Sample records for multiple imaging methods

  1. Grayscale inhomogeneity correction method for multiple mosaicked electron microscope images

    NASA Astrophysics Data System (ADS)

    Zhou, Fangxu; Chen, Xi; Sun, Rong; Han, Hua

    2018-04-01

    Electron microscope image stitching is highly desired to acquire microscopic resolution images of large target scenes in neuroscience. However, the result of multiple Mosaicked electron microscope images may exist severe gray scale inhomogeneity due to the instability of the electron microscope system and registration errors, which degrade the visual effect of the mosaicked EM images and aggravate the difficulty of follow-up treatment, such as automatic object recognition. Consequently, the grayscale correction method for multiple mosaicked electron microscope images is indispensable in these areas. Different from most previous grayscale correction methods, this paper designs a grayscale correction process for multiple EM images which tackles the difficulty of the multiple images monochrome correction and achieves the consistency of grayscale in the overlap regions. We adjust overall grayscale of the mosaicked images with the location and grayscale information of manual selected seed images, and then fuse local overlap regions between adjacent images using Poisson image editing. Experimental result demonstrates the effectiveness of our proposed method.

  2. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  3. Topological charge number multiplexing for JTC multiple-image encryption

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Shen, Xueju; Dou, Shuaifeng; Lin, Chao; Wang, Long

    2018-04-01

    We propose a method of topological charge number multiplexing based on the JTC encryption system to achieve multiple-image encryption. Using this method, multi-image can be encrypted into single ciphertext, and the original images can be recovered according to the authority level. The number of encrypted images is increased, moreover, the quality of decrypted images is improved. Results of computer simulation and initial experiment identify the validity of our proposed method.

  4. MIMO nonlinear ultrasonic tomography by propagation and backpropagation method.

    PubMed

    Dong, Chengdong; Jin, Yuanwei

    2013-03-01

    This paper develops a fast ultrasonic tomographic imaging method in a multiple-input multiple-output (MIMO) configuration using the propagation and backpropagation (PBP) method. By this method, ultrasonic excitation signals from multiple sources are transmitted simultaneously to probe the objects immersed in the medium. The scattering signals are recorded by multiple receivers. Utilizing the nonlinear ultrasonic wave propagation equation and the received time domain scattered signals, the objects are to be reconstructed iteratively in three steps. First, the propagation step calculates the predicted acoustic potential data at the receivers using an initial guess. Second, the difference signal between the predicted value and the measured data is calculated. Third, the backpropagation step computes updated acoustical potential data by backpropagating the difference signal to the same medium computationally. Unlike the conventional PBP method for tomographic imaging where each source takes turns to excite the acoustical field until all the sources are used, the developed MIMO-PBP method achieves faster image reconstruction by utilizing multiple source simultaneous excitation. Furthermore, we develop an orthogonal waveform signaling method using a waveform delay scheme to reduce the impact of speckle patterns in the reconstructed images. By numerical experiments we demonstrate that the proposed MIMO-PBP tomographic imaging method results in faster convergence and achieves superior imaging quality.

  5. Video based object representation and classification using multiple covariance matrices.

    PubMed

    Zhang, Yurong; Liu, Quan

    2017-01-01

    Video based object recognition and classification has been widely studied in computer vision and image processing area. One main issue of this task is to develop an effective representation for video. This problem can generally be formulated as image set representation. In this paper, we present a new method called Multiple Covariance Discriminative Learning (MCDL) for image set representation and classification problem. The core idea of MCDL is to represent an image set using multiple covariance matrices with each covariance matrix representing one cluster of images. Firstly, we use the Nonnegative Matrix Factorization (NMF) method to do image clustering within each image set, and then adopt Covariance Discriminative Learning on each cluster (subset) of images. At last, we adopt KLDA and nearest neighborhood classification method for image set classification. Promising experimental results on several datasets show the effectiveness of our MCDL method.

  6. Simultaneous acquisition of differing image types

    DOEpatents

    Demos, Stavros G

    2012-10-09

    A system in one embodiment includes an image forming device for forming an image from an area of interest containing different image components; an illumination device for illuminating the area of interest with light containing multiple components; at least one light source coupled to the illumination device, the at least one light source providing light to the illumination device containing different components, each component having distinct spectral characteristics and relative intensity; an image analyzer coupled to the image forming device, the image analyzer decomposing the image formed by the image forming device into multiple component parts based on type of imaging; and multiple image capture devices, each image capture device receiving one of the component parts of the image. A method in one embodiment includes receiving an image from an image forming device; decomposing the image formed by the image forming device into multiple component parts based on type of imaging; receiving the component parts of the image; and outputting image information based on the component parts of the image. Additional systems and methods are presented.

  7. Sequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore

    PubMed Central

    Lidke, Diane S.; Lidke, Keith A.

    2015-01-01

    Fluorescence superresolution (SR) microscopy, or fluorescence nanoscopy, provides nanometer scale detail of cellular structures and allows for imaging of biological processes at the molecular level. Specific SR imaging methods, such as localization-based imaging, rely on stochastic transitions between on (fluorescent) and off (dark) states of fluorophores. Imaging multiple cellular structures using multi-color imaging is complicated and limited by the differing properties of various organic dyes including their fluorescent state duty cycle, photons per switching event, number of fluorescent cycles before irreversible photobleaching, and overall sensitivity to buffer conditions. In addition, multiple color imaging requires consideration of multiple optical paths or chromatic aberration that can lead to differential aberrations that are important at the nanometer scale. Here, we report a method for sequential labeling and imaging that allows for SR imaging of multiple targets using a single fluorophore with negligible cross-talk between images. Using brightfield image correlation to register and overlay multiple image acquisitions with ~10 nm overlay precision in the x-y imaging plane, we have exploited the optimal properties of AlexaFluor647 for dSTORM to image four distinct cellular proteins. We also visualize the changes in co-localization of the epidermal growth factor (EGF) receptor and clathrin upon EGF addition that are consistent with clathrin-mediated endocytosis. These results are the first to demonstrate sequential SR (s-SR) imaging using direct stochastic reconstruction microscopy (dSTORM), and this method for sequential imaging can be applied to any superresolution technique. PMID:25860558

  8. Self-calibrated Multiple-echo Acquisition with Radial Trajectories using the Conjugate Gradient Method (SMART-CG)

    PubMed Central

    Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.

    2011-01-01

    Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967

  9. Research on polarization imaging information parsing method

    NASA Astrophysics Data System (ADS)

    Yuan, Hongwu; Zhou, Pucheng; Wang, Xiaolong

    2016-11-01

    Polarization information parsing plays an important role in polarization imaging detection. This paper focus on the polarization information parsing method: Firstly, the general process of polarization information parsing is given, mainly including polarization image preprocessing, multiple polarization parameters calculation, polarization image fusion and polarization image tracking, etc.; And then the research achievements of the polarization information parsing method are presented, in terms of polarization image preprocessing, the polarization image registration method based on the maximum mutual information is designed. The experiment shows that this method can improve the precision of registration and be satisfied the need of polarization information parsing; In terms of multiple polarization parameters calculation, based on the omnidirectional polarization inversion model is built, a variety of polarization parameter images are obtained and the precision of inversion is to be improve obviously; In terms of polarization image fusion , using fuzzy integral and sparse representation, the multiple polarization parameters adaptive optimal fusion method is given, and the targets detection in complex scene is completed by using the clustering image segmentation algorithm based on fractal characters; In polarization image tracking, the average displacement polarization image characteristics of auxiliary particle filtering fusion tracking algorithm is put forward to achieve the smooth tracking of moving targets. Finally, the polarization information parsing method is applied to the polarization imaging detection of typical targets such as the camouflage target, the fog and latent fingerprints.

  10. A multiple-point spatially weighted k-NN method for object-based classification

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.

    2016-10-01

    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.

  11. Multiple Representations-Based Face Sketch-Photo Synthesis.

    PubMed

    Peng, Chunlei; Gao, Xinbo; Wang, Nannan; Tao, Dacheng; Li, Xuelong; Li, Jie

    2016-11-01

    Face sketch-photo synthesis plays an important role in law enforcement and digital entertainment. Most of the existing methods only use pixel intensities as the feature. Since face images can be described using features from multiple aspects, this paper presents a novel multiple representations-based face sketch-photo-synthesis method that adaptively combines multiple representations to represent an image patch. In particular, it combines multiple features from face images processed using multiple filters and deploys Markov networks to exploit the interacting relationships between the neighboring image patches. The proposed framework could be solved using an alternating optimization strategy and it normally converges in only five outer iterations in the experiments. Our experimental results on the Chinese University of Hong Kong (CUHK) face sketch database, celebrity photos, CUHK Face Sketch FERET Database, IIIT-D Viewed Sketch Database, and forensic sketches demonstrate the effectiveness of our method for face sketch-photo synthesis. In addition, cross-database and database-dependent style-synthesis evaluations demonstrate the generalizability of this novel method and suggest promising solutions for face identification in forensic science.

  12. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    PubMed Central

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  13. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    PubMed

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  14. Automatic Selection of Multiple Images in the Frontier Field Clusters

    NASA Astrophysics Data System (ADS)

    Mahler, Guillaume; Richard, Johan; Patricio, Vera; Clément, Benjamin; Lagattuta, David

    2015-08-01

    Probing the central mass distribution of massive galaxy clusters is an important step towards mapping the overall distribution of their dark matter content. Thanks to gravitational lensing and the appearance of multiple images, we can constrain the inner region of galaxy clusters with a high precision. The Frontier Fields (FF) provide us with the deepest HST data ever in such clusters. Currently, most multiple-image systems are found by eye, yet in the FF, we expect hundreds to exist.Thus, In order to deal with such huge amounts of data, we need to method develop an automated detection method.I present a new tool to perform this task, MISE (Multiple Images SEarcher), a program which identifies multiple images by combining their specific properties. In particular, multiple images must: a) have similar colors, b) have similar surface brightnesses, and c) appear in locations predicted by a specific lensing configuration.I will describe the tuning and performances of MISE on both the FF clusters and the simulated clusters HERA and ARES. MISE allows us to not confirm multiple images identified visually, but also detect new multiple-image candidates in MACS0416 and A2744, giving us additional constraints on the mass distribution in these clusters. A spectroscopic follow-up of these candidates is currently underway with MUSE.

  15. Estimating weak ratiometric signals in imaging data. II. Meta-analysis with multiple, dual-channel datasets.

    PubMed

    Sornborger, Andrew; Broder, Josef; Majumder, Anirban; Srinivasamoorthy, Ganesh; Porter, Erika; Reagin, Sean S; Keith, Charles; Lauderdale, James D

    2008-09-01

    Ratiometric fluorescent indicators are used for making quantitative measurements of a variety of physiological variables. Their utility is often limited by noise. This is the second in a series of papers describing statistical methods for denoising ratiometric data with the aim of obtaining improved quantitative estimates of variables of interest. Here, we outline a statistical optimization method that is designed for the analysis of ratiometric imaging data in which multiple measurements have been taken of systems responding to the same stimulation protocol. This method takes advantage of correlated information across multiple datasets for objectively detecting and estimating ratiometric signals. We demonstrate our method by showing results of its application on multiple, ratiometric calcium imaging experiments.

  16. Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Su, Yi

    2010-05-01

    This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.

  17. De-noising of 3D multiple-coil MR images using modified LMMSE estimator.

    PubMed

    Yaghoobi, Nima; Hasanzadeh, Reza P R

    2018-06-20

    De-noising is a crucial topic in Magnetic Resonance Imaging (MRI) which focuses on less loss of Magnetic Resonance (MR) image information and details preservation during the noise suppression. Nowadays multiple-coil MRI system is preferred to single one due to its acceleration in the imaging process. Due to the fact that the model of noise in single-coil and multiple-coil MRI systems are different, the de-noising methods that mostly are adapted to single-coil MRI systems, do not work appropriately with multiple-coil one. The model of noise in single-coil MRI systems is Rician while in multiple-coil one (if no subsampling occurs in k-space or GRAPPA reconstruction process is being done in the coils), it obeys noncentral Chi (nc-χ). In this paper, a new filtering method based on the Linear Minimum Mean Square Error (LMMSE) estimator is proposed for multiple-coil MR Images ruined by nc-χ noise. In the presented method, to have an optimum similarity selection of voxels, the Bayesian Mean Square Error (BMSE) criterion is used and proved for nc-χ noise model and also a nonlocal voxel selection methodology is proposed for nc-χ distribution. The results illustrate robust and accurate performance compared to the related state-of-the-art methods, either on ideal nc-χ images or GRAPPA reconstructed ones. Copyright © 2018. Published by Elsevier Inc.

  18. On Max-Plus Algebra and Its Application on Image Steganography

    PubMed Central

    Santoso, Kiswara Agung

    2018-01-01

    We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems. PMID:29887761

  19. On Max-Plus Algebra and Its Application on Image Steganography.

    PubMed

    Santoso, Kiswara Agung; Fatmawati; Suprajitno, Herry

    2018-01-01

    We propose a new steganography method to hide an image into another image using matrix multiplication operations on max-plus algebra. This is especially interesting because the matrix used in encoding or information disguises generally has an inverse, whereas matrix multiplication operations in max-plus algebra do not have an inverse. The advantages of this method are the size of the image that can be hidden into the cover image, larger than the previous method. The proposed method has been tested on many secret images, and the results are satisfactory which have a high level of strength and a high level of security and can be used in various operating systems.

  20. Passive synthetic aperture radar imaging of ground moving targets

    NASA Astrophysics Data System (ADS)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  1. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.

    PubMed

    Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong

    2015-07-01

    To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.

  2. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    PubMed

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.

  3. Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm

    NASA Astrophysics Data System (ADS)

    Karaca, Yeliz; Cattani, Carlo

    Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.

  4. Intensity ratio to improve black hole assessment in multiple sclerosis.

    PubMed

    Adusumilli, Gautam; Trinkaus, Kathryn; Sun, Peng; Lancia, Samantha; Viox, Jeffrey D; Wen, Jie; Naismith, Robert T; Cross, Anne H

    2018-01-01

    Improved imaging methods are critical to assess neurodegeneration and remyelination in multiple sclerosis. Chronic hypointensities observed on T1-weighted brain MRI, "persistent black holes," reflect severe focal tissue damage. Present measures consist of determining persistent black holes numbers and volumes, but do not quantitate severity of individual lesions. Develop a method to differentiate black and gray holes and estimate the severity of individual multiple sclerosis lesions using standard magnetic resonance imaging. 38 multiple sclerosis patients contributed images. Intensities of lesions on T1-weighted scans were assessed relative to cerebrospinal fluid intensity using commercial software. Magnetization transfer imaging, diffusion tensor imaging and clinical testing were performed to assess associations with T1w intensity-based measures. Intensity-based assessments of T1w hypointensities were reproducible and achieved > 90% concordance with expert rater determinations of "black" and "gray" holes. Intensity ratio values correlated with magnetization transfer ratios (R = 0.473) and diffusion tensor imaging metrics (R values ranging from 0.283 to -0.531) that have been associated with demyelination and axon loss. Intensity ratio values incorporated into T1w hypointensity volumes correlated with clinical measures of cognition. This method of determining the degree of hypointensity within multiple sclerosis lesions can add information to conventional imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Systems and Methods for Imaging of Falling Objects

    NASA Technical Reports Server (NTRS)

    Fallgatter, Cale (Inventor); Garrett, Tim (Inventor)

    2014-01-01

    Imaging of falling objects is described. Multiple images of a falling object can be captured substantially simultaneously using multiple cameras located at multiple angles around the falling object. An epipolar geometry of the captured images can be determined. The images can be rectified to parallelize epipolar lines of the epipolar geometry. Correspondence points between the images can be identified. At least a portion of the falling object can be digitally reconstructed using the identified correspondence points to create a digital reconstruction.

  6. Self-calibrated multiple-echo acquisition with radial trajectories using the conjugate gradient method (SMART-CG).

    PubMed

    Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F

    2011-04-01

    To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.

  7. Threshold selection for classification of MR brain images by clustering method

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Obreja, Cristian; Moraru, Luminita

    2015-12-01

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

  8. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  9. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    PubMed Central

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-01-01

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879

  10. Recovering of images degraded by atmosphere

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2017-08-01

    Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.

  11. Multiplicative noise removal via a learned dictionary.

    PubMed

    Huang, Yu-Mei; Moisan, Lionel; Ng, Michael K; Zeng, Tieyong

    2012-11-01

    Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods.

  12. System and method for image registration of multiple video streams

    DOEpatents

    Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton

    2018-02-06

    Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.

  13. Method and apparatus for the simultaneous display and correlation of independently generated images

    DOEpatents

    Vaitekunas, Jeffrey J.; Roberts, Ronald A.

    1991-01-01

    An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.

  14. Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Yang, Liumao; Li, Shutao; Rabbani, Hossein; Liu, Zhimin; Peng, Qinghua; Chen, Xiangdong

    2017-06-01

    Detection and recognition of macular lesions in optical coherence tomography (OCT) are very important for retinal diseases diagnosis and treatment. As one kind of retinal disease (e.g., diabetic retinopathy) may contain multiple lesions (e.g., edema, exudates, and microaneurysms) and eye patients may suffer from multiple retinal diseases, multiple lesions often coexist within one retinal image. Therefore, one single-lesion-based detector may not support the diagnosis of clinical eye diseases. To address this issue, we propose a multi-instance multilabel-based lesions recognition (MIML-LR) method for the simultaneous detection and recognition of multiple lesions. The proposed MIML-LR method consists of the following steps: (1) segment the regions of interest (ROIs) for different lesions, (2) compute descriptive instances (features) for each lesion region, (3) construct multilabel detectors, and (4) recognize each ROI with the detectors. The proposed MIML-LR method was tested on 823 clinically labeled OCT images with normal macular and macular with three common lesions: epiretinal membrane, edema, and drusen. For each input OCT image, our MIML-LR method can automatically identify the number of lesions and assign the class labels, achieving the average accuracy of 88.72% for the cases with multiple lesions, which better assists macular disease diagnosis and treatment.

  15. Threshold selection for classification of MR brain images by clustering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldovanu, Simona; Dumitru Moţoc High School, 15 Milcov St., 800509, Galaţi; Obreja, Cristian

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzedmore » images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.« less

  16. Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis

    PubMed Central

    Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk

    2017-01-01

    Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066

  17. Large size three-dimensional video by electronic holography using multiple spatial light modulators

    PubMed Central

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-01-01

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees. PMID:25146685

  18. Large size three-dimensional video by electronic holography using multiple spatial light modulators.

    PubMed

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-08-22

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees.

  19. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    NASA Astrophysics Data System (ADS)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  20. Developing image processing meta-algorithms with data mining of multiple metrics.

    PubMed

    Leung, Kelvin; Cunha, Alexandre; Toga, A W; Parker, D Stott

    2014-01-01

    People often use multiple metrics in image processing, but here we take a novel approach of mining the values of batteries of metrics on image processing results. We present a case for extending image processing methods to incorporate automated mining of multiple image metric values. Here by a metric we mean any image similarity or distance measure, and in this paper we consider intensity-based and statistical image measures and focus on registration as an image processing problem. We show how it is possible to develop meta-algorithms that evaluate different image processing results with a number of different metrics and mine the results in an automated fashion so as to select the best results. We show that the mining of multiple metrics offers a variety of potential benefits for many image processing problems, including improved robustness and validation.

  1. An efficient gridding reconstruction method for multishot non-Cartesian imaging with correction of off-resonance artifacts.

    PubMed

    Meng, Yuguang; Lei, Hao

    2010-06-01

    An efficient iterative gridding reconstruction method with correction of off-resonance artifacts was developed, which is especially tailored for multiple-shot non-Cartesian imaging. The novelty of the method lies in that the transformation matrix for gridding (T) was constructed as the convolution of two sparse matrices, among which the former is determined by the sampling interval and the spatial distribution of the off-resonance frequencies and the latter by the sampling trajectory and the target grid in the Cartesian space. The resulting T matrix is also sparse and can be solved efficiently with the iterative conjugate gradient algorithm. It was shown that, with the proposed method, the reconstruction speed in multiple-shot non-Cartesian imaging can be improved significantly while retaining high reconstruction fidelity. More important, the method proposed allows tradeoff between the accuracy and the computation time of reconstruction, making customization of the use of such a method in different applications possible. The performance of the proposed method was demonstrated by numerical simulation and multiple-shot spiral imaging on rat brain at 4.7 T. (c) 2010 Wiley-Liss, Inc.

  2. Patch Based Synthesis of Whole Head MR Images: Application to EPI Distortion Correction.

    PubMed

    Roy, Snehashis; Chou, Yi-Yu; Jog, Amod; Butman, John A; Pham, Dzung L

    2016-10-01

    Different magnetic resonance imaging pulse sequences are used to generate image contrasts based on physical properties of tissues, which provide different and often complementary information about them. Therefore multiple image contrasts are useful for multimodal analysis of medical images. Often, medical image processing algorithms are optimized for particular image contrasts. If a desirable contrast is unavailable, contrast synthesis (or modality synthesis) methods try to "synthesize" the unavailable constrasts from the available ones. Most of the recent image synthesis methods generate synthetic brain images, while whole head magnetic resonance (MR) images can also be useful for many applications. We propose an atlas based patch matching algorithm to synthesize T 2 -w whole head (including brain, skull, eyes etc) images from T 1 -w images for the purpose of distortion correction of diffusion weighted MR images. The geometric distortion in diffusion MR images due to in-homogeneous B 0 magnetic field are often corrected by non-linearly registering the corresponding b = 0 image with zero diffusion gradient to an undistorted T 2 -w image. We show that our synthetic T 2 -w images can be used as a template in absence of a real T 2 -w image. Our patch based method requires multiple atlases with T 1 and T 2 to be registeLowRes to a given target T 1 . Then for every patch on the target, multiple similar looking matching patches are found on the atlas T 1 images and corresponding patches on the atlas T 2 images are combined to generate a synthetic T 2 of the target. We experimented on image data obtained from 44 patients with traumatic brain injury (TBI), and showed that our synthesized T 2 images produce more accurate distortion correction than a state-of-the-art registration based image synthesis method.

  3. Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images

    PubMed Central

    Dai, Weiying; Soman, Salil; Hackney, David B.; Wong, Eric T.; Robson, Philip M.; Alsop, David C.

    2017-01-01

    Functional imaging provides hemodynamic and metabolic information and is increasingly being incorporated into clinical diagnostic and research studies. Typically functional images have reduced signal-to-noise ratio and spatial resolution compared to other non-functional cross sectional images obtained as part of a routine clinical protocol. We hypothesized that enhancing visualization and interpretation of functional images with anatomic information could provide preferable quality and superior diagnostic value. In this work, we implemented five methods (frequency addition, frequency multiplication, wavelet transform, non-subsampled contourlet transform and intensity-hue-saturation) and a newly proposed ShArpening by Local Similarity with Anatomic images (SALSA) method to enhance the visualization of functional images, while preserving the original functional contrast and quantitative signal intensity characteristics over larger spatial scales. Arterial spin labeling blood flow MR images of the brain were visualization enhanced using anatomic images with multiple contrasts. The algorithms were validated on a numerical phantom and their performance on images of brain tumor patients were assessed by quantitative metrics and neuroradiologist subjective ratings. The frequency multiplication method had the lowest residual error for preserving the original functional image contrast at larger spatial scales (55%–98% of the other methods with simulated data and 64%–86% with experimental data). It was also significantly more highly graded by the radiologists (p<0.005 for clear brain anatomy around the tumor). Compared to other methods, the SALSA provided 11%–133% higher similarity with ground truth images in the simulation and showed just slightly lower neuroradiologist grading score. Most of these monochrome methods do not require any prior knowledge about the functional and anatomic image characteristics, except the acquired resolution. Hence, automatic implementation on clinical images should be readily feasible. PMID:27723582

  4. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  5. Performance evaluation of the multiple-image optical compression and encryption method by increasing the number of target images

    NASA Astrophysics Data System (ADS)

    Aldossari, M.; Alfalou, A.; Brosseau, C.

    2017-08-01

    In an earlier study [Opt. Express 22, 22349-22368 (2014)], a compression and encryption method that simultaneous compress and encrypt closely resembling images was proposed and validated. This multiple-image optical compression and encryption (MIOCE) method is based on a special fusion of the different target images spectra in the spectral domain. Now for the purpose of assessing the capacity of the MIOCE method, we would like to evaluate and determine the influence of the number of target images. This analysis allows us to evaluate the performance limitation of this method. To achieve this goal, we use a criterion based on the root-mean-square (RMS) [Opt. Lett. 35, 1914-1916 (2010)] and compression ratio to determine the spectral plane area. Then, the different spectral areas are merged in a single spectrum plane. By choosing specific areas, we can compress together 38 images instead of 26 using the classical MIOCE method. The quality of the reconstructed image is evaluated by making use of the mean-square-error criterion (MSE).

  6. Alpha trimmed correlation for touchless finger image mosaicing

    NASA Astrophysics Data System (ADS)

    Rao, Shishir P.; Rajendran, Rahul; Agaian, Sos S.; Mulawka, Marzena Mary Ann

    2016-05-01

    In this paper, a novel technique to mosaic multiview contactless finger images is presented. This technique makes use of different correlation methods, such as, the Alpha-trimmed correlation, Pearson's correlation [1], Kendall's correlation [2], and Spearman's correlation [2], to combine multiple views of the finger. The key contributions of the algorithm are: 1) stitches images more accurately, 2) provides better image fusion effects, 3) has better visual effect on the overall image, and 4) is more reliable. The extensive computer simulations show that the proposed method produces better or comparable stitched images than several state-of-the-art methods, such as those presented by Feng Liu [3], K Choi [4], H Choi [5], and G Parziale [6]. In addition, we also compare various correlation techniques with the correlation method mentioned in [3] and analyze the output. In the future, this method can be extended to obtain a 3D model of the finger using multiple views of the finger, and help in generating scenic panoramic images and underwater 360-degree panoramas.

  7. Multiview echocardiography fusion using an electromagnetic tracking system.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; Paakkanen, Riitta; Khan, Nehan; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Three-dimensional ultrasound is an emerging modality for the assessment of complex cardiac anatomy and function. The advantages of this modality include lack of ionizing radiation, portability, low cost, and high temporal resolution. Major limitations include limited field-of-view, reliance on frequently limited acoustic windows, and poor signal to noise ratio. This study proposes a novel approach to combine multiple views into a single image using an electromagnetic tracking system in order to improve the field-of-view. The novel method has several advantages: 1) it does not rely on image information for alignment, and therefore, the method does not require image overlap; 2) the alignment accuracy of the proposed approach is not affected by any poor image quality as in the case of image registration based approaches; 3) in contrast to previous optical tracking based system, the proposed approach does not suffer from line-of-sight limitation; and 4) it does not require any initial calibration. In this pilot project, we were able to show that using a heart phantom, our method can fuse multiple echocardiographic images and improve the field-of view. Quantitative evaluations showed that the proposed method yielded a nearly optimal alignment of image data sets in three-dimensional space. The proposed method demonstrates the electromagnetic system can be used for the fusion of multiple echocardiography images with a seamless integration of sensors to the transducer.

  8. Developing Image Processing Meta-Algorithms with Data Mining of Multiple Metrics

    PubMed Central

    Cunha, Alexandre; Toga, A. W.; Parker, D. Stott

    2014-01-01

    People often use multiple metrics in image processing, but here we take a novel approach of mining the values of batteries of metrics on image processing results. We present a case for extending image processing methods to incorporate automated mining of multiple image metric values. Here by a metric we mean any image similarity or distance measure, and in this paper we consider intensity-based and statistical image measures and focus on registration as an image processing problem. We show how it is possible to develop meta-algorithms that evaluate different image processing results with a number of different metrics and mine the results in an automated fashion so as to select the best results. We show that the mining of multiple metrics offers a variety of potential benefits for many image processing problems, including improved robustness and validation. PMID:24653748

  9. Subpixel resolution from multiple images

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Rob; Stutz, John; Kraft, Richard

    1994-01-01

    Multiple images taken from similar locations and under similar lighting conditions contain similar, but not identical, information. Slight differences in instrument orientation and position produces mismatches between the projected pixel grids. These mismatches ensure that any point on the ground is sampled differently in each image. If all the images can be registered with respect to each other to a small fraction of a pixel accuracy, then the information from the multiple images can be combined to increase linear resolution by roughly the square root of the number of images. In addition, the gray-scale resolution of the composite image is also improved. We describe methods for multiple image registration and combination, and discuss some of the problems encountered in developing and extending them. We display test results with 8:1 resolution enhancement, and Viking Orbiter imagery with 2:1 and 4:1 enhancements.

  10. Learning to rank atlases for multiple-atlas segmentation.

    PubMed

    Sanroma, Gerard; Wu, Guorong; Gao, Yaozong; Shen, Dinggang

    2014-10-01

    Recently, multiple-atlas segmentation (MAS) has achieved a great success in the medical imaging area. The key assumption is that multiple atlases have greater chances of correctly labeling a target image than a single atlas. However, the problem of atlas selection still remains unexplored. Traditionally, image similarity is used to select a set of atlases. Unfortunately, this heuristic criterion is not necessarily related to the final segmentation performance. To solve this seemingly simple but critical problem, we propose a learning-based atlas selection method to pick up the best atlases that would lead to a more accurate segmentation. Our main idea is to learn the relationship between the pairwise appearance of observed instances (i.e., a pair of atlas and target images) and their final labeling performance (e.g., using the Dice ratio). In this way, we select the best atlases based on their expected labeling accuracy. Our atlas selection method is general enough to be integrated with any existing MAS method. We show the advantages of our atlas selection method in an extensive experimental evaluation in the ADNI, SATA, IXI, and LONI LPBA40 datasets. As shown in the experiments, our method can boost the performance of three widely used MAS methods, outperforming other learning-based and image-similarity-based atlas selection methods.

  11. Novel image encryption algorithm based on multiple-parameter discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Dong, Taiji; Wu, Jianhua

    2010-08-01

    A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.

  12. Novel Multistatic Adaptive Microwave Imaging Methods for Early Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Xie, Yao; Guo, Bin; Li, Jian; Stoica, Petre

    2006-12-01

    Multistatic adaptive microwave imaging (MAMI) methods are presented and compared for early breast cancer detection. Due to the significant contrast between the dielectric properties of normal and malignant breast tissues, developing microwave imaging techniques for early breast cancer detection has attracted much interest lately. MAMI is one of the microwave imaging modalities and employs multiple antennas that take turns to transmit ultra-wideband (UWB) pulses while all antennas are used to receive the reflected signals. MAMI can be considered as a special case of the multi-input multi-output (MIMO) radar with the multiple transmitted waveforms being either UWB pulses or zeros. Since the UWB pulses transmitted by different antennas are displaced in time, the multiple transmitted waveforms are orthogonal to each other. The challenge to microwave imaging is to improve resolution and suppress strong interferences caused by the breast skin, nipple, and so forth. The MAMI methods we investigate herein utilize the data-adaptive robust Capon beamformer (RCB) to achieve high resolution and interference suppression. We will demonstrate the effectiveness of our proposed methods for breast cancer detection via numerical examples with data simulated using the finite-difference time-domain method based on a 3D realistic breast model.

  13. Optical multiple-image authentication based on cascaded phase filtering structure

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Alfalou, A.; Brosseau, C.

    2016-10-01

    In this study, we report on the recent developments of optical image authentication algorithms. Compared with conventional optical encryption, optical image authentication achieves more security strength because such methods do not need to recover information of plaintext totally during the decryption period. Several recently proposed authentication systems are briefly introduced. We also propose a novel multiple-image authentication system, where multiple original images are encoded into a photon-limited encoded image by using a triple-plane based phase retrieval algorithm and photon counting imaging (PCI) technique. One can only recover a noise-like image using correct keys. To check authority of multiple images, a nonlinear fractional correlation is employed to recognize the original information hidden in the decrypted results. The proposal can be implemented optically using a cascaded phase filtering configuration. Computer simulation results are presented to evaluate the performance of this proposal and its effectiveness.

  14. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions.

    PubMed

    Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A

    2008-10-01

    Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.

  15. Apparatus and method to achieve high-resolution microscopy with non-diffracting or refracting radiation

    DOEpatents

    Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.

    2012-11-06

    An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.

  16. Detection of Multiple Stationary Humans Using UWB MIMO Radar.

    PubMed

    Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi

    2016-11-16

    Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.

  17. Detection of Multiple Stationary Humans Using UWB MIMO Radar

    PubMed Central

    Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi

    2016-01-01

    Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls. PMID:27854356

  18. System and method for progressive band selection for hyperspectral images

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.

  19. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    NASA Astrophysics Data System (ADS)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  20. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  1. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  2. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  3. Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.

    PubMed

    Rajan, Jeny; Veraart, Jelle; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan

    2012-12-01

    Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  5. Multiscale Medical Image Fusion in Wavelet Domain

    PubMed Central

    Khare, Ashish

    2013-01-01

    Wavelet transforms have emerged as a powerful tool in image fusion. However, the study and analysis of medical image fusion is still a challenging area of research. Therefore, in this paper, we propose a multiscale fusion of multimodal medical images in wavelet domain. Fusion of medical images has been performed at multiple scales varying from minimum to maximum level using maximum selection rule which provides more flexibility and choice to select the relevant fused images. The experimental analysis of the proposed method has been performed with several sets of medical images. Fusion results have been evaluated subjectively and objectively with existing state-of-the-art fusion methods which include several pyramid- and wavelet-transform-based fusion methods and principal component analysis (PCA) fusion method. The comparative analysis of the fusion results has been performed with edge strength (Q), mutual information (MI), entropy (E), standard deviation (SD), blind structural similarity index metric (BSSIM), spatial frequency (SF), and average gradient (AG) metrics. The combined subjective and objective evaluations of the proposed fusion method at multiple scales showed the effectiveness and goodness of the proposed approach. PMID:24453868

  6. High resolution crustal image of South California Continental Borderland: Reverse time imaging including multiples

    NASA Astrophysics Data System (ADS)

    Bian, A.; Gantela, C.

    2014-12-01

    Strong multiples were observed in marine seismic data of Los Angeles Regional Seismic Experiment (LARSE).It is crucial to eliminate these multiples in conventional ray-based or one-way wave-equation based depth image methods. As long as multiples contain information of target zone along travelling path, it's possible to use them as signal, to improve the illumination coverage thus enhance the image quality of structural boundaries. Reverse time migration including multiples is a two-way wave-equation based prestack depth image method that uses both primaries and multiples to map structural boundaries. Several factors, including source wavelet, velocity model, back ground noise, data acquisition geometry and preprocessing workflow may influence the quality of image. The source wavelet is estimated from direct arrival of marine seismic data. Migration velocity model is derived from integrated model building workflow, and the sharp velocity interfaces near sea bottom needs to be preserved in order to generate multiples in the forward and backward propagation steps. The strong amplitude, low frequency marine back ground noise needs to be removed before the final imaging process. High resolution reverse time image sections of LARSE Lines 1 and Line 2 show five interfaces: depth of sea-bottom, base of sedimentary basins, top of Catalina Schist, a deep layer and a possible pluton boundary. Catalina Schist shows highs in the San Clemente ridge, Emery Knoll, Catalina Ridge, under Catalina Basin on both the lines, and a minor high under Avalon Knoll. The high of anticlinal fold in Line 1 is under the north edge of Emery Knoll and under the San Clemente fault zone. An area devoid of any reflection features are interpreted as sides of an igneous plume.

  7. Variance based joint sparsity reconstruction of synthetic aperture radar data for speckle reduction

    NASA Astrophysics Data System (ADS)

    Scarnati, Theresa; Gelb, Anne

    2018-04-01

    In observing multiple synthetic aperture radar (SAR) images of the same scene, it is apparent that the brightness distributions of the images are not smooth, but rather composed of complicated granular patterns of bright and dark spots. Further, these brightness distributions vary from image to image. This salt and pepper like feature of SAR images, called speckle, reduces the contrast in the images and negatively affects texture based image analysis. This investigation uses the variance based joint sparsity reconstruction method for forming SAR images from the multiple SAR images. In addition to reducing speckle, the method has the advantage of being non-parametric, and can therefore be used in a variety of autonomous applications. Numerical examples include reconstructions of both simulated phase history data that result in speckled images as well as the images from the MSTAR T-72 database.

  8. Weak scratch detection and defect classification methods for a large-aperture optical element

    NASA Astrophysics Data System (ADS)

    Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng

    2017-03-01

    Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.

  9. Multi-view 3D echocardiography compounding based on feature consistency

    NASA Astrophysics Data System (ADS)

    Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.

    2011-09-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  10. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  11. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.

    PubMed

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru

    2007-11-01

    Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.

  12. Fast and robust brain tumor segmentation using level set method with multiple image information.

    PubMed

    Lok, Ka Hei; Shi, Lin; Zhu, Xianlun; Wang, Defeng

    2017-01-01

    Brain tumor segmentation is a challenging task for its variation in intensity. The phenomenon is caused by the inhomogeneous content of tumor tissue and the choice of imaging modality. In 2010 Zhang developed the Selective Binary Gaussian Filtering Regularizing Level Set (SBGFRLS) model that combined the merits of edge-based and region-based segmentation. To improve the SBGFRLS method by modifying the singed pressure force (SPF) term with multiple image information and demonstrate effectiveness of proposed method on clinical images. In original SBGFRLS model, the contour evolution direction mainly depends on the SPF. By introducing a directional term in SPF, the metric could control the evolution direction. The SPF is altered by statistic values enclosed by the contour. This concept can be extended to jointly incorporate multiple image information. The new SPF term is expected to bring a solution for blur edge problem in brain tumor segmentation. The proposed method is validated with clinical images including pre- and post-contrast magnetic resonance images. The accuracy and robustness is compared with sensitivity, specificity, DICE similarity coefficient and Jaccard similarity index. Experimental results show improvement, in particular the increase of sensitivity at the same specificity, in segmenting all types of tumors except for the diffused tumor. The novel brain tumor segmentation method is clinical-oriented with fast, robust and accurate implementation and a minimal user interaction. The method effectively segmented homogeneously enhanced, non-enhanced, heterogeneously-enhanced, and ring-enhanced tumor under MR imaging. Though the method is limited by identifying edema and diffuse tumor, several possible solutions are suggested to turn the curve evolution into a fully functional clinical diagnosis tool.

  13. Imaging complex objects using learning tomography

    NASA Astrophysics Data System (ADS)

    Lim, JooWon; Goy, Alexandre; Shoreh, Morteza Hasani; Unser, Michael; Psaltis, Demetri

    2018-02-01

    Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a biological cell.

  14. On an image reconstruction method for ECT

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  15. Nighttime images fusion based on Laplacian pyramid

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Zhan, Jinhao; Jin, Jicheng

    2018-02-01

    This paper expounds method of the average weighted fusion, image pyramid fusion, the wavelet transform and apply these methods on the fusion of multiple exposures nighttime images. Through calculating information entropy and cross entropy of fusion images, we can evaluate the effect of different fusion. Experiments showed that Laplacian pyramid image fusion algorithm is suitable for processing nighttime images fusion, it can reduce the halo while preserving image details.

  16. High Dynamic Range Imaging Using Multiple Exposures

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  17. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  18. Physics of cardiac imaging with multiple-row detector CT.

    PubMed

    Mahesh, Mahadevappa; Cody, Dianna D

    2007-01-01

    Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.

  19. Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample

    NASA Astrophysics Data System (ADS)

    Popescu, Dan P.; Hewko, Mark D.; Sowa, Michael G.

    2007-01-01

    This study demonstrates a simple method for attenuating the speckle noise generated by coherent multiple-scattered photons in optical-coherence tomography images. The method could be included among the space-diversity techniques used for speckle reduction. It relies on displacing the sample along a weakly focused beam in the sample arm of the interferometer, acquiring a coherent image for each sample position and adding the individual images to form a compounded image. It is proven that the compounded image displays a reduction in the speckle noise generated by multiple scattered photons and an enhancement in the intensity signal caused by single-backscattered photons. To evaluate its potential biomedical applications, the method is used to investigate in vitro a caries lesion affecting the enamel layer of a wisdom tooth. Because of the uncorrelated nature of the speckle noise the compounded image provides a better mapping of the lesion compared to a single (coherent) image.

  20. Non-uniform refractive index field measurement based on light field imaging technique

    NASA Astrophysics Data System (ADS)

    Du, Xiaokun; Zhang, Yumin; Zhou, Mengjie; Xu, Dong

    2018-02-01

    In this paper, a method for measuring the non-uniform refractive index field based on the light field imaging technique is proposed. First, the light field camera is used to collect the four-dimensional light field data, and then the light field data is decoded according to the light field imaging principle to obtain image sequences with different acquisition angles of the refractive index field. Subsequently PIV (Particle Image Velocimetry) technique is used to extract ray offset of each image. Finally, the distribution of non-uniform refractive index field can be calculated by inversing the deflection of light rays. Compared with traditional optical methods which require multiple optical detectors from multiple angles to synchronously collect data, the method proposed in this paper only needs a light field camera and shoot once. The effectiveness of the method has been verified by the experiment which quantitatively measures the distribution of the refractive index field above the flame of the alcohol lamp.

  1. Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.

    2018-04-01

    A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.

  2. Color correction with blind image restoration based on multiple images using a low-rank model

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Xudong; Lam, Kin-Man

    2014-03-01

    We present a method that can handle the color correction of multiple photographs with blind image restoration simultaneously and automatically. We prove that the local colors of a set of images of the same scene exhibit the low-rank property locally both before and after a color-correction operation. This property allows us to correct all kinds of errors in an image under a low-rank matrix model without particular priors or assumptions. The possible errors may be caused by changes of viewpoint, large illumination variations, gross pixel corruptions, partial occlusions, etc. Furthermore, a new iterative soft-segmentation method is proposed for local color transfer using color influence maps. Due to the fact that the correct color information and the spatial information of images can be recovered using the low-rank model, more precise color correction and many other image-restoration tasks-including image denoising, image deblurring, and gray-scale image colorizing-can be performed simultaneously. Experiments have verified that our method can achieve consistent and promising results on uncontrolled real photographs acquired from the Internet and that it outperforms current state-of-the-art methods.

  3. Algorithms for image recovery calculation in extended single-shot phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shin-ya; Hirata, Ryo

    2018-04-01

    The single-shot phase-shifting method of image recovery using an inclined reference wave has the advantages of reducing the effects of vibration, being capable of operating in real time, and affording low-cost sensing. In this method, relatively low reference angles compared with that in the conventional method using phase shift between three or four pixels has been required. We propose an extended single-shot phase-shifting technique which uses the multiple-step phase-shifting algorithm and the corresponding multiple pixels which are the same as that of the period of an interference fringe. We have verified the theory underlying this recovery method by means of Fourier spectral analysis and its effectiveness by evaluating the visibility of the image using a high-resolution pattern. Finally, we have demonstrated high-contrast image recovery experimentally using a resolution chart. This method can be used in a variety of applications such as color holographic interferometry.

  4. Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots.

    PubMed

    Genovesio, Auguste; Liedl, Tim; Emiliani, Valentina; Parak, Wolfgang J; Coppey-Moisan, Maité; Olivo-Marin, Jean-Christophe

    2006-05-01

    We propose a method to detect and track multiple moving biological spot-like particles showing different kinds of dynamics in image sequences acquired through multidimensional fluorescence microscopy. It enables the extraction and analysis of information such as number, position, speed, movement, and diffusion phases of, e.g., endosomal particles. The method consists of several stages. After a detection stage performed by a three-dimensional (3-D) undecimated wavelet transform, we compute, for each detected spot, several predictions of its future state in the next frame. This is accomplished thanks to an interacting multiple model (IMM) algorithm which includes several models corresponding to different biologically realistic movement types. Tracks are constructed, thereafter, by a data association algorithm based on the maximization of the likelihood of each IMM. The last stage consists of updating the IMM filters in order to compute final estimations for the present image and to improve predictions for the next image. The performances of the method are validated on synthetic image data and used to characterize the 3-D movement of endocytic vesicles containing quantum dots.

  5. Multispectral high-resolution hologram generation using orthographic projection images

    NASA Astrophysics Data System (ADS)

    Muniraj, I.; Guo, C.; Sheridan, J. T.

    2016-08-01

    We present a new method of synthesizing a digital hologram of three-dimensional (3D) real-world objects from multiple orthographic projection images (OPI). A high-resolution multiple perspectives of 3D objects (i.e., two dimensional elemental image array) are captured under incoherent white light using synthetic aperture integral imaging (SAII) technique and their OPIs are obtained respectively. The reference beam is then multiplied with the corresponding OPI and integrated to form a Fourier hologram. Eventually, a modified phase retrieval algorithm (GS/HIO) is applied to reconstruct the hologram. The principle is validated experimentally and the results support the feasibility of the proposed method.

  6. Combining multiple thresholding binarization values to improve OCR output

    NASA Astrophysics Data System (ADS)

    Lund, William B.; Kennard, Douglas J.; Ringger, Eric K.

    2013-01-01

    For noisy, historical documents, a high optical character recognition (OCR) word error rate (WER) can render the OCR text unusable. Since image binarization is often the method used to identify foreground pixels, a body of research seeks to improve image-wide binarization directly. Instead of relying on any one imperfect binarization technique, our method incorporates information from multiple simple thresholding binarizations of the same image to improve text output. Using a new corpus of 19th century newspaper grayscale images for which the text transcription is known, we observe WERs of 13.8% and higher using current binarization techniques and a state-of-the-art OCR engine. Our novel approach combines the OCR outputs from multiple thresholded images by aligning the text output and producing a lattice of word alternatives from which a lattice word error rate (LWER) is calculated. Our results show a LWER of 7.6% when aligning two threshold images and a LWER of 6.8% when aligning five. From the word lattice we commit to one hypothesis by applying the methods of Lund et al. (2011) achieving an improvement over the original OCR output and a 8.41% WER result on this data set.

  7. More Than the Verbal Stimulus Matters: Visual Attention in Language Assessment for People With Aphasia Using Multiple-Choice Image Displays

    PubMed Central

    Ivanova, Maria V.; Hallowell, Brooke

    2017-01-01

    Purpose Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic comprehension may influence performance. In this study we explore the influence of physical image characteristics of multiple-choice image displays on visual attention allocation by PWA. Method Eye fixations of 41 PWA were recorded while they viewed 40 multiple-choice image sets presented with and without verbal stimuli. Within each display, 3 images (majority images) were the same and 1 (singleton image) differed in terms of 1 image characteristic. The mean proportion of fixation duration (PFD) allocated across majority images was compared against the PFD allocated to singleton images. Results PWA allocated significantly greater PFD to the singleton than to the majority images in both nonverbal and verbal conditions. Those with greater severity of comprehension deficits allocated greater PFD to nontarget singleton images in the verbal condition. Conclusion When using tasks that rely on multiple-choice displays and verbal stimuli, one cannot assume that verbal stimuli will override the effect of visual-stimulus characteristics. PMID:28520866

  8. Design and implementation of GRID-based PACS in a hospital with multiple imaging departments

    NASA Astrophysics Data System (ADS)

    Yang, Yuanyuan; Jin, Jin; Sun, Jianyong; Zhang, Jianguo

    2008-03-01

    Usually, there were multiple clinical departments providing imaging-enabled healthcare services in enterprise healthcare environment, such as radiology, oncology, pathology, and cardiology, the picture archiving and communication system (PACS) is now required to support not only radiology-based image display, workflow and data flow management, but also to have more specific expertise imaging processing and management tools for other departments providing imaging-guided diagnosis and therapy, and there were urgent demand to integrate the multiple PACSs together to provide patient-oriented imaging services for enterprise collaborative healthcare. In this paper, we give the design method and implementation strategy of developing grid-based PACS (Grid-PACS) for a hospital with multiple imaging departments or centers. The Grid-PACS functions as a middleware between the traditional PACS archiving servers and workstations or image viewing clients and provide DICOM image communication and WADO services to the end users. The images can be stored in distributed multiple archiving servers, but can be managed with central mode. The grid-based PACS has auto image backup and disaster recovery services and can provide best image retrieval path to the image requesters based on the optimal algorithms. The designed grid-based PACS has been implemented in Shanghai Huadong Hospital and been running for two years smoothly.

  9. Multiple Sparse Representations Classification

    PubMed Central

    Plenge, Esben; Klein, Stefan S.; Niessen, Wiro J.; Meijering, Erik

    2015-01-01

    Sparse representations classification (SRC) is a powerful technique for pixelwise classification of images and it is increasingly being used for a wide variety of image analysis tasks. The method uses sparse representation and learned redundant dictionaries to classify image pixels. In this empirical study we propose to further leverage the redundancy of the learned dictionaries to achieve a more accurate classifier. In conventional SRC, each image pixel is associated with a small patch surrounding it. Using these patches, a dictionary is trained for each class in a supervised fashion. Commonly, redundant/overcomplete dictionaries are trained and image patches are sparsely represented by a linear combination of only a few of the dictionary elements. Given a set of trained dictionaries, a new patch is sparse coded using each of them, and subsequently assigned to the class whose dictionary yields the minimum residual energy. We propose a generalization of this scheme. The method, which we call multiple sparse representations classification (mSRC), is based on the observation that an overcomplete, class specific dictionary is capable of generating multiple accurate and independent estimates of a patch belonging to the class. So instead of finding a single sparse representation of a patch for each dictionary, we find multiple, and the corresponding residual energies provides an enhanced statistic which is used to improve classification. We demonstrate the efficacy of mSRC for three example applications: pixelwise classification of texture images, lumen segmentation in carotid artery magnetic resonance imaging (MRI), and bifurcation point detection in carotid artery MRI. We compare our method with conventional SRC, K-nearest neighbor, and support vector machine classifiers. The results show that mSRC outperforms SRC and the other reference methods. In addition, we present an extensive evaluation of the effect of the main mSRC parameters: patch size, dictionary size, and sparsity level. PMID:26177106

  10. Image sharpness assessment based on wavelet energy of edge area

    NASA Astrophysics Data System (ADS)

    Li, Jin; Zhang, Hong; Zhang, Lei; Yang, Yifan; He, Lei; Sun, Mingui

    2018-04-01

    Image quality assessment is needed in multiple image processing areas and blur is one of the key reasons of image deterioration. Although great full-reference image quality assessment metrics have been proposed in the past few years, no-reference method is still an area of current research. Facing this problem, this paper proposes a no-reference sharpness assessment method based on wavelet transformation which focuses on the edge area of image. Based on two simple characteristics of human vision system, weights are introduced to calculate weighted log-energy of each wavelet sub band. The final score is given by the ratio of high-frequency energy to the total energy. The algorithm is tested on multiple databases. Comparing with several state-of-the-art metrics, proposed algorithm has better performance and less runtime consumption.

  11. Image Size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography

    NASA Astrophysics Data System (ADS)

    Sasaki, Hisayuki; Yamamoto, Kenji; Ichihashi, Yasuyuki; Senoh, Takanori

    2014-02-01

    In electronic holography, various methods have been considered for using multiple spatial light modulators (SLM) to increase the image size. In a previous work, we used a monochrome light source for a method that located an optical system containing lens arrays and other components in front of multiple SLMs. This paper proposes a colourization technique for that system based on time division multiplexing using laser light sources of three colours (red, green, and blue). The experimental device we constructed was able to perform video playback (20 fps) in colour of full parallax holographic three-dimensional (3D) images with an image size of 63 mm and a viewing-zone angle of 5.6 degrees without losing any part of the 3D image.

  12. MSClique: Multiple Structure Discovery through the Maximum Weighted Clique Problem.

    PubMed

    Sanroma, Gerard; Penate-Sanchez, Adrian; Alquézar, René; Serratosa, Francesc; Moreno-Noguer, Francesc; Andrade-Cetto, Juan; González Ballester, Miguel Ángel

    2016-01-01

    We present a novel approach for feature correspondence and multiple structure discovery in computer vision. In contrast to existing methods, we exploit the fact that point-sets on the same structure usually lie close to each other, thus forming clusters in the image. Given a pair of input images, we initially extract points of interest and extract hierarchical representations by agglomerative clustering. We use the maximum weighted clique problem to find the set of corresponding clusters with maximum number of inliers representing the multiple structures at the correct scales. Our method is parameter-free and only needs two sets of points along with their tentative correspondences, thus being extremely easy to use. We demonstrate the effectiveness of our method in multiple-structure fitting experiments in both publicly available and in-house datasets. As shown in the experiments, our approach finds a higher number of structures containing fewer outliers compared to state-of-the-art methods.

  13. T2 shuffling: Sharp, multicontrast, volumetric fast spin-echo imaging.

    PubMed

    Tamir, Jonathan I; Uecker, Martin; Chen, Weitian; Lai, Peng; Alley, Marcus T; Vasanawala, Shreyas S; Lustig, Michael

    2017-01-01

    A new acquisition and reconstruction method called T 2 Shuffling is presented for volumetric fast spin-echo (three-dimensional [3D] FSE) imaging. T 2 Shuffling reduces blurring and recovers many images at multiple T 2 contrasts from a single acquisition at clinically feasible scan times (6-7 min). The parallel imaging forward model is modified to account for temporal signal relaxation during the echo train. Scan efficiency is improved by acquiring data during the transient signal decay and by increasing echo train lengths without loss in signal-to-noise ratio (SNR). By (1) randomly shuffling the phase encode view ordering, (2) constraining the temporal signal evolution to a low-dimensional subspace, and (3) promoting spatio-temporal correlations through locally low rank regularization, a time series of virtual echo time images is recovered from a single scan. A convex formulation is presented that is robust to partial voluming and radiofrequency field inhomogeneity. Retrospective undersampling and in vivo scans confirm the increase in sharpness afforded by T 2 Shuffling. Multiple image contrasts are recovered and used to highlight pathology in pediatric patients. A proof-of-principle method is integrated into a clinical musculoskeletal imaging workflow. The proposed T 2 Shuffling method improves the diagnostic utility of 3D FSE by reducing blurring and producing multiple image contrasts from a single scan. Magn Reson Med 77:180-195, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    PubMed

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  15. Apparatus and method for high dose rate brachytherapy radiation treatment

    DOEpatents

    Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James

    2005-01-25

    A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.

  16. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  17. Optimized multiple linear mappings for single image super-resolution

    NASA Astrophysics Data System (ADS)

    Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo

    2017-12-01

    Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.

  18. Characterization of Compton-scatter imaging with an analytical simulation method

    PubMed Central

    Jones, Kevin C; Redler, Gage; Templeton, Alistair; Bernard, Damian; Turian, Julius V; Chu, James C H

    2018-01-01

    By collimating the photons scattered when a megavoltage therapy beam interacts with the patient, a Compton-scatter image may be formed without the delivery of an extra dose. To characterize and assess the potential of the technique, an analytical model for simulating scatter images was developed and validated against Monte Carlo (MC). For three phantoms, the scatter images collected during irradiation with a 6 MV flattening-filter-free therapy beam were simulated. Images, profiles, and spectra were compared for different phantoms and different irradiation angles. The proposed analytical method simulates accurate scatter images up to 1000 times faster than MC. Minor differences between MC and analytical simulated images are attributed to limitations in the isotropic superposition/convolution algorithm used to analytically model multiple-order scattering. For a detector placed at 90° relative to the treatment beam, the simulated scattered photon energy spectrum peaks at 140–220 keV, and 40–50% of the photons are the result of multiple scattering. The high energy photons originate at the beam entrance. Increasing the angle between source and detector increases the average energy of the collected photons and decreases the relative contribution of multiple scattered photons. Multiple scattered photons cause blurring in the image. For an ideal 5 mm diameter pinhole collimator placed 18.5 cm from the isocenter, 10 cGy of deposited dose (2 Hz imaging rate for 1200 MU min−1 treatment delivery) is expected to generate an average 1000 photons per mm2 at the detector. For the considered lung tumor CT phantom, the contrast is high enough to clearly identify the lung tumor in the scatter image. Increasing the treatment beam size perpendicular to the detector plane decreases the contrast, although the scatter subject contrast is expected to be greater than the megavoltage transmission image contrast. With the analytical method, real-time tumor tracking may be possible through comparison of simulated and acquired patient images. PMID:29243663

  19. Characterization of Compton-scatter imaging with an analytical simulation method

    NASA Astrophysics Data System (ADS)

    Jones, Kevin C.; Redler, Gage; Templeton, Alistair; Bernard, Damian; Turian, Julius V.; Chu, James C. H.

    2018-01-01

    By collimating the photons scattered when a megavoltage therapy beam interacts with the patient, a Compton-scatter image may be formed without the delivery of an extra dose. To characterize and assess the potential of the technique, an analytical model for simulating scatter images was developed and validated against Monte Carlo (MC). For three phantoms, the scatter images collected during irradiation with a 6 MV flattening-filter-free therapy beam were simulated. Images, profiles, and spectra were compared for different phantoms and different irradiation angles. The proposed analytical method simulates accurate scatter images up to 1000 times faster than MC. Minor differences between MC and analytical simulated images are attributed to limitations in the isotropic superposition/convolution algorithm used to analytically model multiple-order scattering. For a detector placed at 90° relative to the treatment beam, the simulated scattered photon energy spectrum peaks at 140-220 keV, and 40-50% of the photons are the result of multiple scattering. The high energy photons originate at the beam entrance. Increasing the angle between source and detector increases the average energy of the collected photons and decreases the relative contribution of multiple scattered photons. Multiple scattered photons cause blurring in the image. For an ideal 5 mm diameter pinhole collimator placed 18.5 cm from the isocenter, 10 cGy of deposited dose (2 Hz imaging rate for 1200 MU min-1 treatment delivery) is expected to generate an average 1000 photons per mm2 at the detector. For the considered lung tumor CT phantom, the contrast is high enough to clearly identify the lung tumor in the scatter image. Increasing the treatment beam size perpendicular to the detector plane decreases the contrast, although the scatter subject contrast is expected to be greater than the megavoltage transmission image contrast. With the analytical method, real-time tumor tracking may be possible through comparison of simulated and acquired patient images.

  20. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  1. Downscaling remotely sensed imagery using area-to-point cokriging and multiple-point geostatistical simulation

    NASA Astrophysics Data System (ADS)

    Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong

    2015-03-01

    A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.

  2. Metal artifact reduction for CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Martz, Harry; Cosman, Pamela

    2015-01-01

    In aviation security, checked luggage is screened by computed tomography scanning. Metal objects in the bags create artifacts that degrade image quality. Though there exist metal artifact reduction (MAR) methods mainly in medical imaging literature, they require knowledge of the materials in the scan, or are outlier rejection methods. To improve and evaluate a MAR method we previously introduced, that does not require knowledge of the materials in the scan, and gives good results on data with large quantities and different kinds of metal. We describe in detail an optimization which de-emphasizes metal projections and has a constraint for beam hardening and scatter. This method isolates and reduces artifacts in an intermediate image, which is then fed to a previously published sinogram replacement method. We evaluate the algorithm for luggage data containing multiple and large metal objects. We define measures of artifact reduction, and compare this method against others in MAR literature. Metal artifacts were reduced in our test images, even for multiple and large metal objects, without much loss of structure or resolution. Our MAR method outperforms the methods with which we compared it. Our approach does not make assumptions about image content, nor does it discard metal projections.

  3. A fast and mobile system for registration of low-altitude visual and thermal aerial images using multiple small-scale UAVs

    NASA Astrophysics Data System (ADS)

    Yahyanejad, Saeed; Rinner, Bernhard

    2015-06-01

    The use of multiple small-scale UAVs to support first responders in disaster management has become popular because of their speed and low deployment costs. We exploit such UAVs to perform real-time monitoring of target areas by fusing individual images captured from heterogeneous aerial sensors. Many approaches have already been presented to register images from homogeneous sensors. These methods have demonstrated robustness against scale, rotation and illumination variations and can also cope with limited overlap among individual images. In this paper we focus on thermal and visual image registration and propose different methods to improve the quality of interspectral registration for the purpose of real-time monitoring and mobile mapping. Images captured by low-altitude UAVs represent a very challenging scenario for interspectral registration due to the strong variations in overlap, scale, rotation, point of view and structure of such scenes. Furthermore, these small-scale UAVs have limited processing and communication power. The contributions of this paper include (i) the introduction of a feature descriptor for robustly identifying corresponding regions of images in different spectrums, (ii) the registration of image mosaics, and (iii) the registration of depth maps. We evaluated the first method using a test data set consisting of 84 image pairs. In all instances our approach combined with SIFT or SURF feature-based registration was superior to the standard versions. Although we focus mainly on aerial imagery, our evaluation shows that the presented approach would also be beneficial in other scenarios such as surveillance and human detection. Furthermore, we demonstrated the advantages of the other two methods in case of multiple image pairs.

  4. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    PubMed

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  5. Face recognition system using multiple face model of hybrid Fourier feature under uncontrolled illumination variation.

    PubMed

    Hwang, Wonjun; Wang, Haitao; Kim, Hyunwoo; Kee, Seok-Cheol; Kim, Junmo

    2011-04-01

    The authors present a robust face recognition system for large-scale data sets taken under uncontrolled illumination variations. The proposed face recognition system consists of a novel illumination-insensitive preprocessing method, a hybrid Fourier-based facial feature extraction, and a score fusion scheme. First, in the preprocessing stage, a face image is transformed into an illumination-insensitive image, called an "integral normalized gradient image," by normalizing and integrating the smoothed gradients of a facial image. Then, for feature extraction of complementary classifiers, multiple face models based upon hybrid Fourier features are applied. The hybrid Fourier features are extracted from different Fourier domains in different frequency bandwidths, and then each feature is individually classified by linear discriminant analysis. In addition, multiple face models are generated by plural normalized face images that have different eye distances. Finally, to combine scores from multiple complementary classifiers, a log likelihood ratio-based score fusion scheme is applied. The proposed system using the face recognition grand challenge (FRGC) experimental protocols is evaluated; FRGC is a large available data set. Experimental results on the FRGC version 2.0 data sets have shown that the proposed method shows an average of 81.49% verification rate on 2-D face images under various environmental variations such as illumination changes, expression changes, and time elapses.

  6. Simulation of Earth textures by conditional image quilting

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Caers, J.; Tahmasebi, P.; Baker, A.

    2014-04-01

    Training image-based approaches for stochastic simulations have recently gained attention in surface and subsurface hydrology. This family of methods allows the creation of multiple realizations of a study domain, with a spatial continuity based on a training image (TI) that contains the variability, connectivity, and structural properties deemed realistic. A major drawback of these methods is their computational and/or memory cost, making certain applications challenging. It was found that similar methods, also based on training images or exemplars, have been proposed in computer graphics. One such method, image quilting (IQ), is introduced in this paper and adapted for hydrogeological applications. The main difficulty is that Image Quilting was originally not designed to produce conditional simulations and was restricted to 2-D images. In this paper, the original method developed in computer graphics has been modified to accommodate conditioning data and 3-D problems. This new conditional image quilting method (CIQ) is patch based, does not require constructing a pattern databases, and can be used with both categorical and continuous training images. The main concept is to optimally cut the patches such that they overlap with minimum discontinuity. The optimal cut is determined using a dynamic programming algorithm. Conditioning is accomplished by prior selection of patches that are compatible with the conditioning data. The performance of CIQ is tested for a variety of hydrogeological test cases. The results, when compared with previous multiple-point statistics (MPS) methods, indicate an improvement in CPU time by a factor of at least 50.

  7. Constructing Benchmark Databases and Protocols for Medical Image Analysis: Diabetic Retinopathy

    PubMed Central

    Kauppi, Tomi; Kämäräinen, Joni-Kristian; Kalesnykiene, Valentina; Sorri, Iiris; Uusitalo, Hannu; Kälviäinen, Heikki

    2013-01-01

    We address the performance evaluation practices for developing medical image analysis methods, in particular, how to establish and share databases of medical images with verified ground truth and solid evaluation protocols. Such databases support the development of better algorithms, execution of profound method comparisons, and, consequently, technology transfer from research laboratories to clinical practice. For this purpose, we propose a framework consisting of reusable methods and tools for the laborious task of constructing a benchmark database. We provide a software tool for medical image annotation helping to collect class label, spatial span, and expert's confidence on lesions and a method to appropriately combine the manual segmentations from multiple experts. The tool and all necessary functionality for method evaluation are provided as public software packages. As a case study, we utilized the framework and tools to establish the DiaRetDB1 V2.1 database for benchmarking diabetic retinopathy detection algorithms. The database contains a set of retinal images, ground truth based on information from multiple experts, and a baseline algorithm for the detection of retinopathy lesions. PMID:23956787

  8. Retinal image mosaicing using the radial distortion correction model

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2008-03-01

    Fundus camera imaging can be used to examine the retina to detect disorders. Similar to looking through a small keyhole into a large room, imaging the fundus with an ophthalmologic camera allows only a limited view at a time. Thus, the generation of a retinal montage using multiple images has the potential to increase diagnostic accuracy by providing larger field of view. A method of mosaicing multiple retinal images using the radial distortion correction (RADIC) model is proposed in this paper. Our method determines the inter-image connectivity by detecting feature correspondences. The connectivity information is converted to a tree structure that describes the spatial relationships between the reference and target images for pairwise registration. The montage is generated by cascading pairwise registration scheme starting from the anchor image downward through the connectivity tree hierarchy. The RADIC model corrects the radial distortion that is due to the spherical-to-planar projection during retinal imaging. Therefore, after radial distortion correction, individual images can be properly mapped onto a montage space by a linear geometric transformation, e.g. affine transform. Compared to the most existing montaging methods, our method is unique in that only a single registration per image is required because of the distortion correction property of RADIC model. As a final step, distance-weighted intensity blending is employed to correct the inter-image differences in illumination encountered when forming the montage. Visual inspection of the experimental results using three mosaicing cases shows our method can produce satisfactory montages.

  9. Model-independent and model-based local lensing properties of CL0024+1654 from multiply imaged galaxies

    NASA Astrophysics Data System (ADS)

    Wagner, Jenny; Liesenborgs, Jori; Tessore, Nicolas

    2018-04-01

    Context. Local gravitational lensing properties, such as convergence and shear, determined at the positions of multiply imaged background objects, yield valuable information on the smaller-scale lensing matter distribution in the central part of galaxy clusters. Highly distorted multiple images with resolved brightness features like the ones observed in CL0024 allow us to study these local lensing properties and to tighten the constraints on the properties of dark matter on sub-cluster scale. Aim. We investigate to what precision local magnification ratios, J, ratios of convergences, f, and reduced shears, g = (g1, g2), can be determined independently of a lens model for the five resolved multiple images of the source at zs = 1.675 in CL0024. We also determine if a comparison to the respective results obtained by the parametric modelling tool Lenstool and by the non-parametric modelling tool Grale can detect biases in the models. For these lens models, we analyse the influence of the number and location of the constraints from multiple images on the lens properties at the positions of the five multiple images of the source at zs = 1.675. Methods: Our model-independent approach uses a linear mapping between the five resolved multiple images to determine the magnification ratios, ratios of convergences, and reduced shears at their positions. With constraints from up to six multiple image systems, we generate Lenstool and Grale models using the same image positions, cosmological parameters, and number of generated convergence and shear maps to determine the local values of J, f, and g at the same positions across all methods. Results: All approaches show strong agreement on the local values of J, f, and g. We find that Lenstool obtains the tightest confidence bounds even for convergences around one using constraints from six multiple-image systems, while the best Grale model is generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass corrections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches. Conclusions: Our results agree with previous findings, support the light-traces-mass assumption, and the merger hypothesis for CL0024. Comparing the different approaches can detect model biases. The model-independent approach determines the local lens properties to a comparable precision in less than one second.

  10. Detecting multiple adulterants in dry milk using Raman chemical imaging

    USDA-ARS?s Scientific Manuscript database

    A Raman chemical imaging method was developed for detecting the presence of multiple chemical adulterants in dry milk powder. Four chemicals (ammonium sulfate, dicyandiamide, melamine, and urea) were added in equal concentrations, between 0.1% and 5.0%, to nonfat dry milk. An area of 25×25 mm2 for e...

  11. Whole-heart magnetic resonance coronary angiography with multiple breath-holds and automatic breathing-level tracking

    NASA Astrophysics Data System (ADS)

    Kuhara, Shigehide; Ninomiya, Ayako; Okada, Tomohisa; Kanao, Shotaro; Kamae, Toshikazu; Togashi, Kaori

    2010-05-01

    Whole-heart (WH) magnetic resonance coronary angiography (MRCA) studies are usually performed during free breathing while monitoring the position of the diaphragm with real-time motion correction. However, this results in a long scan time and the patient's breathing pattern may change, causing the study to be aborted. Alternatively, WH MRCA can be performed with multiple breath-holds (mBH). However, one problem in the mBH method is that patients cannot hold their breath at the same position every time, leading to image degradation. We have developed a new WH MRCA imaging method that employs both the mBH method and automatic breathing-level tracking to permit automatic tracking of the changes in breathing or breath-hold levels. Evaluation of its effects on WH MRCA image quality showed that this method can provide high-quality images within a shorter scan time. This proposed method is expected to be very useful in clinical WH MRCA studies.

  12. A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot.

    PubMed

    Liu, Zhi; Xu, Shuqiong; Zhang, Yun; Chen, Chun Lung Philip

    2014-11-01

    This technical correspondence presents a multiple-feature and multiple-kernel support vector machine (MFMK-SVM) methodology to achieve a more reliable and robust segmentation performance for humanoid robot. The pixel wise intensity, gradient, and C1 SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of MFMK-SVM model. It may provide multiple features of the samples for easier implementation and efficient computation of MFMK-SVM model. A new clustering method, which is called feature validity-interval type-2 fuzzy C-means (FV-IT2FCM) clustering algorithm, is proposed by integrating a type-2 fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Furthermore, the clustering validity is employed to select the training samples for the learning of the MFMK-SVM model. The MFMK-SVM scene segmentation method is able to fully take advantage of the multiple features of scene image and the ability of multiple kernels. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.

  13. Decomposition and extraction: a new framework for visual classification.

    PubMed

    Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng

    2014-08-01

    In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.

  14. Long-range and depth-selective imaging of macroscopic targets using low-coherence and wide-field interferometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Woo, Sungsoo; Kang, Sungsam; Yoon, Changhyeong; Choi, Wonshik

    2016-03-01

    With the advancement of 3D display technology, 3D imaging of macroscopic objects has drawn much attention as they provide the contents to display. The most widely used imaging methods include a depth camera, which measures time of flight for the depth discrimination, and various structured illumination techniques. However, these existing methods have poor depth resolution, which makes imaging complicated structures a difficult task. In order to resolve this issue, we propose an imaging system based upon low-coherence interferometry and off-axis digital holographic imaging. By using light source with coherence length of 200 micro, we achieved the depth resolution of 100 micro. In order to map the macroscopic objects with this high axial resolution, we installed a pair of prisms in the reference beam path for the long-range scanning of the optical path length. Specifically, one prism was fixed in position, and the other prism was mounted on a translation stage and translated in parallel to the first prism. Due to the multiple internal reflections between the two prisms, the overall path length was elongated by a factor of 50. In this way, we could cover a depth range more than 1 meter. In addition, we employed multiple speckle illuminations and incoherent averaging of the acquired holographic images for reducing the specular reflections from the target surface. Using this newly developed system, we performed imaging targets with multiple different layers and demonstrated imaging targets hidden behind the scattering layers. The method was also applied to imaging targets located around the corner.

  15. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725

  16. Mirrored pyramidal wells for simultaneous multiple vantage point microscopy.

    PubMed

    Seale, K T; Reiserer, R S; Markov, D A; Ges, I A; Wright, C; Janetopoulos, C; Wikswo, J P

    2008-10-01

    We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling.

  17. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  18. Closed-loop multiple-scattering imaging with sparse seismic measurements

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. Guus

    2018-03-01

    In the theoretical situation of noise-free, complete data volumes (`perfect data'), seismic data matrices are fully filled and multiple-scattering operators have the minimum-phase property. Perfect data allow direct inversion methods to be successful in removing surface and internal multiple scattering. Moreover, under these perfect data conditions direct source wavefields realize complete illumination (no irrecoverable shadow zones) and, therefore, primary reflections (first-order response) can provide us with the complete seismic image. However, in practice seismic measurements always contain noise and we never have complete data volumes at our disposal. We actually deal with sparse data matrices that cannot be directly inverted. The message of this paper is that in practice multiple scattering (including source ghosting) must not be removed but must be utilized. It is explained that in the real world we badly need multiple scattering to fill the illumination gaps in the subsurface. It is also explained that the proposed multiple-scattering imaging algorithm gives us the opportunity to decompose both the image and the wavefields into order-based constituents, making the multiple scattering extension easy to apply. Last but not least, the algorithm allows us to use the minimum-phase property to validate and improve images in an objective way.

  19. In situ nondestructive imaging of functional pigments in Micro-Tom tomato fruits by multi spectral imaging based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ooe, Shintaro; Todoroki, Shinsuke; Asamizu, Erika

    2013-05-01

    To evaluate the functional pigments in the tomato fruits nondestructively, we propose a method based on the multispectral diffuse reflectance images estimated by the Wiener estimation for a digital RGB image. Each pixel of the multispectral image is converted to the absorbance spectrum and then analyzed by the multiple regression analysis to visualize the contents of chlorophyll a, lycopene and β-carotene. The result confirms the feasibility of the method for in situ imaging of chlorophyll a, β-carotene and lycopene in the tomato fruits.

  20. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  1. Multi-ray medical ultrasound simulation without explicit speckle modelling.

    PubMed

    Tuzer, Mert; Yazıcı, Abdulkadir; Türkay, Rüştü; Boyman, Michael; Acar, Burak

    2018-05-04

    To develop a medical ultrasound (US) simulation method using T1-weighted magnetic resonance images (MRI) as the input that offers a compromise between low-cost ray-based and high-cost realistic wave-based simulations. The proposed method uses a novel multi-ray image formation approach with a virtual phased array transducer probe. A domain model is built from input MR images. Multiple virtual acoustic rays are emerged from each element of the linear transducer array. Reflected and transmitted acoustic energy at discrete points along each ray is computed independently. Simulated US images are computed by fusion of the reflected energy along multiple rays from multiple transducers, while phase delays due to differences in distances to transducers are taken into account. A preliminary implementation using GPUs is presented. Preliminary results show that the multi-ray approach is capable of generating view point-dependent realistic US images with an inherent Rician distributed speckle pattern automatically. The proposed simulator can reproduce the shadowing artefacts and demonstrates frequency dependence apt for practical training purposes. We also have presented preliminary results towards the utilization of the method for real-time simulations. The proposed method offers a low-cost near-real-time wave-like simulation of realistic US images from input MR data. It can further be improved to cover the pathological findings using an improved domain model, without any algorithmic updates. Such a domain model would require lesion segmentation or manual embedding of virtual pathologies for training purposes.

  2. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  3. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  4. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  5. Attenuation of multiples in image space

    NASA Astrophysics Data System (ADS)

    Alvarez, Gabriel F.

    In complex subsurface areas, attenuation of 3D specular and diffracted multiples in data space is difficult and inaccurate. In those areas, image space is an attractive alternative. There are several reasons: (1) migration increases the signal-to-noise ratio of the data; (2) primaries are mapped to coherent events in Subsurface Offset Domain Common Image Gathers (SODCIGs) or Angle Domain Common Image Gathers (ADCIGs); (3) image space is regular and smaller; (4) attenuating the multiples in data space leaves holes in the frequency-Wavenumber space that generate artifacts after migration. I develop a new equation for the residual moveout of specular multiples in ADCIGs and use it for the kernel of an apex-shifted Radon transform to focus and separate the primaries from specular and diffracted multiples. Because of small amplitude, phase and kinematic errors in the multiple estimate, we need adaptive matching and subtraction to estimate the primaries. I pose this problem as an iterative least-squares inversion that simultaneously matches the estimates of primaries and multiples to the data. Standard methods match only the estimate of the multiples. I demonstrate with real and synthetic data that the method produces primaries and multiples with little cross-talk. In 3D, the multiples exhibit residual moveout in SODCIGs in in-line and cross-line offsets. They map away from zero subsurface offsets when migrated with the faster velocity of the primaries. In ADCIGs the residual moveout of the primaries as a function of the aperture angle, for a given azimuth, is flat for those angles that illuminate the reflector. The multiples have residual moveout towards increasing depth for increasing aperture angles at all azimuths. As a function of azimuth, the primaries have better azimuth resolution than the multiples at larger aperture angles. I show, with a real 3D dataset, that even below salt, where illumination is poor, the multiples are well attenuated in ADCIGs with the new Radon transform in planes of azimuth-stacked ADCIGs. The angle stacks of the estimated primaries show little residual multiple energy.

  6. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    NASA Astrophysics Data System (ADS)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  7. Adaptive multiple super fast simulated annealing for stochastic microstructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Seun; Lin, Guang; Sun, Xin

    2013-01-01

    Fast image reconstruction from statistical information is critical in image fusion from multimodality chemical imaging instrumentation to create high resolution image with large domain. Stochastic methods have been used widely in image reconstruction from two point correlation function. The main challenge is to increase the efficiency of reconstruction. A novel simulated annealing method is proposed for fast solution of image reconstruction. Combining the advantage of very fast cooling schedules, dynamic adaption and parallelization, the new simulation annealing algorithm increases the efficiencies by several orders of magnitude, making the large domain image fusion feasible.

  8. A New Variational Approach for Multiplicative Noise and Blur Removal

    PubMed Central

    Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad; Sun, HongGuang

    2017-01-01

    This paper proposes a new variational model for joint multiplicative denoising and deblurring. It combines a total generalized variation filter (which has been proved to be able to reduce the blocky-effects by being aware of high-order smoothness) and shearlet transform (that effectively preserves anisotropic image features such as sharp edges, curves and so on). The new model takes the advantage of both regularizers since it is able to minimize the staircase effects while preserving sharp edges, textures and other fine image details. The existence and uniqueness of a solution to the proposed variational model is also discussed. The resulting energy functional is then solved by using alternating direction method of multipliers. Numerical experiments showing that the proposed model achieves satisfactory restoration results, both visually and quantitatively in handling the blur (motion, Gaussian, disk, and Moffat) and multiplicative noise (Gaussian, Gamma, or Rayleigh) reduction. A comparison with other recent methods in this field is provided as well. The proposed model can also be applied for restoring both single and multi-channel images contaminated with multiplicative noise, and permit cross-channel blurs when the underlying image has more than one channel. Numerical tests on color images are conducted to demonstrate the effectiveness of the proposed model. PMID:28141802

  9. Feature Selection in Order to Extract Multiple Sclerosis Lesions Automatically in 3D Brain Magnetic Resonance Images Using Combination of Support Vector Machine and Genetic Algorithm.

    PubMed

    Khotanlou, Hassan; Afrasiabi, Mahlagha

    2012-10-01

    This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach.

  10. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  11. Multi-object model-based multi-atlas segmentation for rodent brains using dense discrete correspondences

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Kim, Sun Hyung; Styner, Martin

    2016-03-01

    The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.

  12. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  13. No-Reference Image Quality Assessment by Wide-Perceptual-Domain Scorer Ensemble Method.

    PubMed

    Liu, Tsung-Jung; Liu, Kuan-Hsien

    2018-03-01

    A no-reference (NR) learning-based approach to assess image quality is presented in this paper. The devised features are extracted from wide perceptual domains, including brightness, contrast, color, distortion, and texture. These features are used to train a model (scorer) which can predict scores. The scorer selection algorithms are utilized to help simplify the proposed system. In the final stage, the ensemble method is used to combine the prediction results from selected scorers. Two multiple-scale versions of the proposed approach are also presented along with the single-scale one. They turn out to have better performances than the original single-scale method. Because of having features from five different domains at multiple image scales and using the outputs (scores) from selected score prediction models as features for multi-scale or cross-scale fusion (i.e., ensemble), the proposed NR image quality assessment models are robust with respect to more than 24 image distortion types. They also can be used on the evaluation of images with authentic distortions. The extensive experiments on three well-known and representative databases confirm the performance robustness of our proposed model.

  14. Classification of MR brain images by combination of multi-CNNs for AD diagnosis

    NASA Astrophysics Data System (ADS)

    Cheng, Danni; Liu, Manhua; Fu, Jianliang; Wang, Yaping

    2017-07-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for development of future treatment. Magnetic resonance images (MRI) play important role to help understand the brain anatomical changes related to AD. Conventional methods extract the hand-crafted features such as gray matter volumes and cortical thickness and train a classifier to distinguish AD from other groups. Different from these methods, this paper proposes to construct multiple deep 3D convolutional neural networks (3D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. First, a number of local image patches are extracted from the whole brain image and a 3D-CNN is built upon each local patch to transform the local image into more compact high-level features. Then, the upper convolution and fully connected layers are fine-tuned to combine the multiple 3D-CNNs for image classification. The proposed method can automatically learn the generic features from imaging data for classification. Our method is evaluated using T1-weighted structural MR brain images on 428 subjects including 199 AD patients and 229 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 87.15% and an AUC (area under the ROC curve) of 92.26% for AD classification, demonstrating the promising classification performances.

  15. Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.

    PubMed

    Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana

    2017-07-01

    Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.

  16. Mirrored pyramidal wells for simultaneous multiple vantage point microscopy

    PubMed Central

    Seale, K.T.; Reiserer, R.S.; Markov, D.A.; Ges, I.A.; Wright, C.; Janetopoulos, C.; Wikswo, J.P.

    2013-01-01

    Summary We report a novel method for obtaining simultaneous images from multiple vantage points of a microscopic specimen using size-matched microscopic mirrors created from anisotropically etched silicon. The resulting pyramidal wells enable bright-field and fluorescent side-view images, and when combined with z-sectioning, provide additional information for 3D reconstructions of the specimen. We have demonstrated the 3D localization and tracking over time of the centrosome of a live Dictyostelium discoideum. The simultaneous acquisition of images from multiple perspectives also provides a five-fold increase in the theoretical collection efficiency of emitted photons, a property which may be useful for low-light imaging modalities such as bioluminescence, or low abundance surface-marker labelling. PMID:19017196

  17. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  18. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  19. Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes.

    PubMed

    Huiskonen, Juha T

    2018-02-08

    Cryogenic transmission electron microscopy (cryo-TEM) is a high-resolution biological imaging method, whereby biological samples, such as purified proteins, macromolecular complexes, viral particles, organelles and cells, are embedded in vitreous ice preserving their native structures. Due to sensitivity of biological materials to the electron beam of the microscope, only relatively low electron doses can be applied during imaging. As a result, the signal arising from the structure of interest is overpowered by noise in the images. To increase the signal-to-noise ratio, different image processing-based strategies that aim at coherent averaging of signal have been devised. In such strategies, images are generally assumed to arise from multiple identical copies of the structure. Prior to averaging, the images must be grouped according to the view of the structure they represent and images representing the same view must be simultaneously aligned relatively to each other. For computational reconstruction of the three-dimensional structure, images must contain different views of the original structure. Structures with multiple symmetry-related substructures are advantageous in averaging approaches because each image provides multiple views of the substructures. However, the symmetry assumption may be valid for only parts of the structure, leading to incoherent averaging of the other parts. Several image processing approaches have been adapted to tackle symmetry-mismatched substructures with increasing success. Such structures are ubiquitous in nature and further computational method development is needed to understanding their biological functions. ©2018 The Author(s).

  20. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  1. Reconstituted Three-Dimensional Interactive Imaging

    NASA Technical Reports Server (NTRS)

    Hamilton, Joseph; Foley, Theodore; Duncavage, Thomas; Mayes, Terrence

    2010-01-01

    A method combines two-dimensional images, enhancing the images as well as rendering a 3D, enhanced, interactive computer image or visual model. Any advanced compiler can be used in conjunction with any graphics library package for this method, which is intended to take digitized images and virtually stack them so that they can be interactively viewed as a set of slices. This innovation can take multiple image sources (film or digital) and create a "transparent" image with higher densities in the image being less transparent. The images are then stacked such that an apparent 3D object is created in virtual space for interactive review of the set of images. This innovation can be used with any application where 3D images are taken as slices of a larger object. These could include machines, materials for inspection, geological objects, or human scanning. Illuminous values were stacked into planes with different transparency levels of tissues. These transparency levels can use multiple energy levels, such as density of CT scans or radioactive density. A desktop computer with enough video memory to produce the image is capable of this work. The memory changes with the size and resolution of the desired images to be stacked and viewed.

  2. Registration of multiple video images to preoperative CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    1999-05-01

    In this paper we propose a method which uses multiple video images to establish the pose of a CT volume with respect to video camera coordinates for use in image guided surgery. The majority of neurosurgical procedures require the neurosurgeon to relate the pre-operative MR/CT data to the intra-operative scene. Registration of 2D video images to the pre-operative 3D image enables a perspective projection of the pre-operative data to be overlaid onto the video image. Our registration method is based on image intensity and uses a simple iterative optimization scheme to maximize the mutual information between a video image and a rendering from the pre-operative data. Video images are obtained from a stereo operating microscope, with a field of view of approximately 110 X 80 mm. We have extended an existing information theoretical framework for 2D-3D registration, so that multiple video images can be registered simultaneously to the pre-operative data. Experiments were performed on video and CT images of a skull phantom. We took three video images, and our algorithm registered these individually to the 3D image. The mean projection error varied between 4.33 and 9.81 millimeters (mm), and the mean 3D error varied between 4.47 and 11.92 mm. Using our novel techniques we then registered five video views simultaneously to the 3D model. This produced an accurate and robust registration with a mean projection error of 0.68 mm and a mean 3D error of 1.05 mm.

  3. Automatic multi-label annotation of abdominal CT images using CBIR

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2017-03-01

    We present a technique to annotate multiple organs shown in 2-D abdominal/pelvic CT images using CBIR. This annotation task is motivated by our research interests in visual question-answering (VQA). We aim to apply results from this effort in Open-iSM, a multimodal biomedical search engine developed by the National Library of Medicine (NLM). Understanding visual content of biomedical images is a necessary step for VQA. Though sufficient annotational information about an image may be available in related textual metadata, not all may be useful as descriptive tags, particularly for anatomy on the image. In this paper, we develop and evaluate a multi-label image annotation method using CBIR. We evaluate our method on two 2-D CT image datasets we generated from 3-D volumetric data obtained from a multi-organ segmentation challenge hosted in MICCAI 2015. Shape and spatial layout information is used to encode visual characteristics of the anatomy. We adapt a weighted voting scheme to assign multiple labels to the query image by combining the labels of the images identified as similar by the method. Key parameters that may affect the annotation performance, such as the number of images used in the label voting and the threshold for excluding labels that have low weights, are studied. The method proposes a coarse-to-fine retrieval strategy which integrates the classification with the nearest-neighbor search. Results from our evaluation (using the MICCAI CT image datasets as well as figures from Open-i) are presented.

  4. Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy.

    PubMed

    Park, Wooram; Madden, Dean R; Rockmore, Daniel N; Chirikjian, Gregory S

    2010-03-01

    This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method.

  5. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  6. Multi-scale pixel-based image fusion using multivariate empirical mode decomposition.

    PubMed

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P; McDonald-Maier, Klaus D

    2015-05-08

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  7. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    PubMed Central

    Rehman, Naveed ur; Ehsan, Shoaib; Abdullah, Syed Muhammad Umer; Akhtar, Muhammad Jehanzaib; Mandic, Danilo P.; McDonald-Maier, Klaus D.

    2015-01-01

    A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD) algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD)-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF) containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA), discrete wavelet transform (DWT) and non-subsampled contourlet transform (NCT). A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences. PMID:26007714

  8. Non-parametric combination and related permutation tests for neuroimaging.

    PubMed

    Winkler, Anderson M; Webster, Matthew A; Brooks, Jonathan C; Tracey, Irene; Smith, Stephen M; Nichols, Thomas E

    2016-04-01

    In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  9. Robust phase retrieval of complex-valued object in phase modulation by hybrid Wirtinger flow method

    NASA Astrophysics Data System (ADS)

    Wei, Zhun; Chen, Wen; Yin, Tiantian; Chen, Xudong

    2017-09-01

    This paper presents a robust iterative algorithm, known as hybrid Wirtinger flow (HWF), for phase retrieval (PR) of complex objects from noisy diffraction intensities. Numerical simulations indicate that the HWF method consistently outperforms conventional PR methods in terms of both accuracy and convergence rate in multiple phase modulations. The proposed algorithm is also more robust to low oversampling ratios, loose constraints, and noisy environments. Furthermore, compared with traditional Wirtinger flow, sample complexity is largely reduced. It is expected that the proposed HWF method will find applications in the rapidly growing coherent diffractive imaging field for high-quality image reconstruction with multiple modulations, as well as other disciplines where PR is needed.

  10. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  11. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  12. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning

    PubMed Central

    Anselmi, Francesca; Ventalon, Cathie; Bègue, Aurélien; Ogden, David; Emiliani, Valentina

    2011-01-01

    Access to three-dimensional structures in the brain is fundamental to probe signal processing at multiple levels, from integration of synaptic inputs to network activity mapping. Here, we present an optical method for independent three-dimensional photoactivation and imaging by combination of digital holography with remote-focusing. We experimentally demonstrate compensation of spherical aberration for out-of-focus imaging in a range of at least 300 μm, as well as scanless imaging along oblique planes. We apply this method to perform functional imaging along tilted dendrites of hippocampal pyramidal neurons in brain slices, after photostimulation by multiple spots glutamate uncaging. By bringing extended portions of tilted dendrites simultaneously in-focus, we monitor the spatial extent of dendritic calcium signals, showing a shift from a widespread to a spatially confined response upon blockage of voltage-gated Na+ channels. PMID:22074779

  13. Removing impulse bursts from images by training-based soft morphological filtering

    NASA Astrophysics Data System (ADS)

    Koivisto, Pertti T.; Astola, Jaakko T.; Lukin, Vladimir V.; Melnik, Vladimir P.; Tsymbal, Oleg V.

    2001-08-01

    The characteristics of impulse bursts in radar images are analyzed and a model for this noise is proposed. The model also takes into consideration the multiplicative noise present in radar images. As a case study, soft morphological filters utilizing a training-based optimization scheme are used for the noise removal. Different approaches for the training are discussed. It is shown that the methods used can provide an effective removal of impulse bursts. At the same time the multiplicative noise in images is also suppressed together with god edge and detail preservation. Numerical simulation results as well as examples of real radar images are presented.

  14. A method of solving tilt illumination for multiple distance phase retrieval

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Li, Qiang; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-07-01

    Multiple distance phase retrieval is a technique of using a series of intensity patterns to reconstruct a complex-valued image of object. However, tilt illumination originating from the off-axis displacement of incident light significantly impairs its imaging quality. To eliminate this affection, we use cross-correlation calibration to estimate oblique angle of incident light and a Fourier-based strategy to correct tilted illumination effect. Compared to other methods, binary and biological object are both stably reconstructed in simulation and experiment. This work provides a simple but beneficial method to solve the problem of tilt illumination for lens-free multi-distance system.

  15. Spinal focal lesion detection in multiple myeloma using multimodal image features

    NASA Astrophysics Data System (ADS)

    Fränzle, Andrea; Hillengass, Jens; Bendl, Rolf

    2015-03-01

    Multiple myeloma is a tumor disease in the bone marrow that affects the skeleton systemically, i.e. multiple lesions can occur in different sites in the skeleton. To quantify overall tumor mass for determining degree of disease and for analysis of therapy response, volumetry of all lesions is needed. Since the large amount of lesions in one patient impedes manual segmentation of all lesions, quantification of overall tumor volume is not possible until now. Therefore development of automatic lesion detection and segmentation methods is necessary. Since focal tumors in multiple myeloma show different characteristics in different modalities (changes in bone structure in CT images, hypointensity in T1 weighted MR images and hyperintensity in T2 weighted MR images), multimodal image analysis is necessary for the detection of focal tumors. In this paper a pattern recognition approach is presented that identifies focal lesions in lumbar vertebrae based on features from T1 and T2 weighted MR images. Image voxels within bone are classified using random forests based on plain intensities and intensity value derived features (maximum, minimum, mean, median) in a 5 x 5 neighborhood around a voxel from both T1 and T2 weighted MR images. A test data sample of lesions in 8 lumbar vertebrae from 4 multiple myeloma patients can be classified at an accuracy of 95% (using a leave-one-patient-out test). The approach provides a reasonable delineation of the example lesions. This is an important step towards automatic tumor volume quantification in multiple myeloma.

  16. Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor

    PubMed Central

    Cheong, Hejin; Chae, Eunjung; Lee, Eunsung; Jo, Gwanghyun; Paik, Joonki

    2015-01-01

    This paper presents a fast adaptive image restoration method for removing spatially varying out-of-focus blur of a general imaging sensor. After estimating the parameters of space-variant point-spread-function (PSF) using the derivative in each uniformly blurred region, the proposed method performs spatially adaptive image restoration by selecting the optimal restoration filter according to the estimated blur parameters. Each restoration filter is implemented in the form of a combination of multiple FIR filters, which guarantees the fast image restoration without the need of iterative or recursive processing. Experimental results show that the proposed method outperforms existing space-invariant restoration methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed to a wide area of image restoration applications, such as mobile imaging devices, robot vision, and satellite image processing. PMID:25569760

  17. Recreation of three-dimensional objects in a real-time simulated environment by means of a panoramic single lens stereoscopic image-capturing device

    NASA Astrophysics Data System (ADS)

    Wong, Erwin

    2000-03-01

    Traditional methods of linear based imaging limits the viewer to a single fixed-point perspective. By means of a single lens multiple perspective mirror system, a 360-degree representation of the area around the camera is reconstructed. This reconstruction is used overcome the limitations of a traditional camera by providing the viewer with many different perspectives. By constructing the mirror into a hemispherical surface with multiple focal lengths at various diameters on the mirror, and by placing a parabolic mirror overhead, a stereoscopic image can be extracted from the image captured by a high-resolution camera placed beneath the mirror. Image extraction and correction is made by computer processing of the image obtained by camera; the image present up to five distinguishable different viewpoints that a computer can extrapolate pseudo- perspective data from. Geometric and depth for field can be extrapolated via comparison and isolation of objects within a virtual scene post processed by the computer. Combining data with scene rendering software provides the viewer with the ability to choose a desired viewing position, multiple dynamic perspectives, and virtually constructed perspectives based on minimal existing data. An examination into the workings of the mirror relay system is provided, including possible image extrapolation and correctional methods. Generation of data and virtual interpolated and constructed data is also mentioned.

  18. An effective and robust method for tracking multiple fish in video image based on fish head detection.

    PubMed

    Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu

    2016-06-23

    Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.

  19. Quantifying natural delta variability using a multiple-point geostatistics prior uncertainty model

    NASA Astrophysics Data System (ADS)

    Scheidt, Céline; Fernandes, Anjali M.; Paola, Chris; Caers, Jef

    2016-10-01

    We address the question of quantifying uncertainty associated with autogenic pattern variability in a channelized transport system by means of a modern geostatistical method. This question has considerable relevance for practical subsurface applications as well, particularly those related to uncertainty quantification relying on Bayesian approaches. Specifically, we show how the autogenic variability in a laboratory experiment can be represented and reproduced by a multiple-point geostatistical prior uncertainty model. The latter geostatistical method requires selection of a limited set of training images from which a possibly infinite set of geostatistical model realizations, mimicking the training image patterns, can be generated. To that end, we investigate two methods to determine how many training images and what training images should be provided to reproduce natural autogenic variability. The first method relies on distance-based clustering of overhead snapshots of the experiment; the second method relies on a rate of change quantification by means of a computer vision algorithm termed the demon algorithm. We show quantitatively that with either training image selection method, we can statistically reproduce the natural variability of the delta formed in the experiment. In addition, we study the nature of the patterns represented in the set of training images as a representation of the "eigenpatterns" of the natural system. The eigenpattern in the training image sets display patterns consistent with previous physical interpretations of the fundamental modes of this type of delta system: a highly channelized, incisional mode; a poorly channelized, depositional mode; and an intermediate mode between the two.

  20. Blind image quality assessment based on aesthetic and statistical quality-aware features

    NASA Astrophysics Data System (ADS)

    Jenadeleh, Mohsen; Masaeli, Mohammad Masood; Moghaddam, Mohsen Ebrahimi

    2017-07-01

    The main goal of image quality assessment (IQA) methods is the emulation of human perceptual image quality judgments. Therefore, the correlation between objective scores of these methods with human perceptual scores is considered as their performance metric. Human judgment of the image quality implicitly includes many factors when assessing perceptual image qualities such as aesthetics, semantics, context, and various types of visual distortions. The main idea of this paper is to use a host of features that are commonly employed in image aesthetics assessment in order to improve blind image quality assessment (BIQA) methods accuracy. We propose an approach that enriches the features of BIQA methods by integrating a host of aesthetics image features with the features of natural image statistics derived from multiple domains. The proposed features have been used for augmenting five different state-of-the-art BIQA methods, which use statistical natural scene statistics features. Experiments were performed on seven benchmark image quality databases. The experimental results showed significant improvement of the accuracy of the methods.

  1. Speckle reduction in optical coherence tomography using two-step iteration method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Liu, Xinyu; Wang, Nanshuo; Yu, Xiaojun; Bo, En; Chen, Si; Liu, Linbo

    2017-02-01

    Optical coherence tomography (OCT) provides high resolution and cross-sectional images of biological tissue and is widely used for diagnosis of ocular diseases. However, OCT images suffer from speckle noise, which typically considered as multiplicative noise in nature, reducing the image resolution and contrast. In this study, we propose a two-step iteration (TSI) method to suppress those noises. We first utilize augmented Lagrange method to recover a low-rank OCT image and remove additive Gaussian noise, and then employ the simple and efficient split Bregman method to solve the Total-Variation Denoising model. We validated such proposed method using images of swine, rabbit and human retina. Results demonstrate that our TSI method outperforms the other popular methods in achieving higher peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) while preserving important structural details, such as tiny capillaries and thin layers in retinal OCT images. In addition, the results of our TSI method show clearer boundaries and maintains high image contrast, which facilitates better image interpretations and analyses.

  2. Multiple Point Statistics algorithm based on direct sampling and multi-resolution images

    NASA Astrophysics Data System (ADS)

    Julien, S.; Renard, P.; Chugunova, T.

    2017-12-01

    Multiple Point Statistics (MPS) has become popular for more than one decade in Earth Sciences, because these methods allow to generate random fields reproducing highly complex spatial features given in a conceptual model, the training image, while classical geostatistics techniques based on bi-point statistics (covariance or variogram) fail to generate realistic models. Among MPS methods, the direct sampling consists in borrowing patterns from the training image to populate a simulation grid. This latter is sequentially filled by visiting each of these nodes in a random order, and then the patterns, whose the number of nodes is fixed, become narrower during the simulation process, as the simulation grid is more densely informed. Hence, large scale structures are caught in the beginning of the simulation and small scale ones in the end. However, MPS may mix spatial characteristics distinguishable at different scales in the training image, and then loose the spatial arrangement of different structures. To overcome this limitation, we propose to perform MPS simulation using a decomposition of the training image in a set of images at multiple resolutions. Applying a Gaussian kernel onto the training image (convolution) results in a lower resolution image, and iterating this process, a pyramid of images depicting fewer details at each level is built, as it can be done in image processing for example to lighten the space storage of a photography. The direct sampling is then employed to simulate the lowest resolution level, and then to simulate each level, up to the finest resolution, conditioned to the level one rank coarser. This scheme helps reproduce the spatial structures at any scale of the training image and then generate more realistic models. We illustrate the method with aerial photographies (satellite images) and natural textures. Indeed, these kinds of images often display typical structures at different scales and are well-suited for MPS simulation techniques.

  3. Single-Side Two-Location Spotlight Imaging for Building Based on MIMO Through-Wall-Radar.

    PubMed

    Jia, Yong; Zhong, Xiaoling; Liu, Jiangang; Guo, Yong

    2016-09-07

    Through-wall-radar imaging is of interest for mapping the wall layout of buildings and for the detection of stationary targets within buildings. In this paper, we present an easy single-side two-location spotlight imaging method for both wall layout mapping and stationary target detection by utilizing multiple-input multiple-output (MIMO) through-wall-radar. Rather than imaging for building walls directly, the images of all building corners are generated to speculate wall layout indirectly by successively deploying the MIMO through-wall-radar at two appropriate locations on only one side of the building and then carrying out spotlight imaging with two different squint-views. In addition to the ease of implementation, the single-side two-location squint-view detection also has two other advantages for stationary target imaging. The first one is the fewer multi-path ghosts, and the second one is the smaller region of side-lobe interferences from the corner images in comparison to the wall images. Based on Computer Simulation Technology (CST) electromagnetic simulation software, we provide multiple sets of validation results where multiple binary panorama images with clear images of all corners and stationary targets are obtained by combining two single-location images with the use of incoherent additive fusion and two-dimensional cell-averaging constant-false-alarm-rate (2D CA-CFAR) detection.

  4. Automatic medical image annotation and keyword-based image retrieval using relevance feedback.

    PubMed

    Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal

    2012-08-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.

  5. Accuracy improvement in measurement of arterial wall elasticity by applying pulse inversion to phased-tracking method

    NASA Astrophysics Data System (ADS)

    Miyachi, Yukiya; Arakawa, Mototaka; Kanai, Hiroshi

    2018-07-01

    In our studies on ultrasonic elasticity assessment, minute change in the thickness of the arterial wall was measured by the phased-tracking method. However, most images in carotid artery examinations contain multiple-reflection noise, making it difficult to evaluate arterial wall elasticity precisely. In the present study, a modified phased-tracking method using the pulse inversion method was examined to reduce the influence of the multiple-reflection noise. Moreover, aliasing in the harmonic components was corrected by the fundamental components. The conventional and proposed methods were applied to a pulsated tube phantom mimicking the arterial wall. For the conventional method, the elasticity was 298 kPa without multiple-reflection noise and 353 kPa with multiple-reflection noise on the posterior wall. That of the proposed method was 302 kPa without multiple-reflection noise and 297 kPa with multiple-reflection noise on the posterior wall. Therefore, the proposed method was very robust against multiple-reflection noise.

  6. Multiple velocity encoding in the phase of an MRI signal

    NASA Astrophysics Data System (ADS)

    Benitez-Read, E. E.

    2017-01-01

    The measurement of fluid velocity by encoding it in the phase of a magnetic resonance imaging (MRI) signal could allow the discrimination of the stationary spins signals from those of moving spins. This results in a wide variety of applications i.e. in medicine, in order to obtain more than angiograms, blood velocity images of veins, arteries and other vessels without having static tissue perturbing the signal of fluid in motion. The work presented in this paper is a theoretical analysis of some novel methods for multiple fluid velocity encoding in the phase of an MRI signal. These methods are based on a tripolar gradient (TPG) and can be an alternative to the conventional methods based on a bipolar gradient (BPG) and could be more suitable for multiple velocity encoding in the phase of an MRI signal.

  7. Feature-based pairwise retinal image registration by radial distortion correction

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeol; Abràmoff, Michael D.; Reinhardt, Joseph M.

    2007-03-01

    Fundus camera imaging is widely used to document disorders such as diabetic retinopathy and macular degeneration. Multiple retinal images can be combined together through a procedure known as mosaicing to form an image with a larger field of view. Mosaicing typically requires multiple pairwise registrations of partially overlapped images. We describe a new method for pairwise retinal image registration. The proposed method is unique in that the radial distortion due to image acquisition is corrected prior to the geometric transformation. Vessel lines are detected using the Hessian operator and are used as input features to the registration. Since the overlapping region is typically small in a retinal image pair, only a few correspondences are available, thus limiting the applicable model to an afine transform at best. To recover the distortion due to curved-surface of retina and lens optics, a combined approach of an afine model with a radial distortion correction is proposed. The parameters of the image acquisition and radial distortion models are estimated during an optimization step that uses Powell's method driven by the vessel line distance. Experimental results using 20 pairs of green channel images acquired from three subjects with a fundus camera confirmed that the afine model with distortion correction could register retinal image pairs to within 1.88+/-0.35 pixels accuracy (mean +/- standard deviation) assessed by vessel line error, which is 17% better than the afine-only approach. Because the proposed method needs only two correspondences, it can be applied to obtain good registration accuracy even in the case of small overlap between retinal image pairs.

  8. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan

    2015-12-01

    In this paper, we propose a speckle noise reduction method for spectral-domain optical coherence tomography (SD-OCT) images called multi-frame weighted nuclear norm minimization (MWNNM). This method is a direct extension of weighted nuclear norm minimization (WNNM) in the multi-frame framework since an adequately denoised image could not be achieved with single-frame denoising methods. The MWNNM method exploits multiple B-scans collected from a small area of a SD-OCT volumetric image, and then denoises and averages them together to obtain a high signal-to-noise ratio B-scan. The results show that the image quality metrics obtained by denoising and averaging only five nearby B-scans with MWNNM method is considerably better than those of the average image obtained by registering and averaging 40 azimuthally repeated B-scans.

  9. Photoacoustic tomography based on the Green's function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jie; Department of Automation, Nanjing Polytechnic Institute, 210048 Nanjing; Tao, Chao, E-mail: taochao@nju.edu.cn

    2015-06-08

    Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried outmore » to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.« less

  10. Airplane detection based on fusion framework by combining saliency model with Deep Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Dou, Hao; Sun, Xiao; Li, Bin; Deng, Qianqian; Yang, Xubo; Liu, Di; Tian, Jinwen

    2018-03-01

    Aircraft detection from very high resolution remote sensing images, has gained more increasing interest in recent years due to the successful civil and military applications. However, several problems still exist: 1) how to extract the high-level features of aircraft; 2) locating objects within such a large image is difficult and time consuming; 3) A common problem of multiple resolutions of satellite images still exists. In this paper, inspirited by biological visual mechanism, the fusion detection framework is proposed, which fusing the top-down visual mechanism (deep CNN model) and bottom-up visual mechanism (GBVS) to detect aircraft. Besides, we use multi-scale training method for deep CNN model to solve the problem of multiple resolutions. Experimental results demonstrate that our method can achieve a better detection result than the other methods.

  11. Multiresolution multiscale active mask segmentation of fluorescence microscope images

    NASA Astrophysics Data System (ADS)

    Srinivasa, Gowri; Fickus, Matthew; Kovačević, Jelena

    2009-08-01

    We propose an active mask segmentation framework that combines the advantages of statistical modeling, smoothing, speed and flexibility offered by the traditional methods of region-growing, multiscale, multiresolution and active contours respectively. At the crux of this framework is a paradigm shift from evolving contours in the continuous domain to evolving multiple masks in the discrete domain. Thus, the active mask framework is particularly suited to segment digital images. We demonstrate the use of the framework in practice through the segmentation of punctate patterns in fluorescence microscope images. Experiments reveal that statistical modeling helps the multiple masks converge from a random initial configuration to a meaningful one. This obviates the need for an involved initialization procedure germane to most of the traditional methods used to segment fluorescence microscope images. While we provide the mathematical details of the functions used to segment fluorescence microscope images, this is only an instantiation of the active mask framework. We suggest some other instantiations of the framework to segment different types of images.

  12. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.

    2007-10-01

    Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.

  13. Ray Tracing with Virtual Objects.

    ERIC Educational Resources Information Center

    Leinoff, Stuart

    1991-01-01

    Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)

  14. Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates

    PubMed Central

    Chen, Jin; Venugopal, Vivek; Intes, Xavier

    2011-01-01

    Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610

  15. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  16. Local dynamic range compensation for scanning electron microscope imaging system by sub-blocking multiple peak HE with convolution.

    PubMed

    Sim, K S; Teh, V; Tey, Y C; Kho, T K

    2016-11-01

    This paper introduces new development technique to improve the Scanning Electron Microscope (SEM) image quality and we name it as sub-blocking multiple peak histogram equalization (SUB-B-MPHE) with convolution operator. By using this new proposed technique, it shows that the new modified MPHE performs better than original MPHE. In addition, the sub-blocking method consists of convolution operator which can help to remove the blocking effect for SEM images after applying this new developed technique. Hence, by using the convolution operator, it effectively removes the blocking effect by properly distributing the suitable pixel value for the whole image. Overall, the SUB-B-MPHE with convolution outperforms the rest of methods. SCANNING 38:492-501, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  17. Whole-brain ex-vivo quantitative MRI of the cuprizone mouse model

    PubMed Central

    Hurley, Samuel A.; Vernon, Anthony C.; Torres, Joel; Dell’Acqua, Flavio; Williams, Steve C.R.; Cash, Diana

    2016-01-01

    Myelin is a critical component of the nervous system and a major contributor to contrast in Magnetic Resonance (MR) images. However, the precise contribution of myelination to multiple MR modalities is still under debate. The cuprizone mouse is a well-established model of demyelination that has been used in several MR studies, but these have often imaged only a single slice and analysed a small region of interest in the corpus callosum. We imaged and analyzed the whole brain of the cuprizone mouse ex-vivo using high-resolution quantitative MR methods (multi-component relaxometry, Diffusion Tensor Imaging (DTI) and morphometry) and found changes in multiple regions, including the corpus callosum, cerebellum, thalamus and hippocampus. The presence of inflammation, confirmed with histology, presents difficulties in isolating the sensitivity and specificity of these MR methods to demyelination using this model. PMID:27833805

  18. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques.

    PubMed

    Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan

    2013-05-01

    In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.

  19. Region-Based Prediction for Image Compression in the Cloud.

    PubMed

    Begaint, Jean; Thoreau, Dominique; Guillotel, Philippe; Guillemot, Christine

    2018-04-01

    Thanks to the increasing number of images stored in the cloud, external image similarities can be leveraged to efficiently compress images by exploiting inter-images correlations. In this paper, we propose a novel image prediction scheme for cloud storage. Unlike current state-of-the-art methods, we use a semi-local approach to exploit inter-image correlation. The reference image is first segmented into multiple planar regions determined from matched local features and super-pixels. The geometric and photometric disparities between the matched regions of the reference image and the current image are then compensated. Finally, multiple references are generated from the estimated compensation models and organized in a pseudo-sequence to differentially encode the input image using classical video coding tools. Experimental results demonstrate that the proposed approach yields significant rate-distortion performance improvements compared with the current image inter-coding solutions such as high efficiency video coding.

  20. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  1. External scintigraphy in monitoring the behavior of pharmaceutical formulations in vivo I: technique for acquiring high-resolution images of tablets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theodorakis, M.C.; Simpson, D.R.; Leung, D.M.

    1983-02-01

    A new method for monitoring tablet disintegration in vivo was developed. In this method, the tablets were labeled with a short-lived radionuclide, technetium 99m, and monitored by a gamma camera. Several innovations were introduced with this method. First, computer reconstruction algorithms were used to enhance the scintigraphic images of the disintegrating tablet in vivo. Second, the use of a four-pinhole collimator to acquire multiple views of the tablet resulted in high count rates and reduced acquisition times of the scintigraphic images. Third, the magnification of the scintigraphic images achieved by pinhole collimation led to significant improvement in resolution. Fourth, themore » radioinuclide was incorporated into the granulation so that the whole mass of the tablet was uniformly labeled with high levels of activity. This technique allowed the continuous monitoring of the disintegration process of tablets in vivo in experimental animals. Multiple pinhole collimation and the labeling process permitted the acquisition of quality scintigraphic images of the labeled tablet every 30 sec. The resolution of the method was tested in vitro and in vivo.« less

  2. MUSIC imaging method for electromagnetic inspection of composite multi-layers

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Giacomo; Ding, Ping-Ping; Zhong, Yu; Lambert, Marc; Lesselier, Dominique

    2015-03-01

    A first-order asymptotic formulation of the electric field scattered by a small inclusion (with respect to the wavelength in dielectric regime or to the skin depth in conductive regime) embedded in composite material is given. It is validated by comparison with results obtained using a Method of Moments (MoM). A non-iterative MUltiple SIgnal Classification (MUSIC) imaging method is utilized in the same configuration to locate the position of small defects. The effectiveness of the imaging algorithm is illustrated through some numerical examples.

  3. Deep Learning for Classification of Colorectal Polyps on Whole-slide Images

    PubMed Central

    Korbar, Bruno; Olofson, Andrea M.; Miraflor, Allen P.; Nicka, Catherine M.; Suriawinata, Matthew A.; Torresani, Lorenzo; Suriawinata, Arief A.; Hassanpour, Saeed

    2017-01-01

    Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%–95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations. PMID:28828201

  4. Information fusion for diabetic retinopathy CAD in digital color fundus photographs.

    PubMed

    Niemeijer, Meindert; Abramoff, Michael D; van Ginneken, Bram

    2009-05-01

    The purpose of computer-aided detection or diagnosis (CAD) technology has so far been to serve as a second reader. If, however, all relevant lesions in an image can be detected by CAD algorithms, use of CAD for automatic reading or prescreening may become feasible. This work addresses the question how to fuse information from multiple CAD algorithms, operating on multiple images that comprise an exam, to determine a likelihood that the exam is normal and would not require further inspection by human operators. We focus on retinal image screening for diabetic retinopathy, a common complication of diabetes. Current CAD systems are not designed to automatically evaluate complete exams consisting of multiple images for which several detection algorithm output sets are available. Information fusion will potentially play a crucial role in enabling the application of CAD technology to the automatic screening problem. Several different fusion methods are proposed and their effect on the performance of a complete comprehensive automatic diabetic retinopathy screening system is evaluated. Experiments show that the choice of fusion method can have a large impact on system performance. The complete system was evaluated on a set of 15,000 exams (60,000 images). The best performing fusion method obtained an area under the receiver operator characteristic curve of 0.881. This indicates that automated prescreening could be applied in diabetic retinopathy screening programs.

  5. Estimating Accurate Target Coordinates with Magnetic Resonance Images by Using Multiple Phase-Encoding Directions during Acquisition.

    PubMed

    Kim, Minsoo; Jung, Na Young; Park, Chang Kyu; Chang, Won Seok; Jung, Hyun Ho; Chang, Jin Woo

    2018-06-01

    Stereotactic procedures are image guided, often using magnetic resonance (MR) images limited by image distortion, which may influence targets for stereotactic procedures. The aim of this work was to assess methods of identifying target coordinates for stereotactic procedures with MR in multiple phase-encoding directions. In 30 patients undergoing deep brain stimulation, we acquired 5 image sets: stereotactic brain computed tomography (CT), T2-weighted images (T2WI), and T1WI in both right-to-left (RL) and anterior-to-posterior (AP) phase-encoding directions. Using CT coordinates as a reference, we analyzed anterior commissure and posterior commissure coordinates to identify any distortion relating to phase-encoding direction. Compared with CT coordinates, RL-directed images had more positive x-axis values (0.51 mm in T1WI, 0.58 mm in T2WI). AP-directed images had more negative y-axis values (0.44 mm in T1WI, 0.59 mm in T2WI). We adopted 2 methods to predict CT coordinates with MR image sets: parallel translation and selective choice of axes according to phase-encoding direction. Both were equally effective at predicting CT coordinates using only MR; however, the latter may be easier to use in clinical settings. Acquiring MR in multiple phase-encoding directions and selecting axes according to the phase-encoding direction allows identification of more accurate coordinates for stereotactic procedures. © 2018 S. Karger AG, Basel.

  6. 3D Actin Network Centerline Extraction with Multiple Active Contours

    PubMed Central

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2013-01-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels. PMID:24316442

  7. 3D receiver function Kirchhoff depth migration image of Cascadia subduction slab weak zone

    NASA Astrophysics Data System (ADS)

    Cheng, C.; Allen, R. M.; Bodin, T.; Tauzin, B.

    2016-12-01

    We have developed a highly computational efficient algorithm of applying 3D Kirchhoff depth migration to telesismic receiver function data. Combine primary PS arrival with later multiple arrivals we are able to reveal a better knowledge about the earth discontinuity structure (transmission and reflection). This method is highly useful compare with traditional CCP method when dipping structure is met during the imaging process, such as subduction slab. We apply our method to the reginal Cascadia subduction zone receiver function data and get a high resolution 3D migration image, for both primary and multiples. The image showed us a clear slab weak zone (slab hole) in the upper plate boundary under Northern California and the whole Oregon. Compare with previous 2D receiver function image from 2D array(CAFE and CASC93), the position of the weak zone shows interesting conherency. This weak zone is also conherent with local seismicity missing and heat rising, which lead us to think about and compare with the ocean plate stucture and the hydralic fluid process during the formation and migration of the subduction slab.

  8. Photogrammetric Modeling and Image-Based Rendering for Rapid Virtual Environment Creation

    DTIC Science & Technology

    2004-12-01

    area and different methods have been proposed. Pertinent methods include: Camera Calibration , Structure from Motion, Stereo Correspondence, and Image...Based Rendering 1.1.1 Camera Calibration Determining the 3D structure of a model from multiple views becomes simpler if the intrinsic (or internal...can introduce significant nonlinearities into the image. We have found that camera calibration is a straightforward process which can simplify the

  9. Intelligent multi-spectral IR image segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert

    2017-05-01

    This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.

  10. Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition

    NASA Astrophysics Data System (ADS)

    Rafiq Abuturab, Muhammad

    2018-01-01

    A new asymmetric multiple information cryptosystem based on chaotic spiral phase mask (CSPM) and random spectrum decomposition is put forwarded. In the proposed system, each channel of secret color image is first modulated with a CSPM and then gyrator transformed. The gyrator spectrum is randomly divided into two complex-valued masks. The same procedure is applied to multiple secret images to get their corresponding first and second complex-valued masks. Finally, first and second masks of each channel are independently added to produce first and second complex ciphertexts, respectively. The main feature of the proposed method is the different secret images encrypted by different CSPMs using different parameters as the sensitive decryption/private keys which are completely unknown to unauthorized users. Consequently, the proposed system would be resistant to potential attacks. Moreover, the CSPMs are easier to position in the decoding process owing to their own centering mark on axis focal ring. The retrieved secret images are free from cross-talk noise effects. The decryption process can be implemented by optical experiment. Numerical simulation results demonstrate the viability and security of the proposed method.

  11. Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic

    PubMed Central

    Altay, Ebru Erbayat; Fisher, Elizabeth; Jones, Stephen E.; Hara-Cleaver, Claire; Lee, Jar-Chi; Rudick, Richard A.

    2013-01-01

    Objective To assess the reliability of new magnetic resonance imaging (MRI) lesion counts by clinicians in a multiple sclerosis specialty clinic. Design An observational study. Setting A multiple sclerosis specialty clinic. Patients Eighty-five patients with multiple sclerosis participating in a National Institutes of Health–supported longitudinal study were included. Intervention Each patient had a brain MRI scan at entry and 6 months later using a standardized protocol. Main Outcome Measures The number of new T2 lesions, newly enlarging T2 lesions, and gadolinium-enhancing lesions were measured on the 6-month MRI using a computer-based image analysis program for the original study. For this study, images were reanalyzed by an expert neuroradiologist and 3 clinician raters. The neuroradiologist evaluated the original image pairs; the clinicians evaluated image pairs that were modified to simulate clinical practice. New lesion counts were compared across raters, as was classification of patients as MRI active or inactive. Results Agreement on lesion counts was highest for gadolinium-enhancing lesions, intermediate for new T2 lesions, and poor for enlarging T2 lesions. In 18% to 25% of the cases, MRI activity was classified differently by the clinician raters compared with the neuroradiologist or computer program. Variability among the clinical raters for estimates of new T2 lesions was affected most strongly by the image modifications that simulated low image quality and different head position. Conclusions Between-rater variability in new T2 lesion counts may be reduced by improved standardization of image acquisitions, but this approach may not be practical in most clinical environments. Ultimately, more reliable, robust, and accessible image analysis methods are needed for accurate multiple sclerosis disease-modifying drug monitoring and decision making in the routine clinic setting. PMID:23599930

  12. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  13. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT.

    PubMed

    Jang, J; Seo, J K

    2015-06-01

    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.

  14. A new approach for reducing beam hardening artifacts in polychromatic X-ray computed tomography using more accurate prior image.

    PubMed

    Wang, Hui; Xu, Yanan; Shi, Hongli

    2018-03-15

    Metal artifacts severely degrade CT image quality in clinical diagnosis, which are difficult to removed, especially for the beam hardening artifacts. The metal artifact reduction (MAR) based on prior images are the most frequently-used methods. However, there exists a lot misclassification in most prior images caused by absence of prior information such as spectrum distribution of X-ray beam source, especially when multiple or big metal are included. This work aims is to identify a more accurate prior image to improve image quality. The proposed method includes four steps. First, the metal image is segmented by thresholding an initial image, where the metal traces are identified in the initial projection data using the forward projection of the metal image. Second, the accurate absorbent model of certain metal image is calculated according to the spectrum distribution of certain X-ray beam source and energy-dependent attenuation coefficients of metal. Third, a new metal image is reconstructed by the general analytical reconstruction algorithm such as filtered back projection (FPB). The prior image is obtained by segmenting the difference image between the initial image and the new metal image into air, tissue and bone. Fourth, the initial projection data are normalized by dividing the projection data of prior image pixel to pixel. The final corrected image is obtained by interpolation, denormalization and reconstruction. Several clinical images with dental fillings and knee prostheses were used to evaluate the proposed algorithm and normalized metal artifact reduction (NMAR) and linear interpolation (LI) method. The results demonstrate the artifacts were reduced efficiently by the proposed method. The proposed method could obtain an exact prior image using the prior information about X-ray beam source and energy-dependent attenuation coefficients of metal. As a result, better performance of reducing beam hardening artifacts can be achieved. Moreover, the process of the proposed method is rather simple and little extra calculation burden is necessary. It has superiorities over other algorithms when include multiple and/or big implants.

  15. Quantification of right ventricular volumes and function by real time three-dimensional echocardiographic longitudinal axial plane method: validation in the clinical setting.

    PubMed

    Endo, Yuka; Maddukuri, Prasad V; Vieira, Marcelo L C; Pandian, Natesa G; Patel, Ayan R

    2006-11-01

    Measurement of right ventricular (RV) volumes and right ventricular ejection fraction (RVEF) by three-dimensional echocardiographic (3DE) short-axis disc summation method has been validated in multiple studies. However, in some patients, short-axis images are of insufficient quality for accurate tracing of the RV endocardial border. This study examined the accuracy of long-axis analysis in multiple planes (longitudinal axial plane method) for assessment of RV volumes and RVEF. 3DE images were analyzed in 40 subjects with a broad range of RV function. RV end-diastolic (RVEDV) and end-systolic volumes (RVESV) and RVEF were calculated by both short-axis disc summation method and longitudinal axial plane method. Excellent correlation was obtained between the two methods for RVEDV, RVESV, and RVEF (r = 0.99, 0.99, 0.94, respectively; P < 0.0001 for all comparisons). 3DE longitudinal-axis analysis is a promising technique for the evaluation of RV function, and may provide an alternative method of assessment in patients with suboptimal short-axis images.

  16. Non‐parametric combination and related permutation tests for neuroimaging

    PubMed Central

    Webster, Matthew A.; Brooks, Jonathan C.; Tracey, Irene; Smith, Stephen M.; Nichols, Thomas E.

    2016-01-01

    Abstract In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well‐known definition of union‐intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume‐based representations of the brain, including non‐imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non‐parametric combination (NPC) methodology, such that instead of a two‐phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one‐way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction. Hum Brain Mapp 37:1486‐1511, 2016. © 2016 Wiley Periodicals, Inc. PMID:26848101

  17. Multiresolution generalized N dimension PCA for ultrasound image denoising

    PubMed Central

    2014-01-01

    Background Ultrasound images are usually affected by speckle noise, which is a type of random multiplicative noise. Thus, reducing speckle and improving image visual quality are vital to obtaining better diagnosis. Method In this paper, a novel noise reduction method for medical ultrasound images, called multiresolution generalized N dimension PCA (MR-GND-PCA), is presented. In this method, the Gaussian pyramid and multiscale image stacks on each level are built first. GND-PCA as a multilinear subspace learning method is used for denoising. Each level is combined to achieve the final denoised image based on Laplacian pyramids. Results The proposed method is tested with synthetically speckled and real ultrasound images, and quality evaluation metrics, including MSE, SNR and PSNR, are used to evaluate its performance. Conclusion Experimental results show that the proposed method achieved the lowest noise interference and improved image quality by reducing noise and preserving the structure. Our method is also robust for the image with a much higher level of speckle noise. For clinical images, the results show that MR-GND-PCA can reduce speckle and preserve resolvable details. PMID:25096917

  18. Multiple-image encryption based on double random phase encoding and compressive sensing by using a measurement array preprocessed with orthogonal-basis matrices

    NASA Astrophysics Data System (ADS)

    Zhang, Luozhi; Zhou, Yuanyuan; Huo, Dongming; Li, Jinxi; Zhou, Xin

    2018-09-01

    A method is presented for multiple-image encryption by using the combination of orthogonal encoding and compressive sensing based on double random phase encoding. As an original thought in optical encryption, it is demonstrated theoretically and carried out by using the orthogonal-basis matrices to build a modified measurement array, being projected onto the images. In this method, all the images can be compressed in parallel into a stochastic signal and be diffused to be a stationary white noise. Meanwhile, each single-image can be separately reestablished by adopting a proper decryption key combination through the block-reconstruction rather than the entire-rebuilt, for its costs of data and decryption time are greatly decreased, which may be promising both in multi-user multiplexing and huge-image encryption/decryption. Besides, the security of this method is characterized by using the bit-length of key, and the parallelism is investigated as well. The simulations and discussions are also made on the effects of decryption as well as the correlation coefficient by using a series of sampling rates, occlusion attacks, keys with various error rates, etc.

  19. Multiple hypothesis tracking for cluttered biological image sequences.

    PubMed

    Chenouard, Nicolas; Bloch, Isabelle; Olivo-Marin, Jean-Christophe

    2013-11-01

    In this paper, we present a method for simultaneously tracking thousands of targets in biological image sequences, which is of major importance in modern biology. The complexity and inherent randomness of the problem lead us to propose a unified probabilistic framework for tracking biological particles in microscope images. The framework includes realistic models of particle motion and existence and of fluorescence image features. For the track extraction process per se, the very cluttered conditions motivate the adoption of a multiframe approach that enforces tracking decision robustness to poor imaging conditions and to random target movements. We tackle the large-scale nature of the problem by adapting the multiple hypothesis tracking algorithm to the proposed framework, resulting in a method with a favorable tradeoff between the model complexity and the computational cost of the tracking procedure. When compared to the state-of-the-art tracking techniques for bioimaging, the proposed algorithm is shown to be the only method providing high-quality results despite the critically poor imaging conditions and the dense target presence. We thus demonstrate the benefits of advanced Bayesian tracking techniques for the accurate computational modeling of dynamical biological processes, which is promising for further developments in this domain.

  20. Robust fluoroscopic respiratory gating for lung cancer radiotherapy without implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Sharp, Greg C.; Alexander, Brian; Jiang, Steve B.

    2007-02-01

    For gated lung cancer radiotherapy, it is difficult to generate accurate gating signals due to the large uncertainties when using external surrogates and the risk of pneumothorax when using implanted fiducial markers. We have previously investigated and demonstrated the feasibility of generating gating signals using the correlation scores between the reference template image and the fluoroscopic images acquired during the treatment. In this paper, we present an in-depth study, aiming at the improvement of robustness of the algorithm and its validation using multiple sets of patient data. Three different template generating and matching methods have been developed and evaluated: (1) single template method, (2) multiple template method, and (3) template clustering method. Using the fluoroscopic data acquired during patient setup before each fraction of treatment, reference templates are built that represent the tumour position and shape in the gating window, which is assumed to be at the end-of-exhale phase. For the single template method, all the setup images within the gating window are averaged to generate a composite template. For the multiple template method, each setup image in the gating window is considered as a reference template and used to generate an ensemble of correlation scores. All the scores are then combined to generate the gating signal. For the template clustering method, clustering (grouping of similar objects together) is performed to reduce the large number of reference templates into a few representative ones. Each of these methods has been evaluated against the reference gating signal as manually determined by a radiation oncologist. Five patient datasets were used for evaluation. In each case, gated treatments were simulated at both 35% and 50% duty cycles. False positive, negative and total error rates were computed. Experiments show that the single template method is sensitive to noise; the multiple template and clustering methods are more robust to noise due to the smoothing effect of aggregation of correlation scores; and the clustering method results in the best performance in terms of computational efficiency and accuracy.

  1. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.

    PubMed

    Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing

    2009-06-01

    Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.

  2. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    PubMed

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  3. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  4. Development of a Raman chemical imaging detection method for authenticating skim milk powder

    USDA-ARS?s Scientific Manuscript database

    This research demonstrated that Raman chemical imaging coupled with a simple image classification algorithm can be used to detect multiple chemical adulterants in skim milk powder. Ammonium sulfate, dicyandiamide, melamine, and urea were mixed into the milk powder as chemical adulterants in the conc...

  5. Latent Image Processing Can Bolster the Value of Quizzes.

    ERIC Educational Resources Information Center

    Singer, David

    1985-01-01

    Latent image processing is a method which reveals hidden ink when marked with a special pen. Using multiple-choice items with commercially available latent image transfers can provide immediate feedback on take-home quizzes. Students benefitted from formative evaluation and were challenged to search for alternative solutions and explain unexpected…

  6. Detecting breast microcalcifications using super-resolution ultrasound imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Labyed, Yassin; Hanson, Kenneth; Sandoval, Daniel; Pohl, Jennifer; Williamson, Michael

    2013-03-01

    Imaging breast microcalcifications is crucial for early detection and diagnosis of breast cancer. It is challenging for current clinical ultrasound to image breast microcalcifications. However, new imaging techniques using data acquired with a synthetic-aperture ultrasound system have the potential to significantly improve ultrasound imaging. We recently developed a super-resolution ultrasound imaging method termed the phase-coherent multiple-signal classification (PC-MUSIC). This signal subspace method accounts for the phase response of transducer elements to improve image resolution. In this paper, we investigate the clinical feasibility of our super-resolution ultrasound imaging method for detecting breast microcalcifications. We use our custom-built, real-time synthetic-aperture ultrasound system to acquire breast ultrasound data for 40 patients whose mammograms show the presence of breast microcalcifications. We apply our super-resolution ultrasound imaging method to the patient data, and produce clear images of breast calcifications. Our super-resolution ultrasound PC-MUSIC imaging with synthetic-aperture ultrasound data can provide a new imaging modality for detecting breast microcalcifications in clinic without using ionizing radiation.

  7. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  8. Classifying magnetic resonance image modalities with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Remedios, Samuel; Pham, Dzung L.; Butman, John A.; Roy, Snehashis

    2018-02-01

    Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)- based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.

  9. Least squares reverse time migration of controlled order multiples

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    Imaging using the reverse time migration of multiples generates inherent crosstalk artifacts due to the interference among different order multiples. Traditionally, least-square fitting has been used to address this issue by seeking the best objective function to measure the amplitude differences between the predicted and observed data. We have developed an alternative objective function by decomposing multiples into different orders to minimize the difference between Born modeling predicted multiples and specific-order multiples from observational data in order to attenuate the crosstalk. This method is denoted as the least-squares reverse time migration of controlled order multiples (LSRTM-CM). Our numerical examples demonstrated that the LSRTM-CM can significantly improve image quality compared with reverse time migration of multiples and least-square reverse time migration of multiples. Acknowledgments This research was funded by the National Nature Science Foundation of China (Grant Nos. 41430321 and 41374138).

  10. Single-Image Distance Measurement by a Smart Mobile Device.

    PubMed

    Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling

    2017-12-01

    Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.

  11. Deep Learning for Classification of Colorectal Polyps on Whole-slide Images.

    PubMed

    Korbar, Bruno; Olofson, Andrea M; Miraflor, Allen P; Nicka, Catherine M; Suriawinata, Matthew A; Torresani, Lorenzo; Suriawinata, Arief A; Hassanpour, Saeed

    2017-01-01

    Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.

  12. A new linear least squares method for T1 estimation from SPGR signals with multiple TRs

    NASA Astrophysics Data System (ADS)

    Chang, Lin-Ching; Koay, Cheng Guan; Basser, Peter J.; Pierpaoli, Carlo

    2009-02-01

    The longitudinal relaxation time, T1, can be estimated from two or more spoiled gradient recalled echo x (SPGR) images with two or more flip angles and one or more repetition times (TRs). The function relating signal intensity and the parameters are nonlinear; T1 maps can be computed from SPGR signals using nonlinear least squares regression. A widely-used linear method transforms the nonlinear model by assuming a fixed TR in SPGR images. This constraint is not desirable since multiple TRs are a clinically practical way to reduce the total acquisition time, to satisfy the required resolution, and/or to combine SPGR data acquired at different times. A new linear least squares method is proposed using the first order Taylor expansion. Monte Carlo simulations of SPGR experiments are used to evaluate the accuracy and precision of the estimated T1 from the proposed linear and the nonlinear methods. We show that the new linear least squares method provides T1 estimates comparable in both precision and accuracy to those from the nonlinear method, allowing multiple TRs and reducing computation time significantly.

  13. A novel method for the photographic recovery of fingermark impressions from ammunition cases using digital imaging.

    PubMed

    Porter, Glenn; Ebeyan, Robert; Crumlish, Charles; Renshaw, Adrian

    2015-03-01

    The photographic preservation of fingermark impression evidence found on ammunition cases remains problematic due to the cylindrical shape of the deposition substrate preventing complete capture of the impression in a single image. A novel method was developed for the photographic recovery of fingermarks from curved surfaces using digital imaging. The process involves the digital construction of a complete impression image made from several different images captured from multiple camera perspectives. Fingermark impressions deposited onto 9-mm and 0.22-caliber brass cartridge cases and a plastic 12-gauge shotgun shell were tested using various image parameters, including digital stitching method, number of images per 360° rotation of shell, image cropping, and overlap. The results suggest that this method may be successfully used to recover fingermark impression evidence from the surfaces of ammunition cases or other similar cylindrical surfaces. © 2014 American Academy of Forensic Sciences.

  14. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  15. SU-G-JeP2-07: Fusion Optimization of Multi-Contrast MRI Scans for MR-Based Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L; Yin, F; Liang, X

    Purpose: To develop an image fusion method using multiple contrast MRI scans for MR-based treatment planning. Methods: T1 weighted (T1-w), T2 weighted (T2-w) and diffusion weighted images (DWI) were acquired from liver cancer patient with breath-holding. Image fade correction and deformable image registration were performed using VelocityAI (Varian Medical Systems, CA). Registered images were normalized to mean voxel intensity for each image dataset. Contrast to noise ratio (CNR) between tumor and liver was quantified. Tumor area was defined as the GTV contoured by physicians. Normal liver area with equivalent dimension was used as background. Noise was defined by the standardmore » deviation of voxel intensities in the same liver area. Linear weightings were applied to T1-w, T2-w and DWI images to generate composite image and CNR was calculated for each composite image. Optimization process were performed to achieve different clinical goals. Results: With a goal of maximizing tumor contrast, the composite image achieved a 7–12 fold increase in tumor CNR (142.8 vs. −2.3, 11.4 and 20.6 for T1-w, T2-w and DWI only, respectively), while anatomical details were largely invisible. With a weighting combination of 100%, −10% and −10%, respectively, tumor contrast was enhanced from −2.3 to −5.4, while the anatomical details were clear. With a weighting combination of 25%, 20% and 55%, balanced tumor contrast and anatomy was achieved. Conclusion: We have investigated the feasibility of performing image fusion optimization on multiple contrast MRI images. This mechanism could help utilize multiple contrast MRI scans to potentially facilitate future MR-based treatment planning.« less

  16. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  17. Non-destructive testing method and apparatus utilizing phase multiplication holography

    DOEpatents

    Collins, H. Dale; Prince, James M.; Davis, Thomas J.

    1984-01-01

    An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.

  18. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

    2011-08-01

    In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

  19. An efficient multiple exposure image fusion in JPEG domain

    NASA Astrophysics Data System (ADS)

    Hebbalaguppe, Ramya; Kakarala, Ramakrishna

    2012-01-01

    In this paper, we describe a method to fuse multiple images taken with varying exposure times in the JPEG domain. The proposed algorithm finds its application in HDR image acquisition and image stabilization for hand-held devices like mobile phones, music players with cameras, digital cameras etc. Image acquisition at low light typically results in blurry and noisy images for hand-held camera's. Altering camera settings like ISO sensitivity, exposure times and aperture for low light image capture results in noise amplification, motion blur and reduction of depth-of-field respectively. The purpose of fusing multiple exposures is to combine the sharp details of the shorter exposure images with high signal-to-noise-ratio (SNR) of the longer exposure images. The algorithm requires only a single pass over all images, making it efficient. It comprises of - sigmoidal boosting of shorter exposed images, image fusion, artifact removal and saturation detection. Algorithm does not need more memory than a single JPEG macro block to be kept in memory making it feasible to be implemented as the part of a digital cameras hardware image processing engine. The Artifact removal step reuses the JPEGs built-in frequency analysis and hence benefits from the considerable optimization and design experience that is available for JPEG.

  20. Mapping Diffusion in a Living Cell via the Phasor Approach

    PubMed Central

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-01-01

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145

  1. Cortical pathology in multiple sclerosis detected by the T1/T2‐weighted ratio from routine magnetic resonance imaging

    PubMed Central

    Righart, Ruthger; Biberacher, Viola; Jonkman, Laura E.; Klaver, Roel; Schmidt, Paul; Buck, Dorothea; Berthele, Achim; Kirschke, Jan S.; Zimmer, Claus; Hemmer, Bernhard; Geurts, Jeroen J. G.

    2017-01-01

    Objective In multiple sclerosis, neuropathological studies have shown widespread changes in the cerebral cortex. In vivo imaging is critical, because the histopathological substrate of most measurements is unknown. Methods Using a novel magnetic resonance imaging analysis technique, based on the ratio of T1‐ and T2‐weighted signal intensities, we studied the cerebral cortex of a large cohort of patients in early stages of multiple sclerosis. A total of 168 patients with clinically isolated syndrome or relapsing–remitting multiple sclerosis (Expanded Disability Status Scale: median = 1, range = 0–3.5) and 80 age‐ and sex‐matched healthy controls were investigated. We also searched for the histopathological substrate of the T1/T2‐weighted ratio by combining postmortem imaging and histopathology in 9 multiple sclerosis brain donors. Results Patients showed lower T1/T2‐weighted ratio values in parietal and occipital areas. The 4 most significant clusters appeared in the medial occipital and posterior cingulate cortex (each left and right). The decrease of the T1/T2‐weighted ratio in the posterior cingulate was related to performance in attention. Analysis of the T1/T2‐weighted ratio values of postmortem imaging yielded a strong correlation with dendrite density but none of the other parameters including myelin. Interpretation The T1/T2‐weighted ratio decreases in early stages of multiple sclerosis in a widespread manner, with a preponderance of posterior areas and with a contribution to attentional performance; it seems to reflect dendrite pathology. As the method is broadly available and applicable to available clinical scans, we believe that it is a promising candidate for studying and monitoring cortical pathology or therapeutic effects in multiple sclerosis. Ann Neurol 2017;82:519–529 PMID:28833433

  2. Adaptive partially hidden Markov models with application to bilevel image coding.

    PubMed

    Forchhammer, S; Rasmussen, T S

    1999-01-01

    Partially hidden Markov models (PHMMs) have previously been introduced. The transition and emission/output probabilities from hidden states, as known from the HMMs, are conditioned on the past. This way, the HMM may be applied to images introducing the dependencies of the second dimension by conditioning. In this paper, the PHMM is extended to multiple sequences with a multiple token version and adaptive versions of PHMM coding are presented. The different versions of the PHMM are applied to lossless bilevel image coding. To reduce and optimize the model cost and size, the contexts are organized in trees and effective quantization of the parameters is introduced. The new coding methods achieve results that are better than the JBIG standard on selected test images, although at the cost of increased complexity. By the minimum description length principle, the methods presented for optimizing the code length may apply as guidance for training (P)HMMs for, e.g., segmentation or recognition purposes. Thereby, the PHMM models provide a new approach to image modeling.

  3. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.

    PubMed

    Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei

    2014-01-01

    Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.

  4. Frequency bandwidth extension by use of multiple Zeeman field offsets for electron spin-echo EPR oxygen imaging of large objects

    PubMed Central

    Seifi, Payam; Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2011-01-01

    Purpose: Electron spin-echo (ESE) oxygen imaging is a new and evolving electron paramagnetic resonance (EPR) imaging (EPRI) modality that is useful for physiological in vivo applications, such as EPR oxygen imaging (EPROI), with potential application to imaging of multicentimeter objects as large as human tumors. A present limitation on the size of the object to be imaged at a given resolution is the frequency bandwidth of the system, since the location is encoded as a frequency offset in ESE imaging. The authors’ aim in this study was to demonstrate the object size advantage of the multioffset bandwidth extension technique.Methods: The multiple-stepped Zeeman field offset (or simply multi-B) technique was used for imaging of an 8.5-cm-long phantom containing a narrow single line triaryl methyl compound (trityl) solution at the 250 MHz imaging frequency. The image is compared to a standard single-field ESE image of the same phantom.Results: For the phantom used in this study, transverse relaxation (T2e) electron spin-echo (ESE) images from multi-B acquisition are more uniform, contain less prominent artifacts, and have a better signal to noise ratio (SNR) compared to single-field T2e images.Conclusions: The multi-B method is suitable for imaging of samples whose physical size restricts the applicability of the conventional single-field ESE imaging technique. PMID:21815379

  5. Dual-color multiple-particle tracking at 50-nm localization and over 100-µm range in 3D with temporal focusing two-photon microscopy

    PubMed Central

    Ding, Yu; Li, Chunqiang

    2016-01-01

    Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724

  6. Optical double-image cryptography based on diffractive imaging with a laterally-translated phase grating.

    PubMed

    Chen, Wen; Chen, Xudong; Sheppard, Colin J R

    2011-10-10

    In this paper, we propose a method using structured-illumination-based diffractive imaging with a laterally-translated phase grating for optical double-image cryptography. An optical cryptosystem is designed, and multiple random phase-only masks are placed in the optical path. When a phase grating is laterally translated just before the plaintexts, several diffraction intensity patterns (i.e., ciphertexts) can be correspondingly obtained. During image decryption, an iterative retrieval algorithm is developed to extract plaintexts from the ciphertexts. In addition, security and advantages of the proposed method are analyzed. Feasibility and effectiveness of the proposed method are demonstrated by numerical simulation results. © 2011 Optical Society of America

  7. Infrared super-resolution imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Sui, Xiubao; Chen, Qian; Gu, Guohua; Shen, Xuewei

    2014-03-01

    The theoretical basis of traditional infrared super-resolution imaging method is Nyquist sampling theorem. The reconstruction premise is that the relative positions of the infrared objects in the low-resolution image sequences should keep fixed and the image restoration means is the inverse operation of ill-posed issues without fixed rules. The super-resolution reconstruction ability of the infrared image, algorithm's application area and stability of reconstruction algorithm are limited. To this end, we proposed super-resolution reconstruction method based on compressed sensing in this paper. In the method, we selected Toeplitz matrix as the measurement matrix and realized it by phase mask method. We researched complementary matching pursuit algorithm and selected it as the recovery algorithm. In order to adapt to the moving target and decrease imaging time, we take use of area infrared focal plane array to acquire multiple measurements at one time. Theoretically, the method breaks though Nyquist sampling theorem and can greatly improve the spatial resolution of the infrared image. The last image contrast and experiment data indicate that our method is effective in improving resolution of infrared images and is superior than some traditional super-resolution imaging method. The compressed sensing super-resolution method is expected to have a wide application prospect.

  8. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    PubMed

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  9. Nonalcoholic Fatty Liver Disease: Diagnostic and Fat-Grading Accuracy of Low-Flip-Angle Multiecho Gradient-Recalled-Echo MR Imaging at 1.5 T

    PubMed Central

    Yokoo, Takeshi; Bydder, Mark; Hamilton, Gavin; Middleton, Michael S.; Gamst, Anthony C.; Wolfson, Tanya; Hassanein, Tarek; Patton, Heather M.; Lavine, Joel E.; Schwimmer, Jeffrey B.; Sirlin, Claude B.

    2009-01-01

    Purpose: To assess the accuracy of four fat quantification methods at low-flip-angle multiecho gradient-recalled-echo (GRE) magnetic resonance (MR) imaging in nonalcoholic fatty liver disease (NAFLD) by using MR spectroscopy as the reference standard. Materials and Methods: In this institutional review board–approved, HIPAA-compliant prospective study, 110 subjects (29 with biopsy-confirmed NAFLD, 50 overweight and at risk for NAFLD, and 31 healthy volunteers) (mean age, 32.6 years ± 15.6 [standard deviation]; range, 8–66 years) gave informed consent and underwent MR spectroscopy and GRE MR imaging of the liver. Spectroscopy involved a long repetition time (to suppress T1 effects) and multiple echo times (to estimate T2 effects); the reference fat fraction (FF) was calculated from T2-corrected fat and water spectral peak areas. Imaging involved a low flip angle (to suppress T1 effects) and multiple echo times (to estimate T2* effects); imaging FF was calculated by using four analysis methods of progressive complexity: dual echo, triple echo, multiecho, and multiinterference. All methods except dual echo corrected for T2* effects. The multiinterference method corrected for multiple spectral interference effects of fat. For each method, the accuracy for diagnosis of fatty liver, as defined with a spectroscopic threshold, was assessed by estimating sensitivity and specificity; fat-grading accuracy was assessed by comparing imaging and spectroscopic FF values by using linear regression. Results: Dual-echo, triple-echo, multiecho, and multiinterference methods had a sensitivity of 0.817, 0.967, 0.950, and 0.983 and a specificity of 1.000, 0.880, 1.000, and 0.880, respectively. On the basis of regression slope and intercept, the multiinterference (slope, 0.98; intercept, 0.91%) method had high fat-grading accuracy without statistically significant error (P > .05). Dual-echo (slope, 0.98; intercept, −2.90%), triple-echo (slope, 0.94; intercept, 1.42%), and multiecho (slope, 0.85; intercept, −0.15%) methods had statistically significant error (P < .05). Conclusion: Relaxation- and interference-corrected fat quantification at low-flip-angle multiecho GRE MR imaging provides high diagnostic and fat-grading accuracy in NAFLD. © RSNA, 2009 PMID:19221054

  10. Weibull Multiplicative Model and Machine Learning Models for Full-Automatic Dark-Spot Detection from SAR Images

    NASA Astrophysics Data System (ADS)

    Taravat, A.; Del Frate, F.

    2013-09-01

    As a major aspect of marine pollution, oil release into the sea has serious biological and environmental impacts. Among remote sensing systems (which is a tool that offers a non-destructive investigation method), synthetic aperture radar (SAR) can provide valuable synoptic information about the position and size of the oil spill due to its wide area coverage and day/night, and all-weather capabilities. In this paper we present a new automated method for oil-spill monitoring. A new approach is based on the combination of Weibull Multiplicative Model and machine learning techniques to differentiate between dark spots and the background. First, the filter created based on Weibull Multiplicative Model is applied to each sub-image. Second, the sub-image is segmented by two different neural networks techniques (Pulsed Coupled Neural Networks and Multilayer Perceptron Neural Networks). As the last step, a very simple filtering process is used to eliminate the false targets. The proposed approaches were tested on 20 ENVISAT and ERS2 images which contained dark spots. The same parameters were used in all tests. For the overall dataset, the average accuracies of 94.05 % and 95.20 % were obtained for PCNN and MLP methods, respectively. The average computational time for dark-spot detection with a 256 × 256 image in about 4 s for PCNN segmentation using IDL software which is the fastest one in this field at present. Our experimental results demonstrate that the proposed approach is very fast, robust and effective. The proposed approach can be applied to the future spaceborne SAR images.

  11. Three-dimensional reconstruction from multiple reflected views within a realist painting: an application to Scott Fraser's "Three way vanitas"

    NASA Astrophysics Data System (ADS)

    Smith, Brandon M.; Stork, David G.; Zhang, Li

    2009-01-01

    The problem of reconstructing a three-dimensional scene from single or multiple views has been thoroughly studied in the computer vision literature, and recently has been applied to problems in the history of art. Criminisi pioneered the application of single-view metrology to reconstructing the fictive spaces in Renaissance paintings, such as the vault in Masaccio's Trinità and the plaza in Piero della Francesca's Flagellazione. While the vast majority of realist paintings provide but a single view, some provide multiple views, through mirrors depicted within their tableaus. The contemporary American realist Scott Fraser's Three way vanitas is a highly realistic still-life containing three mirrors; each mirror provides a new view of the objects in the tableau. We applied multiple-view reconstruction methods to the direct image and the images reflected by these mirrors to reconstruct the three-dimensional tableau. Our methods estimate virtual viewpoints for each view using the geometric constraints provided by the direct view of the mirror frames, along with the reflected images themselves. Moreover, our methods automatically discover inconsistencies between the different views, including ones that might elude careful scrutiny by eye, for example the fact that the height of the water in the glass differs between the direct view and that in the mirror at the right. We believe our work provides the first application of multiple-view reconstruction to a single painting and will have application to other paintings and questions in the history of art.

  12. Polarization-multiplexing ghost imaging

    NASA Astrophysics Data System (ADS)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  13. Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.

    2017-05-01

    In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.

  14. Penrose high-dynamic-range imaging

    NASA Astrophysics Data System (ADS)

    Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian

    2016-05-01

    High-dynamic-range (HDR) imaging is becoming increasingly popular and widespread. The most common multishot HDR approach, based on multiple low-dynamic-range images captured with different exposures, has difficulties in handling camera and object movements. The spatially varying exposures (SVE) technology provides a solution to overcome this limitation by obtaining multiple exposures of the scene in only one shot but suffers from a loss in spatial resolution of the captured image. While aperiodic assignment of exposures has been shown to be advantageous during reconstruction in alleviating resolution loss, almost all the existing imaging sensors use the square pixel layout, which is a periodic tiling of square pixels. We propose the Penrose pixel layout, using pixels in aperiodic rhombus Penrose tiling, for HDR imaging. With the SVE technology, Penrose pixel layout has both exposure and pixel aperiodicities. To investigate its performance, we have to reconstruct HDR images in square pixel layout from Penrose raw images with SVE. Since the two pixel layouts are different, the traditional HDR reconstruction methods are not applicable. We develop a reconstruction method for Penrose pixel layout using a Gaussian mixture model for regularization. Both quantitative and qualitative results show the superiority of Penrose pixel layout over square pixel layout.

  15. A Software Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Seebo, Jeff P.; Trinh, Long B.; Walker, James L.; Winfree, William P.

    2007-01-01

    Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases.

  16. Design of system calibration for effective imaging

    NASA Astrophysics Data System (ADS)

    Varaprasad Babu, G.; Rao, K. M. M.

    2006-12-01

    A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.

  17. Geographical Topics Learning of Geo-Tagged Social Images.

    PubMed

    Zhang, Xiaoming; Ji, Shufan; Wang, Senzhang; Li, Zhoujun; Lv, Xueqiang

    2016-03-01

    With the availability of cheap location sensors, geotagging of images in online social media is very popular. With a large amount of geo-tagged social images, it is interesting to study how these images are shared across geographical regions and how the geographical language characteristics and vision patterns are distributed across different regions. Unlike textual document, geo-tagged social image contains multiple types of content, i.e., textual description, visual content, and geographical information. Existing approaches usually mine geographical characteristics using a subset of multiple types of image contents or combining those contents linearly, which ignore correlations between different types of contents, and their geographical distributions. Therefore, in this paper, we propose a novel method to discover geographical characteristics of geo-tagged social images using a geographical topic model called geographical topic model of social images (GTMSIs). GTMSI integrates multiple types of social image contents as well as the geographical distributions, in which image topics are modeled based on both vocabulary and visual features. In GTMSI, each region of the image would have its own topic distribution, and hence have its own language model and vision pattern. Experimental results show that our GTMSI could identify interesting topics and vision patterns, as well as provide location prediction and image tagging.

  18. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    PubMed

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [An improved low spectral distortion PCA fusion method].

    PubMed

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  20. Optical multiple-image hiding based on interference and grating modulation

    NASA Astrophysics Data System (ADS)

    He, Wenqi; Peng, Xiang; Meng, Xiangfeng

    2012-07-01

    We present a method for multiple-image hiding on the basis of interference-based encryption architecture and grating modulation. By using a modified phase retrieval algorithm, we can separately hide a number of secret images into one arbitrarily preselected host image associated with a set of phase-only masks (POMs), which are regarded as secret keys. Thereafter, a grating modulation operation is introduced to multiplex and store the different POMs into a single key mask, which is then assigned to the authorized users in privacy. For recovery, after an appropriate demultiplexing process, one can reconstruct the distributions of all the secret keys and then recover the corresponding hidden images with suppressed crosstalk. Computer simulation results are presented to validate the feasibility of our approach.

  1. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    PubMed

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  2. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    PubMed

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.

  3. Multiple Acquisition InSAR Analysis: Persistent Scatterer and Small Baseline Approaches

    NASA Astrophysics Data System (ADS)

    Hooper, A.

    2006-12-01

    InSAR techniques that process data from multiple acquisitions enable us to form time series of deformation and also allow us to reduce error terms present in single interferograms. There are currently two broad categories of methods that deal with multiple images: persistent scatterer methods and small baseline methods. The persistent scatterer approach relies on identifying pixels whose scattering properties vary little with time and look angle. Pixels that are dominated by a singular scatterer best meet these criteria; therefore, images are processed at full resolution to both increase the chance of there being only one dominant scatterer present, and to reduce the contribution from other scatterers within each pixel. In images where most pixels contain multiple scatterers of similar strength, even at the highest possible resolution, the persistent scatterer approach is less optimal, as the scattering characteristics of these pixels vary substantially with look angle. In this case, an approach that interferes only pairs of images for which the difference in look angle is small makes better sense, and resolution can be sacrificed to reduce the effects of the look angle difference by band-pass filtering. This is the small baseline approach. Existing small baseline methods depend on forming a series of multilooked interferograms and unwrapping each one individually. This approach fails to take advantage of two of the benefits of processing multiple acquisitions, however, which are usually embodied in persistent scatterer methods: the ability to find and extract the phase for single-look pixels with good signal-to-noise ratio that are surrounded by noisy pixels, and the ability to unwrap more robustly in three dimensions, the third dimension being that of time. We have developed, therefore, a new small baseline method to select individual single-look pixels that behave coherently in time, so that isolated stable pixels may be found. After correction for various error terms, the phase values of the selected pixels are unwrapped using a new three-dimensional algorithm. We apply our small baseline method to an area in southern Iceland that includes Katla and Eyjafjallajökull volcanoes, and retrieve a time series of deformation that shows transient deformation due to intrusion of magma beneath Eyjafjallajökull. We also process the data using the Stanford method for persistent scatterers (StaMPS) for comparison.

  4. Preliminary study on X-ray fluorescence computed tomography imaging of gold nanoparticles: Acceleration of data acquisition by multiple pinholes scheme

    NASA Astrophysics Data System (ADS)

    Sasaya, Tenta; Sunaguchi, Naoki; Seo, Seung-Jum; Hyodo, Kazuyuki; Zeniya, Tsutomu; Kim, Jong-Ki; Yuasa, Tetsuya

    2018-04-01

    Gold nanoparticles (GNPs) have recently attracted attention in nanomedicine as novel contrast agents for cancer imaging. A decisive tomographic imaging technique has not yet been established to depict the 3-D distribution of GNPs in an object. An imaging technique known as pinhole-based X-ray fluorescence computed tomography (XFCT) is a promising method that can be used to reconstruct the distribution of GNPs from the X-ray fluorescence emitted by GNPs. We address the acceleration of data acquisition in pinhole-based XFCT for preclinical use using a multiple pinhole scheme. In this scheme, multiple projections are simultaneously acquired through a multi-pinhole collimator with a 2-D detector and full-field volumetric beam to enhance the signal-to-noise ratio of the projections; this enables fast data acquisition. To demonstrate the efficacy of this method, we performed an imaging experiment using a physical phantom with an actual multi-pinhole XFCT system that was constructed using the beamline AR-NE7A at KEK. The preliminary study showed that the multi-pinhole XFCT achieved a data acquisition time of 20 min at a theoretical detection limit of approximately 0.1 Au mg/ml and at a spatial resolution of 0.4 mm.

  5. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. Fan fault diagnosis based on symmetrized dot pattern analysis and image matching

    NASA Astrophysics Data System (ADS)

    Xu, Xiaogang; Liu, Haixiao; Zhu, Hao; Wang, Songling

    2016-07-01

    To detect the mechanical failure of fans, a new diagnostic method based on the symmetrized dot pattern (SDP) analysis and image matching is proposed. Vibration signals of 13 kinds of running states are acquired on a centrifugal fan test bed and reconstructed by the SDP technique. The SDP pattern templates of each running state are established. An image matching method is performed to diagnose the fault. In order to improve the diagnostic accuracy, the single template, multiple templates and clustering fault templates are used to perform the image matching.

  7. Evaluation of double photon coincidence Compton imaging method with GEANT4 simulation

    NASA Astrophysics Data System (ADS)

    Yoshihara, Yuri; Shimazoe, Kenji; Mizumachi, Yuki; Takahashi, Hiroyuki

    2017-11-01

    Compton imaging has been used for various applications including astronomical observations, radioactive waste management, and biomedical imaging. The positions of radioisotopes are determined in the intersections of multiple cone traces through a large number of events, which reduces signal to noise ratio (SNR) of the images. We have developed an advanced Compton imaging method to localize radioisotopes with high SNR by using information of the interactions of Compton scattering caused by two gamma rays at the same time, as the double photon coincidence Compton imaging method. The targeted radioisotopes of this imaging method are specific nuclides that emit several gamma rays at the same time such as 60Co, 134Cs, and 111In, etc. Since their locations are determined in the intersections of two Compton cones, the most of cone traces would disappear in the three-dimensional space, which enhances the SNR and angular resolution. In this paper, the comparison of the double photon coincidence Compton imaging method and the single photon Compton imaging method was conducted by using GEANT4 Monte Carlo simulation.

  8. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.

    PubMed

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-Ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-03-05

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.

  9. Development of a Raman chemical image detection algorithm for authenticating dry milk

    USDA-ARS?s Scientific Manuscript database

    This research developed a Raman chemical imaging method for detecting multiple adulterants in skim milk powder. Ammonium sulfate, dicyandiamide, melamine, and urea were mixed into the milk powder as chemical adulterants in the concentration range of 0.1–5.0%. A Raman imaging system using a 785-nm la...

  10. Astronomy with the Color Blind

    ERIC Educational Resources Information Center

    Smith, Donald A.; Melrose, Justyn

    2014-01-01

    The standard method to create dramatic color images in astrophotography is to record multiple black and white images, each with a different color filter in the optical path, and then tint each frame with a color appropriate to the corresponding filter. When combined, the resulting image conveys information about the sources of emission in the…

  11. N-Way FRET Microscopy of Multiple Protein-Protein Interactions in Live Cells

    PubMed Central

    Hoppe, Adam D.; Scott, Brandon L.; Welliver, Timothy P.; Straight, Samuel W.; Swanson, Joel A.

    2013-01-01

    Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells. PMID:23762252

  12. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR).

    PubMed

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-09

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method.

  13. High-Performance Anti-Retransmission Deception Jamming Utilizing Range Direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)

    PubMed Central

    Wang, Ruijia; Chen, Jie; Wang, Xing; Sun, Bing

    2017-01-01

    Retransmission deception jamming seriously degrades the Synthetic Aperture Radar (SAR) detection efficiency and can mislead SAR image interpretation by forming false targets. In order to suppress retransmission deception jamming, this paper proposes a novel multiple input and multiple output (MIMO) SAR structure range direction MIMO SAR, whose multiple channel antennas are vertical to the azimuth. First, based on the multiple channels of range direction MIMO SAR, the orthogonal frequency division multiplexing (OFDM) linear frequency modulation (LFM) signal was adopted as the transmission signal of each channel, which is defined as a sub-band signal. This sub-band signal corresponds to the transmission channel. Then, all of the sub-band signals are modulated with random initial phases and concurrently transmitted. The signal form is more complex and difficult to intercept. Next, the echoes of the sub-band signal are utilized to synthesize a wide band signal after preprocessing. The proposed method will increase the signal to interference ratio and peak amplitude ratio of the signal to resist retransmission deception jamming. Finally, well-focused SAR imagery is obtained using a conventional imaging method where the retransmission deception jamming strength is degraded and defocused. Simulations demonstrated the effectiveness of the proposed method. PMID:28075367

  14. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    NASA Astrophysics Data System (ADS)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  15. A level set method for multiple sclerosis lesion segmentation.

    PubMed

    Zhao, Yue; Guo, Shuxu; Luo, Min; Shi, Xue; Bilello, Michel; Zhang, Shaoxiang; Li, Chunming

    2018-06-01

    In this paper, we present a level set method for multiple sclerosis (MS) lesion segmentation from FLAIR images in the presence of intensity inhomogeneities. We use a three-phase level set formulation of segmentation and bias field estimation to segment MS lesions and normal tissue region (including GM and WM) and CSF and the background from FLAIR images. To save computational load, we derive a two-phase formulation from the original multi-phase level set formulation to segment the MS lesions and normal tissue regions. The derived method inherits the desirable ability to precisely locate object boundaries of the original level set method, which simultaneously performs segmentation and estimation of the bias field to deal with intensity inhomogeneity. Experimental results demonstrate the advantages of our method over other state-of-the-art methods in terms of segmentation accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease

    PubMed Central

    Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka

    2012-01-01

    In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228

  17. Parallel MR Imaging with Accelerations Beyond the Number of Receiver Channels Using Real Image Reconstruction.

    PubMed

    Ji, Jim; Wright, Steven

    2005-01-01

    Parallel imaging using multiple phased-array coils and receiver channels has become an effective approach to high-speed magnetic resonance imaging (MRI). To obtain high spatiotemporal resolution, the k-space is subsampled and later interpolated using multiple channel data. Higher subsampling factors result in faster image acquisition. However, the subsampling factors are upper-bounded by the number of parallel channels. Phase constraints have been previously proposed to overcome this limitation with some success. In this paper, we demonstrate that in certain applications it is possible to obtain acceleration factors potentially up to twice the channel numbers by using a real image constraint. Data acquisition and processing methods to manipulate and estimate of the image phase information are presented for improving image reconstruction. In-vivo brain MRI experimental results show that accelerations up to 6 are feasible with 4-channel data.

  18. Predicting perceptual quality of images in realistic scenario using deep filter banks

    NASA Astrophysics Data System (ADS)

    Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang

    2018-03-01

    Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.

  19. Nonlocal variational model and filter algorithm to remove multiplicative noise

    NASA Astrophysics Data System (ADS)

    Chen, Dai-Qiang; Zhang, Hui; Cheng, Li-Zhi

    2010-07-01

    The nonlocal (NL) means filter proposed by Buades, Coll, and Morel (SIAM Multiscale Model. Simul. 4(2), 490-530, 2005), which makes full use of the redundancy information in images, has shown to be very efficient for image denoising with Gauss noise added. On the basis of the NL method and a striver to minimize the conditional mean-square error, we design a NL means filter to remove multiplicative noise, and combining the NL filter to regularity method, we propose a NL total variational (TV) model and present a fast iterated algorithm for it. Experiments demonstrate that our algorithm is better than TV method; it is superior in preserving small structures and textures and can obtain an improvement in peak signal-to-noise ratio.

  20. Multiple-mouse MRI with multiple arrays of receive coils.

    PubMed

    Ramirez, Marc S; Esparza-Coss, Emilio; Bankson, James A

    2010-03-01

    Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil. (c) 2010 Wiley-Liss, Inc.

  1. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    NASA Astrophysics Data System (ADS)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  2. Optimization of Sample Preparation and Instrumental Parameters for the Rapid Analysis of Drugs of Abuse in Hair samples by MALDI-MS/MS Imaging

    NASA Astrophysics Data System (ADS)

    Flinders, Bryn; Beasley, Emma; Verlaan, Ricky M.; Cuypers, Eva; Francese, Simona; Bassindale, Tom; Clench, Malcolm R.; Heeren, Ron M. A.

    2017-08-01

    Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) has been employed to rapidly screen longitudinally sectioned drug user hair samples for cocaine and its metabolites using continuous raster imaging. Optimization of the spatial resolution and raster speed were performed on intact cocaine contaminated hair samples. The optimized settings (100 × 150 μm at 0.24 mm/s) were subsequently used to examine longitudinally sectioned drug user hair samples. The MALDI-MS/MS images showed the distribution of the most abundant cocaine product ion at m/z 182. Using the optimized settings, multiple hair samples obtained from two users were analyzed in approximately 3 h: six times faster than the standard spot-to-spot acquisition method. Quantitation was achieved using longitudinally sectioned control hair samples sprayed with a cocaine dilution series. A multiple reaction monitoring (MRM) experiment was also performed using the `dynamic pixel' imaging method to screen for cocaine and a range of its metabolites, in order to differentiate between contaminated hairs and drug users. Cocaine, benzoylecgonine, and cocaethylene were detectable, in agreement with analyses carried out using the standard LC-MS/MS method. [Figure not available: see fulltext.

  3. Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection

    NASA Astrophysics Data System (ADS)

    Abdelsalam, D. G.; Shaalan, M. S.; Eloker, M. M.; Kim, Daesuk

    2010-06-01

    In this paper a method is presented to accurately measure the radius of curvature of different types of curved surfaces of different radii of curvatures of 38 000,18 000 and 8000 mm using multiple-beam interference fringes in reflection. The images captured by the digital detector were corrected by flat fielding method. The corrected images were analyzed and the form of the surfaces was obtained. A 3D profile for the three types of surfaces was obtained using Zernike polynomial fitting. Some sources of uncertainty in measurement were calculated by means of ray tracing simulations and the uncertainty budget was estimated within λ/40.

  4. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  5. Light scattering and transmission measurement using digital imaging for online analysis of constituents in milk

    NASA Astrophysics Data System (ADS)

    Jain, Pranay; Sarma, Sanjay E.

    2015-05-01

    Milk is an emulsion of fat globules and casein micelles dispersed in an aqueous medium with dissolved lactose, whey proteins and minerals. Quantification of constituents in milk is important in various stages of the dairy supply chain for proper process control and quality assurance. In field-level applications, spectrophotometric analysis is an economical option due to the low-cost of silicon photodetectors, sensitive to UV/Vis radiation with wavelengths between 300 - 1100 nm. Both absorption and scattering are witnessed as incident UV/Vis radiation interacts with dissolved and dispersed constituents in milk. These effects can in turn be used to characterize the chemical and physical composition of a milk sample. However, in order to simplify analysis, most existing instrument require dilution of samples to avoid effects of multiple scattering. The sample preparation steps are usually expensive, prone to human errors and unsuitable for field-level and online analysis. This paper introduces a novel digital imaging based method of online spectrophotometric measurements on raw milk without any sample preparation. Multiple LEDs of different emission spectra are used as discrete light sources and a digital CMOS camera is used as an image sensor. The extinction characteristic of samples is derived from captured images. The dependence of multiple scattering on power of incident radiation is exploited to quantify scattering. The method has been validated with experiments for response with varying fat concentrations and fat globule sizes. Despite of the presence of multiple scattering, the method is able to unequivocally quantify extinction of incident radiation and relate it to the fat concentrations and globule sizes of samples.

  6. Simultaneous Tumor Segmentation, Image Restoration, and Blur Kernel Estimation in PET Using Multiple Regularizations

    PubMed Central

    Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan

    2016-01-01

    Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407

  7. Multiple Image Arrangement for Subjective Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhai, Guangtao

    2017-12-01

    Subjective quality assessment serves as the foundation for almost all visual quality related researches. Size of the image quality databases has expanded from dozens to thousands in the last decades. Since each subjective rating therein has to be averaged over quite a few participants, the ever-increasing overall size of those databases calls for an evolution of existing subjective test methods. Traditional single/double stimulus based approaches are being replaced by multiple image tests, where several distorted versions of the original one are displayed and rated at once. And this naturally brings upon the question of how to arrange those multiple images on screen during the test. In this paper, we answer this question by performing subjective viewing test with eye tracker for different types arrangements. Our research indicates that isometric arrangement imposes less duress on participants and has more uniform distribution of eye fixations and movements and therefore is expected to generate more reliable subjective ratings.

  8. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as competing methods, while avoiding the need to choose a reference image. It is also shown that the results of the conventional pairwise approach do depend on the choice of this reference image. We therefore conclude that our groupwise registration method with a similarity measure based on PCA is the preferred technique for compensating misalignments in qMRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. PIRIA: a general tool for indexing, search, and retrieval of multimedia content

    NASA Astrophysics Data System (ADS)

    Joint, Magali; Moellic, Pierre-Alain; Hede, P.; Adam, P.

    2004-05-01

    The Internet is a continuously expanding source of multimedia content and information. There are many products in development to search, retrieve, and understand multimedia content. But most of the current image search/retrieval engines, rely on a image database manually pre-indexed with keywords. Computers are still powerless to understand the semantic meaning of still or animated image content. Piria (Program for the Indexing and Research of Images by Affinity), the search engine we have developed brings this possibility closer to reality. Piria is a novel search engine that uses the query by example method. A user query is submitted to the system, which then returns a list of images ranked by similarity, obtained by a metric distance that operates on every indexed image signature. These indexed images are compared according to several different classifiers, not only Keywords, but also Form, Color and Texture, taking into account geometric transformations and variance like rotation, symmetry, mirroring, etc. Form - Edges extracted by an efficient segmentation algorithm. Color - Histogram, semantic color segmentation and spatial color relationship. Texture - Texture wavelets and local edge patterns. If required, Piria is also able to fuse results from multiple classifiers with a new classification of index categories: Single Indexer Single Call (SISC), Single Indexer Multiple Call (SIMC), Multiple Indexers Single Call (MISC) or Multiple Indexers Multiple Call (MIMC). Commercial and industrial applications will be explored and discussed as well as current and future development.

  10. Maximum margin multiple instance clustering with applications to image and text clustering.

    PubMed

    Zhang, Dan; Wang, Fei; Si, Luo; Li, Tao

    2011-05-01

    In multiple instance learning problems, patterns are often given as bags and each bag consists of some instances. Most of existing research in the area focuses on multiple instance classification and multiple instance regression, while very limited work has been conducted for multiple instance clustering (MIC). This paper formulates a novel framework, maximum margin multiple instance clustering (M(3)IC), for MIC. However, it is impractical to directly solve the optimization problem of M(3)IC. Therefore, M(3)IC is relaxed in this paper to enable an efficient optimization solution with a combination of the constrained concave-convex procedure and the cutting plane method. Furthermore, this paper presents some important properties of the proposed method and discusses the relationship between the proposed method and some other related ones. An extensive set of empirical results are shown to demonstrate the advantages of the proposed method against existing research for both effectiveness and efficiency.

  11. Multi-task linear programming discriminant analysis for the identification of progressive MCI individuals.

    PubMed

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.

  12. Multi-Task Linear Programming Discriminant Analysis for the Identification of Progressive MCI Individuals

    PubMed Central

    Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang

    2014-01-01

    Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966

  13. Multilinear Graph Embedding: Representation and Regularization for Images.

    PubMed

    Chen, Yi-Lei; Hsu, Chiou-Ting

    2014-02-01

    Given a set of images, finding a compact and discriminative representation is still a big challenge especially when multiple latent factors are hidden in the way of data generation. To represent multifactor images, although multilinear models are widely used to parameterize the data, most methods are based on high-order singular value decomposition (HOSVD), which preserves global statistics but interprets local variations inadequately. To this end, we propose a novel method, called multilinear graph embedding (MGE), as well as its kernelization MKGE to leverage the manifold learning techniques into multilinear models. Our method theoretically links the linear, nonlinear, and multilinear dimensionality reduction. We also show that the supervised MGE encodes informative image priors for image regularization, provided that an image is represented as a high-order tensor. From our experiments on face and gait recognition, the superior performance demonstrates that MGE better represents multifactor images than classic methods, including HOSVD and its variants. In addition, the significant improvement in image (or tensor) completion validates the potential of MGE for image regularization.

  14. Compound image segmentation of published biomedical figures.

    PubMed

    Li, Pengyuan; Jiang, Xiangying; Kambhamettu, Chandra; Shatkay, Hagit

    2018-04-01

    Images convey essential information in biomedical publications. As such, there is a growing interest within the bio-curation and the bio-databases communities, to store images within publications as evidence for biomedical processes and for experimental results. However, many of the images in biomedical publications are compound images consisting of multiple panels, where each individual panel potentially conveys a different type of information. Segmenting such images into constituent panels is an essential first step toward utilizing images. In this article, we develop a new compound image segmentation system, FigSplit, which is based on Connected Component Analysis. To overcome shortcomings typically manifested by existing methods, we develop a quality assessment step for evaluating and modifying segmentations. Two methods are proposed to re-segment the images if the initial segmentation is inaccurate. Experimental results show the effectiveness of our method compared with other methods. The system is publicly available for use at: https://www.eecis.udel.edu/~compbio/FigSplit. The code is available upon request. shatkay@udel.edu. Supplementary data are available online at Bioinformatics.

  15. Locally adaptive MR intensity models and MRF-based segmentation of multiple sclerosis lesions

    NASA Astrophysics Data System (ADS)

    Galimzianova, Alfiia; Lesjak, Žiga; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga

    2015-03-01

    Neuroimaging biomarkers are an important paraclinical tool used to characterize a number of neurological diseases, however, their extraction requires accurate and reliable segmentation of normal and pathological brain structures. For MR images of healthy brains the intensity models of normal-appearing brain tissue (NABT) in combination with Markov random field (MRF) models are known to give reliable and smooth NABT segmentation. However, the presence of pathology, MR intensity bias and natural tissue-dependent intensity variability altogether represent difficult challenges for a reliable estimation of NABT intensity model based on MR images. In this paper, we propose a novel method for segmentation of normal and pathological structures in brain MR images of multiple sclerosis (MS) patients that is based on locally-adaptive NABT model, a robust method for the estimation of model parameters and a MRF-based segmentation framework. Experiments on multi-sequence brain MR images of 27 MS patients show that, compared to whole-brain model and compared to the widely used Expectation-Maximization Segmentation (EMS) method, the locally-adaptive NABT model increases the accuracy of MS lesion segmentation.

  16. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals

    PubMed Central

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.

    2014-01-01

    Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611

  17. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals.

    PubMed

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H

    2014-07-24

    In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.

  18. Determining Object Orientation from a Single Image Using Multiple Information Sources.

    DTIC Science & Technology

    1984-06-01

    object surface. Location of the image ellipse is accomplished by exploiting knowledge about object boundaries and image intensity gradients . -. The...Using Intensity Gradient Information for Ellipse fitting ........ .51 4.3.7 Orientation From Ellipses .............................. 53 4.3.8 Application...object boundaries and image intensity gradients . The orientation information from each of these three methods is combined using a "plausibility" function

  19. Study of CT image texture using deep learning techniques

    NASA Astrophysics Data System (ADS)

    Dutta, Sandeep; Fan, Jiahua; Chevalier, David

    2018-03-01

    For CT imaging, reduction of radiation dose while improving or maintaining image quality (IQ) is currently a very active research and development topic. Iterative Reconstruction (IR) approaches have been suggested to be able to offer better IQ to dose ratio compared to the conventional Filtered Back Projection (FBP) reconstruction. However, it has been widely reported that often CT image texture from IR is different compared to that from FBP. Researchers have proposed different figure of metrics to quantitate the texture from different reconstruction methods. But there is still a lack of practical and robust method in the field for texture description. This work applied deep learning method for CT image texture study. Multiple dose scans of a 20cm diameter cylindrical water phantom was performed on Revolution CT scanner (GE Healthcare, Waukesha) and the images were reconstructed with FBP and four different IR reconstruction settings. The training images generated were randomly allotted (80:20) to a training and validation set. An independent test set of 256-512 images/class were collected with the same scan and reconstruction settings. Multiple deep learning (DL) networks with Convolution, RELU activation, max-pooling, fully-connected, global average pooling and softmax activation layers were investigated. Impact of different image patch size for training was investigated. Original pixel data as well as normalized image data were evaluated. DL models were reliably able to classify CT image texture with accuracy up to 99%. Results show that the deep learning techniques suggest that CT IR techniques may help lower the radiation dose compared to FBP.

  20. Denoising Sparse Images from GRAPPA using the Nullspace Method (DESIGN)

    PubMed Central

    Weller, Daniel S.; Polimeni, Jonathan R.; Grady, Leo; Wald, Lawrence L.; Adalsteinsson, Elfar; Goyal, Vivek K

    2011-01-01

    To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with GRAPPA alone, the Denoising of Sparse Images from GRAPPA using the Nullspace method (DESIGN) is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from uniformly undersampled k-space data using DESIGN are compared against reconstructions using existing methods in terms of difference images (a qualitative measure), PSNR, and noise amplification (g-factors) as measured using the pseudo-multiple replica method. Effects of smoothing, including contrast loss, are studied in synthetic phantom data. In the experiments presented, the contrast loss and spatial resolution are competitive with existing methods. Results for several brain images demonstrate significant improvements over GRAPPA at high acceleration factors in denoising performance with limited blurring or smoothing artifacts. In addition, the measured g-factors suggest that DESIGN mitigates noise amplification better than both GRAPPA and L1 SPIR-iT (the latter limited here by uniform undersampling). PMID:22213069

  1. Integral imaging with multiple image planes using a uniaxial crystal plate.

    PubMed

    Park, Jae-Hyeung; Jung, Sungyong; Choi, Heejin; Lee, Byoungho

    2003-08-11

    Integral imaging has been attracting much attention recently for its several advantages such as full parallax, continuous view-points, and real-time full-color operation. However, the thickness of the displayed three-dimensional image is limited to relatively small value due to the degradation of the image resolution. In this paper, we propose a method to provide observers with enhanced perception of the depth without severe resolution degradation by the use of the birefringence of a uniaxial crystal plate. The proposed integral imaging system can display images integrated around three central depth planes by dynamically altering the polarization and controlling both elemental images and dynamic slit array mask accordingly. We explain the principle of the proposed method and verify it experimentally.

  2. An Automated Blur Detection Method for Histological Whole Slide Imaging

    PubMed Central

    Moles Lopez, Xavier; D'Andrea, Etienne; Barbot, Paul; Bridoux, Anne-Sophie; Rorive, Sandrine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine

    2013-01-01

    Whole slide scanners are novel devices that enable high-resolution imaging of an entire histological slide. Furthermore, the imaging is achieved in only a few minutes, which enables image rendering of large-scale studies involving multiple immunohistochemistry biomarkers. Although whole slide imaging has improved considerably, locally poor focusing causes blurred regions of the image. These artifacts may strongly affect the quality of subsequent analyses, making a slide review process mandatory. This tedious and time-consuming task requires the scanner operator to carefully assess the virtual slide and to manually select new focus points. We propose a statistical learning method that provides early image quality feedback and automatically identifies regions of the image that require additional focus points. PMID:24349343

  3. Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol

    PubMed Central

    Chapman, Sarah E; Diener, Justin M; Sasser, Todd A; Correcher, Carlos; González, Antonio J; Avermaete, Tony Van; Leevy, W Matthew

    2012-01-01

    Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies. PMID:23145357

  4. A simple method for multiday imaging of slice cultures.

    PubMed

    Seidl, Armin H; Rubel, Edwin W

    2010-01-01

    The organotypic slice culture (Stoppini et al. A simple method for organotypic cultures of nervous tissue. 1991;37:173-182) has become the method of choice to answer a variety of questions in neuroscience. For many experiments, however, it would be beneficial to image or manipulate a slice culture repeatedly, for example, over the course of many days. We prepared organotypic slice cultures of the auditory brainstem of P3 and P4 mice and kept them in vitro for up to 4 weeks. Single cells in the auditory brainstem were transfected with plasmids expressing fluorescent proteins by way of electroporation (Haas et al. Single-cell electroporation for gene transfer in vivo. 2001;29:583-591). The culture was then placed in a chamber perfused with oxygenated ACSF and the labeled cell imaged with an inverted wide-field microscope repeatedly for multiple days, recording several time-points per day, before returning the slice to the incubator. We describe a simple method to image a slice culture preparation during the course of multiple days and over many continuous hours, without noticeable damage to the tissue or photobleaching. Our method uses a simple, inexpensive custom-built insulator constructed around the microscope to maintain controlled temperature and uses a perfusion chamber as used for in vitro slice recordings. (c) 2009 Wiley-Liss, Inc.

  5. Comparing multiple turbulence restoration algorithms performance on noisy anisoplanatic imagery

    NASA Astrophysics Data System (ADS)

    Rucci, Michael A.; Hardie, Russell C.; Dapore, Alexander J.

    2017-05-01

    In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a block matching method with restoration filter. These algorithms were chosen because they incorporate different approaches and processing techniques. The results quantitatively show how well the algorithms are able to restore the simulated degraded imagery.

  6. Comprehensive model for predicting perceptual image quality of smart mobile devices.

    PubMed

    Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng

    2015-01-01

    An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.

  7. Imaging a Large Sample with Selective Plane Illumination Microscopy Based on Multiple Fluorescent Microsphere Tracking

    NASA Astrophysics Data System (ADS)

    Ryu, Inkeon; Kim, Daekeun

    2018-04-01

    A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.

  8. The Music of the Spheres

    ERIC Educational Resources Information Center

    Lewicki, Martin; Hughes, Stephen

    2012-01-01

    This article describes a method for making a spectroscope from scrap materials, i.e. a fragment of compact disc, a cardboard box, a tube and a digital camera to record the spectrum. An image processing program such as ImageJ can be used to calculate the wavelength of emission and absorption lines from the digital photograph. Multiple images of a…

  9. Comparative analysis of image classification methods for automatic diagnosis of ophthalmic images

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Zhang, Kai; Liu, Xiyang; Long, Erping; Jiang, Jiewei; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Li, Wangting; Lin, Haotian

    2017-01-01

    There are many image classification methods, but it remains unclear which methods are most helpful for analyzing and intelligently identifying ophthalmic images. We select representative slit-lamp images which show the complexity of ocular images as research material to compare image classification algorithms for diagnosing ophthalmic diseases. To facilitate this study, some feature extraction algorithms and classifiers are combined to automatic diagnose pediatric cataract with same dataset and then their performance are compared using multiple criteria. This comparative study reveals the general characteristics of the existing methods for automatic identification of ophthalmic images and provides new insights into the strengths and shortcomings of these methods. The relevant methods (local binary pattern +SVMs, wavelet transformation +SVMs) which achieve an average accuracy of 87% and can be adopted in specific situations to aid doctors in preliminarily disease screening. Furthermore, some methods requiring fewer computational resources and less time could be applied in remote places or mobile devices to assist individuals in understanding the condition of their body. In addition, it would be helpful to accelerate the development of innovative approaches and to apply these methods to assist doctors in diagnosing ophthalmic disease.

  10. Fabrication and application of heterogeneous printed mouse phantoms for whole animal optical imaging

    PubMed Central

    Bentz, Brian Z.; Chavan, Anmol V.; Lin, Dergan; Tsai, Esther H. R.; Webb, Kevin J.

    2017-01-01

    This work demonstrates the usefulness of 3D printing for optical imaging applications. Progress in developing optical imaging for biomedical applications requires customizable and often complex objects for testing and evaluation. There is therefore high demand for what have become known as tissue-simulating “phantoms.” We present a new optical phantom fabricated using inexpensive 3D printing methods with multiple materials, allowing for the placement of complex inhomogeneities in complex or anatomically realistic geometries, as opposed to previous phantoms, which were limited to simple shapes formed by molds or machining. We use diffuse optical imaging to reconstruct optical parameters in 3D space within a printed mouse to show the applicability of the phantoms for developing whole animal optical imaging methods. This phantom fabrication approach is versatile, can be applied to optical imaging methods besides diffusive imaging, and can be used in the calibration of live animal imaging data. PMID:26835763

  11. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs.

    PubMed

    Han, Guanghui; Liu, Xiabi; Zheng, Guangyuan; Wang, Murong; Huang, Shan

    2018-06-06

    Ground-glass opacity (GGO) is a common CT imaging sign on high-resolution CT, which means the lesion is more likely to be malignant compared to common solid lung nodules. The automatic recognition of GGO CT imaging signs is of great importance for early diagnosis and possible cure of lung cancers. The present GGO recognition methods employ traditional low-level features and system performance improves slowly. Considering the high-performance of CNN model in computer vision field, we proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling is performed on multi-views and multi-receptive fields, which reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has the ability to obtain the optimal fine-tuning model. Multi-CNN models fusion strategy obtains better performance than any single trained model. We evaluated our method on the GGO nodule samples in publicly available LIDC-IDRI dataset of chest CT scans. The experimental results show that our method yields excellent results with 96.64% sensitivity, 71.43% specificity, and 0.83 F1 score. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images. Graphical abstract We proposed an automatic recognition method of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNN models in this paper. Our hybrid resampling reduces the risk of missing small or large GGOs by adopting representative sampling panels and processing GGOs with multiple scales simultaneously. The layer-wise fine-tuning strategy has ability to obtain the optimal fine-tuning model. Our method is a promising approach to apply deep learning method to computer-aided analysis of specific CT imaging signs with insufficient labeled images.

  12. Effect of slice thickness on brain magnetic resonance image texture analysis

    PubMed Central

    2010-01-01

    Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue. PMID:20955567

  13. Assessment of body fat based on potential function clustering segmentation of computed tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Lin, Min; Wan, Baikun; Zhou, Yu; Wang, Yizhong

    2005-01-01

    In this paper, a new method of body fat and its distribution testing is proposed based on CT image processing. As it is more sensitive to slight differences in attenuation than standard radiography, CT depicts the soft tissues with better clarity. And body fat has a distinct grayness range compared with its neighboring tissues in a CT image. An effective multi-thresholds image segmentation method based on potential function clustering is used to deal with multiple peaks in the grayness histogram of a CT image. The CT images of abdomens of 14 volunteers with different fatness are processed with the proposed method. Not only can the result of total fat area be got, but also the differentiation of subcutaneous fat from intra-abdominal fat has been identified. The results show the adaptability and stability of the proposed method, which will be a useful tool for diagnosing obesity.

  14. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    NASA Astrophysics Data System (ADS)

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  15. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  16. Electromagnetic Vortex-Based Radar Imaging Using a Single Receiving Antenna: Theory and Experimental Results

    PubMed Central

    Yuan, Tiezhu; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2017-01-01

    Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method. PMID:28335487

  17. Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2010-01-01

    Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.

  18. Abdominal multi-organ segmentation from CT images using conditional shape–location and unsupervised intensity priors

    PubMed Central

    Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki

    2015-01-01

    This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape–location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape–location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. PMID:26277022

  19. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2015-12-01

    This paper addresses the automated segmentation of multiple organs in upper abdominal computed tomography (CT) data. The aim of our study is to develop methods to effectively construct the conditional priors and use their prediction power for more accurate segmentation as well as easy adaptation to various imaging conditions in CT images, as observed in clinical practice. We propose a general framework of multi-organ segmentation which effectively incorporates interrelations among multiple organs and easily adapts to various imaging conditions without the need for supervised intensity information. The features of the framework are as follows: (1) A method for modeling conditional shape and location (shape-location) priors, which we call prediction-based priors, is developed to derive accurate priors specific to each subject, which enables the estimation of intensity priors without the need for supervised intensity information. (2) Organ correlation graph is introduced, which defines how the conditional priors are constructed and segmentation processes of multiple organs are executed. In our framework, predictor organs, whose segmentation is sufficiently accurate by using conventional single-organ segmentation methods, are pre-segmented, and the remaining organs are hierarchically segmented using conditional shape-location priors. The proposed framework was evaluated through the segmentation of eight abdominal organs (liver, spleen, left and right kidneys, pancreas, gallbladder, aorta, and inferior vena cava) from 134 CT data from 86 patients obtained under six imaging conditions at two hospitals. The experimental results show the effectiveness of the proposed prediction-based priors and the applicability to various imaging conditions without the need for supervised intensity information. Average Dice coefficients for the liver, spleen, and kidneys were more than 92%, and were around 73% and 67% for the pancreas and gallbladder, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The viability of ADVANTG deterministic method for synthetic radiography generation

    NASA Astrophysics Data System (ADS)

    Bingham, Andrew; Lee, Hyoung K.

    2018-07-01

    Fast simulation techniques to generate synthetic radiographic images of high resolution are helpful when new radiation imaging systems are designed. However, the standard stochastic approach requires lengthy run time with poorer statistics at higher resolution. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a small radiography system prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease 10 to 13 times compared to the MCNP stochastic approach while retaining image quality.

  1. Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes.

    PubMed

    Frazin, Richard A

    2016-04-01

    A new generation of telescopes with mirror diameters of 20 m or more, called extremely large telescopes (ELTs), has the potential to provide unprecedented imaging and spectroscopy of exoplanetary systems, if the difficulties in achieving the extremely high dynamic range required to differentiate the planetary signal from the star can be overcome to a sufficient degree. Fully utilizing the potential of ELTs for exoplanet imaging will likely require simultaneous and self-consistent determination of both the planetary image and the unknown aberrations in multiple planes of the optical system, using statistical inference based on the wavefront sensor and science camera data streams. This approach promises to overcome the most important systematic errors inherent in the various schemes based on differential imaging, such as angular differential imaging and spectral differential imaging. This paper is the first in a series on this subject, in which a formalism is established for the exoplanet imaging problem, setting the stage for the statistical inference methods to follow in the future. Every effort has been made to be rigorous and complete, so that validity of approximations to be made later can be assessed. Here, the polarimetric image is expressed in terms of aberrations in the various planes of a polarizing telescope with an adaptive optics system. Further, it is shown that current methods that utilize focal plane sensing to correct the speckle field, e.g., electric field conjugation, rely on the tacit assumption that aberrations on multiple optical surfaces can be represented as aberration on a single optical surface, ultimately limiting their potential effectiveness for ground-based astronomy.

  2. Studying depression using imaging and machine learning methods.

    PubMed

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  3. Deep kernel learning method for SAR image target recognition

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  4. Holographic Reciprocity Law Failure, with Applications to the Three-Dimensional Display of Medical Data

    NASA Astrophysics Data System (ADS)

    Johnson, Kristina Mary

    In 1973 the computerized tomography (CT) scanner revolutionized medical imaging. This machine can isolate and display in two-dimensional cross-sections, internal lesions and organs previously impossible to visualize. The possibility of three-dimensional imaging however is not yet exploited by present tomographic systems. Using multiple-exposure holography, three-dimensional displays can be synthesizing from two-dimensional CT cross -sections. A multiple-exposure hologram is an incoherent superposition of many individual holograms. Intuitively it is expected that holograms recorded with equal energy will reconstruct images with equal brightness. It is found however, that holograms recorded first are brighter than holograms recorded later in the superposition. This phenomena is called Holographic Reciprocity Law Failure (HRLF). Computer simulations of latent image formation in multiple-exposure holography are one of the methods used to investigate HRLF. These simulations indicate that it is the time between individual exposures in the multiple -exposure hologram that is responsible for HRLF. This physical parameter introduces an asymmetry into the latent image formation process that favors the signal of previously recorded holograms over holograms recorded later in the superposition. The origin of this asymmetry lies in the dynamics of latent image formation, and in particular in the decay of single-atom latent image specks, which have lifetimes that are short compared to typical times between exposures. An analytical model is developed for a double exposure hologram that predicts a decrease in the brightness of the second exposure as compared to the first exposure as the time between exposures increases. These results are consistent with the computer simulations. Experiments investigating the influence of this parameter on the diffraction efficiency of reconstructed images in a double exposure hologram are also found to be consistent with the computer simulations and analytical results. From this information, two techniques are presented that correct for HRLF, and succeed in reconstructing multiple holographic images of CT cross-sections with equal brightness. The multiple multiple-exposure hologram is a new hologram that increases the number of equally bright images that can be superimposed on one photographic plate.

  5. Artificial intelligence in radiology.

    PubMed

    Hosny, Ahmed; Parmar, Chintan; Quackenbush, John; Schwartz, Lawrence H; Aerts, Hugo J W L

    2018-05-17

    Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.

  6. An Improved Image Ringing Evaluation Method with Weighted Sum of Gray Extreme Value

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Meng, Yanhua; Wang, Bo; Bai, Xu

    2018-03-01

    Blind image restoration algorithm usually produces ringing more obvious at the edges. Ringing phenomenon is mainly affected by noise, species of restoration algorithm, and the impact of the blur kernel estimation during restoration. Based on the physical mechanism of ringing, a method of evaluating the ringing on blind restoration images is proposed. The method extracts the ringing image overshooting and ripple region to make the weighted statistics for the regional gradient value. According to the weights set by multiple experiments, the edge information is used to characterize the details of the edge to determine the weight, quantify the seriousness of the ring effect, and propose the evaluation method of the ringing caused by blind restoration. The experimental results show that the method can effectively evaluate the ring effect in the restoration images under different restoration algorithms and different restoration parameters. The evaluation results are consistent with the visual evaluation results.

  7. Geodesic active fields--a geometric framework for image registration.

    PubMed

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2011-05-01

    In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.

  8. Before In Vivo Imaging: Evaluation of Fluorescent Probes Using Fluorescence Microscopy, Multiplate Reader, and Cytotoxicity Assays.

    PubMed

    Zhang, Shaojuan

    2016-01-01

    Fluorescent probes are widely utilized for noninvasive fluorescence imaging. Continuing efforts have been made in developing novel fluorescent probes with improved fluorescence quantum yield, enhanced target-specificity, and lower cytotoxicity. Before such probes are administrated into a living system, it is essential to evaluate the subcellular uptake, targeting specificity, and cytotoxicity in vitro. In this chapter, we briefly outline common methods used to evaluate fluorescent probes using fluorescence microscopy, multiplate reader, and cytotoxicity assay.

  9. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    PubMed

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  10. Multi-object segmentation framework using deformable models for medical imaging analysis.

    PubMed

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.

  11. Ex vivo Live Imaging of Lung Metastasis and Their Microenvironment

    PubMed Central

    Maynard, Carrie; Plaks, Vicki

    2016-01-01

    Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment. PMID:26862704

  12. Speckle noise reduction in digital holography by slightly rotating the object

    NASA Astrophysics Data System (ADS)

    Herrera-Ramirez, Jorge; Hincapie-Zuluaga, Diego Andrés; Garcia-Sucerquia, Jorge

    2016-12-01

    This work shows the realization of speckle reduction in the numerical reconstruction of digitally recorded holograms by the superposition of multiple slightly rotated digital holographic images of the object. The superposition of T uncorrelated holographic images reduces the contrast of the speckle noise of the image following the expected 1/√{T} law. The effect of the method on the borders of the resulting image is evaluated by quantifying the utilization of the dynamic range or the contrast between the white and black areas of a regular die. Experimental results validate the feasibility of the proposed method.

  13. Multiple Illuminant Colour Estimation via Statistical Inference on Factor Graphs.

    PubMed

    Mutimbu, Lawrence; Robles-Kelly, Antonio

    2016-08-31

    This paper presents a method to recover a spatially varying illuminant colour estimate from scenes lit by multiple light sources. Starting with the image formation process, we formulate the illuminant recovery problem in a statistically datadriven setting. To do this, we use a factor graph defined across the scale space of the input image. In the graph, we utilise a set of illuminant prototypes computed using a data driven approach. As a result, our method delivers a pixelwise illuminant colour estimate being devoid of libraries or user input. The use of a factor graph also allows for the illuminant estimates to be recovered making use of a maximum a posteriori (MAP) inference process. Moreover, we compute the probability marginals by performing a Delaunay triangulation on our factor graph. We illustrate the utility of our method for pixelwise illuminant colour recovery on widely available datasets and compare against a number of alternatives. We also show sample colour correction results on real-world images.

  14. LEA Detection and Tracking Method for Color-Independent Visual-MIMO

    PubMed Central

    Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo

    2016-01-01

    Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement. PMID:27384563

  15. LEA Detection and Tracking Method for Color-Independent Visual-MIMO.

    PubMed

    Kim, Jai-Eun; Kim, Ji-Won; Kim, Ki-Doo

    2016-07-02

    Communication performance in the color-independent visual-multiple input multiple output (visual-MIMO) technique is deteriorated by light emitting array (LEA) detection and tracking errors in the received image because the image sensor included in the camera must be used as the receiver in the visual-MIMO system. In this paper, in order to improve detection reliability, we first set up the color-space-based region of interest (ROI) in which an LEA is likely to be placed, and then use the Harris corner detection method. Next, we use Kalman filtering for robust tracking by predicting the most probable location of the LEA when the relative position between the camera and the LEA varies. In the last step of our proposed method, the perspective projection is used to correct the distorted image, which can improve the symbol decision accuracy. Finally, through numerical simulation, we show the possibility of robust detection and tracking of the LEA, which results in a symbol error rate (SER) performance improvement.

  16. A method to classify schizophrenia using inter-task spatial correlations of functional brain images.

    PubMed

    Michael, Andrew M; Calhoun, Vince D; Andreasen, Nancy C; Baum, Stefi A

    2008-01-01

    The clinical heterogeneity of schizophrenia (scz) and the overlap of self reported and observed symptoms with other mental disorders makes its diagnosis a difficult task. At present no laboratory-based or image-based diagnostic tool for scz exists and such tools are desired to support existing methods for more precise diagnosis. Functional magnetic resonance imaging (fMRI) is currently employed to identify and correlate cognitive processes related to scz and its symptoms. Fusion of multiple fMRI tasks that probe different cognitive processes may help to better understand hidden networks of this complex disorder. In this paper we utilize three different fMRI tasks and introduce an approach to classify subjects based on inter-task spatial correlations of brain activation. The technique was applied to groups of patients and controls and its validity was checked with the leave-one-out method. We show that the classification rate increases when information from multiple tasks are combined.

  17. Present status and trends of image fusion

    NASA Astrophysics Data System (ADS)

    Xiang, Dachao; Fu, Sheng; Cai, Yiheng

    2009-10-01

    Image fusion information extracted from multiple images which is more accurate and reliable than that from just a single image. Since various images contain different information aspects of the measured parts, and comprehensive information can be obtained by integrating them together. Image fusion is a main branch of the application of data fusion technology. At present, it was widely used in computer vision technology, remote sensing, robot vision, medical image processing and military field. This paper mainly presents image fusion's contents, research methods, and the status quo at home and abroad, and analyzes the development trend.

  18. Multiple source associated particle imaging for simultaneous capture of multiple projections

    DOEpatents

    Bingham, Philip R; Hausladen, Paul A; McConchi, Seth M; Mihalczo, John T; Mullens, James A

    2013-11-19

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing neutron radiography. For example, in one exemplary method, an object is interrogated with a plurality of neutrons. The plurality of neutrons includes a first portion of neutrons generated from a first neutron source and a second portion of neutrons generated from a second neutron source. Further, at least some of the first portion and the second portion are generated during a same time period. In the exemplary method, one or more neutrons from the first portion and one or more neutrons from the second portion are detected, and an image of the object is generated based at least in part on the detected neutrons from the first portion and the detected neutrons from the second portion.

  19. Planetary Crater Detection and Registration Using Marked Point Processes, Multiple Birth and Death Algorithms, and Region-Based Analysis

    NASA Technical Reports Server (NTRS)

    Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.

    2017-01-01

    Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.

  20. Design of an image encryption scheme based on a multiple chaotic map

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  1. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues.

    PubMed

    Ku, Taeyun; Swaney, Justin; Park, Jeong-Yoon; Albanese, Alexandre; Murray, Evan; Cho, Jae Hun; Park, Young-Gyun; Mangena, Vamsi; Chen, Jiapei; Chung, Kwanghun

    2016-09-01

    The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.

  2. The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor †

    PubMed Central

    Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes. PMID:29510599

  3. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  4. Decision net, directed graph, and neural net processing of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki; Barnard, Etienne

    1989-01-01

    A decision-net solution involving a novel hierarchical classifier and a set of multiple directed graphs, as well as a neural-net solution, are respectively presented for large-class problem and mixture problem treatments of imaging spectrometer data. The clustering method for hierarchical classifier design, when used with multiple directed graphs, yields an efficient decision net. New directed-graph rules for reducing local maxima as well as the number of perturbations required, and the new starting-node rules for extending the reachability and reducing the search time of the graphs, are noted to yield superior results, as indicated by an illustrative 500-class imaging spectrometer problem.

  5. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    PubMed

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  6. Methods for multiple-telescope beam imaging and guiding in the near-infrared

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Amorim, A.; Gordo, P.; Eisenhauer, F.; Pfuhl, O.; Haug, M.; Wieprecht, E.; Wiezorrek, E.; Lima, J.; Perrin, G.; Brandner, W.; Straubmeier, C.; Le Bouquin, J.-B.; Garcia, P. J. V.

    2018-05-01

    Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2 × 2 lenslet and (c) higher-order aberrations using a 9 × 9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 μas. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.

  7. A multiparametric automatic method to monitor long-term reproducibility in digital mammography: results from a regional screening programme.

    PubMed

    Gennaro, G; Ballaminut, A; Contento, G

    2017-09-01

    This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.

  8. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    PubMed

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

  9. A precise method for adjusting the optical system of laser sub-aperture

    NASA Astrophysics Data System (ADS)

    Song, Xing; Zhang, Xue-min; Yang, Jianfeng; Xue, Li

    2018-02-01

    In order to adapt to the requirement of modern astronomical observation and warfare, the resolution of the space telescope is needed to improve, sub-aperture stitching imaging technique is one method to improve the resolution, which could be used not only the foundation and space-based large optical systems, also used in laser transmission and microscopic imaging. A large aperture main mirror of sub-aperture stitching imaging system is composed of multiple sub-mirrors distributed according to certain laws. All sub-mirrors are off-axis mirror, so the alignment of sub-aperture stitching imaging system is more complicated than a single off-axis optical system. An alignment method based on auto-collimation imaging and interferometric imaging is introduced in this paper, by using this alignment method, a sub-aperture stitching imaging system which is composed of 12 sub-mirrors was assembled with high resolution, the beam coincidence precision is better than 0.01mm, and the system wave aberration is better than 0.05λ.

  10. Reduction of background clutter in structured lighting systems

    DOEpatents

    Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.

    2010-06-22

    Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.

  11. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  12. En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods

    NASA Astrophysics Data System (ADS)

    Gorczynska, Iwona; Migacz, Justin; Zawadzki, Robert J.; Sudheendran, Narendran; Jian, Yifan; Tiruveedhula, Pavan K.; Roorda, Austin; Werner, John S.

    2015-07-01

    We tested and compared the capability of multiple optical coherence tomography (OCT) angiography methods: phase variance, amplitude decorrelation and speckle variance, with application of the split spectrum technique, to image the choroiretinal complex of the human eye. To test the possibility of OCT imaging stability improvement we utilized a real-time tracking scanning laser ophthalmoscopy (TSLO) system combined with a swept source OCT setup. In addition, we implemented a post- processing volume averaging method for improved angiographic image quality and reduction of motion artifacts. The OCT system operated at the central wavelength of 1040nm to enable sufficient depth penetration into the choroid. Imaging was performed in the eyes of healthy volunteers and patients diagnosed with age-related macular degeneration.

  13. Efficient volumetric estimation from plenoptic data

    NASA Astrophysics Data System (ADS)

    Anglin, Paul; Reeves, Stanley J.; Thurow, Brian S.

    2013-03-01

    The commercial release of the Lytro camera, and greater availability of plenoptic imaging systems in general, have given the image processing community cost-effective tools for light-field imaging. While this data is most commonly used to generate planar images at arbitrary focal depths, reconstruction of volumetric fields is also possible. Similarly, deconvolution is a technique that is conventionally used in planar image reconstruction, or deblurring, algorithms. However, when leveraged with the ability of a light-field camera to quickly reproduce multiple focal planes within an imaged volume, deconvolution offers a computationally efficient method of volumetric reconstruction. Related research has shown than light-field imaging systems in conjunction with tomographic reconstruction techniques are also capable of estimating the imaged volume and have been successfully applied to particle image velocimetry (PIV). However, while tomographic volumetric estimation through algorithms such as multiplicative algebraic reconstruction techniques (MART) have proven to be highly accurate, they are computationally intensive. In this paper, the reconstruction problem is shown to be solvable by deconvolution. Deconvolution offers significant improvement in computational efficiency through the use of fast Fourier transforms (FFTs) when compared to other tomographic methods. This work describes a deconvolution algorithm designed to reconstruct a 3-D particle field from simulated plenoptic data. A 3-D extension of existing 2-D FFT-based refocusing techniques is presented to further improve efficiency when computing object focal stacks and system point spread functions (PSF). Reconstruction artifacts are identified; their underlying source and methods of mitigation are explored where possible, and reconstructions of simulated particle fields are provided.

  14. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI.

    PubMed

    Liu, Tian; Spincemaille, Pascal; de Rochefort, Ludovic; Kressler, Bryan; Wang, Yi

    2009-01-01

    Magnetic susceptibility differs among tissues based on their contents of iron, calcium, contrast agent, and other molecular compositions. Susceptibility modifies the magnetic field detected in the MR signal phase. The determination of an arbitrary susceptibility distribution from the induced field shifts is a challenging, ill-posed inverse problem. A method called "calculation of susceptibility through multiple orientation sampling" (COSMOS) is proposed to stabilize this inverse problem. The field created by the susceptibility distribution is sampled at multiple orientations with respect to the polarization field, B(0), and the susceptibility map is reconstructed by weighted linear least squares to account for field noise and the signal void region. Numerical simulations and phantom and in vitro imaging validations demonstrated that COSMOS is a stable and precise approach to quantify a susceptibility distribution using MRI.

  15. Image enhancement in positron emission mammography

    NASA Astrophysics Data System (ADS)

    Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.

    2017-02-01

    Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).

  16. Contact-free heart rate measurement using multiple video data

    NASA Astrophysics Data System (ADS)

    Hung, Pang-Chan; Lee, Kual-Zheng; Tsai, Luo-Wei

    2013-10-01

    In this paper, we propose a contact-free heart rate measurement method by analyzing sequential images of multiple video data. In the proposed method, skin-like pixels are firstly detected from multiple video data for extracting the color features. These color features are synchronized and analyzed by independent component analysis. A representative component is finally selected among these independent component candidates to measure the HR, which achieves under 2% deviation on average compared with a pulse oximeter in the controllable environment. The advantages of the proposed method include: 1) it uses low cost and high accessibility camera device; 2) it eases users' discomfort by utilizing contact-free measurement; and 3) it achieves the low error rate and the high stability by integrating multiple video data.

  17. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  18. A phantom design for assessment of detectability in PET imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollenweber, Scott D., E-mail: scott.wollenweber@g

    2016-09-15

    Purpose: The primary clinical role of positron emission tomography (PET) imaging is the detection of anomalous regions of {sup 18}F-FDG uptake, which are often indicative of malignant lesions. The goal of this work was to create a task-configurable fillable phantom for realistic measurements of detectability in PET imaging. Design goals included simplicity, adjustable feature size, realistic size and contrast levels, and inclusion of a lumpy (i.e., heterogeneous) background. Methods: The detection targets were hollow 3D-printed dodecahedral nylon features. The exostructure sphere-like features created voids in a background of small, solid non-porous plastic (acrylic) spheres inside a fillable tank. The featuresmore » filled at full concentration while the background concentration was reduced due to filling only between the solid spheres. Results: Multiple iterations of feature size and phantom construction were used to determine a configuration at the limit of detectability for a PET/CT system. A full-scale design used a 20 cm uniform cylinder (head-size) filled with a fixed pattern of features at a contrast of approximately 3:1. Known signal-present and signal-absent PET sub-images were extracted from multiple scans of the same phantom and with detectability in a challenging (i.e., useful) range. These images enabled calculation and comparison of the quantitative observer detectability metrics between scanner designs and image reconstruction methods. The phantom design has several advantages including filling simplicity, wall-less contrast features, the control of the detectability range via feature size, and a clinically realistic lumpy background. Conclusions: This phantom provides a practical method for testing and comparison of lesion detectability as a function of imaging system, acquisition parameters, and image reconstruction methods and parameters.« less

  19. Multiple-instance ensemble learning for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Ergul, Ugur; Bilgin, Gokhan

    2017-10-01

    An ensemble framework for multiple-instance (MI) learning (MIL) is introduced for use in hyperspectral images (HSIs) by inspiring the bagging (bootstrap aggregation) method in ensemble learning. Ensemble-based bagging is performed by a small percentage of training samples, and MI bags are formed by a local windowing process with variable window sizes on selected instances. In addition to bootstrap aggregation, random subspace is another method used to diversify base classifiers. The proposed method is implemented using four MIL classification algorithms. The classifier model learning phase is carried out with MI bags, and the estimation phase is performed over single-test instances. In the experimental part of the study, two different HSIs that have ground-truth information are used, and comparative results are demonstrated with state-of-the-art classification methods. In general, the MI ensemble approach produces more compact results in terms of both diversity and error compared to equipollent non-MIL algorithms.

  20. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  1. Automated detection of age-related macular degeneration in OCT images using multiple instance learning

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Liu, Xiaoming; Yang, Zhou

    2017-07-01

    Age-related Macular Degeneration (AMD) is a kind of macular disease which mostly occurs in old people,and it may cause decreased vision or even lead to permanent blindness. Drusen is an important clinical indicator for AMD which can help doctor diagnose disease and decide the strategy of treatment. Optical Coherence Tomography (OCT) is widely used in the diagnosis of ophthalmic diseases, include AMD. In this paper, we propose a classification method based on Multiple Instance Learning (MIL) to detect AMD. Drusen can exist in a few slices of OCT images, and MIL is utilized in our method. We divided the method into two phases: training phase and testing phase. We train the initial features and clustered to create a codebook, and employ the trained classifier in the test set. Experiment results show that our method achieved high accuracy and effectiveness.

  2. Multiple Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2010-01-01

    A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.

  3. Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.

    PubMed

    Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán

    2008-01-01

    Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.

  4. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images.

    PubMed

    Simões, Rita; Mönninghoff, Christoph; Dlugaj, Martha; Weimar, Christian; Wanke, Isabel; van Cappellen van Walsum, Anne-Marie; Slump, Cornelis

    2013-09-01

    Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild Cognitive Impairment patients who take part in large population-based studies. Most existing segmentation approaches use multimodal MR images. However, multiple acquisitions represent a limitation in terms of both patient comfort and computational complexity of the algorithms. In this work, we propose an automatic lesion segmentation method that uses only three-dimensional fluid-attenuation inversion recovery (FLAIR) images. We use a modified context-sensitive Gaussian mixture model to determine voxel class probabilities, followed by correction of FLAIR artifacts. We evaluate the method against the manual segmentation performed by an experienced neuroradiologist and compare the results with other unimodal segmentation approaches. Finally, we apply our method to the segmentation of multiple sclerosis lesions by using a publicly available benchmark dataset. Results show a similar performance to other state-of-the-art multimodal methods, as well as to the human rater. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Privacy protection in surveillance systems based on JPEG DCT baseline compression and spectral domain watermarking

    NASA Astrophysics Data System (ADS)

    Sablik, Thomas; Velten, Jörg; Kummert, Anton

    2015-03-01

    An novel system for automatic privacy protection in digital media based on spectral domain watermarking and JPEG compression is described in the present paper. In a first step private areas are detected. Therefore a detection method is presented. The implemented method uses Haar cascades to detects faces. Integral images are used to speed up calculations and the detection. Multiple detections of one face are combined. Succeeding steps comprise embedding the data into the image as part of JPEG compression using spectral domain methods and protecting the area of privacy. The embedding process is integrated into and adapted to JPEG compression. A Spread Spectrum Watermarking method is used to embed the size and position of the private areas into the cover image. Different methods for embedding regarding their robustness are compared. Moreover the performance of the method concerning tampered images is presented.

  6. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  7. Material classification and automatic content enrichment of images using supervised learning and knowledge bases

    NASA Astrophysics Data System (ADS)

    Mallepudi, Sri Abhishikth; Calix, Ricardo A.; Knapp, Gerald M.

    2011-02-01

    In recent years there has been a rapid increase in the size of video and image databases. Effective searching and retrieving of images from these databases is a significant current research area. In particular, there is a growing interest in query capabilities based on semantic image features such as objects, locations, and materials, known as content-based image retrieval. This study investigated mechanisms for identifying materials present in an image. These capabilities provide additional information impacting conditional probabilities about images (e.g. objects made of steel are more likely to be buildings). These capabilities are useful in Building Information Modeling (BIM) and in automatic enrichment of images. I2T methodologies are a way to enrich an image by generating text descriptions based on image analysis. In this work, a learning model is trained to detect certain materials in images. To train the model, an image dataset was constructed containing single material images of bricks, cloth, grass, sand, stones, and wood. For generalization purposes, an additional set of 50 images containing multiple materials (some not used in training) was constructed. Two different supervised learning classification models were investigated: a single multi-class SVM classifier, and multiple binary SVM classifiers (one per material). Image features included Gabor filter parameters for texture, and color histogram data for RGB components. All classification accuracy scores using the SVM-based method were above 85%. The second model helped in gathering more information from the images since it assigned multiple classes to the images. A framework for the I2T methodology is presented.

  8. Multiple-image authentication with a cascaded multilevel architecture based on amplitude field random sampling and phase information multiplexing.

    PubMed

    Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Pan, Xuemei; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2015-04-10

    A multiple-image authentication method with a cascaded multilevel architecture in the Fresnel domain is proposed, in which a synthetic encoded complex amplitude is first fabricated, and its real amplitude component is generated by iterative amplitude encoding, random sampling, and space multiplexing for the low-level certification images, while the phase component of the synthetic encoded complex amplitude is constructed by iterative phase information encoding and multiplexing for the high-level certification images. Then the synthetic encoded complex amplitude is iteratively encoded into two phase-type ciphertexts located in two different transform planes. During high-level authentication, when the two phase-type ciphertexts and the high-level decryption key are presented to the system and then the Fresnel transform is carried out, a meaningful image with good quality and a high correlation coefficient with the original certification image can be recovered in the output plane. Similar to the procedure of high-level authentication, in the case of low-level authentication with the aid of a low-level decryption key, no significant or meaningful information is retrieved, but it can result in a remarkable peak output in the nonlinear correlation coefficient of the output image and the corresponding original certification image. Therefore, the method realizes different levels of accessibility to the original certification image for different authority levels with the same cascaded multilevel architecture.

  9. Optimization of PET-MR Registrations for Nonhuman Primates Using Mutual Information Measures: A Multi-Transform Method (MTM)

    PubMed Central

    Sandiego, Christine M.; Weinzimmer, David; Carson, Richard E.

    2012-01-01

    An important step in PET brain kinetic analysis is the registration of functional data to an anatomical MR image. Typically, PET-MR registrations in nonhuman primate neuroreceptor studies used PET images acquired early post-injection, (e.g., 0–10 min) to closely resemble the subject’s MR image. However, a substantial fraction of these registrations (~25%) fail due to the differences in kinetics and distribution for various radiotracer studies and conditions (e.g., blocking studies). The Multi-Transform Method (MTM) was developed to improve the success of registrations between PET and MR images. Two algorithms were evaluated, MTM-I and MTM-II. The approach involves creating multiple transformations by registering PET images of different time intervals, from a dynamic study, to a single reference (i.e., MR image) (MTM-I) or to multiple reference images (i.e., MR and PET images pre-registered to the MR) (MTM-II). Normalized mutual information was used to compute similarity between the transformed PET images and the reference image(s) to choose the optimal transformation. This final transformation is used to map the dynamic dataset into the animal’s anatomical MR space, required for kinetic analysis. The chosen transformed from MTM-I and MTM-II were evaluated using visual rating scores to assess the quality of spatial alignment between the resliced PET and reference. One hundred twenty PET datasets involving eleven different tracers from 3 different scanners were used to evaluate the MTM algorithms. Studies were performed with baboons and rhesus monkeys on the HR+, HRRT, and Focus-220. Successful transformations increased from 77.5%, 85.8%, to 96.7% using the 0–10 min method, MTM-I, and MTM-II, respectively, based on visual rating scores. The Multi-Transform Methods proved to be a robust technique for PET-MR registrations for a wide range of PET studies. PMID:22926293

  10. Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging.

    PubMed

    Carasso, Alfred S; Vladár, András E

    2014-01-01

    This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL),(1) that can perform the above image processing tasks.

  11. A method for operative quantitative interpretation of multispectral images of biological tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2013-10-01

    A method for operative retrieval of spatial distributions of biophysical parameters of a biological tissue by using a multispectral image of it has been developed. The method is based on multiple regressions between linearly independent components of the diffuse reflection spectrum of the tissue and unknown parameters. Possibilities of the method are illustrated by an example of determining biophysical parameters of the skin (concentrations of melanin, hemoglobin and bilirubin, blood oxygenation, and scattering coefficient of the tissue). Examples of quantitative interpretation of the experimental data are presented.

  12. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  13. Texture feature extraction based on a uniformity estimation method for local brightness and structure in chest CT images.

    PubMed

    Peng, Shao-Hu; Kim, Deok-Hwan; Lee, Seok-Lyong; Lim, Myung-Kwan

    2010-01-01

    Texture feature is one of most important feature analysis methods in the computer-aided diagnosis (CAD) systems for disease diagnosis. In this paper, we propose a Uniformity Estimation Method (UEM) for local brightness and structure to detect the pathological change in the chest CT images. Based on the characteristics of the chest CT images, we extract texture features by proposing an extension of rotation invariant LBP (ELBP(riu4)) and the gradient orientation difference so as to represent a uniform pattern of the brightness and structure in the image. The utilization of the ELBP(riu4) and the gradient orientation difference allows us to extract rotation invariant texture features in multiple directions. Beyond this, we propose to employ the integral image technique to speed up the texture feature computation of the spatial gray level dependent method (SGLDM). Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Differential and relaxed image foresting transform for graph-cut segmentation of multiple 3D objects.

    PubMed

    Moya, Nikolas; Falcão, Alexandre X; Ciesielski, Krzysztof C; Udupa, Jayaram K

    2014-01-01

    Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of some state-of-the-art methods. The user can add/remove markers (seed voxels) along a sequence of executions of the DRIFT algorithm to improve segmentation. Its first execution takes linear time with the image's size, while the subsequent executions for corrections take sublinear time in practice. At each execution, DRIFT first runs the DIFT algorithm, then it applies diffusion filtering to smooth boundaries between objects (and background) and, finally, it corrects possible objects' disconnection occurrences with respect to their seeds. We evaluate DRIFT in 3D CT-images of the thorax for segmenting the arterial system, esophagus, left pleural cavity, right pleural cavity, trachea and bronchi, and the venous system.

  15. High throughput analysis of samples in flowing liquid

    DOEpatents

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  16. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging

    PubMed Central

    Haacke, E. Mark; Makki, Malek; Ge, Yulin; Maheshwari, Megha; Sehgal, Vivek; Hu, Jiani; Selvan, Madeswaran; Wu, Zhen; Latif, Zahid; Xuan, Yang; Khan, Omar; Garbern, James; Grossman, Robert I.

    2009-01-01

    Purpose To investigate whether the variable forms of putative iron deposition seen with susceptibility weighted imaging (SWI) will lead to a set of multiple sclerosis (MS) lesion characteristics different than that seen in conventional MR imaging. Materials and Methods Twenty-seven clinically definite MS patients underwent brain scans using magnetic resonance imaging including: pre- and post-contrast T1-weighted, T2-weighted, FLAIR, and SWI at 1.5T, 3T and 4T. MS lesions were identified separately in each imaging sequence. Lesions identified in SWI were re-evaluated for their iron content using the SWI filtered phase images. Results There were a variety of new lesion characteristics identified by SWI and these were classified into six types. A total of 75 lesions were seen only with conventional imaging, 143 only with SWI and 204 by both. From the iron quantification measurements, a moderate linear correlation between signal intensity and iron content (phase) was established. Conclusion The amount of iron deposition in the brain may serve as a surrogate biomarker for different MS lesion characteristics. SWI showed many lesions missed by conventional methods and six different lesion characteristics. SWI was particularly effective at recognizing the presence of iron in MS lesions and in the basal ganglia and pulvinar thalamus. PMID:19243035

  17. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

    PubMed

    Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping

    2018-03-23

    Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.

  18. Multiplex and label-free screening of foodborne pathogens using surface plasmon resonance imaging

    USDA-ARS?s Scientific Manuscript database

    In order to protect outbreaks caused by foodborne pathogens, more rapid and efficient methods are needed for pathogen screening from food samples. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for label-free screening of multiple targets simultaneously with ...

  19. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  20. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  1. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review.

    PubMed

    Xiong, Zhenjie; Sun, Da-Wen; Pu, Hongbin; Gao, Wenhong; Dai, Qiong

    2017-03-04

    With improvement in people's living standards, many people nowadays pay more attention to quality and safety of meat. However, traditional methods for meat quality and safety detection and evaluation, such as manual inspection, mechanical methods, and chemical methods, are tedious, time-consuming, and destructive, which cannot meet the requirements of modern meat industry. Therefore, seeking out rapid, non-destructive, and accurate inspection techniques is important for the meat industry. In recent years, a number of novel and noninvasive imaging techniques, such as optical imaging, ultrasound imaging, tomographic imaging, thermal imaging, and odor imaging, have emerged and shown great potential in quality and safety assessment. In this paper, a detailed overview of advanced applications of these emerging imaging techniques for quality and safety assessment of different types of meat (pork, beef, lamb, chicken, and fish) is presented. In addition, advantages and disadvantages of each imaging technique are also summarized. Finally, future trends for these emerging imaging techniques are discussed, including integration of multiple imaging techniques, cost reduction, and developing powerful image-processing algorithms.

  2. Polyp measurement with CT colonography: multiple-reader, multiple-workstation comparison.

    PubMed

    Young, Brett M; Fletcher, J G; Paulsen, Scott R; Booya, Fargol; Johnson, C Daniel; Johnson, Kristina T; Melton, Zackary; Rodysill, Drew; Mandrekar, Jay

    2007-01-01

    The risk of invasive colorectal cancer in colorectal polyps correlates with lesion size. Our purpose was to define the most accurate methods for measuring polyp size at CT colonography (CTC) using three models of workstations and multiple observers. Six reviewers measured 24 unique polyps of known size (5, 7, 10, and 12 mm), shape (sessile, flat, and pedunculated), and location (straight or curved bowel segment) using CTC data sets obtained at two doses (5 mAs and 65 mAs) and a previously described colonic phantom model. Reviewers measured the largest diameter of polyps on three proprietary workstations. Each polyp was measured with lung and soft-tissue windows on axial, 2D multiplanar reconstruction (MPR), and 3D images. There were significant differences among measurements obtained at various settings within each workstation (p < 0.0001). Measurements on 2D images were more accurate with lung window than with soft-tissue window settings (p < 0.0001). For the 65-mAs data set, the most accurate measurements were obtained in analysis of axial images with lung window, 2D MPR images with lung window, and 3D tissue cube images for Wizard, Advantage, and Vitrea workstations, respectively, without significant differences in accuracy among techniques (0.11 < p < 0.59). The mean absolute error values for these optimal settings were 0.48 mm, 0.61 mm, and 0.76 mm, respectively, for the three workstations. Within the ultralow-dose 5-mAs data set the best methods for Wizard, Advantage, and Vitrea were axial with lung window, 2D MPR with lung window, and 2D MPR with lung window, respectively. Use of nearly all measurement methods, except for the Vitrea 3D tissue cube and the Wizard 2D MPR with lung window, resulted in undermeasurement of the true size of the polyps. Use of CTC computer workstations facilitates accurate polyp measurement. For routine CTC examinations, polyps should be measured with lung window settings on 2D axial or MPR images (Wizard and Advantage) or 3D images (Vitrea). When these optimal methods are used, these three commercial workstations do not differ significantly in acquisition of accurate polyp measurements at routine dose settings.

  3. Computerized multiple image analysis on mammograms: performance improvement of nipple identification for registration of multiple views using texture convergence analyses

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Sahiner, Berkman; Hadjiiski, Lubomir M.; Paramagul, Chintana

    2004-05-01

    Automated registration of multiple mammograms for CAD depends on accurate nipple identification. We developed two new image analysis techniques based on geometric and texture convergence analyses to improve the performance of our previously developed nipple identification method. A gradient-based algorithm is used to automatically track the breast boundary. The nipple search region along the boundary is then defined by geometric convergence analysis of the breast shape. Three nipple candidates are identified by detecting the changes along the gray level profiles inside and outside the boundary and the changes in the boundary direction. A texture orientation-field analysis method is developed to estimate the fourth nipple candidate based on the convergence of the tissue texture pattern towards the nipple. The final nipple location is determined from the four nipple candidates by a confidence analysis. Our training and test data sets consisted of 419 and 368 randomly selected mammograms, respectively. The nipple location identified on each image by an experienced radiologist was used as the ground truth. For 118 of the training and 70 of the test images, the radiologist could not positively identify the nipple, but provided an estimate of its location. These were referred to as invisible nipple images. In the training data set, 89.37% (269/301) of the visible nipples and 81.36% (96/118) of the invisible nipples could be detected within 1 cm of the truth. In the test data set, 92.28% (275/298) of the visible nipples and 67.14% (47/70) of the invisible nipples were identified within 1 cm of the truth. In comparison, our previous nipple identification method without using the two convergence analysis techniques detected 82.39% (248/301), 77.12% (91/118), 89.93% (268/298) and 54.29% (38/70) of the nipples within 1 cm of the truth for the visible and invisible nipples in the training and test sets, respectively. The results indicate that the nipple on mammograms can be detected accurately. This will be an important step towards automatic multiple image analysis for CAD techniques.

  4. Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline

    NASA Technical Reports Server (NTRS)

    Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor

    2010-01-01

    Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.

  5. [Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].

    PubMed

    Chen, Hao; Yu, Haizhong

    2014-04-01

    Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.

  6. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    PubMed Central

    Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun

    2017-01-01

    To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the high-resolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method. PMID:28208837

  7. A survey of infrared and visual image fusion methods

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Hai, Jinjin; He, Kangjian

    2017-09-01

    Infrared (IR) and visual (VI) image fusion is designed to fuse multiple source images into a comprehensive image to boost imaging quality and reduce redundancy information, which is widely used in various imaging equipment to improve the visual ability of human and robot. The accurate, reliable and complementary descriptions of the scene in fused images make these techniques be widely used in various fields. In recent years, a large number of fusion methods for IR and VI images have been proposed due to the ever-growing demands and the progress of image representation methods; however, there has not been published an integrated survey paper about this field in last several years. Therefore, we make a survey to report the algorithmic developments of IR and VI image fusion. In this paper, we first characterize the IR and VI image fusion based applications to represent an overview of the research status. Then we present a synthesize survey of the state of the art. Thirdly, the frequently-used image fusion quality measures are introduced. Fourthly, we perform some experiments of typical methods and make corresponding analysis. At last, we summarize the corresponding tendencies and challenges in IR and VI image fusion. This survey concludes that although various IR and VI image fusion methods have been proposed, there still exist further improvements or potential research directions in different applications of IR and VI image fusion.

  8. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology

    PubMed Central

    Sandell, Lisa L.; Kurosaka, Hiroshi; Trainor, Paul A.

    2012-01-01

    Here we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional widefield fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images of similar specimens produced by Scanning Electron Microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. PMID:22930523

  9. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    PubMed

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  10. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments.

    PubMed

    Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W

    2016-11-01

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.

  11. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments

    DOE PAGES

    Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.; ...

    2016-11-04

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less

  12. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less

  13. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments

    PubMed Central

    Van Valen, David A.; Lane, Keara M.; Quach, Nicolas T.; Maayan, Inbal

    2016-01-01

    Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems. PMID:27814364

  14. Method for determining and displaying the spacial distribution of a spectral pattern of received light

    DOEpatents

    Bennett, C.L.

    1996-07-23

    An imaging Fourier transform spectrometer is described having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer. 2 figs.

  15. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping

    PubMed Central

    Stüber, Carsten; Pitt, David; Wang, Yi

    2016-01-01

    Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS. PMID:26784172

  16. Multiple directed graph large-class multi-spectral processor

    NASA Technical Reports Server (NTRS)

    Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki

    1988-01-01

    Numerical analysis techniques for the interpretation of high-resolution imaging-spectrometer data are described and demonstrated. The method proposed involves the use of (1) a hierarchical classifier with a tree structure generated automatically by a Fisher linear-discriminant-function algorithm and (2) a novel multiple-directed-graph scheme which reduces the local maxima and the number of perturbations required. Results for a 500-class test problem involving simulated imaging-spectrometer data are presented in tables and graphs; 100-percent-correct classification is achieved with an improvement factor of 5.

  17. Ensemble Sparse Classification of Alzheimer’s Disease

    PubMed Central

    Liu, Manhua; Zhang, Daoqiang; Shen, Dinggang

    2012-01-01

    The high-dimensional pattern classification methods, e.g., support vector machines (SVM), have been widely investigated for analysis of structural and functional brain images (such as magnetic resonance imaging (MRI)) to assist the diagnosis of Alzheimer’s disease (AD) including its prodromal stage, i.e., mild cognitive impairment (MCI). Most existing classification methods extract features from neuroimaging data and then construct a single classifier to perform classification. However, due to noise and small sample size of neuroimaging data, it is challenging to train only a global classifier that can be robust enough to achieve good classification performance. In this paper, instead of building a single global classifier, we propose a local patch-based subspace ensemble method which builds multiple individual classifiers based on different subsets of local patches and then combines them for more accurate and robust classification. Specifically, to capture the local spatial consistency, each brain image is partitioned into a number of local patches and a subset of patches is randomly selected from the patch pool to build a weak classifier. Here, the sparse representation-based classification (SRC) method, which has shown effective for classification of image data (e.g., face), is used to construct each weak classifier. Then, multiple weak classifiers are combined to make the final decision. We evaluate our method on 652 subjects (including 198 AD patients, 225 MCI and 229 normal controls) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using MR images. The experimental results show that our method achieves an accuracy of 90.8% and an area under the ROC curve (AUC) of 94.86% for AD classification and an accuracy of 87.85% and an AUC of 92.90% for MCI classification, respectively, demonstrating a very promising performance of our method compared with the state-of-the-art methods for AD/MCI classification using MR images. PMID:22270352

  18. Retrieving Coherent Receiver Function Images with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Zhan, Z.

    2016-12-01

    Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.

  19. Multiplication free neural network for cancer stem cell detection in H-and-E stained liver images

    NASA Astrophysics Data System (ADS)

    Badawi, Diaa; Akhan, Ece; Mallah, Ma'en; Üner, Ayşegül; ćetin-Atalay, Rengül; ćetin, A. Enis

    2017-05-01

    Markers such as CD13 and CD133 have been used to identify Cancer Stem Cells (CSC) in various tissue images. It is highly likely that CSC nuclei appear as brown in CD13 stained liver tissue images. We observe that there is a high correlation between the ratio of brown to blue colored nuclei in CD13 images and the ratio between the dark blue to blue colored nuclei in H&E stained liver images. Therefore, we recommend that a pathologist observing many dark blue nuclei in an H&E stained tissue image may also order CD13 staining to estimate the CSC ratio. In this paper, we describe a computer vision method based on a neural network estimating the ratio of dark blue to blue colored nuclei in an H&E stained liver tissue image. The neural network structure is based on a multiplication free operator using only additions and sign operations. Experimental results are presented.

  20. Multiple-Frame Detection of Subpixel Targets in Thermal Image Sequences

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Kremens, Robert

    2013-01-01

    The new technology in this approach combines the subpixel detection information from multiple frames of a sequence to achieve a more sensitive detection result, using only the information found in the images themselves. It is taken as a constraint that the method is automated, robust, and computationally feasible for field networks with constrained computation and data rates. This precludes simply downloading a video stream for pixel-wise co-registration on the ground. It is also important that this method not require precise knowledge of sensor position or direction, because such information is often not available. It is also assumed that the scene in question is approximately planar, which is appropriate for a high-altitude airborne or orbital view.

  1. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    PubMed

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  2. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    PubMed

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  3. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics

    NASA Astrophysics Data System (ADS)

    Yin, Yanshu; Feng, Wenjie

    2017-12-01

    In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  4. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method.

    PubMed

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-07-22

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account.

  5. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method

    PubMed Central

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-01-01

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account. PMID:27445105

  6. Groupwise Image Registration Guided by a Dynamic Digraph of Images.

    PubMed

    Tang, Zhenyu; Fan, Yong

    2016-04-01

    For groupwise image registration, graph theoretic methods have been adopted for discovering the manifold of images to be registered so that accurate registration of images to a group center image can be achieved by aligning similar images that are linked by the shortest graph paths. However, the image similarity measures adopted to build a graph of images in the extant methods are essentially pairwise measures, not effective for capturing the groupwise similarity among multiple images. To overcome this problem, we present a groupwise image similarity measure that is built on sparse coding for characterizing image similarity among all input images and build a directed graph (digraph) of images so that similar images are connected by the shortest paths of the digraph. Following the shortest paths determined according to the digraph, images are registered to a group center image in an iterative manner by decomposing a large anatomical deformation field required to register an image to the group center image into a series of small ones between similar images. During the iterative image registration, the digraph of images evolves dynamically at each iteration step to pursue an accurate estimation of the image manifold. Moreover, an adaptive dictionary strategy is adopted in the groupwise image similarity measure to ensure fast convergence of the iterative registration procedure. The proposed method has been validated based on both simulated and real brain images, and experiment results have demonstrated that our method was more effective for learning the manifold of input images and achieved higher registration accuracy than state-of-the-art groupwise image registration methods.

  7. A comparative study of multi-focus image fusion validation metrics

    NASA Astrophysics Data System (ADS)

    Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael

    2016-05-01

    Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).

  8. On dealing with multiple correlation peaks in PIV

    NASA Astrophysics Data System (ADS)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  9. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.

    PubMed

    Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-01

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  10. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  11. Integrating DICOM structure reporting (SR) into the medical imaging informatics data grid

    NASA Astrophysics Data System (ADS)

    Lee, Jasper; Le, Anh; Liu, Brent

    2008-03-01

    The Medical Imaging Informatics (MI2) Data Grid developed at the USC Image Processing and Informatics Laboratory enables medical images to be shared securely between multiple imaging centers. Current applications include an imaging-based clinical trial setting where multiple field sites perform image acquisition and a centralized radiology core performs image analysis, often using computer-aided diagnosis tools (CAD) that generate a DICOM-SR to report their findings and measurements. As more and more CAD tools are being developed in the radiology field, the generated DICOM Structure Reports (SR) holding key radiological findings and measurements that are not part of the DICOM image need to be integrated into the existing Medical Imaging Informatics Data Grid with the corresponding imaging studies. We will discuss the significance and method involved in adapting DICOM-SR into the Medical Imaging Informatics Data Grid. The result is a MI2 Data Grid repository from which users can send and receive DICOM-SR objects based on the imaging-based clinical trial application. The services required to extract and categorize information from the structured reports will be discussed, and the workflow to store and retrieve a DICOM-SR file into the existing MI2 Data Grid will be shown.

  12. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  13. Integrated optics to improve resolution on multiple configuration

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Ding, Quanxin; Guo, Chunjie; Zhou, Liwei

    2015-04-01

    Inspired to in order to reveal the structure to improve imaging resolution, further technical requirement is proposed in some areas of the function and influence on the development of multiple configuration. To breakthrough diffraction limit, smart structures are recommended as the most efficient and economical method, while by used to improve the system performance, especially on signal to noise ratio and resolution. Integrated optics were considered in the selection, with which typical multiple configuration, by use the method of simulation experiment. Methodology can change traditional design concept and to develop the application space. Our calculations using multiple matrix transfer method, also the correlative algorithm and full calculations, show the expected beam shaping through system and, in particular, the experimental results will support our argument, which will be reported in the presentation.

  14. Restoration of solar and star images with phase diversity-based blind deconvolution

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liao, Sheng; Wei, Honggang; Shen, Mangzuo

    2007-04-01

    The images recorded by a ground-based telescope are often degraded by atmospheric turbulence and the aberration of the optical system. Phase diversity-based blind deconvolution is an effective post-processing method that can be used to overcome the turbulence-induced degradation. The method uses an ensemble of short-exposure images obtained simultaneously from multiple cameras to jointly estimate the object and the wavefront distribution on pupil. Based on signal estimation theory and optimization theory, we derive the cost function and solve the large-scale optimization problem using a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. We apply the method to the turbulence-degraded images generated with computer, the solar images acquired with the swedish vacuum solar telescope (SVST, 0.475 m) in La Palma and the star images collected with 1.2-m telescope in Yunnan Observatory. In order to avoid edge effect in the restoration of the solar images, a modified Hanning apodized window is adopted. The star image still can be restored when the defocus distance is measured inaccurately. The restored results demonstrate that the method is efficient for removing the effect of turbulence and reconstructing the point-like or extended objects.

  15. Ghost detection and removal based on super-pixel grouping in exposure fusion

    NASA Astrophysics Data System (ADS)

    Jiang, Shenyu; Xu, Zhihai; Li, Qi; Chen, Yueting; Feng, Huajun

    2014-09-01

    A novel multi-exposure images fusion method for dynamic scenes is proposed. The commonly used techniques for high dynamic range (HDR) imaging are based on the combination of multiple differently exposed images of the same scene. The drawback of these methods is that ghosting artifacts will be introduced into the final HDR image if the scene is not static. In this paper, a super-pixel grouping based method is proposed to detect the ghost in the image sequences. We introduce the zero mean normalized cross correlation (ZNCC) as a measure of similarity between a given exposure image and the reference. The calculation of ZNCC is implemented in super-pixel level, and the super-pixels which have low correlation with the reference are excluded by adjusting the weight maps for fusion. Without any prior information on camera response function or exposure settings, the proposed method generates low dynamic range (LDR) images which can be shown on conventional display devices directly with details preserving and ghost effects reduced. Experimental results show that the proposed method generates high quality images which have less ghost artifacts and provide a better visual quality than previous approaches.

  16. [Study of Cervical Exfoliated Cell's DNA Quantitative Analysis Based on Multi-Spectral Imaging Technology].

    PubMed

    Wu, Zheng; Zeng, Li-bo; Wu, Qiong-shui

    2016-02-01

    The conventional cervical cancer screening methods mainly include TBS (the bethesda system) classification method and cellular DNA quantitative analysis, however, by using multiple staining method in one cell slide, which is staining the cytoplasm with Papanicolaou reagent and the nucleus with Feulgen reagent, the study of achieving both two methods in the cervical cancer screening at the same time is still blank. Because the difficulty of this multiple staining method is that the absorbance of the non-DNA material may interfere with the absorbance of DNA, so that this paper has set up a multi-spectral imaging system, and established an absorbance unmixing model by using multiple linear regression method based on absorbance's linear superposition character, and successfully stripped out the absorbance of DNA to run the DNA quantitative analysis, and achieved the perfect combination of those two kinds of conventional screening method. Through a series of experiment we have proved that between the absorbance of DNA which is calculated by the absorbance unmixxing model and the absorbance of DNA which is measured there is no significant difference in statistics when the test level is 1%, also the result of actual application has shown that there is no intersection between the confidence interval of the DNA index of the tetraploid cells which are screened by using this paper's analysis method when the confidence level is 99% and the DNA index's judging interval of cancer cells, so that the accuracy and feasibility of the quantitative DNA analysis with multiple staining method expounded by this paper have been verified, therefore this analytical method has a broad application prospect and considerable market potential in early diagnosis of cervical cancer and other cancers.

  17. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  18. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  19. Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy.

    PubMed

    Fortun, Denis; Guichard, Paul; Hamel, Virginie; Sorzano, Carlos Oscar S; Banterle, Niccolo; Gonczy, Pierre; Unser, Michael

    2018-05-01

    The imaging of proteins within macromolecular complexes has been limited by the low axial resolution of optical microscopes. To overcome this problem, we propose a novel computational reconstruction method that yields isotropic resolution in fluorescence imaging. The guiding principle is to reconstruct a single volume from the observations of multiple rotated particles. Our new operational framework detects particles, estimates their orientation, and reconstructs the final volume. The main challenge comes from the absence of initial template and a priori knowledge about the orientations. We formulate the estimation as a blind inverse problem, and propose a block-coordinate stochastic approach to solve the associated non-convex optimization problem. The reconstruction is performed jointly in multiple channels. We demonstrate that our method is able to reconstruct volumes with 3D isotropic resolution on simulated data. We also perform isotropic reconstructions from real experimental data of doubly labeled purified human centrioles. Our approach revealed the precise localization of the centriolar protein Cep63 around the centriole microtubule barrel. Overall, our method offers new perspectives for applications in biology that require the isotropic mapping of proteins within macromolecular assemblies.

  20. Application of shift-and-add algorithms for imaging objects within biological media

    NASA Astrophysics Data System (ADS)

    Aizert, Avishai; Moshe, Tomer; Abookasis, David

    2017-01-01

    The Shift-and-Add (SAA) technique is a simple mathematical operation developed to reconstruct, at high spatial resolution, atmospherically degraded solar images obtained from stellar speckle interferometry systems. This method shifts and assembles individual degraded short-exposure images into a single average image with significantly improved contrast and detail. Since the inhomogeneous refractive indices of biological tissue causes light scattering similar to that induced by optical turbulence in the atmospheric layers, we assume that SAA methods can be successfully implemented to reconstruct the image of an object within a scattering biological medium. To test this hypothesis, five SAA algorithms were evaluated for reconstructing images acquired from multiple viewpoints. After successfully retrieving the hidden object's shape, quantitative image quality metrics were derived, enabling comparison of imaging error across a spectrum of layer thicknesses, demonstrating the relative efficacy of each SAA algorithm for biological imaging.

  1. Watershed identification of polygonal patterns in noisy SAR images.

    PubMed

    Moreels, Pierre; Smrekar, Suzanne E

    2003-01-01

    This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.

  2. Three-Dimensional Reconstruction of Three-Way FRET Microscopy Improves Imaging of Multiple Protein-Protein Interactions.

    PubMed

    Scott, Brandon L; Hoppe, Adam D

    2016-01-01

    Fluorescence resonance energy transfer (FRET) microscopy is a powerful tool for imaging the interactions between fluorescently tagged proteins in two-dimensions. For FRET microscopy to reach its full potential, it must be able to image more than one pair of interacting molecules and image degradation from out-of-focus light must be reduced. Here we extend our previous work on the application of maximum likelihood methods to the 3-dimensional reconstruction of 3-way FRET interactions within cells. We validated the new method (3D-3Way FRET) by simulation and fluorescent protein test constructs expressed in cells. In addition, we improved the computational methods to create a 2-log reduction in computation time over our previous method (3DFSR). We applied 3D-3Way FRET to image the 3D subcellular distributions of HIV Gag assembly. Gag fused to three different FPs (CFP, YFP, and RFP), assembled into viral-like particles and created punctate FRET signals that become visible on the cell surface when 3D-3Way FRET was applied to the data. Control experiments in which YFP-Gag, RFP-Gag and free CFP were expressed, demonstrated localized FRET between YFP and RFP at sites of viral assembly that were not associated with CFP. 3D-3Way FRET provides the first approach for quantifying multiple FRET interactions while improving the 3D resolution of FRET microscopy data without introducing bias into the reconstructed estimates. This method should allow improvement of widefield, confocal and superresolution FRET microscopy data.

  3. In Vivo Optical Imaging for Targeted Drug Kinetics and Localization for Oral Surgery and Super-Resolution, Facilitated by Printed Phantoms

    NASA Astrophysics Data System (ADS)

    Bentz, Brian Z.

    Many human cancer cell types over-express folate receptors, and this provides an opportunity to develop targeted anti-cancer drugs. For these drugs to be effective, their kinetics must be well understood in vivo and in deep tissue where tumors occur. We demonstrate a method for imaging these parameters by incorporating a kinetic compartment model and fluorescence into optical diffusion tomography (ODT). The kinetics were imaged in a live mouse, and found to be in agreement with previous in vitro studies, demonstrating the validity of the method and its feasibility as an effective tool in preclinical drug development studies. Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing and evaluation. We present new optical phantoms fabricated using inexpensive 3D printing methods with multiple materials, allowing for the placement of complex inhomogeneities in heterogeneous or anatomically realistic geometries, as opposed to previous phantoms which were limited to simple shapes formed by molds or machining. Furthermore, we show that Mie theory can be used to design the optical properties to match a target tissue. The phantom fabrication methods are versatile, can be applied to optical imaging methods besides diffusive imaging, and can be used in the calibration of live animal imaging data. Applications of diffuse optical imaging in the operating theater have been limited in part due to computational burden. We present an approach for the fast localization of arteries in the roof of the mouth that has the potential to reduce complications. Furthermore, we use the extracted position information to fabricate a custom surgical guide using 3D printing that could protect the arteries during surgery. The resolution of ODT is severely limited by the attenuation of high spatial frequencies. We present a super-resolution method achieved through the point localization of fluorescent inhomogeneities in a tissue-like scattering medium, and examine the localization uncertainty numerically and experimentally. Furthermore, we show numerical results for the localization of multiple fluorescent inhomogeneities by distinguishing them based on temporal characteristics. Potential applications include imaging neuron activation in the brain.

  4. Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning.

    PubMed

    Wang, Shijun; McKenna, Matthew T; Nguyen, Tan B; Burns, Joseph E; Petrick, Nicholas; Sahiner, Berkman; Summers, Ronald M

    2012-05-01

    In this paper, we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3-D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods.

  5. Seeing is Believing: Video Classification for Computed Tomographic Colonography Using Multiple-Instance Learning

    PubMed Central

    Wang, Shijun; McKenna, Matthew T.; Nguyen, Tan B.; Burns, Joseph E.; Petrick, Nicholas; Sahiner, Berkman

    2012-01-01

    In this paper we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods. PMID:22552333

  6. Edge Sharpness Assessment by Parametric Modeling: Application to Magnetic Resonance Imaging.

    PubMed

    Ahmad, R; Ding, Y; Simonetti, O P

    2015-05-01

    In biomedical imaging, edge sharpness is an important yet often overlooked image quality metric. In this work, a semi-automatic method to quantify edge sharpness in the presence of significant noise is presented with application to magnetic resonance imaging (MRI). The method is based on parametric modeling of image edges. First, an edge map is automatically generated and one or more edges-of-interest (EOI) are manually selected using graphical user interface. Multiple exclusion criteria are then enforced to eliminate edge pixels that are potentially not suitable for sharpness assessment. Second, at each pixel of the EOI, an image intensity profile is read along a small line segment that runs locally normal to the EOI. Third, the profiles corresponding to all EOI pixels are individually fitted with a sigmoid function characterized by four parameters, including one that represents edge sharpness. Last, the distribution of the sharpness parameter is used to quantify edge sharpness. For validation, the method is applied to simulated data as well as MRI data from both phantom imaging and cine imaging experiments. This method allows for fast, quantitative evaluation of edge sharpness even in images with poor signal-to-noise ratio. Although the utility of this method is demonstrated for MRI, it can be adapted for other medical imaging applications.

  7. Recent progress in the development of ISO 19751

    NASA Astrophysics Data System (ADS)

    Farnand, Susan P.; Dalal, Edul N.; Ng, Yee S.

    2006-01-01

    A small number of general visual attributes have been recognized as essential in describing image quality. These include micro-uniformity, macro-uniformity, colour rendition, text and line quality, gloss, sharpness, and spatial adjacency or temporal adjacency attributes. The multiple-part International Standard discussed here was initiated by the INCITS W1 committee on the standardization of office equipment to address the need for unambiguously documented procedures and methods, which are widely applicable over the multiple printing technologies employed in office applications, for the appearance-based evaluation of these visually significant image quality attributes of printed image quality. 1,2 The resulting proposed International Standard, for which ISO/IEC WD 19751-1 3 presents an overview and an outline of the overall procedure and common methods, is based on a proposal that was predicated on the idea that image quality could be described by a small set of broad-based attributes. 4 Five ad hoc teams were established (now six since a sharpness team is in the process of being formed) to generate standards for one or more of these image quality attributes. Updates on the colour rendition, text and line quality, and gloss attributes are provided.

  8. Positron Emission Tomography for Pre-Clinical Sub-Volume Dose Escalation

    NASA Astrophysics Data System (ADS)

    Bass, Christopher Paul

    Purpose: This dissertation focuses on establishment of pre-clinical methods facilitating the use of PET imaging for selective sub-volume dose escalation. Specifically the problems addressed are 1.) The difficulties associated with comparing multiple PET images, 2.) The need for further validation of novel PET tracers before their implementation in dose escalation schema and 3.) The lack of concrete pre-clinical data supporting the use of PET images for guidance of selective sub-volume dose escalations. Methods and materials: In order to compare multiple PET images the confounding effects of mispositioning and anatomical change between imaging sessions needed to be alleviated. To mitigate the effects of these sources of error, deformable image registration was employed. A deformable registration algorithm was selected and the registration error was evaluated via the introduction of external fiducials to the tumor. Once a method for image registration was established, a procedure for validating the use of novel PET tracers with FDG was developed. Nude mice were used to perform in-vivo comparisons of the spatial distributions of two PET tracers, FDG and FLT. The spatial distributions were also compared across two separate tumor lines to determine the effects of tumor morphology on spatial distribution. Finally, the research establishes a method for acquiring pre-clinical data supporting the use of PET for image-guidance in selective dose escalation. Nude mice were imaged using only FDG PET/CT and the resulting images were used to plan PET-guided dose escalations to a 5 mm sub-volume within the tumor that contained the highest PET tracer uptake. These plans were then delivered using the Small Animal Radiation Research Platform (SARRP) and the efficacy of the PET-guided plans was observed. Results and Conclusions: The analysis of deformable registration algorithms revealed that the BRAINSFit B-spline deformable registration algorithm available in SLICER3D was capable of registering small animal PET/CT data sets in less than 5 minutes with an average registration error of .3 mm. The methods used in chapter 3 allowed for the comparison of the spatial distributions of multiple PET tracers imaged at different times. A comparison of FDG and FLT showed that both are positively correlated but that tumor morphology does significantly affect the correlation between the two tracers. An overlap analysis of the high intensity PET regions of FDG and FLT showed that FLT offers additional spatial information to that seen with FDG. In chapter 4 the SARRP allowed for the delivery of planned PET-guided selective dose escalations to a pre-clinical tumor model. This will facilitate future research validating the use of PET for clinical selective dose escalation.

  9. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    PubMed

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-05-01

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study.

    PubMed

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-12-01

    To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients' breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors' preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management.

  11. Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging

    PubMed Central

    Carasso, Alfred S; Vladár, András E

    2014-01-01

    This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by ‘slow motion’ low-exponent Lévy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected ‘fast scan’ frames. The paper includes software routines, written in Interactive Data Language (IDL),1 that can perform the above image processing tasks. PMID:26601050

  12. Measuring noise equivalent irradiance of a digital short-wave infrared imaging system using a broadband source to simulate the night spectrum

    NASA Astrophysics Data System (ADS)

    Green, John R.; Robinson, Timothy

    2015-05-01

    There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.

  13. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons.

    PubMed

    Slotnick, Scott D

    2017-07-01

    Analysis of functional magnetic resonance imaging (fMRI) data typically involves over one hundred thousand independent statistical tests; therefore, it is necessary to correct for multiple comparisons to control familywise error. In a recent paper, Eklund, Nichols, and Knutsson used resting-state fMRI data to evaluate commonly employed methods to correct for multiple comparisons and reported unacceptable rates of familywise error. Eklund et al.'s analysis was based on the assumption that resting-state fMRI data reflect null data; however, their 'null data' actually reflected default network activity that inflated familywise error. As such, Eklund et al.'s results provide no basis to question the validity of the thousands of published fMRI studies that have corrected for multiple comparisons or the commonly employed methods to correct for multiple comparisons.

  14. Super-resolved Parallel MRI by Spatiotemporal Encoding

    PubMed Central

    Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio

    2016-01-01

    Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293

  15. Computer simulation of reconstructed image for computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.

  16. SIMULTANEOUS MULTISLICE MAGNETIC RESONANCE FINGERPRINTING WITH LOW-RANK AND SUBSPACE MODELING

    PubMed Central

    Zhao, Bo; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A.; Wald, Lawrence L.; Setsompop, Kawin

    2018-01-01

    Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T1, T2, and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3x speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice. PMID:29060594

  17. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials.

    PubMed

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2011-04-01

    In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy

  18. Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling.

    PubMed

    Bo Zhao; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin

    2017-07-01

    Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T 1 , T 2 , and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3× speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice.

  19. Accelerating separable footprint (SF) forward and back projection on GPU

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; McGaffin, Madison G.; Long, Yong; Fessler, Jeffrey A.; Wen, Minhua; Lin, James

    2017-03-01

    Statistical image reconstruction (SIR) methods for X-ray CT can improve image quality and reduce radiation dosages over conventional reconstruction methods, such as filtered back projection (FBP). However, SIR methods require much longer computation time. The separable footprint (SF) forward and back projection technique simplifies the calculation of intersecting volumes of image voxels and finite-size beams in a way that is both accurate and efficient for parallel implementation. We propose a new method to accelerate the SF forward and back projection on GPU with NVIDIA's CUDA environment. For the forward projection, we parallelize over all detector cells. For the back projection, we parallelize over all 3D image voxels. The simulation results show that the proposed method is faster than the acceleration method of the SF projectors proposed by Wu and Fessler.13 We further accelerate the proposed method using multiple GPUs. The results show that the computation time is reduced approximately proportional to the number of GPUs.

  20. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  1. Sequential deconvolution from wave-front sensing using bivariate simplex splines

    NASA Astrophysics Data System (ADS)

    Guo, Shiping; Zhang, Rongzhi; Li, Jisheng; Zou, Jianhua; Xu, Rong; Liu, Changhai

    2015-05-01

    Deconvolution from wave-front sensing (DWFS) is an imaging compensation technique for turbulence degraded images based on simultaneous recording of short exposure images and wave-front sensor data. This paper employs the multivariate splines method for the sequential DWFS: a bivariate simplex splines based average slopes measurement model is built firstly for Shack-Hartmann wave-front sensor; next, a well-conditioned least squares estimator for the spline coefficients is constructed using multiple Shack-Hartmann measurements; then, the distorted wave-front is uniquely determined by the estimated spline coefficients; the object image is finally obtained by non-blind deconvolution processing. Simulated experiments in different turbulence strength show that our method performs superior image restoration results and noise rejection capability especially when extracting the multidirectional phase derivatives.

  2. Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer’s Disease

    PubMed Central

    Jie, Biao; Liu, Mingxia; Liu, Jun

    2016-01-01

    Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers. PMID:27093313

  3. Optimized optical clearing method for imaging central nervous system

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan

    2015-03-01

    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  4. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  5. Applying the algorithm "assessing quality using image registration circuits" (AQUIRC) to multi-atlas segmentation

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Asman, Andrew J.; Landman, Bennett A.; Dawant, Benoit M.

    2014-03-01

    Multi-atlas registration-based segmentation is a popular technique in the medical imaging community, used to transform anatomical and functional information from a set of atlases onto a new patient that lacks this information. The accuracy of the projected information on the target image is dependent on the quality of the registrations between the atlas images and the target image. Recently, we have developed a technique called AQUIRC that aims at estimating the error of a non-rigid registration at the local level and was shown to correlate to error in a simulated case. Herein, we extend upon this work by applying AQUIRC to atlas selection at the local level across multiple structures in cases in which non-rigid registration is difficult. AQUIRC is applied to 6 structures, the brainstem, optic chiasm, left and right optic nerves, and the left and right eyes. We compare the results of AQUIRC to that of popular techniques, including Majority Vote, STAPLE, Non-Local STAPLE, and Locally-Weighted Vote. We show that AQUIRC can be used as a method to combine multiple segmentations and increase the accuracy of the projected information on a target image, and is comparable to cutting edge methods in the multi-atlas segmentation field.

  6. Fully automatic detection of deep white matter T1 hypointense lesions in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Spies, Lothar; Tewes, Anja; Suppa, Per; Opfer, Roland; Buchert, Ralph; Winkler, Gerhard; Raji, Alaleh

    2013-12-01

    A novel method is presented for fully automatic detection of candidate white matter (WM) T1 hypointense lesions in three-dimensional high-resolution T1-weighted magnetic resonance (MR) images. By definition, T1 hypointense lesions have similar intensity as gray matter (GM) and thus appear darker than surrounding normal WM in T1-weighted images. The novel method uses a standard classification algorithm to partition T1-weighted images into GM, WM and cerebrospinal fluid (CSF). As a consequence, T1 hypointense lesions are assigned an increased GM probability by the standard classification algorithm. The GM component image of a patient is then tested voxel-by-voxel against GM component images of a normative database of healthy individuals. Clusters (≥0.1 ml) of significantly increased GM density within a predefined mask of deep WM are defined as lesions. The performance of the algorithm was assessed on voxel level by a simulation study. A maximum dice similarity coefficient of 60% was found for a typical T1 lesion pattern with contrasts ranging from WM to cortical GM, indicating substantial agreement between ground truth and automatic detection. Retrospective application to 10 patients with multiple sclerosis demonstrated that 93 out of 96 T1 hypointense lesions were detected. On average 3.6 false positive T1 hypointense lesions per patient were found. The novel method is promising to support the detection of hypointense lesions in T1-weighted images which warrants further evaluation in larger patient samples.

  7. Development of a low cost high precision three-layer 3D artificial compound eye.

    PubMed

    Zhang, Hao; Li, Lei; McCray, David L; Scheiding, Sebastian; Naples, Neil J; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas; Yi, Allen Y

    2013-09-23

    Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane. The optical design was performed using ZEMAX. The optical simulation shows that the artificial compound eye can form multiple images with aberrations below 11 μm; adequate for many imaging applications. Both the freeform lens array and the field lens array were manufactured using microinjection molding process to reduce cost. Aluminum mold inserts were diamond machined by the slow tool servo method. The performance of the compound eye was tested using a home-built optical setup. The images captured demonstrate that the proposed structures can successfully steer images from a curved surface onto a planar photoreceptor. Experimental results show that the compound eye in this research has a field of view of 87°. In addition, images formed by multiple channels were found to be evenly distributed on the flat photoreceptor. Additionally, overlapping views of the adjacent channels allow higher resolution images to be re-constructed from multiple 3D images taken simultaneously.

  8. Reconstruction of input functions from a dynamic PET image with sequential administration of 15O2 and [Formula: see text] for noninvasive and ultra-rapid measurement of CBF, OEF, and CMRO2.

    PubMed

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Hiroyuki; Yamamoto, Yuka; Hatakeyama, Tetsuhiro; Nishiyama, Yoshihiro

    2018-05-01

    CBF, OEF, and CMRO 2 images can be quantitatively assessed using PET. Their image calculation requires arterial input functions, which require invasive procedure. The aim of the present study was to develop a non-invasive approach with image-derived input functions (IDIFs) using an image from an ultra-rapid O 2 and C 15 O 2 protocol. Our technique consists of using a formula to express the input using tissue curve with rate constants. For multiple tissue curves, the rate constants were estimated so as to minimize the differences of the inputs using the multiple tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects ( n = 24). The estimated IDIFs were well-reproduced against the measured ones. The difference in the calculated CBF, OEF, and CMRO 2 values by the two methods was small (<10%) against the invasive method, and the values showed tight correlations ( r = 0.97). The simulation showed errors associated with the assumed parameters were less than ∼10%. Our results demonstrate that IDIFs can be reconstructed from tissue curves, suggesting the possibility of using a non-invasive technique to assess CBF, OEF, and CMRO 2 .

  9. Multi-sensor fusion of Landsat 8 thermal infrared (TIR) and panchromatic (PAN) images.

    PubMed

    Jung, Hyung-Sup; Park, Sung-Whan

    2014-12-18

    Data fusion is defined as the combination of data from multiple sensors such that the resulting information is better than would be possible when the sensors are used individually. The multi-sensor fusion of panchromatic (PAN) and thermal infrared (TIR) images is a good example of this data fusion. While a PAN image has higher spatial resolution, a TIR one has lower spatial resolution. In this study, we have proposed an efficient method to fuse Landsat 8 PAN and TIR images using an optimal scaling factor in order to control the trade-off between the spatial details and the thermal information. We have compared the fused images created from different scaling factors and then tested the performance of the proposed method at urban and rural test areas. The test results show that the proposed method merges the spatial resolution of PAN image and the temperature information of TIR image efficiently. The proposed method may be applied to detect lava flows of volcanic activity, radioactive exposure of nuclear power plants, and surface temperature change with respect to land-use change.

  10. Improvement of range spatial resolution of medical ultrasound imaging by element-domain signal processing

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki

    2017-07-01

    The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).

  11. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  12. Interferometric imaging of crustal structure from wide-angle multicomponent OBS-airgun data

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Fujie, G.; Sato, T.; Abe, S.; Asakawa, E.; Kodaira, S.

    2015-12-01

    In wide-angle seismic surveys with ocean bottom seismograph (OBS) and airgun, surface-related multiple reflections and upgoing P-to-S conversions are frequently observed. We applied two interferometric imaging methods to the multicomponent OBS data in order to highly utilize seismic signals for subsurface imaging.First, seismic interferometry (SI) is applied to vertical component in order to obtain reflection profile with multiple reflections. By correlating seismic traces on common receiver records, pseudo seismic data are generated with virtual sources and receivers located on all original shot positions. We adopt the deconvolution SI because source and receiver spectra can be canceled by spectral division. Consequently, gapless reflection images from just below the seafloor to the deeper are obtained.Second, receiver function (RF) imaging is applied to multicomponent OBS data in order to image P-to-S conversion boundary. Though RF is commonly applied to teleseismic data, our purpose is to extract upgoing PS converted waves from wide-angle OBS data. The RF traces are synthesized by deconvolution of radial and vertical components at same OBS location for each shot. Final section obtained by stacking RF traces shows the PS conversion boundaries beneath OBSs. Then, Vp/Vs ratio can be estimated by comparing one-way traveltime delay with two-way traveltime of P wave reflections.We applied these methods to field data sets; (a) 175 km survey in Nankai trough subduction zone using 71 OBSs with from 1 km to 10 km intervals and 878 shots with 200 m interval, and (b) 237 km survey in northwest pacific ocean with almost flat layers before subduction using 25 OBSs with 6km interval and 1188 shots with 200 m interval. In our study, SI imaging with multiple reflections is highly applicable to OBS data even in a complex geological setting, and PS conversion boundary is well imaged by RF imaging and Vp/Vs ratio distribution in sediment is estimated in case of simple structure.

  13. An ultra-wideband microwave tomography system: preliminary results.

    PubMed

    Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe

    2009-01-01

    We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.

  14. Method of imaging the electrical conductivity distribution of a subsurface

    DOEpatents

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  15. Diffusion-weighted magnetic resonance imaging in the characterization of testicular germ cell neoplasms: Effect of ROI methods on apparent diffusion coefficient values and interobserver variability.

    PubMed

    Tsili, Athina C; Ntorkou, Alexandra; Astrakas, Loukas; Xydis, Vasilis; Tsampalas, Stavros; Sofikitis, Nikolaos; Argyropoulou, Maria I

    2017-04-01

    To evaluate the difference in apparent diffusion coefficient (ADC) measurements at diffusion-weighted (DW) magnetic resonance imaging of differently shaped regions-of-interest (ROIs) in testicular germ cell neoplasms (TGCNS), the diagnostic ability of differently shaped ROIs in differentiating seminomas from nonseminomatous germ cell neoplasms (NSGCNs) and the interobserver variability. Thirty-three TGCNs were retrospectively evaluated. Patients underwent MR examinations, including DWI on a 1.5-T MR system. Two observers measured mean tumor ADCs using four distinct ROI methods: round, square, freehand and multiple small, round ROIs. The interclass correlation coefficient was analyzed to assess interobserver variability. Statistical analysis was used to compare mean ADC measurements among observers, methods and histologic types. All ROI methods showed excellent interobserver agreement, with excellent correlation (P<0.001). Multiple, small ROIs provided the lower mean ADC in TGCNs. Seminomas had lower mean ADC compared to NSGCNs for each ROI method (P<0.001). Round ROI proved the most accurate method in characterizing TGCNS. Interobserver variability in ADC measurement is excellent, irrespective of the ROI shape. Multiple, small round ROIs and round ROI proved the more accurate methods for ADC measurement in the characterization of TGCNs and in the differentiation between seminomas and NSGCNs, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    PubMed

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  17. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  18. Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT.

    PubMed

    Mazaheri, Samaneh; Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah

    2015-01-01

    Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.

  19. Canine Hip Dysplasia: Diagnostic Imaging.

    PubMed

    Butler, J Ryan; Gambino, Jennifer

    2017-07-01

    Diagnostic imaging is the principal method used to screen for and diagnose hip dysplasia in the canine patient. Multiple techniques are available, each having advantages, disadvantages, and limitations. Hip-extended radiography is the most used method and is best used as a screening tool and for assessment for osteoarthritis. Distraction radiographic methods such as the PennHip method allow for improved detection of laxity and improved ability to predict future osteoarthritis development. More advanced techniques such as MRI, although expensive and not widely available, may improve patient screening and allow for improved assessment of cartilage health. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Direct Visualization of Short Transverse Relaxation Time Component (ViSTa)

    PubMed Central

    Oh, Se-Hong; Bilello, Michel; Schindler, Matthew; Markowitz, Clyde E.; Detre, John A.; Lee, Jongho

    2013-01-01

    White matter of the brain has been demonstrated to have multiple relaxation components. Among them, the short transverse relaxation time component (T2 < 40 ms; T2* < 25 ms at 3T) has been suggested to originate from myelin water whereas long transverse relaxation time components have been associated with axonal and/or interstitial water. In myelin water imaging, T2 or T2* signal decay is measured to estimate myelin water fraction based on T2 or T2* differences among the water components. This method has been demonstrated to be sensitive to demyelination in the brain but suffers from low SNR and image artifacts originating from ill-conditioned multi-exponential fitting. In this study, a novel approach that selectively acquires short transverse relaxation time signal is proposed. The method utilizes a double inversion RF pair to suppress a range of long T1 signal. This suppression leaves short T2* signal, which has been suggested to have short T1, as the primary source of the image. The experimental results confirms that after suppression of long T1 signals, the image is dominated by short T2* in the range of myelin water, allowing us to directly visualize the short transverse relaxation time component in the brain. Compared to conventional myelin water imaging, this new method of direct visualization of short relaxation time component (ViSTa) provides high quality images. When applied to multiple sclerosis patients, chronic lesions show significantly reduced signal intensity in ViSTa images suggesting sensitivity to demyelination. PMID:23796545

  2. Nonlinear interferometric vibrational imaging of biological tissue

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B., III; Boppart, Stephen A.

    2008-02-01

    We demonstrate imaging with the technique of nonlinear interferometric vibrational imaging (NIVI). Experimental images using this instrumentation and method have been acquired from both phantom and biological tissues. In our system, coherent anti-Stokes Raman scattering (CARS) signals are detected by spectral interferometry, which is able to fully restore high resolution Raman spectrum on each focal spot of a sample covering multiple Raman bands using broadband pump and Stokes laser beams. Spectral-domain detection has been demonstrated and allows for a significant increase in image acquiring speed, in signal-to-noise, and in interferometric signal stability.

  3. A novel framework of tissue membrane systems for image fusion.

    PubMed

    Zhang, Zulin; Yi, Xinzhong; Peng, Hong

    2014-01-01

    This paper proposes a tissue membrane system-based framework to deal with the optimal image fusion problem. A spatial domain fusion algorithm is given, and a tissue membrane system of multiple cells is used as its computing framework. Based on the multicellular structure and inherent communication mechanism of the tissue membrane system, an improved velocity-position model is developed. The performance of the fusion framework is studied with comparison of several traditional fusion methods as well as genetic algorithm (GA)-based and differential evolution (DE)-based spatial domain fusion methods. Experimental results show that the proposed fusion framework is superior or comparable to the other methods and can be efficiently used for image fusion.

  4. A Dynamic Graph Cuts Method with Integrated Multiple Feature Maps for Segmenting Kidneys in 2D Ultrasound Images.

    PubMed

    Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong

    2018-02-12

    Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Multispectral computational ghost imaging with multiplexed illumination

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Shi, Dongfeng

    2017-07-01

    Computational ghost imaging has attracted wide attention from researchers in many fields over the last two decades. Multispectral imaging as one application of computational ghost imaging possesses spatial and spectral resolving abilities, and is very useful for surveying scenes and extracting detailed information. Existing multispectral imagers mostly utilize narrow band filters or dispersive optical devices to separate light of different wavelengths, and then use multiple bucket detectors or an array detector to record them separately. Here, we propose a novel multispectral ghost imaging method that uses one single bucket detector with multiplexed illumination to produce a colored image. The multiplexed illumination patterns are produced by three binary encoded matrices (corresponding to the red, green and blue colored information, respectively) and random patterns. The results of the simulation and experiment have verified that our method can be effective in recovering the colored object. Multispectral images are produced simultaneously by one single-pixel detector, which significantly reduces the amount of data acquisition.

  6. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    NASA Astrophysics Data System (ADS)

    Stephenson, Todd A.; Chen, Tsuhan

    2006-12-01

    Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  7. Subpixel based defocused points removal in photon-limited volumetric dataset

    NASA Astrophysics Data System (ADS)

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Maraka, Harsha Vardhan R.; Ryle, James P.; Sheridan, John T.

    2017-03-01

    The asymptotic property of the maximum likelihood estimator (MLE) has been utilized to reconstruct three-dimensional (3D) sectional images in the photon counting imaging (PCI) regime. At first, multiple 2D intensity images, known as Elemental images (EI), are captured. Then the geometric ray-tracing method is employed to reconstruct the 3D sectional images at various depth cues. We note that a 3D sectional image consists of both focused and defocused regions, depending on the reconstructed depth position. The defocused portion is redundant and should be removed in order to facilitate image analysis e.g., 3D object tracking, recognition, classification and navigation. In this paper, we present a subpixel level three-step based technique (i.e. involving adaptive thresholding, boundary detection and entropy based segmentation) to discard the defocused sparse-samples from the reconstructed photon-limited 3D sectional images. Simulation results are presented demonstrating the feasibility and efficiency of the proposed method.

  8. Multiple Auto-Adapting Color Balancing for Large Number of Images

    NASA Astrophysics Data System (ADS)

    Zhou, X.

    2015-04-01

    This paper presents a powerful technology of color balance between images. It does not only work for small number of images but also work for unlimited large number of images. Multiple adaptive methods are used. To obtain color seamless mosaic dataset, local color is adjusted adaptively towards the target color. Local statistics of the source images are computed based on the so-called adaptive dodging window. The adaptive target colors are statistically computed according to multiple target models. The gamma function is derived from the adaptive target and the adaptive source local stats. It is applied to the source images to obtain the color balanced output images. Five target color surface models are proposed. They are color point (or single color), color grid, 1st, 2nd and 3rd 2D polynomials. Least Square Fitting is used to obtain the polynomial target color surfaces. Target color surfaces are automatically computed based on all source images or based on an external target image. Some special objects such as water and snow are filtered by percentage cut or a given mask. Excellent results are achieved. The performance is extremely fast to support on-the-fly color balancing for large number of images (possible of hundreds of thousands images). Detailed algorithm and formulae are described. Rich examples including big mosaic datasets (e.g., contains 36,006 images) are given. Excellent results and performance are presented. The results show that this technology can be successfully used in various imagery to obtain color seamless mosaic. This algorithm has been successfully using in ESRI ArcGis.

  9. Multiple Semantic Matching on Augmented N-partite Graph for Object Co-segmentation.

    PubMed

    Wang, Chuan; Zhang, Hua; Yang, Liang; Cao, Xiaochun; Xiong, Hongkai

    2017-09-08

    Recent methods for object co-segmentation focus on discovering single co-occurring relation of candidate regions representing the foreground of multiple images. However, region extraction based only on low and middle level information often occupies a large area of background without the help of semantic context. In addition, seeking single matching solution very likely leads to discover local parts of common objects. To cope with these deficiencies, we present a new object cosegmentation framework, which takes advantages of semantic information and globally explores multiple co-occurring matching cliques based on an N-partite graph structure. To this end, we first propose to incorporate candidate generation with semantic context. Based on the regions extracted from semantic segmentation of each image, we design a merging mechanism to hierarchically generate candidates with high semantic responses. Secondly, all candidates are taken into consideration to globally formulate multiple maximum weighted matching cliques, which complements the discovery of part of the common objects induced by a single clique. To facilitate the discovery of multiple matching cliques, an N-partite graph, which inherently excludes intralinks between candidates from the same image, is constructed to separate multiple cliques without additional constraints. Further, we augment the graph with an additional virtual node in each part to handle irrelevant matches when the similarity between two candidates is too small. Finally, with the explored multiple cliques, we statistically compute pixel-wise co-occurrence map for each image. Experimental results on two benchmark datasets, i.e., iCoseg and MSRC datasets, achieve desirable performance and demonstrate the effectiveness of our proposed framework.

  10. Instrumentation for simultaneous kinetic imaging of multiple fluorophores in single living cells

    NASA Astrophysics Data System (ADS)

    Morris, Stephen J.; Beatty, Diane M.; Welling, Larry W.; Wiegmann, Thomas B.

    1991-05-01

    Low-light fluorescence video microscopy has established itself as an excellent method for investigations of cell dynamics. There is a growing interest in resolving multiple images of 'ratio' fluorophores like indo or BCECF or the emission from multiple dyes placed in the same cell system. For rapid kinetic studies, the problems of photodynamic damage and photobleaching on one hand and the need for good spatial and temporal resolution on the other, press the resolution of the instrumentation. Rapid resolution of multiple probes at multiple wavelengths presents a third set of problems of exciting the probes and appropriately imaging the emitted light. The authors have designed a new real-time low-light fluorescence video microscope for capturing intensified images of up to four dyes contained in the same cell system. These can be two dual-emission wavelength 'ratio' dyes or multiple dyes. The optics allow simultaneous excitation of up to four fluorophores and the real-time (30 frames/second) capture of four separate fluorescence emission images. Each emission wavelength is imaged simultaneously by one of four cameras, then digitized and appropriately combined at standard video frame rates to be stored at high resolution on tape or video disk for further off-line correction and analysis. The design has no moving parts in its optical train, which overcomes a number of technical difficulties encountered in filter wheel or mechanical shutter designs for multiple imaging. The instrument can be assembled form off-the-shelf components. Coupled to compatible image processing software utilizing PC-AT computers, it can be realized for relatively low cost. Two examples of simultaneous multi-parameter imaging are presented. Synchronous observations of calcium and pH distribution in kidney epithelial cells, loaded with both indo-1 and SNARF-1TM, show that both are altered in response to ionomycin treatment; however, the kinetics for the two changes are quite different. Intracellular calcium increases rapidly when the bath Ca2+ is raised. The pH remains stable for several seconds, then suddenly collapses. The second example concerns fusion of human red blood cells (RBC) to fibroblasts expressing influenza hemagglutinin. Movement of soluble and membrane-bound dyes follow different kinetics, depending upon the molecular weight of the soluble dye. Furthermore, the swelling of the RBC occurs after the onset of fusion, and therefore cannot provide the driving force.

  11. Particle image velocimetry based on wavelength division multiplexing

    NASA Astrophysics Data System (ADS)

    Tang, Chunxiao; Li, Enbang; Li, Hongqiang

    2018-01-01

    This paper introduces a technical approach of wavelength division multiplexing (WDM) based particle image velocimetry (PIV). It is designed to measure transient flows with different scales of velocity by capturing multiple particle images in one exposure. These images are separated by different wavelengths, and thus the pulse separation time is not influenced by the frame rate of the camera. A triple-pulsed PIV system has been created in order to prove the feasibility of WDM-PIV. This is demonstrated in a sieve plate extraction column model by simultaneously measuring the fast flow in the downcomer and the slow vortices inside the plates. A simple displacement/velocity field combination method has also been developed. The constraints imposed by WDM-PIV are limited wavelength choices of available light sources and cameras. The usage of WDM technique represents a feasible way to realize multiple-pulsed PIV.

  12. Robust, Globally Consistent, and Fully-automatic Multi-image Registration and Montage Synthesis for 3-D Multi-channel Images

    PubMed Central

    Tsai, Chia-Ling; Lister, James P.; Bjornsson, Christopher J; Smith, Karen; Shain, William; Barnes, Carol A.; Roysam, Badrinath

    2013-01-01

    The need to map regions of brain tissue that are much wider than the field of view of the microscope arises frequently. One common approach is to collect a series of overlapping partial views, and align them to synthesize a montage covering the entire region of interest. We present a method that advances this approach in multiple ways. Our method (1) produces a globally consistent joint registration of an unorganized collection of 3-D multi-channel images with or without stage micrometer data; (2) produces accurate registrations withstanding changes in scale, rotation, translation and shear by using a 3-D affine transformation model; (3) achieves complete automation, and does not require any parameter settings; (4) handles low and variable overlaps (5 – 15%) between adjacent images, minimizing the number of images required to cover a tissue region; (5) has the self-diagnostic ability to recognize registration failures instead of delivering incorrect results; (6) can handle a broad range of biological images by exploiting generic alignment cues from multiple fluorescence channels without requiring segmentation; and (7) is computationally efficient enough to run on desktop computers regardless of the number of images. The algorithm was tested with several tissue samples of at least 50 image tiles, involving over 5,000 image pairs. It correctly registered all image pairs with an overlap greater than 7%, correctly recognized all failures, and successfully joint-registered all images for all tissue samples studied. This algorithm is disseminated freely to the community as included with the FARSIGHT toolkit for microscopy (www.farsight-toolkit.org). PMID:21361958

  13. Georeferencing the Large-Scale Aerial Photographs of a Great Lakes Coastal Wetland: A Modified Photogrammetric Method

    USGS Publications Warehouse

    Murphy, Marilyn K.; Kowalski, Kurt P.; Grapentine, Joel L.

    2010-01-01

    The geocontrol template method was developed to georeference multiple, overlapping analog aerial photographs without reliance upon conventionally obtained horizontal ground control. The method was tested as part of a long-term wetland habitat restoration project at a Lake Erie coastal wetland complex in the U.S. Fish and Wildlife Service Ottawa National Wildlife Refuge. As in most coastal wetlands, annually identifiable ground-control features required to georeference photo-interpreted data are difficult to find. The geocontrol template method relies on the following four components: (a) an uncontrolled aerial photo mosaic of the study area, (b) global positioning system (GPS) derived horizontal coordinates of each photo’s principal point, (c) a geocontrol template created by the transfer of fiducial markings and calculated principal points to clear acetate from individual photographs arranged in a mosaic, and (d) the root-mean-square-error testing of the system to ensure an acceptable level of planimetric accuracy. Once created for a study area, the geocontrol template can be registered in geographic information system (GIS) software to facilitate interpretation of multiple images without individual image registration. The geocontrol template enables precise georeferencing of single images within larger blocks of photographs using a repeatable and consistent method.

  14. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.

    PubMed

    Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean

    2016-10-01

    To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.

  15. LCC demons with divergence term for liver MRI motion correction

    NASA Astrophysics Data System (ADS)

    Oh, Jihun; Martin, Diego; Skrinjar, Oskar

    2010-03-01

    Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.

  16. Differential Multiphoton Laser Scanning Microscopy

    PubMed Central

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2016-01-01

    Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot. PMID:27390511

  17. A Versatile Mounting Method for Long Term Imaging of Zebrafish Development.

    PubMed

    Hirsinger, Estelle; Steventon, Ben

    2017-01-26

    Zebrafish embryos offer an ideal experimental system to study complex morphogenetic processes due to their ease of accessibility and optical transparency. In particular, posterior body elongation is an essential process in embryonic development by which multiple tissue deformations act together to direct the formation of a large part of the body axis. In order to observe this process by long-term time-lapse imaging it is necessary to utilize a mounting technique that allows sufficient support to maintain samples in the correct orientation during transfer to the microscope and acquisition. In addition, the mounting must also provide sufficient freedom of movement for the outgrowth of the posterior body region without affecting its normal development. Finally, there must be a certain degree in versatility of the mounting method to allow imaging on diverse imaging set-ups. Here, we present a mounting technique for imaging the development of posterior body elongation in the zebrafish D. rerio. This technique involves mounting embryos such that the head and yolk sac regions are almost entirely included in agarose, while leaving out the posterior body region to elongate and develop normally. We will show how this can be adapted for upright, inverted and vertical light-sheet microscopy set-ups. While this protocol focuses on mounting embryos for imaging for the posterior body, it could easily be adapted for the live imaging of multiple aspects of zebrafish development.

  18. Design and implementation of a fault-tolerant and dynamic metadata database for clinical trials

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhou, Z.; Talini, E.; Documet, J.; Liu, B.

    2007-03-01

    In recent imaging-based clinical trials, quantitative image analysis (QIA) and computer-aided diagnosis (CAD) methods are increasing in productivity due to higher resolution imaging capabilities. A radiology core doing clinical trials have been analyzing more treatment methods and there is a growing quantity of metadata that need to be stored and managed. These radiology centers are also collaborating with many off-site imaging field sites and need a way to communicate metadata between one another in a secure infrastructure. Our solution is to implement a data storage grid with a fault-tolerant and dynamic metadata database design to unify metadata from different clinical trial experiments and field sites. Although metadata from images follow the DICOM standard, clinical trials also produce metadata specific to regions-of-interest and quantitative image analysis. We have implemented a data access and integration (DAI) server layer where multiple field sites can access multiple metadata databases in the data grid through a single web-based grid service. The centralization of metadata database management simplifies the task of adding new databases into the grid and also decreases the risk of configuration errors seen in peer-to-peer grids. In this paper, we address the design and implementation of a data grid metadata storage that has fault-tolerance and dynamic integration for imaging-based clinical trials.

  19. Improved GO/PO method and its application to wideband SAR image of conducting objects over rough surface

    NASA Astrophysics Data System (ADS)

    Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Jiao, Yong-Chang

    2018-04-01

    To simulate the multiple scattering effect of target in synthetic aperture radar (SAR) image, the hybrid method GO/PO method, which combines the geometrical optics (GO) and physical optics (PO), is employed to simulate the scattering field of target. For ray tracing is time-consuming, the Open Graphics Library (OpenGL) is usually employed to accelerate the process of ray tracing. Furthermore, the GO/PO method is improved for the simulation in low pixel situation. For the improved GO/PO method, the pixels are arranged corresponding to the rectangular wave beams one by one, and the GO/PO result is the sum of the contribution values of all the rectangular wave beams. To get high-resolution SAR image, the wideband echo signal is simulated which includes information of many electromagnetic (EM) waves with different frequencies. Finally, the improved GO/PO method is used to simulate the SAR image of targets above rough surface. And the effects of reflected rays and the size of pixel matrix on the SAR image are also discussed.

  20. ReagentTF: a rapid and versatile optical clearing method for biological imaging(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Zhu, Jingtan; Li, Yusha; Qi, Yisong; Xu, Jianyi; Gong, Hui; Luo, Qingming; Zhu, Dan

    2017-02-01

    The emergence of various optical clearing methods provides a great potential for imaging deep inside tissues by combining with multiple-labelling and microscopic imaging techniques. They were generally developed for specific imaging demand thus presented some non-negligible limitations such as long incubation time, tissue deformation, fluorescence quenching, incompatibility with immunostaining or lipophilic tracers. In this study, we developed a rapid and versatile clearing method, termed ReagentTF, for deep imaging of various fluorescent samples. This method can not only efficiently clear embryos, neonatal whole-brains and adult thick brain sections by simple immersion in aqueous mixtures with minimal volume change, but also can preserve fluorescence of various fluorescent proteins and simultaneously be compatible with immunostaining and lipophilic neuronal dyes. We demonstrate the effectiveness of this method in reconstructing the cell distributions of mouse hippocampus, visualizing the neural projection from CA1 (Cornu Ammonis 1) to HDB (nucleus of the horizontal limb of the diagonal band), and observing the growth of forelimb plexus in whole-mount embryos. These results suggest that ReagentTF is useful for large-volume imaging and will be an option for the deep imaging of biological tissues.

  1. AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA.

    PubMed

    Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard

    2011-01-01

    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method frequently correspond to subregions of visible spots that may represent post-translational modifications or co-migrating proteins that cannot be visually resolved from adjacent, more abundant proteins on the gel image. Thus, it is possible that this image-based approach may actually improve the realized resolution of the gel, revealing differentially expressed proteins that would not have even been detected as spots by modern spot-based analyses.

  2. An automatic markerless registration method for neurosurgical robotics based on an optical camera.

    PubMed

    Meng, Fanle; Zhai, Fangwen; Zeng, Bowei; Ding, Hui; Wang, Guangzhi

    2018-02-01

    Current markerless registration methods for neurosurgical robotics use the facial surface to match the robot space with the image space, and acquisition of the facial surface usually requires manual interaction and constrains the patient to a supine position. To overcome these drawbacks, we propose a registration method that is automatic and does not constrain patient position. An optical camera attached to the robot end effector captures images around the patient's head from multiple views. Then, high coverage of the head surface is reconstructed from the images through multi-view stereo vision. Since the acquired head surface point cloud contains color information, a specific mark that is manually drawn on the patient's head prior to the capture procedure can be extracted to automatically accomplish coarse registration rather than using facial anatomic landmarks. Then, fine registration is achieved by registering the high coverage of the head surface without relying solely on the facial region, thus eliminating patient position constraints. The head surface was acquired by the camera with a good repeatability accuracy. The average target registration error of 8 different patient positions measured with targets inside a head phantom was [Formula: see text], while the mean surface registration error was [Formula: see text]. The method proposed in this paper achieves automatic markerless registration in multiple patient positions and guarantees registration accuracy inside the head. This method provides a new approach for establishing the spatial relationship between the image space and the robot space.

  3. Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images.

    PubMed

    Seghier, Mohamed L; Kolanko, Magdalena A; Leff, Alexander P; Jäger, Hans R; Gregoire, Simone M; Werring, David J

    2011-03-23

    Cerebral microbleeds, visible on gradient-recalled echo (GRE) T2* MRI, have generated increasing interest as an imaging marker of small vessel diseases, with relevance for intracerebral bleeding risk or brain dysfunction. Manual rating methods have limited reliability and are time-consuming. We developed a new method for microbleed detection using automated segmentation (MIDAS) and compared it with a validated visual rating system. In thirty consecutive stroke service patients, standard GRE T2* images were acquired and manually rated for microbleeds by a trained observer. After spatially normalizing each patient's GRE T2* images into a standard stereotaxic space, the automated microbleed detection algorithm (MIDAS) identified cerebral microbleeds by explicitly incorporating an "extra" tissue class for abnormal voxels within a unified segmentation-normalization model. The agreement between manual and automated methods was assessed using the intraclass correlation coefficient (ICC) and Kappa statistic. We found that MIDAS had generally moderate to good agreement with the manual reference method for the presence of lobar microbleeds (Kappa = 0.43, improved to 0.65 after manual exclusion of obvious artefacts). Agreement for the number of microbleeds was very good for lobar regions: (ICC = 0.71, improved to ICC = 0.87). MIDAS successfully detected all patients with multiple (≥2) lobar microbleeds. MIDAS can identify microbleeds on standard MR datasets, and with an additional rapid editing step shows good agreement with a validated visual rating system. MIDAS may be useful in screening for multiple lobar microbleeds.

  4. Depth profile measurement with lenslet images of the plenoptic camera

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Wang, Zhaomin; Zhang, Wei; Zhao, Hongying; Qu, Weijuan; Zhao, Haimeng; Asundi, Anand; Yan, Lei

    2018-03-01

    An approach for carrying out depth profile measurement of an object with the plenoptic camera is proposed. A single plenoptic image consists of multiple lenslet images. To begin with, these images are processed directly with a refocusing technique to obtain the depth map, which does not need to align and decode the plenoptic image. Then, a linear depth calibration is applied based on the optical structure of the plenoptic camera for depth profile reconstruction. One significant improvement of the proposed method concerns the resolution of the depth map. Unlike the traditional method, our resolution is not limited by the number of microlenses inside the camera, and the depth map can be globally optimized. We validated the method with experiments on depth map reconstruction, depth calibration, and depth profile measurement, with the results indicating that the proposed approach is both efficient and accurate.

  5. Advanced image fusion algorithms for Gamma Knife treatment planning. Evaluation and proposal for clinical use.

    PubMed

    Apostolou, N; Papazoglou, Th; Koutsouris, D

    2006-01-01

    Image fusion is a process of combining information from multiple sensors. It is a useful tool implemented in the treatment planning programme of Gamma Knife Radiosurgery. In this paper we evaluate advanced image fusion algorithms for Matlab platform and head images. We develop nine level grayscale image fusion methods: average, principal component analysis (PCA), discrete wavelet transform (DWT) and Laplacian, filter - subtract - decimate (FSD), contrast, gradient, morphological pyramid and a shift invariant discrete wavelet transform (SIDWT) method in Matlab platform. We test these methods qualitatively and quantitatively. The quantitative criteria we use are the Root Mean Square Error (RMSE), the Mutual Information (MI), the Standard Deviation (STD), the Entropy (H), the Difference Entropy (DH) and the Cross Entropy (CEN). The qualitative are: natural appearance, brilliance contrast, presence of complementary features and enhancement of common features. Finally we make clinically useful suggestions.

  6. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    NASA Astrophysics Data System (ADS)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  7. Progressive multiple sclerosis: from pathogenic mechanisms to treatment.

    PubMed

    Correale, Jorge; Gaitán, María I; Ysrraelit, María C; Fiol, Marcela P

    2017-03-01

    During the past decades, better understanding of relapsing-remitting multiple sclerosis disease mechanisms have led to the development of several disease-modifying therapies, reducing relapse rates and severity, through immune system modulation or suppression. In contrast, current therapeutic options for progressive multiple sclerosis remain comparatively disappointing and challenging. One possible explanation is a lack of understanding of pathogenic mechanisms driving progressive multiple sclerosis. Furthermore, diagnosis is usually retrospective, based on history of gradual neurological worsening with or without occasional relapses, minor remissions or plateaus. In addition, imaging methods as well as biomarkers are not well established. Magnetic resonance imaging studies in progressive multiple sclerosis show decreased blood-brain barrier permeability, probably reflecting compartmentalization of inflammation behind a relatively intact blood-brain barrier. Interestingly, a spectrum of inflammatory cell types infiltrates the leptomeninges during subpial cortical demyelination. Indeed, recent magnetic resonance imaging studies show leptomeningeal contrast enhancement in subjects with progressive multiple sclerosis, possibly representing an in vivo marker of inflammation associated to subpial demyelination. Treatments for progressive disease depend on underlying mechanisms causing central nervous system damage. Immunity sheltered behind an intact blood-brain barrier, energy failure, and membrane channel dysfunction may be key processes in progressive disease. Interfering with these mechanisms may provide neuroprotection and prevent disability progression, while potentially restoring activity and conduction along damaged axons by repairing myelin. Although most previous clinical trials in progressive multiple sclerosis have yielded disappointing results, important lessons have been learnt, improving the design of novel ones. This review discusses mechanisms involved in progressive multiple sclerosis, correlations between histopathology and magnetic resonance imaging studies, along with possible new therapeutic approaches. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Multiple description distributed image coding with side information for mobile wireless transmission

    NASA Astrophysics Data System (ADS)

    Wu, Min; Song, Daewon; Chen, Chang Wen

    2005-03-01

    Multiple description coding (MDC) is a source coding technique that involves coding the source information into multiple descriptions, and then transmitting them over different channels in packet network or error-prone wireless environment to achieve graceful degradation if parts of descriptions are lost at the receiver. In this paper, we proposed a multiple description distributed wavelet zero tree image coding system for mobile wireless transmission. We provide two innovations to achieve an excellent error resilient capability. First, when MDC is applied to wavelet subband based image coding, it is possible to introduce correlation between the descriptions in each subband. We consider using such a correlation as well as potentially error corrupted description as side information in the decoding to formulate the MDC decoding as a Wyner Ziv decoding problem. If only part of descriptions is lost, however, their correlation information is still available, the proposed Wyner Ziv decoder can recover the description by using the correlation information and the error corrupted description as side information. Secondly, in each description, single bitstream wavelet zero tree coding is very vulnerable to the channel errors. The first bit error may cause the decoder to discard all subsequent bits whether or not the subsequent bits are correctly received. Therefore, we integrate the multiple description scalar quantization (MDSQ) with the multiple wavelet tree image coding method to reduce error propagation. We first group wavelet coefficients into multiple trees according to parent-child relationship and then code them separately by SPIHT algorithm to form multiple bitstreams. Such decomposition is able to reduce error propagation and therefore improve the error correcting capability of Wyner Ziv decoder. Experimental results show that the proposed scheme not only exhibits an excellent error resilient performance but also demonstrates graceful degradation over the packet loss rate.

  9. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy

    PubMed Central

    Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari

    2016-01-01

    Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486

  10. Multi-Image Registration for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2002-01-01

    An Enhanced Vision System (EVS) utilizing multi-sensor image fusion is currently under development at the NASA Langley Research Center. The EVS will provide enhanced images of the flight environment to assist pilots in poor visibility conditions. Multi-spectral images obtained from a short wave infrared (SWIR), a long wave infrared (LWIR), and a color visible band CCD camera, are enhanced and fused using the Retinex algorithm. The images from the different sensors do not have a uniform data structure: the three sensors not only operate at different wavelengths, but they also have different spatial resolutions, optical fields of view (FOV), and bore-sighting inaccuracies. Thus, in order to perform image fusion, the images must first be co-registered. Image registration is the task of aligning images taken at different times, from different sensors, or from different viewpoints, so that all corresponding points in the images match. In this paper, we present two methods for registering multiple multi-spectral images. The first method performs registration using sensor specifications to match the FOVs and resolutions directly through image resampling. In the second method, registration is obtained through geometric correction based on a spatial transformation defined by user selected control points and regression analysis.

  11. Using Images, Metaphor, and Hypnosis in Integrating Multiple Personality and Dissociative States: A Review of the Literature.

    ERIC Educational Resources Information Center

    Crawford, Carrie L.

    1990-01-01

    Reviews literature on hypnosis, imagery, and metaphor as applied to the treatment and integration of those with multiple personality disorder (MPD) and dissociative states. Considers diagnostic criteria of MPD; explores current theories of etiology and treatment; and suggests specific examples of various clinical methods of treatment using…

  12. Ultrasonography of the biliary tract - up to date. The importance of correlation between imaging methods and patients' signs and symptoms.

    PubMed

    Badea, Radu; Zaro, Răzvan; Tanțău, Marcel; Chiorean, Liliana

    2015-09-01

    Ultrasonography is generally accepted and performed as a first choice imaging technique in patients with jaundice. The method allows the discrimination between cholestatic and mechanical jaundice. The existing procedures are multiple: gray scale, Doppler, i.v. contrast enhancement, elastography, tridimensional ultrasonography, each of these with different contribution to the positive and differential diagnosis regarding the nature of the jaundice. The final diagnosis is a multimodal one and the efficiency is dependent on the level of the available technology, the examiner's experience, the degree and modality of integration of the data within the clinical context, as well as on the portfolio of available imaging procedures. This review shows the main ultrasonographic methods consecrated in the evaluation of the biliary tree. It also underlines the integrated character of the procedures, as well as the necessity to correlate with other imaging methods and the clinical situation.

  13. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy.

    PubMed

    Sil Kar, Sudeshna; Maity, Santi P

    2016-09-01

    Extraction of blood vessels on retinal images plays a significant role for screening of different opthalmologic diseases. However, accurate extraction of the entire and individual type of vessel silhouette from the noisy images with poorly illuminated background is a complicated task. To this aim, an integrated system design platform is suggested in this work for vessel extraction using a sequential bandpass filter followed by fuzzy conditional entropy maximization on matched filter response. At first noise is eliminated from the image under consideration through curvelet based denoising. To include the fine details and the relatively less thick vessel structures, the image is passed through a bank of sequential bandpass filter structure optimized for contrast enhancement. Fuzzy conditional entropy on matched filter response is then maximized to find the set of multiple optimal thresholds to extract the different types of vessel silhouettes from the background. Differential Evolution algorithm is used to determine the optimal gain in bandpass filter and the combination of the fuzzy parameters. Using the multiple thresholds, retinal image is classified as the thick, the medium and the thin vessels including neovascularization. Performance evaluated on different publicly available retinal image databases shows that the proposed method is very efficient in identifying the diverse types of vessels. Proposed method is also efficient in extracting the abnormal and the thin blood vessels in pathological retinal images. The average values of true positive rate, false positive rate and accuracy offered by the method is 76.32%, 1.99% and 96.28%, respectively for the DRIVE database and 72.82%, 2.6% and 96.16%, respectively for the STARE database. Simulation results demonstrate that the proposed method outperforms the existing methods in detecting the various types of vessels and the neovascularization structures. The combination of curvelet transform and tunable bandpass filter is found to be very much effective in edge enhancement whereas fuzzy conditional entropy efficiently distinguishes vessels of different widths. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Context-dependent logo matching and recognition.

    PubMed

    Sahbi, Hichem; Ballan, Lamberto; Serra, Giuseppe; Del Bimbo, Alberto

    2013-03-01

    We contribute, through this paper, to the design of a novel variational framework able to match and recognize multiple instances of multiple reference logos in image archives. Reference logos and test images are seen as constellations of local features (interest points, regions, etc.) and matched by minimizing an energy function mixing: 1) a fidelity term that measures the quality of feature matching, 2) a neighborhood criterion that captures feature co-occurrence/geometry, and 3) a regularization term that controls the smoothness of the matching solution. We also introduce a detection/recognition procedure and study its theoretical consistency. Finally, we show the validity of our method through extensive experiments on the challenging MICC-Logos dataset. Our method overtakes, by 20%, baseline as well as state-of-the-art matching/recognition procedures.

  15. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  16. Constructing a Database from Multiple 2D Images for Camera Pose Estimation and Robot Localization

    NASA Technical Reports Server (NTRS)

    Wolf, Michael; Ansar, Adnan I.; Brennan, Shane; Clouse, Daniel S.; Padgett, Curtis W.

    2012-01-01

    The LMDB (Landmark Database) Builder software identifies persistent image features (landmarks) in a scene viewed multiple times and precisely estimates the landmarks 3D world positions. The software receives as input multiple 2D images of approximately the same scene, along with an initial guess of the camera poses for each image, and a table of features matched pair-wise in each frame. LMDB Builder aggregates landmarks across an arbitrarily large collection of frames with matched features. Range data from stereo vision processing can also be passed to improve the initial guess of the 3D point estimates. The LMDB Builder aggregates feature lists across all frames, manages the process to promote selected features to landmarks, and iteratively calculates the 3D landmark positions using the current camera pose estimations (via an optimal ray projection method), and then improves the camera pose estimates using the 3D landmark positions. Finally, it extracts image patches for each landmark from auto-selected key frames and constructs the landmark database. The landmark database can then be used to estimate future camera poses (and therefore localize a robotic vehicle that may be carrying the cameras) by matching current imagery to landmark database image patches and using the known 3D landmark positions to estimate the current pose.

  17. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.

    PubMed

    Chalfoun, J; Majurski, M; Peskin, A; Breen, C; Bajcsy, P; Brady, M

    2015-10-01

    New microscopy technologies are enabling image acquisition of terabyte-sized data sets consisting of hundreds of thousands of images. In order to retrieve and analyze the biological information in these large data sets, segmentation is needed to detect the regions containing cells or cell colonies. Our work with hundreds of large images (each 21,000×21,000 pixels) requires a segmentation method that: (1) yields high segmentation accuracy, (2) is applicable to multiple cell lines with various densities of cells and cell colonies, and several imaging modalities, (3) can process large data sets in a timely manner, (4) has a low memory footprint and (5) has a small number of user-set parameters that do not require adjustment during the segmentation of large image sets. None of the currently available segmentation methods meet all these requirements. Segmentation based on image gradient thresholding is fast and has a low memory footprint. However, existing techniques that automate the selection of the gradient image threshold do not work across image modalities, multiple cell lines, and a wide range of foreground/background densities (requirement 2) and all failed the requirement for robust parameters that do not require re-adjustment with time (requirement 5). We present a novel and empirically derived image gradient threshold selection method for separating foreground and background pixels in an image that meets all the requirements listed above. We quantify the difference between our approach and existing ones in terms of accuracy, execution speed, memory usage and number of adjustable parameters on a reference data set. This reference data set consists of 501 validation images with manually determined segmentations and image sizes ranging from 0.36 Megapixels to 850 Megapixels. It includes four different cell lines and two image modalities: phase contrast and fluorescent. Our new technique, called Empirical Gradient Threshold (EGT), is derived from this reference data set with a 10-fold cross-validation method. EGT segments cells or colonies with resulting Dice accuracy index measurements above 0.92 for all cross-validation data sets. EGT results has also been visually verified on a much larger data set that includes bright field and Differential Interference Contrast (DIC) images, 16 cell lines and 61 time-sequence data sets, for a total of 17,479 images. This method is implemented as an open-source plugin to ImageJ as well as a standalone executable that can be downloaded from the following link: https://isg.nist.gov/. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Spatial resolution enhancement of satellite image data using fusion approach

    NASA Astrophysics Data System (ADS)

    Lestiana, H.; Sukristiyanti

    2018-02-01

    Object identification using remote sensing data has a problem when the spatial resolution is not in accordance with the object. The fusion approach is one of methods to solve the problem, to improve the object recognition and to increase the objects information by combining data from multiple sensors. The application of fusion image can be used to estimate the environmental component that is needed to monitor in multiple views, such as evapotranspiration estimation, 3D ground-based characterisation, smart city application, urban environments, terrestrial mapping, and water vegetation. Based on fusion application method, the visible object in land area has been easily recognized using the method. The variety of object information in land area has increased the variation of environmental component estimation. The difficulties in recognizing the invisible object like Submarine Groundwater Discharge (SGD), especially in tropical area, might be decreased by the fusion method. The less variation of the object in the sea surface temperature is a challenge to be solved.

  19. Synthetic Minority Oversampling Technique and Fractal Dimension for Identifying Multiple Sclerosis

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Dong; Zhang, Yin; Phillips, Preetha; Dong, Zhengchao; Wang, Shuihua

    Multiple sclerosis (MS) is a severe brain disease. Early detection can provide timely treatment. Fractal dimension can provide statistical index of pattern changes with scale at a given brain image. In this study, our team used susceptibility weighted imaging technique to obtain 676 MS slices and 880 healthy slices. We used synthetic minority oversampling technique to process the unbalanced dataset. Then, we used Canny edge detector to extract distinguishing edges. The Minkowski-Bouligand dimension was a fractal dimension estimation method and used to extract features from edges. Single hidden layer neural network was used as the classifier. Finally, we proposed a three-segment representation biogeography-based optimization to train the classifier. Our method achieved a sensitivity of 97.78±1.29%, a specificity of 97.82±1.60% and an accuracy of 97.80±1.40%. The proposed method is superior to seven state-of-the-art methods in terms of sensitivity and accuracy.

  20. Nonlinear Deep Kernel Learning for Image Annotation.

    PubMed

    Jiu, Mingyuan; Sahbi, Hichem

    2017-02-08

    Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

  1. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  2. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  3. Boundary segmentation for fluorescence microscopy using steerable filters

    NASA Astrophysics Data System (ADS)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  4. Diffusion Tensor Imaging of the Optic Tracts in Multiple Sclerosis: Association with Retinal Thinning and Visual Disability

    PubMed Central

    Dasenbrock, Hormuzdiyar H.; Smith, Seth A.; Ozturk, Arzu; Farrell, Sheena K.; Calabresi, Peter A.; Reich, Daniel S.

    2009-01-01

    Background and purpose Visual disability is common in multiple sclerosis, but its relationship to abnormalities of the optic tracts remains unknown. Because they are only rarely affected by lesions, the optic tracts may represent a good model for assessing the imaging properties of normal-appearing white matter in multiple sclerosis. Methods Whole-brain diffusion tensor imaging was performed on 34 individuals with multiple sclerosis and 26 healthy volunteers. The optic tracts were reconstructed by tractography, and tract-specific diffusion indices were quantified. In the multiple-sclerosis group, peripapillary retinal nerve-fiber-layer thickness and total macular volume were measured by optical coherence tomography, and visual acuity at 100%, 2.5%, and 1.25% contrast was examined. Results After adjusting for age and sex, optic-tract mean and perpendicular diffusivity were higher (p=0.002) in multiple sclerosis. Lower optic-tract fractional anisotropy was correlated with retinal nerve-fiber-layer thinning (r=0.51, p=0.003) and total-macular-volume reduction (r=0.59, p=0.002). However, optic-tract diffusion indices were not specifically correlated with visual acuity or with their counterparts in the optic radiation. Conclusions Optic-tract diffusion abnormalities are associated with retinal damage, suggesting that both may be related to optic-nerve injury, but do not appear to contribute strongly to visual disability in multiple sclerosis. PMID:20331501

  5. Multiple window spatial registration error of a gamma camera: 133Ba point source as a replacement of the NEMA procedure.

    PubMed

    Bergmann, Helmar; Minear, Gregory; Raith, Maria; Schaffarich, Peter M

    2008-12-09

    The accuracy of multiple window spatial resolution characterises the performance of a gamma camera for dual isotope imaging. In the present study we investigate an alternative method to the standard NEMA procedure for measuring this performance parameter. A long-lived 133Ba point source with gamma energies close to 67Ga and a single bore lead collimator were used to measure the multiple window spatial registration error. Calculation of the positions of the point source in the images used the NEMA algorithm. The results were validated against the values obtained by the standard NEMA procedure which uses a liquid 67Ga source with collimation. Of the source-collimator configurations under investigation an optimum collimator geometry, consisting of a 5 mm thick lead disk with a diameter of 46 mm and a 5 mm central bore, was selected. The multiple window spatial registration errors obtained by the 133Ba method showed excellent reproducibility (standard deviation < 0.07 mm). The values were compared with the results from the NEMA procedure obtained at the same locations and showed small differences with a correlation coefficient of 0.51 (p < 0.05). In addition, the 133Ba point source method proved to be much easier to use. A Bland-Altman analysis showed that the 133Ba and the 67Ga Method can be used interchangeably. The 133Ba point source method measures the multiple window spatial registration error with essentially the same accuracy as the NEMA-recommended procedure, but is easier and safer to use and has the potential to replace the current standard procedure.

  6. Mixed raster content (MRC) model for compound image compression

    NASA Astrophysics Data System (ADS)

    de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming

    1998-12-01

    This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.

  7. SAR Speckle Noise Reduction Using Wiener Filter

    NASA Technical Reports Server (NTRS)

    Joo, T. H.; Held, D. N.

    1983-01-01

    Synthetic aperture radar (SAR) images are degraded by speckle. A multiplicative speckle noise model for SAR images is presented. Using this model, a Wiener filter is derived by minimizing the mean-squared error using the known speckle statistics. Implementation of the Wiener filter is discussed and experimental results are presented. Finally, possible improvements to this method are explored.

  8. Stochastic simulation by image quilting of process-based geological models

    NASA Astrophysics Data System (ADS)

    Hoffimann, Júlio; Scheidt, Céline; Barfod, Adrian; Caers, Jef

    2017-09-01

    Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-based models as training images and address the data conditioning problem. In this work, we further develop image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for template design in image quilting that generalizes the entropy plot for continuous training images. The criterion is based on the new concept of voxel reuse-a stochastic and quilting-aware function of the training image. We compare our proposed method with other established simulation methods on a set of process-based training images of varying complexity, including a real-case example of stochastic simulation of the buried-valley groundwater system in Denmark.

  9. Virtual view image synthesis for eye-contact in TV conversation system

    NASA Astrophysics Data System (ADS)

    Murayama, Daisuke; Kimura, Keiichi; Hosaka, Tadaaki; Hamamoto, Takayuki; Shibuhisa, Nao; Tanaka, Seiichi; Sato, Shunichi; Saito, Sakae

    2010-02-01

    Eye-contact plays an important role for human communications in the sense that it can convey unspoken information. However, it is highly difficult to realize eye-contact in teleconferencing systems because of camera configurations. Conventional methods to overcome this difficulty mainly resorted to space-consuming optical devices such as half mirrors. In this paper, we propose an alternative approach to achieve eye-contact by techniques of arbitrary view image synthesis. In our method, multiple images captured by real cameras are converted to the virtual viewpoint (the center of the display) by homography, and evaluation of matching errors among these projected images provides the depth map and the virtual image. Furthermore, we also propose a simpler version of this method by using a single camera to save the computational costs, in which the only one real image is transformed to the virtual viewpoint based on the hypothesis that the subject is located at a predetermined distance. In this simple implementation, eye regions are separately generated by comparison with pre-captured frontal face images. Experimental results of both the methods show that the synthesized virtual images enable the eye-contact favorably.

  10. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Wu; Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8; Yuchi Ming

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped;more » the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.« less

  11. Availability and performance of image/video-based vital signs monitoring methods: a systematic review protocol.

    PubMed

    Harford, Mirae; Catherall, Jacqueline; Gerry, Stephen; Young, Duncan; Watkinson, Peter

    2017-10-25

    For many vital signs, monitoring methods require contact with the patient and/or are invasive in nature. There is increasing interest in developing still and video image-guided monitoring methods that are non-contact and non-invasive. We will undertake a systematic review of still and video image-based monitoring methods. We will perform searches in multiple databases which include MEDLINE, Embase, CINAHL, Cochrane library, IEEE Xplore and ACM Digital Library. We will use OpenGrey and Google searches to access unpublished or commercial data. We will not use language or publication date restrictions. The primary goal is to summarise current image-based vital signs monitoring methods, limited to heart rate, respiratory rate, oxygen saturations and blood pressure. Of particular interest will be the effectiveness of image-based methods compared to reference devices. Other outcomes of interest include the quality of the method comparison studies with respect to published reporting guidelines, any limitations of non-contact non-invasive technology and application in different populations. To the best of our knowledge, this is the first systematic review of image-based non-contact methods of vital signs monitoring. Synthesis of currently available technology will facilitate future research in this highly topical area. PROSPERO CRD42016029167.

  12. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor

    PubMed Central

    Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424

  13. Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection

    PubMed Central

    Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.

    2017-01-01

    Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522

  14. A method to perform a fast fourier transform with primitive image transformations.

    PubMed

    Sheridan, Phil

    2007-05-01

    The Fourier transform is one of the most important transformations in image processing. A major component of this influence comes from the ability to implement it efficiently on a digital computer. This paper describes a new methodology to perform a fast Fourier transform (FFT). This methodology emerges from considerations of the natural physical constraints imposed by image capture devices (camera/eye). The novel aspects of the specific FFT method described include: 1) a bit-wise reversal re-grouping operation of the conventional FFT is replaced by the use of lossless image rotation and scaling and 2) the usual arithmetic operations of complex multiplication are replaced with integer addition. The significance of the FFT presented in this paper is introduced by extending a discrete and finite image algebra, named Spiral Honeycomb Image Algebra (SHIA), to a continuous version, named SHIAC.

  15. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  16. Development of image mappers for hyperspectral biomedical imaging applications

    PubMed Central

    Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.

    2010-01-01

    A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 × 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm. PMID:20357875

  17. Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning.

    PubMed

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-11-01

    Resting-state functional MR imaging (rsfMR imaging) measures spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal and can be used to elucidate the brain's functional organization. It is used to simultaneously assess multiple distributed resting-state networks. Unlike task-based functional MR imaging, rsfMR imaging does not require task performance. This article presents a brief introduction of rsfMR imaging processing methods followed by a detailed discussion on the use of rsfMR imaging in presurgical planning. Example cases are provided to highlight the strengths and limitations of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Applicability of common measures in multifocus image fusion comparison

    NASA Astrophysics Data System (ADS)

    Vajgl, Marek

    2017-11-01

    Image fusion is an image processing area aimed at fusion of multiple input images to achieve an output image somehow better then each of the input ones. In the case of "multifocus fusion", input images are capturing the same scene differing ina focus distance. The aim is to obtain an image, which is sharp in all its areas. The are several different approaches and methods used to solve this problem. However, it is common question which one is the best. This work describes a research covering the field of common measures with a question, if some of them can be used as a quality measure of the fusion result evaluation.

  19. Deconvolution of the PSF of a seismic lens

    NASA Astrophysics Data System (ADS)

    Yu, Jianhua; Wang, Yue; Schuster, Gerard T.

    2002-12-01

    We show that if seismic data d is related to the migration image by mmig = LTd. then mmig is a blurred version of the actual reflectivity distribution m, i.e., mmig = (LTL)m. Here L is the acoustic forward modeling operator under the Born approximation where d = Lm. The blurring operator (LTL), or point spread function, distorts the image because of defects in the seismic lens, i.e., small source-receiver recording aperture and irregular/coarse geophone-source spacing. These distortions can be partly suppressed by applying the deblurring operator (LTL)-1 to the migration image to get m = (LTL)-1mmig. This deblurred image is known as a least squares migration (LSM) image if (LTL)-1LT is applied to the data d using a conjugate gradient method, and is known as a migration deconvolved (MD) image if (LTL)-1 is directly applied to the migration image mmig in (kx, ky, z) space. The MD algorithm is an order-of-magnitude faster than LSM, but it employs more restrictive assumptions. We also show that deblurring can be used to filter out coherent noise in the data such as multiple reflections. The procedure is to, e.g., decompose the forward modeling operator into both primary and multiple reflection operators d = (Lprim + Lmulti)m, invert for m, and find the primary reflection data by dprim = Lprimm. This method is named least squares migration filtering (LSMF). The above three algorithms (LSM, MD and LSMF) might be useful for attacking problems in optical imaging.

  20. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study

    PubMed Central

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-01-01

    Purpose: To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Methods: Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients’ breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Results: Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. Conclusions: In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors’ preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management. PMID:27908178

Top