ERIC Educational Resources Information Center
Fagioli, Sabrina; Macaluso, Emiliano
2009-01-01
Behavioral studies indicate that subjects are able to divide attention between multiple streams of information at different locations. However, it is still unclear to what extent the observed costs reflect processes specifically associated with spatial attention, versus more general interference due the concurrent monitoring of multiple streams of…
Fast algorithm for automatically computing Strahler stream order
Lanfear, Kenneth J.
1990-01-01
An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.
A PC-based telemetry system for acquiring and reducing data from multiple PCM streams
NASA Astrophysics Data System (ADS)
Simms, D. A.; Butterfield, C. P.
1991-07-01
The Solar Energy Research Institute's (SERI) Wind Research Program is using Pulse Code Modulation (PCM) Telemetry Data-Acquisition Systems to study horizontal-axis wind turbines. Many PCM systems are combined for use in test installations that require accurate measurements from a variety of different locations. SERI has found them ideal for data-acquisition from multiple wind turbines and meteorological towers in wind parks. A major problem has been in providing the capability to quickly combine and examine incoming data from multiple PCM sources in the field. To solve this problem, SERI has developed a low-cost PC-based PCM Telemetry Data-Reduction System (PC-PCM System) to facilitate quick, in-the-field multiple-channel data analysis. The PC-PCM System consists of two basic components. First, PC-compatible hardware boards are used to decode and combine multiple PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for use under DOS was developed to simplify data-acquisition control and management. The software, called the Quick-Look Data Management Program, provides a quick, easy-to-use interface between the PC and multiple PCM data streams. The Quick-Look Data Management Program is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. The paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data from multiple PCM streams. Also discussed are problems and techniques associated with PC-based telemetry data-acquisition, processing, and real-time display.
Telemetry and Communication IP Video Player
NASA Technical Reports Server (NTRS)
OFarrell, Zachary L.
2011-01-01
Aegis Video Player is the name of the video over IP system for the Telemetry and Communications group of the Launch Services Program. Aegis' purpose is to display video streamed over a network connection to be viewed during launches. To accomplish this task, a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming. The program was then customized to be used during launches. The VLC plug-in can be configured programmatically to display a single stream, but for this project multiple streams needed to be accessed. To accomplish this, an easy to use, informative menu system was added to the program to enable users to quickly switch between videos. Other features were added to make the player more useful, such as watching multiple videos and watching a video in full screen.
Teaching Energy Geographies via Videography
ERIC Educational Resources Information Center
Graybill, Jessica K.
2016-01-01
In our digital age of information acquisition, multimedia information streams are constant, constantly changing and often contain multiple messages about topics important to everyday life, such as energy geographies. Recognizing that college students are prime consumers of digital information, it seems that crafting of academic engagement for and…
Le Pichon, Céline; Tales, Évelyne; Belliard, Jérôme; Torgersen, Christian E.
2017-01-01
Spatially intensive sampling by electrofishing is proposed as a method for quantifying spatial variation in fish assemblages at multiple scales along extensive stream sections in headwater catchments. We used this method to sample fish species at 10-m2 points spaced every 20 m throughout 5 km of a headwater stream in France. The spatially intensive sampling design provided information at a spatial resolution and extent that enabled exploration of spatial heterogeneity in fish assemblage structure and aquatic habitat at multiple scales with empirical variograms and wavelet analysis. These analyses were effective for detecting scales of periodicity, trends, and discontinuities in the distribution of species in relation to tributary junctions and obstacles to fish movement. This approach to sampling riverine fishes may be useful in fisheries research and management for evaluating stream fish responses to natural and altered habitats and for identifying sites for potential restoration.
Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.
2012-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.
2011-12-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
Flood Risk Management in Iowa through an Integrated Flood Information System
NASA Astrophysics Data System (ADS)
Demir, Ibrahim; Krajewski, Witold
2013-04-01
The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods. This presentation provides an overview and live demonstration of the tools and interfaces in the IFIS developed to date to provide a platform for one-stop access to flood related data, visualizations, flood conditions, and forecast.
Future of Hydroinformatics: Towards Open, Integrated and Interactive Online Platforms
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-12-01
Hydroinformatics is a domain of science and technology dealing with the management of information in the field of hydrology (IWA, 2011). There is the need for innovative solutions to the challenges towards open information, integration, and communication in the Internet. This presentation provides an overview of the trends and challenges in the future of hydroinformatics, and demonstrates an information system, Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for more than 1000 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.
Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M
Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less
Analysis in Motion Initiative – Summarization Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin; Pirrung, Meg; Jasper, Rob
2017-06-22
Analysts are tasked with integrating information from multiple data sources for important and timely decision making. What if sense making and overall situation awareness could be improved through visualization techniques? The Analysis in Motion initiative is advancing the ability to summarize and abstract multiple streams and static data sources over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruffey, Stephanie H.; Jubin, Robert Thomas; Jordan, J. A.
U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. Multiple off-gas streams within a UNF reprocessing plant combine prior to release, and each of these streams contains some amount of iodine. For an aqueous UNF reprocessing plant, these streams include the dissolver off-gas, the cell off-gas, the vessel off-gas (VOG), the waste off-gas and the shear off-gas. To achieve regulatory compliance, treatment of multiple off-gas streams within the plant must be performed. Preliminary studies have been completed on the adsorptionmore » of I 2 onto silver mordenite (AgZ) from prototypical VOG streams. The study reported that AgZ did adsorb I 2 from a prototypical VOG stream, but process upsets resulted in an uneven feed stream concentration. The experiments described in this document both improve the characterization of I 2 adsorption by AgZ from dilute gas streams and further extend it to include characterization of the adsorption of organic iodides (in the form of CH 3I) onto AgZ under prototypical VOG conditions. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the effect of sorbent aging on iodine removal in VOG conditions could be inferred.« less
Zion Golumbic, Elana M.; Poeppel, David; Schroeder, Charles E.
2012-01-01
The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the ‘Cocktail Party’ effect. Yet, the neural mechanisms underlying on-line speech decoding and attentional stream selection are not well understood. We review findings from behavioral and neurophysiological investigations that underscore the importance of the temporal structure of speech for achieving these perceptual feats. We discuss the hypothesis that entrainment of ambient neuronal oscillations to speech’s temporal structure, across multiple time-scales, serves to facilitate its decoding and underlies the selection of an attended speech stream over other competing input. In this regard, speech decoding and attentional stream selection are examples of ‘active sensing’, emphasizing an interaction between proactive and predictive top-down modulation of neuronal dynamics and bottom-up sensory input. PMID:22285024
Sparse bursts optimize information transmission in a multiplexed neural code.
Naud, Richard; Sprekeler, Henning
2018-06-22
Many cortical neurons combine the information ascending and descending the cortical hierarchy. In the classical view, this information is combined nonlinearly to give rise to a single firing-rate output, which collapses all input streams into one. We analyze the extent to which neurons can simultaneously represent multiple input streams by using a code that distinguishes spike timing patterns at the level of a neural ensemble. Using computational simulations constrained by experimental data, we show that cortical neurons are well suited to generate such multiplexing. Interestingly, this neural code maximizes information for short and sparse bursts, a regime consistent with in vivo recordings. Neurons can also demultiplex this information, using specific connectivity patterns. The anatomy of the adult mammalian cortex suggests that these connectivity patterns are used by the nervous system to maintain sparse bursting and optimal multiplexing. Contrary to firing-rate coding, our findings indicate that the physiology and anatomy of the cortex may be interpreted as optimizing the transmission of multiple independent signals to different targets. Copyright © 2018 the Author(s). Published by PNAS.
Freshwater Biological Traits Database (Traits)
The traits database was compiled for a project on climate change effects on river and stream ecosystems. The traits data, gathered from multiple sources, focused on information published or otherwise well-documented by trustworthy sources.
Cheng, Calvin K Y; Ip, Dennis K M; Cowling, Benjamin J; Ho, Lai Ming; Leung, Gabriel M; Lau, Eric H Y
2011-10-14
Great strides have been made exploring and exploiting new and different sources of disease surveillance data and developing robust statistical methods for analyzing the collected data. However, there has been less research in the area of dissemination. Proper dissemination of surveillance data can facilitate the end user's taking of appropriate actions, thus maximizing the utility of effort taken from upstream of the surveillance-to-action loop. The aims of the study were to develop a generic framework for a digital dashboard incorporating features of efficient dashboard design and to demonstrate this framework by specific application to influenza surveillance in Hong Kong. Based on the merits of the national websites and principles of efficient dashboard design, we designed an automated influenza surveillance digital dashboard as a demonstration of efficient dissemination of surveillance data. We developed the system to synthesize and display multiple sources of influenza surveillance data streams in the dashboard. Different algorithms can be implemented in the dashboard for incorporating all surveillance data streams to describe the overall influenza activity. We designed and implemented an influenza surveillance dashboard that utilized self-explanatory figures to display multiple surveillance data streams in panels. Indicators for individual data streams as well as for overall influenza activity were summarized in the main page, which can be read at a glance. Data retrieval function was also incorporated to allow data sharing in standard format. The influenza surveillance dashboard serves as a template to illustrate the efficient synthesization and dissemination of multiple-source surveillance data, which may also be applied to other diseases. Surveillance data from multiple sources can be disseminated efficiently using a dashboard design that facilitates the translation of surveillance information to public health actions.
Cheng, Calvin KY; Ip, Dennis KM; Cowling, Benjamin J; Ho, Lai Ming; Leung, Gabriel M
2011-01-01
Background Great strides have been made exploring and exploiting new and different sources of disease surveillance data and developing robust statistical methods for analyzing the collected data. However, there has been less research in the area of dissemination. Proper dissemination of surveillance data can facilitate the end user's taking of appropriate actions, thus maximizing the utility of effort taken from upstream of the surveillance-to-action loop. Objective The aims of the study were to develop a generic framework for a digital dashboard incorporating features of efficient dashboard design and to demonstrate this framework by specific application to influenza surveillance in Hong Kong. Methods Based on the merits of the national websites and principles of efficient dashboard design, we designed an automated influenza surveillance digital dashboard as a demonstration of efficient dissemination of surveillance data. We developed the system to synthesize and display multiple sources of influenza surveillance data streams in the dashboard. Different algorithms can be implemented in the dashboard for incorporating all surveillance data streams to describe the overall influenza activity. Results We designed and implemented an influenza surveillance dashboard that utilized self-explanatory figures to display multiple surveillance data streams in panels. Indicators for individual data streams as well as for overall influenza activity were summarized in the main page, which can be read at a glance. Data retrieval function was also incorporated to allow data sharing in standard format. Conclusions The influenza surveillance dashboard serves as a template to illustrate the efficient synthesization and dissemination of multiple-source surveillance data, which may also be applied to other diseases. Surveillance data from multiple sources can be disseminated efficiently using a dashboard design that facilitates the translation of surveillance information to public health actions. PMID:22001082
International Virtual Observatory System for Water Resources Information
NASA Astrophysics Data System (ADS)
Leinenweber, Lewis; Bermudez, Luis
2013-04-01
Sharing, accessing, and integrating hydrologic and climatic data have been identified as a critical need for some time. The current state of data portals, standards, technologies, activities, and expertise can be leverage to develop an initial operational capability for a virtual observatory system. This system will allow to link observations data with stream networks and models, and to solve semantic inconsistencies among communities. Prototyping a virtual observatory system is an inter-disciplinary, inter-agency and international endeavor. The Open Geospatial Consortium (OGC) within the OGC Interoperability Program provides the process and expertise to run such collaborative effort. The OGC serves as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The project coordinated by OGC that is advancing an international virtual observatory system for water resources information is called Climatology-Hydrology Information Sharing Pilot, Phase 1 (CHISP-1). It includes observations and forecasts in the U.S. and Canada levering current networks and capabilities. It is designed to support the following use cases: 1) Hydrologic modeling for historical and near-future stream flow and groundwater conditions. Requires the integration of trans-boundary stream flow and groundwater well data, as well as national river networks (US NHD and Canada NHN) from multiple agencies. Emphasis will be on time series data and real-time flood monitoring. 2) Modeling and assessment of nutrient load into the lakes. Requires accessing water-quality data from multiple agencies and integrating with stream flow information for calculating loads. Emphasis on discrete sampled water quality observations, linking those to specific NHD stream reaches and catchments, and additional metadata for sampled data. The key objectives of these use cases are: 1) To link observations data to the stream network, enabling queries of conditions upstream from a given location to return all relevant gages and well locations. This is currently not practical with the data sources available. 2) To bridge differences in semantics across information models and processes used by the various data producers, to improve the hydrologic and water quality modeling capabilities. Other expected benefits to be derived from this project include: - Leverage a large body of existing data holdings and related activities of multiple agencies in the US and Canada. - Influence data and metadata standards used internationally for web-based information sharing, through multiple agency cooperation and OGC standards setting process. - Reduction of procurement risk through partnership-based development of an initial operating capability verses the cost for building a fully operational system using a traditional "waterfall approach". - Identification and clarification of what is possible, and of the key technical and non-technical barriers to continued progress in sharing and integrating hydrologic and climatic information. - Promote understanding and strengthen ties within the hydro-climatic community. This is anticipated to be the first phase of a multi-phase project, with future work on forecasting the hydrologic consequences of extreme weather events, and enabling more sophisticated water quality modeling.
Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames
Kelemen, Eduard; Fenton, André A.
2010-01-01
Cognitive control is the ability to coordinate multiple streams of information to prevent confusion and select appropriate behavioral responses, especially when presented with competing alternatives. Despite its theoretical and clinical significance, the neural mechanisms of cognitive control are poorly understood. Using a two-frame place avoidance task and partial hippocampal inactivation, we confirmed that intact hippocampal function is necessary for coordinating two streams of spatial information. Rats were placed on a continuously rotating arena and trained to organize their behavior according to two concurrently relevant spatial frames: one stationary, the other rotating. We then studied how information about locations in these two spatial frames is organized in the action potential discharge of ensembles of hippocampal cells. Both streams of information were represented in neuronal discharge—place cell activity was organized according to both spatial frames, but almost all cells preferentially represented locations in one of the two spatial frames. At any given time, most coactive cells tended to represent locations in the same spatial frame, reducing the risk of interference between the two information streams. An ensemble's preference to represent locations in one or the other spatial frame alternated within a session, but at each moment, location in the more behaviorally relevant spatial frame was more likely to be represented. This discharge organized into transient groups of coactive neurons that fired together within 25 ms to represent locations in the same spatial frame. These findings show that dynamic grouping, the transient coactivation of neural subpopulations that represent the same stream of information, can coordinate representations of concurrent information streams and avoid confusion, demonstrating neural-ensemble correlates of cognitive control in hippocampus. PMID:20585373
Sensitivity to timing and order in human visual cortex
Singer, Jedediah M.; Madsen, Joseph R.; Anderson, William S.
2014-01-01
Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. PMID:25429116
A real time sorting algorithm to time sort any deterministic time disordered data stream
NASA Astrophysics Data System (ADS)
Saini, J.; Mandal, S.; Chakrabarti, A.; Chattopadhyay, S.
2017-12-01
In new generation high intensity high energy physics experiments, millions of free streaming high rate data sources are to be readout. Free streaming data with associated time-stamp can only be controlled by thresholds as there is no trigger information available for the readout. Therefore, these readouts are prone to collect large amount of noise and unwanted data. For this reason, these experiments can have output data rate of several orders of magnitude higher than the useful signal data rate. It is therefore necessary to perform online processing of the data to extract useful information from the full data set. Without trigger information, pre-processing on the free streaming data can only be done with time based correlation among the data set. Multiple data sources have different path delays and bandwidth utilizations and therefore the unsorted merged data requires significant computational efforts for real time manifestation of sorting before analysis. Present work reports a new high speed scalable data stream sorting algorithm with its architectural design, verified through Field programmable Gate Array (FPGA) based hardware simulation. Realistic time based simulated data likely to be collected in an high energy physics experiment have been used to study the performance of the algorithm. The proposed algorithm uses parallel read-write blocks with added memory management and zero suppression features to make it efficient for high rate data-streams. This algorithm is best suited for online data streams with deterministic time disorder/unsorting on FPGA like hardware.
NASA Astrophysics Data System (ADS)
Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.
2015-12-01
Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information could inform future studies, such as investigations into stream network scale thresholds in DOM cycling, carbon cycling modelling for the study region, or understanding the impact of wetlands sometimes considered geographically isolated on downstream ecosystems.
General Mode Scanning Probe Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somnath, Suhas; Jesse, Stephen
A critical part of SPM measurements is the information transfer from the probe-sample junction to the measurement system. Current information transfer methods heavily compress the information-rich data stream by averaging the data over a time interval, or via heterodyne detection approaches such as lock-in amplifiers and phase-locked loops. As a consequence, highly valuable information at the sub-microsecond time scales or information from frequencies outside the measurement band is lost. We have developed a fundamentally new approach called General Mode (G-mode), where we can capture the complete information stream from the detectors in the microscope. The availability of the complete informationmore » allows the microscope operator to analyze the data via information-theory analysis or comprehensive physical models. Furthermore, the complete data stream enables advanced data-driven filtering algorithms, multi-resolution imaging, ultrafast spectroscropic imaging, spatial mapping of multidimensional variability in material properties, etc. Though we applied this approach to scanning probe microscopy, the general philosophy of G-mode can be applied to many other modes of microscopy. G-mode data is captured by completely custom software written in LabVIEW and Matlab. The software generates the waveforms to electrically, thermally, or mechanically excite the SPM probe. It handles real-time communications with the microscope software for operations such as moving the SPM probe position and also controls other instrumentation hardware. The software also controls multiple variants of high-speed data acquisition cards to excite the SPM probe with the excitation waveform and simultaneously measure multiple channels of information from the microscope detectors at sampling rates of 1-100 MHz. The software also saves the raw data to the computer and allows the microscope operator to visualize processed or filtered data during the experiment. The software performs all these features while offering a user-friendly interface.« less
Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts
Lent, R.M.; Waldron, M.C.; Rader, J.C.
1998-01-01
A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.
The Effectiveness of Streaming Video on Medical Student Learning: A Case Study
Bridge, Patrick D.; Jackson, Matt; Robinson, Leah
2009-01-01
Information technology helps meet today's medical students’ needs by providing multiple curriculum delivery methods. Video streaming is an e-learning technology that uses the Internet to deliver curriculum while giving the student control of the content's delivery. There have been few studies conducted on the effectiveness of streaming video in medical schools. A 5-year retrospective study was conducted using three groups of students (n = 1736) to determine if the availability of streaming video in Years 1–2 of the basic science curriculum affected overall Step 1 scores for first-time test-takers. The results demonstrated a positive effect on program outcomes as streaming video became more readily available to students. Based on these findings, streaming video technology seems to be a viable tool to complement in-class delivery methods, to accommodate the needs of medical students, and to provide options for meeting the challenges of delivering the undergraduate medical curriculum. Further studies need to be conducted to continue validating the effectiveness of streaming video technology. PMID:20165525
The effectiveness of streaming video on medical student learning: a case study.
Bridge, Patrick D; Jackson, Matt; Robinson, Leah
2009-08-19
Information technology helps meet today's medical students' needs by providing multiple curriculum delivery methods. Video streaming is an e-learning technology that uses the Internet to deliver curriculum while giving the student control of the content's delivery. There have been few studies conducted on the effectiveness of streaming video in medical schools. A 5-year retrospective study was conducted using three groups of students (n = 1736) to determine if the availability of streaming video in Years 1-2 of the basic science curriculum affected overall Step 1 scores for first-time test-takers. The results demonstrated a positive effect on program outcomes as streaming video became more readily available to students. Based on these findings, streaming video technology seems to be a viable tool to complement in-class delivery methods, to accommodate the needs of medical students, and to provide options for meeting the challenges of delivering the undergraduate medical curriculum. Further studies need to be conducted to continue validating the effectiveness of streaming video technology.
Interaction between dorsal and ventral processing streams: where, when and how?
Cloutman, Lauren L
2013-11-01
The execution of complex visual, auditory, and linguistic behaviors requires a dynamic interplay between spatial ('where/how') and non-spatial ('what') information processed along the dorsal and ventral processing streams. However, while it is acknowledged that there must be some degree of interaction between the two processing networks, how they interact, both anatomically and functionally, is a question which remains little explored. The current review examines the anatomical, temporal, and behavioral evidence regarding three potential models of dual stream interaction: (1) computations along the two pathways proceed independently and in parallel, reintegrating within shared target brain regions; (2) processing along the separate pathways is modulated by the existence of recurrent feedback loops; and (3) information is transferred directly between the two pathways at multiple stages and locations along their trajectories. Copyright © 2012 Elsevier Inc. All rights reserved.
Hamming and Accumulator Codes Concatenated with MPSK or QAM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel
2009-01-01
In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.
Smith, Neale; Mitton, Craig; Dowling, Laura; Hiltz, Mary-Ann; Campbell, Matthew; Gujar, Shashi Ashok
2015-09-24
In this article, we analyze one case instance of how proposals for change to the priority setting and resource allocation (PSRA) processes at a Canadian healthcare institution reached the decision agenda of the organization's senior leadership. We adopt key concepts from an established policy studies framework - Kingdon's multiple streams theory - to inform our analysis. Twenty-six individual interviews were conducted at the IWK Health Centre in Halifax, NS, Canada. Participants were asked to reflect upon the reasons leading up to the implementation of a formal priority setting process - Program Budgeting and Marginal Analysis (PBMA) - in the 2012/2013 fiscal year. Responses were analyzed qualitatively using Kingdon's model as a template. The introduction of PBMA can be understood as the opening of a policy window. A problem stream - defined as lack of broad engagement and information sharing across service lines in past practice - converged with a known policy solution, PBMA, which addressed the identified problems and was perceived as easy to use and with an evidence-base from past applications across Canada and elsewhere. Conditions in the political realm allowed for this intervention to proceed, but also constrained its potential outcomes. Understanding in a theoretically-informed way how change occurs in healthcare management practices can provide useful lessons to researchers and decision-makers whose aim is to help health systems achieve the most effective use of available financial resources. © 2016 by Kerman University of Medical Sciences.
EPA Office of Water (OW): 2002 SPARROW Total NP (Catchments)
SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling tool with output that allows the user to interpret water quality monitoring data at the regional and sub-regional scale. The model relates in-stream water-quality measurements to spatially referenced characteristics of watersheds, including pollutant sources and environmental factors that affect rates of pollutant delivery to streams from the land and aquatic, in-stream processing . The core of the model consists of a nonlinear regression equation describing the non-conservative transport of contaminants from point and non-point (or ??diffuse??) sources on land to rivers and through the stream and river network. SPARROW estimates contaminant concentrations, loads (or ??mass,?? which is the product of concentration and streamflow), and yields in streams (mass of nitrogen and of phosphorus entering a stream per acre of land). It empirically estimates the origin and fate of contaminants in streams and receiving bodies, and quantifies uncertainties in model predictions. The model predictions are illustrated through detailed maps that provide information about contaminant loadings and source contributions at multiple scales for specific stream reaches, basins, or other geographic areas.
Sensitivity to timing and order in human visual cortex.
Singer, Jedediah M; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2015-03-01
Visual recognition takes a small fraction of a second and relies on the cascade of signals along the ventral visual stream. Given the rapid path through multiple processing steps between photoreceptors and higher visual areas, information must progress from stage to stage very quickly. This rapid progression of information suggests that fine temporal details of the neural response may be important to the brain's encoding of visual signals. We investigated how changes in the relative timing of incoming visual stimulation affect the representation of object information by recording intracranial field potentials along the human ventral visual stream while subjects recognized objects whose parts were presented with varying asynchrony. Visual responses along the ventral stream were sensitive to timing differences as small as 17 ms between parts. In particular, there was a strong dependency on the temporal order of stimulus presentation, even at short asynchronies. From these observations we infer that the neural representation of complex information in visual cortex can be modulated by rapid dynamics on scales of tens of milliseconds. Copyright © 2015 the American Physiological Society.
Making decisions in complex landscapes: Headwater stream management across multiple federal agencies
Katz, Rachel; Grant, Evan H. Campbell; Runge, Michael C.; Connery, Bruce; Crockett, Marquette; Herland, Libby; Johnson, Sheela; Kirk, Dawn; Wofford, Jeb; Bennett, Rick; Nislow, Keith; Norris, Marian; Hocking, Daniel; Letcher, Benjamin; Roy, Allison
2014-01-01
Headwater stream ecosystems are vulnerable to numerous threats associated with climate and land use change. In the northeastern US, many headwater stream species (e.g., brook trout and stream salamanders) are of special conservation concern and may be vulnerable to climate change influences, such as changes in stream temperature and streamflow. Federal land management agencies (e.g., US Fish and Wildlife Service, National Park Service, USDA Forest Service, Bureau of Land Management and Department of Defense) are required to adopt policies that respond to climate change and may have longer-term institutional support to enforce such policies compared to state, local, non-governmental, or private land managers. However, federal agencies largely make management decisions in regards to headwater stream ecosystems independently. This fragmentation of management resources and responsibilities across the landscape may significantly impede the efficiency and effectiveness of conservation actions, and higher degrees of collaboration may be required to achieve conservation goals. This project seeks to provide an example of cooperative landscape decision-making to address the conservation of headwater stream ecosystems. We identified shared and contrasting objectives of each federal agency and potential collaboration opportunities that may increase efficient and effective management of headwater stream ecosystems in two northeastern US watersheds. These workshops provided useful insights into the adaptive capacity of federal institutions to address threats to headwater stream ecosystems. Our ultimate goal is to provide a decision-making framework and analysis that addresses large-scale conservation threats across multiple stakeholders, as a demonstration of cooperative landscape conservation for aquatic ecosystems. Additionally, we aim to provide new scientific knowledge and a regional perspective to resource managers to help inform local management decisions.
Video Analysis in Multi-Intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, Everett Kiusan; Van Buren, Kendra Lu; Warren, Will
This is a project which was performed by a graduated high school student at Los Alamos National Laboratory (LANL). The goal of the Multi-intelligence (MINT) project is to determine the state of a facility from multiple data streams. The data streams are indirect observations. The researcher is using DARHT (Dual-Axis Radiographic Hydrodynamic Test Facility) as a proof of concept. In summary, videos from the DARHT facility contain a rich amount of information. Distribution of car activity can inform us about the state of the facility. Counting large vehicles shows promise as another feature for identifying the state of operations. Signalmore » processing techniques are limited by the low resolution and compression of the videos. We are working on integrating these features with features obtained from other data streams to contribute to the MINT project. Future work can pursue other observations, such as when the gate is functioning or non-functioning.« less
Auditory attention strategy depends on target linguistic properties and spatial configurationa)
McCloy, Daniel R.; Lee, Adrian K. C.
2015-01-01
Whether crossing a busy intersection or attending a large dinner party, listeners sometimes need to attend to multiple spatially distributed sound sources or streams concurrently. How they achieve this is not clear—some studies suggest that listeners cannot truly simultaneously attend to separate streams, but instead combine attention switching with short-term memory to achieve something resembling divided attention. This paper presents two oddball detection experiments designed to investigate whether directing attention to phonetic versus semantic properties of the attended speech impacts listeners' ability to divide their auditory attention across spatial locations. Each experiment uses four spatially distinct streams of monosyllabic words, variation in cue type (providing phonetic or semantic information), and requiring attention to one or two locations. A rapid button-press response paradigm is employed to minimize the role of short-term memory in performing the task. Results show that differences in the spatial configuration of attended and unattended streams interact with linguistic properties of the speech streams to impact performance. Additionally, listeners may leverage phonetic information to make oddball detection judgments even when oddballs are semantically defined. Both of these effects appear to be mediated by the overall complexity of the acoustic scene. PMID:26233011
3D Numerical simulation of bed morphological responses to complex in-streamstructures
NASA Astrophysics Data System (ADS)
Xu, Y.; Liu, X.
2017-12-01
In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.
NASA Astrophysics Data System (ADS)
Wei, Chengying; Xiong, Cuilian; Liu, Huanlin
2017-12-01
Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.
ASSESSING THE IMPACTS OF ANTHROPOGENIC STRESSORS ON MACROINVERTEBRATE INDICATORS IN OHIO
In the past few years, there has been increasing interest in using biological community data to provide information about specific anthropogenic factors impacting streams. Previous studies have used statistical approaches that are variants of classical and modern multiple regres...
NASA Astrophysics Data System (ADS)
Lautz, L.; Gordon, R.; Daniluk, T.; Zimmer, M. A.; Endreny, T. A.; McGrath, K.
2014-12-01
Society is increasingly recognizing the value of stream ecosystem functions, as evidenced by the enormous economic investment being made in stream restoration across the United States. Stream restoration projects have a variety of goals, including improvement in water quality and in-stream habitat. Popular approaches to restoration (such as Natural Channel Design, or NCD) aim to move degraded streams along a trajectory toward a dynamic ecological endpoint that represents natural conditions. Project designs primarily focus on channel form and function, but stream-groundwater exchanges of water and solutes are not typically a design consideration, although a primary component of fully functioning stream ecosystems. Here, we synthesize results from field investigations of the impact of NCD stream restoration on stream-groundwater exchanges by (1) comparing restored sites to reference reaches, which serve as the basis for the restoration design, (2) characterizing multiple restored sites to determine universal characteristics of streams restored by NCD, and (3) monitoring a stream pre- and post- restoration. NCD restoration creates hot spots of rapid hyporheic exchange upstream of channel spanning structures, with water fluxes across the bed interface up to an order of magnitude higher than at pre-restoration or reference reaches. Elevated flux rates result in short hyporheic residence times, which are not sufficiently long to generate net changes in nutrient concentrations. Hot spots of biogeochemical transformations are instead located around secondary bedforms, such as pool-riffle sequences, where gross water exchange rates are more moderate. Reference reaches show greater evidence of groundwater discharge to the hyporheic zone relative to restored reaches, although observations before and after restoration suggest NCD can modify the spatial extent of groundwater discharge zones. Gross water exchange across the streambed interface along restored reaches is a small percentage of stream discharge, suggesting the primary impact of restoration on stream-groundwater exchange is promoting biochemical heterogeneity in the subsurface, rather than longitudinal net changes in stream solute concentrations. Results inform future design to achieve restoration goals.
Multiple stress response of lowland stream benthic macroinvertebrates depends on habitat type.
Graeber, Daniel; Jensen, Tinna M; Rasmussen, Jes J; Riis, Tenna; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette
2017-12-01
Worldwide, lowland stream ecosystems are exposed to multiple anthropogenic stress due to the combination of water scarcity, eutrophication, and fine sedimentation. The understanding of the effects of such multiple stress on stream benthic macroinvertebrates has been growing in recent years. However, the interdependence of multiple stress and stream habitat characteristics has received little attention, although single stressor studies indicate that habitat characteristics may be decisive in shaping the macroinvertebrate response. We conducted an experiment in large outdoor flumes to assess the effects of low flow, fine sedimentation, and nutrient enrichment on the structure of the benthic macroinvertebrate community in riffle and run habitats of lowland streams. For most taxa, we found a negative effect of low flow on macroinvertebrate abundance in the riffle habitat, an effect which was mitigated by fine sedimentation for overall community composition and the dominant shredder species (Gammarus pulex) and by nutrient enrichment for the dominant grazer species (Baetis rhodani). In contrast, fine sediment in combination with low flow rapidly affected macroinvertebrate composition in the run habitat, with decreasing abundances of many species. We conclude that the effects of typical multiple stressor scenarios on lowland stream benthic macroinvertebrates are highly dependent on habitat conditions and that high habitat diversity needs to be given priority by stream managers to maximize the resilience of stream macroinvertebrate communities to multiple stress. Copyright © 2017 Elsevier B.V. All rights reserved.
The Northeast Stream Quality Assessment
Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.
2016-04-22
In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).
Smith, Neale; Mitton, Craig; Dowling, Laura; Hiltz, Mary-Ann; Campbell, Matthew; Gujar, Shashi Ashok
2016-01-01
Background: In this article, we analyze one case instance of how proposals for change to the priority setting and resource allocation (PSRA) processes at a Canadian healthcare institution reached the decision agenda of the organization’s senior leadership. We adopt key concepts from an established policy studies framework – Kingdon’s multiple streams theory – to inform our analysis. Methods: Twenty-six individual interviews were conducted at the IWK Health Centre in Halifax, NS, Canada. Participants were asked to reflect upon the reasons leading up to the implementation of a formal priority setting process – Program Budgeting and Marginal Analysis (PBMA) – in the 2012/2013 fiscal year. Responses were analyzed qualitatively using Kingdon’s model as a template. Results: The introduction of PBMA can be understood as the opening of a policy window. A problem stream – defined as lack of broad engagement and information sharing across service lines in past practice – converged with a known policy solution, PBMA, which addressed the identified problems and was perceived as easy to use and with an evidence-base from past applications across Canada and elsewhere. Conditions in the political realm allowed for this intervention to proceed, but also constrained its potential outcomes. Conclusion: Understanding in a theoretically-informed way how change occurs in healthcare management practices can provide useful lessons to researchers and decision-makers whose aim is to help health systems achieve the most effective use of available financial resources PMID:26673646
Analyzing indicators of stream health for Minnesota streams
Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.
2005-01-01
Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.
Data uses and funding for the stream-gaging program in Utah
Cruff, R.W.
1986-01-01
This report documents the results of the first phase of a study of the cost effectiveness of the streamflow-information program in Utah. Data use, funding, and data availability are described for the streamflow stations operated by the U.S. Geological Survey; and a history of the stream-gaging program is given. During the 1984 water year, 214 continuous streamflow stations were operated on a budget of $854,000. Data from most stations have multiple uses and all stations presently have sufficient justification for continuation.
Mollenhauer, Robert; Mouser, Joshua B.; Brewer, Shannon K.
2018-01-01
Temporal and spatial variability in streams result in heterogeneous gear capture probability (i.e., the proportion of available individuals identified) that confounds interpretation of data used to monitor fish abundance. We modeled tow-barge electrofishing capture probability at multiple spatial scales for nine Ozark Highland stream fishes. In addition to fish size, we identified seven reach-scale environmental characteristics associated with variable capture probability: stream discharge, water depth, conductivity, water clarity, emergent vegetation, wetted width–depth ratio, and proportion of riffle habitat. The magnitude of the relationship between capture probability and both discharge and depth varied among stream fishes. We also identified lithological characteristics among stream segments as a coarse-scale source of variable capture probability. The resulting capture probability model can be used to adjust catch data and derive reach-scale absolute abundance estimates across a wide range of sampling conditions with similar effort as used in more traditional fisheries surveys (i.e., catch per unit effort). Adjusting catch data based on variable capture probability improves the comparability of data sets, thus promoting both well-informed conservation and management decisions and advances in stream-fish ecology.
Do freshwater mussel shells record road-salt pollution?
NASA Astrophysics Data System (ADS)
O'Neil, Dane D.; Gillikin, David P.
2014-11-01
Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.
Do freshwater mussel shells record road-salt pollution?
O'Neil, Dane D.; Gillikin, David P.
2014-01-01
Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells. PMID:25418687
NASA Astrophysics Data System (ADS)
Emmerman, Philip J.
2005-05-01
Teams of robots or mixed teams of warfighters and robots on reconnaissance and other missions can benefit greatly from a local fusion station. A local fusion station is defined here as a small mobile processor with interfaces to enable the ingestion of multiple heterogeneous sensor data and information streams, including blue force tracking data. These data streams are fused and integrated with contextual information (terrain features, weather, maps, dynamic background features, etc.), and displayed or processed to provide real time situational awareness to the robot controller or to the robots themselves. These blue and red force fusion applications remove redundancies, lessen ambiguities, correlate, aggregate, and integrate sensor information with context such as high resolution terrain. Applications such as safety, team behavior, asset control, training, pattern analysis, etc. can be generated or enhanced by these fusion stations. This local fusion station should also enable the interaction between these local units and a global information world.
Margevicius, Kristen J.; Generous, Nicholas; Taylor-McCabe, Kirsten J.; Brown, Mac; Daniel, W. Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina
2014-01-01
In recent years, biosurveillance has become the buzzword under which a diverse set of ideas and activities regarding detecting and mitigating biological threats are incorporated depending on context and perspective. Increasingly, biosurveillance practice has become global and interdisciplinary, requiring information and resources across public health, One Health, and biothreat domains. Even within the scope of infectious disease surveillance, multiple systems, data sources, and tools are used with varying and often unknown effectiveness. Evaluating the impact and utility of state-of-the-art biosurveillance is, in part, confounded by the complexity of the systems and the information derived from them. We present a novel approach conceptualizing biosurveillance from the perspective of the fundamental data streams that have been or could be used for biosurveillance and to systematically structure a framework that can be universally applicable for use in evaluating and understanding a wide range of biosurveillance activities. Moreover, the Biosurveillance Data Stream Framework and associated definitions are proposed as a starting point to facilitate the development of a standardized lexicon for biosurveillance and characterization of currently used and newly emerging data streams. Criteria for building the data stream framework were developed from an examination of the literature, analysis of information on operational infectious disease biosurveillance systems, and consultation with experts in the area of biosurveillance. To demonstrate utility, the framework and definitions were used as the basis for a schema of a relational database for biosurveillance resources and in the development and use of a decision support tool for data stream evaluation. PMID:24392093
NASA Technical Reports Server (NTRS)
Das, Santanu; Srivastava, Ashok N.; Matthews, Bryan L.; Oza, Nikunj C.
2010-01-01
The world-wide aviation system is one of the most complex dynamical systems ever developed and is generating data at an extremely rapid rate. Most modern commercial aircraft record several hundred flight parameters including information from the guidance, navigation, and control systems, the avionics and propulsion systems, and the pilot inputs into the aircraft. These parameters may be continuous measurements or binary or categorical measurements recorded in one second intervals for the duration of the flight. Currently, most approaches to aviation safety are reactive, meaning that they are designed to react to an aviation safety incident or accident. In this paper, we discuss a novel approach based on the theory of multiple kernel learning to detect potential safety anomalies in very large data bases of discrete and continuous data from world-wide operations of commercial fleets. We pose a general anomaly detection problem which includes both discrete and continuous data streams, where we assume that the discrete streams have a causal influence on the continuous streams. We also assume that atypical sequence of events in the discrete streams can lead to off-nominal system performance. We discuss the application domain, novel algorithms, and also discuss results on real-world data sets. Our algorithm uncovers operationally significant events in high dimensional data streams in the aviation industry which are not detectable using state of the art methods
Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis
NASA Astrophysics Data System (ADS)
Liu, X.; Wu, W.; Yang, Q.
2017-12-01
Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.
We examined algal metrics as indicators of altered watershed land cover and nutrients to inform their potential use in monitoring programs. Multiple regression models, in which impervious cover explained the most variation, indicated concentrations <0.202 mg/l NO3 and <0.015 mg/l...
Distribution of model uncertainty across multiple data streams
NASA Astrophysics Data System (ADS)
Wutzler, Thomas
2014-05-01
When confronting biogeochemical models with a diversity of observational data streams, we are faced with the problem of weighing the data streams. Without weighing or multiple blocked cost functions, model uncertainty is allocated to the sparse data streams and possible bias in processes that are strongly constraint is exported to processes that are constrained by sparse data streams only. In this study we propose an approach that aims at making model uncertainty a factor of observations uncertainty, that is constant over all data streams. Further we propose an implementation based on Monte-Carlo Markov chain sampling combined with simulated annealing that is able to determine this variance factor. The method is exemplified both with very simple models, artificial data and with an inversion of the DALEC ecosystem carbon model against multiple observations of Howland forest. We argue that the presented approach is able to help and maybe resolve the problem of bias export to sparse data streams.
Gary D. Grossman; Robert E. Ratajczak; C. Michael Wagner; J. Todd Petty
2010-01-01
1. We used information theoretic statistics [Akaikeâs Information Criterion (AIC)] and regression analysis in a multiple hypothesis testing approach to assess the processes capable of explaining long-term demographic variation in a lightly exploited brook trout population in Ball Creek, NC. We sampled a 100-m-long second-order site during both spring and autumn 1991â...
Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Lieder, Ernestine; Weiler, Markus; Blume, Theresa
2017-04-01
Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing drainage area. Combining spatially distributed time series of stream temperatures and EC with information about geology, landscape and climate provides insight into the underlying hydrological processes and allows for the identification of thermally sensitive regions and reaches.
SOUND SURVEY DESIGNS CAN FACILITATE INTEGRATING STREAM MONITORING DATA ACROSS MULTIPLE PROGRAMS
Multiple agencies in the Pacific Northwest monitor the condition of stream networks or their watersheds. Some agencies use a stream "network" perspective to report on the fraction or length of the network that either meets or violates particular criteria. Other agencies use a "wa...
Inter-regional comparison of land-use effects on stream metabolism
Bernot, M.J.; Sobota, D.J.; Hall, R.O.; Mulholland, P.J.; Dodds, W.K.; Webster, J.R.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Grimm, N. B.; Hamilton, S.K.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Peterson, B.; Poole, G.C.; Maurice, Valett H.M.; Arango, C.; Beaulieu, J.J.; Burgin, A.J.; Crenshaw, C.; Helton, A.M.; Johnson, L.; Merriam, J.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Thomas, S.M.; Wilson, K.
2010-01-01
1. Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions.2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban-influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input.3. Gross primary production (GPP) was highest in regions with little riparian vegetation (sagebrush steppe in Wyoming, desert shrub in Arizona/New Mexico) and lowest in forested regions (North Carolina, Oregon). In contrast, ecosystem respiration (ER) varied both within and among regions. Reference streams had significantly lower rates of GPP than urban or agriculturally influenced streams.4. GPP was positively correlated with photosynthetically active radiation and autotrophic biomass. Multiple regression models compared using Akaike's information criterion (AIC) indicated GPP increased with water column ammonium and the fraction of the catchment in urban and reference land-use categories. Multiple regression models also identified velocity, temperature, nitrate, ammonium, dissolved organic carbon, GPP, coarse benthic organic matter, fine benthic organic matter and the fraction of all land-use categories in the catchment as regulators of ER.5. Structural equation modelling indicated significant distal as well as proximal control pathways including a direct effect of land-use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER.6. Overall, consideration of the data separated by land-use categories showed reduced inter-regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism. ?? 2010 Blackwell Publishing Ltd.
Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.
2016-01-01
Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Gerald G.
What has made the ASR program unique is the amount of information that is available. The suite of recently deployed instruments significantly expands the scope of the program (Mather and Voyles, 2013). The breadth of this information allows us to pose sophisticated process-level questions. Our ASR project, now entering its third year, has been about developing algorithms that use this information in ways that fully exploit the new capacity of the ARM data streams. Using optimal estimation (OE) and Markov Chain Monte Carlo (MCMC) inversion techniques, we have developed methodologies that allow us to use multiple radar frequency Doppler spectramore » along with lidar and passive constraints where data streams can be added or subtracted efficiently and algorithms can be reformulated for various combinations of hydrometeors by exchanging sets of empirical coefficients. These methodologies have been applied to boundary layer clouds, mixed phase snow cloud systems, and cirrus.« less
NASA Astrophysics Data System (ADS)
Herrington, C.; Gonzalez-Pinzon, R.; Covino, T. P.; Mortensen, J.
2015-12-01
Solute transport studies in streams and rivers often begin with the introduction of conservative and reactive tracers into the water column. Information on the transport of these substances is then captured within tracer breakthrough curves (BTCs) and used to estimate, for instance, travel times and dissolved nutrient and carbon dynamics. Traditionally, these investigations have been limited to systems with small discharges (< 200 L/s) and with small reach lengths (< 500 m), partly due to the need for a priori information of the reach's hydraulic characteristics (e.g., channel geometry, resistance and dispersion coefficients) to predict arrival times, times to peak concentrations of the solute and mean travel times. Current techniques to acquire these channel characteristics through preliminary tracer injections become cost prohibitive at higher stream orders and the use of semi-continuous water quality sensors for collecting real-time information may be affected from erroneous readings that are masked by high turbidity (e.g., nitrate signals with SUNA instruments or fluorescence measures) and/or high total dissolved solids (e.g., making prohibitively expensive the use of salt tracers such as NaCl) in larger systems. Additionally, a successful time-of-travel study is valuable for only a single discharge and river stage. We have developed a method to predict tracer BTCs to inform sampling frequencies at small and large stream orders using empirical relationships developed from multiple tracer injections spanning several orders of magnitude in discharge and reach length. This method was successfully tested in 1st to 8th order systems along the Middle Rio Grande River Basin in New Mexico, USA.
Social Noise: Generating Random Numbers from Twitter Streams
NASA Astrophysics Data System (ADS)
Fernández, Norberto; Quintas, Fernando; Sánchez, Luis; Arias, Jesús
2015-12-01
Due to the multiple applications of random numbers in computer systems (cryptography, online gambling, computer simulation, etc.) it is important to have mechanisms to generate these numbers. True Random Number Generators (TRNGs) are commonly used for this purpose. TRNGs rely on non-deterministic sources to generate randomness. Physical processes (like noise in semiconductors, quantum phenomenon, etc.) play this role in state of the art TRNGs. In this paper, we depart from previous work and explore the possibility of defining social TRNGs using the stream of public messages of the microblogging service Twitter as randomness source. Thus, we define two TRNGs based on Twitter stream information and evaluate them using the National Institute of Standards and Technology (NIST) statistical test suite. The results of the evaluation confirm the feasibility of the proposed approach.
A low-cost PC-based telemetry data-reduction system
NASA Astrophysics Data System (ADS)
Simms, D. A.; Butterfield, C. P.
1990-04-01
The Solar Energy Research Institute's (SERI) Wind Research Branch is using Pulse Code Modulation (PCM) telemetry data-acquisition systems to study horizontal-axis wind turbines. PCM telemetry systems are used in test installations that require accurate multiple-channel measurements taken from a variety of different locations. SERI has found them ideal for use in tests requiring concurrent acquisition of data-reduction system to facilitate quick, in-the-field multiple-channel data analysis. Called the PC-PCM System, it consists of two basic components. First, AT-compatible hardware boards are used for decoding and combining PCM data streams. Up to four hardware boards can be installed in a single PC, which provides the capability to combine data from four PCM streams directly to PC disk or memory. Each stream can have up to 62 data channels. Second, a software package written for the DOS operating system was developed to simplify data-acquisition control and management. The software provides a quick, easy-to-use interface between the PC and PCM data streams. Called the Quick-Look Data Management Program, it is a comprehensive menu-driven package used to organize, acquire, process, and display information from incoming PCM data streams. This paper describes both hardware and software aspects of the SERI PC-PCM system, concentrating on features that make it useful in an experiment test environment to quickly examine and verify incoming data. Also discussed are problems and techniques associated with PC-based telemetry data acquisition, processing, and real-time display.
Multiple-Frame Detection of Subpixel Targets in Thermal Image Sequences
NASA Technical Reports Server (NTRS)
Thompson, David R.; Kremens, Robert
2013-01-01
The new technology in this approach combines the subpixel detection information from multiple frames of a sequence to achieve a more sensitive detection result, using only the information found in the images themselves. It is taken as a constraint that the method is automated, robust, and computationally feasible for field networks with constrained computation and data rates. This precludes simply downloading a video stream for pixel-wise co-registration on the ground. It is also important that this method not require precise knowledge of sensor position or direction, because such information is often not available. It is also assumed that the scene in question is approximately planar, which is appropriate for a high-altitude airborne or orbital view.
Environmental controls of wood entrapment in upper Midwestern streams
Merten, Eric C.; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.
2011-01-01
Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre-existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions.
Integration and segregation in auditory streaming
NASA Astrophysics Data System (ADS)
Almonte, Felix; Jirsa, Viktor K.; Large, Edward W.; Tuller, Betty
2005-12-01
We aim to capture the perceptual dynamics of auditory streaming using a neurally inspired model of auditory processing. Traditional approaches view streaming as a competition of streams, realized within a tonotopically organized neural network. In contrast, we view streaming to be a dynamic integration process which resides at locations other than the sensory specific neural subsystems. This process finds its realization in the synchronization of neural ensembles or in the existence of informational convergence zones. Our approach uses two interacting dynamical systems, in which the first system responds to incoming acoustic stimuli and transforms them into a spatiotemporal neural field dynamics. The second system is a classification system coupled to the neural field and evolves to a stationary state. These states are identified with a single perceptual stream or multiple streams. Several results in human perception are modelled including temporal coherence and fission boundaries [L.P.A.S. van Noorden, Temporal coherence in the perception of tone sequences, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1975], and crossing of motions [A.S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound, MIT Press, 1990]. Our model predicts phenomena such as the existence of two streams with the same pitch, which cannot be explained by the traditional stream competition models. An experimental study is performed to provide proof of existence of this phenomenon. The model elucidates possible mechanisms that may underlie perceptual phenomena.
Information processing in the primate visual system - An integrated systems perspective
NASA Technical Reports Server (NTRS)
Van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.
1992-01-01
The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.
A Multiple Streams analysis of the decisions to fund gender-neutral HPV vaccination in Canada.
Shapiro, Gilla K; Guichon, Juliet; Prue, Gillian; Perez, Samara; Rosberger, Zeev
2017-07-01
In Canada, the human papillomavirus (HPV) vaccine is licensed and recommended for females and males. Although all Canadian jurisdictions fund school-based HPV vaccine programs for girls, only six jurisdictions fund school-based HPV vaccination for boys. The research aimed to analyze the factors that underpin government decisions to fund HPV vaccine for boys using a theoretical policy model, Kingdon's Multiple Streams framework. This approach assesses policy development by examining three concurrent, but independent, streams that guide analysis: Problem Stream, Policy Stream, and Politics Stream. Analysis from the Problem Stream highlights that males are affected by HPV-related diseases and are involved in transmitting HPV infection to their sexual partners. Policy Stream analysis makes clear that while the inclusion of males in HPV vaccine programs is suitable, equitable, and acceptable; there is debate regarding cost-effectiveness. Politics Stream analysis identifies the perspectives of six different stakeholder groups and highlights the contribution of government officials at the provincial and territorial level. Kingdon's Multiple Streams framework helps clarify the opportunities and barriers for HPV vaccine policy change. This analysis identified that the interpretation of cost-effectiveness models and advocacy of stakeholders such as citizen-advocates and HPV-affected politicians have been particularly important in galvanizing policy change. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Golumbic, Elana M. Zion; Poeppel, David; Schroeder, Charles E.
2012-01-01
The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the "Cocktail Party" effect. Yet, the neural mechanisms underlying on-line…
EnviroAtlas - 303(d) Impairments by 12-digit HUC for the Conterminous United States
This EnviroAtlas dataset depicts the total length of stream or river flowlines that have impairments submitted to the EPA by states under section 303(d) of the Clean Water Act. It also contains the total lengths of streams, rivers, and canals, total waterbody area, and stream density (stream length per area) from the US Geological Survey's high-resolution National Hydrography Dataset (NHD).This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk
2015-01-01
Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.
Stream network and stream segment temperature models software
Bartholow, John
2010-01-01
This set of programs simulates steady-state stream temperatures throughout a dendritic stream network handling multiple time periods per year. The software requires a math co-processor and 384K RAM. Also included is a program (SSTEMP) designed to predict the steady state stream temperature within a single stream segment for a single time period.
Multistressor predictive models of invertebrate condition in the Corn Belt, USA
Waite, Ian R.; Van Metre, Peter C.
2017-01-01
Understanding the complex relations between multiple environmental stressors and ecological conditions in streams can help guide resource-management decisions. During 14 weeks in spring/summer 2013, personnel from the US Geological Survey and the US Environmental Protection Agency sampled 98 wadeable streams across the Midwest Corn Belt region of the USA for water and sediment quality, physical and habitat characteristics, and ecological communities. We used these data to develop independent predictive disturbance models for 3 macroinvertebrate metrics and a multimetric index. We developed the models based on boosted regression trees (BRT) for 3 stressor categories, land use/land cover (geographic information system [GIS]), all in-stream stressors combined (nutrients, habitat, and contaminants), and for GIS plus in-stream stressors. The GIS plus in-stream stressor models had the best overall performance with an average cross-validation R2 across all models of 0.41. The models were generally consistent in the explanatory variables selected within each stressor group across the 4 invertebrate metrics modeled. Variables related to riparian condition, substrate size or embeddedness, velocity and channel shape, nutrients (primarily NH3), and contaminants (pyrethroid degradates) were important descriptors of the invertebrate metrics. Models based on all measured in-stream stressors performed comparably to models based on GIS landscape variables, suggesting that the in-stream stressor characterization reasonably represents the dominant factors affecting invertebrate communities and that GIS variables are acting as surrogates for in-stream stressors that directly affect in-stream biota.
Lenz, Bernard N.; Rheaume, S.J.
2000-01-01
This report describes the variability in family-level benthic-invertebrate population data and the reliability of the data as a water-quality indicator for 11 fixed surface-water sites in the Western Lake Michigan Drainages study area of the National Water-Quality Assessment Program. Benthic-invertebrate-community measures were computed for the following: number of individuals, Hilsenhoff’s Family-Level Biotic Index, number and percent EPT (Ephemeroptera, Plecoptera, and Tricoptera), Margalef’s Diversity Index, and mean tolerance value. Relations between these measures and environmental setting, habitat, and of chemical water quality are examined. Benthic-invertebrate communities varied greatly among fixed sites and within individual streams among multiple-reach and multiple-year sampling. The variations between multiple reaches and years were sometimes larger than those found between different fixed sites. Factors affecting benthic invertebrates included both habitat and chemical quality. Generally, fixed-site streams with the highest diversity, greatest number of benthic invertebrates, and those at which community measures indicated the best water quality also had the best habitat and chemical quality. Variations among reaches are most likely related to differences in habitat. Variations among years are most likely related to climatic changes, which create variations in flow and/or chemical quality. The variability in the data analyzed in this study shows how benthic invertebrates are affected by differences in both habitat and water quality, making them useful indicators of stream health; however, a single benthic-invertebrate sample alone cannot be relied upon to accurately describe water quality of the streams in this study. Benthic-invertebrate data contributed valuable information on the biological health of the 11 fixed sites when used as one of several data sources for assessing water quality.
Xiao, Fuyuan; Aritsugi, Masayoshi; Wang, Qing; Zhang, Rong
2016-09-01
For efficient and sophisticated analysis of complex event patterns that appear in streams of big data from health care information systems and support for decision-making, a triaxial hierarchical model is proposed in this paper. Our triaxial hierarchical model is developed by focusing on hierarchies among nested event pattern queries with an event concept hierarchy, thereby allowing us to identify the relationships among the expressions and sub-expressions of the queries extensively. We devise a cost-based heuristic by means of the triaxial hierarchical model to find an optimised query execution plan in terms of the costs of both the operators and the communications between them. According to the triaxial hierarchical model, we can also calculate how to reuse the results of the common sub-expressions in multiple queries. By integrating the optimised query execution plan with the reuse schemes, a multi-query optimisation strategy is developed to accomplish efficient processing of multiple nested event pattern queries. We present empirical studies in which the performance of multi-query optimisation strategy was examined under various stream input rates and workloads. Specifically, the workloads of pattern queries can be used for supporting monitoring patients' conditions. On the other hand, experiments with varying input rates of streams can correspond to changes of the numbers of patients that a system should manage, whereas burst input rates can correspond to changes of rushes of patients to be taken care of. The experimental results have shown that, in Workload 1, our proposal can improve about 4 and 2 times throughput comparing with the relative works, respectively; in Workload 2, our proposal can improve about 3 and 2 times throughput comparing with the relative works, respectively; in Workload 3, our proposal can improve about 6 times throughput comparing with the relative work. The experimental results demonstrated that our proposal was able to process complex queries efficiently which can support health information systems and further decision-making. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparisons of fish species traits from small streams to large rivers
Goldstein, R.M.; Meador, M.R.
2004-01-01
To examine the relations between fish community function and stream size, we classified 429 lotic freshwater fish species based on multiple categories within six species traits: (1) substrate preference, (2) geomorphic preference, (3) trophic ecology, (4) locomotion morphology, (5) reproductive strategy, and (6) stream size preference. Stream size categories included small streams, small, medium, and large rivers, and no size preference. The frequencies of each species trait category were determined for each stream size category based on life history information from the literature. Cluster analysis revealed the presence of covarying groups of species trait categories. One cluster (RUN) included the traits of planktivore and herbivore feeding ecology, migratory reproductive behavior and broadcast spawning, preferences for main-channel habitats, and a lack of preferences for substrate type. The frequencies of classifications for the RUN cluster varied significantly across stream size categories (P = 0.009), being greater for large rivers than for small streams and rivers. Another cluster (RIFFLE) included the traits of invertivore feeding ecology, simple nester reproductive behavior, a preference for riffles, and a preference for bedrock, boulder, and cobble-rubble substrate. No significant differences in the frequency of classifications among stream size categories were detected for the RIFFLE cluster (P = 0.328). Our results suggest that fish community function is structured by large-scale differences in habitat and is different for large rivers than for small streams and rivers. Our findings support theoretical predictions of variation in species traits among stream reaches based on ecological frameworks such as landscape filters, habitat templates, and the river continuum concept. We believe that the species trait classifications presented here provide an opportunity for further examination of fish species' relations to physical, chemical, and biological factors in lotic habitats ranging from small streams to large rivers.
National animal health surveillance: Return on investment.
Scott, Aaron E; Forsythe, Kenneth W; Johnson, Cynthia L
2012-08-01
A weighted benefit-cost analysis (BCA) supports prioritization of animal health surveillance activities to safeguard animal agriculture industries and reduce the impact of disease on the national economy. We propose to determine the value of investment in surveillance by assessing benefits from: avoiding disease incursion and expansion modified by the probability of occurrence of the disease event, the sensitivity of systems to detect it, and the degree to which we can mitigate disease impact when detected. The weighted benefit-cost ratio is the modified value of surveillance as laid out above divided by the cost of surveillance. We propose flexible, stream-based surveillance that capitalizes on combining multiple streams of information from both specific pathogen based and non-pathogen based surveillance. This stream-based type of system provides high value with lower costs and will provide a high return for the funds invested in animal health surveillance. Published by Elsevier B.V.
Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.
2018-01-01
Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.
Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.
Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M
2016-04-27
Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. © 2016 The Author(s).
Biotic and abiotic variables influencing plant litter breakdown in streams: a global study
Pearson, Richard G.; Hui, Cang; Gessner, Mark O.; Pérez, Javier; Alexandrou, Markos A.; Graça, Manuel A. S.; Cardinale, Bradley J.; Albariño, Ricardo J.; Arunachalam, Muthukumarasamy; Barmuta, Leon A.; Boulton, Andrew J.; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G.; Dudgeon, David; Encalada, Andrea C.; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S.; Gonçalves, José F.; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S.; Pringle, Catherine M.; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M.
2016-01-01
Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551
StreamThermal: A software package for calculating thermal metrics from stream temperature data
Tsang, Yin-Phan; Infante, Dana M.; Stewart, Jana S.; Wang, Lizhu; Tingly, Ralph; Thornbrugh, Darren; Cooper, Arthur; Wesley, Daniel
2016-01-01
Improving quality and better availability of continuous stream temperature data allows natural resource managers, particularly in fisheries, to understand associations between different characteristics of stream thermal regimes and stream fishes. However, there is no convenient tool to efficiently characterize multiple metrics reflecting stream thermal regimes with the increasing amount of data. This article describes a software program packaged as a library in R to facilitate this process. With this freely-available package, users will be able to quickly summarize metrics that describe five categories of stream thermal regimes: magnitude, variability, frequency, timing, and rate of change. The installation and usage instruction of this package, the definition of calculated thermal metrics, as well as the output format from the package are described, along with an application showing the utility for multiple metrics. We believe this package can be widely utilized by interested stakeholders and greatly assist more studies in fisheries.
Kordes, Sebastian; Kössl, Manfred
2017-01-01
Abstract For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units’ responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams. PMID:29242823
Beetz, M Jerome; Kordes, Sebastian; García-Rosales, Francisco; Kössl, Manfred; Hechavarría, Julio C
2017-01-01
For the purpose of orientation, echolocating bats emit highly repetitive and spatially directed sonar calls. Echoes arising from call reflections are used to create an acoustic image of the environment. The inferior colliculus (IC) represents an important auditory stage for initial processing of echolocation signals. The present study addresses the following questions: (1) how does the temporal context of an echolocation sequence mimicking an approach flight of an animal affect neuronal processing of distance information to echo delays? (2) how does the IC process complex echolocation sequences containing echo information from multiple objects (multiobject sequence)? Here, we conducted neurophysiological recordings from the IC of ketamine-anaesthetized bats of the species Carollia perspicillata and compared the results from the IC with the ones from the auditory cortex (AC). Neuronal responses to an echolocation sequence was suppressed when compared to the responses to temporally isolated and randomized segments of the sequence. The neuronal suppression was weaker in the IC than in the AC. In contrast to the cortex, the time course of the acoustic events is reflected by IC activity. In the IC, suppression sharpens the neuronal tuning to specific call-echo elements and increases the signal-to-noise ratio in the units' responses. When presenting multiple-object sequences, despite collicular suppression, the neurons responded to each object-specific echo. The latter allows parallel processing of multiple echolocation streams at the IC level. Altogether, our data suggests that temporally-precise neuronal responses in the IC could allow fast and parallel processing of multiple acoustic streams.
Real-Time Cognitive Computing Architecture for Data Fusion in a Dynamic Environment
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.
2012-01-01
A novel cognitive computing architecture is conceptualized for processing multiple channels of multi-modal sensory data streams simultaneously, and fusing the information in real time to generate intelligent reaction sequences. This unique architecture is capable of assimilating parallel data streams that could be analog, digital, synchronous/asynchronous, and could be programmed to act as a knowledge synthesizer and/or an "intelligent perception" processor. In this architecture, the bio-inspired models of visual pathway and olfactory receptor processing are combined as processing components, to achieve the composite function of "searching for a source of food while avoiding the predator." The architecture is particularly suited for scene analysis from visual data and odorant.
Opinion dynamics on interacting networks: media competition and social influence.
Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio
2014-05-27
The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.
Opinion dynamics on interacting networks: media competition and social influence
NASA Astrophysics Data System (ADS)
Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio
2014-05-01
The inner dynamics of the multiple actors of the informations systems - i.e, T.V., newspapers, blogs, social network platforms, - play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist.
NASA Technical Reports Server (NTRS)
Pluhowski, E. J. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Land use data derived from high altitude photography and satellite imagery were studied for 49 basins in Delaware, and eastern Maryland and Virginia. Applying multiple regression techniques to a network of gaging stations monitoring runoff from 39 of the basins, demonstrated that land use data from high altitude photography provided an effective means of significantly improving estimates of stream flow. Forty stream flow characteristic equations for incorporating remotely sensed land use information, were compared with a control set of equations using map derived land cover. Significant improvement was detected in six equations where level 1 data was added and in five equations where level 2 information was utilized. Only four equations were improved significantly using land use data derived from LANDSAT imagery. Significant losses in accuracy due to the use of remotely sensed land use information were detected only in estimates of flood peaks. Losses in accuracy for flood peaks were probably due to land cover changes associated with temporal differences among the primary land use data sources.
Data Streams: An Overview and Scientific Applications
NASA Astrophysics Data System (ADS)
Aggarwal, Charu C.
In recent years, advances in hardware technology have facilitated the ability to collect data continuously. Simple transactions of everyday life such as using a credit card, a phone, or browsing the web lead to automated data storage. Similarly, advances in information technology have lead to large flows of data across IP networks. In many cases, these large volumes of data can be mined for interesting and relevant information in a wide variety of applications. When the volume of the underlying data is very large, it leads to a number of computational and mining challenges: With increasing volume of the data, it is no longer possible to process the data efficiently by using multiple passes. Rather, one can process a data item at most once. This leads to constraints on the implementation of the underlying algorithms. Therefore, stream mining algorithms typically need to be designed so that the algorithms work with one pass of the data. In most cases, there is an inherent temporal component to the stream mining process. This is because the data may evolve over time. This behavior of data streams is referred to as temporal locality. Therefore, a straightforward adaptation of one-pass mining algorithms may not be an effective solution to the task. Stream mining algorithms need to be carefully designed with a clear focus on the evolution of the underlying data. Another important characteristic of data streams is that they are often mined in a distributed fashion. Furthermore, the individual processors may have limited processing and memory. Examples of such cases include sensor networks, in which it may be desirable to perform in-network processing of data stream with limited processing and memory [1, 2]. This chapter will provide an overview of the key challenges in stream mining algorithms which arise from the unique setup in which these problems are encountered. This chapter is organized as follows. In the next section, we will discuss the generic challenges that stream mining poses to a variety of data management and data mining problems. The next section also deals with several issues which arise in the context of data stream management. In Sect. 3, we discuss several mining algorithms on the data stream model. Section 4 discusses various scientific applications of data streams. Section 5 discusses the research directions and conclusions.
Gray, B.R.; Haro, R.J.; Rogala, J.T.; Sauer, J.S.
2005-01-01
1. Macroinvertebrate count data often exhibit nested or hierarchical structure. Examples include multiple measurements along each of a set of streams, and multiple synoptic measurements from each of a set of ponds. With data exhibiting hierarchical structure, outcomes at both sampling (e.g. Within stream) and aggregated (e.g. Stream) scales are often of interest. Unfortunately, methods for modelling hierarchical count data have received little attention in the ecological literature. 2. We demonstrate the use of hierarchical count models using fingernail clam (Family: Sphaeriidae) count data and habitat predictors derived from sampling and aggregated spatial scales. The sampling scale corresponded to that of a standard Ponar grab (0.052 m(2)) and the aggregated scale to impounded and backwater regions within 38-197 km reaches of the Upper Mississippi River. Impounded and backwater regions were resampled annually for 10 years. Consequently, measurements on clams were nested within years. Counts were treated as negative binomial random variates, and means from each resampling event as random departures from the impounded and backwater region grand means. 3. Clam models were improved by the addition of covariates that varied at both the sampling and regional scales. Substrate composition varied at the sampling scale and was associated with model improvements, and reductions (for a given mean) in variance at the sampling scale. Inorganic suspended solids (ISS) levels, measured in the summer preceding sampling, also yielded model improvements and were associated with reductions in variances at the regional rather than sampling scales. ISS levels were negatively associated with mean clam counts. 4. Hierarchical models allow hierarchically structured data to be modelled without ignoring information specific to levels of the hierarchy. In addition, information at each hierarchical level may be modelled as functions of covariates that themselves vary by and within levels. As a result, hierarchical models provide researchers and resource managers with a method for modelling hierarchical data that explicitly recognises both the sampling design and the information contained in the corresponding data.
Nichols, John W.; Hubbart, Jason A.; Poulton, Barry C.
2016-01-01
Characterizing the impacts of hydrologic alterations, pollutants, and habitat degradation on macroinvertebrate species assemblages is of critical value for managers wishing to categorize stream ecosystem condition. A combination of approaches including trait-based metrics and traditional bioassessments provides greater information, particularly in anthropogenic stream ecosystems where traditional approaches can be confounded by variously interacting land use impacts. Macroinvertebrates were collected from two rural and three urban nested study sites in central Missouri, USA during the spring and fall seasons of 2011. Land use responses of conventional taxonomic and trait-based metrics were compared to streamflow indices, physical habitat metrics, and water quality indices. Results show that biotic index was significantly different (p < 0.05) between sites with differences detected in 54 % of trait-based metrics. The most consistent response to urbanization was observed in size metrics, with significantly (p < 0.05) fewer small bodied organisms. Increases in fine streambed sediment, decreased submerged woody rootmats, significantly higher winter Chloride concentrations, and decreased mean suspended sediment particle size in lower urban stream reaches also influenced macroinvertebrate assemblages. Riffle habitats in urban reaches contained 21 % more (p = 0.03) multivoltine organisms, which was positively correlated to the magnitude of peak flows (r2 = 0.91, p = 0.012) suggesting that high flow events may serve as a disturbance in those areas. Results support the use of macroinvertebrate assemblages and multiple stressors to characterize urban stream system condition and highlight the need to better understand the complex interactions of trait-based metrics and anthropogenic aquatic ecosystem stressors.
Browne, James D; Allen, Eoin; Murphy, Jerry D
2013-01-01
This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.
Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.
2000-01-01
The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks.
Campbell Grant, Evan H; Nichols, James D; Lowe, Winsor H; Fagan, William F
2010-04-13
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks
Campbell, Grant E.H.; Nichols, J.D.; Lowe, W.H.; Fagan, W.F.
2010-01-01
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines.
Use of multiple dispersal pathways facilitates amphibian persistence in stream networks
Campbell Grant, Evan H.; Nichols, James D.; Lowe, Winsor H.; Fagan, William F.
2010-01-01
Although populations of amphibians are declining worldwide, there is no evidence that salamanders occupying small streams are experiencing enigmatic declines, and populations of these species seem stable. Theory predicts that dispersal through multiple pathways can stabilize populations, preventing extinction in habitat networks. However, empirical data to support this prediction are absent for most species, especially those at risk of decline. Our mark-recapture study of stream salamanders reveals both a strong upstream bias in dispersal and a surprisingly high rate of overland dispersal to adjacent headwater streams. This evidence of route-dependent variation in dispersal rates suggests a spatial mechanism for population stability in headwater-stream salamanders. Our results link the movement behavior of stream salamanders to network topology, and they underscore the importance of identifying and protecting critical dispersal pathways when addressing region-wide population declines. PMID:20351269
A novel multiple description scalable coding scheme for mobile wireless video transmission
NASA Astrophysics Data System (ADS)
Zheng, Haifeng; Yu, Lun; Chen, Chang Wen
2005-03-01
We proposed in this paper a novel multiple description scalable coding (MDSC) scheme based on in-band motion compensation temporal filtering (IBMCTF) technique in order to achieve high video coding performance and robust video transmission. The input video sequence is first split into equal-sized groups of frames (GOFs). Within a GOF, each frame is hierarchically decomposed by discrete wavelet transform. Since there is a direct relationship between wavelet coefficients and what they represent in the image content after wavelet decomposition, we are able to reorganize the spatial orientation trees to generate multiple bit-streams and employed SPIHT algorithm to achieve high coding efficiency. We have shown that multiple bit-stream transmission is very effective in combating error propagation in both Internet video streaming and mobile wireless video. Furthermore, we adopt the IBMCTF scheme to remove the redundancy for inter-frames along the temporal direction using motion compensated temporal filtering, thus high coding performance and flexible scalability can be provided in this scheme. In order to make compressed video resilient to channel error and to guarantee robust video transmission over mobile wireless channels, we add redundancy to each bit-stream and apply error concealment strategy for lost motion vectors. Unlike traditional multiple description schemes, the integration of these techniques enable us to generate more than two bit-streams that may be more appropriate for multiple antenna transmission of compressed video. Simulate results on standard video sequences have shown that the proposed scheme provides flexible tradeoff between coding efficiency and error resilience.
McKenna, James E.
2005-01-01
Diversity and fish productivity are important measures of the health and status of aquatic systems. Being able to predict the values of these indices as a function of environmental variables would be valuable to management. Diversity and productivity have been related to environmental conditions by multiple linear regression and discriminant analysis, but such methods have several shortcomings. In an effort to predict fish species diversity and estimate salmonid production for streams in the eastern basin of Lake Ontario, I constructed neural networks and trained them on a data set containing abiotic information and either fish diversity or juvenile salmonid abundance. Twenty percent of the original data were retained as a test data set and used in the training. The ability to extend these neural networks to conditions throughout the streams was tested with data not involved in the network training. The resulting neural networks were able to predict the number of salmonids with more than 84% accuracy and diversity with more than 73% accuracy, which was far superior to the performance of multiple regression. The networks also identified the environmental variables with the greatest predictive power, namely, those describing water movement, stream size, and water chemistry. Thirteen input variables were used to predict diversity and 17 to predict salmonid abundance.
NASA Astrophysics Data System (ADS)
O'Connor, B. L.; Hamada, Y.; Bowen, E. E.; Wuthrich, K. K.; Grippo, M. A.
2013-12-01
Land development and associated disturbances in arid environments can adversely affect the ecological functionality of ephemeral stream channels. Land use managers have limited methodologies available for assessing low-impact development plans, or for monitoring changes in stream functionality as land use changes are implemented. The development of utility-scale solar energy facilities is underway in the southwestern United States. Federal and state agencies have developed plans to concentrate facilities in specific regions to minimize transmission limitations (e.g., the Bureau of Land Management's Solar Energy Zones cover 1,100 km2). However, multiple facility footprints in a single desert valley have the potential to drastically alter the natural pattern of ephemeral stream networks. This study focuses on quantifying the sensitivity of ephemeral streams with respect to land disturbance impacts on flow and sediment conveyance, groundwater recharge, and the loss of soil and vegetative habitats. An initial assessment used publicly-available geospatial data (typically 10- to 30-m resolution) on topography, surficial geology, and soil characteristics, as well as data on historical peak discharges and aerial photographs. These datasets were used to inform a professional judgment, score-based ranking of potential land disturbance impacts on the functionality of ephemeral streams. The results were limited to mapped stream channels in the National Hydrography Dataset, but suggested that hydrological and geomorphic impacts were a greater concern in valley piedmont regions, and that habitat concerns were greater in the valley regions where vegetation is sparsely distributed. Current efforts are focused on using a remote sensing approach to obtain high-resolution information on topography, soil, and vegetation in order to map detailed ephemeral stream networks, measure channel bathymetry characteristics, and use spectral indices of soil and vegetation to develop surrogate measures of stream ecological functionality. The initial results for a small watershed (110 km2) using stereoscopic, sub-meter resolution aerial images, detected an increase of more than 100% in identified ephemeral stream channels and habitat patterns were more spatially correlated with ephemeral stream networks than was observed for the initial assessment approach. The eventual goal of these efforts is to refine the methodology for quantifying the disturbance sensitivity of ephemeral streams, from professional judgment rankings to spectral indices of stream functionality, and to close the spatial gap between the need for large-scale assessments for land management planning and the small-scale analyses and data requirements for quantifying ephemeral stream functionality.
Acquisition and management of continuous data streams for crop water management
USDA-ARS?s Scientific Manuscript database
Wireless sensor network systems for decision support in crop water management offer many advantages including larger spatial coverage and multiple types of data input. However, collection and management of multiple and continuous data streams for near real-time post analysis can be problematic. Thi...
NASA Astrophysics Data System (ADS)
Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.
2012-12-01
A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.
New global hydrography derived from spaceborne elevation data
Lehner, B.; Verdin, K.; Jarvis, A.
2008-01-01
In response to these limitations, a team of scientists has developed data and created maps of the world's rivers that provide the research community with more reliable information about where streams and watersheds occur on the Earth's surface and how water drains the landscape. The new product, known as HydroSHEDS (Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales), provides this information at a resolution and quality unachieved by previous global data sets, such as HYDRO1k [U.S. Geological Survey (USGS), 2000].
Object tracking using multiple camera video streams
NASA Astrophysics Data System (ADS)
Mehrubeoglu, Mehrube; Rojas, Diego; McLauchlan, Lifford
2010-05-01
Two synchronized cameras are utilized to obtain independent video streams to detect moving objects from two different viewing angles. The video frames are directly correlated in time. Moving objects in image frames from the two cameras are identified and tagged for tracking. One advantage of such a system involves overcoming effects of occlusions that could result in an object in partial or full view in one camera, when the same object is fully visible in another camera. Object registration is achieved by determining the location of common features in the moving object across simultaneous frames. Perspective differences are adjusted. Combining information from images from multiple cameras increases robustness of the tracking process. Motion tracking is achieved by determining anomalies caused by the objects' movement across frames in time in each and the combined video information. The path of each object is determined heuristically. Accuracy of detection is dependent on the speed of the object as well as variations in direction of motion. Fast cameras increase accuracy but limit the speed and complexity of the algorithm. Such an imaging system has applications in traffic analysis, surveillance and security, as well as object modeling from multi-view images. The system can easily be expanded by increasing the number of cameras such that there is an overlap between the scenes from at least two cameras in proximity. An object can then be tracked long distances or across multiple cameras continuously, applicable, for example, in wireless sensor networks for surveillance or navigation.
Multiple bio-monitoring system using visible light for electromagnetic-wave free indoor healthcare
NASA Astrophysics Data System (ADS)
An, Jinyoung; Pham, Ngoc Quan; Chung, Wan-Young
2017-12-01
In this paper, a multiple biomedical data transmission system with visible light communication (VLC) is proposed for an electromagnetic-wave-free indoor healthcare. VLC technology has emerged as an alternative solution to radio-frequency (RF) wireless systems, due to its various merits, e.g., ubiquity, power efficiency, no RF radiation, and security. With VLC, critical bio-medical signals, including electrocardiography (ECG), can be transmitted in places where RF radiation is restricted. This potential advantage of VLC could save more lives in emergency situations. A time hopping (TH) scheme is employed to transfer multiple medical-data streams in real time with a simple system design. Multiple data streams are transmitted using identical color LEDs and go into an optical detector. The received multiple data streams are demodulated and rearranged using a TH-based demodulator. The medical data is then monitored and managed to provide the necessary medical care for each patient.
Code division multiple access signaling for modulated reflector technology
Briles, Scott D [Los Alamos, NM
2012-05-01
A method and apparatus for utilizing code division multiple access in modulated reflectance transmissions comprises the steps of generating a phase-modulated reflectance data bit stream; modifying the modulated reflectance data bit stream; providing the modified modulated reflectance data bit stream to a switch that connects an antenna to an infinite impedance in the event a "+1" is to be sent, or connects the antenna to ground in the event a "0" or a "-1" is to be sent.
Design tradeoffs in long-term research for stream salamanders
Brand, Adrianne B,; Grant, Evan H. Campbell
2017-01-01
Long-term research programs can benefit from early and periodic evaluation of their ability to meet stated objectives. In particular, consideration of the spatial allocation of effort is key. We sampled 4 species of stream salamanders intensively for 2 years (2010–2011) in the Chesapeake and Ohio Canal National Historical Park, Maryland, USA to evaluate alternative distributions of sampling locations within stream networks, and then evaluated via simulation the ability of multiple survey designs to detect declines in occupancy and to estimate dynamic parameters (colonization, extinction) over 5 years for 2 species. We expected that fine-scale microhabitat variables (e.g., cobble, detritus) would be the strongest determinants of occupancy for each of the 4 species; however, we found greater support for all species for models including variables describing position within the stream network, stream size, or stream microhabitat. A monitoring design focused on headwater sections had greater power to detect changes in occupancy and the dynamic parameters in each of 3 scenarios for the dusky salamander (Desmognathus fuscus) and red salamander (Pseudotriton ruber). Results for transect length were more variable, but across all species and scenarios, 25-m transects are most suitable as a balance between maximizing detection probability and describing colonization and extinction. These results inform sampling design and provide a general framework for setting appropriate goals, effort, and duration in the initial planning stages of research programs on stream salamanders in the eastern United States.
Roy, Suvendu; Sahu, Abhay Sankar
2017-07-15
Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fitzpatrick, F.A.; Giddings, E.M.
1997-01-01
Results from this study illustrate the need for collection of habitat data at multiple scales along with water-chemistry data for determining major influences on distribution of aquatic communities. These results also indicate the importance of collecting land use, geological, and geomorphic information at the drainage-basin level to adequately describe how natural and human factors influence local aquatic habitat conditions.
Response of nutrients, biofilm, and benthic insects to salmon carcass addition.
Shannon M. Claeson; Judith L. Li; Jana E. Compton; Peter A. Bisson
2006-01-01
Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinvertebrate (density and biomass) responses to carcass addition in three headwater streams of...
NASA Astrophysics Data System (ADS)
Vautier, Camille; Chatton, Eliot; Abbott, Benjamin; Harjung, Astrid; Labasque, Thierry; Guillou, Aurélie; Pannard, Alexandrine; Piscart, Christophe; Laverman, Anniet; Kolbe, Tamara; Massé, Stéphanie; de Dreuzy, Jean-Raynald; Thomas, Zahra; Aquilina, Luc; Pinay, Gilles
2017-04-01
Water quality in rivers results from biogeochemical processes in contributing hydrological compartments (soils, aquifers, hyporheic and riparian zones) and biochemical activity in the river network itself. Consequently, chemical fluxes fluctuate on multiple spatial and temporal scales, leading eventually to complex concentration signals in rivers. We characterized these fluctuations with innovative continuous monitoring of dissolved gases, to quantify transport and reaction processes occurring in different hydrological compartments. We performed stream-scale experiments in two headwater streams in Brittany, France. Factorial injections of inorganic nitrogen (NH4NO3), inorganic phosphate (P2O5) and multiple sources of labile carbon (acetate, tryptophan) were implemented in the two streams. We used a new field application of membrane inlet mass spectrometry to continuously monitor dissolved gases for multiple day-night periods (Chatton et al., 2016). Quantified gases included He, O2, N2, CO2, CH4, N2O, and 15N of dissolved N2 and N2O. We calibrated and assessed the methodology with well-established complementary techniques including gas chromatography and high-frequency water quality sensors. Wet chemistry and radon analysis complemented the study. The analyses provided several methodological and ecological insights and demonstrated that high frequency variations linked to background noise can be efficiently determined and filtered to derive effective fluxes. From a more fundamental point of view, the tested stream segments were fully characterized with extensive sampling of riverbeds and laboratory experiments, allowing scaling of point-level microbial and invertebrate diversity and activity on in-stream processing. This innovative technology allows fully-controlled in-situ experiments providing rich information with a high signal to noise ratio. We present the integrated nutrient demand and uptake and discuss limiting processes and elements at the reach and catchment scales. Eliot Chatton, Thierry Labasque, Jérôme de La Bernardie, Nicolas Guihéneuf, Olivier Bour, Luc Aquilina. 2016. Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow. Environ. Sci. Technol.
Models of Tidally Induced Gas Filaments in the Magellanic Stream
NASA Astrophysics Data System (ADS)
Pardy, Stephen A.; D’Onghia, Elena; Fox, Andrew J.
2018-04-01
The Magellanic Stream and Leading Arm of H I that stretches from the Large and Small Magellanic Clouds (LMC and SMC) and over 200° of the Southern sky is thought to be formed from multiple encounters between the LMC and SMC. In this scenario, most of the gas in the Stream and Leading Arm is stripped from the SMC, yet recent observations have shown a bifurcation of the Trailing Arm that reveals LMC origins for some of the gas. Absorption measurements in the Stream also reveal an order of magnitude more gas than in current tidal models. We present hydrodynamical simulations of the multiple encounters between the LMC and SMC at their first pass around the Milky Way, assuming that the Clouds were more extended and gas-rich in the past. Our models create filamentary structures of gas in the Trailing Stream from both the LMC and SMC. While the SMC trailing filament matches the observed Stream location, the LMC filament is offset. In addition, the total observed mass of the Stream in these models is underestimated by a factor of four when the ionized component is accounted for. Our results suggest that there should also be gas stripped from both the LMC and SMC in the Leading Arm, mirroring the bifurcation in the Trailing Stream. This prediction is consistent with recent measurements of spatial variation in chemical abundances in the Leading Arm, which show that gas from multiple sources is present, although its nature is still uncertain.
A Four-Level Hierarchy for Organizing Wildland Stream Resource Information
Harry Parrott; Daniel A. Marion; R. Douglas Perkinson
1989-01-01
An analysis of current USDA Forest Service methods of collecting and using wildland stream resource data indicates that required information can be organized into a four-level hierarchy. Information at each level is tiered with information at the preceding level. Level 1 is the ASSOCIATION, which is differentiated by stream size and flow regime. Level 2, STREAM TYPE,...
Dahlström, Niklas; Nilsson, Christer
2004-03-01
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.
Groundwater contaminants in the deep benthic zone of urban streams in Canada (Invited)
NASA Astrophysics Data System (ADS)
Roy, J. W.; Bickerton, G.
2010-12-01
There is little information available on the potential threat that groundwater containing land-based contaminants poses to aquatic ecosystems in urban environments. In this study, a rapid screening approach was applied at the stream reach-scale for eight urban streams (reaches from 100 to < 1000 m). The objective was to determine what types of groundwater contaminants could be detected in the deeper benthic zone of these streams, if any, to start to address questions of whether such contaminants are a concern and which types are the most problematic. The benthic community may be especially at risk since it may experience higher contaminant concentrations than the stream itself due to fewer losses from sorption, degradation and volatilization processes. For each stream, groundwater samples from below the stream bed (typically 25-75 cm) were collected using a drive-point mini-profiler at intervals of 10-15 m along the stream and were subsequently analysed for general chemistry and a wide range of common and emerging urban contaminants. For a few test streams with known contamination, the area of contamination was identified with this technique. In addition, previously unknown contaminants or areas of contamination were identified at all nine streams. Identified contaminants included benzene and other petroleum hydrocarbons, fuel oxygenates (e.g. MTBE), perchlorate, pesticides, artificial sweeteners, and various chlorinated solvent compounds. In addition, elevated levels of nitrate, phosphate, some heavy metals, including cadmium and arsenic, and elevated chloride (likely indicating road salt) were detected. Most streams had many different types of contaminants, often overlapping over small stretches, and together often covering substantial portions of the monitored reach. The findings provide support for this screening approach for delineating areas of potential ecological concern and identifying possible sources of groundwater contamination, for urban settings. They also suggest that the presence of multiple groundwater contaminants may be a more common threat to the benthic community of urban streams than currently perceived.
This EnviroAtlas dataset shows the percentages of stream and water body shoreline lengths within 30 meters of impervious cover by 12-digit Hydrologic Unit (HUC) subwatershed in the contiguous U.S. Impervious cover alters the hydrologic behavior of streams and water bodies, promoting increased storm water runoff and lower stream flow during periods in between rainfall events. Impervious cover also promotes increased pollutant loads in receiving waters and degraded streamside habitat. This dataset shows were impervious cover occurs close to streams and water bodies, where it is likely to have a greater adverse impact on receiving waters. This dataset was produced by the US EPA to support research and online mapping activities related to the EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Retrieval of Sentence Sequences for an Image Stream via Coherence Recurrent Convolutional Networks.
Park, Cesc Chunseong; Kim, Youngjin; Kim, Gunhee
2018-04-01
We propose an approach for retrieving a sequence of natural sentences for an image stream. Since general users often take a series of pictures on their experiences, much online visual information exists in the form of image streams, for which it would better take into consideration of the whole image stream to produce natural language descriptions. While almost all previous studies have dealt with the relation between a single image and a single natural sentence, our work extends both input and output dimension to a sequence of images and a sequence of sentences. For retrieving a coherent flow of multiple sentences for a photo stream, we propose a multimodal neural architecture called coherence recurrent convolutional network (CRCN), which consists of convolutional neural networks, bidirectional long short-term memory (LSTM) networks, and an entity-based local coherence model. Our approach directly learns from vast user-generated resource of blog posts as text-image parallel training data. We collect more than 22 K unique blog posts with 170 K associated images for the travel topics of NYC, Disneyland , Australia, and Hawaii. We demonstrate that our approach outperforms other state-of-the-art image captioning methods for text sequence generation, using both quantitative measures and user studies via Amazon Mechanical Turk.
NASA Astrophysics Data System (ADS)
Wang, S.; Somers, K.; Sudduth, E.; Hassett, B.; Bernhardt, E. S.; Urban, D. L.
2010-12-01
We used terminal restriction fragment length polymorphism (T-RFLP), a molecular fingerprinting method, to characterize denitrifier communities in sediments taken from 48 study streams in North Carolina, USA. In addition to characterizing denitrifier communities, we also used denitrification enzyme activity (DEA) assays to measure potential denitrification rates. Due to differences in watershed land-use, study streams covered a gradient of nitrogen and carbon concentrations, as well as a gradient of contaminant loading from stormwater and sanitary sewers. Nitrogen and carbon (i.e., substrate) concentrations are commonly used to make predictions about denitrification rates in streams. Such models do not take into account denitrifier community composition, which may be an important, independent control of denitrification rates, particularly under stressful conditions (e.g., high contaminant loading) that prevent communities from capitalizing on high substrate availability. Our results indicate that substrate availability by itself was a weak predictor of denitrification rates; the same was also true for denitrifier community composition. However, when both factors were incorporated in a multiple regression model, the percent variation explained increased substantially. These findings suggest that T-RFLP, a relatively cost-effective method, can be used to improve our understanding of controls on denitrification rates in streams with varying watershed land-uses.
Predicting macroinvertebrate MMI for geographic targeting
The US Environmental Protection Agency surveys the ecological conditions of streams across broad regions. We wish to identify specific streams in poor condition, as well as their regional extent. To identify such streams in Idaho, Oregon and Washington we built multiple regress...
RESPONSE OF NUTRIENTS, BIOFILM, AND BENTHIC INSECTS TO SALMON CARCASS ADDITION
Salmon carcass addition to streams is expected to increase stream productivity at multiple trophic levels. This study examined stream nutrient (nitrogen, phosphorus, and carbon), epilithic biofilm (ash-free dry mass and chlorophyll a), leaf-litter decomposition, and macroinverte...
Feature integration and object representations along the dorsal stream visual hierarchy
Perry, Carolyn Jeane; Fallah, Mazyar
2014-01-01
The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features. PMID:25140147
High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project
NASA Astrophysics Data System (ADS)
Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique
2015-04-01
Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.
Influence of wood on invertebrate communities in streams and rivers
Arthur Benke; J. Bruce Wallace
2010-01-01
Wood plays a major role in creating multiple invertebrate habitats in small streams and large rivers. In small streams, wood debris dams are instrumental in creating a step and pool profile of habitats, enhancing habitat heterogeneity, retaining organic matter, and changing current velocity. Beavers can convert sections of free-flowing streams into ponds and wetlands...
Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans.
Caminiti, Roberto; Innocenti, Giorgio M; Battaglia-Mayer, Alexandra
2015-09-01
The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Opinion dynamics on interacting networks: media competition and social influence
Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio
2014-01-01
The inner dynamics of the multiple actors of the informations systems – i.e, T.V., newspapers, blogs, social network platforms, – play a fundamental role on the evolution of the public opinion. Coherently with the recent history of the information system (from few main stream media to the massive diffusion of socio-technical system), in this work we investigate how main stream media signed interaction might shape the opinion space. In particular we focus on how different size (in the number of media) and interaction patterns of the information system may affect collective debates and thus the opinions' distribution. We introduce a sophisticated computational model of opinion dynamics which accounts for the coexistence of media and gossip as separated mechanisms and for their feedback loops. The model accounts also for the effect of the media communication patterns by considering both the simple case where each medium mimics the behavior of the most successful one (to maximize the audience) and the case where there is polarization and thus competition among media memes. We show that plurality and competition within information sources lead to stable configurations where several and distant cultures coexist. PMID:24861995
Understanding the physical dynamics and ecological interactions in tidal stream energy environments
NASA Astrophysics Data System (ADS)
Fraser, Shaun; Williamson, Benjamin J.; Nikora, Vladimir; Scott, Beth E.
2017-04-01
Tidal stream energy devices are intended to operate in energetic physical environments characterised by high flows and extreme turbulence. These environments are often of ecological importance to a range of marine species. Understanding the physical dynamics and ecological interactions at fine scales in such sites is essential for device/array design and to understand environmental impacts. However, investigating fine scale characteristics requires high resolution field measurements which are difficult to attain and interpret, with data often confounded by interference related to turbulence. Consequently, field observations in tidal stream energy environments are limited and require the development of specialised analysis methods and so significant knowledge gaps are still present. The seabed mounted FLOWBEC platform is addressing these knowledge gaps using upward facing instruments to collect information from around marine energy infrastructure. Multifrequency and multibeam echosounder data provide detailed information on the distribution and interactions of biological targets, such as fish and diving seabirds, while simultaneously recording the scales and intensity of turbulence. Novel processing methodologies and instrument integration techniques have been developed which combine different data types and successfully separates signal from noise to reveal new evidence about the behaviour of mobile species and the structure of turbulence at all speeds of the tide and throughout the water column. Multiple platform deployments in the presence and absence of marine energy infrastructure reveal the natural characteristics of high energy sites, and enable the interpretation of the physical and biological impacts of tidal stream devices. These methods and results are relevant to the design and consenting of marine renewable energy technologies, and provide novel information on the use of turbulence for foraging opportunities in high energy sites by mobile species.
Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study.
Nuy, Julia K; Lange, Anja; Beermann, Arne J; Jensen, Manfred; Elbrecht, Vasco; Röhl, Oliver; Peršoh, Derek; Begerow, Dominik; Leese, Florian; Boenigk, Jens
2018-08-15
Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells
Huang, Cheng-Chiu; Sugino, Ken; Shima, Yasuyuki; Guo, Caiying; Bai, Suxia; Mensh, Brett D; Nelson, Sacha B; Hantman, Adam W
2013-01-01
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 PMID:23467508
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.
2003-12-01
Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.
Methods for estimating magnitude and frequency of floods in Montana based on data through 1983
Omang, R.J.; Parrett, Charles; Hull, J.A.
1986-01-01
Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)
Kronholm, Scott C.; Capel, Paul D.
2016-01-01
Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.
Joint Doctrine for Unmanned Aircraft Systems: The Air Force and the Army Hold the Key to Success
2010-05-03
concept, coupled with sensor technologies that provide multiple video streams to multiple ground units, delivers increased capability and capacity to...airborne surveillance” allow one UAS to collect up to ten video transmissions, sending them to ten different users on the ground. Future iterations...of this technology, dubbed Gorgon Stare, will increase to as many as 65 video streams per UAS by 2014. 31 Being able to send multiple views of an
Pennsylvania StreamStats--A web-based application for obtaining water-resource-related information
Stuckey, Marla H.; Hoffman, Scott A.
2010-01-01
StreamStats is a national web-based Geographic Information System (GIS) application, developed by the U.S. Geological Survey (USGS), in cooperation with Environmental Systems Research Institute, Inc., to provide a variety of water-resource-related information. Users can easily obtain descriptive information, basin characteristics, and streamflow statistics for USGS streamgages and ungaged stream locations throughout Pennsylvania. StreamStats also allows users to search upstream and (or) downstream from user-selected points to identify locations of and obtain information for water-resource-related activities, such as dams and streamgages.
LAND USE AND LOTIC DIATOM ASSEMBLAGES: A MULTI-SPATIAL AND TEMPORAL ASSESSMENT
We assessed the effects of land-use at multiple spatial scales (e.g., catchment, stream network, and stream reach) on periphyton from 25 wadeable streams along a land-use gradient in the Willamette River Basin, Oregon, in a dry season. Additional water chemistry samples were col...
Enterprise systems security management: a framework for breakthrough protection
NASA Astrophysics Data System (ADS)
Farroha, Bassam S.; Farroha, Deborah L.
2010-04-01
Securing the DoD information network is a tremendous task due to its size, access locations and the amount of network intrusion attempts on a daily basis. This analysis investigates methods/architecture options to deliver capabilities for secure information sharing environment. Crypto-binding and intelligent access controls are basic requirements for secure information sharing in a net-centric environment. We introduce many of the new technology components to secure the enterprise. The cooperative mission requirements lead to developing automatic data discovery and data stewards granting access to Cross Domain (CD) data repositories or live streaming data. Multiple architecture models are investigated to determine best-of-breed approaches including SOA and Private/Public Clouds.
Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.
2016-01-01
Habitat heterogeneity at multiple scales is a major factor affecting fish assemblage structure. However, assessments that examine these relationships at multiple scales concurrently are lacking. The lack of assessments at these scales is a critical gap in understanding as conservation and restoration efforts typically work at these levels.A combination of low-cost side-scan sonar surveys, aerial imagery using an unmanned aerial vehicle, and fish collections were used to evaluate the relationship between physicochemical and landscape variables at various spatial scales (e.g. micro-mesohabitat, mesohabitat, channel unit, stream reach) and stream–fish assemblage structure and habitat associations in the South Llano River, a spring-fed second-order stream on the Edwards Plateau in central Texas during 2012–2013.Low-cost side-scan sonar surveys have not typically been used to generate data for riverscape assessments of assemblage structure, thus the secondary objective was to assess the efficacy of this approach.The finest spatial scale (micro-mesohabitat) and the intermediate scale (channel unit) had the greatest explanatory power for variation in fish assemblage structure.Many of the fish endemic to the Edwards Plateau showed similar associations with physicochemical and landscape variables suggesting that conservation and restoration actions targeting a single endemic species may provide benefits to a large proportion of the endemic species in this system.Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.
Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed
2016-03-01
This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.
Bruder, Andreas; Salis, Romana K; Jones, Peter E; Matthaei, Christoph D
2017-09-01
Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co-occurring stressors result in biological responses that cannot be predicted from single-stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple-stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow-through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (-12% compared to controls) and condition (-8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (-25% compared to controls) and abundance of dominant invertebrate prey (-30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple-stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations. © 2017 John Wiley & Sons Ltd.
A Multiple-Tracer Approach for Identifying Sewage Sources to an Urban Stream System
Hyer, Kenneth Edward
2007-01-01
The presence of human-derived fecal coliform bacteria (sewage) in streams and rivers is recognized as a human health hazard. The source of these human-derived bacteria, however, is often difficult to identify and eliminate, because sewage can be delivered to streams through a variety of mechanisms, such as leaking sanitary sewers or private lateral lines, cross-connected pipes, straight pipes, sewer-line overflows, illicit dumping of septic waste, and vagrancy. A multiple-tracer study was conducted to identify site-specific sources of sewage in Accotink Creek, an urban stream in Fairfax County, Virginia, that is listed on the Commonwealth's priority list of impaired streams for violations of the fecal coliform bacteria standard. Beyond developing this multiple-tracer approach for locating sources of sewage inputs to Accotink Creek, the second objective of the study was to demonstrate how the multiple-tracer approach can be applied to other streams affected by sewage sources. The tracers used in this study were separated into indicator tracers, which are relatively simple and inexpensive to apply, and confirmatory tracers, which are relatively difficult and expensive to analyze. Indicator tracers include fecal coliform bacteria, surfactants, boron, chloride, chloride/bromide ratio, specific conductance, dissolved oxygen, turbidity, and water temperature. Confirmatory tracers include 13 organic compounds that are associated with human waste, including caffeine, cotinine, triclosan, a number of detergent metabolites, several fragrances, and several plasticizers. To identify sources of sewage to Accotink Creek, a detailed investigation of the Accotink Creek main channel, tributaries, and flowing storm drains was undertaken from 2001 to 2004. Sampling was conducted in a series of eight synoptic sampling events, each of which began at the most downstream site and extended upstream through the watershed and into the headwaters of each tributary. Using the synoptic sampling approach, 149 sites were sampled at least one time for indicator tracers; 52 of these sites also were sampled for confirmatory tracers at least one time. Through the analysis of multiple-tracer levels in the synoptic samples, three major sewage sources to the Accotink Creek stream network were identified, and several other minor sewage sources to the Accotink Creek system likely deserve additional investigation. Near the end of the synoptic sampling activities, three additional sampling methods were used to gain better understanding of the potential for sewage sources to the watershed. These additional sampling methods included optical brightener monitoring, intensive stream sampling using automated samplers, and additional sampling of several storm-drain networks. The samples obtained by these methods provided further understanding of possible sewage sources to the streams and a better understanding of the variability in the tracer concentrations at a given sampling site. Collectively, these additional sampling methods were a valuable complement to the synoptic sampling approach that was used for the bulk of this study. The study results provide an approach for local authorities to use in applying a relatively simple and inexpensive collection of tracers to locate sewage sources to streams. Although this multiple-tracer approach is effective in detecting sewage sources to streams, additional research is needed to better detect extremely low-volume sewage sources and better enable local authorities to identify the specific sources of the sewage once it is detected in a stream reach.
Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.
2006-12-01
To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.
Sheth, Bhavin R; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.
The subthalamic nucleus during decision-making with multiple alternatives.
Keuken, Max C; Van Maanen, Leendert; Bogacz, Rafal; Schäfer, Andreas; Neumann, Jane; Turner, Robert; Forstmann, Birte U
2015-10-01
Several prominent neurocomputational models predict that an increase of choice alternatives is modulated by increased activity in the subthalamic nucleus (STN). In turn, increased STN activity allows prolonged accumulation of information. At the same time, areas in the medial frontal cortex such as the anterior cingulate cortex (ACC) and the pre-SMA are hypothesized to influence the information processing in the STN. This study set out to test concrete predictions of STN activity in multiple-alternative decision-making using a multimodal combination of 7 Tesla structural and functional Magnetic Resonance Imaging, and ancestral graph (AG) modeling. The results are in line with the predictions in that increased STN activity was found with an increasing amount of choice alternatives. In addition, our study shows that activity in the ACC is correlated with activity in the STN without directly modulating it. This result sheds new light on the information processing streams between medial frontal cortex and the basal ganglia. © 2015 Wiley Periodicals, Inc.
Ritter, Alison; Hughes, Caitlin Elizabeth; Lancaster, Kari; Hoppe, Robert
2018-04-17
The prevailing 'evidence-based policy' paradigm emphasizes a technical-rational relationship between alcohol and drug research evidence and subsequent policy action. However, policy process theories do not start with this premise, and hence provide an opportunity to consider anew the ways in which evidence, research and other types of knowledge impact upon policy. This paper presents a case study, the police deployment of drug detection dogs, to highlight how two prominent policy theories [the Advocacy Coalition Framework (ACF) and the Multiple Streams (MS) approach] explicate the relationship between evidence and policy. The two theories were interrogated with reference to their descriptions and framings of evidence, research and other types of knowledge. The case study methodology was employed to extract data concerned with evidence and other types of knowledge from a previous detailed historical account and analysis of drug detection dogs in one Australian state (New South Wales). Different types of knowledge employed across the case study were identified and coded, and then analysed with reference to each theory. A detailed analysis of one key 'evidence event' within the case study was also undertaken. Five types of knowledge were apparent in the case study: quantitative program data; practitioner knowledge; legal knowledge; academic research; and lay knowledge. The ACF highlights how these various types of knowledge are only influential inasmuch as they provide the opportunity to alter the beliefs of decision-makers. The MS highlights how multiple types of knowledge may or may not form part of the strategy of policy entrepreneurs to forge the confluence of problems, solutions and politics. Neither the Advocacy Coalition Framework nor the Multiple Streams approach presents an uncomplicated linear relationship between evidence and policy action, nor do they preference any one type of knowledge. The implications for research and practice include the contestation of evidence through beliefs (Advocacy Coalition Framework), the importance of venues for debate (Advocacy Coalition Framework), the way in which data and indicators are transformed into problem specification (Multiple Streams) and the importance of the policy ('alternatives') stream (Multiple Streams). © 2018 Society for the Study of Addiction.
Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015
Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.
2017-08-25
In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete water sampling, (3) deployment of passive polar organic chemical integrative samplers for pesticides and pharmaceuticals, and (4) sampling of streambed sediment. At selected study sites, toxicity testing of streambed sediment, continuous water-quality monitoring, and daily pesticide sampling also were conducted and are described.
NASA Astrophysics Data System (ADS)
Hall, S. J.; Hale, R. L.; Baker, M. A.; Bowling, D. R.; Ehleringer, J. R.
2014-12-01
Urban and suburban streams typically receive anthropogenic nitrogen (N) from multiple sources, and their identification and partitioning is a prerequisite for effective water quality management. However, stream N fluxes and sources are often highly variable, limiting the utility of water samples for source identification. Nitrate in perennial streams can provide an important N source for riparian vegetation in semi-arid environments. Thus, riparian plant tissue may integrate the stable isotope composition (δ15N) of stream nitrate over longer timescales and assist in source identification. Here, we tested whether δ15N of riparian plant leaves could provide an effective indicator of spatial variation in N sources across land use gradients spanning wildland to urban ecosystems in Salt Lake City, Utah, and the surrounding Wasatch Range Megapolitan Area. We found that leaf δ15N varied systematically within and among eight streams and rivers (n = 378 leaf samples) consistent with spatial land use variations. Plants from a suburban stream adjacent to homes with septic systems (δ15N = 5.1‰) were highly enriched relative to similar species from an adjacent undeveloped stream (δ15N = -0.7 ‰), suggesting an important contribution of enriched human fecal N to the suburban stream. Plants from a montane stream in a largely undeveloped recreational canyon that permitted off-leash dogs (δ15N = 1.8 ‰) were enriched relative to an adjacent canyon with similar land use that strictly prohibited dogs but had comparable vehicle traffic (δ15N = -0.7 ‰), suggesting the contribution of dog waste to stream N. Plants from urban stream reaches were enriched by 1.3 - 2.8 ‰ relative to upstream wildland reaches, and δ15N increased by 0.2 ‰ per km in the urban streams. Mechanisms leading to this urban enrichment could include leaky municipal sewers, atmospheric N deposition, and/or increased rates of N cycling and gaseous losses. Overall, our results demonstrate the potential utility of riparian plant N isotopes as a simple diagnostic of N source inputs to inform watershed management.
Multi-scale Homogenization of Caddisfly Metacomminities in Human-modified Landscapes
NASA Astrophysics Data System (ADS)
Simião-Ferreira, Juliana; Nogueira, Denis Silva; Santos, Anna Claudia; De Marco, Paulo; Angelini, Ronaldo
2018-04-01
The multiple scale of stream networks spatial organization reflects the hierarchical arrangement of streams habitats with increasingly levels of complexity from sub-catchments until entire hydrographic basins. Through these multiple spatial scales, local stream habitats form nested subsets of increasingly landscape scale and habitat size with varying contributions of both alpha and beta diversity for the regional diversity. Here, we aimed to test the relative importance of multiple nested hierarchical levels of spatial scales while determining alpha and beta diversity of caddisflies in regions with different levels of landscape degradation in a core Cerrado area in Brazil. We used quantitative environmental variables to test the hypothesis that landscape homogenization affects the contribution of alpha and beta diversity of caddisflies to regional diversity. We found that the contribution of alpha and beta diversity for gamma diversity varied according to landscape degradation. Sub-catchments with more intense agriculture had lower diversity at multiple levels, markedly alpha and beta diversities. We have also found that environmental predictors mainly associated with water quality, channel size, and habitat integrity (lower scores indicate stream degradation) were related to community dissimilarity at the catchment scale. For an effective management of the headwater biodiversity of caddisfly, towards the conservation of these catchments, heterogeneous streams with more pristine riparian vegetation found within the river basin need to be preserved in protected areas. Additionally, in the most degraded areas the restoration of riparian vegetation and size increase of protected areas will be needed to accomplish such effort.
Multiple Streaming and the Probability Distribution of Density in Redshift Space
NASA Astrophysics Data System (ADS)
Hui, Lam; Kofman, Lev; Shandarin, Sergei F.
2000-07-01
We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude (σl<~1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which are physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S3, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated.
Accumulation of perchlorate in aquatic and terrestrial plants at a field scale.
Tan, Kui; Anderson, Todd A; Jones, Matthew W; Smith, Philip N; Jackson, W Andrew
2004-01-01
Previous laboratory-scale studies have documented perchlorate ClO(-)(4) uptake by different plant species, but less information is available at field scale, where ClO(-)(4) uptake may be affected by environmental conditions, such as distance to streams or shallow water tables, exposure duration, and species. This study examined uptake of ClO(-)(4) in smartweed (Polygonum spp.) and watercress (Nasturtium spp.) as well as more than forty trees, including ash (Fraxinus greggii A. Gray), chinaberry (Melia azedarach L.), elm (Ulmus parvifolia Jacq.), willow (Salix nigra Marshall), mulberry [Broussonetia papyrifera (L.) Vent.], and hackberry (Celtis laevigata Willd.) from multiple streams surrounding a perchlorate-contaminated site. Results indicate a large potential for ClO(-)(4) accumulation in aquatic and terrestrial plants, with ClO(-)(4) concentration in plant tissues approximately 100 times higher than that in bulk water. Perchlorate accumulation in leaves of terrestrial plants was also dependent on species, with hackberry, willow, and elm having a strong potential to accumulate ClO(-)(4). Generally, trees located closer to the stream had a higher ClO(-)(4) accumulation than trees located farther away from the stream. Seasonal leaf sampling of terrestrial plants indicated that ClO(-)(4) accumulation also was affected by exposure duration, with highest accumulation observed in the late growing cycle, although leaf concentrations for a given tree were highly variable. Perchlorate may be re-released into the environment via leaching and rainfall as indicated by lower perchlorate concentrations in collected leaf litter. Information obtained from this study will be helpful to understand the fate of ClO(-)(4) in macrophytes and natural systems.
A 42-day dosing test with ions comprising an excess TDS was run using mesocosms colonized with natural stream water fed continuously. In gridded gravel beds biota from microbes through macroinvertebrates are measured and interact in a manner realistic of stream riffle/run ecology...
Asymmetry of Neuronal Combinatorial Codes Arises from Minimizing Synaptic Weight Change.
Leibold, Christian; Monsalve-Mercado, Mauro M
2016-08-01
Synaptic change is a costly resource, particularly for brain structures that have a high demand of synaptic plasticity. For example, building memories of object positions requires efficient use of plasticity resources since objects can easily change their location in space and yet we can memorize object locations. But how should a neural circuit ideally be set up to integrate two input streams (object location and identity) in case the overall synaptic changes should be minimized during ongoing learning? This letter provides a theoretical framework on how the two input pathways should ideally be specified. Generally the model predicts that the information-rich pathway should be plastic and encoded sparsely, whereas the pathway conveying less information should be encoded densely and undergo learning only if a neuronal representation of a novel object has to be established. As an example, we consider hippocampal area CA1, which combines place and object information. The model thereby provides a normative account of hippocampal rate remapping, that is, modulations of place field activity by changes of local cues. It may as well be applicable to other brain areas (such as neocortical layer V) that learn combinatorial codes from multiple input streams.
NASA Technical Reports Server (NTRS)
Eberhardt, D. S.; Baganoff, D.; Stevens, K.
1984-01-01
Implicit approximate-factored algorithms have certain properties that are suitable for parallel processing. A particular computational fluid dynamics (CFD) code, using this algorithm, is mapped onto a multiple-instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this mapping procedure is presented, as well as some of the difficulties encountered when trying to run the code concurrently. Timing results are given for runs on the Ames Research Center's MIMD test facility which consists of two VAX 11/780's with a common MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were indicated by the timing results.
Kinesthetic working memory and action control within the dorsal stream.
Fiehler, Katja; Burke, Michael; Engel, Annerose; Bien, Siegfried; Rösler, Frank
2008-02-01
There is wide agreement that the "dorsal (action) stream" processes visual information for movement control. However, movements depend not only on vision but also on tactile and kinesthetic information (=haptics). Using functional magnetic resonance imaging, the present study investigates to what extent networks within the dorsal stream are also utilized for kinesthetic action control and whether they are also involved in kinesthetic working memory. Fourteen blindfolded participants performed a delayed-recognition task in which right-handed movements had to be encoded, maintained, and later recognized without any visual feedback. Encoding of hand movements activated somatosensory areas, superior parietal lobe (dorsodorsal stream), anterior intraparietal sulcus (aIPS) and adjoining areas (ventrodorsal stream), premotor cortex, and occipitotemporal cortex (ventral stream). Short-term maintenance of kinesthetic information elicited load-dependent activity in the aIPS and adjacent anterior portion of the superior parietal lobe (ventrodorsal stream) of the left hemisphere. We propose that the action representation system of the dorsodorsal and ventrodorsal stream is utilized not only for visual but also for kinesthetic action control. Moreover, the present findings demonstrate that networks within the ventrodorsal stream, in particular the left aIPS and closely adjacent areas, are also engaged in working memory maintenance of kinesthetic information.
The Health Policy Process in Vietnam: Going Beyond Kingdon’s Multiple Streams Theory
Kane, Sumit
2016-01-01
This commentary reflects upon the article along three broad lines. It reflects on the theoretical choices and omissions, particularly highlighting why it is important to adapt the multiple streams framework (MSF) when applying it in a socio-political context like Vietnam’s. The commentary also reflects upon the analytical threads tackled by Ha et al; for instance, it highlights the opportunities offered by, and raises questions about the centrality of the Policy Entrepreneur in getting the policy onto the political agenda and in pushing it through. The commentary also dwells on the implications of the article for development aid policies and practices. Throughout, the commentary signposts possible themes for Ha et al to consider for further analysis, and more generally, for future research using Kingdon’s multiple streams theory. PMID:27694671
Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim
2016-09-01
In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.
Sheth, Bhavin R.; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670
EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States
This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network, and along water bodies such as lakes and ponds that are connected via flow to the streams, that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006 National Land Cover Dataset (NLCD) for each Watershed Boundary Dataset (WBD) 12-digit hydrological unit (HUC) in the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Complex Event Recognition Architecture
NASA Technical Reports Server (NTRS)
Fitzgerald, William A.; Firby, R. James
2009-01-01
Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.
ERIC Educational Resources Information Center
Young, Tamara V.; Shepley, Thomas V.; Song, Mengli
2010-01-01
Drawing on interview data from reading policy actors in California, Michigan, and Texas, this study applied Kingdon's (1984, 1995) multiple streams model to explain how the issue of reading became prominent on the agenda of state governments during the latter half of the 1990s. A combination of factors influenced the status of a state's reading…
An Advanced Commanding and Telemetry System
NASA Astrophysics Data System (ADS)
Hill, Maxwell G. G.
The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.
NASA Astrophysics Data System (ADS)
Hayakawa, Hitoshi; Ogawa, Makoto; Shibata, Tadashi
2005-04-01
A very large scale integrated circuit (VLSI) architecture for a multiple-instruction-stream multiple-data-stream (MIMD) associative processor has been proposed. The processor employs an architecture that enables seamless switching from associative operations to arithmetic operations. The MIMD element is convertible to a regular central processing unit (CPU) while maintaining its high performance as an associative processor. Therefore, the MIMD associative processor can perform not only on-chip perception, i.e., searching for the vector most similar to an input vector throughout the on-chip cache memory, but also arithmetic and logic operations similar to those in ordinary CPUs, both simultaneously in parallel processing. Three key technologies have been developed to generate the MIMD element: associative-operation-and-arithmetic-operation switchable calculation units, a versatile register control scheme within the MIMD element for flexible operations, and a short instruction set for minimizing the memory size for program storage. Key circuit blocks were designed and fabricated using 0.18 μm complementary metal-oxide-semiconductor (CMOS) technology. As a result, the full-featured MIMD element is estimated to be 3 mm2, showing the feasibility of an 8-parallel-MIMD-element associative processor in a single chip of 5 mm× 5 mm.
NASA Astrophysics Data System (ADS)
Matgen, P.; Pelich, R.; Brangbour, E.; Bruneau, P.; Chini, M.; Hostache, R.; Schumann, G.; Tamisier, T.
2017-12-01
Hurricanes Harvey, Irma and Maria generated large streams of heterogeneous data, coming notably from three main sources: imagery (satellite and aircraft), in-situ measurement stations and social media. Interpreting these data streams brings critical information to develop, validate and update prediction models. The study addresses existing gaps in the joint extraction of disaster risk information from multiple data sources and their usefulness for reducing the predictive uncertainty of large-scale flood inundation models. Satellite EO data, most notably the free-of-charge data streams generated by the Copernicus program, provided a wealth of high-resolution imagery covering the large areas affected. Our study is focussing on the mapping of flooded areas from a sequence of Sentinel-1 SAR imagery using a classification algorithm recently implemented on the European Space Agency's Grid Processing On Demand environment. The end-to-end-processing chain provided a fast access to all relevant imagery and an effective processing for near-real time analyses. The classification algorithm was applied on pairs of images to rapidly and automatically detect, record and disseminate all observable changes of water bodies. Disaster information was also retrieved from photos as well as texts contributed on social networks and the study shows how this information may complement EO and in-situ data and augment information content. As social media data are noisy and difficult to geo-localize, different techniques are being developed to automatically infer associated semantics and geotags. The presentation provides a cross-comparison between the hazard information obtained from the three data sources. We provide examples of how the generated database of geo-localized disaster information was finally integrated into a large-scale hydrodynamic model of the Colorado River emptying into the Matagorda Bay on the Gulf of Mexico in order to reduce its predictive uncertainty. We describe the success of these efforts as well as the current limitations in fulfilling the needs of the decision-makers. Finally, we also reflect on how these recent developments can leverage the implementation of a more effective response to flood disasters worldwide and can support global initiatives, such as the Global Flood Partnership.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.
2018-01-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
NASA Astrophysics Data System (ADS)
Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.
2018-02-01
Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.
Buxton, Herbert T.; Reilly, Timothy J.; Kuivila, Kathryn; Kolpin, Dana W.; Bradley, Paul M.; Villeneuve, Daniel L.; Mills, Marc A.
2015-01-01
Assessment and management of the risks of exposure to complex chemical mixtures in streams are priorities for human and environmental health organizations around the world. The current lack of information on the composition and variability of environmental mixtures and a limited understanding of their combined effects are fundamental obstacles to timely identification and prevention of adverse human and ecological effects of exposure. This report describes the design of a field-based study of the composition and biological activity of chemical mixtures in U.S. stream waters affected by a wide range of human activities and contaminant sources. The study is a collaborative effort by the U.S. Geological Survey and the U.S. Environmental Protection Agency. Scientists sampled 38 streams spanning 24 States and Puerto Rico. Thirty-four of the sites were located in watersheds impacted by multiple contaminant sources, including industrial and municipal wastewater discharges, crop and animal agricultural runoff, urban runoff, and other point and nonpoint contaminant sources. The remaining four sites were minimally development reference watersheds. All samples underwent comprehensive chemical and biological characterization, including sensitive and specific direct analysis for over 700 dissolved organic and inorganic chemicals and field parameters, identification of unknown contaminants (environmental diagnostics), and a variety of bioassays to evaluate biological activity and toxicity.
Kronholm, Scott C.; Capel, Paul D.; Terziotti, Silvia
2016-01-01
Accurate estimation of total nitrogen loads is essential for evaluating conditions in the aquatic environment. Extrapolation of estimates beyond measured streams will greatly expand our understanding of total nitrogen loading to streams. Recursive partitioning and random forest regression were used to assess 85 geospatial, environmental, and watershed variables across 636 small (<585 km2) watersheds to determine which variables are fundamentally important to the estimation of annual loads of total nitrogen. Initial analysis led to the splitting of watersheds into three groups based on predominant land use (agricultural, developed, and undeveloped). Nitrogen application, agricultural and developed land area, and impervious or developed land in the 100-m stream buffer were commonly extracted variables by both recursive partitioning and random forest regression. A series of multiple linear regression equations utilizing the extracted variables were created and applied to the watersheds. As few as three variables explained as much as 76 % of the variability in total nitrogen loads for watersheds with predominantly agricultural land use. Catchment-scale national maps were generated to visualize the total nitrogen loads and yields across the USA. The estimates provided by these models can inform water managers and help identify areas where more in-depth monitoring may be beneficial.
Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex
Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.
2009-01-01
‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492
Is Statistical Learning Constrained by Lower Level Perceptual Organization?
Emberson, Lauren L.; Liu, Ran; Zevin, Jason D.
2013-01-01
In order for statistical information to aid in complex developmental processes such as language acquisition, learning from higher-order statistics (e.g. across successive syllables in a speech stream to support segmentation) must be possible while perceptual abilities (e.g. speech categorization) are still developing. The current study examines how perceptual organization interacts with statistical learning. Adult participants were presented with multiple exemplars from novel, complex sound categories designed to reflect some of the spectral complexity and variability of speech. These categories were organized into sequential pairs and presented such that higher-order statistics, defined based on sound categories, could support stream segmentation. Perceptual similarity judgments and multi-dimensional scaling revealed that participants only perceived three perceptual clusters of sounds and thus did not distinguish the four experimenter-defined categories, creating a tension between lower level perceptual organization and higher-order statistical information. We examined whether the resulting pattern of learning is more consistent with statistical learning being “bottom-up,” constrained by the lower levels of organization, or “top-down,” such that higher-order statistical information of the stimulus stream takes priority over the perceptual organization, and perhaps influences perceptual organization. We consistently find evidence that learning is constrained by perceptual organization. Moreover, participants generalize their learning to novel sounds that occupy a similar perceptual space, suggesting that statistical learning occurs based on regions of or clusters in perceptual space. Overall, these results reveal a constraint on learning of sound sequences, such that statistical information is determined based on lower level organization. These findings have important implications for the role of statistical learning in language acquisition. PMID:23618755
Interactions between dorsal and ventral streams for controlling skilled grasp
van Polanen, Vonne; Davare, Marco
2015-01-01
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. PMID:26169317
Physical habitat in the national wadeable streams assessment
Effective environmental policy decisions require stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilitate i...
Konrad, Christopher P.; Munn, Mark D.
2016-01-01
Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At-site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at-site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl aaccrued and persisted at levels within 50% of at-site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross-site variation in maximum chlorophyll a(adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high-biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information.
Cortical Representations of Speech in a Multitalker Auditory Scene.
Puvvada, Krishna C; Simon, Jonathan Z
2017-09-20
The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory scene, with both attended and unattended speech streams represented with almost equal fidelity. We also show that higher-order auditory cortical areas, by contrast, represent an attended speech stream separately from, and with significantly higher fidelity than, unattended speech streams. Furthermore, the unattended background streams are represented as a single undivided background object rather than as distinct background objects. Copyright © 2017 the authors 0270-6474/17/379189-08$15.00/0.
NASA Astrophysics Data System (ADS)
Doctor, D. H.; Sebestyen, S. D.; Aiken, G. R.; Shanley, J. B.; Kendall, C.; Boyer, E. W.
2006-12-01
Increased DOC flux in streams and rivers is commonly observed during high runoff regimes, however DOC concentrations alone do not provide information about multiple sources or pathways of DOC to streams. In an effort to gain this information, we measured DOC concentrations and stable carbon isotope composition (δ13C-DOC) on samples collected at high-frequency during events at Sleepers River Research Watershed in Vermont, USA. During snowmelt and storm events, peaks in stream DOC concentration (up to 10.5 mg/L) were coincident with peaks in flow. Stream water δ13C-DOC measurements ranged between -23.7‰ and - 28.9‰ and indicated changing sources of DOC during events; the highest δ13C-DOC values occurred consistently at the lowest flows, and the lowest δ13C-DOC values occurred with peaks in discharge. Water samples collected from shallow wells and stacked soil lysimeters showed the highest DOC concentrations in the most shallow (<0.5 m) lysimeter waters, and the lowest concentrations in the deeper (>1.5 m) well waters. Wells and lysimeters exhibited a range of δ13C-DOC values similar to those observed in the stream; however, samples collected from shallow horizons at nested wells and lysimeters consistently showed lower δ13C-DOC values than those from greater depths. Maple leaf litter collected from across the watershed provided an end-member of fresh organic material, with average δ13C composition of -31.3±0.7‰ (n=57), which is lower than the lowest measured DOC values in any of the stream, well, or lysimeter waters. A subset of stream waters were fractionated onto XAD4 and XAD8 resins; the hydrophobic acid fraction (XAD8) had consistently lower δ13C values than the transphilic acid fraction (XAD4), and both of these were lower than those of the bulk DOC. Samples with lower δ13C-DOC values also exhibited higher SUVA-254 values, i.e. greater aromaticity. Thus, lower δ13C-DOC values are interpreted as an indicator of relatively "fresh", more aromatic and more biologically labile material while higher δ13C-DOC values indicate relatively more degraded material. Since lower δ13C-DOC values were observed in the shallowest well and lysimeter waters and in stream water during periods of highest DOC flux, we surmise that fresh DOC is mobilized to the stream along relatively shallow flowpaths during high flows, and that a second source of more degraded DOC supplies background concentrations to the stream at lower flows.
Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution
Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.
2005-01-01
We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.
Multiple Streaming and the Probability Distribution of Density in Redshift Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Lam; Kofman, Lev; Shandarin, Sergei F.
2000-07-01
We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude ({sigma}{sub l}(less-or-similar sign)1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which aremore » physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S{sub 3}, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated. (c) 2000 The American Astronomical Society.« less
ERIC Educational Resources Information Center
Lancaster, Kari; Ritter, Alison; Hughes, Caitlin; Hoppe, Robert
2017-01-01
This paper critically analyses the introduction of drug detection dogs as a tool for policing of illicit drugs in New South Wales, Australia. Using Kingdon's "multiple streams" heuristic as a lens for analysis, we identify how the issue of drugs policing became prominent on the policy agenda, and the conditions under which the…
Scheduling optimization of design stream line for production research and development projects
NASA Astrophysics Data System (ADS)
Liu, Qinming; Geng, Xiuli; Dong, Ming; Lv, Wenyuan; Ye, Chunming
2017-05-01
In a development project, efficient design stream line scheduling is difficult and important owing to large design imprecision and the differences in the skills and skill levels of employees. The relative skill levels of employees are denoted as fuzzy numbers. Multiple execution modes are generated by scheduling different employees for design tasks. An optimization model of a design stream line scheduling problem is proposed with the constraints of multiple executive modes, multi-skilled employees and precedence. The model considers the parallel design of multiple projects, different skills of employees, flexible multi-skilled employees and resource constraints. The objective function is to minimize the duration and tardiness of the project. Moreover, a two-dimensional particle swarm algorithm is used to find the optimal solution. To illustrate the validity of the proposed method, a case is examined in this article, and the results support the feasibility and effectiveness of the proposed model and algorithm.
Kane, Sumit
2016-04-25
This commentary reflects upon the article along three broad lines. It reflects on the theoretical choices and omissions, particularly highlighting why it is important to adapt the multiple streams framework (MSF) when applying it in a socio-political context like Vietnam's. The commentary also reflects upon the analytical threads tackled by Ha et al; for instance, it highlights the opportunities offered by, and raises questions about the centrality of the Policy Entrepreneur in getting the policy onto the political agenda and in pushing it through. The commentary also dwells on the implications of the article for development aid policies and practices. Throughout, the commentary signposts possible themes for Ha et al to consider for further analysis, and more generally, for future research using Kingdon's multiple streams theory. © 2016 by Kerman University of Medical Sciences.
Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register
Perry, Charles A.; Wolock, David M.; Artman, Joshua C.
2004-01-01
The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.
Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed
2016-01-01
Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information. PMID:26989281
Xia, Jing; Zhang, Wei; Jiang, Yizhou; Li, You; Chen, Qi
2018-05-16
Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual dominance model in terms of the practice effect during cross-modal selective attention. Copyright © 2018 Elsevier Ltd. All rights reserved.
Resistance and change: a multiple streams approach to understanding health policy making in Ghana.
Kusi-Ampofo, Owuraku; Church, John; Conteh, Charles; Heinmiller, B Timothy
2015-02-01
Although much has been written on health policy making in developed countries, the same cannot be said of less developed countries, especially in Africa. Drawing largely on available historical and government records, newspaper publications, parliamentary Hansards, and published books and articles, this article uses John W. Kingdon's multiple streams framework to explain how the problem, politics, and policy streams converged for Ghana's National Health Insurance Scheme (NHIS) to be passed into law in 2003. The article contends that a change in government in the 2000 general election opened a "policy window" for eventual policy change from "cash-and-carry" to the NHIS. Copyright © 2015 by Duke University Press.
J.Y. Wu; J.R. Thompson; R.K. Kolka; K.J. Franz; T.W. Stewart
2013-01-01
Streams are natural features in urban landscapes that can provide ecosystem services for urban residents. However, urban streams are under increasing pressure caused by multiple anthropogenic impacts, including increases in human population and associated impervious surface area, and accelerated climate change. The ability to anticipate these changes and better...
The effects of logging road construction on insect drop into a small coastal stream
Lloyd J. Hess
1969-01-01
Abstract - Because stream fisheries are so closely associated with forested watersheds, it is necessary that the streams and forests be managed jointly under a system of multiple use. This requires a knowledge of the interrelationships between these resources to yield maximum returns from both. It is the purpose of this paper to relate logging practices to fish...
Bret C. Harvey; Steven F. Railsback
2009-01-01
We explored the effects of elevated turbidity on stream-resident populations of coastal cutthroat trout Oncorhynchus clarkii clarkii using a spatially explicit individual-based model. Turbidity regimes were contrasted by means of 15-year simulations in a third-order stream in northwestern California. The alternative regimes were based on multiple-year, continuous...
Proxy-assisted multicasting of video streams over mobile wireless networks
NASA Astrophysics Data System (ADS)
Nguyen, Maggie; Pezeshkmehr, Layla; Moh, Melody
2005-03-01
This work addresses the challenge of providing seamless multimedia services to mobile users by proposing a proxy-assisted multicast architecture for delivery of video streams. We propose a hybrid system of streaming proxies, interconnected by an application-layer multicast tree, where each proxy acts as a cluster head to stream out content to its stationary and mobile users. The architecture is based on our previously proposed Enhanced-NICE protocol, which uses an application-layer multicast tree to deliver layered video streams to multiple heterogeneous receivers. We targeted the study on placements of streaming proxies to enable efficient delivery of live and on-demand video, supporting both stationary and mobile users. The simulation results are evaluated and compared with two other baseline scenarios: one with a centralized proxy system serving the entire population and one with mini-proxies each to serve its local users. The simulations are implemented using the J-SIM simulator. The results show that even though proxies in the hybrid scenario experienced a slightly longer delay, they had the lowest drop rate of video content. This finding illustrates the significance of task sharing in multiple proxies. The resulted load balancing among proxies has provided a better video quality delivered to a larger audience.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.
Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-04-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision
Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-01-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854
Coles, James F.; McMahon, Gerard; Bell, Amanda H.; Brown, Larry R.; Fitzpatrick, Faith A.; Scudder Eikenberry, Barbara C.; Woodside, Michael D.; Cuffney, Thomas F.; Bryant, Wade L.; Cappiella, Karen; Fraley-McNeal, Lisa; Stack, William P.
2012-01-01
Which urban-related stressors are most closely linked to biological community degradation, and how can multiple stressors be managed to protect stream health as a watershed becomes increasingly urbanized?
Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.
2015-12-24
Equations developed in this study apply only to stream locations where flows are not substantially affected by regulation, diversion, or urbanization. All equations presented in this study will be incorporated into StreamStats, a web-based geographic information system tool developed by the U.S. Geological Survey. StreamStats allows users to obtain streamflow statistics, basin characteristics, and other information for user-selected locations on streams through an interactive map.
Dunn, Corey G.; Angermeier, Paul
2016-01-01
Understanding relationships between habitat associations for individuals and habitat factors that limit populations is a primary challenge for managers of stream fishes. Although habitat use by individuals can provide insight into the adaptive significance of selected microhabitats, not all habitat parameters will be significant at the population level, particularly when distributional patterns partially result from habitat degradation. We used underwater observation to quantify microhabitat selection by an imperiled stream fish, the Candy Darter Etheostoma osburni, in two streams with robust populations. We developed multiple-variable and multiple-life-stage habitat suitability indices (HSIs) from microhabitat selection patterns and used them to assess the suitability of available habitat in streams where Candy Darter populations were extirpated, localized, or robust. Next, we used a comparative framework to examine relationships among (1) habitat availability across streams, (2) projected habitat suitability of each stream, and (3) a rank for the likely long-term viability (robustness) of the population inhabiting each stream. Habitat selection was characterized by ontogenetic shifts from the low-velocity, slightly embedded areas used by age-0 Candy Darters to the swift, shallow areas with little fine sediment and complex substrate, which were used by adults. Overall, HSIs were strongly correlated with population rank. However, we observed weak or inverse relationships between predicted individual habitat suitability and population robustness for multiple life stages and variables. The results demonstrated that microhabitat selection by individuals does not always reflect population robustness, particularly when based on a single life stage or season, which highlights the risk of generalizing habitat selection that is observed during nonstressful periods or for noncritical resources. These findings suggest that stream fish managers may need to be cautious when implementing conservation measures based solely on observations of habitat selection by individuals and that detailed study at the individual and population levels may be necessary to identify habitat that limits populations.
Method and apparatus of prefetching streams of varying prefetch depth
Gara, Alan [Mount Kisco, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Hoenicke, Dirk [Seebruck-Seeon, DE
2012-01-24
Method and apparatus of prefetching streams of varying prefetch depth dynamically changes the depth of prefetching so that the number of multiple streams as well as the hit rate of a single stream are optimized. The method and apparatus in one aspect monitor a plurality of load requests from a processing unit for data in a prefetch buffer, determine an access pattern associated with the plurality of load requests and adjust a prefetch depth according to the access pattern.
Watanabe, Mirai; Miura, Shingo; Hasegawa, Shun; Koshikawa, Masami K; Takamatsu, Takejiro; Kohzu, Ayato; Imai, Akio; Hayashi, Seiji
2018-04-28
High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L -1 , those in 31 catchments consistently exceeded 1 mgN L -1 , indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.
Villeneuve, B; Piffady, J; Valette, L; Souchon, Y; Usseglio-Polatera, P
2018-01-15
The purpose of our approach was to take into account the nested spatial scales driving stream functioning in the description of pressures/ecological status links by analysing the results of a hierarchical model. The development of this model has allowed us to answer the following questions: Does the consideration of the indirect links between anthropogenic pressures and stream ecological status modify the hierarchy of pressure types impacting benthic invertebrates? Do the different nested scales play different roles in the anthropogenic pressures/ecological status relationship? Does this model lead to better understanding of the specific role of hydromorphology in the evaluation of stream ecological status? To achieve that goal, we used the Partial Least Square (PLS) path modelling method to develop a structural model linking variables describing (i) land use and hydromorphological alterations at the watershed scale, (ii) hydromorphological alterations at the reach scale, (iii) nutrients-organic matter contamination levels at the site scale, and (iv) substrate characteristics at the sampling site scale, to explain variation in values of a macroinvertebrate-based multimetric index: the French I 2 M 2 . We have highlighted the importance of land use effects exerted on both hydromorphological and chemical characteristics of streams observed at finer scales and their subsequent indirect impact on stream ecological status. Hydromorphological alterations have an effect on the substrate mosaic structure and on the concentrations of nutrients and organic matter at site scale. This result implies that stream hydromorphology can have a major indirect effect on macroinvertebrate assemblages and that the hierarchy of impacts of anthropogenic pressures on stream ecological status generally described in the literature - often determining strategic restoration priorities - has to be re-examined. Finally, the effects of nutrients and organic matter on macroinvertebrate assemblages are lower than expected when all the indirect effects of land use and hydromorphological alterations are taken into account. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing the chemical contamination dynamics in a mixed land use stream system.
Sonne, Anne Th; McKnight, Ursula S; Rønde, Vinni; Bjerg, Poul L
2017-11-15
Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The results emphasize that future investigations should include multiple compounds and stream compartments, and highlight the need for holistic approaches when risk assessing these dynamic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flood-frequency characteristics of Wisconsin streams
Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.
2017-05-22
Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.
Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.
NASA Astrophysics Data System (ADS)
Deng, Baoqing; Si, Yinbing; Wang, Jia
2017-12-01
Transient storages may vary along the stream due to stream hydraulic conditions and the characteristics of storage. Analytical solutions of transient storage models in literature didn't cover the spatially non-uniform storage. A novel integral transform strategy is presented that simultaneously performs integral transforms to the concentrations in the stream and in storage zones by using the single set of eigenfunctions derived from the advection-diffusion equation of the stream. The semi-analytical solution of the multiple-zone transient storage model with the spatially non-uniform storage is obtained by applying the generalized integral transform technique to all partial differential equations in the multiple-zone transient storage model. The derived semi-analytical solution is validated against the field data in literature. Good agreement between the computed data and the field data is obtained. Some illustrative examples are formulated to demonstrate the applications of the present solution. It is shown that solute transport can be greatly affected by the variation of mass exchange coefficient and the ratio of cross-sectional areas. When the ratio of cross-sectional areas is big or the mass exchange coefficient is small, more reaches are recommended to calibrate the parameter.
Urban development and stream ecosystem health—Science capabilities of the U.S. Geological Survey
Reilly, Pamela A.; Szabo, Zoltan; Coles, James F.
2016-04-29
Urban development creates multiple stressors that can degrade stream ecosystems by changing stream hydrology, water quality, and physical habitat. Contaminants, habitat destruction, and increasing streamflow variability resulting from urban development have been associated with the disruption of biological communities, particularly the loss of sensitive aquatic biota. Understanding how algal, invertebrate, and fish communities respond to these physical and chemical stressors can provide important clues as to how streams should be managed to protect stream ecosystems as a watershed becomes increasingly urbanized. The U.S. Geological Survey continues to lead monitoring efforts and scientific studies on the effects of urban development on stream ecosystems in metropolitan areas across the United States.
Wagner, Chad R.; Tighe, Kirsten C.; Terziotti, Silvia
2009-01-01
StreamStats is a Web-based Geographic Information System (GIS) application that was developed by the U.S. Geological Survey (USGS) in cooperation with Environmental Systems Research Institute, Inc. (ESRI) to provide access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and selected ungaged sites. StreamStats also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that can affect streamflow conditions. This functionality can be accessed through a map-based interface with the user's Web browser or through individual functions requested remotely through other Web applications.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection.
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request.
RS-Forest: A Rapid Density Estimator for Streaming Anomaly Detection
Wu, Ke; Zhang, Kun; Fan, Wei; Edwards, Andrea; Yu, Philip S.
2015-01-01
Anomaly detection in streaming data is of high interest in numerous application domains. In this paper, we propose a novel one-class semi-supervised algorithm to detect anomalies in streaming data. Underlying the algorithm is a fast and accurate density estimator implemented by multiple fully randomized space trees (RS-Trees), named RS-Forest. The piecewise constant density estimate of each RS-tree is defined on the tree node into which an instance falls. Each incoming instance in a data stream is scored by the density estimates averaged over all trees in the forest. Two strategies, statistical attribute range estimation of high probability guarantee and dual node profiles for rapid model update, are seamlessly integrated into RS-Forest to systematically address the ever-evolving nature of data streams. We derive the theoretical upper bound for the proposed algorithm and analyze its asymptotic properties via bias-variance decomposition. Empirical comparisons to the state-of-the-art methods on multiple benchmark datasets demonstrate that the proposed method features high detection rate, fast response, and insensitivity to most of the parameter settings. Algorithm implementations and datasets are available upon request. PMID:25685112
R.A. Sponseller; E.F. Benfield
2001-01-01
Stream ecosystems can be strongly influenced by land use within watersheds. The extent of this influence may depend on the spatial distribution of developed land and the scale at which it is evaluated. Effects of land-cover patterns on leaf breakdown were studied in 8 Southern Appalachian headwater streams. Using a GIS, land cover was evaluated at several spatial...
Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges
NASA Astrophysics Data System (ADS)
Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile
2015-04-01
Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross-sections. The data from field measurements was combined with detailed water quality analysis and processed by data analysis with Matlab to produce more holistic information about the behavior, mixing and dilution of possible contaminants at the river. Moreover, the results can be used to improve water sampling procedures for more representative sampling and to plan continuous monitoring site locations and measuring device mounting places.
Sable, K A; Wohl, E
2006-05-01
Lithology is one of many factors influencing the amount, grain size distribution, and location of fine sediment deposition on the bed of mountain stream channels. In the Oregon Coast Range, 18 pool-riffle stream reaches with similar slope and intact riparian area and relatively unaffected by logjams were surveyed for assessment of fine sediment deposition. Half of the streams were in watersheds underlain by relatively erodible sandstone. The other half were underlain by a more resistant basalt. Channel morphology, hydraulic variables, particle size, relative pool volume of fine sediment (V*), and wood characteristics were measured in the streams. A significantly higher amount of fine sediment was deposited in the sandstone channels than in the basalt channels, as indicated by V*. Grab samples of sediment from pools also were significantly finer grained in the sandstone channels. Geographic information systems (GIS) software was used to derive several variables that might correlate with fine sediment deposition. These variables were combined with those derived from field data to create multiple linear regression models to be used for further exploration of the type and relative influence of factors affecting fine sediment deposition. Lithology appeared to be significant in some of these models, but usually was not the primary driver. The results from these models indicate that V* at the reach scale is best explained by stream power per unit area and by the volume of wood perpendicular to the flow per channel area (R(2) = 0.46). Findings show that V* is best explained using only watershed scale variables, including negative correlations with relief ratio and basin precipitation index, and positive correlations with maximum slope and circularity.
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.
2016-11-22
Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.
Grossberg, Stephen
2016-01-01
The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob—V2 interstripe—V4 cortical stream and the V1 blob—V2 thin stripe—V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in cortical area V1 are transformed into cells that compute relative disparity in cortical area V2. Relative disparity is a more invariant measure of an object's depth and 3D shape, and is sensitive to figure-ground properties. PMID:26858665
NASA Astrophysics Data System (ADS)
Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.
2017-12-01
Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic vegetation). Results confirm that TS is spatially variable as a function of spatiotemporal and eco-geomorphological features. A substantial number of samples with nearly equivalent chances of being from the advective or TS zones suggests that the distinction between zones is often poorly defined.
Grossberg, Stephen
2015-01-01
The FACADE model, and its laminar cortical realization and extension in the 3D LAMINART model, have explained, simulated, and predicted many perceptual and neurobiological data about how the visual cortex carries out 3D vision and figure-ground perception, and how these cortical mechanisms enable 2D pictures to generate 3D percepts of occluding and occluded objects. In particular, these models have proposed how border ownership occurs, but have not yet explicitly explained the correlation between multiple properties of border ownership neurons in cortical area V2 that were reported in a remarkable series of neurophysiological experiments by von der Heydt and his colleagues; namely, border ownership, contrast preference, binocular stereoscopic information, selectivity for side-of-figure, Gestalt rules, and strength of attentional modulation, as well as the time course during which such properties arise. This article shows how, by combining 3D LAMINART properties that were discovered in two parallel streams of research, a unified explanation of these properties emerges. This explanation proposes, moreover, how these properties contribute to the generation of consciously seen 3D surfaces. The first research stream models how processes like 3D boundary grouping and surface filling-in interact in multiple stages within and between the V1 interblob-V2 interstripe-V4 cortical stream and the V1 blob-V2 thin stripe-V4 cortical stream, respectively. Of particular importance for understanding figure-ground separation is how these cortical interactions convert computationally complementary boundary and surface mechanisms into a consistent conscious percept, including the critical use of surface contour feedback signals from surface representations in V2 thin stripes to boundary representations in V2 interstripes. Remarkably, key figure-ground properties emerge from these feedback interactions. The second research stream shows how cells that compute absolute disparity in cortical area V1 are transformed into cells that compute relative disparity in cortical area V2. Relative disparity is a more invariant measure of an object's depth and 3D shape, and is sensitive to figure-ground properties.
NASA Astrophysics Data System (ADS)
Gaona Garcia, J.; Lewandowski, J.; Bellin, A.
2017-12-01
Groundwater-stream water interactions in rivers determine water balances, but also chemical and biological processes in the streambed at different spatial and temporal scales. Due to the difficult identification and quantification of gaining, neutral and losing conditions, it is necessary to combine techniques with complementary capabilities and scale ranges. We applied this concept to a study site at the River Schlaube, East Brandenburg-Germany, a sand bed stream with intense sediment heterogeneity and complex environmental conditions. In our approach, point techniques such as temperature profiles of the streambed together with vertical hydraulic gradients provide data for the estimation of fluxes between groundwater and surface water with the numerical model 1DTempPro. On behalf of distributed techniques, fiber optic distributed temperature sensing identifies the spatial patterns of neutral, down- and up-welling areas by analysis of the changes in the thermal patterns at the streambed interface under certain flow. The study finally links point and surface temperatures to provide a method for upscaling of fluxes. Point techniques provide point flux estimates with essential depth detail to infer streambed structures while the results hardly represent the spatial distribution of fluxes caused by the heterogeneity of streambed properties. Fiber optics proved capable of providing spatial thermal patterns with enough resolution to observe distinct hyporheic thermal footprints at multiple scales. The relation of thermal footprint patterns and temporal behavior with flux results from point techniques enabled the use of methods for spatial flux estimates. The lack of detailed information of the physical driver's spatial distribution restricts the spatial flux estimation to the application of the T-proxy method, whose highly uncertain results mainly provide coarse spatial flux estimates. The study concludes that the upscaling of groundwater-stream water interactions using thermal measurements with combined point and distributed techniques requires the integration of physical drivers because of the heterogeneity of the flux patterns. Combined experimental and modeling approaches may help to obtain more reliable understanding of groundwater-surface water interactions at multiple scales.
Beer, Sebastian; Dobler, Dorota; Gross, Alexander; Ost, Martin; Elseberg, Christiane; Maeder, Ulf; Schmidts, Thomas Michael; Keusgen, Michael; Fiebich, Martin; Runkel, Frank
2013-01-30
Multiple emulsions offer various applications in a wide range of fields such as pharmaceutical, cosmetics and food technology. Two features are known to yield a great influence on multiple emulsion quality and utility as encapsulation efficiency and prolonged stability. To achieve a prolonged stability, the production of the emulsions has to be observed and controlled, preferably in line. In line measurements provide available parameters in a short time frame without the need for the sample to be removed from the process stream, thereby enabling continuous process control. In this study, information about the physical state of multiple emulsions obtained from dielectric spectroscopy (DS) is evaluated for this purpose. Results from dielectric measurements performed in line during the production cycle are compared to theoretically expected results and to well established off line measurements. Thus, a first step to include the production of multiple emulsions into the process analytical technology (PAT) guidelines of the Food and Drug Administration (FDA) is achieved. DS proved to be beneficial in determining the crucial stopping criterion, which is essential in the production of multiple emulsions. The stopping of the process at a less-than-ideal point can severely lower the encapsulation efficiency and the stability, thereby lowering the quality of the emulsion. DS is also expected to provide further information about the multiple emulsion like encapsulation efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Masoner, Jason R.; March, Ferrella
2006-01-01
Geographic Information Systems have many uses, one of which includes the reproducible computation of environmental characteristics that can be used to categorize hydrologic features. The Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality are investigating Geographic Information Systems techniques to determine partial drainage-basin areas, stream-buffer areas, stream length, and land uses (drainage basin and stream characteristics) in northeastern Oklahoma. The U.S Geological Survey, in cooperation with Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality, documented the methods used to determine drainage-basin and stream characteristics for the Neosho and Spring Rivers above Grand Lake Of the Cherokees in northeastern Oklahoma and calculated the characteristics. The drainage basin and stream characteristics can be used by the Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality to aid in natural-resource assessments.
NASA Astrophysics Data System (ADS)
Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.
2017-12-01
Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (<0.1°C) were needed to adequately describe diel stream temperature patterns and capture the differences between paired 1st order and 4th order forest streams draining north and south facing slopes. This finding along with geospatial models of subcanopy solar radiation and channel morphology were used to develop hypotheses and guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.
Public Health Professionals as Policy Entrepreneurs: Arkansas's Childhood Obesity Policy Experience
Craig, Rebekah L.; Felix, Holly C.; Phillips, Martha M.
2010-01-01
In response to a nationwide rise in obesity, several states have passed legislation to improve school health environments. Among these was Arkansas's Act 1220 of 2003, the most comprehensive school-based childhood obesity legislation at that time. We used the Multiple Streams Framework to analyze factors that brought childhood obesity to the forefront of the Arkansas legislative agenda and resulted in the passage of Act 1220. When 3 streams (problem, policy, and political) are combined, a policy window is opened and policy entrepreneurs may advance their goals. We documented factors that produced a policy window and allowed entrepreneurs to enact comprehensive legislation. This historical analysis and the Multiple Streams Framework may serve as a roadmap for leaders seeking to influence health policy. PMID:20864715
The EPA National Rivers and Streams Assessment (NRSA), one of the National Aquatic Resource Surveys (NARS), provides information on the status and extent of biological condition in streams and rivers. Information from the NRSA helps EPA and partners meet the reporting requiremen...
Effective environmental policy decisions benefit from stream habitat information that is accurate, precise, and relevant. The recent National Wadeable Streams Assessment (NWSA) carried out by the U.S. EPA required physical habitat information sufficiently comprehensive to facilit...
Bellucci, Christopher J; Becker, Mary E; Beauchene, Mike; Dunbar, Lee
2013-06-01
Bioassessments have formed the foundation of many water quality monitoring programs throughout the United States. Like many state water quality programs, Connecticut has developed a relational database containing information about species richness, species composition, relative abundance, and feeding relationships among macroinvertebrates present in stream and river systems. Geographic Information Systems can provide estimates of landscape condition and watershed characteristics and when combined with measurements of stream biology, provide a useful visual display of information that is useful in a management context. The objective of our study was to estimate the stream health for all wadeable stream kilometers in Connecticut using a combination of macroinvertebrate metrics and landscape variables. We developed and evaluated models using an information theoretic approach to predict stream health as measured by macroinvertebrate multimetric index (MMI) and identified the best fitting model as a three variable model, including percent impervious land cover, a wetlands metric, and catchment slope that best fit the MMI scores (adj-R (2) = 0.56, SE = 11.73). We then provide examples of how modeling can augment existing programs to support water management policies under the Federal Clean Water Act such as stream assessments and anti-degradation.
NASA Astrophysics Data System (ADS)
Raman, Barani; Meier, Douglas; Shenoy, Rupa; Benkstein, Kurt; Semancik, Steve
2011-09-01
We describe progress on an array-based microsensor approach employed for detecting trace levels of toxic industrial chemicals (TICs) in air-based backgrounds with varied levels of humidity, and with occasional introduction of aggressive interferents. Our MEMS microhotplate arrays are populated with multiple chemiresistive sensing materials, and all elements are programmed to go through extensive temperature cycling over repetitive cycles with lengths of approximately 20 s. Under such operation, analytically-rich data streams are produced containing the required information for target recognition.
ATLAS Live: Collaborative Information Streams
NASA Astrophysics Data System (ADS)
Goldfarb, Steven; ATLAS Collaboration
2011-12-01
I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.
Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David
2017-01-01
Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.
Wilding, Bruce M; Turner, Terry D
2014-12-02
A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.
Research to inform policy on headwater streams: ongoing and future directions
Headwater streams are the exterior links of stream networks and represent a substantial proportion of U.S. stream miles. Alteration and loss of headwater streams have occurred without an understanding of the potential consequences to larger downstream waterbodies. Recent court ca...
NASA Astrophysics Data System (ADS)
Lim, J.; Lee, K. S.
2017-12-01
Flooding is extremely dangerous when a river overflows to inundate an urban area. From 1995 to 2016, North Korea (NK) experienced annual extensive damage to life and property almost each year due to a levee breach resulting from typhoons and heavy rainfall during the summer monsoon season. Recently, Hoeryeong City (2016) experienced heavy rainfall during typhoon Lionrock and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings and settlements (11,600). The NK state media described it as the biggest national disaster since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a serious impact, which makes it necessary to figure out the extent of floods in restoring the damaged environment. In addition, traditional hydrological model is impractical to delineate Flood Damaged Areas (FDAs) in NK due to the inaccessibility. Under such a situation, multiple optical Remote Sensing (RS) and radar RS along with a Geographic Information System (GIS)-based spatial analysis were utilized in this study (1) to develop modelling FDA delineation using multiple RS and GIS methods and (2) to conduct flood risk assessment in NK. Interpreting high-resolution web-based satellite imagery were also implemented to confirm the results of the study. From the study result, it was found that (1) on August 30th, 2016, an area of 117.2 km2 (8.6%) at Hoeryeong City was inundated. Most floods occurred in flat areas with a lower and middle stream order. (2) In the binary logistic regression model applied in this study, the distance from the nearest stream map and landform map variables are important factors to delineate FDAs because these two factors reflect heterogeneous mountainous NK topography. (3) Total annual flood risk of study area is estimated to be ₩454.13 million NKW ($504,417.24 USD, and ₩576.53 million SKW). The risk of the confluence of the Tumen River and Hoeryeong stream appears to be the highest. (4) High resolution satellite images can be used to confirm study results as ground truth data in this study, which shows the possibility of further application in environmental research of NK. Ultimately, this study provides recommendations to improve flood risk management in NK upon reunification.
SIMULATING SUB-DECADAL CHANNEL MORPHOLOGIC CHANGE IN EPHEMERAL STREAM NETWORKS
A distributed watershed model was modified to simulate cumulative channel morphologic
change from multiple runoff events in ephemeral stream networks. The model incorporates the general design of the event-based Kinematic Runoff and" Erosion Model (KINEROS), which describes t...
Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream.
Ecosystem metabolism is an important mechanism for nutrient retention in streams, yet few high studies have investigated temporal patterns in gross primary production (GPP) and ecosystem respiration (ER) using high frequency measurements. This is a potentially important oversig...
Modeling Flow and Pollutant Transport in a Karst Watershed with SWAT
USDA-ARS?s Scientific Manuscript database
Karst hydrology is characterized by multiple springs, sinkholes, and losing streams resulting from acidic water percolating through limestone. These features provide direct connections between surface water and groundwater and increase the risk of groundwater, springs and stream contamination. Anthr...
NASA Astrophysics Data System (ADS)
Rizzo, D. M.; Fytilis, N.; Stevens, L.
2012-12-01
Environmental managers are increasingly required to monitor and forecast long-term effects and vulnerability of biophysical systems to human-generated stresses. Ideally, a study involving both physical and biological assessments conducted concurrently (in space and time) could provide a better understanding of the mechanisms and complex relationships. However, costs and resources associated with monitoring the complex linkages between the physical, geomorphic and habitat conditions and the biological integrity of stream reaches are prohibitive. Researchers have used classification techniques to place individual streams and rivers into a broader spatial context (hydrologic or health condition). Such efforts require environmental managers to gather multiple forms of information - quantitative, qualitative and subjective. We research and develop a novel classification tool that combines self-organizing maps with a Naïve Bayesian classifier to direct resources to stream reaches most in need. The Vermont Agency of Natural Resources has developed and adopted protocols for physical stream geomorphic and habitat assessments throughout the state of Vermont. Separate from these assessments, the Vermont Department of Environmental Conservation monitors the biological communities and the water quality in streams. Our initial hypothesis is that the geomorphic reach assessments and water quality data may be leveraged to reduce error and uncertainty associated with predictions of biological integrity and stream health. We test our hypothesis using over 2500 Vermont stream reaches (~1371 stream miles) assessed by the two agencies. In the development of this work, we combine a Naïve Bayesian classifier with a modified Kohonen Self-Organizing Map (SOM). The SOM is an unsupervised artificial neural network that autonomously analyzes inherent dataset properties using input data only. It is typically used to cluster data into similar categories when a priori classes do not exist. The incorporation of a Bayesian classifier allows one to explicitly incorporate existing knowledge and expert opinion into the data analysis. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of proactive adaptive watershed management applications.
Lagtime relations for urban streams in Georgia
Inman, Ernest J.
2000-01-01
Urban flood hydrographs are needed for the design of many highway drainage structures, embankments, and entrances to detention ponds. The three components that are needed to simulate urban flood hydrographs at ungaged sites are the design flood, the dimensionless hydrograph, and lagtime. The design flood and the dimensionless hydrograph have been presented in earlier studies for urban streams in Georgia. The objective of this study was to develop equations for estimating lagtime for urban streams in Georgia. Lagtimes were computed for 329 floods at 69 urban gaging stations in 11 cities in Georgia. These data were used to compute an average lagtime for each gaging station. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics, of which drainage area, slope, and impervious area were found to be significant. A qualitative variable was used to account for a geographical bias in flood-frequency region 4, a small area of southwestern Georgia. Information from this report can be used to simulate a flood hydrograph using a dimensionless hydrograph, the design flood, and the lagtime obtained from regression equations for any urban site with less than a 25-square-mile drainage area in Georgia.
Real-Time Data Streaming and Storing Structure for the LHD's Fusion Plasma Experiments
NASA Astrophysics Data System (ADS)
Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Imazu, Setsuo; Nonomura, Miki; Emoto, Masahiko; Yoshida, Masanobu; Iwata, Chie; Ida, Katsumi
2016-02-01
The LHD data acquisition and archiving system, i.e., LABCOM system, has been fully equipped with high-speed real-time acquisition, streaming, and storage capabilities. To deal with more than 100 MB/s continuously generated data at each data acquisition (DAQ) node, DAQ tasks have been implemented as multitasking and multithreaded ones in which the shared memory plays the most important role for inter-process fast and massive data handling. By introducing a 10-second time chunk named “subshot,” endless data streams can be stored into a consecutive series of fixed length data blocks so that they will soon become readable by other processes even while the write process is continuing. Real-time device and environmental monitoring are also implemented in the same way with further sparse resampling. The central data storage has been separated into two layers to be capable of receiving multiple 100 MB/s inflows in parallel. For the frontend layer, high-speed SSD arrays are used as the GlusterFS distributed filesystem which can provide max. 2 GB/s throughput. Those design optimizations would be informative for implementing the next-generation data archiving system in big physics, such as ITER.
A trait-based framework for stream algal communities.
Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David
2016-01-01
The use of trait-based approaches to detect effects of land use and climate change on terrestrial plant and aquatic phytoplankton communities is increasing, but such a framework is still needed for benthic stream algae. Here we present a conceptual framework of morphological, physiological, behavioural and life-history traits relating to resource acquisition and resistance to disturbance. We tested this approach by assessing the relationships between multiple anthropogenic stressors and algal traits at 43 stream sites. Our "natural experiment" was conducted along gradients of agricultural land-use intensity (0-95% of the catchment in high-producing pasture) and hydrological alteration (0-92% streamflow reduction resulting from water abstraction for irrigation) as well as related physicochemical variables (total nitrogen concentration and deposited fine sediment). Strategic choice of study sites meant that agricultural intensity and hydrological alteration were uncorrelated. We studied the relationships of seven traits (with 23 trait categories) to our environmental predictor variables using general linear models and an information-theoretic model-selection approach. Life form, nitrogen fixation and spore formation were key traits that showed the strongest relationships with environmental stressors. Overall, FI (farming intensity) exerted stronger effects on algal communities than hydrological alteration. The large-bodied, non-attached, filamentous algae that dominated under high farming intensities have limited dispersal abilities but may cope with unfavourable conditions through the formation of spores. Antagonistic interactions between FI and flow reduction were observed for some trait variables, whereas no interactions occurred for nitrogen concentration and fine sediment. Our conceptual framework was well supported by tests of ten specific hypotheses predicting effects of resource supply and disturbance on algal traits. Our study also shows that investigating a fairly comprehensive set of traits can help shed light on the drivers of algal community composition in situations where multiple stressors are operating. Further, to understand non-linear and non-additive effects of such drivers, communities need to be studied along multiple gradients of natural variation or anthropogenic stressors.
Elvidge, C K; Macnaughton, C J; Brown, G E
2013-05-01
Prey incorporate multiple forms of publicly available information on predation risk into threat-sensitive antipredator behaviours. Changes in information availability have previously been demonstrated to elicit transient alterations in behavioural patterns, while the effects of long-term deprivation of particular forms of information remain largely unexplored. Damage-released chemical alarm cues from the epidermis of fishes are rendered non-functional under weakly acidic conditions (pH < 6.6), depriving fish of an important source of information on predation risk in acidified waterbodies. We addressed the effects of long-term deprivation on the antipredator responses to different combinations of chemical and visual threat cues via in situ observations of wild, free-swimming 0(+) Atlantic salmon (Salmo salar) fry in four neutral and four weakly acidic nursery streams. In addition, a cross-population transplant experiment and natural interannual variation in acidity enabled the examination of provenance and environment as causes of the observed differences in response. Fish living under weakly acidic conditions demonstrate significantly greater or hypersensitive antipredator responses to visual cues compared to fish under neutral conditions. Under neutral conditions, fish demonstrate complementary (additive or synergistic) effects of paired visual and chemical cues consistent with threat-sensitive responses. Cross-population transplants and interannual comparisons of responses strongly support the conclusion that differences in antipredator responses between neutral and weakly acidic streams result from the loss of chemical information on predation risk, as opposed to population-derived differences in behaviours.
Enabling Data Access for Environmental Monitoring: SERVIR West Africa
NASA Astrophysics Data System (ADS)
Yetman, G.; de Sherbinin, A. M.
2017-12-01
SERVIR is a join effort between NASA and the U.S. Agency for International Development to form regional partnerships and bring satellite-based earth monitoring and geographic information technologies to bear on environmental issues. The recently established SERVIR node for West Africa aims to "connect space to villages" and enable response to environmental change at the national and local level through partnering with a network of organizations in the region. Comprehensive services—data streams, analysis methods and algorithms, and information products for decision making—to support environmental monitoring of five critical issues identified by West African network members are being designed and developed: ephemeral water, charcoal production, locusts, groundwater, and land use/land cover change. Additionally, climate change information is critical for planning and context in each of these issues. The selection of data and methods is a collaborative effort, with experts in the region working with experts at NASA and the scientific community to best meet information monitoring requirements. Design and delivery of these services requires capacity development in a number of areas, including best practices in data management, analysis methods for combining multiple data streams, and information technology infrastructure. Two research centers at Columbia University are implementing partners for SERVIR West Africa, acting to support capacity development in network members through a combination of workshops, training, and implementation of technologies in the region. The presentation will focus on efforts by these centers to assess current capabilities and improve capacity through gathering requirements, system design, technology selection, technology deployment, training, and workshops.
Behavioral Modeling of Adversaries with Multiple Objectives in Counterterrorism.
Mazicioglu, Dogucan; Merrick, Jason R W
2018-05-01
Attacker/defender models have primarily assumed that each decisionmaker optimizes the cost of the damage inflicted and its economic repercussions from their own perspective. Two streams of recent research have sought to extend such models. One stream suggests that it is more realistic to consider attackers with multiple objectives, but this research has not included the adaption of the terrorist with multiple objectives to defender actions. The other stream builds off experimental studies that show that decisionmakers deviate from optimal rational behavior. In this article, we extend attacker/defender models to incorporate multiple objectives that a terrorist might consider in planning an attack. This includes the tradeoffs that a terrorist might consider and their adaption to defender actions. However, we must also consider experimental evidence of deviations from the rationality assumed in the commonly used expected utility model in determining such adaption. Thus, we model the attacker's behavior using multiattribute prospect theory to account for the attacker's multiple objectives and deviations from rationality. We evaluate our approach by considering an attacker with multiple objectives who wishes to smuggle radioactive material into the United States and a defender who has the option to implement a screening process to hinder the attacker. We discuss the problems with implementing such an approach, but argue that research in this area must continue to avoid misrepresenting terrorist behavior in determining optimal defensive actions. © 2017 Society for Risk Analysis.
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...
2016-05-06
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
A Stream Runs through IT: Using Streaming Video to Teach Information Technology
ERIC Educational Resources Information Center
Nicholson, Jennifer; Nicholson, Darren B.
2010-01-01
Purpose: The purpose of this paper is to report student and faculty perceptions from an introductory management information systems course that uses multimedia, specifically streaming video, as a vehicle for teaching students skills in Microsoft Excel and Access. Design/methodology/approach: Student perceptions are captured via a qualitative…
ERIC Educational Resources Information Center
Chinello, Alessandro; Cattani, Veronica; Bonfiglioli, Claudia; Dehaene, Stanislas; Piazza, Manuela
2013-01-01
In the primate brain, sensory information is processed along two partially segregated cortical streams: the ventral stream, mainly coding for objects' shape and identity, and the dorsal stream, mainly coding for objects' quantitative information (including size, number, and spatial position). Neurophysiological measures indicate that such…
Summer temperature patterns in the headwater streams of the Oregon coast range
Liz Dent; Danielle Vick; Kyle Abraham; Stephen Schoenholtz; Sherri Johnson
2008-01-01
Cool summertime stream temperature is an important component of high-quality aquatic habitat in Oregon coastal streams. Within the Oregon Coast Range, small headwater streams make up a majority of the stream network, yet little information is available on temperature patterns and the longitudinal variability for these streams. In this paper we describe preharvest...
NASA Astrophysics Data System (ADS)
Gonzalez-Pinzon, R.; Riveros-Iregui, D. A.; Covino, T. P.
2015-12-01
The interactions between mobile and less mobile hydrologic compartments affect the quality and quantity of water in streams and aquifers, and the cycling of dissolved carbon and nutrients. As new laboratory and field techniques become available, new questions and challenges emerge, including: What do we measure, where, and for how long to fully characterize a system? and, What is the ideal cost-maintenance-benefit relationship that we should strive for to maximize knowledge gained in different field settings? We recently performed a series of field experiments to measure aquatic metabolism and nutrient dynamics in two highly contrasting hydrologic systems, i.e., 1) a wetland-stream alpine, tropical system in Colombia (South America) and 2) a dryland river continuum (1st - 5th stream orders) in New Mexico. In this presentation we discuss how multiple lines of evidence can support the analysis of key aquatic processes and how co-interpretation provides a more complete picture of stream complexity. For this analysis, we deployed YSI EXO2 and 6920 sondes, Turner Designs C-sense and C6 sensors, and Onset HOBO water quality data loggers. Parameters measured by these instruments include conductivity, temperature, dissolved oxygen, pH, turbidity, pCO2, chlorophyll-a, phycocyanin, fluorescein, CDOM, brighteners and water depth. We also injected conservative tracers (i.e., NaCl and NaBr) and the bioreactive tracer resazurin in both experimental sites, and NO3 in the dryland river continuum. NO3 was measured in-situ with Satlantic Submersible Ultraviolet Nitrate Analyzers (SUNA) sensors and in the laboratory using Ion Chromatograph techniques using stream grab samples. Our results highlight the role of both residence times and chemical fluxes in regulating the effective processing of carbon and nutrients. Our results also demonstrate that stream stimuli from controlled experiments are ideal for maximizing the information content derived from short (hours to days) and mid-term (weeks) sensor deployment campaigns.
A catchment scale evaluation of multiple stressor effects in headwater streams.
Rasmussen, Jes J; McKnight, Ursula S; Loinaz, Maria C; Thomsen, Nanna I; Olsson, Mikael E; Bjerg, Poul L; Binning, Philip J; Kronvang, Brian
2013-01-01
Mitigation activities to improve water quality and quantity in streams as well as stream management and restoration efforts are conducted in the European Union aiming to improve the chemical, physical and ecological status of streams. Headwater streams are often characterised by impairment of hydromorphological, chemical, and ecological conditions due to multiple anthropogenic impacts. However, they are generally disregarded as water bodies for mitigation activities in the European Water Framework Directive despite their importance for supporting a higher ecological quality in higher order streams. We studied 11 headwater streams in the Hove catchment in the Copenhagen region. All sites had substantial physical habitat and water quality impairments due to anthropogenic influence (intensive agriculture, urban settlements, contaminated sites and low base-flow due to water abstraction activities in the catchment). We aimed to identify the dominating anthropogenic stressors at the catchment scale causing ecological impairment of benthic macroinvertebrate communities and provide a rank-order of importance that could help in prioritising mitigation activities. We identified numerous chemical and hydromorphological impacts of which several were probably causing major ecological impairments, but we were unable to provide a robust rank-ordering of importance suggesting that targeted mitigation efforts on single anthropogenic stressors in the catchment are unlikely to have substantial effects on the ecological quality in these streams. The SPEcies At Risk (SPEAR) index explained most of the variability in the macroinvertebrate community structure, and notably, SPEAR index scores were often very low (<10% SPEAR abundance). An extensive re-sampling of a subset of the streams provided evidence that especially insecticides were probably essential contributors to the overall ecological impairment of these streams. Our results suggest that headwater streams should be considered in future management and mitigation plans. Catchment-based management is necessary because several anthropogenic stressors exceeded problematic thresholds, suggesting that more holistic approaches should be preferred. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling stream network-scale variation in coho salmon overwinter survival and smolt size
We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over ...
NASA Astrophysics Data System (ADS)
Dou, P.
2017-12-01
Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).
Stream biological surveys - self-defense for coal mine operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, E.L.; Pennington, W.L.; Lackey, J.L.
1979-12-01
According to Section 779.20 of the Permanent Regulatory Program Regulations, Surface Coal Mining and Reclamation Operations, Department of the Interior, office of Surface Mining Reclamation and Enforcement, coal mine operators must provide information on fish and wildlife resources in order to obtain mining permits. Although considered to be a liability by many mine operators, stream biological surveys can, in reality, become a significant asset. When combined with appropriate water quality measurements, stream biological surveys can adequately assess a stream's health. Although initially adding cost, stream biological surveys can actually save money and potential litigation during the mining period. However, streammore » biological surveys must be conducted before any mining activity is initiated and should continue on a periodic basis thereafter. Only in this manner can mine operators be assured that biological measurements made on streams affected by their operation are accurate reflections of pre- and post-mining conditions. Armed with this vital information, mine operators have a basis to defend against any unjustified claims that their operations are having deleterious effects on the stream in question. This paper addresses the purpose, scope, methodology, and interpretation of results of stream biological surveys. Additionally, methods for utilizing information from stream biological surveys will be stressed.« less
Vegetation Structure and Function along Ephemeral Streams in the Sonoran Desert
NASA Astrophysics Data System (ADS)
Stromberg, J. C.; Katz, G.
2011-12-01
Despite being the most prevalent stream type in the American Southwest, far less is known about riparian ecosystems associated with ephemeral streams than with perennial streams. Patterns of plant composition and structure reflect complex environmental gradients, including water availability and flood intensity, which in turn are related to position in the stream network. A survey of washes in the Sonoran Desert near Tucson, Arizona showed species composition of small ephemeral washes to be comprised largely of upland species, including large seeded shrubs such as Acacia spp. and Larrea tridentata. Small seeded disturbance adapted xerophytic shrubs, such as Baccharis sarothroides, Hymenoclea monogyra and Isocoma tenuisecta, were common lower in the stream network on the larger streams that have greater scouring forces. Because ephemeral streams have multiple water sources, including deep (sometimes perched) water tables and seasonally variable rain and flood pulses, multiple plant functional types co-exist within a stream segment. Deep-rooted phreatophytes, including Tamarix and nitrogen-fixing Prosopis, are common on many washes. Such plants are able to access not only water, but also pools of nutrients, several meters below ground thereby affecting nutrient levels and soil moisture content in various soil strata. In addition to the perennial plants, many opportunistic and shallow-rooted annual species establish during the bimodal wet seasons. Collectively, wash vegetation serves to stabilize channel substrates and promote accumulation of fine sediments and organic matter. In addition to the many streams that are ephemeral over their length, ephemeral reaches also occupy extensive sections of interrupted perennial rivers. The differences in hydrologic conditions that occur over the length of interrupted perennial rivers influence plant species diversity and variability through time. In one study of three interrupted perennial rivers, patterns of herbaceous species richness varied with temporal scale of analysis, with richness being greater at perennial sites over the short-term but greater at non-perennial sites over the long-term (multiple seasons and years). This latter pattern arose owing to the abundance of light, space, and bare ground at the drier sites, combined with a diverse soil seed bank and periodic supply of seasonal soil moisture sufficient to stimulate establishment of cool-season as well as warm-season annuals. The reduced availability of perennial water sources limits the richness, cover, and competitive dominance of herbaceous perennial species, enabling pronounced diversity response to episodic water pulses in the drier river segments. Thus, non-perennial streams and reaches contribute importantly to river-wide and landscape scale desert riparian diversity, supporting high cumulative richness and distinct composition compared to perennial flow reaches.
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Bozak, Rick
2010-01-01
Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.
WIFIRE Data Model and Catalog for Wildfire Data and Tools
NASA Astrophysics Data System (ADS)
Altintas, I.; Crawl, D.; Cowart, C.; Gupta, A.; Block, J.; de Callafon, R.
2014-12-01
The WIFIRE project (wifire.ucsd.edu) is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. WIFIRE may be used by wildfire management authorities in the future to predict wildfire rate of spread and direction, and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE has created a data model for wildfire resources including sensed and archived data, sensors, satellites, cameras, modeling tools, workflows and social information including Twitter feeds. This data model and associated wildfire resource catalog includes a detailed description of the HPWREN sensor network, SDG&E's Mesonet, and NASA MODIS. In addition, the WIFIRE data-model describes how to integrate the data from multiple heterogeneous sources to provide detailed fire-related information. The data catalog describes 'Observables' captured by each instrument using multiple ontologies including OGC SensorML and NASA SWEET. Observables include measurements such as wind speed, air temperature, and relative humidity, as well as their accuracy and resolution. We have implemented a REST service for publishing to and querying from the catalog using Web Application Description Language (WADL). We are creating web-based user interfaces and mobile device Apps that use the REST interface for dissemination to wildfire modeling community and project partners covering academic, private, and government laboratories while generating value to emergency officials and the general public. Additionally, the Kepler scientific workflow system is instrumented to interact with this data catalog to access real-time streaming and archived wildfire data and stream it into dynamic data-driven wildfire models at scale.
Fault-Tolerant and Elastic Streaming MapReduce with Decentralized Coordination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumbhare, Alok; Frincu, Marc; Simmhan, Yogesh
2015-06-29
The MapReduce programming model, due to its simplicity and scalability, has become an essential tool for processing large data volumes in distributed environments. Recent Stream Processing Systems (SPS) extend this model to provide low-latency analysis of high-velocity continuous data streams. However, integrating MapReduce with streaming poses challenges: first, the runtime variations in data characteristics such as data-rates and key-distribution cause resource overload, that inturn leads to fluctuations in the Quality of the Service (QoS); and second, the stateful reducers, whose state depends on the complete tuple history, necessitates efficient fault-recovery mechanisms to maintain the desired QoS in the presence ofmore » resource failures. We propose an integrated streaming MapReduce architecture leveraging the concept of consistent hashing to support runtime elasticity along with locality-aware data and state replication to provide efficient load-balancing with low-overhead fault-tolerance and parallel fault-recovery from multiple simultaneous failures. Our evaluation on a private cloud shows up to 2:8 improvement in peak throughput compared to Apache Storm SPS, and a low recovery latency of 700 -1500 ms from multiple failures.« less
Güçlü, Umut; van Gerven, Marcel A J
2017-01-15
Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.
A parallel computing engine for a class of time critical processes.
Nabhan, T M; Zomaya, A Y
1997-01-01
This paper focuses on the efficient parallel implementation of systems of numerically intensive nature over loosely coupled multiprocessor architectures. These analytical models are of significant importance to many real-time systems that have to meet severe time constants. A parallel computing engine (PCE) has been developed in this work for the efficient simplification and the near optimal scheduling of numerical models over the different cooperating processors of the parallel computer. First, the analytical system is efficiently coded in its general form. The model is then simplified by using any available information (e.g., constant parameters). A task graph representing the interconnections among the different components (or equations) is generated. The graph can then be compressed to control the computation/communication requirements. The task scheduler employs a graph-based iterative scheme, based on the simulated annealing algorithm, to map the vertices of the task graph onto a Multiple-Instruction-stream Multiple-Data-stream (MIMD) type of architecture. The algorithm uses a nonanalytical cost function that properly considers the computation capability of the processors, the network topology, the communication time, and congestion possibilities. Moreover, the proposed technique is simple, flexible, and computationally viable. The efficiency of the algorithm is demonstrated by two case studies with good results.
Veale, Andrew J.
2017-01-01
Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. PMID:29045601
Mercury is a ubiquitous global environmental toxicant responsible for most US fish advisories. Processes governing mercury concentrations in rivers and streams are not well understood, particularly at multiple spatial scales. We investigate how insights gained from reach-scale me...
It is essential to understand the interactions between local environmental factors (e.g., physical habitat and water quality) and aquatic assemblages to conserve biodiversity in tropical and subtropical headwater streams. Therefore, we evaluated the relative importance of multipl...
SELECTING LEAST-DISTURBED SURVEY SITES FOR GREAT PLAINS STREAMS AND RIVERS
True reference condition probably does not exist for streams in highly utilized regions such as the Great Plains. Selecting least-disturbed sites for large regions is confounded by the association between human uses and natural gradients, and by multiple kinds of disturbance. U...
USDA-ARS?s Scientific Manuscript database
Karst hydrology is characterized by multiple springs, sinkholes, and losing streams resulting from acidic water percolating through limestone. These features provide direct connections between surface water and groundwater and increase the risk of groundwater, spring and stream contamination. Anthro...
Magnetic separator having a multilayer matrix, method and apparatus
Kelland, David R.
1980-01-01
A magnetic separator having multiple staggered layers of porous magnetic material positioned to intercept a fluid stream carrying magnetic particles and so placed that a bypass of each layer is effected as the pores of the layer become filled with material extracted from the fluid stream.
1975-11-15
ir in» l.iit.ii-nlrl-i . i ifr .-Viii ^„,„^>,,,,,.,,.,„.,,,.,™„„,^^^^ I ’Ulis Cable shows great similarity between the NYT and TOL as follows; o...from which the data have been derived. The authors challenge the contention by other data collectors that variation in interaction data derived from...LIC Luxemburg LUX Malagasy MAG Malawi MAW Malaysia MAL Maldive MAD Mali MLI Malta MLT Mauritius MAR Mauritania MAU Mexico MEX Monaco MOC
Two-Stream Transformer Networks for Video-based Face Alignment.
Liu, Hao; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a two-stream transformer networks (TSTN) approach for video-based face alignment. Unlike conventional image-based face alignment approaches which cannot explicitly model the temporal dependency in videos and motivated by the fact that consistent movements of facial landmarks usually occur across consecutive frames, our TSTN aims to capture the complementary information of both the spatial appearance on still frames and the temporal consistency information across frames. To achieve this, we develop a two-stream architecture, which decomposes the video-based face alignment into spatial and temporal streams accordingly. Specifically, the spatial stream aims to transform the facial image to the landmark positions by preserving the holistic facial shape structure. Accordingly, the temporal stream encodes the video input as active appearance codes, where the temporal consistency information across frames is captured to help shape refinements. Experimental results on the benchmarking video-based face alignment datasets show very competitive performance of our method in comparisons to the state-of-the-arts.
Defining the cortical visual systems: "what", "where", and "how"
NASA Technical Reports Server (NTRS)
Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2001-01-01
The visual system historically has been defined as consisting of at least two broad subsystems subserving object and spatial vision. These visual processing streams have been organized both structurally as two distinct pathways in the brain, and functionally for the types of tasks that they mediate. The classic definition by Ungerleider and Mishkin labeled a ventral "what" stream to process object information and a dorsal "where" stream to process spatial information. More recently, Goodale and Milner redefined the two visual systems with a focus on the different ways in which visual information is transformed for different goals. They relabeled the dorsal stream as a "how" system for transforming visual information using an egocentric frame of reference in preparation for direct action. This paper reviews recent research from psychophysics, neurophysiology, neuropsychology and neuroimaging to define the roles of the ventral and dorsal visual processing streams. We discuss a possible solution that allows for both "where" and "how" systems that are functionally and structurally organized within the posterior parietal lobe.
Cognitive control in media multitaskers
Ophir, Eyal; Nass, Clifford; Wagner, Anthony D.
2009-01-01
Chronic media multitasking is quickly becoming ubiquitous, although processing multiple incoming streams of information is considered a challenge for human cognition. A series of experiments addressed whether there are systematic differences in information processing styles between chronically heavy and light media multitaskers. A trait media multitasking index was developed to identify groups of heavy and light media multitaskers. These two groups were then compared along established cognitive control dimensions. Results showed that heavy media multitaskers are more susceptible to interference from irrelevant environmental stimuli and from irrelevant representations in memory. This led to the surprising result that heavy media multitaskers performed worse on a test of task-switching ability, likely due to reduced ability to filter out interference from the irrelevant task set. These results demonstrate that media multitasking, a rapidly growing societal trend, is associated with a distinct approach to fundamental information processing. PMID:19706386
Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approache...
REGRESSION MODELS THAT RELATE STREAMS TO WATERSHEDS: COPING WITH NUMEROUS, COLLINEAR PEDICTORS
GIS efforts can produce a very large number of watershed variables (climate, land use/land cover and topography, all defined for multiple areas of influence) that could serve as candidate predictors in a regression model of reach-scale stream features. Invariably, many of these ...
Climate and Land-Cover Change Impacts on Stream Flow in the Southwest U.S.
Vegetation change in arid and semi-arid climatic regions of the American West are a primary concern in sustaining key ecosystem services such as clean, reliable water sources for multiple uses. Land cover and climate change impacts on stream flow were investigated in a southeast ...
The Psychophysics of Contingency Assessment
ERIC Educational Resources Information Center
Allan, Lorraine G.; Hannah, Samuel D.; Crump, Matthew J. C.; Siegel, Shepard
2008-01-01
The authors previously described a procedure that permits rapid, multiple within-participant evaluations of contingency assessment (the "streamed-trial" procedure, M. J. C. Crump, S. D. Hannah, L. G. Allan, & L. K. Hord, 2007). In the present experiments, they used the streamed-trial procedure, combined with the method of constant stimuli and a…
Influence of forest management on headwater stream amphibians at multiple spatial scales
Stoddard, Margo; Hayes, John P.; Erickson, Janet L.
2004-01-01
Background Amphibians are important components of headwater streams in forest ecosystems of the Pacific Northwest (PNW). They comprise the highest vertebrate biomass and density in these systems and are integral to trophic dynamics both as prey and as predators. The most commonly encountered amphibians in PNW headwater streams include the Pacific giant salamander (Dicamptodon tenebrosus), the tailed frog (Ascaphus truei), the southern torrent salamander (Rhyacotriton variegatus), and the Columbia torrent salamander (R. kezeri).
Griffiths, Natalie A.; Tank, Jennifer L.; Royer, Todd V.; ...
2017-03-15
The insecticidal Cry1Ab protein expressed by transgenic (Bt) maize can enter adjacent water bodies via multiple pathways, but its fate in stream ecosystems is not as well studied as in terrestrial systems. In this study, we used a combination of field sampling and laboratory experiments to examine the occurrence, leaching, and degradation of soluble Cry1Ab protein derived from Bt maize in agricultural streams. We surveyed 11 agricultural streams in northwestern Indiana, USA, on 6 dates that encompassed the growing season, crop harvest, and snowmelt/spring flooding, and detected Cry1Ab protein in the water column and in flowing subsurface tile drains atmore » concentrations of 3–60 ng/L. In a series of laboratory experiments, submerged Bt maize leaves leached Cry1Ab into stream water with 1% of the protein remaining in leaves after 70 d. Laboratory experiments suggested that dissolved Cry1Ab protein degraded rapidly in microcosms containing water-column microorganisms, and light did not enhance breakdown by stimulating assimilatory uptake of the protein by autotrophs. Here, the common detection of Cry1Ab protein in streams sampled across an agricultural landscape, combined with laboratory studies showing rapid leaching and degradation, suggests that Cry1Ab may be pseudo-persistent at the watershed scale due to the multiple input pathways from the surrounding terrestrial environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Tank, Jennifer L.; Royer, Todd V.
The insecticidal Cry1Ab protein expressed by transgenic (Bt) maize can enter adjacent water bodies via multiple pathways, but its fate in stream ecosystems is not as well studied as in terrestrial systems. In this study, we used a combination of field sampling and laboratory experiments to examine the occurrence, leaching, and degradation of soluble Cry1Ab protein derived from Bt maize in agricultural streams. We surveyed 11 agricultural streams in northwestern Indiana, USA, on 6 dates that encompassed the growing season, crop harvest, and snowmelt/spring flooding, and detected Cry1Ab protein in the water column and in flowing subsurface tile drains atmore » concentrations of 3–60 ng/L. In a series of laboratory experiments, submerged Bt maize leaves leached Cry1Ab into stream water with 1% of the protein remaining in leaves after 70 d. Laboratory experiments suggested that dissolved Cry1Ab protein degraded rapidly in microcosms containing water-column microorganisms, and light did not enhance breakdown by stimulating assimilatory uptake of the protein by autotrophs. Here, the common detection of Cry1Ab protein in streams sampled across an agricultural landscape, combined with laboratory studies showing rapid leaching and degradation, suggests that Cry1Ab may be pseudo-persistent at the watershed scale due to the multiple input pathways from the surrounding terrestrial environment.« less
Canessa, Stefano; Parris, Kirsten M.
2013-01-01
Urbanization affects streams by modifying hydrology, increasing pollution and disrupting in-stream and riparian conditions, leading to negative responses by biotic communities. Given the global trend of increasing urbanization, improved understanding of its direct and indirect effects at multiple scales is needed to assist management. The theory of stream ecology suggests that the riverscape and the surrounding landscape are inextricably linked, and watershed-scale processes will also affect in-stream conditions and communities. This is particularly true for species with semi-aquatic life cycles, such as amphibians, which transfer energy between streams and surrounding terrestrial areas. We related measures of urbanization at different scales to frog communities in streams along an urbanization gradient in Melbourne, Australia. We used boosted regression trees to determine the importance of predictors and the shape of species responses. We then used structural equation models to investigate possible indirect effects of watershed imperviousness on in-stream parameters. The proportion of riparian vegetation and road density surrounding the site at the reach scale (500-m radius) had positive and negative effects, respectively, on species richness and on the occurrence of the two most common species in the area ( Crinia signifera and Limnodynastesdumerilii ). Road density and local aquatic vegetation interacted in influencing species richness, suggesting that isolation of a site can prevent colonization, in spite of apparently good local habitat. Attenuated imperviousness at the catchment scale had a negative effect on local aquatic vegetation, indicating possible indirect effects on frog species not revealed by single-level models. Processes at the landscape scale, particularly related to individual ranging distances, can affect frog species directly and indirectly. Catchment imperviousness might not affect adult frogs directly, but by modifying hydrology it can disrupt local vegetation and prove indirectly detrimental. Integrating multiple-scale management actions may help to meet conservation targets for streams in the face of urbanization. PMID:23922963
USDA-ARS?s Scientific Manuscript database
Channelized agricultural headwater streams are common throughout agricultural watersheds in the Midwestern United States. Understanding the fish-habitat relationships within these streams will provide information that can assist with developing restoration strategies for these degraded streams. We...
Personalized professional content recommendation
Xu, Songhua
2015-10-27
A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.
Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D
2015-01-01
Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of multiple stressors in a warming climate. © 2014 John Wiley & Sons Ltd.
Intermittent and ephemeral (IE) streams can provide important functions within stream networks. Understanding the relative benefit provided to downstream waters is needed to better inform watershed management. Although the potential functions of IE streams are relatively well kn...
Evaluating local indirect addressing in SIMD proc essors
NASA Technical Reports Server (NTRS)
Middleton, David; Tomboulian, Sherryl
1989-01-01
In the design of parallel computers, there exists a tradeoff between the number and power of individual processors. The single instruction stream, multiple data stream (SIMD) model of parallel computers lies at one extreme of the resulting spectrum. The available hardware resources are devoted to creating the largest possible number of processors, and consequently each individual processor must use the fewest possible resources. Disagreement exists as to whether SIMD processors should be able to generate addresses individually into their local data memory, or all processors should access the same address. The tradeoff is examined between the increased capability and the reduced number of processors that occurs in this single instruction stream, multiple, locally addressed, data (SIMLAD) model. Factors are assembled that affect this design choice, and the SIMLAD model is compared with the bare SIMD and the MIMD models.
Activity recognition using Video Event Segmentation with Text (VEST)
NASA Astrophysics Data System (ADS)
Holloway, Hillary; Jones, Eric K.; Kaluzniacki, Andrew; Blasch, Erik; Tierno, Jorge
2014-06-01
Multi-Intelligence (multi-INT) data includes video, text, and signals that require analysis by operators. Analysis methods include information fusion approaches such as filtering, correlation, and association. In this paper, we discuss the Video Event Segmentation with Text (VEST) method, which provides event boundaries of an activity to compile related message and video clips for future interest. VEST infers meaningful activities by clustering multiple streams of time-sequenced multi-INT intelligence data and derived fusion products. We discuss exemplar results that segment raw full-motion video (FMV) data by using extracted commentary message timestamps, FMV metadata, and user-defined queries.
Feature assignment in perception of auditory figure.
Gregg, Melissa K; Samuel, Arthur G
2012-08-01
Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory "objects" (relatively punctate events, such as a dog's bark) and auditory "streams" (sounds involving a pattern over time, such as a galloping rhythm). In Experiments 1 and 2, on each trial 2 sounds-an object (a vowel) and a stream (a series of tones)-were presented with 1 target feature that could be perceptually grouped with either source. In each block of these experiments, listeners were required to attend to 1 of the 2 sounds, and report its perceived category. Across several experimental manipulations, listeners were more likely to allocate the feature to an impoverished object if the result of the grouping was a good, identifiable object. Perception of objects was quite sensitive to feature variation (noise masking), whereas perception of streams was more robust to feature variation. In Experiment 3, the number of sound sources competing for the feature was increased to 3. This produced a shift toward relying more on spatial cues than on the potential contribution of the feature to an object's perceptual quality. The results support a distinction between auditory objects and streams, and provide new information about the way that the auditory world is parsed. (c) 2012 APA, all rights reserved.
StreamStats: a U.S. geological survey web site for stream information
Kernell, G. Ries; Gray, John R.; Renard, Kenneth G.; McElroy, Stephen A.; Gburek, William J.; Canfield, H. Evan; Scott, Russell L.
2003-01-01
The U.S. Geological Survey has developed a Web application, named StreamStats, for providing streamflow statistics, such as the 100-year flood and the 7-day, 10-year low flow, to the public. Statistics can be obtained for data-collection stations and for ungaged sites. Streamflow statistics are needed for water-resources planning and management; for design of bridges, culverts, and flood-control structures; and for many other purposes. StreamStats users can point and click on data-collection stations shown on a map in their Web browser window to obtain previously determined streamflow statistics and other information for the stations. Users also can point and click on any stream shown on the map to get estimates of streamflow statistics for ungaged sites. StreamStats determines the watershed boundaries and measures physical and climatic characteristics of the watersheds for the ungaged sites by use of a Geographic Information System (GIS), and then it inserts the characteristics into previously determined regression equations to estimate the streamflow statistics. Compared to manual methods, StreamStats reduces the average time needed to estimate streamflow statistics for ungaged sites from several hours to several minutes.
NASA Astrophysics Data System (ADS)
Jones, Christopher S.; Wang, Bo; Schilling, Keith E.; Chan, Kung-sik
2017-06-01
Agricultural landscapes often leak inorganic nitrogen to the stream network, usually in the form of nitrate-nitrite (NOx-N), degrading downstream water quality on both the local and regional scales. While the spatial distribution of nitrate sources has been delineated in many watersheds, less is known about the complicated temporal dynamics that drive stream NOx-N because traditional methods of stream grab sampling are often conducted at a low frequency. Deployment of accurate real-time, continuous measurement devices that have been developed in recent years enables high-frequency sampling that provides detailed information on the concentration-discharge relation and the timing of NOx-N delivery to streams. We aggregated 15-min interval NOx-N and discharge data over a nine-year period into daily averages and then used robust statistical methods to identify how the discharge regime within an artificially-drained agricultural watershed reflected catchment hydrology and NOx-N delivery pathways. We then quantified how transport and supply limitations varied from year-to-year and how dependence of these limitations varied with climate, especially drought. Our results show NOx-N concentrations increased linearly with discharge up to an average "turning point" of 1.42 mm of area-normalized discharge, after which concentrations decline with increasing discharge. We estimate transport and supply limitations to govern 57 and 43 percent, respectively, of the NOx-N flux over the nine-year period. Drought effects on the NOx-N flux linger for multiple years and this is reflected in a greater tendency toward supply limitations in the three years following drought. How the turning point varies with climate may aid in prediction of NOx-N loading in future climate regimes.
Schmitt, C.J.; Lemly, A.D.; Winger, P.V.
1993-01-01
Data from several sources were collated and analyzed by correlation, regression, and principal components analysis to define surrrogate variables for use in the brook trout (Salvelinus fontinalis) habitat suitability index (HSI) model, and to evaluate the applicability of the model for assessing habitat in high elevation streams of the southern Blue Ridge Province (SBRP). In all data sets examined, pH and alkalinity were highly correlated, and both declined with increasing elevation; however, the magnitude of the decline varied with underlying rock formations and other factors, thereby restricting the utility of elevation as a surrogate for pH. In the data sets that contained biological information, brook trout abundance (as biomass, density, or both) tended to increase with elevation and decrease with the abundance of rainbow trout (Oncorhynchus mykiss), and was not significantly correlated (P >0.05) with the abundance of most benthic macroinvertebrate taxa normally construed as important in the diet of brook trout. Using multiple linear regression, the authors formulated an alternative HSI model A? based on point estimates of gradient, pH, elevation, stream width, and rainbow trout density A? which explained 40 to 50 percent of the variance in brook trout density in 256 stream reaches. Although logically developed, the present U.S. Fish and Wildlife Service HSI model, proposed in 1982, seems deficient in several areas, especially when applied to SBRP streams. The authors recommend that the water quality component in the model be updated and reevaluated, focusing on the differential sensitivities of each life stage, the stochastic nature of the water quality variables, and the possible existence of habitat requirements that differ among brook trout strains.
EFFECTS OF STREAM RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED
The purpose of this on-going project is to provide information to Municipal Separate Storm Sewer System (MS4s) operators and states on the performance of selected best management practices (BMPs), specifically, stream restoration techniques, on improving biological and in-stream ...
Using Infrared Thermography to Assess Emotional Responses to Infants
ERIC Educational Resources Information Center
Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L.; Bornstein, Marc H.
2015-01-01
Adult-infant interactions operate simultaneously across multiple domains and at multiple levels -- from physiology to behaviour. Unpackaging and understanding them, therefore, involve analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males.…
NASA Astrophysics Data System (ADS)
Erez, Mattan; Dally, William J.
Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.
We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to cha...
Kristen K. Cecala; John C. Maerz; Brian J. Halstead; John R. Frisch; Ted L. Gragson; Jeffrey Hepinstall-Cymerman; David S. Leigh; C. Rhett Jackson; James T. Peterson; Catherine M. Pringle
2018-01-01
Understanding how factors that vary in spatial scale relate to population abundance is vital to forecasting species responses to environmental change. Stream and river ecosystems are inherently hierarchical, potentially resulting in organismal responses to fineâscale changes in patch characteristics that are conditional on the watershed context. Here, we...
Stream macroinvertebrate collection methods described in the Rapid Bioassessment Protocols (RBPs) have been used widely throughout the U.S. The first edition of the RBP manual in 1989 described a single habitat approach that focused on riffles and runs, where macroinvertebrate d...
Introduction to Parallel Computing
1992-05-01
Instruction Stream, Multiple Data Stream Machines .................... 19 2.4 Networks of M achines...independent memory units and connecting them to the processors by an interconnection network . Many different interconnection schemes have been considered, and...connected to the same processor at the same time. Crossbar switching networks are still too expensive to be practical for connecting large numbers of
Modeling stream network-scale variation in Coho salmon overwinter survival and smolt size
Joseph L. Ebersole; Mike E. Colvin; Parker J. Wigington; Scott G. Leibowitz; Joan P. Baker; Jana E. Compton; Bruce A. Miller; Michael A. Carins; Bruce P. Hansen; Henry R. La Vigne
2009-01-01
We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over 3 years. Contributing basin area explained the majority of spatial...
The influence of attention on value integration.
Kunar, Melina A; Watson, Derrick G; Tsetsos, Konstantinos; Chater, Nick
2017-08-01
People often have to make decisions based on many pieces of information. Previous work has found that people are able to integrate values presented in a rapid serial visual presentation (RSVP) stream to make informed judgements on the overall stream value (Tsetsos et al. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9659-9664, 2012). It is also well known that attentional mechanisms influence how people process information. However, it is unknown how attentional factors impact value judgements of integrated material. The current study is the first of its kind to investigate whether value judgements are influenced by attentional processes when assimilating information. Experiments 1-3 examined whether the attentional salience of an item within an RSVP stream affected judgements of overall stream value. The results showed that the presence of an irrelevant high or low value salient item biased people to judge the stream as having a higher or lower overall mean value, respectively. Experiments 4-7 directly tested Tsetsos et al.'s (Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9659-9664, 2012) theory examining whether extreme values in an RSVP stream become over-weighted, thereby capturing attention more than other values in the stream. The results showed that the presence of both a high (Experiments 4, 6 and 7) and a low (Experiment 5) value outlier captures attention leading to less accurate report of subsequent items in the stream. Taken together, the results showed that valuations can be influenced by attentional processes, and can lead to less accurate subjective judgements.
Applications of spatial statistical network models to stream data
Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal Monestiez
2014-01-01
Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, Shih-Chieh; McManamay, Ryan A; Stewart, Kevin M
2014-04-01
The rapid development of multiple national geospatial datasets related to topography, hydrology, and environmental characteristics in the past decade have provided new opportunities for the refinement of hydropower resource potential from undeveloped stream-reaches. Through 2011 to 2013, the Oak Ridge National Laboratory (ORNL) was tasked by the Department of Energy (DOE) Water Power Program to evaluate the new stream-reach development (NSD) resource potential for more than 3 million US streams. A methodology was designed that contains three main components: (1) identification of stream-reaches with high energy density, (2) topographical analysis of stream-reaches to estimate inundated surface area and reservoir storage,more » and (3) environmental attribution to spatially join information related to the natural ecological systems, social and cultural settings, policies, management, and legal constraints to stream-reaches of energy potential. An initial report on methodology (Hadjerioua et al., 2013) was later reviewed and revised based on the comments gathered from two peer review workshops. After implementing the assessment across the entire United States, major findings were summarized in this final report. The estimated NSD capacity and generation, including both higher-energy-density (>1 MW per reach) and lower-energy-density (<1 MW per reach) stream-reaches is 84.7 GW, around the same size as the existing US conventional hydropower nameplate capacity (79.5 GW; NHAAP, 2013). In terms of energy, the total undeveloped NSD generation is estimated to be 460 TWh/year, around 169% of average 2002 2011 net annual generation from existing conventional hydropower plants (272 TWh/year; EIA, 2013). Given the run-of-river assumption, NSD stream-reaches have higher capacity factors (53 71%), especially compared with conventional larger-storage peaking-operation projects that usually have capacity factors of around 30%. The highest potential is identified in the Pacific Northwest Region (32%), followed by Missouri Region (15%) and California Region (9%). In terms of states, the highest potential is found in Oregon, Washington, and Idaho, the three states in the Pacific Northwest, followed by California, Alaska, Montana, and Colorado. In addition to the resource potential, abundant environmental attributes were also organized and attributed to the identified stream-reaches to support further hydropower market analysis. The prevalence of environmental variables and proportion of capacity from stream-reaches intersecting environmental variables varied according to hydrologic region. Detailed NSD findings are organized by hydrologic regions and presented in each chapter of this report.« less
Goldstein, R.M.; Meador, M.R.
2005-01-01
We used species traits to examine the variation in fish assemblages for 21 streams in the Northern Lakes and Forests Ecoregion along a gradient of habitat disturbance. Fish species were classified based on five species trait-classes (trophic ecology, substrate preference, geomorphic preference, locomotion morphology, and reproductive strategy) and 29 categories within those classes. We used a habitat quality index to define a reference stream and then calculated Euclidean distances between the reference and each of the other sites for the five traits. Three levels of species trait analyses were conducted: (1) a composite measure (the sum of Euclidean distances across all five species traits), (2) Euclidean distances for the five individual species trait-classes, and (3) frequencies of occurrence of individual trait categories. The composite Euclidean distance was significantly correlated to the habitat index (r = -0.81; P = 0.001), as were the Euclidean distances for four of the five individual species traits (substrate preference: r = -0.70, P = 0.001; geomorphic preference: r = -0.69, P = 0.001; trophic ecology: r = -0.73, P = 0.001; and reproductive strategy: r = -0.64, P = 0.002). Although Euclidean distances for locomotion morphology were not significantly correlated to habitat index scores (r = -0.21; P = 0.368), analysis of variance and principal components analysis indicated that Euclidean distances for locomotion morphology contributed to significant variation in the fish assemblages among sites. Examination of trait categories indicated that low habitat index scores (degraded streams) were associated with changes in frequency of occurrence within the categories of all five of the species traits. Though the objectives and spatial scale of a study will dictate the level of species trait information required, our results suggest that species traits can provide critical information at multiple levels of data analysis. ?? Copyright by the American Fisheries Society 2005.
Johnson, Steven M.; Swanson, Robert B.
1994-01-01
Prototype stream-monitoring sites were operated during part of 1992 in the Central Nebraska Basins (CNBR) and three other study areas of the National Water-Quality Assessment (NAWQ) Program of the U.S. Geological Survey. Results from the prototype project provide information needed to operate a net- work of intensive fixed station stream-monitoring sites. This report evaluates operating procedures for two NAWQA prototype sites at Maple Creek near Nickerson and the Platte River at Louisville, eastern Nebraska. Each site was sampled intensively in the spring and late summer 1992, with less intensive sampling in midsummer. In addition, multiple samples were collected during two high- flow periods at the Maple Creek site--one early and the other late in the growing season. Water-samples analyses included determination of pesticides, nutrients, major ions, suspended sediment, and measurements of physical properties. Equipment and protocols for the water-quality sampling procedures were evaluated. Operation of the prototype stream- monitoring sites included development and comparison of onsite and laboratory sample-processing proce- dures. Onsite processing was labor intensive but allowed for immediate preservation of all sampled constituents. Laboratory processing required less field labor and decreased the risk of contamination, but allowed for no immediate preservation of the samples.
Replay of Episodic Memories in the Rat.
Panoz-Brown, Danielle; Iyer, Vishakh; Carey, Lawrence M; Sluka, Christina M; Rajic, Gabriela; Kestenman, Jesse; Gentry, Meredith; Brotheridge, Sydney; Somekh, Isaac; Corbin, Hannah E; Tucker, Kjersten G; Almeida, Bianca; Hex, Severine B; Garcia, Krysten D; Hohmann, Andrea G; Crystal, Jonathon D
2018-05-21
Vivid episodic memories in people have been characterized as the replay of multiple unique events in sequential order [1-3]. The hippocampus plays a critical role in episodic memories in both people and rodents [2, 4-6]. Although rats remember multiple unique episodes [7, 8], it is currently unknown if animals "replay" episodic memories. Therefore, we developed an animal model of episodic memory replay. Here, we show that rats can remember a trial-unique stream of multiple episodes and the order in which these events occurred by engaging hippocampal-dependent episodic memory replay. We document that rats rely on episodic memory replay to remember the order of events rather than relying on non-episodic memories. Replay of episodic memories survives a long retention-interval challenge and interference from the memory of other events, which documents that replay is part of long-term episodic memory. The chemogenetic activating drug clozapine N-oxide (CNO), but not vehicle, reversibly impairs episodic memory replay in rats previously injected bilaterally in the hippocampus with a recombinant viral vector containing an inhibitory designer receptor exclusively activated by a designer drug (DREADD; AAV8-hSyn-hM4Di-mCherry). By contrast, two non-episodic memory assessments are unaffected by CNO, showing selectivity of this hippocampal-dependent impairment. Our approach provides an animal model of episodic memory replay, a process by which the rat searches its representations in episodic memory in sequential order to find information. Our findings using rats suggest that the ability to replay a stream of episodic memories is quite old in the evolutionary timescale. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling Alpine Meadow Restoration Techniques and their Effects on Stream Stage Regimes
NASA Astrophysics Data System (ADS)
Moore, C. E.; Lundquist, J. D.; Loheide, S. P.
2010-12-01
Meadow ecosystems in the Sierra Nevada of California often suffer from negative anthropogenic impacts, resulting in stream incision and meadow aridification. Groundwater dependent ecosystems, such as meadows, are especially vulnerable to channel degradation because alteration of stream stage propagates through the groundwater system to affect riparian vegetation. Restoration aimed at raising water table elevation of degraded meadow systems is becoming a salient and viable option as managers recognize the importance of intact headwaters. Stream stage controls groundwater levels and thus, vegetation communities, more dramatically than stream discharge in groundwater dependent ecosystems. Here we use a one dimensional hydraulic model, Hydraulic Engineering Center - River Analysis System (HEC-RAS) to model stream stage along the Tuolumne River, given a time series of stream discharge. Extensive hydroclimatic monitoring since 2001, and groundwater monitoring since 2006, make Tuolumne Meadows, in Yosemite National Park, California a prime location for a validated case study, applicable to other snow dominated basins. In order to determine the most plausible, efficient and effective strategy of restoring impacted meadows, different management scenarios are modeled. HEC-RAS modeling provides critical stream stage boundary conditions for groundwater modeling. Scenarios are chosen that are most effective at increasing stream stage and therefore water table levels. The effectiveness is quantified by modeling how each scenario changes the rating curve for a particular channel. Additionally, surface stage modeling allows decision makers to see under what flow conditions and what time period of the hydrograph is affected by restoration. Quantification of stream stage alterations is key for understanding restoration impacts during the short growing season in alpine meadows. Results of HEC-RAS modeling at Tuolumne Meadows are presented in the following formats to highlight the ways in which this work can be used as a vital tool in management decisions regarding meadow restoration. First, direct changes to the resulting stream stage time series are used to illustrate the magnitude of change among scenarios. Second, synthetic rating curves are compared so that the flow regimes which are highly sensitive to a particular restoration strategy can be readily identified. Third, an empirical probability density function describing the stream stage regime will be provided for each scenario to illustrate the overall effectiveness of each restoration technique in changing water levels. Finally, the probability of exceedance for bankfull stage, the depth associated with the onset of oxygen stress, and the depth associated with the onset of water stress will be presented to demonstrate changes to stream levels that are believed to have ecological significance. Investigation of multiple scenarios allows an informed decision based on sound science that will help achieve restoration goals in the future.
Eash, David A.; Barnes, Kimberlee K.; Veilleux, Andrea G.
2013-01-01
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance-probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedance-probability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized least-squares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
Overstreet, Cynthia K.; Hellman, Randall B.; Ponce Wong, Ruben D.; Santos, Veronica J.; Helms Tillery, Stephen I.
2016-01-01
The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex. PMID:27995126
Overstreet, Cynthia K; Hellman, Randall B; Ponce Wong, Ruben D; Santos, Veronica J; Helms Tillery, Stephen I
2016-01-01
The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS) of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g., encoding contact events and pressure on multiple digits). In this study, we evaluated the ability of an awake, behaving non-human primate ( Macaca mulatta ) to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.
Vision for perception and vision for action in the primate brain.
Goodale, M A
1998-01-01
Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.
Chen, Juan; Sperandio, Irene; Goodale, Melvyn Alan
2018-03-19
Our brain integrates information from multiple modalities in the control of behavior. When information from one sensory source is compromised, information from another source can compensate for the loss. What is not clear is whether the nature of this multisensory integration and the re-weighting of different sources of sensory information are the same across different control systems. Here, we investigated whether proprioceptive distance information (position sense of body parts) can compensate for the loss of visual distance cues that support size constancy in perception (mediated by the ventral visual stream) [1, 2] versus size constancy in grasping (mediated by the dorsal visual stream) [3-6], in which the real-world size of an object is computed despite changes in viewing distance. We found that there was perfect size constancy in both perception and grasping in a full-viewing condition (lights on, binocular viewing) and that size constancy in both tasks was dramatically disrupted in the restricted-viewing condition (lights off; monocular viewing of the same but luminescent object through a 1-mm pinhole). Importantly, in the restricted-viewing condition, proprioceptive cues about viewing distance originating from the non-grasping limb (experiment 1) or the inclination of the torso and/or the elbow angle of the grasping limb (experiment 2) compensated for the loss of visual distance cues to enable a complete restoration of size constancy in grasping but only a modest improvement of size constancy in perception. This suggests that the weighting of different sources of sensory information varies as a function of the control system being used. Copyright © 2018 Elsevier Ltd. All rights reserved.
Multiple jet study data correlations. [data correlation for jet mixing flow of air jets
NASA Technical Reports Server (NTRS)
Walker, R. E.; Eberhardt, R. G.
1975-01-01
Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.
Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido
2016-10-01
As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sedimentation in mountain streams: A review of methods of measurement
Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin
2013-01-01
The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.
Heino, Jani; Melo, Adriano S; Bini, Luis Mauricio; Altermatt, Florian; Al-Shami, Salman A; Angeler, David G; Bonada, Núria; Brand, Cecilia; Callisto, Marcos; Cottenie, Karl; Dangles, Olivier; Dudgeon, David; Encalada, Andrea; Göthe, Emma; Grönroos, Mira; Hamada, Neusa; Jacobsen, Dean; Landeiro, Victor L; Ligeiro, Raphael; Martins, Renato T; Miserendino, María Laura; Md Rawi, Che Salmah; Rodrigues, Marciel E; Roque, Fabio de Oliveira; Sandin, Leonard; Schmera, Denes; Sgarbi, Luciano F; Simaika, John P; Siqueira, Tadeu; Thompson, Ross M; Townsend, Colin R
2015-03-01
The hypotheses that beta diversity should increase with decreasing latitude and increase with spatial extent of a region have rarely been tested based on a comparative analysis of multiple datasets, and no such study has focused on stream insects. We first assessed how well variability in beta diversity of stream insect metacommunities is predicted by insect group, latitude, spatial extent, altitudinal range, and dataset properties across multiple drainage basins throughout the world. Second, we assessed the relative roles of environmental and spatial factors in driving variation in assemblage composition within each drainage basin. Our analyses were based on a dataset of 95 stream insect metacommunities from 31 drainage basins distributed around the world. We used dissimilarity-based indices to quantify beta diversity for each metacommunity and, subsequently, regressed beta diversity on insect group, latitude, spatial extent, altitudinal range, and dataset properties (e.g., number of sites and percentage of presences). Within each metacommunity, we used a combination of spatial eigenfunction analyses and partial redundancy analysis to partition variation in assemblage structure into environmental, shared, spatial, and unexplained fractions. We found that dataset properties were more important predictors of beta diversity than ecological and geographical factors across multiple drainage basins. In the within-basin analyses, environmental and spatial variables were generally poor predictors of variation in assemblage composition. Our results revealed deviation from general biodiversity patterns because beta diversity did not show the expected decreasing trend with latitude. Our results also call for reconsideration of just how predictable stream assemblages are along ecological gradients, with implications for environmental assessment and conservation decisions. Our findings may also be applicable to other dynamic systems where predictability is low.
The Role of Outdoor Art in Urban Environmental Education
NASA Astrophysics Data System (ADS)
Filippelli, G. M.; Kesling, M.; Ryan, T.; Fraser, J.; McDonald, F.; Rollings, A.; Miss, M.; Kanpetch, B.; Trueblood, M.
2015-12-01
Finding ways to engage youth in inadvertent learning about nature and the environment is challenging, particularly in urban areas where environmental literacy is profoundly limited by access to safe and representative spaces. Termed the Nature Deficit Disorder, the lack of contact and connection between people and their environment leads to a less than holistic approach to environmental management at the personal and governmental levels. One of the challenges is developing ways to engage youth in science learning not by bringing them indoors to a science museum but rather by taking the science museum outdoors. Funded by the NSF Informal Science Learning program, we launched a collaborative between scientists and artists to understand the nature and impact of environmental learning through outdoor art and science programming, called StreamLines. Launched in 2014 and now near full deployment, the program is part of a bigger initiative in Indianapolis (Reconnecting to Our Waterways) to embrace the multiple waterways that traverse the city as a valuable community and health resource. This collaborative is designed to function on multiple levels. An Artist and Scientists Roundtable engages practitioners in regular conversations supplemented by external readings to share how practitioners use concepts and tools from the "opposite" side to inform their work and scholarship. Physical installations of iconic art at individual sites reflect the environmental conditions at individual sites are designed as tools for explicit and implicit learning and exploration about the environment. Music, poetry, and dance programming developed for individual sites portray cogent characteristics of place and are meant to allow visitors to see how artists engage with and draw from the environment for inspiration. A research approach unpins all of these efforts, utilizing a set of different sample populations to explore environmental education and potential advocacy after interactions with components of StreamLines.
Differences in the emergent coding properties of cortical and striatal ensembles
Ma, L.; Hyman, J.M.; Lindsay, A.J.; Phillips, A.G.; Seamans, J.K.
2016-01-01
The function of a given brain region is often defined by the coding properties of its individual neurons, yet how this information is combined at the ensemble level is an equally important consideration. In the present study, multiple neurons from the anterior cingulate cortex (ACC) and the dorsal striatum (DS) were recorded simultaneously as rats performed different sequences of the same three actions. Sequence and lever decoding was remarkably similar on a per-neuron basis in the two regions. At the ensemble level, sequence-specific representations in the DS appeared synchronously but transiently along with the representation of lever location, while these two streams of information appeared independently and asynchronously in the ACC. As a result the ACC achieved superior ensemble decoding accuracy overall. Thus, the manner in which information was combined across neurons in an ensemble determined the functional separation of the ACC and DS on this task. PMID:24974796
Whetstone, B.H.
1982-01-01
A program to collect and analyze flood data from small streams in South Carolina was conducted from 1967-75, as a cooperative research project with the South Carolina Department of Highways and Public Transportation and the Federal Highway Administration. As a result of that program, a technique is presented for estimating the magnitude and frequency of floods on small streams in South Carolina with drainage areas ranging in size from 1 to 500 square miles. Peak-discharge data from 74 stream-gaging stations (25 small streams were synthesized, whereas 49 stations had long-term records) were used in multiple regression procedures to obtain equations for estimating magnitude of floods having recurrence intervals of 10, 25, 50, and 100 years on small natural streams. The significant independent variable was drainage area. Equations were developed for the three physiographic provinces of South Carolina (Coastal Plain, Piedmont, and Blue Ridge) and can be used for estimating floods on small streams. (USGS)
Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão
2018-05-24
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
NASA Astrophysics Data System (ADS)
Litt, Guy Finley
As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T.; Smith, K.S.; Severino, F.
A critical capability of the new RHIC low level rf (LLRF) system is the ability to synchronize signals across multiple locations. The 'Update Link' provides this functionality. The 'Update Link' is a deterministic serial data link based on the Xilinx RocketIO protocol that is broadcast over fiber optic cable at 1 gigabit per second (Gbps). The link provides timing events and data packets as well as time stamp information for synchronizing diagnostic data from multiple sources. The new RHIC LLRF was designed to be a flexible, modular system. The system is constructed of numerous independent RF Controller chassis. To providemore » synchronization among all of these chassis, the Update Link system was designed. The Update Link system provides a low latency, deterministic data path to broadcast information to all receivers in the system. The Update Link system is based on a central hub, the Update Link Master (ULM), which generates the data stream that is distributed via fiber optic links. Downstream chassis have non-deterministic connections back to the ULM that allow any chassis to provide data that is broadcast globally.« less
Using Infrared Thermography to Assess Emotional Responses to Infants.
Esposito, Gianluca; Nakazawa, Jun; Ogawa, Shota; Stival, Rita; Putnick, Diane L; Bornstein, Marc H
2015-01-01
Adult-infant interactions operate simultaneously across multiple domains and at multiple levels - from physiology to behavior. Unpackaging and understanding them, therefore, involves analysis of multiple data streams. In this study, we tested physiological responses and cognitive preferences for infant and adult faces in adult females and males. Infrared thermography was used to assess facial temperature changes as a measure of emotional valence, and we used a behavioral rating system to assess adults' expressed preferences. We found greater physiological activation in response to infant stimuli in females than males. As for cognitive preferences, we found greater responses to adult stimuli than to infant stimuli, both in males and females. The results are discuss in light of the Life History Theory. Finally, we discuss the importance of integrating the two data streams on our conclusions.
Ladd, David E.; Law, George S.
2007-01-01
The U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality in the streams. Streamflow statistics provided by the USGS, such as the 100-year flood and the 7-day 10-year low flow, frequently are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. In addition to streamflow statistics, resource managers often need to know the physical and climatic characteristics (basin characteristics) of the drainage basins for locations of interest to help them understand the mechanisms that control water availability and water quality at these locations. StreamStats is a Web-enabled geographic information system (GIS) application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for USGS data-collection stations and for ungaged sites of interest. If a user selects the location of a data-collection station, StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a GIS program to delineate a drainage basin boundary, measure basin characteristics, and estimate streamflow statistics based on USGS streamflow prediction methods. A user can download a GIS feature class of the drainage basin boundary with attributes including the measured basin characteristics and streamflow estimates.
An overview of the Columbia Habitat Monitoring Program's (CHaMP) spatial-temporal design framework
We briefly review the concept of a master sample applied to stream networks in which a randomized set of stream sites is selected across a broad region to serve as a list of sites from which a subset of sites is selected to achieve multiple objectives of specific designs. The Col...
T. Heartsill Scalley; F.N. Scatena; S. Moya; A.E. Lugo
2012-01-01
In heterotrophic streams the retention and export of coarse particulate organic matter and associated elements are fundamental biogeochemical processes that influence water quality, food webs and the structural complexity of forested headwater streams. Nevertheless, few studies have documented the quantity and quality of exported organic matter over multiple years and...
North Fork Clear Creek (NFCC) receives acid-mine drainage (AMD) from multiple abandoned mines in the Clear Creek Watershed. Point sources of AMD originate In the Black Hawk/Central City region of the stream. Water chemistry also is influenced by several non-point sources of AMD,...
NASA Technical Reports Server (NTRS)
Hubbard, R.
1974-01-01
The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.
'What' and 'where' in the human brain.
Ungerleider, L G; Haxby, J V
1994-04-01
Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms.
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; ...
2016-03-26
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.
In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less
Veale, Andrew J; Russello, Michael A
2017-10-01
Mechanisms underlying adaptive evolution can best be explored using paired populations displaying similar phenotypic divergence, illuminating the genomic changes associated with specific life history traits. Here, we used paired migratory [anadromous vs. resident (kokanee)] and reproductive [shore- vs. stream-spawning] ecotypes of sockeye salmon (Oncorhynchus nerka) sampled from seven lakes and two rivers spanning three catchments (Columbia, Fraser, and Skeena) in British Columbia, Canada to investigate the patterns and processes underlying their divergence. Restriction-site associated DNA sequencing was used to genotype this sampling at 7,347 single nucleotide polymorphisms, 334 of which were identified as outlier loci and candidates for divergent selection within at least one ecotype comparison. Sixty-eight of these outliers were present in two or more comparisons, with 33 detected across multiple catchments. Of particular note, one locus was detected as the most significant outlier between shore and stream-spawning ecotypes in multiple comparisons and across catchments (Columbia, Fraser, and Snake). We also detected several genomic islands of divergence, some shared among comparisons, potentially showing linked signals of differential selection. The single nucleotide polymorphisms and genomic regions identified in our study offer a range of mechanistic hypotheses associated with the genetic basis of O. nerka life history variation and provide novel tools for informing fisheries management. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Seeing the Song: Left Auditory Structures May Track Auditory-Visual Dynamic Alignment
Mossbridge, Julia A.; Grabowecky, Marcia; Suzuki, Satoru
2013-01-01
Auditory and visual signals generated by a single source tend to be temporally correlated, such as the synchronous sounds of footsteps and the limb movements of a walker. Continuous tracking and comparison of the dynamics of auditory-visual streams is thus useful for the perceptual binding of information arising from a common source. Although language-related mechanisms have been implicated in the tracking of speech-related auditory-visual signals (e.g., speech sounds and lip movements), it is not well known what sensory mechanisms generally track ongoing auditory-visual synchrony for non-speech signals in a complex auditory-visual environment. To begin to address this question, we used music and visual displays that varied in the dynamics of multiple features (e.g., auditory loudness and pitch; visual luminance, color, size, motion, and organization) across multiple time scales. Auditory activity (monitored using auditory steady-state responses, ASSR) was selectively reduced in the left hemisphere when the music and dynamic visual displays were temporally misaligned. Importantly, ASSR was not affected when attentional engagement with the music was reduced, or when visual displays presented dynamics clearly dissimilar to the music. These results appear to suggest that left-lateralized auditory mechanisms are sensitive to auditory-visual temporal alignment, but perhaps only when the dynamics of auditory and visual streams are similar. These mechanisms may contribute to correct auditory-visual binding in a busy sensory environment. PMID:24194873
A simple-harmonic model for depicting the annual cycle of seasonal temperatures of streams
Steele, Timothy Doak
1978-01-01
Due to economic or operational constraints, stream-temperature records cannot always be collected at all sites where information is desired or at frequencies dictated by continuous or near-continuous surveillance requirements. For streams where only periodic measurements are made during the year, and that are not appreciably affected by regulation or by thermal loading , a simple harmonic function may adequately depict the annual seasonal cycle of stream temperature at any given site. Resultant harmonic coefficients obtained from available stream-temperature records may be used in the following ways: (1) To interpolate between discrete measurements by solving the harmonic function at specified times, thereby filling in estimates of stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature values; (2) to characterize areal or regional patterns of natural stream-temperature conditions; and (3) to detect and to assess any significant at a site brought about by streamflow regulation or basin development. Moreover, less-than-daily or sampling frequencies at a given site may give estimates of annual variation of stream temperatures that are statistically comparable to estimates obtained from a daily or continuous sampling scheme. The latter procedure may result in potential savings of resources in network operations, with negligible loss in information on annual stream-temperature variations. (Woodard -USGS)
Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex
Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik
2012-01-01
Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444
Statewide water-quality network for Massachusetts
Desimone, Leslie A.; Steeves, Peter A.; Zimmerman, Marc James
2001-01-01
A water-quality monitoring program is proposed that would provide data to meet multiple information needs of Massachusetts agencies and other users concerned with the condition of the State's water resources. The program was designed by the U.S. Geological Survey and the Massachusetts Department of Environmental Protection, Division of Watershed Management, with input from many organizations involved in water-quality monitoring in the State, and focuses on inland surface waters (streams and lakes). The proposed monitoring program consists of several components, or tiers, which are defined in terms of specific monitoring objectives, and is intended to complement the Massachusetts Watershed Initiative (MWI) basin assessments. Several components were developed using the Neponset River Basin in eastern Massachusetts as a pilot area, or otherwise make use of data from and sampling approaches used in that basin as part of a MWI pilot assessment in 1994. To guide development of the monitoring program, reviews were conducted of general principles of network design, including monitoring objectives and approaches, and of ongoing monitoring activities of Massachusetts State agencies.Network tiers described in this report are primarily (1) a statewide, basin-based assessment of existing surface-water-quality conditions, and (2) a fixed-station network for determining contaminant loads carried by major rivers. Other components, including (3) targeted programs for hot-spot monitoring and other objectives, and (4) compliance monitoring, also are discussed. Monitoring programs for the development of Total Maximum Daily Loads for specific water bodies, which would constitute another tier of the network, are being developed separately and are not described in this report. The basin-based assessment of existing conditions is designed to provide information on the status of surface waters with respect to State water-quality standards and designated uses in accordance with the reporting requirements [Section 305(b)] of the Clean Water Act (CWA). Geographic Information System (GIS)-based procedures were developed to inventory streams and lakes in a basin for these purposes. Several monitoring approaches for this tier and their associated resource requirements were investigated. Analysis of the Neponset Basin for this purpose demonstrated that the large number of sites needed in order for all the small streams in a basin to be sampled (about half of stream miles in the basin were headwater or first-order streams) pose substantial resource-based problems for a comprehensive assessment of existing conditions. The many lakes pose similar problems. Thus, a design is presented in which probabilistic monitoring of small streams is combined with deterministic or targeted monitoring of large streams and lakes to meet CWA requirements and to provide data for other information needs of Massachusetts regulatory agencies and MWI teams.The fixed-station network is designed to permit the determination of contaminant loads carried by the State's major rivers to sensitive inland and coastal receiving waters and across State boundaries. Sampling at 19 proposed sites in 17 of the 27 major basins in Massachusetts would provide information on contaminant loads from 67 percent of the total land area of the State; unsampled areas are primarily coastal areas drained by many small streams that would be impossible to sample within realistic resource limitations. Strategies for hot-spot monitoring, a targeted monitoring program focused on identifying contaminant sources, are described with reference to an analysis of the bacteria sampling program of the 1994 Neponset Basin assessment. Finally, major discharge sites permitted under the National Pollutant Discharge Elimination System (NPDES) were evaluated as a basis for ambient water-quality monitoring. The discharge sites are well distributed geographically among basins, but are primarily on large rivers (two-thirds or more
Processing reafferent and exafferent visual information for action and perception.
Reichenbach, Alexandra; Diedrichsen, Jörn
2015-01-01
A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.
Methods for determining manning's coefficients for Illinois streams
Soong, D.T.; Halfar, T.M.; Jupin, M.A.; Wobig, L.A.; ,
2004-01-01
Determination of Manning's coefficient, n, for natural streams remains a challenge in practices. One source for determining the n-values that has received practitioners' attention is presenting the n-values determined from field data (measured discharge and water-surface slope) in combination of photographs and site descriptions (ancillary information). Further improvements in the visual approach can be made in presenting site characteristics and describing site ancillary information. In this manner, users can use the presented information for sites of interest with similar features. This approach in a current project on the subject for Illinois streams is discussed.
Cost effectiveness of the stream-gaging program in northeastern California
Hoffard, S.H.; Pearce, V.F.; Tasker, Gary D.; Doyle, W.H.
1984-01-01
Results are documented of a study of the cost effectiveness of the stream-gaging program in northeastern California. Data uses and funding sources were identified for the 127 continuous stream gages currently being operated in the study area. One stream gage was found to have insufficient data use to warrant cooperative Federal funding. Flow-routing and multiple-regression models were used to simulate flows at selected gaging stations. The models may be sufficiently accurate to replace two of the stations. The average standard error of estimate of streamflow records is 12.9 percent. This overall level of accuracy could be reduced to 12.0 percent using computer-recommended service routes and visit frequencies. (USGS)
Venarsky, Michael P; Walters, David M; Hall, Robert O; Livers, Bridget; Wohl, Ellen
2018-05-01
In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging < 200 years ago) are single-channeled with mostly erosional habitat. We tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m -2 ), but values were 2 ×-21 × higher in undisturbed reaches per unit of stream valley (m -1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream-riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).
Rheaume, S.J.; Lenz, B.N.; Scudder, B.C.
1996-01-01
Information gathered from these benchmark streams can be used as a regional reference for comparison with other streams in agricultural areas, based on communities of aquatic biota, habitat, and water quality.
The effects of road crossings on prairie stream habitat and function
Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.
2010-01-01
Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.
Auditory pathways: anatomy and physiology.
Pickles, James O
2015-01-01
This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described. © 2015 Elsevier B.V. All rights reserved.
Pratt, Bethany; Chang, Heejun
2012-03-30
The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.
Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen
2018-01-01
In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging < 200 years ago) are single-channeled with mostly erosional habitat. We tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).
Communications dashboard (control rooms, take a cue from Facebook® !) Chapter 1
NASA Astrophysics Data System (ADS)
Scott, David W.
Papers published via IEEE and AIAA conferences have presented an overview of how social media could benefit NASA working environments in general [1] and proposed three specific social applications to benefit space flight control operations [2]. One of them, Communications Dashboard, would help a real time flight controller keep up with both the “ big picture” and significant details of operations via a cohesive interface similar to those of social networking services (SNS). Instead of recreational social features, “ CommDash” would support functions like console logging, categorized and threaded text chat streams with enhanced accountability and graphics display features, high-level status displays driven by telemetry or other events, and an on-screen hailing function for requesting voice or text stream conversation. Moving certain voice conversations to text streams would reduce confusion and stress in two ways. Within text conversations, there would be far less repetition of content since text conversations have visual persistence and are reviewable instantly, e.g., there's no need to brief new participants to a discussion - they just read what's already there. Remaining voice traffic would stand out more clearly, and quieter voice loops means fewer “ say again” calls and less distraction from visual and mental tasks, thus less stress. (Most flight controllers monitor 4 or 5 voice loops at once.) Links could be created from console log entries to chat selections so that underlying details are readily available yet unobtrusive. This would reduce the confusion that rises from having multiple and sometimes divergent copies of the same information due to cut/copy and paste operations, attachments, and asynchronous editing. This concept could apply to a plethora of real time control environments and to other settings with lots of information juggling. This paper explores the dashboard concept in further detail and chronic- es the first phase of a NASA IT Labs (Information Technology) project that could lead to a working system.
Communications Dashboard (Control Rooms Take a Cue from Facebook), Chapter 1
NASA Technical Reports Server (NTRS)
Scott, David w.
2013-01-01
Papers published via IEEE and AIAA conferences have presented an overview of how social media could benefit NASA working environments in general and proposed three specific social applications to benefit space flight control operations. One of them, Communications Dashboard, would help a real time flight controller keep up with both the "big picture" and significant details of operations via a cohesive interface similar to those of social networking services (SNS). Instead of recreational social features, "CommDash" would support functions like console logging, categorized and threaded text chat streams with enhanced accountability and graphics display features, high-level status displays driven by telemetry or other events, and an on-screen hailing function for requesting voice or text stream conversation. Moving certain voice conversations to text streams would reduce confusion and stress in two ways. Within text conversations, there would be far less repetition of content since text conversations have visual persistence and are reviewable instantly, e.g., there s no need to brief new participants to a discussion -- they just read what s already there. Remaining voice traffic would stand out more clearly, and quieter voice loops means fewer "say again" calls and less distraction from visual and mental tasks, thus less stress. (Most flight controllers monitor 4 or 5 voice loops at once.) Links could be created from console log entries to chat selections so that underlying details are readily available yet unobtrusive. This would reduce the confusion that rises from having multiple and sometimes divergent copies of the same information due to cut/copy and paste operations, attachments, and asynchronous editing. This concept could apply to a plethora of real time control environments and to other settings with lots of information juggling. This paper explores the dashboard concept in further detail and chronicles the first phase of a NASA IT Labs (Information Technology) project that could lead to a working system
A haptic pedal for surgery assistance.
Díaz, Iñaki; Gil, Jorge Juan; Louredo, Marcos
2014-09-01
The research and development of mechatronic aids for surgery is a persistent challenge in the field of robotic surgery. This paper presents a new haptic pedal conceived to assist surgeons in the operating room by transmitting real-time surgical information through the foot. An effective human-robot interaction system for medical practice must exchange appropriate information with the operator as quickly and accurately as possible. Moreover, information must flow through the appropriate sensory modalities for a natural and simple interaction. However, users of current robotic systems might experience cognitive overload and be increasingly overwhelmed by data streams from multiple modalities. A new haptic channel is thus explored to complement and improve existing systems. A preliminary set of experiments has been carried out to evaluate the performance of the proposed system in a virtual surgical drilling task. The results of the experiments show the effectiveness of the haptic pedal in providing surgical information through the foot. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Serial and Parallel Processing in the Primate Auditory Cortex Revisited
Recanzone, Gregg H.; Cohen, Yale E.
2009-01-01
Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779
NASA Technical Reports Server (NTRS)
Filyushkin, V. V.; Madronich, S.; Brasseur, G. P.; Petropavlovskikh, I. V.
1994-01-01
Based on a derivation of the two-stream daytime-mean equations of radiative flux transfer, a method for computing the daytime-mean actinic fluxes in the absorbing and scattering vertically inhomogeneous atmosphere is suggested. The method applies direct daytime integration of the particular solutions of the two-stream approximations or the source functions. It is valid for any duration of period of averaging. The merit of the method is that the multiple scattering computation is carried out only once for the whole averaging period. It can be implemented with a number of widely used two-stream approximations. The method agrees with the results obtained with 200-point multiple scattering calculations. The method was also tested in runs with a 1-km cloud layer with optical depth of 10, as well as with aerosol background. Comparison of the results obtained for a cloud subdivided into 20 layers with those obtained for a one-layer cloud with the same optical parameters showed that direct integration of particular solutions possesses an 'analytical' accuracy. In the case of the source function interpolation, the actinic fluxes calculated above the one-layer and 20-layer clouds agreed within 1%-1.5%, while below the cloud they may differ up to 5% (in the worst case). The ways of enhancing the accuracy (in a 'two-stream sense') and computational efficiency of the method are discussed.
Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection
Denison, Rachel N.; Silver, Michael A.
2014-01-01
During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685
galstreams: Milky Way streams footprint library and toolkit
NASA Astrophysics Data System (ADS)
Mateu, Cecilia
2017-11-01
galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).
Multistream hydrodynamic modeling of interhemispheric plasma flow
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1988-01-01
Interhemispheric plasma flow was simulated using one-stream and two-stream hydrodymic models in order to test the suggestion of Banks et al. (1971) and others that the collision of high-speed flows originating from the conjugate hemispheres will cause the formation of a pair of shocks. The single-fluid hydrodynamic equations were modified to include multiple ion streams, allowing for the possibility of counterstreaming flow. It was found that a counterstreaming of ion streams from conjugate hemispheres does occur during the early stages of the refilling of plamaspheric flux tubes, and that a pair of reverse shocks does form. These shocks form away from the equator, and their subsequent motion creates conditions similar to those predicted by the single-stream hydrodynamic models. The findings support the conclusion of earlier studies that the refilling of the plasmasphere occurs from the equatorial region downward.
Adaptive Precoded MIMO for LTE Wireless Communication
NASA Astrophysics Data System (ADS)
Nabilla, A. F.; Tiong, T. C.
2015-04-01
Long-Term Evolution (LTE) and Long Term Evolution-Advanced (ATE-A) have provided a major step forward in mobile communication capability. The objectives to be achieved are high peak data rates in high spectrum bandwidth and high spectral efficiencies. Technically, pre-coding means that multiple data streams are emitted from the transmit antenna with independent and appropriate weightings such that the link throughput is maximized at the receiver output thus increasing or equalizing the received signal to interference and noise (SINR) across the multiple receiver terminals. However, it is not reliable enough to fully utilize the information transfer rate to fit the condition of channel according to the bandwidth size. Thus, adaptive pre-coding is proposed. It applies pre-coding matrix indicator (PMI) channel state making it possible to change the pre-coding codebook accordingly thus improving the data rate higher than fixed pre-coding.
Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.
2015-01-01
The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.
John N. Rinne; Codey D. Carter
2008-01-01
Summer 2002 was a season of markedly increased wildfire in the southwestern United States. Four fires affected landscapes that encompassed watersheds and streams containing fishes. Streams affected in three of the four fires were sampled for multiple factors, including fishes, to delineate the impact of fires on aquatic ecosystems in the -Southwest. All fishes were...
ERIC Educational Resources Information Center
Razak, Norizan Abdul; Zaini, Nuramirah
2014-01-01
Many researches have shown that different approach needed in analysing linear and non-linear reading comprehension texts and different cognitive skills are required. This research attempts to discover the relationship between Science Stream students' reading competency on linear and non-linear texts in Malaysian University English Test (MUET) with…
Impacts of multiple applications of fertilizer on stream chemistry in the Ouachita Mountains
Hal O. Liechty; Jami Nettles; Stacy Wilson
2006-01-01
We have previously reported changes in stream chemistry following a late winter application of urea and diammonium phosphate to a loblolly pine (Pinus taeda L.) plantation located in a 176-ha subwatershed in the Ouachita Mountains. This stand was again fertilized with 437 kg/ha of urea in March of 2001. Water chemistry prior to, during, and after...
Brooke E. Penaluna; Steve F. Railsback; Jason B. Dunham; Sherri Johnson; Robert E. Bilby; Arne E. Skaugset; Michael Bradford
2015-01-01
The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus...
NASA Astrophysics Data System (ADS)
McKnight, U. S.; Sonne, A. T.; Rasmussen, J. J.; Rønde, V.; Traunspurger, W.; Höss, S.; Bjerg, P. L.
2017-12-01
Increasing modifications in land use and water management have resulted in multiple stressors impacting freshwater ecosystems globally. Chemicals with the potential to impact aquatic habitats are still often evaluated individually for their adverse effects on ecosystem health. This may lead to critical underestimations of the combined impact caused by interactions occurring between stressors not typically evaluated together, e.g. xenobiotic groundwater pollutants and trace metals. To address this issue, we identified sources and levels of chemical stressors along a 16-km groundwater-fed stream corridor (Grindsted, Denmark), representative for a mixed land use stream system. Potential pollution sources included two contaminated sites (factory, landfill), aquaculture, wastewater/industrial discharges, and diffuse sources from agriculture and urban areas. Ecological status was determined by monitoring meiobenthic and macrobenthic invertebrate communities.The stream was substantially impaired by both geogenic and anthropogenic sources of metals throughout the investigated corridor, with concentrations close to or above threshold values for barium, copper, lead, nickel and zinc in the stream water, hyporheic zone and streambed sediment. The groundwater plume from the factory site caused elevated concentrations of chlorinated ethenes, benzene and pharmaceuticals in both the hyporheic zone and stream, persisting for several km downstream. Impaired ecological conditions, represented by a lower abundance of meiobenthic individuals, were found in zones where the groundwater plume discharges to the stream. The effect was only pronounced in areas characterized by high xenobiotic organic concentrations and elevated dissolved iron and arsenic levels - linked to the dissolution of iron hydroxides caused by the degradation of xenobiotic compounds in the plume. The results thus provide ecological evidence for the interaction of organic and inorganic chemical stressors, which may provide a missing link enabling the reconnection of chemical and ecological findings. This study highlights the importance of stream-aquifer interfaces for ecosystem functioning in terms of biological habitat, and that multiple stressor systems need to be tackled from a holistic perspective.
Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L
2010-04-16
The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids. Published by Elsevier B.V.
Mapping and Monitoring Stream Aquatic Habitat With a Narrow-Beam Green Lidar
NASA Astrophysics Data System (ADS)
McKean, J.; Wright, W.; Kinzel, P.; Isaak, D.
2006-12-01
Stream environments are structured by complex biophysical processes that operate across multiple spatial and temporal scales. Disentangling these multiscalar and multicausal relationships is difficult, but fundamental to understanding, managing, and monitoring channel aquatic ecosystems. Standard field wading surveys of stream physical habitat are limited by cost and logistics to relatively small, isolated samples. Traditional remotely sensed surveys, including methods such as photogrammetry and near-infrared lidar, suffer from attenuation by water and do not directly map submerged channel topography. The Experimental Advanced Airborne Research Lidar (EAARL) is a full-waveform lidar with a unique ability to simultaneously map, with relatively high resolution, subaqueous and subaerial topography and the vegetation canopy. We have used the EAARL instrument to investigate two dissimilar stream ecosystems. We mapped 40km of low gradient, meandering, gravel-bed streams in central Idaho that are spawning habitat for threatened Chinook salmon. We are using the continuous three-dimensional channel maps to quantitatively explore how channel features affect the distribution of salmon spawning at multiple spatial scales and how modern stream and floodplain topography is related to post-glacial valley evolution. In contrast, the Platte River in central Nebraska is a wide and shallow, sand-bedded river that provides habitat for migratory water birds, including endangered species such as the whooping crane and least tern. Multi-temporal EAARL data are being used to map and monitor the physical response of the Platte River to habitat improvement projects that include in-channel and riparian vegetation removal and river flow augmentation to limit vegetation encroachment.
Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.
2013-01-01
Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.
Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason
2016-01-01
Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.
U.S. stream flow measurement and data dissemination improve
Hirsch, Robert M.; Costa, John E.
2004-01-01
Stream flow information is essential for many important uses across a broad range of scales, including global water balances, engineering design, flood forecasting, reservoir operations, navigation, water supply, recreation, and environmental management. Growing populations and competing priorities for water, including preservation and restoration of aquatic habitat, are spurring demand for more accurate, timely, and accessible water data.To be most useful, stream flow information must be collected in a standardized manner, with a known accuracy, and for a long and continuous time period.
NASA Astrophysics Data System (ADS)
Kurz, Marie J.; Schmidt, Christian; Blaen, Phillip; Knapp, Julia L. A.; Drummond, Jennifer D.; Martí, Eugenia; Zarnetske, Jay P.; Ward, Adam S.; Krause, Stefan
2016-04-01
In-stream transient storage zones, including the hyporheic zone and vegetation beds, can be hotspots of biogeochemical processing in streams, enhancing ecosystem functions such as metabolism and nutrient uptake. The spatio-temporal dynamics and reactivity of these storage zones are influenced by multiple factors, including channel geomorphology, substrate composition and hydrology, and by anthropogenic modifications to flow regimes and nutrient loads. Tracer injections are a commonly employed method to evaluate solute transport and transient storage in streams; however, reactive tracers are needed to differentiate between metabolically active and inactive transient storage zones. The reactive stream tracer resazurin (Raz), a weakly fluorescent dye which irreversibly transforms to resorufin (Rru) under mildly reducing conditions, provides a proxy for aerobic respiration and an estimate of the metabolic activity associated with transient storage zones. Across a range of lotic ecosystems, we try to assess the influence of stream channel hydro-morphology, morphologic heterogeneity, and substrate type on reach (103 m) and sub-reach (102 m) scale transient storage, respiration, and nutrient uptake. To do so, we coupled injections of Raz and conservative tracers (uranine and/or salt) at each study site. The study sites included: vegetated mesocosms controlled for water depth; vegetated and un-vegetated sediment-filled mesocosms fed by waste-water effluent; a contrasting sand- vs. gravel-bedded lowland stream (Q = 0.08 m3/s); and a series of upland streams with varying size (Q = 0.1 - 1.5 m3/s) and prevalence of morphologic features. Continuous time-series of tracer concentrations were recorded using in-situ fluorometers and EC loggers. At the stream sites, time-series were recorded at multiple downstream locations in order to resolve sub-reach dynamics. Analyses yielded highly variable transport metrics and Raz-Rru transformation between study sites and between sub-reaches within stream sites. Higher Raz-Rru transformation rates were typically observed in smaller streams, in sub-reaches with higher prevalence of morphologic features known to promote hyporheic exchange, and in mesocosms with higher water depth, vegetation density and retention time. However, relationships between transformation rates and common metrics of transient storage were not consistent among study cases, indicating the existence of yet unrealized complexities in the relationships between water and solute transport and metabolism. Further insights were also gained related to the utility of Raz and improved tracer test practices.
Gwinn, Daniel C; Middleton, Jen A; Beesley, Leah; Close, Paul; Quinton, Belinda; Storer, Tim; Davies, Peter M
2018-03-01
The degradation of streams caused by urbanization tends to follow predictable patterns; however, there is a growing appreciation for heterogeneity in stream response to urbanization due to the local geoclimatic context. Furthermore, there is building evidence that streams in mildly sloped, permeable landscapes respond uncharacteristically to urban stress calling for a more nuanced approach to restoration. We evaluated the relative influence of local-scale riparian characteristics and catchment-scale imperviousness on the macroinvertebrate assemblages of streams in the flat, permeable urban landscape of Perth, Western Australia. Using a hierarchical multi-taxa model, we predicted the outcomes of stylized stream restoration strategies to increase the riparian integrity at the local scale or decrease the influences of imperviousness at the catchment scale. In the urban streams of Perth, we show that local-scale riparian restoration can influence the structure of macroinvertebrate assemblages to a greater degree than managing the influences of catchment-scale imperviousness. We also observed an interaction between the effect of riparian integrity and imperviousness such that the effect of increased riparian integrity was enhanced at lower levels of catchment imperviousness. This study represents one of few conducted in flat, permeable landscapes and the first aimed at informing urban stream restoration in Perth, adding to the growing appreciation for heterogeneity of the Urban Stream Syndrome and its importance for urban stream restoration. © 2017 by the Ecological Society of America.
Stewart, Jana S.; Covert, S. Alex; Estes, Nick J.; Westenbroek, Stephen M.; Krueger, Damon; Wieferich, Daniel J.; Slattery, Michael T.; Lyons, John D.; McKenna, James E.; Infante, Dana M.; Bruce, Jennifer L.
2016-10-13
Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish species within each stream reach in the study area. Downscaled climate data from general circulation models were integrated with the fish species occurrence models to project fish species occurrence under future climate conditions. The 13 fish species represented three ecological guilds associated with water temperature (cold, cool, and warm), and the species were distributed in streams across the Great Lakes region. Vulnerability (loss of species) and opportunity (gain of species) scores were calculated for all stream reaches by evaluating changes in fish species occurrence from present-day to future climate conditions. The 13 fish species included 4 cold-water species, 5 cool-water species, and 4 warm-water species. Presently, the 4 cold-water species occupy from 15 percent (55,000 kilometers [km]) to 35 percent (130,000 km) of the total stream length (369,215 km) across the study area; the 5 cool-water species, from 9 percent (33,000 km) to 58 percent (215,000 km); and the 4 warm-water species, from 9 percent (33,000 km) to 38 percent (141,000 km).Fish models linked to projections from 13 downscaled climate models projected that in the mid to late 21st century (2046–65 and 2081–2100, respectively) habitats suitable for all 4 cold-water species and 4 of 5 cool-water species under present-day conditions will decline as much as 86 percent and as little as 33 percent, and habitats suitable for all 4 warm-water species will increase as much as 33 percent and as little as 7 percent. This report documents the approach and data used to predict and project fish species occurrence under present-day and future climate conditions for 13 lotic fish species in the United States Great Lakes Basin. A Web-based decision support mapping application termed “FishVis” was developed to provide a means to integrate, visualize, query, and download the results of these projected climate-driven responses and help inform conservation planning efforts within the region.
Masoner, Jason R.; Haggard, Brian E.; Rea, Alan
2002-01-01
The U.S.Environmental Protection Agency has developed nutrient criteria using ecoregions to manage and protect rivers and streams in the United States. Individual states and tribes are encouraged by the U.S. Environmental Protection Agency to modify or improve upon the ecoregion approach. The Oklahoma Water Resources Board uses a dichotomous process that stratifies streams using environmental characteristics such as stream order and stream slope. This process is called the Use Support Assessment Protocols, subchapter15. The Use Support Assessment Protocols can be used to identify streams threatened by excessive amounts of nutrients, dependant upon a beneficial use designation for each stream. The Use Support Assessment Protocols, subchapter 15 uses nutrient and environmental characteristic thresholds developed from a study conducted in the Netherlands, but the Oklahoma Water Resources Board wants to modify the thresholds to reflect hydrologic and ecological conditions relevant to Oklahoma streams and rivers. Environmental characteristics thought to affect impairment from nutrient concentrations in Oklahoma streams and rivers were determined for 798 water-quality sites in Oklahoma. Nutrient, chlorophyll, water-properties, and location data were retrieved from the U.S. Environmental Protection Agency STORET database including data from the U.S. Geological Survey, Oklahoma Conservation Commission, and Oklahoma Water Resources Board. Drainage-basin area, stream order, stream slope, and land-use proportions were determined for each site using a Geographic Information System. The methods, procedures, and data sets used to determine the environmental characteristics are described.
Currents Global Ocean Model Sea Surface Temperatures Gulf Stream ASCII Data Gulf Stream Comparison Gridded ASCAT Scatterometer Winds Lightning Strike Density Satellite Imagery Ocean Global Ocean Model , 2017 19:10:57 UTC Disclaimer Information Quality Help Glossary Privacy Policy Freedom of Information
Olson, Scott A.
2003-01-01
The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.
Wang, Quanxin; Burkhalter, Andreas
2013-01-23
Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.
Ice stream motion facilitated by a shallow-deforming and accreting bed
Spagnolo, Matteo; Phillips, Emrys; Piotrowski, Jan A.; Rea, Brice R.; Clark, Chris D.; Stokes, Chris R.; Carr, Simon J.; Ely, Jeremy C.; Ribolini, Adriano; Wysota, Wojciech; Szuman, Izabela
2016-01-01
Ice streams drain large portions of ice sheets and play a fundamental role in governing their response to atmospheric and oceanic forcing, with implications for sea-level change. The mechanisms that generate ice stream flow remain elusive. Basal sliding and/or bed deformation have been hypothesized, but ice stream beds are largely inaccessible. Here we present a comprehensive, multi-scale study of the internal structure of mega-scale glacial lineations (MSGLs) formed at the bed of a palaeo ice stream. Analyses were undertaken at macro- and microscales, using multiple techniques including X-ray tomography, thin sections and ground penetrating radar (GPR) acquisitions. Results reveal homogeneity in stratigraphy, kinematics, granulometry and petrography. The consistency of the physical and geological properties demonstrates a continuously accreting, shallow-deforming, bed and invariant basal conditions. This implies that ice stream basal motion on soft sediment beds during MSGL formation is accommodated by plastic deformation, facilitated by continuous sediment supply and an inefficient drainage system. PMID:26898399
The California stream quality assessment
Van Metre, Peter C.; Egler, Amanda L.; May, Jason T.
2017-03-06
In 2017, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project is assessing stream quality in coastal California, United States. The USGS California Stream Quality Assessment (CSQA) will sample streams over most of the Central California Foothills and Coastal Mountains ecoregion (modified from Griffith and others, 2016), where rapid urban growth and intensive agriculture in the larger river valleys are raising concerns that stream health is being degraded. Findings will provide the public and policy-makers with information regarding which human and natural factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect the health of streams in the region.
Distributed multimodal data fusion for large scale wireless sensor networks
NASA Astrophysics Data System (ADS)
Ertin, Emre
2006-05-01
Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.
Information management for clinicians.
Mehta, Neil B; Martin, Stephen A; Maypole, Jack; Andrews, Rebecca
2016-08-01
Clinicians are bombarded with information daily by social media, mainstream television news, e-mail, and print and online reports. They usually do not have much control over these information streams and thus are passive recipients, which means they get more noise than signal. Accessing, absorbing, organizing, storing, and retrieving useful medical information can improve patient care. The authors outline how to create a personalized stream of relevant information that can be scanned regularly and saved so that it is readily accessible. Copyright © 2016 Cleveland Clinic.
Multi-dimension feature fusion for action recognition
NASA Astrophysics Data System (ADS)
Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin
2018-04-01
Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Beaver, Justin M; BogenII, Paul L.
In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less
NASA Astrophysics Data System (ADS)
Konrad, C. P.
2014-12-01
A changing climate poses risks to the availability and quality of water resources. Among the risks, increased frequency and severity of low flow periods in streams would be significant for many in-stream and out-of-stream uses of water. While down-scaled climate projections serve as the basis for understanding impacts of climate change on hydrologic systems, a robust framework for risk assessment incorporates multiple dimensions of risks including the vulnerability of hydrologic systems to climate change impacts. Streamflow records from the southeastern US were examined to assess the vulnerability of streams to increased frequency and severity of low flows. Long-term (>50 years) records provide evidence of more frequent and severe low flows in more streams than would be expected from random chance. Trends in low flows appear to be a result of changes in the temporal distribution rather than the annual amount of preciptation and/or in evaporation. Base flow recession provides an indicator of a stream's vulnerability to such changes. Linkages between streamflow patterns across temporal scales can be used for understanding and asessing stream responses to the various possible expressions of a changing climate.
Interpretation and use of evidence in state policymaking: a qualitative analysis
Apollonio, Dorie E; Bero, Lisa A
2017-01-01
Introduction Researchers advocating for evidence-informed policy have attempted to encourage policymakers to develop a greater understanding of research and researchers to develop a better understanding of the policymaking process. Our aim was to apply findings drawn from studies of the policymaking process, specifically the theory of policy windows, to identify strategies used to integrate evidence into policymaking and points in the policymaking process where evidence was more or less relevant. Methods Our observational study relied on interviews conducted with 24 policymakers from the USA who had been trained to interpret scientific research in multiple iterations of an evidence-based workshop. Participants were asked to describe cases where they had been involved in making health policy and to provide examples in which research was used, either successfully or unsuccessfully. Interviews were transcribed, independently coded by multiple members of the study team and analysed for content using key words, concepts identified by participants and concepts arising from review of the texts. Results Our results suggest that policymakers who focused on health issues used multiple strategies to encourage evidence-informed policymaking. The respondents used a strict definition of what constituted evidence, and relied on their experience with research to discourage the use of less rigorous research. Their experience suggested that evidence was less useful in identifying problems, encouraging political action or ensuring feasibility and more useful in developing policy alternatives. Conclusions Past research has suggested multiple strategies to increase the use of evidence in policymaking, including the development of rapid-response research and policy-oriented summaries of data. Our findings suggest that these strategies may be most relevant to the policymaking stream, which develops policy alternatives. In addition, we identify several strategies that policymakers and researchers can apply to encourage evidence-informed policymaking. PMID:28219958
Peterson, James T; Freeman, Mary C
2016-12-01
Stream ecosystems provide multiple, valued services to society, including water supply, waste assimilation, recreation, and habitat for diverse and productive biological communities. Managers striving to sustain these services in the face of changing climate, land uses, and water demands need tools to assess the potential effectiveness of alternative management actions, and often, the resulting tradeoffs between competing objectives. Integrating predictive modeling with monitoring data in an adaptive management framework provides a process by which managers can reduce model uncertainties and thus improve the scientific bases for subsequent decisions. We demonstrate an integration of monitoring data with a dynamic, metapopulation model developed to assess effects of streamflow alteration on fish occupancy in a southeastern US stream system. Although not extensive (collected over three years at nine sites), the monitoring data allowed us to assess and update support for alternative population dynamic models using model probabilities and Bayes rule. We then use the updated model weights to estimate the effects of water withdrawal on stream fish communities and demonstrate how feedback in the form of monitoring data can be used to improve water resource decision making. We conclude that investment in more strategic monitoring, guided by a priori model predictions under alternative hypotheses and an adaptive sampling design, could substantially improve the information available to guide decision-making and management for ecosystem services from lotic systems. Published by Elsevier Ltd.
Classification of Automated Search Traffic
NASA Astrophysics Data System (ADS)
Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.
As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.
Methodology for Estimation of Flood Magnitude and Frequency for New Jersey Streams
Watson, Kara M.; Schopp, Robert D.
2009-01-01
Methodologies were developed for estimating flood magnitudes at the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated or slightly regulated streams in New Jersey. Regression equations that incorporate basin characteristics were developed to estimate flood magnitude and frequency for streams throughout the State by use of a generalized least squares regression analysis. Relations between flood-frequency estimates based on streamflow-gaging-station discharge and basin characteristics were determined by multiple regression analysis, and weighted by effective years of record. The State was divided into five hydrologically similar regions to refine the regression equations. The regression analysis indicated that flood discharge, as determined by the streamflow-gaging-station annual peak flows, is related to the drainage area, main channel slope, percentage of lake and wetland areas in the basin, population density, and the flood-frequency region, at the 95-percent confidence level. The standard errors of estimate for the various recurrence-interval floods ranged from 48.1 to 62.7 percent. Annual-maximum peak flows observed at streamflow-gaging stations through water year 2007 and basin characteristics determined using geographic information system techniques for 254 streamflow-gaging stations were used for the regression analysis. Drainage areas of the streamflow-gaging stations range from 0.18 to 779 mi2. Peak-flow data and basin characteristics for 191 streamflow-gaging stations located in New Jersey were used, along with peak-flow data for stations located in adjoining States, including 25 stations in Pennsylvania, 17 stations in New York, 16 stations in Delaware, and 5 stations in Maryland. Streamflow records for selected stations outside of New Jersey were included in the present study because hydrologic, physiographic, and geologic boundaries commonly extend beyond political boundaries. The StreamStats web application was developed cooperatively by the U.S. Geological Survey and the Environmental Systems Research Institute, Inc., and was designed for national implementation. This web application has been recently implemented for use in New Jersey. This program used in conjunction with a geographic information system provides the computation of values for selected basin characteristics, estimates of flood magnitudes and frequencies, and statistics for stream locations in New Jersey chosen by the user, whether the site is gaged or ungaged.
W. K. Dodds; S. M. Collins; S. K. Hamilton; J. L. Tank; S. Johnson; J. R. Webster; K. S. Simon; M. R. Whiles; H. M. Rantala; W. H. McDowell; S. D. Peterson; T. Riis; C. L. Crenshaw; S. A. Thomas; P. B. Kristensen; B. M. Cheever; A. S. Flecker; N. A. Griffiths; T. Crowl; E. J. Rosi-Marshall; R. El-Sabaawi; E. Martí
2014-01-01
Analyses of 21 15N stable isotope tracer experiments, designed to examine food web dynamics in streams around the world, indicated that the isotopic composition of food resources assimilated by primary consumers (mostly invertebrates) poorly reflected the presumed food sources. Modeling indicated that consumers assimilated only 33â50% of the N...
Large-scale structure perturbation theory without losing stream crossing
NASA Astrophysics Data System (ADS)
McDonald, Patrick; Vlah, Zvonimir
2018-01-01
We suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel'dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel'dovich power spectrum (which is exact in 1D up to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a,b Waste management unit identification c Description d Wastewater stream(s) received or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Information for Waste Management Units... Subpart G of Part 63—Information for Waste Management Units To Be Submitted With Notification of Compliance Status a b Waste management unit identification c Description d Wastewater stream(s) received or...
Stoeckel, Donald
2011-01-01
Fountain Creek is a high-gradient stream on the Front Range of the Rocky Mountains in Colorado. The headwaters of Fountain Creek drain Pikes Peak, a major destination for tourism. Fountain Creek is a drinking-water source for the City of Colorado Springs, Colorado, and is used for irrigation, recreation, and other purposes between Colorado Springs and the confluence with the Arkansas River at Pueblo, Colorado. In 2008, Fountain Creek was placed on the Colorado 303(d) list of impaired streams because of fecal contamination. Colorado uses a 30-day geometric mean standard of 126 Escherichia coli per 100 milliliters as its management goal for recreational waters. The objective of this study was to identify major sources of Escherichia coli in upper Fountain Creek during exceedances of the State recreational water standard. To meet this objective, a new approach was developed and tested that uses genetic marker analysis for microbial source tracking, along with other information, to evaluate potential contributions of fecal contamination from various sources.
Peak-flow characteristics of Wyoming streams
Miller, Kirk A.
2003-01-01
Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.
StreamStats in Georgia: a water-resources web application
Gotvald, Anthony J.; Musser, Jonathan W.
2015-07-31
StreamStats is being implemented on a State-by-State basis to allow for customization of the data development and underlying datasets to address their specific needs, issues, and objectives. The USGS, in cooperation with the Georgia Environmental Protection Division and Georgia Department of Transportation, has implemented StreamStats for Georgia. The Georgia StreamStats Web site is available through the national StreamStats Web-page portal at http://streamstats.usgs.gov. Links are provided on this Web page for individual State applications, instructions for using StreamStats, definitions of basin characteristics and streamflow statistics, and other supporting information.
StreamStats in North Carolina: a water-resources Web application
Weaver, J. Curtis; Terziotti, Silvia; Kolb, Katharine R.; Wagner, Chad R.
2012-01-01
A statewide StreamStats application for North Carolina was developed in cooperation with the North Carolina Department of Transportation following completion of a pilot application for the upper French Broad River basin in western North Carolina (Wagner and others, 2009). StreamStats for North Carolina, available at http://water.usgs.gov/osw/streamstats/north_carolina.html, is a Web-based Geographic Information System (GIS) application developed by the U.S. Geological Survey (USGS) in consultation with Environmental Systems Research Institute, Inc. (Esri) to provide access to an assortment of analytical tools that are useful for water-resources planning and management (Ries and others, 2008). The StreamStats application provides an accurate and consistent process that allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and user-selected ungaged sites. In the North Carolina application, users can compute 47 basin characteristics and peak-flow frequency statistics (Weaver and others, 2009; Robbins and Pope, 1996) for a delineated drainage basin. Selected streamflow statistics and basin characteristics for data-collection sites have been compiled from published reports and also are immediately accessible by querying individual sites from the web interface. Examples of basin characteristics that can be computed in StreamStats include drainage area, stream slope, mean annual precipitation, and percentage of forested area (Ries and others, 2008). Examples of streamflow statistics that were previously available only through published documents include peak-flow frequency, flow-duration, and precipitation data. These data are valuable for making decisions related to bridge design, floodplain delineation, water-supply permitting, and sustainable stream quality and ecology. The StreamStats application also allows users to identify stream reaches upstream and downstream from user-selected sites and obtain information for locations along streams where activities occur that may affect streamflow conditions. This functionality can be accessed through a map-based interface with the user’s Web browser, or individual functions can be requested remotely through Web services (Ries and others, 2008).
Simulation and analysis of main steam control system based on heat transfer calculation
NASA Astrophysics Data System (ADS)
Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai
2018-05-01
In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Troia, Matthew J.; DeRolph, Christopher R.
Stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystems. We developed a nested, layered, and spatially contiguous stream classification to characterize the biophysical settings of stream reaches within the Eastern United States (~ 900,000 reaches). The classification is composed of five natural characteristics (hydrology, temperature, size, confinement, and substrate) along with several disturbance regime layers, and each was selected because of their relevance to hydropower mitigation. We developed the classification at the stream reach levelmore » using the National Hydrography Dataset Plus Version 1 (1:100k scale). The stream classification is useful to environmental mitigation for hydropower dams in multiple ways. First, it creates efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. Secondly, the SCT addresses data gaps as it quickly provides an inventory of hydrology, temperature, morphology, and ecological communities for the immediate project area, but also surrounding streams. This includes identifying potential reference streams as those that are proximate to the hydropower facility and fall within the same class. These streams can potentially be used to identify ideal environmental conditions or identify desired ecological communities. In doing so, the stream provides some context for how streams may function, respond to dam regulation, and an overview of specific mitigation needs. Herein, we describe the methodology in developing each stream classification layer and provide a tutorial to guide applications of the classification (and associated data) in regulatory settings, such as hydropower (re)licensing.« less
NASA Astrophysics Data System (ADS)
Chalmers, Alex
2007-10-01
A simple model is presented of a possible inspection regimen applied to each leg of a cargo containers' journey between its point of origin and destination. Several candidate modalities are proposed to be used at multiple remote locations to act as a pre-screen inspection as the target approaches a perimeter and as the primary inspection modality at the portal. Information from multiple data sets are fused to optimize the costs and performance of a network of such inspection systems. A series of image processing algorithms are presented that automatically process X-ray images of containerized cargo. The goal of this processing is to locate the container in a real time stream of traffic traversing a portal without impeding the flow of commerce. Such processing may facilitate the inclusion of unmanned/unattended inspection systems in such a network. Several samples of the processing applied to data collected from deployed systems are included. Simulated data from a notional cargo inspection system with multiple sensor modalities and advanced data fusion algorithms are also included to show the potential increased detection and throughput performance of such a configuration.
Perspectives on ecological research at the Outdoor StreamLab, a field-scale experimental stream
NASA Astrophysics Data System (ADS)
Merten, E. C.; Dieterman, D.; Kramarczuk, K.; Lightbody, A.; Orr, C. H.; Wellnitz, T.
2009-12-01
Artificial streams hold great promise for examining ecological processes. They lend themselves to manipulations of discharge, sediment load, water chemistry, and other parameters difficult or impossible to control in natural streams. However, artificial streams also have important limitations. In this presentation we describe insights gained from several ecological studies conducted at the St. Anthony Falls Laboratory’s Outdoor StreamLab, including, 1) short-term turbidity exposure effects on fish health, 2) macroinvertebrate grazing rates on periphyton as a function of velocity, 3) rates of macroinvertebrate colonization as related to velocity, and 4) fine-scale correlations of periphytic biomass with hydraulic conditions. Several lessons emerge from these initial attempts at ecological research in the Outdoor StreamLab. We have learned that the size, flow rate, substrate, water chemistry, and available colonization population of the artificial stream limit the kinds of organisms and types of ecological processes that can be examined and the types of experiments that can be run. We suggest that short-term biotic responses are best for study in a system of this type, and note that constant experiment maintenance is essential. Operating artificial streams to meet the needs of multiple researchers also presents challenges of scheduling, coordination, and conflict resolution. Although ecological research in artificial streams has considerable potential, the planning required is no less than that of traditional field studies.
Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective
Arkle, R.S.; Pilliod, D.S.
2010-01-01
Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.
Many stream restoration projects do not include a requirement for long-term monitoring after the project has been completed, resulting in a lack of information about the success or failure of certain restoration techniques. The National Risk Management Research Laboratory (NRMRL...
Spatial prediction models for the probable biological condition of streams and rivers in the USA
The National Rivers and Streams Assessment (NRSA) is a probability-based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...
Random forest models for the probable biological condition of streams and rivers in the USA
The National Rivers and Streams Assessment (NRSA) is a probability based survey conducted by the US Environmental Protection Agency and its state and tribal partners. It provides information on the ecological condition of the rivers and streams in the conterminous USA, and the ex...
Influence of riparian seepage zones on nitrate variability in two agricultural headwater streams
USDA-ARS?s Scientific Manuscript database
Riparian seepage zones are one of the primary pathways of groundwater transport to headwater streams. While seeps have been recognized for their contributions to streamflow, there is little information on how seeps affect stream water quality. The objective of this study was to examine the influence...
Condition of stream ecosystem in the US: An overview of the first national assessment
The Wadeable Streams Assessment (WSA) provided the first statistically sound summary of the ecological condition of streams and small rivers in the US. Information provided in the assessment filled an important gap in meeting the requirements of the US Clean Water Act. The purpos...
NASA Astrophysics Data System (ADS)
Chien, H.; McGlinn, L.
2017-12-01
The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.
Temporal variation in the importance of a dominant consumer to stream nutrient cycling
Griffiths, Natalie A.; Hill, Walter
2014-06-19
Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less
Temporal variation in the importance of a dominant consumer to stream nutrient cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Hill, Walter
Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availabilitymore » (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.« less
NASA Astrophysics Data System (ADS)
McDowell, W. H.; Potter, J.
2017-12-01
The effects of urbanization on net greenhouse gas (GHG) exchange from streams and rivers to the atmosphere are poorly understood. Previous work on a few small suburban streams in New Hampshire shows that N2O concentration is strongly seasonal, increases with wetland contact, and can be highest in streams with low CH4 production. Here we expand on these observations using 4 years of weekly samples in multiple headwater streams and a single downstream main stem site. Our results show that within a single drainage network, CH4 concentrations are higher downstream than in any of the small tributaries studied, which span a range of land use and wetland coverage. Methane is also very strongly seasonal in concentration in the tributaries (peaking in late summer), but is aseasonal in the main stem. In contrast, N2O concentrations are strongly seasonal at all sites, but peak in early winter and are much higher in more urban tributaries than the main stem. Urbanization results in a flipping of GHG concentrations, with highest N2O and lowest CH4 in the most urban watershed. CO2 shows no strong patterns with respect to landscape position, urbanization, or season. We examined multiple biogeochemical drivers of net CH4 and N2O production, and found that the increased NO3 concentration associated with urbanization is a good predictor of N2O concentrations in many streams.
NASA Astrophysics Data System (ADS)
Zhao, Nan
2018-02-01
The origin of winter Northern Hemispheric low-frequency variability (hereafter, LFV) is regarded to be related to the coupled earth-atmosphere system characterized by the interaction of the jet stream with mid-latitude mountain ranges. On the other hand, observed LFV usually appears as transitions among multiple planetary-scale flow regimes of Northern Hemisphere like NAO + , AO +, AO - and NAO - . Moreover, the interaction between synoptic-scale eddies and the planetary-scale disturbance is also inevitable in the origin of LFV. These raise a question regarding how to incorporate all these aspects into just one framework to demonstrate (1) a planetary-scale dynamics of interaction of the jet stream with mid-latitude mountain ranges can really produce LFV, (2) such a dynamics can be responsible for the existence of above multiple flow regimes, and (3) the role of interaction with eddy is also clarified. For this purpose, a hierarchy of low-order stochastic dynamical models of the coupled earth-atmosphere system derived empirically from different timescale ranges of indices of Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Pacific/North American (PNA), and length of day (LOD) and related probability density function (PDF) analysis are employed in this study. The results seem to suggest that the origin of LFV cannot be understood completely within the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain ranges, because (1) the existence of multiple flow regimes such as NAO+, AO+, AO- and NAO- resulted from processes with timescales much longer than LFV itself, which may have underlying dynamics other than topography-jet stream interaction, and (2) we find LFV seems not necessarily to come directly from the planetary-scale dynamics of the interaction of the jet stream with mid-latitude mountain, although it can produce similar oscillatory behavior. The feedback/forcing of synoptic-scale eddies on the planetary-scale dynamics seems to play a more essential role in its origin.
A field comparison of multiple techniques to quantify groundwater - surface-water interactions
González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N.; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T
2015-01-01
Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardoyan, G.; Rao, Nageswara S; Towlsey, D.
In recent years, the computer networking community has seen a steady growth in bandwidth-delay products (BDPs). Several TCP variants were created to combat the shortcomings of legacy TCP when it comes to operation in high-BDP environments. These variants, among which are CUBIC, STCP, and H-TCP, have been extensively studied in some empirical contexts, and some analytical models exist for CUBIC and STCP. However, since these studies have been conducted, BDPs have risen even more, and new bulk data transfer tools have emerged that utilize multiple parallel TCP streams. In view of these new developments, it is imperative to revisit themore » question: Which congestion control algorithms are best adapted to current networking environments? In order to help resolve this question, we contribute the following: (i) using first principles, we develop a general throughput-prediction framework that takes into account buffer sizes and maximum window constraints; (ii) we validate the models using measurements and achieve low prediction errors; (iii) we note differences in TCP dynamics between two experimental configurations and find one of them to be significantly more deterministic than the other; we also find that CUBIC and H-TCP outperform STCP, especially when multiple streams are used; and (iv) we present preliminary results for modelling multiple TCP streams for CUBIC and STCP.« less
Salis, R. K.; Bruder, A.; Piggott, J. J.; Summerfield, T. C.; Matthaei, C. D.
2017-01-01
Disentangling the individual and interactive effects of multiple stressors on microbial communities is a key challenge to our understanding and management of ecosystems. Advances in molecular techniques allow studying microbial communities in situ and with high taxonomic resolution. However, the taxonomic level which provides the best trade-off between our ability to detect multiple-stressor effects versus the goal of studying entire communities remains unknown. We used outdoor mesocosms simulating small streams to investigate the effects of four agricultural stressors (nutrient enrichment, the nitrification inhibitor dicyandiamide (DCD), fine sediment and flow velocity reduction) on stream bacteria (phyla, orders, genera, and species represented by Operational Taxonomic Units with 97% sequence similarity). Community composition was assessed using amplicon sequencing (16S rRNA gene, V3-V4 region). DCD was the most pervasive stressor, affecting evenness and most abundant taxa, followed by sediment and flow velocity. Stressor pervasiveness was similar across taxonomic levels and lower levels did not perform better in detecting stressor effects. Community coverage decreased from 96% of all sequences for abundant phyla to 28% for species. Order-level responses were generally representative of responses of corresponding genera and species, suggesting that this level may represent the best compromise between stressor sensitivity and coverage of bacterial communities. PMID:28327636
Multiple function benefit - cost comparison of conservation buffer placement strategies
Z. Qiu; M.G. Dosskey
2012-01-01
Conservation buffers are considered to be effective practices for repairing impaired streams and restoring multiple ecosystem functions in degraded agricultural watersheds. Six different planning strategies for targeting their placement within watersheds were compared in terms of cost-effectiveness for environmental improvement in the 144 km² Neshanic River...
Family Planning Services Available to Migratory Farm Workers in the Mid-Continent Streams.
ERIC Educational Resources Information Center
Planned Parenthood--World Population, Austin, TX. Southwest Region.
The information in this directory is designed to promote continuity in family planning services for migrant families in mid-continent streams. It provides professional personnel with a new tool to help meet the distinctive needs of individual migrants. Names, addresses, schedules, methods, and fee information of service agencies (health…
NASA Astrophysics Data System (ADS)
Akrout, Nabil M.; Gordon, Howard; Palisson, Patrice M.; Prost, Remy; Goutte, Robert
1996-05-01
Facing a world undergoing fundamental and rapid change, healthcare organizations are seeking ways to increase innovation, quality, productivity, and patient value, keys to more effective care. Individual clinics acting alone can respond in only a limited way, so re- engineering the process key which services are delivered demands real-time collaborative technology that provides immediate information sharing, improving the management and coordination of information in cross-functional teams. StreamWorks is a development stage architecture that uses a distribution technique to deliver an advanced information management system for telemedicine. The challenge of StreamWorks in telemedicine is to enable equity of the quality of Health Care of Telecommunications and Information Technology also to patients in less favored regions, like India or China, where the quality of medical care varies greatly by region, but where there are some very current communications facilities.
Wagner, L.A.
1982-01-01
Hydrologic studies concerned with surface water require geographic data of several types, among which are stream length and size of drainage area from which runoff is contributed. This gazetteer presents all drainage-area data on New York streams that were available as of October 1980. The information is grouped by river basin, and each section consists of two lists. The first gives sites alphabetically by stream name and includes the body of water to which the stream is tributary, county in which the site is located, drainage area above the mouth, coordinates of the topographic quadrangle on the State index map , and the Geological Survey site number. The second list presents site information by U.S. Geological Survey site number (downstream order along the main stream) and includes drainage area, distance of measurement site above the mouth, and location by latitude and longitude. Data were compiled from published and unpublished sources, all of which are available for inspection at the U.S. Geological Survey in Albany, N.Y. Also included are updated values on several river basins that have been redelineated and whose drainage areas have been recomputed and retabulated since 1977. (USGS)
Learning accurate very fast decision trees from uncertain data streams
NASA Astrophysics Data System (ADS)
Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo
2015-12-01
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.
The life-cycle of upper-tropospheric jet streams identified with a novel data segmentation algorithm
NASA Astrophysics Data System (ADS)
Limbach, S.; Schömer, E.; Wernli, H.
2010-09-01
Jet streams are prominent features of the upper-tropospheric atmospheric flow. Through the thermal wind relationship these regions with intense horizontal wind speed (typically larger than 30 m/s) are associated with pronounced baroclinicity, i.e., with regions where extratropical cyclones develop due to baroclinic instability processes. Individual jet streams are non-stationary elongated features that can extend over more than 2000 km in the along-flow and 200-500 km in the across-flow direction, respectively. Their lifetime can vary between a few days and several weeks. In recent years, feature-based algorithms have been developed that allow compiling synoptic climatologies and typologies of upper-tropospheric jet streams based upon objective selection criteria and climatological reanalysis datasets. In this study a novel algorithm to efficiently identify jet streams using an extended region-growing segmentation approach is introduced. This algorithm iterates over a 4-dimensional field of horizontal wind speed from ECMWF analyses and decides at each grid point whether all prerequisites for a jet stream are met. In a single pass the algorithm keeps track of all adjacencies of these grid points and creates the 4-dimensional connected segments associated with each jet stream. In addition to the detection of these sets of connected grid points, the algorithm analyzes the development over time of the distinct 3-dimensional features each segment consists of. Important events in the development of these features, for example mergings and splittings, are detected and analyzed on a per-grid-point and per-feature basis. The output of the algorithm consists of the actual sets of grid-points augmented with information about the particular events, and of the so-called event graphs, which are an abstract representation of the distinct 3-dimensional features and events of each segment. This technique provides comprehensive information about the frequency of upper-tropospheric jet streams, their preferred regions of genesis, merging, splitting, and lysis, and statistical information about their size, amplitude and lifetime. The presentation will introduce the technique, provide example visualizations of the time evolution of the identified 3-dimensional jet stream features, and present results from a first multi-month "climatology" of upper-tropospheric jets. In the future, the technique can be applied to longer datasets, for instance reanalyses and output from global climate model simulations - and provide detailed information about key characteristics of jet stream life cycles.
Experimental Acoustic Velocity Measurements in a Tidally Affected Stream
Storm, J.B.; ,
2002-01-01
The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.
M.W. Griswold; R.T. Winn; T.L. Crisman; W.R. White
2006-01-01
Streamside Management Zones (SMZs) are meant to protect riparian habitat and the stream ecosystem. Benthic macroinvertebrates are recognized bioindicators of water quality in streams, typically occupying multiple trophic levels in these systems and providing food for vertebrates. Thus, it is important to understand the effects of harvest within and adjacent to the SMZ...
H. H. Jr. Welsh; J. J. G. R. Hodgson; J. M. Emlen Duda
2010-01-01
Headwaters can represent 80% of stream kilometers in a watershed, and they also have unique physical and biological properties that have only recently been recognized for their importance in sustaining healthy functioning stream networks and their ecological services. We sampled 60 headwater tributaries in the South Fork Trinity River, a 2,430 km2...
William H. McDowell; Daniel Liptzin
2014-01-01
Understanding the drivers of forest ecosystem response to major disturbance events is an important topic in forest ecology and ecosystem management. Because of the multiple elements included in most major disturbances such as hurricanes, fires, or landslides, it is often difficult to ascribe a specific driver to the observed response. This is particularly true for the...
Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan
2015-06-01
This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed.
NASA Astrophysics Data System (ADS)
Reisinger, A. J.; Woytowitz, E.; Majcher, E.; Rosi, E. J.; Groffman, P.
2017-12-01
Urban streams receive a myriad of chemical inputs from the surrounding landscape due to altered lithology (asphalt, concrete), leaky sewage infrastructure, and other human activities (road salt, fertilizer, industrial wastes, wastewater effluent), potentially leading to multiple chemical stressors occurring simultaneously. To evaluate potential drivers of water chemistry change, we used approximately 20 years of weekly water chemistry monitoring data from streams in the Baltimore Ecosystem Study (BES) to quantify trends of annual loads and flow-weighted concentrations for multiple solutes of interest, including nitrate (NO3-), phosphate (PO43-), total nitrogen (TN), total phosphorus (TP), chloride (Cl-), and sulfate (SO42-) and subsequently examined various gray and green infrastructure characteristics at the watershed scale. For example, we quantified annual volume and duration of reported sanitary sewer overflows (SSO) and cumulative storage volume and area of various best management practices (BMPs). Site- and solute-specific trends differed, but across our monitoring network we found evidence for decreasing annual export for multiple solutes. Additionally, we found that changes in gray- and green-infrastructure characteristics were related to changes in water quality at our most downstream (most urban) monitoring site. For example, annual NO3- loads increased with longer cumulative SSO duration, whereas annual PO43- and TP loads decreased with a cumulative BMP area in the watershed. Further, we used same long-term water chemistry data and multivariate analyses to investigate whether urban streams have unique water chemistry fingerprints representing the multiple chemical stressors at a given site, which could provide insight into sources and impacts of water-quality impairment. These analyses and results illustrate the major role gray and green infrastructure play in influencing water quality in urban environments, and illustrate that focusing on a variety of chemical stressors is necessary to gain a broader understanding of the issues affecting urban water quality.
Wright, Winfield G.; Moore, Bryan
2003-01-01
Tracer-injection studies were done in Belcher Gulch in the upper Animas River watershed, southwestern Colorado, to determine whether the alpine stream infiltrates into underground mine workings of the North Star Mine and other nearby mines in the area. The tracer-injection studies were designed to determine if and where along Belcher Gulch the stream infiltrates into the mine. Four separate tracer-injec-tion tests were done using lithium bromide (LiBr), optical brightener dye, and sodium chloride (NaCl) as tracer solu-tions. Two of the tracers (LiBr and dye) were injected con-tinuously for 24 hours, one of the NaCl tracers was injected continuously for 12 hours, and one of the NaCl tracers was injected over a period of 1 hour. Concentration increases of tracer constituents were detected in water discharging from the North Star Mine, substantiating a surface-water and ground-water connection between Belcher Gulch and the North Star Mine. Different timing and magnitude of tracer breakthroughs indicated multiple flow paths with different residence times from the stream to the mine. The Pittsburgh and Sultan Mines were thought to physically connect to the North Star Mine, but tracer breakthroughs were inconclusive in water from these mines. From the tracer-injection tests and synoptic measure-ments of streamflow discharge, a conceptual model was devel-oped for surface-water and ground-water interactions between Belcher Gulch and the North Star Mine. This information, combined with previous surface geophysical surveys indicat-ing the presence of subsurface voids, may assist with decision-making process for preventing infiltration and for the remedia-tion of mine drainage from these mines.
Predicting streamflow regime metrics for ungauged streamsin Colorado, Washington, and Oregon
NASA Astrophysics Data System (ADS)
Sanborn, Stephen C.; Bledsoe, Brian P.
2006-06-01
Streamflow prediction in ungauged basins provides essential information for water resources planning and management and ecohydrological studies yet remains a fundamental challenge to the hydrological sciences. A methodology is presented for stratifying streamflow regimes of gauged locations, classifying the regimes of ungauged streams, and developing models for predicting a suite of ecologically pertinent streamflow metrics for these streams. Eighty-four streamflow metrics characterizing various flow regime attributes were computed along with physical and climatic drainage basin characteristics for 150 streams with little or no streamflow modification in Colorado, Washington, and Oregon. The diverse hydroclimatology of the study area necessitates flow regime stratification and geographically independent clusters were identified and used to develop separate predictive models for each flow regime type. Multiple regression models for flow magnitude, timing, and rate of change metrics were quite accurate with many adjusted R2 values exceeding 0.80, while models describing streamflow variability did not perform as well. Separate stratification schemes for high, low, and average flows did not considerably improve models for metrics describing those particular aspects of the regime over a scheme based on the entire flow regime. Models for streams identified as 'snowmelt' type were improved if sites in Colorado and the Pacific Northwest were separated to better stratify the processes driving streamflow in these regions thus revealing limitations of geographically independent streamflow clusters. This study demonstrates that a broad suite of ecologically relevant streamflow characteristics can be accurately modeled across large heterogeneous regions using this framework. Applications of the resulting models include stratifying biomonitoring sites and quantifying linkages between specific aspects of flow regimes and aquatic community structure. In particular, the results bode well for modeling ecological processes related to high-flow magnitude, timing, and rate of change such as the recruitment of fish and riparian vegetation across large regions.
Records of River Variation in the Shells of Freshwater Bivalves
NASA Astrophysics Data System (ADS)
Carroll, M.; Romanek, C.
2005-12-01
The skeletons of hard-shelled invertebrates such as corals and bivalves are commonly used in marine settings as archives of environmental information. They are less commonly used in freshwater settings where variability in water chemistry makes it more difficult to calibrate chemical proxies such as the Sr:Ca in a shell. Our objective is to evaluate whether trace element concentrations in freshwater bivalve shells contain information on environmental conditions. Multiple elements (Ba, Cu, Mn and Sr) were analyzed within the shells of modern bivalves from four streams on DOE's Savannah River Site in S.C. Laser Ablation ICP-MS was used to measure elemental concentrations across five aragonitic shells from each site. These elements were chosen because they are present in detectable concentrations (ppm) in the shell and they have been suggested as useful proxies for temperature, rainfall, productivity and pollution. Results were compared to historical monthly site records of water chemistry and chemical analyses of water samples collected from the streams where the clams were found. The average shell concentrations of Sr and Mn were significantly different between sites and increased proportionally to water concentration. This was not observed for Ba and Cu. For example, the Ba concentrations of shells collected at a site downstream of a lake were higher than those for shells from stream sites with significantly higher dissolved Ba concentrations. Copper was only detected at dark growth lines with the number of lines and shell material between them varying between shells within the same stream. Intrashell profiles of Ba, Sr and Mn concentrations exhibited cyclical variation. The magnitude of cyclical variation for Mn and Sr within a shell corresponds with the annual variation in monthly water sample concentrations. Again, this pattern was not observed for Ba, especially in shells from the site downstream of a lake. This supports suggestions that particulate organic matter, to which Ba preferentially partitions, plays a role in bivalve Ba uptake. Finally, variations in Ba, Cu, Mn and Sr profiles across shells are not in unison. The individual elemental responses to biological and physicochemical effects suggest that the elemental records in freshwater bivalve shells can be interpreted as environmental proxies.
Assessing the influence of multiple stressors on stream diatom metrics in the upper Midwest, USA
Munn, Mark D.; Waite, Ian R.; Konrad, Christopher P.
2018-01-01
Water resource managers face increasing challenges in identifying what physical and chemical stressors are responsible for the alteration of biological conditions in streams. The objective of this study was to assess the comparative influence of multiple stressors on benthic diatoms at 98 sites that spanned a range of stressors in an agriculturally dominated region in the upper Midwest, USA. The primary stressors of interest included: nutrients, herbicides and fungicides, sediment, and streamflow; although the influence of physical habitat was incorporated in the assessment. Boosted Regression Tree was used to examine both the sensitivity of various diatom metrics and the relative importance of the primary stressors. Percent Sensitive Taxa, percent Highly Motile Taxa, and percent High Phosphorus Taxa had the strongest response to stressors. Habitat and total phosphorous were the most common discriminators of diatom metrics, with herbicides as secondary factors. A Classification and Regression Tree (CART) model was used to examine conditional relations among stressors and indicated that fine-grain streams had a lower percentage of Sensitive Taxa than coarse-grain streams, with Sensitive Taxa decreasing further with increased water temperature (>30 °C) and triazine concentrations (>1500 ng/L). In contrast, streams dominated by coarse-grain substrate contained a higher percentage of Sensitive Taxa, with relative abundance increasing with lower water temperatures (<29 °C) and shallower water depth (<0.3 m). Quantile regression indicated that maximum water temperature appears to be a major limiting factor in Midwest streams; whereas both total phosphorus and percent fines showed a slight subsidy-stress response. While using benthic algae for assessing stream quality can be challenging, field-based studies can elucidate stressor effects and interactions when the response variables are appropriate, sufficient stressor resolution is achieved, and the number and type of sites represent a gradient of stressor conditions and at least a quasi-factorial design.
NASA Astrophysics Data System (ADS)
Zhang, Hong; Hou, Rui; Yi, Lei; Meng, Juan; Pan, Zhisong; Zhou, Yuhuan
2016-07-01
The accurate identification of encrypted data stream helps to regulate illegal data, detect network attacks and protect users' information. In this paper, a novel encrypted data stream identification algorithm is introduced. The proposed method is based on randomness characteristics of encrypted data stream. We use a l1-norm regularized logistic regression to improve sparse representation of randomness features and Fuzzy Gaussian Mixture Model (FGMM) to improve identification accuracy. Experimental results demonstrate that the method can be adopted as an effective technique for encrypted data stream identification.
Learning to leverage existing information systems: Part 1. Principles.
Neil, Nancy; Nerenz, David
2003-10-01
The success of performance improvement efforts depends on effective measurement and feedback regarding clinical processes and outcomes. Yet most health care organizations have fragmented rather than integrated data systems. Methods and practical guidance are provided for leveraging available information sources to obtain and create valid performance improvement-related information for use by clinicians and administrators. At Virginia Mason Health System (VMHS; Seattle), a vertically integrated hospital and multispecialty group practice, patient records are paper based and are supplemented with electronic reporting for laboratory and radiology services. Despite growth in the resources and interest devoted to organization-wide performance measurement, quality improvement, and evidence-based tools, VMHS's information systems consist of largely stand-alone, legacy systems organized around the ability to retrieve information on patients, one at a time. By 2002, without any investment in technology, VMHS had developed standardized, clinic-wide key indicators of performance updated and reported regularly at the patient, provider, site, and organizational levels. On the basis of VHMS's experience, principles can be suggested to guide other organizations to explore solutions using their own information systems: for example, start simply, but start; identify information needs; tap multiple data streams; and improve incrementally.
Deep Visual Attention Prediction
NASA Astrophysics Data System (ADS)
Wang, Wenguan; Shen, Jianbing
2018-05-01
In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.
Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred
2016-10-27
Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical "default mode" that allows selectively focusing on close obstacle even without active attention from the animals.
Beetz, M. Jerome; Hechavarría, Julio C.; Kössl, Manfred
2016-01-01
Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical “default mode” that allows selectively focusing on close obstacle even without active attention from the animals. PMID:27786252
Smith, S. Jerrod; Esralew, Rachel A.
2010-01-01
The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the drainage-basin outlet for the period 1961-1990, 10-85 channel slope (slope between points located at 10 percent and 85 percent of the longest flow-path length upstream from the outlet), and percent impervious area. The Oklahoma StreamStats application interacts with the National Streamflow Statistics database, which contains the peak-flow regression equations in a previously published report. Fourteen peak-flow (flood) frequency statistics are available for computation in the Oklahoma StreamStats application. These statistics include the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural, unregulated streams; and the peak flow at 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for rural streams that are regulated by Natural Resources Conservation Service floodwater retarding structures. Basin characteristics and streamflow statistics cannot be computed for locations in playa basins (mostly in the Oklahoma Panhandle) and along main stems of the largest river systems in the state, namely the Arkansas, Canadian, Cimarron, Neosho, Red, and Verdigris Rivers, because parts of the drainage areas extend outside of the processed hydrologic units.
Parallel Processing Strategies of the Primate Visual System
Nassi, Jonathan J.; Callaway, Edward M.
2009-01-01
Preface Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated upon and integrated within the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are all used by the visual system to recover the rich detail of our visual surroundings. PMID:19352403
Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into the stream, harming both water and habitat quality. This metric measured the length of roads within 30 meters of a stream. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Changes in Stream Water Temperatures in the Chesapeake Bay Region, 1960-2014
This map shows the changes in stream water temperatures in the Chesapeake Bay region from 1960 to 2014. Blue circles represent cooling trends in stream water temperatures, and red circles represent warming trends in stream water temperatures. Data were analyzed by Mike Kolian of EPA in partnership with John Jastram and Karen Rice of the U.S. Geological Survey. For more information: www.epa.gov/climatechange/science/indicators
Stream processing health card application.
Polat, Seda; Gündem, Taflan Imre
2012-10-01
In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.
Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts
Bent, Gardner C.; Waite, Andrew M.
2013-01-01
Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory variable in estimating these bankfull characteristics. The use of drainage area as an explanatory variable is also the most commonly published method for estimating these bankfull characteristics. Regional curves (graphic plots) of bankfull channel geometry and discharge by drainage area are presented. The regional curves are based on the simple regression equations and can be used to estimate bankfull characteristics from drainage area. Multiple regression analysis, which includes basin characteristics in addition to drainage area, also was used to develop equations. Variability in bankfull width, mean depth, cross-sectional area, and discharge was more fully explained by the multiple regression equations that include mean-basin slope and drainage area than was explained by equations based on drainage area alone. The Massachusetts regional curves and equations developed in this study are similar, in terms of values of slopes and intercepts, to those developed for other parts of the northeastern United States. Limitations associated with site selection and development of the equations resulted in some constraints for the application of equations and regional curves presented in this report. The curves and equations are applicable to stream sites that have (1) less than about 25 percent of their drainage basin area occupied by urban land use (commercial, industrial, transportation, and high-density residential), (2) little to no streamflow regulation, especially from flood-control structures, (3) drainage basin areas greater than 0.60 mi2 and less than 329 mi2, and (4) a mean basin slope greater than 2.2 percent and less than 23.9 percent. The equations may not be applicable where streams flow through extensive wetlands. The equations also may not apply in areas of Cape Cod and the Islands and the area of southeastern Massachusetts close to Cape Cod with extensive areas of coarse-grained glacial deposits where none of the study sites are located. Regardless of the setting, the regression equations are not intended for use as the sole method of estimating bankfull characteristics; however, they may supplement field identification of the bankfull channel when used in conjunction with field verified bankfull indicators, flood-frequency analysis, or other supporting evidence.
Temporal and spatial variability in North Carolina piedmont stream temperature
J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer
2009-01-01
Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...
ERIC Educational Resources Information Center
Bouvet, Lucie; Mottron, Laurent; Valdois, Sylviane; Donnadieu, Sophie
2016-01-01
Auditory stream segregation allows us to organize our sound environment, by focusing on specific information and ignoring what is unimportant. One previous study reported difficulty in stream segregation ability in children with Asperger syndrome. In order to investigate this question further, we used an interleaved melody recognition task with…
Monitoring wilderness stream ecosystems
Jeffrey C. Davis; G. Wayne Minshall; Christopher T. Robinson; Peter Landres
2001-01-01
A protocol and methods for monitoring the major physical, chemical, and biological components of stream ecosystems are presented. The monitoring protocol is organized into four stages. At stage 1 information is obtained on a basic set of parameters that describe stream ecosystems. Each following stage builds upon stage 1 by increasing the number of parameters and the...
Integrating the Four Streams. CGEA Information Sheet No. 7.
ERIC Educational Resources Information Center
National Languages and Literacy Inst. of Australia, Melbourne. Adult Education Resource and Information Service.
Ways to integrate the four streams of the Certificates in General Education for Adults (CGEA) are presented in this document. The four streams of Australia's CGEAs are as follows: reading and writing, oral communication, numeracy and mathematics, and general curriculum options. This guide notes that the CGEA aims to promote a holistic approach to…
Visual speech segmentation: using facial cues to locate word boundaries in continuous speech
Mitchel, Aaron D.; Weiss, Daniel J.
2014-01-01
Speech is typically a multimodal phenomenon, yet few studies have focused on the exclusive contributions of visual cues to language acquisition. To address this gap, we investigated whether visual prosodic information can facilitate speech segmentation. Previous research has demonstrated that language learners can use lexical stress and pitch cues to segment speech and that learners can extract this information from talking faces. Thus, we created an artificial speech stream that contained minimal segmentation cues and paired it with two synchronous facial displays in which visual prosody was either informative or uninformative for identifying word boundaries. Across three familiarisation conditions (audio stream alone, facial streams alone, and paired audiovisual), learning occurred only when the facial displays were informative to word boundaries, suggesting that facial cues can help learners solve the early challenges of language acquisition. PMID:25018577
Cold fronts and shocks formed by gas streams in galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Nagai, D.; Lau, E.; Kravtsov, A. V.
2018-05-01
Cold fronts (CFs) and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and CFs in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyr and it could generate a particular pattern of multiple CFs and shocks.
Comparison of animated jet stream visualizations
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Hoffmann, Peter
2016-04-01
The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).
A stream temperature model for the Peace-Athabasca River basin
NASA Astrophysics Data System (ADS)
Morales-Marin, L. A.; Rokaya, P.; Wheater, H. S.; Lindenschmidt, K. E.
2017-12-01
Water temperature plays a fundamental role in water ecosystem functioning. Because it regulates flow energy and metabolic rates in organism productivity over a broad spectrum of space and time scales, water temperature constitutes an important indicator of aquatic ecosystems health. In cold region basins, stream water temperature modelling is also fundamental to predict ice freeze-up and break-up events in order to improve flood management. Multiple model approaches such as linear and multivariable regression methods, neural network and thermal energy budged models have been developed and implemented to simulate stream water temperature. Most of these models have been applied to specific stream reaches and trained using observed data, but very little has been done to simulate water temperature in large catchment river networks. We present the coupling of RBM model, a semi-Lagrangian water temperature model for advection-dominated river system, and MESH, a semi-distributed hydrological model, to simulate stream water temperature in river catchments. The coupled models are implemented in the Peace-Athabasca River basin in order to analyze the variation in stream temperature regimes under changing hydrological and meteorological conditions. Uncertainty of stream temperature simulations is also assessed in order to determine the degree of reliability of the estimates.
NASA Astrophysics Data System (ADS)
van Sickle, J.; Baker, J.; Herlihy, A.
2005-05-01
We built multiple regression models for Emphemeroptera/ Plecoptera/ Tricoptera (EPT) taxon richness and other indicators of biological condition in streams of the Willamette River Basin, Oregon, USA. The models were used to project the changes in condition that would be expected in all 2-4th order streams of the 30000 sq km basin under alternative scenarios of future land use. In formulating the models, we invoked the theory of limiting factors to express the interactive effects of stream power and watershed land use on EPT richness. The resulting models were parsimonious, and they fit the data in our wedge-shaped scatterplots slightly better than did a naive additive-effects model. Just as theory helped formulate our regression models, the models in turn helped us identify a new research need for the Basin's streams. Our future scenarios project that conversions of agricultural to urban uses may dominate landscape dynamics in the basin over the next 50 years. But our models could not detect any difference between the effects of agricultural and urban development in watersheds on stream biota. This result points to an increased need for understanding how agricultural and urban land uses in the Basin differentially influence stream ecosystems.
Regional-scale, fully coupled modelling of stream aquifer interaction in a tropical catchment
NASA Astrophysics Data System (ADS)
Werner, Adrian D.; Gallagher, Mark R.; Weeks, Scott W.
2006-09-01
SummaryThe planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance.
Influence of geomorphological properties and stage on in-stream travel time
NASA Astrophysics Data System (ADS)
Åkesson, Anna; Wörman, Anders
2014-05-01
The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guang -Wei; Yanny, Brian; Zhang, Hao -Tong
We present candidate members of the Pal 5, GD-1, Cetus Polar, and Orphan tidal stellar streams found in LAMOST DR3, SDSS DR9 and APOGEE catalogs. In LAMOST DR3, we find 20, 4, 24 high confidence candidates of tidal streams GD-1, Cetus Polar and Orphan respectively. We also list from the SDSS DR9 spectroscopic catalog 59, 118, 10 high confidence candidates of tidal streams Cetus Polar, Orphan and Pal 5, respectively. Furthermore, we find 7 high confidence candidates of the Pal 5 tidal stream in APOGEE data. Compared with SDSS, the new candidates from LAMOST DR3 are brighter, so that together, more of the color-magnitude diagram, including the giant branch can be explored. Analysis of SDSS data shows that there are 3 metallicity peaks of the Orphan stream and also shows some spatial separation. LAMOST data confirms multiple metallicities in this stream. The metallicity, given by the higher resolution APOGEE instrument, of the Pal 5 tidal stream is [Fe/H]more » $$\\sim -1.2$$, higher than that given earlier by SDSS spectra. Here, many previously unidentified stream members are tabulated here for the first time, along with existing members, allowing future researchers to further constrain the orbits of these objects as they move within the Galaxy's dark matter potential.« less
Application of a multipurpose unequal probability stream survey in the Mid-Atlantic Coastal Plain
Ator, S.W.; Olsen, A.R.; Pitchford, A.M.; Denver, J.M.
2003-01-01
A stratified, spatially balanced sample with unequal probability selection was used to design a multipurpose survey of headwater streams in the Mid-Atlantic Coastal Plain. Objectives for the survey include unbiased estimates of regional stream conditions, and adequate coverage of unusual but significant environmental settings to support empirical modeling of the factors affecting those conditions. The design and field application of the survey are discussed in light of these multiple objectives. A probability (random) sample of 175 first-order nontidal streams was selected for synoptic sampling of water chemistry and benthic and riparian ecology during late winter and spring 2000. Twenty-five streams were selected within each of seven hydrogeologic subregions (strata) that were delineated on the basis of physiography and surficial geology. In each subregion, unequal inclusion probabilities were used to provide an approximately even distribution of streams along a gradient of forested to developed (agricultural or urban) land in the contributing watershed. Alternate streams were also selected. Alternates were included in groups of five in each subregion when field reconnaissance demonstrated that primary streams were inaccessible or otherwise unusable. Despite the rejection and replacement of a considerable number of primary streams during reconnaissance (up to 40 percent in one subregion), the desired land use distribution was maintained within each hydrogeologic subregion without sacrificing the probabilistic design.
Li, Guang -Wei; Yanny, Brian; Zhang, Hao -Tong; ...
2017-05-01
We present candidate members of the Pal 5, GD-1, Cetus Polar, and Orphan tidal stellar streams found in LAMOST DR3, SDSS DR9 and APOGEE catalogs. In LAMOST DR3, we find 20, 4, 24 high confidence candidates of tidal streams GD-1, Cetus Polar and Orphan respectively. We also list from the SDSS DR9 spectroscopic catalog 59, 118, 10 high confidence candidates of tidal streams Cetus Polar, Orphan and Pal 5, respectively. Furthermore, we find 7 high confidence candidates of the Pal 5 tidal stream in APOGEE data. Compared with SDSS, the new candidates from LAMOST DR3 are brighter, so that together, more of the color-magnitude diagram, including the giant branch can be explored. Analysis of SDSS data shows that there are 3 metallicity peaks of the Orphan stream and also shows some spatial separation. LAMOST data confirms multiple metallicities in this stream. The metallicity, given by the higher resolution APOGEE instrument, of the Pal 5 tidal stream is [Fe/H]more » $$\\sim -1.2$$, higher than that given earlier by SDSS spectra. Here, many previously unidentified stream members are tabulated here for the first time, along with existing members, allowing future researchers to further constrain the orbits of these objects as they move within the Galaxy's dark matter potential.« less
Goldstein, R.M.; Carlisle, D.M.; Meador, M.R.; Short, T.M.
2007-01-01
The environmental setting (e.g., climate, topography, geology) and land use affect stream physical characteristics singly and cumulatively. At broad geographic scales, we determined the importance of environmental setting and land use in explaining variation in stream physical characteristics. We hypothesized that as the spatial scale decreased from national to regional, land use would explain more of the variation in stream physical characteristics because environmental settings become more homogeneous. At a national scale, stepwise linear regression indicated that environmental setting was more important in explaining variability in stream physical characteristics. Although statistically discernible, the amount of variation explained by land use was not remarkable due to low partial correlations. At level II ecoregion spatial scales (southeastern USA plains, central USA plains, and a combination of the western Cordillera and the western interior basins and ranges), environmental setting variables were again more important predictors of stream physical characteristics, however, as the spatial scale decreased from national to regional, the portion of variability in stream physical characteristics explained by basin land use increased. Development of stream habitat indicators of land use will depend upon an understanding of relations between stream physical characteristics and environmental factors at multiple spatial scales. Smaller spatial scales will be necessary to reduce the confounding effects of variable environmental settings before the effects of land use can be reliably assessed. ?? Springer Science+Business Media B.V. 2006.
Expanded stream gauging includes groundwater data and trends
Constantz, James E.; Barlow, Jeannie R.; Eddy-Miller, Cheryl; Caldwell, Rodney R.; Wheeler, Jerrod D.
2012-01-01
Population growth has increased water scarcity to the point that documenting current amounts of worldwide water resources is now as critical as any data collection in the Earth sciences. As a key element of this data collection, stream gauges yield continuous hydrologic information and document long-term trends, recording high-frequency hydrologic information over decadal to centennial time frames.
Variable energy, high flux, ground-state atomic oxygen source
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)
1987-01-01
A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.
SDF1 regulates leading process branching and speed of migrating interneurons
Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.
2011-01-01
Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183
Urban development results in stressors that degrade stream ecosystems
Bell, Amanda H.; Coles, James F.; McMahon, Gerard; Woodside, Michael D.
2012-01-01
In 2003, eighty-three percent of Americans lived in metropolitan areas, and considerable population increases are predicted within the next 50 years. Nowhere are the environmental changes associated with urban development more evident than in urban streams. Contaminants, habitat destruction, and increasing streamflow flashiness resulting from urban development have been associated with the disruption of biological communities, particularly the loss of sensitive aquatic biota. Every stream is connected downstream to other water bodies, and inputs of contaminants and (or) sediments to streams can cause degradation downstream with adverse effects on biological communities and on economically valuable resources, such as fisheries and tourism. Understanding how algal, invertebrate, and fish communities respond to physical and chemical stressors associated with urban development can provide important clues on how multiple stressors may be managed to protect stream health as a watershed becomes increasingly urbanized. This fact sheet highlights selected findings of a comprehensive assessment by the National Water-Quality Assessment Program of the U.S. Geological Survey (USGS) of the effects of urban development on stream ecosystems in nine metropolitan study areas.
Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc
2014-04-15
Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Factoring stream turbulence into global assessments of nitrogen pollution.
Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A
2018-03-16
The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
The quality of our Nation’s waters--ecological health in the Nation's streams, 1993-2005
Carlisle, Daren M.; Meador, Michael R.; Short, Terry M.; Tate, Cathy M.; Gurtz, Martin E.; Bryant, Wade L.; Falcone, James A.; Woodside, Michael D.
2013-01-01
This report summarizes a national assessment of the ecological health of streams done by the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA). Healthy functioning stream ecosystems provide society with many benefits, including water purification, flood control, nutrient recycling, waste decomposition, fisheries, and aesthetics. The value to society of many of these benefits is substantial; for example, sportfishing in the United States generates an estimated annual economic output of $125 billion, including more than 1 million jobs (National Research Council, 2005; American Sportfishing Association, 2008). Continued monitoring and assessment of the Nation’s streams is needed to support informed decisions that will safeguard this important natural and economic resource. The quality of streams and rivers is often assessed with measures of the chemical or physical properties of water. However, a more comprehensive perspective is obtained if resident biological communities are also assessed. Guidelines to protect human health and aquatic life have been established for specific physical and chemical properties of water and have become useful yardsticks with which to assess water quality. Biological communities provide additional crucial information because they live within streams for weeks to years and therefore integrate through time the effects of changes to their chemical or physical environment. In addition, biological communities are a direct measure of stream health—an indicator of the ability of a stream to support aquatic life. Thus, the condition of biological communities, integrated with key physical and chemical properties, provides a comprehensive assessment of stream health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used inmore » developing the Biotic Index, the index was very successful at detecting impact.« less
Snyder, Craig D.; Webb, James R.; Young, John A.; Johnson, Zane B.
2013-01-01
Shenandoah National Park has been monitoring water chemistry and benthic macroinvertebrates in stream ecosystems since 1979. These monitoring efforts were designed to assess the status and trends in stream condition associated with atmospheric deposition (acid rain) and changes in forest health due to gypsy moth infestations. The primary objective of the present research was to determine whether the current long-term macroinvertebrate and water-quality monitoring program in Shenandoah National Park was failing to capture important information on the status and trends in stream condition by not sufficiently representing smaller, headwater streams. The current benthic-macroinvertebrate and water-chemistry sampling designs do not include routine collection of data from streams with contributing watershed areas smaller than 100 hectares, even though these small streams represent the overwhelming proportion of total stream length in the park. In this study, we sampled headwater sites, including headwater stream reaches (contributing watershed area approximately 100 hectares (ha) and perennial springs, in the park for aquatic macroinvertebrates and water chemistry and compared the results with current and historical data collected at long-term ecological monitoring (LTEM) sites on larger streams routinely sampled as part of ongoing monitoring efforts. The larger purpose of the study was to inform ongoing efforts by park managers to evaluate the effectiveness and efficiency of the current aquatic monitoring program in light of other potential stressors (for example, climate change) and limited resources. Our results revealed several important findings that could influence management decisions regarding long-term monitoring of park streams. First, we found that biological indicators of stream condition at headwater sites and perennial springs generally were more indicative of lower habitat quality and were more spatially variable than those observed at sites on routinely monitored larger streams. We hypothesized that poorer stream condition observed in smaller streams was due to stream drying that occurs more frequently in headwater areas. We also found that biological and water-chemistry measures responded differently to landscape drivers. Variation in most biological endpoints was driven primarily by stream size and was only secondarily associated with bedrock geology. In contrast, water chemistry showed essentially the opposite pattern, with underlying geology explaining much of the variation and stream size being of secondary importance. Therefore, expanding the LTEM program to include headwater areas would yield substantially different biological information, whereas broad inferences regarding spatial patterns in water chemistry would probably not change. Although significant differences in community composition were observed among streams of different sizes, no taxa were unique to headwater sites. All taxa collected at the 45 headwater sites also had been collected at one or more LTEM sites during one or more years. This observation indicates that headwater sites in the park may be structured by biotic nestedness; consequently, focusing management efforts on preserving the species pool at the larger LTEM sites would likely result in the protection of most taxa parkwide. Finally, linkages (correlations) between water chemistry and biological measures of stream condition were signficantly stronger when assessed at the LTEM sites than when assessed at the springs or headwater sites, indicating that conditions at downstream sites may be better indicators of water-quality trends.
Coupling flood forecasting and social media crowdsourcing
NASA Astrophysics Data System (ADS)
Kalas, Milan; Kliment, Tomas; Salamon, Peter
2016-04-01
Social and mainstream media monitoring is being more and more recognized as valuable source of information in disaster management and response. The information on ongoing disasters could be detected in very short time and the social media can bring additional information to traditional data feeds (ground, remote observation schemes). Probably the biggest attempt to use the social media in the crisis management was the activation of the Digital Humanitarian Network by the United Nations Office for the Coordination of Humanitarian Affairs in response to Typhoon Yolanda. The network of volunteers performing rapid needs & damage assessment by tagging reports posted to social media which were then used by machine learning classifiers as a training set to automatically identify tweets referring to both urgent needs and offers of help. In this work we will present the potential of coupling a social media streaming and news monitoring application ( GlobalFloodNews - www.globalfloodsystem.com) with a flood forecasting system (www.globalfloods.eu) and the geo-catalogue of the OGC services discovered in the Google Search Engine (WMS, WFS, WCS, etc.) to provide a full suite of information available to crisis management centers as fast as possible. In GlobalFloodNews we use advanced filtering of the real-time Twitter stream, where the relevant information is automatically extracted using natural language and signal processing techniques. The keyword filters are adjusted and optimized automatically using machine learning algorithms as new reports are added to the system. In order to refine the search results the forecasting system will be triggering an event-based search on the social media and OGC services relevant for crisis response (population distribution, critical infrastructure, hospitals etc.). The current version of the system makes use of USHAHIDI Crowdmap platform, which is designed to easily crowdsource information using multiple channels, including SMS, email, Twitter and the web we want to show the potential of monitoring floods at the global scale.
Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.
1996-01-01
Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.
Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.
2018-01-01
Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.
NASA Astrophysics Data System (ADS)
Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.
2010-12-01
Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a program of terrestrial laser scanning (TLS) was conducted at the 1000 Palms oasis stream offset sites. Data products and map interpretations will be presented along with initial applications of the study to characterizing San Andreas fault rupture hazard. Continuing work will seek to more fully populate the dataset of larger offsets, evaluate means to objectively date the larger offsets, and, as completely as possible, to characterize magnitudes of past surface ruptures of the San Andreas fault in the Coachella Valley.
Radiative transfer in falling snow: A two-stream approximation
NASA Astrophysics Data System (ADS)
Koh, Gary
1989-04-01
Light transmission measurements through falling snow have produced results unexplainable by single scattering arguments. A two-stream approximation to radiative transfer is used to derive an analytical expression that describes the effects of multiple scattering as a function of the snow optical depth and the snow asymmetry parameter. The approximate solution is simple and it may be as accurate as the exact solution for describing the transmission measurements within the limits of experimental uncertainties.
NASA Technical Reports Server (NTRS)
Dyson, Jr., Rodger William (Inventor); Bruder, Geoffrey Adam (Inventor)
2015-01-01
A thermo-acoustic engine and/or cooler is provided and includes an elongated tubular body, multiple regenerators disposed within the body, multiple heat exchangers disposed within the body, where at least one heat exchanger is disposed adjacent to each of the multiple regenerators, multiple transducers axially disposed at each end of the body, and an acoustic wave source generating acoustic waves. At least one of the acoustic waves is amplified by one of the regenerators and at least another acoustic wave is amplified by a second one of regenerators.
WDM mid-board optics for chip-to-chip wavelength routing interconnects in the H2020 ICT-STREAMS
NASA Astrophysics Data System (ADS)
Kanellos, G. T.; Pleros, N.
2017-02-01
Multi-socket server boards have emerged to increase the processing power density on the board level and further flatten the data center networks beyond leaf-spine architectures. Scaling however the number of processors per board puts current electronic technologies into challenge, as it requires high bandwidth interconnects and high throughput switches with increased number of ports that are currently unavailable. On-board optical interconnection has proved the potential to efficiently satisfy the bandwidth needs, but their use has been limited to parallel links without performing any smart routing functionality. With CWDM optical interconnects already a commodity, cyclical wavelength routing proposed to fit the datacom for rack-to-rack and board-to-board communication now becomes a promising on-board routing platform. ICT-STREAMS is a European research project that aims to combine WDM parallel on-board transceivers with a cyclical AWGR, in order to create a new board-level, chip-to-chip interconnection paradigm that will leverage WDM parallel transmission to a powerful wavelength routing platform capable to interconnect multiple processors with unprecedented bandwidth and throughput capacity. Direct, any-to-any, on-board interconnection of multiple processors will significantly contribute to further flatten the data centers and facilitate east-west communication. In the present communication, we present ICT-STREAMS on-board wavelength routing architecture for multiple chip-to-chip interconnections and evaluate the overall system performance in terms of throughput and latency for several schemes and traffic profiles. We also review recent advances of the ICT-STREAMS platform key-enabling technologies that span from Si in-plane lasers and polymer based electro-optical circuit boards to silicon photonics transceivers and photonic-crystal amplifiers.
Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry
Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer
2009-01-01
We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...
Hand Path Priming in Manual Obstacle Avoidance: Rapid Decay of Dorsal Stream Information
ERIC Educational Resources Information Center
Jax, Steven A.; Rosenbaum, David A.
2009-01-01
The dorsal, action-related, visual stream has been thought to have little or no memory. This hypothesis has seemed credible because functions related to the dorsal stream have been generally unsusceptible to priming from previous experience. Tests of this claim have yielded inconsistent results, however. We argue that these inconsistencies may be…
Seasonal and species-specific patterns in abundance of freshwater mussel glochidia in stream drift
Jacob J. Culp; Wendell R. Haag; D. Albrey Arrington; Thomas B. Kennedy
2011-01-01
Abstract. We examined seasonal patterns of abundance of mussel larvae (glochidia) in stream drift in a diverse, large-stream mussel assemblage in the Sipsey River, Alabama, across 1 y. We used recently developed techniques for glochidial identification combined with information about mussel fecundity and benthic assemblages to evaluate how well observed glochidial...
Background/Questions/Methods (190 words) We evaluate national stream monitoring data based on its capacity to link stream ecosystems to analyses of human well-being. As a nation we invest substantially in monitoring, but may miss opportunities to collect information that effecti...
What We Know--and Don't Know--About Water Quality at Stream Crossings
Steven E. Taylor; Robert B. Rummer; Kyung H. Yoo; Richard A. Welch; Jason D. Thompson
1999-01-01
Forest road stream crossings including fords, culverts, and bridges, are primary contributors of sediment to forest streams. Information on the water quality impacts form each type for crossings is limited, but the available literature indicates that signicifacent amounts of sediment are produced during installation fo fords and culverts; construction and use of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruffey, Stephanie H.; Jubin, Robert Thomas
U.S. regulations will require the removal of 129I from the off-gas streams of any used nuclear fuel (UNF) reprocessing plant prior to discharge of the off-gas to the environment. The required plant decontamination factor for iodine will vary based on fuel burnup, cooling time, and other factors but is very likely to be >1000 and could be as high as 8000. Multiple off-gas streams within a UNF reprocessing plant combine prior to environmental release, and each of these streams contains some amount of iodine. To achieve the decontamination factors (DFs) that are likely to be required by regulations, iodine removalmore » from the vessel off-gas will be necessary. The vessel off-gas contains iodine at very dilute concentrations (ppb levels), and will also contain water vapor. Iodine species present are likely to include both elemental and organic iodides. There will also be solvent vapors and volatile radiolysis products. The United States has considered the use of silver-based sorbents for removal of iodine from UNF off-gas streams, but little is known about the behavior of those sorbents at very dilute iodine concentrations. The purpose of this study was to expose silver-functionalized silica aerogel (AgAerogel) to a prototypical vessel off-gas stream containing 40 ppb methyl iodide to obtain information about organic iodine capture by silver-sorbents at very low iodine concentrations. The design of this extended duration testing was such that information about the rate of adsorption, the penetration of the iodine species, and the overall system DF could be obtained. Results show that CH 3I penetrates into a AgAerogel sorbent bed to a depth of 3.9 cm under prototypical vessel off-gas conditions. An iodine loading of 22 mg I/g AgAerogel was observed in the first 0.3 cm of the bed. Of the iodine delivered to the system, 48% could not be accounted for, and future efforts will investigate this concern. Direct calculation of the decontamination factor is not possible, as no iodine was observed to break through the sorbent beds. Continued studies on the adsorption of iodine from prototypical vessel off-gas streams by silver-based sorbents will attempt to resolve some of the questions raised here, both regarding mass balance and the effect of aging on iodine adsorption by AgAerogel from a dilute gas stream. Additionally, the adsorption of different iodine species, such as I 2 and C 12H 25I will be studied. Other variables that merit examination are the gas velocity of the test and the dependence of the observed results on the inlet iodine concentration. Finally, longer duration testing should be considered in an effort to determine the mass transfer zone associated with iodine adsorption by AgAerogel under prototypical vessel off-gas conditions. The estimation of mass transfer zone is required for any future industrial implementation.« less
What controls channel form in steep mountain streams?
NASA Astrophysics Data System (ADS)
Palucis, M. C.; Lamb, M. P.
2017-07-01
Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.
Analytic Strategies of Streaming Data for eHealth.
Yoon, Sunmoo
2016-01-01
New analytic strategies for streaming big data from wearable devices and social media are emerging in ehealth. We face challenges to find meaningful patterns from big data because researchers face difficulties to process big volume of streaming data using traditional processing applications.1 This introductory 180 minutes tutorial offers hand-on instruction on analytics2 (e.g., topic modeling, social network analysis) of streaming data. This tutorial aims to provide practical strategies of information on reducing dimensionality using examples of big data. This tutorial will highlight strategies of incorporating domain experts and a comprehensive approach to streaming social media data.
Large-scale structure perturbation theory without losing stream crossing
McDonald, Patrick; Vlah, Zvonimir
2018-01-10
Here, we suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel’dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel’dovich power spectrum (which is exact in 1D upmore » to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.« less
Large-scale structure perturbation theory without losing stream crossing
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Patrick; Vlah, Zvonimir
Here, we suggest an approach to perturbative calculations of large-scale clustering in the Universe that includes from the start the stream crossing (multiple velocities for mass elements at a single position) that is lost in traditional calculations. Starting from a functional integral over displacement, the perturbative series expansion is in deviations from (truncated) Zel’dovich evolution, with terms that can be computed exactly even for stream-crossed displacements. We evaluate the one-loop formulas for displacement and density power spectra numerically in 1D, finding dramatic improvement in agreement with N-body simulations compared to the Zel’dovich power spectrum (which is exact in 1D upmore » to stream crossing). Beyond 1D, our approach could represent an improvement over previous expansions even aside from the inclusion of stream crossing, but we have not investigated this numerically. In the process we show how to achieve effective-theory-like regulation of small-scale fluctuations without free parameters.« less
Guidelines for evaluating fish habitat in Wisconsin streams.
Timothy D. Simonson; John Lyons; Paul D. Kanehl
1993-01-01
Describes procedures for evaluating the quality and quantity of habitat for fish in small and medium streams of Wisconsin. Provides detailed guidelines for collecting and analyzing specific quantitative habitat information.
Media multitasking and memory: Differences in working memory and long-term memory
Thieu, Monica K.; Wagner, Anthony D.
2015-01-01
Increasing access to media in the 21st century has led to a rapid rise in the prevalence of media multitasking (simultaneous use of multiple media streams). Such behavior is associated with various cognitive differences, such as difficulty filtering distracting information and increased trait impulsivity. Given the rise in media multitasking by children, adolescents, and adults, a full understanding of the cognitive profile of media multitaskers is imperative. Here we investigated the relationship between chronic media multitasking and working memory (WM) and long-term memory (LTM) performance. Four key findings are reported (1) heavy media multitaskers (HMMs) exhibited lower WM performance, regardless of whether external distraction was present or absent; (2) lower performance on multiple WM tasks predicted lower LTM performance; (3) media multitasking-related differences in memory reflected differences in discriminability rather than decision bias; and (4) attentional impulsivity correlated with media multitasking behavior and reduced WM performance. These findings suggest that chronic media multitasking is associated with a wider attentional scope/higher attentional impulsivity, which may allow goal-irrelevant information to compete with goal-relevant information. As a consequence, heavy media multitaskers are able to hold fewer or less precise goal-relevant representations in WM. HMMs’ wider attentional scope, combined with their diminished WM performance, propagates forward to yield lower LTM performance. As such, chronic media multitasking is associated with a reduced ability to draw on the past—be it very recent or more remote—to inform present behavior. PMID:26223469
Media multitasking and memory: Differences in working memory and long-term memory.
Uncapher, Melina R; K Thieu, Monica; Wagner, Anthony D
2016-04-01
Increasing access to media in the 21st century has led to a rapid rise in the prevalence of media multitasking (simultaneous use of multiple media streams). Such behavior is associated with various cognitive differences, such as difficulty filtering distracting information and increased trait impulsivity. Given the rise in media multitasking by children, adolescents, and adults, a full understanding of the cognitive profile of media multitaskers is imperative. Here we investigated the relationship between chronic media multitasking and working memory (WM) and long-term memory (LTM) performance. Four key findings are reported (1) heavy media multitaskers (HMMs) exhibited lower WM performance, regardless of whether external distraction was present or absent; (2) lower performance on multiple WM tasks predicted lower LTM performance; (3) media multitasking-related differences in memory reflected differences in discriminability rather than decision bias; and (4) attentional impulsivity correlated with media multitasking behavior and reduced WM performance. These findings suggest that chronic media multitasking is associated with a wider attentional scope/higher attentional impulsivity, which may allow goal-irrelevant information to compete with goal-relevant information. As a consequence, heavy media multitaskers are able to hold fewer or less precise goal-relevant representations in WM. HMMs' wider attentional scope, combined with their diminished WM performance, propagates forward to yield lower LTM performance. As such, chronic media multitasking is associated with a reduced ability to draw on the past--be it very recent or more remote--to inform present behavior.
Multiple capillary biochemical analyzer with barrier member
Dovichi, N.J.; Zhang, J.Z.
1996-10-22
A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.
Multiple capillary biochemical analyzer with barrier member
Dovichi, Norman J.; Zhang, Jian Z.
1996-01-01
A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.
NASA Astrophysics Data System (ADS)
Kang, Seokkoo; Borazjani, Iman; Sotiropoulos, Fotis
2008-11-01
Unsteady 3D simulations of flows in natural streams is a challenging task due to the complexity of the bathymetry, the shallowness of the flow, and the presence of multiple nature- and man-made obstacles. This work is motivated by the need to develop a powerful numerical method for simulating such flows using coherent-structure-resolving turbulence models. We employ the curvilinear immersed boundary method of Ge and Sotiropoulos (Journal of Computational Physics, 2007) and address the critical issue of numerical efficiency in large aspect ratio computational domains and grids such as those encountered in long and shallow open channels. We show that the matrix-free Newton-Krylov method for solving the momentum equations coupled with an algebraic multigrid method with incomplete LU preconditioner for solving the Poisson equation yield a robust and efficient procedure for obtaining time-accurate solutions in such problems. We demonstrate the potential of the numerical approach by carrying out a direct numerical simulation of flow in a long and shallow meandering stream with multiple hydraulic structures.
The multistream self: biophysical, mental, social, and existential.
Deshmukh, Vinod D
2008-03-25
Self is difficult to define because of its multiple, constitutive streams of functional existence. A more comprehensive and expanded definition of self is proposed. The standard bio-psycho-social model of psyche is expanded to biophysical-mental-social and existential self. The total human experience is better understood and explained by adding the existential component. Existential refers to lived human experience, which is firmly rooted in reality. Existential living is the capacity to live fully in the present, and respond freely and flexibly to new experience without fear. Four common fears of isolation, insecurity, insignificance, and death can be overcome by developing a lifestyle of whole-hearted engagement in the present reality, creative problem solving, self-actualization, and altruism. Such integrative living creates a sense of presence with self-awareness, understanding, and existential well-being. Well-being is defined as a life of happiness, contentment, low distress, and good health with positive outlook. Self is a complex, integrative process of living organisms. It organizes, coordinates, and integrates energy-information within and around itself, spontaneously, unconsciously, and consciously. Self-process is understood in terms of synergetics, coordination dynamics, and energy-information-directed self-organization. It is dynamic, composite, ever renewing, and enduring. It can be convergent or divergent, and can function as the source or target of its own behavior-mentation. The experience of self is continuously generated by spontaneous activation of neural networks in the cerebral neocortex by the brainstem-diencephalic arousal system. The multiple constitutive behavioral-mental streams develop concurrently into a unique experience of self, specific for a person at his/her developmental stage. The chronological neuro-behavioral-mental development of self is described in detail from embryonic stage to old age. Self can be behaviorally-mentally oriented and realized in three complimentary modes of being: egocentric, allocentric, and ecosystemic or existential. The existential mode is both immanent and transcendent, and can be self-actualized, resulting in a healthy, creative, conflict-free, and meaningful life.
Lesicko, Alexandria M.H.; Hristova, Teodora S.; Maigler, Kathleen C.
2016-01-01
The lateral cortex of the inferior colliculus receives information from both auditory and somatosensory structures and is thought to play a role in multisensory integration. Previous studies in the rat have shown that this nucleus contains a series of distinct anatomical modules that stain for GAD-67 as well as other neurochemical markers. In the present study, we sought to better characterize these modules in the mouse inferior colliculus and determine whether the connectivity of other neural structures with the lateral cortex is spatially related to the distribution of these neurochemical modules. Staining for GAD-67 and other markers revealed a single modular network throughout the rostrocaudal extent of the mouse lateral cortex. Somatosensory inputs from the somatosensory cortex and dorsal column nuclei were found to terminate almost exclusively within these modular zones. However, projections from the auditory cortex and central nucleus of the inferior colliculus formed patches that interdigitate with the GAD-67-positive modules. These results suggest that the lateral cortex of the mouse inferior colliculus exhibits connectional as well as neurochemical modularity and may contain multiple segregated processing streams. This finding is discussed in the context of other brain structures in which neuroanatomical and connectional modularity have functional consequences. SIGNIFICANCE STATEMENT Many brain regions contain subnuclear microarchitectures, such as the matrix-striosome organization of the basal ganglia or the patch-interpatch organization of the visual cortex, that shed light on circuit complexities. In the present study, we demonstrate the presence of one such micro-organization in the rodent inferior colliculus. While this structure is typically viewed as an auditory integration center, its lateral cortex appears to be involved in multisensory operations and receives input from somatosensory brain regions. We show here that the lateral cortex can be further subdivided into multiple processing streams: modular regions, which are targeted by somatosensory inputs, and extramodular zones that receive auditory information. PMID:27798184
Recommending personally interested contents by text mining, filtering, and interfaces
Xu, Songhua
2015-10-27
A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.
Wigington, P.J.; DeWalle, David R.; Murdoch, Peter S.; Kretser, W.A.; Simonin, H.A.; Van Sickle, J.; Baker, J.P.
1996-01-01
As part of the Episodic Response Project (ERP), we intensively monitored discharge and stream chemistry of 13 streams located in the Northern Appalachian region of Pennsylvania and in the Catskill and Adirondack Mountains of New York from fall 1988 to spring 1990. The ERP clearly documented the occurrence of acidic episodes with minimum episodic pH ??? 5 and inorganic monomeric Al (Alim) concentrations >150 ??g/L in at least two study streams in each region. Several streams consistently experienced episodes with maximum Alim concentrations >350 ??g/L. Acid neutralizing capacity (ANC) depressions resulted from complex interactions of multiple ions. Base cation decreases often made the most important contributions to ANC depressions during episodes. Organic acid pulses were also important contributors to ANC depressions in the Adirondack streams, and to a lesser extent, in the Catskill and Pennsylvania streams. Nitrate concentrations were low in the Pennsylvania streams, whereas the Catskill and Adirondack study streams had high NO3- concentrations and large episodic pulses (???54 ??eq/L). Most of the Pennsylvania study streams also frequently experienced episodic pulses of SO42- (???78 ??eq/L), whereas the Adirondack and Catskill streams did not. High baseline concentrations of SO42- (all three study areas) and NO3- (Adirondacks and Catskills) reduced episodic minimum ANC, even when these ions did not change during episodes. The ion changes that controlled the most severe episodes (lowest minimum episodic ANC) differed from the ion changes most important to smaller, more frequent episodes. Pulses of NO3- (Catskills and Adirondacks), SO42- (Pennsylvania), or organic acids became more important during major episodes. Overall, the behavior of streamwater SO42- and NO4- is an indicator that acidic deposition has contributed to the severity of episodes in the study streams.
Stream permanence influences crayfish occupancy and abundance in the Ozark Highlands, USA
Yarra, Allyson N.; Magoulick, Daniel D.
2018-01-01
Crayfish use of intermittent streams is especially important to understand in the face of global climate change. We examined the influence of stream permanence and local habitat on crayfish occupancy and species densities in the Ozark Highlands, USA. We sampled in June and July 2014 and 2015. We used a quantitative kick–seine method to sample crayfish presence and abundance at 20 stream sites with 32 surveys/site in the Upper White River drainage, and we measured associated local environmental variables each year. We modeled site occupancy and detection probabilities with the software PRESENCE, and we used multiple linear regressions to identify relationships between crayfish species densities and environmental variables. Occupancy of all crayfish species was related to stream permanence. Faxonius meeki was found exclusively in intermittent streams, whereas Faxonius neglectus and Faxonius luteushad higher occupancy and detection probability in permanent than in intermittent streams, and Faxonius williamsi was associated with intermittent streams. Estimates of detection probability ranged from 0.56 to 1, which is high relative to values found by other investigators. With the exception of F. williamsi, species densities were largely related to stream permanence rather than local habitat. Species densities did not differ by year, but total crayfish densities were significantly lower in 2015 than 2014. Increased precipitation and discharge in 2015 probably led to the lower crayfish densities observed during this year. Our study demonstrates that crayfish distribution and abundance is strongly influenced by stream permanence. Some species, including those of conservation concern (i.e., F. williamsi, F. meeki), appear dependent on intermittent streams, and conservation efforts should include consideration of intermittent streams as an important component of freshwater biodiversity.
NASA Astrophysics Data System (ADS)
Gebreslase, A. K.; Abdul-Aziz, O. I.
2017-12-01
Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.
Vanderhoof, Melanie; Distler, Hayley; Lang, Megan W.; Alexander, Laurie C.
2018-01-01
The dependence of downstream waters on upstream ecosystems necessitates an improved understanding of watershed-scale hydrological interactions including connections between wetlands and streams. An evaluation of such connections is challenging when, (1) accurate and complete datasets of wetland and stream locations are often not available and (2) natural variability in surface-water extent influences the frequency and duration of wetland/stream connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern Maryland and Delaware is dominated by a high density of small, forested wetlands. In this analysis, wetland/stream surface water connections were quantified using multiple wetland and stream datasets, including headwater streams and depressions mapped from a lidar-derived digital elevation model. Surface-water extent was mapped across the watershed for spring 2015 using Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections increased as a more complete and accurate stream dataset was used and surface-water extent was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). Depending on the datasets used, 12–60% of wetlands by count (21–93% of wetlands by area) experienced surface-water interactions with streams during spring 2015. This translated into a range of 50–94% of the watershed contributing direct surface water runoff to streamflow. This finding suggests that our interpretation of the frequency and duration of wetland/stream connections will be influenced not only by the spatial and temporal characteristics of wetlands, streams and potential flowpaths, but also by the completeness, accuracy and resolution of input datasets.
Hainly, R.A.; Loper, C.A.
1997-01-01
This report describes analyses of available information on nutrients and suspended sediment collected in the Lower Susquehanna River Basin during water years 1975-90. Most of the analyses were applied to data collected during water years 1980-89. The report describes the spatial and temporal availability of nutrient and suspended-sediment data and presents a preliminary concept of the spatial and temporal patterns of concentrations and loads within the basin. Where data were available, total and dissolved forms of nitrogen and phosphorus species from precipitation, surface water, ground water, and springwater, and bottom material from streams and reservoirs were evaluated. Suspended-sediment data from streams also were evaluated. The U.S. Geological Survey National Water Information System (NWIS) database was selected as the primary database for the analyses. Precipitation-quality data from the National Atmospheric Deposition Program (NADP) and bottom-material-quality data from the National Uranium Resource Evaluation (NURE) were used to supplement the water-quality data from NWIS. Concentrations of nutrients were available from 3 precipitation sites established for longterm monitoring purposes, 883 wells (854 synoptic areal survey sites and 29 project and research sites), 23 springs (17 synoptic areal survey sites and 6 project and research sites), and 894 bottom-material sites (840 synoptic areal survey sites and 54 project and research sites). Concentrations of nutrients and (or) suspended sediment were available from 128 streams (36 long-term monitoring sites, 51 synoptic areal survey sites, and 41 project and research sites). Concentrations of nutrients and suspended sediment in streams varied temporally and spatially and were related to land use, agricultural practices, and streamflow. A general north-to-south pattern of increasing median nitrate concentrations, from 2 to 5 mg/L, was detected in samples collected in study unit streams. In streams that drain areas dominated by agriculture, concentrations of nutrients and suspended sediment tend to be elevated with respect to those found in areas of other land-use types and are related to the amount of commercial fertilizer and animal manure applied to the area drained by the streams. Animal manure is the dominant source of nitrogen for the streams in the lower, agricultural part of the basin. Concentrations of nutrients in samples from wells varied with season and well depth and were related to hydrogeologic setting. Median concentrations of nitrate were 2.5 and 3.5 mg/L for wells drawing water at depths of 0 to 100 ft and 101 to 200 ft, respectively. The lowest median concentrations for nitrate in ground water from wells were generally found in siliciclastic-bedrock, forested settings of the Ridge and Valley Physiographic Province, and the highest were found in carbonate-bedrock agricultural settings of the Piedmont Physiographic Province. Twenty-five percent of the measurements from wells in carbonate rocks in the Piedmont Physiographic Province exceeded the Pennsylvania drinking-water standard. An estimate of mass balance of nutrient loads within the Lower Susquehanna River Basin was produced by combining the available information on stream loads, atmosphericdeposition loads, commercial-fertilizer applications, animal-manure production, privateseptic-system nonpoint-source loads, and municipal and industrial point-source loads. The percentage of the average annual nitrate load carried in base flow of streams in the study unit ranged from 45 to 76 percent, and the average annual phosphorus load carried in base flow ranged from 20 to 33 percent. Average annual yields of nutrients and suspended sediment from tributary basins are directly related to percentage of drainage area in agriculture and inversely to drainage area. Information required to compute loads of nitrogen and phosphorus were available for all sources except atmospheric deposition, for which only nitrogen data were available. Atmospheric deposition is the dominant source of nitrogen for the mostly forested basins draining the upper half of the study unit. The estimate of total annual nitrogen load to the study unit from precipitation is 98.8 million pounds. Nonpoint and point sources of nutrients were estimated. Nonpoint and point sources combined, including atmospheric deposition, provide a potential annual load of 390 million pounds of nitrogen and 79.5 million pounds of phosphorus. The range of percentages of the estimated nonpoint and point sources that were measured in the stream was 20 to 47 percent for nitrogen and 6 to 14 percent for phosphorus. On the average, the Susquehanna River discharges 141,000 pounds of nitrogen and 7,920 pounds of phosphorus to the Lower Susquehanna River reservoir system each year. About 98 percent of the nitrogen and 60 percent of the phosphorus passes through the reservoir system. Interpretations of available water-quality data and conclusions about the water quality of the Lower Susquehanna River Basin were limited by the scarcity of certain types of water-quality data and current ancillary data. A more complete assessment of the water quality of the basin with respect to nutrients and suspended sediment would be enhanced by the availability of additional data for multiple samples over time from all water environments; samples from streams in the northern and western part of the basin; samples from streams and springs throughout the basin during high base-flow or stormflow conditions; and information on current land-use, and nutrient loading from all types of land-use settings.
Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho
John G. King; William W. Emmett; Peter J. Whiting; Robert P. Kenworthy; Jeffrey J. Barry
2004-01-01
This report and associated web site files provide sediment transport and related data for coarse-bed streams and rivers to potential users. Information on bedload and suspended sediment transport, streamflow, channel geometry, channel bed material, floodplain material, and large particle transport is provided for 33 study reaches in Idaho that represent a wide range of...
Wood, Molly S.; Rea, Alan; Skinner, Kenneth D.; Hortness, Jon E.
2009-01-01
Many State and Federal agencies use information regarding the locations of streams having intermittent or perennial flow when making management and regulatory decisions. For example, the application of some Idaho water quality standards depends on whether streams are intermittent. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 ft3/s. However, there is a general recognition that the cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not as accurate or consistent as desirable from one map to another, which makes broad management and regulatory assessments difficult and inconsistent. To help resolve this problem, the USGS has developed a methodology for predicting the locations of perennial streams based on regional generalized least-squares (GLS) regression equations for Idaho streams for the 7Q2 low-flow statistic. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams in most areas in Idaho. The use of these equations in conjunction with a geographic information system (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along stream reaches. The USGS has developed a GIS-based map of the locations of streams in Idaho with perennial flow based on a 7Q2 of 0.1 ft3/s and a transition zone of plus or minus 1 standard error. Idaho State cooperators plan to use this information to make regulatory and water-quality management decisions. Originally, 7Q2 equations were developed for eight regions of similar hydrologic characteristics in the study area, using long-term data from 234 streamflow-gaging stations. Equations in five of the regions were revised based on spatial patterns observed in the initial perennial streams map and unrealistic behavior of the equations in extrapolation. The standard errors of prediction for the final equations ranged from a minimum of +75.0 to -42.9 percent in the central part of the study area to a maximum of +277 to -73.5 percent in the southern part of the study area. The equations are applicable only to unregulated, naturally-flowing streams and may produce unreliable results outside the range of explanatory variables used for equation development. Extrapolation outside the range of available data was necessary, however, to predict perennial flow initiation points and transition zones along stream reaches. The map of perennial streams was evaluated by comparing predicted stream classifications with four independent datasets, including field observations by other government agencies. Overall, 81 percent of the comparison data points agreed with the USGS perennial streams model. Regions with the highest number of disagreements had a high percentage of mountainous and forested area with potential mountain front recharge zones, and regions with the highest agreements had a high percentage of low gradient, low elevation area. As a whole, the USGS model predicted a higher number of perennial streams than predictions made with the independent datasets. Some disagreements were due to poor site location coordinates, timing of the comparison site visits during unusually wet or dry years, discrepancies in classification criteria, and variable ground water contributions to flow in some areas. The Idaho Department of Environmental Quality Beneficial Use Reconnaissance Program (BURP) dataset is considered the most representative dataset for comparison because it covered a range of climate conditions and the number of sites visited were consistent from year to year during the study period. Eighty-five percent of BURP comparison data points agreed with the USGS perennial streams model. Although site-specific flow data may be needed to correctly classify streams in some areas, this information rarely is available and is not always practical to o
Convergent and invariant object representations for sight, sound, and touch.
Man, Kingson; Damasio, Antonio; Meyer, Kaspar; Kaplan, Jonas T
2015-09-01
We continuously perceive objects in the world through multiple sensory channels. In this study, we investigated the convergence of information from different sensory streams within the cerebral cortex. We presented volunteers with three common objects via three different modalities-sight, sound, and touch-and used multivariate pattern analysis of functional magnetic resonance imaging data to map the cortical regions containing information about the identity of the objects. We could reliably predict which of the three stimuli a subject had seen, heard, or touched from the pattern of neural activity in the corresponding early sensory cortices. Intramodal classification was also successful in large portions of the cerebral cortex beyond the primary areas, with multiple regions showing convergence of information from two or all three modalities. Using crossmodal classification, we also searched for brain regions that would represent objects in a similar fashion across different modalities of presentation. We trained a classifier to distinguish objects presented in one modality and then tested it on the same objects presented in a different modality. We detected audiovisual invariance in the right temporo-occipital junction, audiotactile invariance in the left postcentral gyrus and parietal operculum, and visuotactile invariance in the right postcentral and supramarginal gyri. Our maps of multisensory convergence and crossmodal generalization reveal the underlying organization of the association cortices, and may be related to the neural basis for mental concepts. © 2015 Wiley Periodicals, Inc.
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors.
Liu, Zhou; Shum, Ho Cheung
2013-01-01
In this work, we demonstrate a robust and reliable approach to fabricate multi-compartment particles for cell co-culture studies. By taking advantage of the laminar flow within our microfluidic nozzle, multiple parallel streams of liquids flow towards the nozzle without significant mixing. Afterwards, the multiple parallel streams merge into a single stream, which is sprayed into air, forming monodisperse droplets under an electric field with a high field strength. The resultant multi-compartment droplets are subsequently cross-linked in a calcium chloride solution to form calcium alginate micro-particles with multiple compartments. Each compartment of the particles can be used for encapsulating different types of cells or biological cell factors. These hydrogel particles with cross-linked alginate chains show similarity in the physical and mechanical environment as the extracellular matrix of biological cells. Thus, the multi-compartment particles provide a promising platform for cell studies and co-culture of different cells. In our study, cells are encapsulated in the multi-compartment particles and the viability of cells is quantified using a fluorescence microscope after the cells are stained for a live/dead assay. The high cell viability after encapsulation indicates the cytocompatibility and feasibility of our technique. Our multi-compartment particles have great potential as a platform for studying cell-cell interactions as well as interactions of cells with extracellular factors. PMID:24404050
Data-driven analysis of functional brain interactions during free listening to music and speech.
Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming
2015-06-01
Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.
Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home
NASA Astrophysics Data System (ADS)
Newberg, Heidi; Shelton, Siddhartha
2018-04-01
We attempt to reconstruct the mass and radial profile of stars and dark matter in the dwarf galaxy progenitor of the Orphan Stream, using only information from the stars in the Orphan Stream. We show that given perfect data and perfect knowledge of the dwarf galaxy profile and Milky Way potential, we are able to reconstruct the mass and radial profiles of both the stars and dark matter in the progenitor to high accuracy using only the density of stars along the stream and either the velocity dispersion or width of the stream in the sky. To perform this test, we simulated the tidal disruption of a two component (stars and dark matter) dwarf galaxy along the orbit of the Orphan Stream. We then created a histogram of the density of stars along the stream and a histogram of either the velocity dispersion or width of the stream in the sky as a function of position along the stream. The volunteer supercomputer MilkyWay@home was given these two histograms, the Milky Way potential model, and the orbital parameters for the progenitor. N-body simulations were run, varying dwarf galaxy parameters and the time of disruption. The goodness-of-fit of the model to the data was determined using an Earth-Mover Distance algorithm. The parameters were optimized using Differential Evolution. Future work will explore whether currently available information on the Orphan Stream stars is sufficient to constrain its progenitor, and how sensitive the optimization is to our knowledge of the Milky Way potential and the density model of the dwarf galaxy progenitor, as well as a host of other real-life unknowns.
Fitness and community consequences of avoiding multiple predators.
Peckarsky, Barbara L; McIntosh, Angus R
1998-02-01
We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities.
Paretti, Nicholas V.; Kennedy, Jeffrey R.; Turney, Lovina A.; Veilleux, Andrea G.
2014-01-01
The regional regression equations were integrated into the U.S. Geological Survey’s StreamStats program. The StreamStats program is a national map-based web application that allows the public to easily access published flood frequency and basin characteristic statistics. The interactive web application allows a user to select a point within a watershed (gaged or ungaged) and retrieve flood-frequency estimates derived from the current regional regression equations and geographic information system data within the selected basin. StreamStats provides users with an efficient and accurate means for retrieving the most up to date flood frequency and basin characteristic data. StreamStats is intended to provide consistent statistics, minimize user error, and reduce the need for large datasets and costly geographic information system software.
Research Progresses of Halo Streams in the Solar Neighborhood
NASA Astrophysics Data System (ADS)
Xi-long, Liang; Jing-kun, Zhao; Yu-qin, Chen; Gang, Zhao
2018-01-01
The stellar streams originated from the Galactic halo may be detected when they pass by the solar neighborhood, and they still keep some information at their birth times. Thus, the investigation of halo streams in the solar neighborhood is very important for understanding the formation and evolution of our Galaxy. In this paper, the researches of halo streams in the solar neighborhood are briefly reviewed. We have introduced the methods how to detect the halo streams and identify their member stars, summarized the progresses in the observation of member stars of halo streams and in the study of their origins, introduced in detail how to analyze the origins of halo streams in the solar neighborhood by means of numerical simulation and chemical abundance, and finally discussed the prospects of the LAMOST and GAIA in the research of halo streams in the solar neighborhood.
Evaluating the perennial stream using logistic regression in central Taiwan
NASA Astrophysics Data System (ADS)
Ruljigaljig, T.; Cheng, Y. S.; Lin, H. I.; Lee, C. H.; Yu, T. T.
2014-12-01
This study produces a perennial stream head potential map, based on a logistic regression method with a Geographic Information System (GIS). Perennial stream initiation locations, indicates the location of the groundwater and surface contact, were identified in the study area from field survey. The perennial stream potential map in central Taiwan was constructed using the relationship between perennial stream and their causative factors, such as Catchment area, slope gradient, aspect, elevation, groundwater recharge and precipitation. Here, the field surveys of 272 streams were determined in the study area. The areas under the curve for logistic regression methods were calculated as 0.87. The results illustrate the importance of catchment area and groundwater recharge as key factors within the model. The results obtained from the model within the GIS were then used to produce a map of perennial stream and estimate the location of perennial stream head.
Chris Knightes; G.M. Davis; H.E. Golden; P.A. Conrads; P.M. Bradley; C.A. Journey
2016-01-01
Mercury (Hg) is the toxicant responsible for the most fish advisories across the United States, with 1.1 million river miles under advisory. The processes governing fate, transport, and transformation of mercury in streams and rivers are not well understood, in large part, because these systems are intimately linked with their surrounding watersheds and are often...
Karen Riva-Murray; Rachel Riemann; Peter Murdoch; Jeffrey M. Fischer; Robin. Brightbill
2010-01-01
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In...
Estimating Recreational Use of a Unique Trout Stream in the Coastal Plains of South Carolina
George A. James; Nelson W. Taylor; Melvin L. Hopkins
1971-01-01
A sampling technique for estimating fishing use was pilot tested on a small trout stream on the Santee Ranger District, Francis Marion National Forest in South Carolina during fall and winter 1969-70. A short questionnaire, completed by fishermen using the stream, provided information relating to the variables of interest. Reliable estimates of fishing use were...
Mapping the tidally disrupting Andromeda XXVII and its stellar stream
NASA Astrophysics Data System (ADS)
Preston, Janet; Collins, Michelle; Bonaca, Ana; Ibata, Rodrigo; Tollerud, Erik; Geha, Marla; PAndAS Collaboration
2017-03-01
Andromeda XXVII is a dwarf spheroidal galaxy in the outskirts of the Andromeda galaxy (M31). It appears to be dissolving in to the Northern arc of M31, and could be the remnant of a strong tidal disruption. In the upcoming months, our spectroscopic program, which has measured velocities for multiple stars within both the dwarf galaxy progenitor and its stream (using the Keck II DEIMOS telescope, as part of the PAndAS survey), will determine velocity dispersions, scale radii and metallicities of both the dwarf and the stream. This in turn may enable us to ascertain the progenitor mass profile and determine whether it is cusped or cored.
Chao, T.T.; Anderson, B.J.
1974-01-01
Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.
NASA Astrophysics Data System (ADS)
Norris, Sophie L.; Evans, David J. A.; Cofaigh, Colm Ó.
2018-04-01
A multidimensional study, utilising geomorphological mapping and the analysis of regional borehole stratigraphy, is employed to elucidate the regional till architecture of terrestrial palaeo-ice streams relating to the Late Wisconsinan southwest Laurentide Ice Sheet. Detailed mapping over a 57,400 km2 area of southwestern Saskatchewan confirms previous reconstructions of a former southerly flowing ice stream, demarcated by a 800 km long corridor of megaflutes and mega-scale glacial lineations (Ice Stream 1) and cross cut by three, formerly southeast flowing ice streams (Ice Streams 2A, B and C). Analysis of the lithologic and geophysical characteristics of 197 borehole samples within these corridors reveals 17 stratigraphic units comprising multiple tills and associated stratified sediments overlying preglacial deposits, the till thicknesses varying with both topography and distance down corridor. Reconciling this regional till architecture with the surficial geomorphology reveals that surficial units are spatially consistent with a dynamic switch in flow direction, recorded by the cross cutting corridors of Ice Streams 1, 2A, B and C. The general thickening of tills towards lobate ice stream margins is consistent with subglacial deformation theory and variations in this pattern on a more localised scale are attributed to influences of subglacial topography including thickening at buried valley margins, thinning over uplands and thickening in overridden ice-marginal landforms.
NASA Astrophysics Data System (ADS)
Araya, F. Z.; Abdul-Aziz, O. I.
2017-12-01
This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.
Organic Seston Dynamics in Upland Neotropical Streams: Implications for Amphibian Declines
NASA Astrophysics Data System (ADS)
Peterson, S. D.; Colon-Gaud, C.; Whiles, M. R.; Hunte-Brown, M.; Connelly, S.; Kilham, S.; Pringle, C. M.; Lips, K. R.; Brenes, R.
2005-05-01
Organic seston represents food for filter feeders and a mechanism for downstream transport of energy and nutrients. As part of a study assessing the ecological impacts of stream-breeding anuran extirpations, we examined seston dynamics in 2 stream reaches with tadpoles (El Cope) and 2 without (Fortuna) in the Panamanian uplands. All reaches are high gradient with annual average discharge ranging from 46-102 L/s. Samples were collected multiple times per month at various discharges, sieved into fine (<754μm, >98μm) and very fine (<98μm, >1.6μm) fractions, and processed to estimate ash-free dry mass (AFDM), total C, and total N. Average annual concentrations ranged from 0.52- 2.51 mg/L (fine) and 2.04-3.14 mg/L (very fine), and total export ranged from 0.27-7,981 mg/s across all streams. On average, very fine particles comprised 78% of export from El Cope sites and 61% from Fortuna streams. Average total N export ranged from 5.32-30.53 mg/s in El Cope sites and 1.71-6.04 mg/s at Fortuna. Average particle quality (C/N) in El Cope streams was higher (7.6) than Fortuna streams (11.5). Lower export of very fine particles and lower seston quality in Fortuna streams suggests the loss of tadpoles may influence seston dynamics and quality in these systems.
Rožman, Marko; Acuña, Vicenç; Petrović, Mira
2018-02-01
A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.
Factors influencing wood mobilization in Minnesota streams
Merten, Eric; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.
2010-01-01
Natural pieces of wood provide a variety of ecosystem functions in streams including habitat, organic matter retention, increased hyporheic exchange and transient storage, and enhanced hydraulic and geomorphic heterogeneity. Wood mobilization is a critical process in determining the residence time of wood. We documented the characteristics and locations of 865 natural wood pieces (>0.05 m in diameter for a portion >1 m in length) in nine streams along the north shore of Lake Superior in Minnesota. We determined the locations of the pieces again after an overbank stormflow event to determine the factors that influenced mobilization of stationary wood pieces in natural streams. Seven of 11 potential predictor variables were identified with multiple logistic regression as significant to mobilization: burial, effective depth, ratio of piece length to effective stream width (length ratio), bracing, rootwad presence, downstream force ratio, and draft ratio. The final model (P< 0.001, r2 = 0.39) indicated that wood mobilization under natural conditions is a complex function of both mechanical factors (burial, length ratio, bracing, rootwad presence, draft ratio) and hydraulic factors (effective depth, downstream force ratio). If stable pieces are a goal for stream management then features such as partial burial, low effective depth, high length relative to channel width, bracing against other objects (e.g., stream banks, trees, rocks, or larger wood pieces), and rootwads are desirable. Using the model equation from this study, stewards of natural resources can better manage in-stream wood for the benefit of stream ecosystems.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
NASA Astrophysics Data System (ADS)
Cua, G. B.; Fischer, M.; Caprio, M.; Heaton, T. H.; Cisn Earthquake Early Warning Project Team
2010-12-01
The Virtual Seismologist (VS) earthquake early warning (EEW) algorithm is one of 3 EEW approaches being incorporated into the California Integrated Seismic Network (CISN) ShakeAlert system, a prototype EEW system that could potentially be implemented in California. The VS algorithm, implemented by the Swiss Seismological Service at ETH Zurich, is a Bayesian approach to EEW, wherein the most probable source estimate at any given time is a combination of contributions from a likehihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS codes have been running in real-time at the Southern California Seismic Network since July 2008, and at the Northern California Seismic Network since February 2009. We discuss recent enhancements to the VS EEW algorithm that are being integrated into CISN ShakeAlert. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to initiate an event declaration, with the goal of reducing false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and the requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) into an on-site/regional approach capable of providing a continuously evolving stream of EEW information starting from the first P-detection. Real-time and offline analysis on Swiss and California waveform datasets indicate that the multiple-threshold approach is faster and more reliable for larger events than the earlier version of the VS codes. In addition, we provide evolutionary estimates of the probability of false alarms (PFA), which is an envisioned output stream of the CISN ShakeAlert system. The real-time decision-making approach envisioned for CISN ShakeAlert users, where users specify a threshhold PFA in addition to thresholds on peak ground motion estimates, has the potential to increase the available warning time for users with high tolerance to false alarms without compromising the needs of users with lower tolerances to false alarms.