indicated that ethnicity significantly moderated the relationship between individualism and collectivism. Individualism and collectivism were significantly and positively associated among African Americans, but not associated among European Americans. In addition, collectivism was related to grade point average for African Americans but not for European Americans. Contrary to the prevailing view of individualism-collectivism being unipolar, orthogonal dimensions, results provide support for individualism-collectivism to be considered as unipolar, related dimensions for African Americans.

  8. Horizontal Advanced Tensiometer

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  9. Natural convection heat transfer in water near its density maximum

    NASA Astrophysics Data System (ADS)

    Yen, Yin-Chao

    1990-12-01

    This monograph reviews and summarizes to date the experimental and analytical results on the effect of water density near its maximum convection, transient flow and temperature structure characteristics: (1) in a vertical enclosure; (2) in a vertical annulus; (3) between horizontal concentric cylinders; (4) in a square enclosure; (5) in a rectangular enclosure; (6) in a horizontal layer; (7) in a circular confined melt layer; and (8) in bulk water during melting. In a layer of water containing a maximum density temperature of 4 C, the onset of convection (the critical number) is found not to be a constant value as in the classical normal fluid but one that varies with the imposed thermal and hydrodynamic boundaries. In horizontal layers, a nearly constant temperature zone forms and continuously expands between the warm and cold boundaries. A minimum heat transfer exists in most of the geometries studied and, in most cases, can be expressed in terms of a density distribution parameter. The effect of this parameter on a cells formation, disappearance and transient structure is discussed, and the effect of split boundary flow on heat transfer is presented.

  10. Assessment of the effects of horizontal grid resolution on long ...

    EPA Pesticide Factsheets

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.

  11. Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Hamida, M. B.; Charrada, K.

    2012-06-15

    This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

  12. Predictive capabilities of series solutions for laminar free convection boundary layer heat transfer

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Chao, B. T.

    1978-01-01

    Various types of series solutions for predicting laminar, free-convection boundary-layer heat transfer over both isothermal and nonisothermal boundaries are reviewed. The methods include finite difference, Merk series, Blasius series, and Goertler series. Comparative results are presented for heat transfer over an isothermal, horizontal, elliptical cylinder in both slender and blunt configurations.

  13. Horizontal steam generator thermal-hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubra, O.; Doubek, M.

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less

  14. IVF policy and global/local politics: the making of multiple-embryo transfer regulation in Taiwan.

    PubMed

    Wu, Chia-Ling

    2012-08-01

    This paper analyzes the regulatory trajectory of multiple-embryo transfer in in-vitro fertilization (IVF) in Taiwan. Taking a latecomer to policy-making as the case, it argues the importance of conceptualizing the global/local dynamics in policy-making for assisted reproductive technology (ART). The conceptual framework is built upon recent literature on standardization, science policy, and global assemblage. I propose three interrelated features that reveal the "global in the local": (1) the power relationships among stakeholders, (2) the selected global form that involved actors drew upon, and (3) the re-contextualized assemblage made of local networks. Data included archives, interviews, and participant observation. In different historical periods the specific stakeholders selected different preferred global forms for Taiwan, such as Britain's code of ethics in the 1990s, the American guideline in the early 2000s, and the European trend in the mid-2000s. The global is heterogeneous. The failure to transfer the British regulation, the revision of the American guideline by adding one more embryo than it specified, and the gap between the cited European trend and the "no more than four" in Taiwan's 2007 Human Reproduction Law all show that the local network further transforms the selected global form, confining it to rhetoric only or tailoring it to local needs. Overall, Taiwanese practitioners successfully maintained their medical autonomy to build a 'flexible standardization'. Multiple pregnancy remains the most common health risk of IVF in Taiwan. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    PubMed

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  16. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  17. Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds

    NASA Astrophysics Data System (ADS)

    Samaha, Mohamed A.; Kahwaji, Ghalib Y.

    2017-11-01

    Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.

  18. Horizontal semi-dry electroblotting for the detection of the low density lipoprotein receptor in solubilized liver membranes.

    PubMed

    Himber, J

    1993-08-01

    A high efficiency transfer of the low density lipoprotein (LDL) receptor proteins from polyacrylamide slab gel onto immobilizing nitrocellulose membranes using the horizontal semi-dry electrophoretic system is described. The transfer of the LDL receptors from solubilized rat liver microsomes was performed between two graphite plate electrodes in a continuous buffer system containing methanol and sodium dodecyl sulfate. The protein transfer was achieved in only 150 min at a constant current of 0.8 mA/cm2 at room temperature with very low Joule heat development. The homogeneous electric field yield between the two electrode plates produced a satisfactory transfer of the LDL-receptor protein band in spite of its high molecular weight, and only few protein traces remained in the polyacrylamide gel after blotting. This improved method allows a rapid and quantitative transfer of the LDL receptors without protein denaturation, since the specific binding activity of the blotted receptor is retained as demonstrated by ligand-blotting and immunoblotting.

  19. Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel; Liu, Heping

    2017-02-01

    A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL˜(νɛ)1/4, where ν is the kinematic water viscosity and ɛ is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.

  20. Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale.

    PubMed

    Garland, Ellen C; Goldizen, Anne W; Rekdahl, Melinda L; Constantine, Rochelle; Garrigue, Claire; Hauser, Nan Daeschler; Poole, M Michael; Robbins, Jooke; Noad, Michael J

    2011-04-26

    Cultural transmission, the social learning of information or behaviors from conspecifics, is believed to occur in a number of groups of animals, including primates, cetaceans, and birds. Cultural traits can be passed vertically (from parents to offspring), obliquely (from the previous generation via a nonparent model to younger individuals), or horizontally (between unrelated individuals from similar age classes or within generations). Male humpback whales (Megaptera novaeangliae) have a highly stereotyped, repetitive, and progressively evolving vocal sexual display or "song" that functions in sexual selection (through mate attraction and/or male social sorting). All males within a population conform to the current version of the display (song type), and similarities may exist among the songs of populations within an ocean basin. Here we present a striking pattern of horizontal transmission: multiple song types spread rapidly and repeatedly in a unidirectional manner, like cultural ripples, eastward through the populations in the western and central South Pacific over an 11-year period. This is the first documentation of a repeated, dynamic cultural change occurring across multiple populations at such a large geographic scale. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Involvement of pigment globules containing multiple melanosomes in the transfer of melanosomes from melanocytes to keratinocytes

    PubMed Central

    Niki, Yoko; Yoshida, Masaki; Ito, Masaaki; Akiyama, Kaoru; Kim, Jin-Hwa; Yoon, Tae-Jin; Matsui, Mary S; Yarosh, Daniel B; Ichihashi, Masamitsu

    2011-01-01

    The mechanism of melanosome transfer from melanocytes to keratinocytes has not been fully clarified. We now show a route of melanosome transfer using co-cultures of normal human melanocytes and keratinocytes. Substantial levels of melanosome transfer were elicited in co-cultures of melanocytes and keratinocytes separated by a microporous membrane filter. The melanocyte dendrites penetrated into the keratinocyte layer through the filter and many pigment globules were observed in keratinocytes. Electron microscopic observations revealed that melanosomes incorporated in keratinocytes were packed in clusters enclosed by a double membrane. Numerous pigment globules budded off from melanocyte dendrites and were released into the culture medium. Those pigment globules were filled with multiple melanosomes and a few mitochondria but no nuclei. When those globules were added to the culture medium of keratinocytes, they were incorporated and showed double membrane-enclosed melano-phagolysosomes consistent with the structures obtained from the co-culture system. In contrast, when individual naked melanosomes isolated from melanocytes were added to keratinocytes, they were also phagocytosed by keratinocytes but were enclosed by a single membrane in a manner distinct from the co-culture system. These results suggest a novel mechanism of melanosome transfer, wherein melanosomes are packed in membrane globules that bud off from melanocyte dendrites, where they are released into the extracellular space and then phagocytosed by keratinocytes. PMID:21686100

  2. System for Estimating Horizontal Velocity During Descent

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Cheng, Yang; Wilson, Reg; Goguen, Jay; Martin, Alejandro San; Leger, Chris; Matthies, Larry

    2007-01-01

    The descent image motion estimation system (DIMES) is a system of hardware and software, designed for original use in estimating the horizontal velocity of a spacecraft descending toward a landing on Mars. The estimated horizontal velocity is used in generating rocket-firing commands to reduce the horizontal velocity as part of an overall control scheme to minimize the landing impact. DIMES can also be used for estimating the horizontal velocity of a remotely controlled or autonomous aircraft for purposes of navigation and control.

  3. A study of natural circulation in the evaporator of a horizontal-tube heat recovery steam generator

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Pleshanov, K. A.; Sterkhov, K. V.

    2014-07-01

    Results obtained from investigations of stable natural circulation in an intricate circulation circuit with a horizontal layout of the tubes of evaporating surface having a negative useful head are presented. The possibility of making a shift from using multiple forced circulation organized by means of a circulation pump to natural circulation in vertical heat recovery steam generator is estimated. Criteria for characterizing the performance reliability and efficiency of a horizontal evaporator with negative useful head are proposed. The influence of various design solutions on circulation robustness is considered. With due regard of the optimal parameters, the most efficient and least costly methods are proposed for achieving more stable circulation in a vertical heat recovery steam generator when a shift is made from multiple forced to natural circulation. A procedure for calculating the circulation parameters and an algorithm for checking evaporator performance reliability are developed, and recommendations for the design of heat recovery steam generator, nonheated parts of natural circulation circuit, and evaporating surface are suggested.

  4. Experimental Study on Cooling Heat Transfer of Supercritical Carbon Dioxide Inside Horizontal Micro-Fin Tubes

    NASA Astrophysics Data System (ADS)

    Kuwahara, Ken; Higashiiu, Shinya; Ito, Daisuke; Koyama, Shigeru

    This paper deals with the experimental study on cooling heat transfer of supercritical carbon dioxide inside micro-fin tubes. The geometrical parameters in micro-fin tubes used in the present study are 6.02 mm in outer diameter, 4.76 mm to 5.11 mm in average inner diameter, 0.15 mm to 0.24 mm in fin height, 5 to 25 in helix angle, 46 to 52 in number of fins and 1.4 to 2.3 in area expansion ratio. Heat transfer coefficients were measured at 8-10 MPa in pressure, 360-690 kg/(m2•s) in mass velocity and 20-75 °C in CO2 temperature. The measured heat transfer coefficients of micro-fin tubes were 1.4 to 2 times higher than those of the smooth tube having 4.42 in inner diameter. The predicted heat transfer coefficients using the correlation equation, which was developed for single-phase turbulent fluid flow inside micro-fin-tubes, showed large deviations to the measured values. The new correlation to predict cooling heat transfer coefficient of supercritical carbon dioxide inside micro-fin tubes was developed taking into account the shape of fins based on experimental data empirically. This correlation equation agreed within ±20% of almost all of the experimental data.

  5. Integrated hydraulic booster/tool string technology for unfreezing of stuck downhole strings in horizontal wells

    NASA Astrophysics Data System (ADS)

    Tian, Q. Z.

    2017-12-01

    It is common to use a jarring tool to unfreeze stuck downhole string. However, in a horizontal well, influenced by the friction caused by the deviated section, jarring effect is poor; on the other hand, the forcing point can be located in the horizontal section by a hydraulic booster and the friction can be reduced, but it is time-consuming and easy to break downhole string using a large-tonnage and constant pull force. A hydraulic booster - jar tool string has been developed for unfreezing operation in horizontal wells. The technical solution involves three elements: a two-stage parallel spring cylinder structure for increasing the energy storage capacity of spring accelerators; multiple groups of spring accelerators connected in series to increase the working stroke; a hydraulic booster intensifying jarring force. The integrated unfreezing tool string based on these three elements can effectively overcome the friction caused by a deviated borehole, and thus unfreeze a stuck string with the interaction of the hydraulic booster and the mechanical jar which form an alternatively dynamic load. Experimental results show that the jarring performance parameters of the hydraulic booster-jar unfreezing tool string for the horizontal wells are in accordance with original design requirements. Then field technical parameters were developed based on numerical simulation and experimental data. Field application shows that the hydraulic booster-jar unfreezing tool string is effective to free stuck downhole tools in a horizontal well, and it reduces hook load by 80% and lessens the requirement of workover equipment. This provides a new technology to unfreeze stuck downhole string in a horizontal well.

  6. Large, horizontal-axis wind turbines

    NASA Technical Reports Server (NTRS)

    Linscott, B. S.; Perkins, P.; Dennett, J. T.

    1984-01-01

    Development of the technology for safe, reliable, environmentally acceptable large wind turbines that have the potential to generate a significant amount of electricity at costs competitive with conventional electric generating systems are presented. In addition, these large wind turbines must be fully compatible with electric utility operations and interface requirements. There are several ongoing large wind system development projects and applied research efforts directed toward meeting the technology requirements for utility applications. Detailed information on these projects is provided. The Mod-O research facility and current applied research effort in aerodynamics, structural dynamics and aeroelasticity, composite and hybrid composite materials, and multiple system interaction are described. A chronology of component research and technology development for large, horizontal axis wind turbines is presented. Wind characteristics, wind turbine economics, and the impact of wind turbines on the environment are reported. The need for continued wind turbine research and technology development is explored. Over 40 references are sited and a bibliography is included.

  7. Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea

    PubMed Central

    Brochier-Armanet, Céline; Deschamps, Philippe; López-García, Purificación; Zivanovic, Yvan; Rodríguez-Valera, Francisco; Moreira, David

    2011-01-01

    The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote Candidatus Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient

  8. Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes

    PubMed Central

    2011-01-01

    Experimental investigation of heat transfer during pool boiling of two nanofluids, i.e., water-Al2O3 and water-Cu has been carried out. Nanoparticles were tested at the concentration of 0.01%, 0.1%, and 1% by weight. The horizontal smooth copper and stainless steel tubes having 10 mm OD and 0.6 mm wall thickness formed test heater. The experiments have been performed to establish the influence of nanofluids concentration as well as tube surface material on heat transfer characteristics at atmospheric pressure. The results indicate that independent of concentration nanoparticle material (Al2O3 and Cu) has almost no influence on heat transfer coefficient while boiling of water-Al2O3 or water-Cu nanofluids on smooth copper tube. It seems that heater material did not affect the boiling heat transfer in 0.1 wt.% water-Cu nanofluid, nevertheless independent of concentration, distinctly higher heat transfer coefficient was recorded for stainless steel tube than for copper tube for the same heat flux density. PMID:21711741

  9. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  10. Phylogenetic diversity of Pasteurellaceae and horizontal gene transfer of leukotoxin in wild and domestic sheep.

    PubMed

    Kelley, Scott T; Cassirer, E Frances; Weiser, Glen C; Safaee, Shirin

    2007-01-01

    Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated

  11. Interdisciplinary Social Science: An Example of Vertical and Horizontal Integrative Strategies

    NASA Astrophysics Data System (ADS)

    Durlabhji, Subhash

    2005-03-01

    A "Concept-Centered" strategy for Integrative Studies was proposed and implemented in the creation of the book Power in Focus: Perspectives from Multiple Disciplines. Essays on the ubiquitous concept of Power were solicited internationally and a final cut of ten essays from ten different disciplines, written specifically for this project, were included. This provides an example of what might be called Horizontal Integration, as it cut across multiple disciplines. One of the essays in the volume provides an example of Vertical Integration, as it applies a psychodynamic hypothesis concerning the development of Power relations among humans across hierarchical levels, from the child to the family to other groups and institutions in society, including finally entire nations and regions of the world.

  12. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  13. Transferring Young People with Profound Intellectual and Multiple Disabilities from Pediatric to Adult Medical Care: Parents' Experiences and Recommendations

    ERIC Educational Resources Information Center

    Bindels-de Heus, Karen G. C. B.; van Staa, AnneLoes; van Vliet, Ingeborg; Ewals, Frans V. P. M.; Hilberink, Sander R.

    2013-01-01

    Many children with profound intellectual and multiple disabilities (PIMD) now reach adulthood. The aim of this study was to elicit parents' experiences with the transfer from pediatric to adult medical care. A convenience sample of 131 Dutch parents of young people with PIMD (16--26 years) completed a web-based questionnaire. Twenty-two percent of…

  14. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells.

    PubMed

    Dong, Lan-Feng; Kovarova, Jaromira; Bajzikova, Martina; Bezawork-Geleta, Ayenachew; Svec, David; Endaya, Berwini; Sachaphibulkij, Karishma; Coelho, Ana R; Sebkova, Natasa; Ruzickova, Anna; Tan, An S; Kluckova, Katarina; Judasova, Kristyna; Zamecnikova, Katerina; Rychtarcikova, Zuzana; Gopalan, Vinod; Andera, Ladislav; Sobol, Margarita; Yan, Bing; Pattnaik, Bijay; Bhatraju, Naveen; Truksa, Jaroslav; Stopka, Pavel; Hozak, Pavel; Lam, Alfred K; Sedlacek, Radislav; Oliveira, Paulo J; Kubista, Mikael; Agrawal, Anurag; Dvorakova-Hortova, Katerina; Rohlena, Jakub; Berridge, Michael V; Neuzil, Jiri

    2017-02-15

    Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ 0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ 0 mouse melanoma cells into syngeneic C57BL/6N su9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ 0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer.

  15. Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate

    NASA Astrophysics Data System (ADS)

    Issokolo, Remi J. Noumana; Dikandé, Alain M.

    2018-05-01

    A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

  16. Effect of Vertical, Horizontal, and Combined Plyometric Training on Explosive, Balance, and Endurance Performance of Young Soccer Players.

    PubMed

    Ramírez-Campillo, Rodrigo; Gallardo, Francisco; Henriquez-Olguín, Carlos; Meylan, Cesar M P; Martínez, Cristian; Álvarez, Cristian; Caniuqueo, Alexis; Cadore, Eduardo L; Izquierdo, Mikel

    2015-07-01

    The aim of this study was to compare the effects of 6 weeks of vertical, horizontal, or combined vertical and horizontal plyometric training on muscle explosive, endurance, and balance performance. Forty young soccer players aged between 10 and 14 years were randomly divided into control (CG; n = 10), vertical plyometric group (VG; n = 10), horizontal plyometric group (HG; n = 10), and combined vertical and horizontal plyometric group (VHG; n = 10). Players performance in the vertical and horizontal countermovement jump with arms, 5 multiple bounds test (MB5), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), sprint, change of direction speed (CODS), Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1), and balance was measured. No significant or meaningful changes in the CG, apart from small change in the Yo-Yo IR1, were observed while all training programs resulted in meaningful changes in explosive, endurance, and balance performance. However, only VHG showed a statistically significant (p ≤ 0.05) increase in all performance test and most meaningful training effect difference with the CG across tests. Although no significant differences in performance changes were observed between experimental groups, the VHG program was more effective compared with VG (i.e., jumps, MKV, sprint, CODS, and balance performance) and HG (i.e., sprint, CODS, and balance performance) to small effect. The study demonstrated that vertical, horizontal, and combined vertical and horizontal jumps induced meaningful improvement in explosive actions, balance, and intermittent endurance capacity. However, combining vertical and horizontal drills seems more advantageous to induce greater performance improvements.

  17. A Critical Review of Heat Transfer Enhancement Techniques for Use in Marine Condensers.

    DTIC Science & Technology

    1982-09-01

    horizontal tube, the Nusselt theory predicts that the condensate film is thinnest at the top of the tube, and thickens around the tube until at the...transfer coefficient. As pointed out above, the Nusselt analysis assumes that the condensate film drains from a horizontal tube in a continuous sheet...the condensate falling on the lower tubes does not deteriorate the thermal performance of these tubes because the helically - wrapped wires draw the

  18. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation.

    PubMed

    Kouzel, Nadzeya; Oldewurtel, Enno R; Maier, Berenike

    2015-07-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of

  19. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras.

    PubMed

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz

    2016-08-09

    Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.

  20. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras

    PubMed Central

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz

    2016-01-01

    Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients. PMID:27437771

  1. Transfer of Learning between Hemifields in Multiple Object Tracking: Memory Reduces Constraints of Attention

    PubMed Central

    Lapierre, Mark; Howe, Piers D. L.; Cropper, Simon J.

    2013-01-01

    Many tasks involve tracking multiple moving objects, or stimuli. Some require that individuals adapt to changing or unfamiliar conditions to be able to track well. This study explores processes involved in such adaptation through an investigation of the interaction of attention and memory during tracking. Previous research has shown that during tracking, attention operates independently to some degree in the left and right visual hemifields, due to putative anatomical constraints. It has been suggested that the degree of independence is related to the relative dominance of processes of attention versus processes of memory. Here we show that when individuals are trained to track a unique pattern of movement in one hemifield, that learning can be transferred to the opposite hemifield, without any evidence of hemifield independence. However, learning is not influenced by an explicit strategy of memorisation of brief periods of recognisable movement. The findings lend support to a role for implicit memory in overcoming putative anatomical constraints on the dynamic, distributed spatial allocation of attention involved in tracking multiple objects. PMID:24349555

  2. An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains

    NASA Astrophysics Data System (ADS)

    Drukker, Karen; Hammes-Schiffer, Sharon

    1997-07-01

    This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.

  3. Analysis of genomic rearrangements, horizontal gene transfer and role of plasmids in the evolution of industrial important Thermus species.

    PubMed

    Kumwenda, Benjamin; Litthauer, Derek; Reva, Oleg

    2014-09-25

    Bacteria of genus Thermus inhabit both man-made and natural thermal environments. Several Thermus species have shown biotechnological potential such as reduction of heavy metals which is essential for eradication of heavy metal pollution; removing of organic contaminants in water; opening clogged pipes, controlling global warming among many others. Enzymes from thermophilic bacteria have exhibited higher activity and stability than synthetic or enzymes from mesophilic organisms. Using Meiothermus silvanus DSM 9946 as a reference genome, high level of coordinated rearrangements has been observed in extremely thermophilic Thermus that may imply existence of yet unknown evolutionary forces controlling adaptive re-organization of whole genomes of thermo-extremophiles. However, no remarkable differences were observed across species on distribution of functionally related genes on the chromosome suggesting constraints imposed by metabolic networks. The metabolic network exhibit evolutionary pressures similar to levels of rearrangements as measured by the cross-clustering index. Using stratigraphic analysis of donor-recipient, intensive gene exchanges were observed from Meiothermus species and some unknown sources to Thermus species confirming a well established DNA uptake mechanism as previously proposed. Global genome rearrangements were found to play an important role in the evolution of Thermus bacteria at both genomic and metabolic network levels. Relatively higher level of rearrangements was observed in extremely thermophilic Thermus strains in comparison to the thermo-tolerant Thermus scotoductus. Rearrangements did not significantly disrupt operons and functionally related genes. Thermus species appeared to have a developed capability for acquiring DNA through horizontal gene transfer as shown by the donor-recipient stratigraphic analysis.

  4. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels

    PubMed Central

    Dickman, Elizabeth M.; Newell, Jennifer M.; González, María J.; Vanni, Michael J.

    2008-01-01

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types. PMID:19011082

  5. Thermal-hydraulic behavior of Sc-C02 in a horizontal circular straight tube

    NASA Astrophysics Data System (ADS)

    Tanimizu, Katsuyoshi; Sadr, Reza; Ranjan, Davesh

    2011-11-01

    Fluids above critical pressure have been practically utilized for 60 years in many applications and their use and interest is still increasing in many areas, especially power generation industries and chemical industries. Above critical pressure, very rapid changes in thermophysical properties take place near the pseudocritical temperature. In this region, the fluid transforms from liquid-like to gas-like behavior when the fluid temperature rises up and passes through the pseudocritical temperature. This allows enormous potential for energy transfer, but also alters the turbulent flow due to changes in the turbulent shear stress brought about by acceleration and buoyancy effects. However, we have not fully understood their dynamic behaviors such as turbulence yet. A supercritical CO2 testing loop has been built at Texas A&M University at Qatar to perform heat transfer and pressure drop measurements and investigate the thermo-physical and dynamic characteristics of supercritical carbon dioxide flow. The results of heat transfer measurements in a super critical fluid conducted in a horizontal pipe are reported and discussed here. Supported by QNRF.

  6. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer

    PubMed Central

    de Paula, Ana Caroline L.; Medeiros, Julliane D.; de Azevedo, Analice C.; Chagas, Jéssica M. de Assis; da Silva, Vânia L.

    2018-01-01

    Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC)—a typical Brazilian white soft cheese—and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes) were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota. PMID:29463055

  7. Laminar mixed convective heat transfer enhancement by using Ag-TiO2-water hybrid Nanofluid in a heated horizontal annulus

    NASA Astrophysics Data System (ADS)

    Benkhedda, Mohamed; Boufendi, Toufik; Touahri, S.

    2018-03-01

    In the present paper, laminar mixed convection in horizontal annulus filled with a TiO2/water nanofluid and Ag-TiO2/water hybrid nanofluid has been numerically studied. The outer cylinder is uniformly heated while the inner cylinder is adiabatic. The governing equations with the appropriate boundary conditions are discretized by the finite volume method with second order precision, and solved by using the SIMPLER and Thomas algorithms. The numerical simulations are performed for various nanoparticles volume fractions, between 0 and 8% and Grashof numbers between 105 and 106. The results shows that for all studied Grashof numbers, the local and average Nusselt numbers, and the bulk temperature increase with the increasing of the volume fraction and the Grashof number. The heat transfer is very enhancement when using a Ag-TiO2/water hybrid nanofluid compared to the similar TiO2/water nanofluid. Moreover, the exploitation of the numerical results that we obtained enabled us to develop two new correlations, which allow the estimation of the average Nusselt number. The results reveal that the numerical data are in a good agreement with the correlation data. The maximum error for nanofluid and hybrid nanofluid was around 2.5% and 4.7% respectively. Hence, among the multitude of the obtained results in this work, it remains that the new correlations developed, especially for the hybrid nanofluid Ag-TiO2 / water, constitute for their originality, the most significant result of this research.

  8. Antibiotic Resistance Genetic Markers and Integrons in White Soft Cheese: Aspects of Clinical Resistome and Potentiality of Horizontal Gene Transfer.

    PubMed

    de Paula, Ana Caroline L; Medeiros, Julliane D; de Azevedo, Analice C; de Assis Chagas, Jéssica M; da Silva, Vânia L; Diniz, Cláudio G

    2018-02-19

    Antibiotic resistance poses an important threat to global public health and has become a challenge to modern medicine. The occurrence of antibiotic-resistant bacteria in a broad range of foods has led to a growing concern about the impact that food may have as a reservoir of antibiotic resistance genes. Considering Minas Frescal Cheese (MFC)-a typical Brazilian white soft cheese-and its economic and cultural values, in this study, medically relevant antimicrobial-resistance genetic markers (AR genes) were screened, and the occurrence of integrons were evaluated in manufactured MFC using culture-independent approaches. Through a fingerprinting analysis, the tested MFCs were brand-clustered, indicating reproducibility along the production chain. A common core of resistance markers in all brands evaluated and related antimicrobials such as β-lactams, tetracyclines, quinolones, and sulfonamide was detected. Several other markers, including efflux pumps and aminoglycosides-resistance were distributed among brands. Class 1 and 2 integrons were observed, respectively, in 77% and 97% of the samples. The presence of AR genes is of special interest due to their clinical relevance. Taken together, the data may suggest that the production chain of MFC might contribute to the spread of putative drug-resistant bacteria, which could greatly impact human health. Furthermore, detection of class 1 and class 2 integrons in MFC has led to discussions about resistance gene spread in this traditional cheese, providing evidence of potential horizontal transfer of AR genes to human gut microbiota.

  9. Persistence of Multiple Tumor-Specific T-Cell Clones Is Associated with Complete Tumor Regression in a Melanoma Patient Receiving Adoptive Cell Transfer Therapy

    PubMed Central

    Zhou, Juhua; Dudley, Mark E.; Rosenberg, Steven A.; Robbins, Paul F.

    2007-01-01

    Summary The authors recently reported that adoptive immunotherapy with autologous tumor-reactive tumor infiltrating lymphocytes (TILs) immediately following a conditioning nonmyeloablative chemotherapy regimen resulted in an enhanced clinical response rate in patients with metastatic melanoma. These observations led to the current studies, which are focused on a detailed analysis of the T-cell antigen reactivity as well as the in vivo persistence of T cells in melanoma patient 2098, who experienced a complete regression of all metastatic lesions in lungs and soft tissues following therapy. Screening of an autologous tumor cell cDNA library using transferred TILs resulted in the identification of novel mutated growth arrest-specific gene 7 (GAS7) and glyceral-dehyde-3-phosphate dehydrogenase (GAPDH) gene transcripts. Direct sequence analysis of the expressed T-cell receptor beta chain variable regions showed that the transferred TILs contained multiple T-cell clonotypes, at least six of which persisted in peripheral blood for a month or more following transfer. The persistent T cells recognized both the mutated GAS7 and GAPDH. These persistent tumor-reactive T-cell clones were detected in tumor cell samples obtained from the patient following adoptive cell transfer and appeared to be represented at higher levels in the tumor sample obtained 1 month following transfer than in the peripheral blood obtained at the same time. Overall, these results indicate that multiple tumor-reactive T cells can persist in the peripheral blood and at the tumor site for prolonged times following adoptive transfer and thus may be responsible for the complete tumor regression in this patient. PMID:15614045

  10. Horizontal fields generated by return strokes

    NASA Technical Reports Server (NTRS)

    Cooray, Vernon

    1991-01-01

    Horizontal fields generated by return strokes play an important role in the interaction of lightning generated electric fields with power lines. In many of the recent investigations on the interaction of lightning electromagnetic fields with power lines, the horizontal field was calculated by employing the expression for the tilt of the electric field of a plane wave propagating over finitely conducting earth. The method is suitable for calculating horizontal fields generated by return strokes at distances as close as 200m. At these close ranges, the use of the wavetilt expression can cause large errors.

  11. Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.

    Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.

  12. Heat transfer in a tank with a cryogenic fluid under conditions of external heating

    NASA Astrophysics Data System (ADS)

    Notkin, V. L.

    Heat transfer in the gas layer of a horizontal cylindrical tank with a fluctuating level of boiling liquid nitrogen is investigated experimentally. Criterial equations for heat transfer in the gas cavity of the tank are obtained. A procedure is proposed for calculating heat fluxes, temperature fields, and cryogenic fluid evaporation during the filling and draining of the tank.

  13. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells

    PubMed Central

    Dong, Lan-Feng; Kovarova, Jaromira; Bajzikova, Martina; Bezawork-Geleta, Ayenachew; Svec, David; Endaya, Berwini; Sachaphibulkij, Karishma; Coelho, Ana R; Sebkova, Natasa; Ruzickova, Anna; Tan, An S; Kluckova, Katarina; Judasova, Kristyna; Zamecnikova, Katerina; Rychtarcikova, Zuzana; Gopalan, Vinod; Andera, Ladislav; Sobol, Margarita; Yan, Bing; Pattnaik, Bijay; Bhatraju, Naveen; Truksa, Jaroslav; Stopka, Pavel; Hozak, Pavel; Lam, Alfred K; Sedlacek, Radislav; Oliveira, Paulo J; Kubista, Mikael; Agrawal, Anurag; Dvorakova-Hortova, Katerina; Rohlena, Jakub; Berridge, Michael V; Neuzil, Jiri

    2017-01-01

    Recently, we showed that generation of tumours in syngeneic mice by cells devoid of mitochondrial (mt) DNA (ρ0 cells) is linked to the acquisition of the host mtDNA. However, the mechanism of mtDNA movement between cells remains unresolved. To determine whether the transfer of mtDNA involves whole mitochondria, we injected B16ρ0 mouse melanoma cells into syngeneic C57BL/6Nsu9-DsRed2 mice that express red fluorescent protein in their mitochondria. We document that mtDNA is acquired by transfer of whole mitochondria from the host animal, leading to normalisation of mitochondrial respiration. Additionally, knockdown of key mitochondrial complex I (NDUFV1) and complex II (SDHC) subunits by shRNA in B16ρ0 cells abolished or significantly retarded their ability to form tumours. Collectively, these results show that intact mitochondria with their mtDNA payload are transferred in the developing tumour, and provide functional evidence for an essential role of oxidative phosphorylation in cancer. DOI: http://dx.doi.org/10.7554/eLife.22187.001 PMID:28195532

  14. An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters

    PubMed Central

    Rice, Danny W; Palmer, Jeffrey D

    2006-01-01

    Background Horizontal gene transfer (HGT) to the plant mitochondrial genome has recently been shown to occur at a surprisingly high rate; however, little evidence has been found for HGT to the plastid genome, despite extensive sequencing. In this study, we analyzed all genes from sequenced plastid genomes to unearth any neglected cases of HGT and to obtain a measure of the overall extent of HGT to the plastid. Results Although several genes gave strongly supported conflicting trees under certain conditions, we are confident of HGT in only a single case beyond the rubisco HGT already reported. Most of the conflicts involved near neighbors connected by long branches (e.g. red algae and their secondary hosts), where phylogenetic methods are prone to mislead. However, three genes – clpP, ycf2, and rpl36 – provided strong support for taxa moving far from their organismal position. Further taxon sampling of clpP and ycf2 resulted in rejection of HGT due to long-branch attraction and a serious error in the published plastid genome sequence of Oenothera elata, respectively. A single new case, a bacterial rpl36 gene transferred into the ancestor of the cryptophyte and haptophyte plastids, appears to be a true HGT event. Interestingly, this rpl36 gene is a distantly related paralog of the rpl36 type found in other plastids and most eubacteria. Moreover, the transferred gene has physically replaced the native rpl36 gene, yet flanking genes and intergenic regions show no sign of HGT. This suggests that gene replacement somehow occurred by recombination at the very ends of rpl36, without the level and length of similarity normally expected to support recombination. Conclusion The rpl36 HGT discovered in this study is of considerable interest in terms of both molecular mechanism and phylogeny. The plastid acquisition of a bacterial rpl36 gene via HGT provides the first strong evidence for a sister-group relationship between haptophyte and cryptophyte plastids to the

  15. High accuracy diffuse horizontal irradiance measurements without a shadowband

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlemmer, J.A; Michalsky, J.J.

    1995-12-31

    The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from total horizontal and direct normal irradiance. This method is in error because of angular (cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. Wemore » compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. Results indicate significant improvement in most cases. Remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less

  16. Influence of thermo-gravitational convection in the flow of liquid metal in a horizontal pipe with a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Akhmedagaev, R.; Listratov, Y.

    2017-11-01

    The direct numerical simulation (DNS) of MHD-heat transfer problems in turbulent flow of liquid metal (LM) in a horizontal pipe with a joint effect of the longitudinal magnetic field (MF) and thermo-gravitational convection (TGC). The authors calculated the effect of TGC in a strong longitudinal MF for a homogeneous heating. Investigated the averaged fields of velocity and temperature, heat transfer characteristics, the distribution of wall temperature along the perimeter of the cross section of the pipe. The effect of TGC on the velocity field is affected stronger than in the temperature field.

  17. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.

    PubMed

    Chou, I-Jun; Lim, Su-Yin; Tanasescu, Radu; Al-Radaideh, Ali; Mougin, Olivier E; Tench, Christopher R; Whitehouse, William P; Gowland, Penny A; Constantinescu, Cris S

    2018-03-01

    Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MT w ) images in the detection of white matter lesions compared with 3T-FLAIR. Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MT w and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MT w images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MT w images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). Seven-Tesla MT w sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MT w imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MT w imaging. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  18. Experimental and Theoretical Studies of Condensation on a Horizontal Tube Row with Vapour Shear

    NASA Astrophysics Data System (ADS)

    Aoune, Azzeddine

    Available from UMI in association with The British Library. This thesis presents an experimental and theoretical investigation into the effect of vapour shear on the condensation of steam flowing vertically downwards over a single horizontal tube and a horizontal tube in a row. Honda and Fujii's conjugate heat transfer analysis has been adapted and modified to take account of property variation with temperature and release of sensible heat to the condensing film. In industrial condensers, even in the first row, the vapour velocity profile around a tube is affected by the presence of its neighbours. This work extends Honda and Fujii's analysis to investigate the effect of tube spacing on the heat transfer. The finite element method was used to obtain the velocity field around the tube in a row and subsequently the boundary layer equations for the condensate and vapour film along with the heat flow in the tube wall were solved simultaneously. Data have been obtained at absolute pressures of 0.8 and 0.9 bar and for steam superheat up to 40 degC. Approach steam velocities up to 25 m/s were covered. Cooling water velocities and temperatures were in the range 0.68-1.16 m/s and 18-43^circ C, respectively. Honda et al (67), Roshko's flow, theory was found to fit the data for the steam flowing over the isolated tube. The theoretical data for the latter agreed well with the Shekriladze and Gomelauri (2) and Rose (40) correlations and Honda et al (67), potential flow, theory. On | Nu| Re^{-1/2} versus F basis, an average enhancement of 50% in condensate film heat transfer was observed in the case of steam flowing over the tube in a row compared to the isolated tube. This compared with the predicted value of 23% enhancement.

  19. High accuracy diffuse horizontal irradiance measurements without a shadowband

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlemmer, J.A.; Michalsky, J.J.

    1995-10-01

    The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from the total horizontal and direct normal irradiance. This method is in error because of the angular (often referred to as cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular responsemore » of the total horizontal pyranometer. The authors compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. The results indicate significant improvement in most cases. The remaining disagreement most likely arises from undetected tracking errors and instrument leveling.« less

  20. Mixed convection heat transfer: an experimental study on Cu/heat transfer oil nanofluids inside annular tube

    NASA Astrophysics Data System (ADS)

    Abbasian Arani, Ali Akbar; Aberoumand, Hossein; Jafarimoghaddam, Amin; Aberoumand, Sadegh

    2017-09-01

    The heat transfer and flow characteristics of Cu-heat transfer oil nanofluid during mixed convection through horizontal annular tubes under uniform heat flux as boundary condition are investigated experimentally. Data were acquired at low Reynolds number ranged from about 26 to 252. The applied nanofluid prepared by Electrical Explosion of Wire technique with no nanoparticles agglomeration during nanofluid preparation process and experiments. Pure heat transfer oil and nanofluids with nanoparticles weight concentrations of 0.12, 0.36 and 0.72% were used as the working fluids. Based on these results, Effects of nanoparticles concentration, heat flux and free convection on the thermal field development are studied under buoyancy assisted flow condition for Grashof number, Richardson number between 2820 and 12,686, and 0.1-10, respectively. Results show that Nusselt number increases with an increase of nanoparticles weight concentrations from 0 to 0.72% under certain Richardson numbers.

  1. Vapordynamic thermosyphon - heat transfer two-phase device for wide applications

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei

    2015-12-01

    Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.

  2. Horizontal Transfer of a Subtilisin Gene from Plants into an Ancestor of the Plant Pathogenic Fungal Genus Colletotrichum

    PubMed Central

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R.

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150–155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection. PMID:23554975

  3. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum.

    PubMed

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150-155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.

  4. Experiment of flow regime map and local condensing heat transfer coefficients inside three dimensional inner microfin tubes

    NASA Astrophysics Data System (ADS)

    Du, Yang; Xin, Ming Dao

    1999-03-01

    This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.

  5. Natural convective heat transfer from square cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

  6. Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacific Operators Offshore, Inc.

    The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a seriesmore » of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.« less

  7. Spatial judgments in the horizontal and vertical planes from different vantage points.

    PubMed

    Prytz, Erik; Scerbo, Mark W

    2012-01-01

    Todorović (2008 Perception 37 106-125) reported that there are systematic errors in the perception of 3-D space when viewing 2-D linear perspective drawings depending on the observer's vantage point. Because these findings were restricted to the horizontal plane, the current study was designed to determine the nature of these errors in the vertical plane. Participants viewed an image containing multiple colonnades aligned on parallel converging lines receding to a vanishing point. They were asked to judge where, in the physical room, the next column should be placed. The results support Todorović in that systematic deviations in the spatial judgments depended on vantage point for both the horizontal and vertical planes. However, there are also marked differences between the two planes. While judgments in both planes failed to compensate adequately for the vantage-point shift, the vertical plane induced greater distortions of the stimulus image itself within each vantage point.

  8. Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data

    NASA Astrophysics Data System (ADS)

    Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc

    2018-05-01

    The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.

  9. DETERMINATION OF HEAT TRANSFER COEFFICIENTS FOR FRENCH PLASTIC SEMEN STRAW SUSPENDED IN STATIC NITROGEN VAPOR OVER LIQUID NITROGEN.

    PubMed

    Santo, M V; Sansinena, M; Chirife, J; Zaritzky, N

    2015-01-01

    The use of mathematical models describing heat transfer during the freezing process is useful for the improvement of cryopreservation protocols. A widespread practice for cryopreservation of spermatozoa of domestic animal species consists of suspending plastic straws in nitrogen vapor before plunging into liquid nitrogen. Knowledge of surface heat transfer coefficient (h) is mandatory for computational modelling; however, h values for nitrogen vapor are not available. In the present study, surface heat transfer coefficients for plastic French straws immersed in nitrogen vapor over liquid nitrogen was determined; vertical and horizontal positions were considered. Heat transfer coefficients were determined from the measurement of time-temperature curves and from numerical solution of heat transfer partial differential equation under transient conditions using finite elements. The h values experimentally obtained for horizontal and vertically placed straws were compared to those calculated using correlations based on the Nusselt number for natural convection. For horizontal straws the average obtained value was h=12.5 ± 1.2 W m(2) K and in the case of vertical straws h=16 ± 2.48 W m(2) K. The numerical simulation validated against experimental measurements, combined with accurate h values provides a reliable tool for the prediction of freezing curves of semen-filled straws immersed in nitrogen vapor. The present study contributes to the understanding of the cryopreservation techniques for sperm freezing based on engineering concepts, improving the cooling protocols and the manipulation of the straws.

  10. Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective

    PubMed Central

    2010-01-01

    Background Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. Discussion This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Summary Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children. PMID:20478054

  11. Unpacking vertical and horizontal integration: childhood overweight/obesity programs and planning, a Canadian perspective.

    PubMed

    Maclean, Lynne M; Clinton, Kathryn; Edwards, Nancy; Garrard, Michael; Ashley, Lisa; Hansen-Ketchum, Patti; Walsh, Audrey

    2010-05-17

    Increasingly, multiple intervention programming is being understood and implemented as a key approach to developing public health initiatives and strategies. Using socio-ecological and population health perspectives, multiple intervention programming approaches are aimed at providing coordinated and strategic comprehensive programs operating over system levels and across sectors, allowing practitioners and decision makers to take advantage of synergistic effects. These approaches also require vertical and horizontal (v/h) integration of policy and practice in order to be maximally effective. This paper examines v/h integration of interventions for childhood overweight/obesity prevention and reduction from a Canadian perspective. It describes the implications of v/h integration for childhood overweight and obesity prevention, with examples of interventions where v/h integration has been implemented. An application of a conceptual framework for structuring v/h integration of an overweight/obesity prevention initiative is presented. The paper concludes with a discussion of the implications of vertical/horizontal integration for policy, research, and practice related to childhood overweight and obesity prevention multiple intervention programs. Both v/h integration across sectors and over system levels are needed to fully support multiple intervention programs of the complexity and scope required by obesity issues. V/h integration requires attention to system structures and processes. A conceptual framework is needed to support policy alignment, multi-level evaluation, and ongoing coordination of people at the front lines of practice. Using such tools to achieve integration may enhance sustainability, increase effectiveness of prevention and reduction efforts, decrease stigmatization, and lead to new ways to relate the environment to people and people to the environment for better health for children.

  12. Selective heteronuclear Hartmann-Hahn: A multiple-pulse sequence for selective magnetization transfer in the structural elucidation of “isotagged” oligosaccharides

    NASA Astrophysics Data System (ADS)

    Meng, Xi; Nguyen, William H.; Nowick, James S.; Shaka, A. J.

    2010-03-01

    A new selective heteronuclear Hartmann-Hahn (SHEHAHA) multiple-pulse mixing sequence is proposed for the solution structure elucidation of milligram amounts of peracetylated oligosaccharides in which the acetyl groups are enriched in carbon-13, so-called “isotags”. SHEHAHA accomplishes exclusive in-phase magnetization transfer between the isotag carbonyl 13C and the proximal proton on the sugar ring. Relayed transfer around the sugar rings by proton-proton TOCSY is suppressed, while the heteronuclear transfer from the labeled carbonyl carbon to the proximal ring proton is maintained. The sequence is broadband in the sense that all acetyl groups simultaneously give good signal transfer to their respective nearest proton neighbors. The 1H-detected spectra have decent sensitivity and excellent resolution, giving patterns that unambiguously identify common structural subunits in human glycans. Peracetylated maltitol is shown as a test case of the method. Lineshapes are pure absorption, allowing facile measurement of vicinal proton-proton couplings. Linkage points can be deduced, and the 2D correlation spectra may be useful for more ambitious prediction algorithms and machine identification by a spectral database.

  13. Molecular variation and horizontal gene transfer of the homocysteine methyltransferase gene mmuM and its distribution in clinical pathogens.

    PubMed

    Ying, Jianchao; Wang, Huifeng; Bao, Bokan; Zhang, Ying; Zhang, Jinfang; Zhang, Cheng; Li, Aifang; Lu, Junwan; Li, Peizhen; Ying, Jun; Liu, Qi; Xu, Teng; Yi, Huiguang; Li, Jinsong; Zhou, Li; Zhou, Tieli; Xu, Zuyuan; Ni, Liyan; Bao, Qiyu

    2015-01-01

    The homocysteine methyltransferase encoded by mmuM is widely distributed among microbial organisms. It is the key enzyme that catalyzes the last step in methionine biosynthesis and plays an important role in the metabolism process. It also enables the microbial organisms to tolerate high concentrations of selenium in the environment. In this research, 533 mmuM gene sequences covering 70 genera of the bacteria were selected from GenBank database. The distribution frequency of mmuM is different in the investigated genera of bacteria. The mapping results of 160 mmuM reference sequences showed that the mmuM genes were found in 7 species of pathogen genomes sequenced in this work. The polymerase chain reaction products of one mmuM genotype (NC_013951 as the reference) were sequenced and the sequencing results confirmed the mapping results. Furthermore, 144 representative sequences were chosen for phylogenetic analysis and some mmuM genes from totally different genera (such as the genes between Escherichia and Klebsiella and between Enterobacter and Kosakonia) shared closer phylogenetic relationship than those from the same genus. Comparative genomic analysis of the mmuM encoding regions on plasmids and bacterial chromosomes showed that pKF3-140 and pIP1206 plasmids shared a 21 kb homology region and a 4.9 kb fragment in this region was in fact originated from the Escherichia coli chromosome. These results further suggested that mmuM gene did go through the gene horizontal transfer among different species or genera of bacteria. High-throughput sequencing combined with comparative genomics analysis would explore distribution and dissemination of the mmuM gene among bacteria and its evolution at a molecular level.

  14. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions

    DOE PAGES

    Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.; ...

    2016-03-08

    Metal oxides, such as Fe 3O 4, hold promise for future battery applications due to their abundance, low cost, and opportunity for high lithium storage capacity. In order to better understand the mechanisms of multiple-electron transfer reactions leading to high capacity in Fe 3O 4, a comprehensive investigation on local ionic transport and ordering is made by probing site occupancies of anions (O 2–) and cations (Li +, Fe 3+/Fe 2+) using multiple synchrotron X-ray and electron-beam techniques, in combination with ab-initio calculations. Results from this study provide the first experimental evidence that the cubic-close-packed (ccp) O-anion array in Femore » 3O 4 is sustained throughout the lithiation and delithiation processes, thereby enabling multiple lithium intercalation and conversion reactions. Cation displacement/reordering occurs within the ccp O-anion framework, which leads to a series of phase transformations, starting from the inverse spinel phase and turning into intermediate rock-salt-like phases (Li xFe 3O 4; 0 < x < 2), then into a cation-segregated phase (Li 2O•FeO), and finally converting into metallic Fe and Li 2O. Subsequent delithiation and lithiation processes involve interconversion between metallic Fe and FeO-like phases. Lastly, these results may offer new insights into the structure-determined ionic transport and electrochemical reactions in metal oxides, and those of other compounds sharing a ccp anion framework, reminiscent of magnetite.« less

  15. Characterizing local variability in long‐period horizontal tilt noise

    USGS Publications Warehouse

    Rohde, M.D.; Ringler, Adam; Hutt, Charles R.; Wilson, David; Holland, Austin; Sandoval, L.D; Storm, Tyler

    2017-01-01

    Horizontal seismic data are dominated by atmospherically induced tilt noise at long periods (i.e., 30 s and greater). Tilt noise limits our ability to use horizontal data for sensitive seismological studies such as observing free earth modes. To better understand the local spatial variability of long‐period horizontal noise, we observe horizontal noise during quiet time periods in the Albuquerque Seismological Laboratory (ASL) underground vault using four small‐aperture array configurations. Each array comprises eight Streckeisen STS‐2 broadband seismometers. We analyze the spectral content of the data using power spectral density and magnitude‐squared coherence (γ2‐coherence). Our results show a high degree of spatial variability and frequency dependence in the long‐period horizontal wavefield. The variable nature of long‐period horizontal noise in the ASL vault suggests that it might be highly local in nature and not easily characterized by simple physical models when overall noise levels are low, making it difficult to identify locations in the vault with lower horizontal noise. This variability could be limiting our ability to apply coherence analysis for estimating horizontal sensor self‐noise and could also complicate various indirect methods for removing long‐period horizontal noise (e.g., collocated rotational sensor or microbarograph).

  16. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”

    PubMed Central

    Ullrich, Sophie R.; González, Carolina; Poehlein, Anja; Tischler, Judith S.; Daniel, Rolf; Schlömann, Michael; Holmes, David S.; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features

  17. Horizontal alveolar bone loss: A periodontal orphan

    PubMed Central

    Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya

    2010-01-01

    Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for

  18. Environmental factors influencing gene transfer agent (GTA) mediated transduction in the subtropical ocean.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth C; Ritchie, Kimberly B; Paul, John H

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the

  19. Environmental Factors Influencing Gene Transfer Agent (GTA) Mediated Transduction in the Subtropical Ocean

    PubMed Central

    McDaniel, Lauren D.; Young, Elizabeth C.; Ritchie, Kimberly B.; Paul, John H.

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10–30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the

  20. Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao.

    PubMed

    Tiburcio, Ricardo Augusto; Costa, Gustavo Gilson Lacerda; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Schuster, Stephen C; Carlson, John E; Guiltinan, Mark J; Bailey, Bryan A; Mieczkowski, Piotr; Meinhardt, Lyndel W; Pereira, Gonçalo Amarante Guimarães

    2010-01-01

    Moniliophthora perniciosa and Moniliophthora roreri are phytopathogenic basidiomycete species that infect cacao causing two important diseases in this crop: "Witches' Broom" and "Frosty Pod Rot", respectively. The ability of species from this genus (Moniliophthora) to cause disease is exceptional in the family Marasmiaceae. Species in closely related genera including, Marasmius, Crinipellis, and Chaetocalathus, are mainly saprotrophs and are not known to cause disease. In this study, the possibility that this phytopathogenic lifestyle has been acquired by horizontal gene transfer (HGT) was investigated. A stringent genome comparison pipeline was used to identify potential genes that have been obtained by Moniliophthora through HGT. This search led to the identification of three genes: a metallo-dependent hydrolase (MDH), a mannitol phosphate dehydrogenase (MPDH), and a family of necrosis-inducing proteins (NEPs). Phylogenetic analysis of these genes suggests that Moniliophthora acquired NEPs from oomycetes, MDH from actinobacteria and MPDH from firmicutes. Based on the known gene functions and on previous studies of M. perniciosa infection and development, a correlation between gene acquisition and the evolution of the phytopathogenic genus Moniliophthora can be postulated.

  1. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    PubMed

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  2. Indirect Measurement of Local Condensing Heat-Transfer Coefficient Around Horizontal Finned Tubes

    DTIC Science & Technology

    1987-09-01

    vapor-sidp coefficients exceeded Nusselt values by factors of approximately 7 to 9 (for a constant temperature drop across the condensate film). Honda...3/8 in.) diameter water-cooled copper tubes helically coiled to a height of 457 mm (le In.). The auxiliary condenser was cooled by a continuous...NAVAL POSTGRADUATE SCHOOL Monterey, California , " I - . 0) I DECI 41987S:,• c ý ! i, THESIS INDIRECT MEASUREMENT OF LOCAL CONDENSING HEAT-TRANSFER

  3. Genomic Evidence of Chemotrophic Metabolisms in Deep-Dwelling Chloroflexi Conferred by Ancient Horizontal Gene Transfer Events

    NASA Astrophysics Data System (ADS)

    Momper, L. M.; Magnabosco, C.; Amend, J.; Osburn, M. R.; Fournier, G. P.

    2017-12-01

    The marine and terrestrial subsurface biospheres represent quite likely the largest reservoirs for life on Earth, directly impacting surface processes and global cycles throughout Earth's history. In the deep subsurface biosphere (DSB) organic carbon and energy are often extremely scarce. However, archaea and bacteria are able to persist in the DSB to at least 3.5 km below surface [1]. Understanding how they persist, and by what metabolisms they subsist, are key questions in this biosphere. To address these questions we investigated 5 global DSB environments: one legacy mine in South Dakota, USA, 3 mines in South Africa and marine fluids circulating beneath the Juan de Fuca Ridge. Boreholes within these mines provided access to fluids buried beneath the earth's surface and sampled depths down to 3.1 km. Geochemical data were collected concomitantly with DNA for metagenomic sequencing. We examined genomes of the ancient and deeply branching Chloroflexi for metabolic capabilities and interrogated the geochemical drivers behind those metabolisms with in situ thermodynamic modeling of reaction energetics. In total, 23 Chloroflexi genomes were identified and analyzed from the 5 subsurface sites. Genes for nitrate reduction (nar) and sulfite reduction (dsr) were found in many of the South Africa Chloroflexi but were absent from genomes collected in South Dakota. Indeed, nitrate reduction was among the most energetically favorable reactions in South African fluids (10-14 kJ cell-1 sec -1 per mol of reactant) and sulfur reduction with Fe2+ or H2 was also exergonic [2]. Conversely, genes for nitrite and nitrous oxide reduction (nrf, nir and nos) were found in genomes collected in South Dakota and Juan de Fuca, but not South Africa. We examined the origin of genes conferring these metabolisms in the Chloroflexi genomes. We discovered evidence for horizontal gene transfer (HGT) for all of these putative metabolisms. Retention of these genes in Chloroflexi lineages indicates

  4. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky.

    PubMed

    Johnson, Timothy J; Thorsness, Jessica L; Anderson, Cole P; Lynne, Aaron M; Foley, Steven L; Han, Jing; Fricke, W Florian; McDermott, Patrick F; White, David G; Khatri, Mahesh; Stell, Adam L; Flores, Cristian; Singer, Randall S

    2010-12-22

    Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.

  5. Horizontal Gene Transfer of a ColV Plasmid Has Resulted in a Dominant Avian Clonal Type of Salmonella enterica Serovar Kentucky

    PubMed Central

    Johnson, Timothy J.; Thorsness, Jessica L.; Anderson, Cole P.; Lynne, Aaron M.; Foley, Steven L.; Han, Jing; Fricke, W. Florian; McDermott, Patrick F.; White, David G.; Khatri, Mahesh; Stell, Adam L.; Flores, Cristian; Singer, Randall S.

    2010-01-01

    Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard. PMID:21203520

  6. Horizontal technology helps spark Louisiana`s Austin chalk trend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koen, A.D.

    1996-04-29

    A handful of companies paced by some of the most active operators in the US are pressing the limits of horizontal technology to ramp up Cretaceous Austin chalk exploration and development (E and D) across Louisiana. Companies find applications in Louisiana for lessons learned drilling horizontal wells to produce chalk intervals in Texas in Giddings, Pearsall, and Brookeland fields. Continuing advances in horizontal well technology are helping operators deal with deeper, hotter reservoirs in more complex geological settings that typify the chalk in Louisiana. Better horizontal drilling, completion, formation evaluation, and stimulation techniques have enabled operators to produce oil andmore » gas from formations previously thought to be uneconomical. Most of the improved capabilities stem from better horizontal tools. Horizontal drilling breakthroughs include dual powered mud motors and retrievable whipstocks, key links in the ability to drill wells with more than one horizontal lateral. Better geosteering tools have enabled operators to maintain horizontal wellbores in desired intervals by signaling bit positions downhole while drilling. This paper reviews the technology and provides a historical perspective on the various drilling programs which have been completed in this trend. It also makes predictions on future drilling successes.« less

  7. Transfer of DNA from Bacteria to Eukaryotes

    PubMed Central

    2016-01-01

    ABSTRACT Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer. PMID:27406565

  8. Rheology of the Cu-H2O nanofluid in porous channel with heat transfer: Multiple solutions

    NASA Astrophysics Data System (ADS)

    Raza, J.; Rohni, A. M.; Omar, Z.; Awais, M.

    2017-02-01

    Dynamics of nanofluid comprising a base fluid (water) with copper (Cu) nanoparticles have been considered in channel with porous walls under magnetic field influence. The channel walls are considered to be permeable in order to analyze the wall mass transfer phenomenon. Relevant mathematical modelling has been performed and the derived PDEs are converted into coupled nonlinear ODEs by using suitable transformations. Computations have been made numerically by employing the shooting technique. It is noted that multiple solutions occur for the variation of suction Reynolds number, solid volume fraction and magnetic parameters which are interpreted in detail.

  9. Development of custom measurement system for biomechanical evaluation of independent wheelchair transfers

    PubMed Central

    Koontz, Alicia M.; Lin, Yen-Sheng; Kankipati, Padmaja; Boninger, Michael L.; Cooper, Rory A.

    2017-01-01

    This study describes a new custom measurement system designed to investigate the biomechanics of sitting-pivot wheelchair transfers and assesses the reliability of selected biomechanical variables. Variables assessed include horizontal and vertical reaction forces underneath both hands and three-dimensional trunk, shoulder, and elbow range of motion. We examined the reliability of these measures between 5 consecutive transfer trials for 5 subjects with spinal cord injury and 12 non-disabled subjects while they performed a self-selected sitting pivot transfer from a wheelchair to a level bench. A majority of the biomechanical variables demonstrated moderate to excellent reliability (r > 0.6). The transfer measurement system recorded reliable and valid biomechanical data for future studies of sitting-pivot wheelchair transfers. We recommend a minimum of five transfer trials to obtain a reliable measure of transfer technique for future studies. PMID:22068376

  10. Development of custom measurement system for biomechanical evaluation of independent wheelchair transfers.

    PubMed

    Koontz, Alicia M; Lin, Yen-Sheng; Kankipati, Padmaja; Boninger, Michael L; Cooper, Rory A

    2011-01-01

    This study describes a new custom measurement system designed to investigate the biomechanics of sitting-pivot wheelchair transfers and assesses the reliability of selected biomechanical variables. Variables assessed include horizontal and vertical reaction forces underneath both hands and three-dimensional trunk, shoulder, and elbow range of motion. We examined the reliability of these measures between 5 consecutive transfer trials for 5 subjects with spinal cord injury and 12 nondisabled subjects while they performed a self-selected sitting pivot transfer from a wheelchair to a level bench. A majority of the biomechanical variables demonstrated moderate to excellent reliability (r > 0.6). The transfer measurement system recorded reliable and valid biomechanical data for future studies of sitting-pivot wheelchair transfers.We recommend a minimum of five transfer trials to obtain a reliable measure of transfer technique for future studies.

  11. Solving vertical and horizontal well hydraulics problems analytically in Cartesian coordinates with vertical and horizontal anisotropies

    NASA Astrophysics Data System (ADS)

    Batu, Vedat

    2012-01-01

    SummaryA new generalized three-dimensional analytical solution is developed for a partially-penetrating vertical rectangular parallelepiped well screen in a confined aquifer by solving the three-dimensional transient ground water flow differential equation in x- y- z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities ( Kx, Ky, and Kz) along the x- y- z coordinate directions. The fully penetrating screen case becomes equivalent to the single vertical fracture case of Gringarten and Ramey (1973). It is shown that the new solution and Gringarten and Ramey solution (1973) match very well. Similarly, it is shown that this new solution for a horizontally tiny fully penetrating parallelepiped rectangular parallelepiped screen case match very well with Theis (1935) solution. Moreover, it is also shown that the horizontally tiny partially-penetrating parallelepiped rectangular well screen case of this new solution match very well with Hantush (1964) solution. This new analytical solution can also cover a partially-penetrating horizontal well by representing its screen interval with vertically tiny rectangular parallelepiped. Also the solution takes into account both the vertical anisotropy ( azx = Kz/ Kx) as well as the horizontal anisotropy ( ayx = Ky/ Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating vertical and horizontal wells by representing them as tiny rectangular parallelepiped as well as line sources. The solution has also potential application areas for a partially-penetrating parallelepiped rectangular vertical fracture. With this new solution, the horizontal anisotropy ( ayx = Ky/ Kx) in addition to the vertical anisotropy ( azx = Kz/ Kx) can also be determined using observed drawdown data. Most importantly, with this solution, to the knowledge of the author, it has been shown the first time in the literature that some well-known well hydraulics

  12. Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption.

    PubMed

    Pedotti, Rosetta; Musio, Silvia; Scabeni, Stefano; Farina, Cinthia; Poliani, Pietro Luigi; Colombo, Emanuela; Costanza, Massimo; Berzi, Angela; Castellucci, Fabrizio; Ciusani, Emilio; Confalonieri, Paolo; Hemmer, Bernhard; Mantegazza, Renato; Antozzi, Carlo

    2013-09-15

    The pathogenic role of antibodies in multiple sclerosis (MS) is still controversial. We transferred to mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, IgG antibodies purified from a MS patient presenting a dramatic clinical improvement during relapse after selective IgG removal with immunoadsorption. Passive transfer of patient's IgG exacerbated motor paralysis and increased mouse central nervous system (CNS) inflammation and demyelination. Binding of patient's IgG was demonstrated in mouse CNS, with a diffuse staining of white matter oligodendrocytes. These data support a growing body of evidence that antibodies can play an important role in the pathobiology of MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Theoretical analysis for condensation heat transfer of binary refrigerant mixtures with annular flow in horizontal mini-tubes

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan

    2016-01-01

    A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.

  14. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  15. Nuclear component horizontal seismic restraint

    DOEpatents

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  16. Laplace Transform Based Radiative Transfer Studies

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Lin, B.; Ng, T.; Yang, P.; Wiscombe, W.; Herath, J.; Duffy, D.

    2006-12-01

    Multiple scattering is the major uncertainty for data analysis of space-based lidar measurements. Until now, accurate quantitative lidar data analysis has been limited to very thin objects that are dominated by single scattering, where photons from the laser beam only scatter a single time with particles in the atmosphere before reaching the receiver, and simple linear relationship between physical property and lidar signal exists. In reality, multiple scattering is always a factor in space-based lidar measurement and it dominates space- based lidar returns from clouds, dust aerosols, vegetation canopy and phytoplankton. While multiple scattering are clear signals, the lack of a fast-enough lidar multiple scattering computation tool forces us to treat the signal as unwanted "noise" and use simple multiple scattering correction scheme to remove them. Such multiple scattering treatments waste the multiple scattering signals and may cause orders of magnitude errors in retrieved physical properties. Thus the lack of fast and accurate time-dependent radiative transfer tools significantly limits lidar remote sensing capabilities. Analyzing lidar multiple scattering signals requires fast and accurate time-dependent radiative transfer computations. Currently, multiple scattering is done with Monte Carlo simulations. Monte Carlo simulations take minutes to hours and are too slow for interactive satellite data analysis processes and can only be used to help system / algorithm design and error assessment. We present an innovative physics approach to solve the time-dependent radiative transfer problem. The technique utilizes FPGA based reconfigurable computing hardware. The approach is as following, 1. Physics solution: Perform Laplace transform on the time and spatial dimensions and Fourier transform on the viewing azimuth dimension, and convert the radiative transfer differential equation solving into a fast matrix inversion problem. The majority of the radiative transfer

  17. Characterization of the oceanic light field within the photic zone: Fluctuations of downward irradiance and asymmetry of horizontal radiance

    NASA Astrophysics Data System (ADS)

    Gassmann, Ewa

    addition to measurements, the radiative transfer simulations were also conducted to examine variations in the asymmetry of horizontal radiance at different light wavelengths as a function of solar zenith angle at different depths within the water column down to 200 m. It was demonstrated that the asymmetry of horizontal radiance increases with increasing solar zenith angle, reaching a maximum at angles of 60° -- 80° under clear skies at shallow depths (1 -- 10 m). At larger depths the maximum of asymmetry occurs at smaller solar zenith angles. The asymmetry was also found to increase with increasing light wavelength. The results from radiative transfer simulations provided evidence that variations in the asymmetry with solar zenith angle are driven largely by the diffuseness of light incident upon the sea surface and the geometry of illumination of the sea surface, both associated with changing position of the sun. In addition to contributions to the field of ocean optics, the findings of this dissertation have relevance for oceanic animal camouflage and vision as well as photosynthesis and other photochemical processes.

  18. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  19. A method for evaluating horizontal well pumping tests.

    PubMed

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  20. Gene transfer agents: phage-like elements of genetic exchange

    PubMed Central

    Lang, Andrew S.; Zhaxybayeva, Olga; Beatty, J. Thomas

    2013-01-01

    Horizontal gene transfer is important in the evolution of bacterial and archaeal genomes. An interesting genetic exchange process is carried out by diverse phage-like gene transfer agents (GTAs) that are found in a wide range of prokaryotes. Although GTAs resemble phages, they lack the hallmark capabilities that define typical phages, and they package random pieces of the producing cell’s genome. In this Review, we discuss the defining characteristics of the GTAs that have been identified to date, along with potential functions for these agents and the possible evolutionary forces that act on the genes involved in their production. PMID:22683880