Combustion chamber and thermal vapor stream producing apparatus and method
Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.
1978-01-01
A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.
Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.
2016-01-01
This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068
A multitracer system for multizone ventilation measurement
NASA Astrophysics Data System (ADS)
Sherman, Max
1990-09-01
Mass transfer due to pressure-driven air flow is one of the most important processes for determining both environmental quality and energy requirements in buildings. Heat, moisture, and contaminants are all transported by air movement between indoors and outdoors as well as between different zones within a building. Measurement of these air flows is critical to understanding the performance of buildings. Virtually all measurements of ventilation are made using the dilution of a tracer gas. The vast majority of such measurements have been made in a single zone, using a single tracer gas. For the past several years LBL has been developing the MultiTracer Measurement System (MTMS) to provide full multizone air flow information in an accurate, real-time manner. MTMS is based on a quadrupole mass spectrometer to provide high-speed concentration analysis of multiple tracer gases in the (low) ppm level that are injected into multiple zones using mass-flow controllers. The measurement and injection system is controlled by a PC and can measure all concentrations in all zones (and adjust the injected tracer flows) within 2 min and can operate unattended for weeks. The resulting injection rate and concentration data can be analyzed to infer the bulk air movement between zones. The system also measures related quantities such as weather and zonal temperature to assist in the data interpretation. Using MTMS, field measurements have been made for the past two years.
Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Vermeul, Vincent R.; Adamson, David
2015-03-01
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection ofmore » a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.« less
NASA Astrophysics Data System (ADS)
Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.
2016-12-01
Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".
Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; Zhong, Lirong; Oostrom, Martinus
2012-09-30
The primary objective of this study is to summarize the laboratory investigations performed to evaluate short- and long-term effects of phosphate treatment on uranium leaching from 300 area smear zone sediments. Column studies were used to compare uranium leaching in phosphate-treated to untreated sediments over a year with multiple stop flow events to evaluate longevity of the uranium leaching rate and mass. A secondary objective was to compare polyphosphate injection, polyphosphate/xanthan injection, and polyphosphate infiltration technologies that deliver phosphate to sediment.
Integrated exhaust and electrically heated particulate filter regeneration systems
Gonze, Eugene V.; Paratore, Jr., Michael J.
2013-01-08
A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.
Field demonstration of foam injection to confine a chlorinated solvent source zone.
Portois, Clément; Essouayed, Elyess; Annable, Michael D; Guiserix, Nathalie; Joubert, Antoine; Atteia, Olivier
2018-05-01
A novel approach using foam to manage hazardous waste was successfully demonstrated under active site conditions. The purpose of the foam was to divert groundwater flow, that would normally enter the source zone area, to reduce dissolved contaminant release to the aquifer. During the demonstration, foam was pre generated and directly injected surrounding the chlorinated solvent source zone. Despite the constraints related to the industrial activities and non-optimal position of the injection points, the applicability and effectiveness of the approach have been highlighted using multiple metrics. A combination of measurements and modelling allowed definition of the foam extent surrounding each injection point, and this appears to be the critical metric to define the success of the foam injection approach. Information on the transport of chlorinated solvents in groundwater showed a decrease of contaminant flux by a factor of 4.4 downstream of the confined area. The effective permeability reduction was maintained over a period of three months. The successful containment provides evidence for consideration of the use of foam to improve traditional flushing techniques, by increasing the targeting of contaminants by remedial agents. Copyright © 2018 Elsevier B.V. All rights reserved.
Hutchinson, C.B.
1992-01-01
The 250-square-mile area of southwest Sarasota and west Charlotte Counties is underlain by a complex hydrogeologic system having diverse ground-water quality. The surficial and intermediate aquifer systems and the Upper Floridan aquifer of the Floridan aquifer system contain six separate aquifers, or permeable zones, and have a total thickness of about 2,000 feet. Water in the clastic surficial aquifer system is potable and is tapped by hundreds of shallow, low-yielding supply wells. Water in the mixed clastic and carbonate intermediate aquifer system is potable in the upper part, but in the lower part, because of increasing salinity, it is used primarily for reverse-osmosis desalinization feed water and irrigation. Within the Upper Floridan aquifer, limestone and dolomite of the Suwannee permeable zone are tapped by irrigation and reverse-osmosis supply wells. The underlying, less permeable limestone of the Suwannee-Ocala semiconfining unit generally encompasses the transition zone between freshwater and very saline water. Interbedded limestone and dolomite of the Ocala-Avon Park moderately permeable zone and Avon Park highly permeable zone compose the deep, very saline injection zone. Potential ground-water contamination problems include flooding by storm tides, upward movement of saline water toward pumping centers by natural and induced leakage or through improperly constructed and abandoned wells, and lateral and vertical movement of treated sewage and reverse-osmosis wastewater injected into deep zones. Effects of flooding are evident in coastal areas where vertical layering of fresh and saline waters is observed. Approximately 100 uncontrolled flowing artesian wells that have interaquifer flow rates as high as 350 gallons per minute have been located and scheduled for plugging by the Southwest Florida Water Management District--in an attempt to improve ground-water quality of the shallow aquifers. Because each aquifer or permeable zone has unique head and water-quality characteristics, construction of single-zone wells would eliminate cross-contamination and borehole interflow. Such a program, when combined with the plugging of shallow-cased wells having long open-hole intervals connecting multiple zones, would safeguard ground-water resources in the study area. The study area encompasses seven wastewater injection sites that have a projected capacity for injecting 29 million gallons per day into the zone 1,100 to 2,050 feet below land surface. There are six additional sites within 20 miles. The first well began injecting reverse-osmosis wastewater in 1984, and since then, other wells have been drilled and permitted for injection of treated sewage. A numerical model was used to evaluate injection-well design and potential for movement of injected wastewater within the hydrogeologic framework. The numerical model was used to simulate injection through a representative well at a rate of 1 million gallons per day for 10 years. In this simulation, a convection cell developed around the injection well with the buoyant fresh injectant rising to form a lens within the injection zone below the lower Suwannee-Ocala semiconfining unit. Around an ideal, fully penetrating well cased 50 feet into the injection zone and open from a depth of 1,150 feet to 2,050 feet, simulations show that the injectant moves upward to a depth of 940 feet, forms a lens about 600 feet thick, and spreads radially outward to a distance of about 2,300 feet after 10 years. Comparison simulations of injection through wells having open depth intervals of 1,150 to 1,400 feet and 1,450 to 2,050 feet demonstrate that such changes in well construction have little effect on the areal spread of the injectant lens or the rate of upward movement. Simulations also indicate that reverse-osmosis wastewater injected beneath a supply well field, where water levels above the semiconfining unit are lowered 20 feet by pumping, would move upward after 10 years to a de
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1973-01-01
A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.
Leenheer, J.A.; Malcolm, R.L.; White, W.R.
1976-01-01
From May 1968 to December 1972, an industrial organic waste was injected at rates of 100 to 200 gallons per minute (6.3 to 12.6 litres per second) into a sand, gravel, and limestone aquifer of Late Cretaceous age by Hercules Inc. located near Wilmington, North Carolina. This report presents both field and laboratory data pertaining to the physical, chemical, and biological effects of waste injection into the subsurface at this particular site, a case history of the operation, predictions of the reactions between certain organic wastes and the aquifer components, and descriptions of the effects of these reactions on the subsurface movement of the wastes. The case history documents a situation in which subsurface waste injection could not be considered a successful means of waste disposal. The first injection well was used only for 1 year due to excessive wellhead pressure build-up above the specified pressure limit of 150 pounds per square inch (10.3 bars). A second injection well drilled as a replacement operated for only 5 months before it too began to have problems with plugging. Upward leakage of waste into shallower aquifers was also detected at several wells in the injection-observation well system. The multiple problems of plugging, high pressures, and waste leakage suggested that the reactive nature of the waste with the aquifer into which it was injected was the primary reason for the difficulties experienced with waste injection. A site study was initiated in June 1971 to investigate waste-aquifer interactions. The first stage of the study determined the hydrogeologic conditions at the site, and characterized the industrial waste and the native ground water found in the injection zone and other aquifers. The injection zone consisted of multiple permeable zones ranging in depth from about 850 to 1,000 feet (259 to 305 metres) below land surface. In addition to the injection zone, aquifers were found near depths of 60, 300, 500, and 700 feet (18, 91, 152, and 213 metres) below land surface. The aquifers from 300 feet (91 metres) down to the injection zone were flowing artesian with the natural pressure of the injection zone being 65 feet (20 metres) above land surface at the site. The dissolved solids concentration in the native ground water increased with depth to an average value of 20,800 mg/l (milligram per litre) (two-thirds that of seawater) in the water from the injection zone. Sodium chloride was the major dissolved solid, and all of the ground water below 300-feet (91-metres) depth was slightly alkaline. Dissolved organic carbon of the industrial waste averaged 7,100 mg/l and 95 percent of the organic carbon was identified and quantified. The major organic waste constituents in order of decreasing abundance were acetic acid, formic acid, p-toluic acid, formaldehyde, methanol, terephthalic acid, phthalic acid, and benzoic acid. Prior to injection, the waste was neutralized with lime to pH 4 so that the major inorganic waste constituent was calcium at a concentration of 1,300 mg/l. The second stage of the site study involved the observation of waste-aquifer interactions at various wells as the waste arrived and passed by the wells. Water samples obtained from three observation wells located 1,500 to 2,000 feet (457 to 607 metres) from the original injection well gave evidence for biochemical waste transformations at low waste concentrations. Gas that effervesced from these water samples contained up to 54 percent methane by volume. Ferrous iron concentrations as high as 35 mg/l, hydrogen sulfide gas, and sulfide precipitates were additional indicators of biochemical reductive processes in the subsurface environment. Approximately 3,000 organisms per millilitre were found in uncontaminated ground water from the injection zone whereas in waste-contaminated wells, the number increased to levels as high as 1,000,000 organisms per millilitre. High concentrations of waste were found to be toxic to microo
Marble, J.C.; Brusseau, M.L.; Carroll, K.C.; Plaschke, M.; Fuhrig, L.; Brinker, F.
2015-01-01
The purpose of this study is to examine the development and effectiveness of a persistent dissolved-phase treatment zone, created by injecting potassium permanganate solution, for mitigating discharge of contaminant from a source zone located in a relatively deep, low-permeability formation. A localized 1,1-dichloroethene (DCE) source zone comprising dissolved- and sorbed-phase mass is present in lower permeability strata adjacent to a sand/gravel unit in a section of the Tucson International Airport Area (TIAA) Superfund Site. The results of bench-scale studies conducted using core material collected from boreholes drilled at the site indicated that natural oxidant demand was low, which would promote permanganate persistence. The reactive zone was created by injecting a permanganate solution into multiple wells screened across the interface between the lower-permeability and higher-permeability units. The site has been monitored for nine years to characterize the spatial distribution of DCE and permanganate. Permanganate continues to persist at the site, and a substantial and sustained decrease in DCE concentrations in groundwater has occurred after the permanganate injection.. These results demonstrate successful creation of a long-term, dissolved-phase reactive-treatment zone that reduced mass discharge from the source. This project illustrates the application of in-situ chemical oxidation as a persistent dissolved-phase reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass discharge into groundwater. PMID:26300570
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
NASA Astrophysics Data System (ADS)
Schemel, Laurence E.; Cox, Marisa H.; Runkel, Robert L.; Kimball, Briant A.
2006-08-01
The acidic discharge from Cement Creek, containing elevated concentrations of dissolved metals and sulphate, mixed with the circumneutral-pH Animas River over a several hundred metre reach (mixing zone) near Silverton, CO, during this study. Differences in concentrations of Ca, Mg, Si, Sr, and SO42- between the creek and the river were sufficiently large for these analytes to be used as natural tracers in the mixing zone. In addition, a sodium chloride (NaCl) tracer was injected into Cement Creek, which provided a Cl- reference tracer in the mixing zone. Conservative transport of the dissolved metals and sulphate through the mixing zone was verified by mass balances and by linear mixing plots relative to the injected reference tracer. At each of seven sites in the mixing zone, five samples were collected at evenly spaced increments of the observed across-channel gradients, as determined by specific conductance. This created sets of samples that adequately covered the ranges of mixtures (mixing ratios, in terms of the fraction of Animas River water, %AR). Concentratis measured in each mixing zone sample and in the upstream Animas River and Cement Creek were used to compute %AR for the reference and natural tracers. Values of %AR from natural tracers generally showed good agreement with values from the reference tracer, but variability in discharge and end-member concentrations and analytical errors contributed to unexpected outlier values for both injected and natural tracers. The median value (MV) %AR (calculated from all of the tracers) reduced scatter in the mixing plots for the dissolved metals, indicating that the MV estimate reduced the effects of various potential errors that could affect any tracer.
Geological factors affecting CO2 plume distribution
Frailey, S.M.; Leetaru, H.
2009-01-01
Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill point within the structure. ?? 2009 Elsevier Ltd. All rights reserved.
Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.
2003-01-01
The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.
Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi
2011-04-15
Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.
40 CFR 146.33 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case, shall injection pressure initiate fractures in the confining zone or cause the...
40 CFR 146.33 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case, shall injection pressure initiate fractures in the confining zone or cause the...
40 CFR 146.33 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case, shall injection pressure initiate fractures in the confining zone or cause the...
40 CFR 146.33 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case, shall injection pressure initiate fractures in the confining zone or cause the...
40 CFR 146.33 - Operating, monitoring, and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case, shall injection pressure initiate fractures in the confining zone or cause the...
King, Jeffrey N.; Decker, Jeremy D.
2018-02-09
Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent concentration trends. The model was calibrated to match observed concentration trends for total ammonium (NH4+) and total dissolved solids.The investigation qualitatively indicates that fractures, karst-collapse structures, faults, or other hydrogeologic features may permit effluent injected into the Boulder Zone to be transported to overlying permeable zones in the Floridan aquifer system. These findings, however, are qualitative because the locations of transport pathways that might exist from the Boulder Zone to the Avon Park permeable zone are largely unknown.
NASA Astrophysics Data System (ADS)
Lee, Seok Jae; Lee, Song Eun; Lee, Dong Hyung; Koo, Ja Ryong; Lee, Ho Won; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan
2014-10-01
Blue phosphorescent organic light-emitting diodes with multiple quantum well (MQW) structures (from one to four quantum wells) within an emitting layer (EML) are fabricated with charge control layers (CCLs) to control carrier movement. The distributed recombination zone and balanced charge carrier injection within EML are achieved through the MQW structure with CCLs. Remarkably, the half-decay lifetime of a blue device with three quantum wells, measured at an initial luminance of 500 cd/m2, is 3.5 times longer than that using a conventional structure. Additionally, the device’s efficiency improved. These results are explained with the effects of triplet exciton confinement and triplet-triplet annihilation within each EML.
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... is the lateral distance from the perimeter of the project area, in which the pressures in the... (length) k=Hydraulic conductivity of the injection zone (length/time) H=Thickness of the injection zone...
Hickey, John J.
1982-01-01
Potential benefits or hazards to freshwater resources could result from subsurface injection of treated wastewater. Recognizing this, the U.S. Geological Survey, in cooperation with Pinellas County and the city of St. Petersburg, undertook an evaluation of the hydrogeology and injection of wastewater at proposed test sites on the Pinellas peninsula. The injection sites are underlain by sedimentary rocks ranging in age from Cretaceous to Pleistocene. Lower Eocene carbonate rocks were penetrated to a maximum depth of 3,504 feet and were found to have relatively low water yields. The most permeable part of the investigated section was in rocks of middle Eocene age within the Floridan aquifer. At the injection sites, the Floridan aquifer was subdivided into four permeable zones and three semiconfining beds. The test injection zone is within the Avon Park Limestone, the most productive of the identified permeable zones, with a transmissivity of about 1,000,000 feet squared per day. Two semiconfining beds are above the injection zone in the Suwannee Limestone and Ocala Limestone and have vertical hydraulic conductivities estimated to range from about 0.1 to 1 foot per day where these beds do not contain clay. Limited fresh ground-water supplies exist in the Floridan aquifer within the Pinellas peninsula. At all test sites, chloride concentration in the injection zone ranged from 19,000 to 20,000 milligrams per liter. Injection tests ranging in duration from 3 to 91.1 days were run at three different sites. Pressure buildup occurred in permeable zones above and below the injection zone during these tests. Calculated pressure buildup in observation wells close to and at some distance from the test wells was typically less than 1 pound per square inch. Injection and formation water will probably move slowly through the semiconfining bed overlying the injection zone, and long-term injection tests will be needed to determine the effectiveness of these beds to retard flow. The injected water was well mixed with the native formation water, which, in part, is a direct consequence of the fractures in the injection zone.
Rebich, Richard A.
1994-01-01
Available literature and data were reviewed to quantify data requirements for computer simulation of hydrogeologic effects of liquid waste injection in southeastern Mississippi. Emphasis of each review was placed on quantifying physical properties of current Class I injection zones in Harrison and Jackson Counties. Class I injection zones are zones that are used for injection of hazardous or non-hazardous liquid waste below a formation containing the lowermost underground source of drinking water located within one-quarter of a mile of the injection well. Several mathematical models have been developed to simulate injection effects. The Basic Plume Method was selected because it is commonly used in permit applications, and the Intercomp model was selected because it is generally accepted and used in injection-related research. The input data requirements of the two models were combined into a single data requirement list inclusive of physical properties of injection zones only; injected waste and well properties are not included because such information is site-specific by industry, which is beyond the scope of this report. Results of the reviews of available literature and data indicated that Class I permit applications and standard-reference chemistry and physics texts were the primary sources of information to quantify physical properties of injection zones in Harrison and Jackson Counties. With the exception of a few reports and supplementary data for one injection zone in Jackson County, very little additional information pertaining to physical properties of the injection zones was available in sources other than permit applications and standard-reference texts.
Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D
2010-10-21
Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents. Copyright © 2010 S. Yamamoto. Published by Elsevier B.V. All rights reserved.
3-D simulation of gases transport under condition of inert gas injection into goaf
NASA Astrophysics Data System (ADS)
Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang
2016-12-01
To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.
40 CFR 148.20 - Petitions to allow injection of a waste prohibited under subpart B.
Code of Federal Regulations, 2014 CFR
2014-07-01
... free of known transmissive faults of fractures and that there is a confining zone above the injection... transmissive faults or fractures and that there is a confining zone above the injection zone. (d) A...
40 CFR 148.20 - Petitions to allow injection of a waste prohibited under subpart B.
Code of Federal Regulations, 2012 CFR
2012-07-01
... free of known transmissive faults of fractures and that there is a confining zone above the injection... transmissive faults or fractures and that there is a confining zone above the injection zone. (d) A...
40 CFR 148.20 - Petitions to allow injection of a waste prohibited under subpart B.
Code of Federal Regulations, 2013 CFR
2013-07-01
... free of known transmissive faults of fractures and that there is a confining zone above the injection... transmissive faults or fractures and that there is a confining zone above the injection zone. (d) A...
40 CFR 148.20 - Petitions to allow injection of a waste prohibited under subpart B.
Code of Federal Regulations, 2011 CFR
2011-07-01
... free of known transmissive faults of fractures and that there is a confining zone above the injection... transmissive faults or fractures and that there is a confining zone above the injection zone. (d) A...
40 CFR 148.20 - Petitions to allow injection of a waste prohibited under subpart B.
Code of Federal Regulations, 2010 CFR
2010-07-01
... free of known transmissive faults of fractures and that there is a confining zone above the injection... transmissive faults or fractures and that there is a confining zone above the injection zone. (d) A...
Newberry Well 55-29 Stimulation Data 2014
Trenton T. Cladouhos
2015-09-03
The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.
40 CFR 146.13 - Operating, monitoring and reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressure in the injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case shall injection pressure initiate fractures in the confining...
40 CFR 146.13 - Operating, monitoring and reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pressure in the injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case shall injection pressure initiate fractures in the confining...
40 CFR 146.13 - Operating, monitoring and reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pressure in the injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case shall injection pressure initiate fractures in the confining...
40 CFR 146.13 - Operating, monitoring and reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressure in the injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case shall injection pressure initiate fractures in the confining...
40 CFR 146.13 - Operating, monitoring and reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressure in the injection zone during injection does not initiate new fractures or propagate existing fractures in the injection zone. In no case shall injection pressure initiate fractures in the confining...
Influence of obstacles on bubbles rising in water-saturated sand
NASA Astrophysics Data System (ADS)
Poryles, Raphaël; Varas, Germán; Vidal, Valérie
2017-06-01
This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.
Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.
Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less
Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines
Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; ...
2017-07-18
Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less
Lane, J.W.; Day-Lewis, F. D.; Harris, J.M.; Haeni, F.P.; Gorelick, S.M.
2000-01-01
Attenuation-difference, borehole-radar tomography was used to monitor a series of sodium chloride tracer injection tests conducted within the FSE, wellfield at the U.S. Geological Survey Fractured-Rock Hydrology Research Site in Grafton County, New Hampshire, USA. Borehole-radar tomography surveys were conducted using the sequential-scanning and injection method in three boreholes that form a triangular prism of adjoining tomographic image planes. Results indicate that time-lapse tomography methods provide high-resolution images of tracer distribution in permeable zones.
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...
Coupled Reactive Transport Modeling of CO2 Injection in Mt. Simon Sandstone Formation, Midwest USA
NASA Astrophysics Data System (ADS)
Liu, F.; Lu, P.; Zhu, C.; Xiao, Y.
2009-12-01
CO2 sequestration in deep geological formations is one of the promising options for CO2 emission reduction. While several large scale CO2 injections in saline aquifers have shown to be successful for the short-term, there is still a lack of fundamental understanding on key issues such as CO2 storage capacity, injectivity, and security over multiple spatial and temporal scales that need to be addressed. To advance these understandings, we applied multi-phase coupled reactive mass transport modeling to investigate the fate of injected CO2 and reservoir responses to the injection into Mt. Simon Formation. We developed both 1-D and 2-D reactive transport models in a radial region of 10,000 m surrounding a CO2 injection well to represent the Mt. Simon sandstone formation, which is a major regional deep saline reservoir in the Midwest, USA. Supercritical CO2 is injected into the formation for 100 years, and the modeling continues till 10,000 years to monitor both short-term and long-term behavior of injected CO2 and the associated rock-fluid interactions. CO2 co-injection with H2S and SO2 is also simulated to represent the flue gases from coal gasification and combustion in the Illinois Basin. The injection of CO2 results in acidified zones (pH ~3 and 5) adjacent to the wellbore, causing progressive water-rock interactions in the surrounding region. In accordance with the extensive dissolution of authigenic K-feldspar, sequential precipitations of secondary carbonates and clay minerals are predicted in this zone. The vertical profiles of CO2 show fingering pattern from the top of the reservoir to the bottom due to the density variation of CO2-impregnated brine, which facilitate convection induced mixing and solubility trapping. Most of the injected CO2 remains within a radial distance of 2500 m at the end of 10,000 years and is sequestered and immobilized by solubility and residual trapping. Mineral trapping via secondary carbonates, including calcite, magnesite, ankerite and dawsonite, is predicted, but only constituting a minor component as compared to other trapping mechanisms. The mineral alteration induced by CO2 injection results in changes in porosity/permeability due to these complex mineral dissolution and precipitation reactions. Increases in porosity (from 15% to 16.2%) occur in the low-pH zones due to the acidic dissolution of minerals. However, within the carbonate mineral trapping zone, porosity reduction occurs. Co-injection of H2S causes relatively limited modification from the CO2 alone case while significantly higher water-rock reactivity is associated with the SO2 co-injection. Although co-injection of CO2 with H2S and SO2 could potentially reduce separation and injection cost, it may lead to some uncertainty and risks and therefore require further investigation.
CO2 Push-Pull Single Fault Injection Simulations
Borgia, Andrea; Oldenburg, Curtis (ORCID:0000000201326016); Zhang, Rui; Pan, Lehua; Daley, Thomas M.; Finsterle, Stefan; Ramakrishnan, T.S.; Doughty, Christine; Jung, Yoojin; Lee, Kyung Jae; Altundas, Bilgin; Chugunov, Nikita
2017-09-21
ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a damage zone, a fault gouge and a slip plane. The runs are described in detail in the following: Borgia A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Chugunov N., Altundas B, Ramakrishnan T.S., 2017. Carbon Dioxide Injection for Enhanced Characterization of Faults and Fractures in Geothermal Systems. Proceedings of the 42st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-17.
NASA Astrophysics Data System (ADS)
Mateas, D. J.; Tick, G.; Carroll, K. C.
2016-12-01
A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.
Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.
NASA Astrophysics Data System (ADS)
Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.
2015-12-01
Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.
NASA Astrophysics Data System (ADS)
Marble, J.; Carroll, K. C.; Brusseau, M. L.; Plaschke, M.; Brinker, F.
2013-12-01
Source zones located in relatively deep, low-permeability formations provide special challenges for remediation. Application of permeable reactive barriers, in-situ thermal, or electrokinetic methods would be expensive and generally impractical. In addition, the use of enhanced mass-removal approaches based on reagent injection (e.g., ISCO, enhanced-solubility reagents) is likely to be ineffective. One possible approach for such conditions is to create a persistent treatment zone for purposes of containment. This study examines the efficacy of this approach for containment and treatment of contaminants in a lower permeability zone using potassium permanganate (KMnO4) as the reactant. A localized 1,1-dichloroethene (DCE) source zone is present in a section of the Tucson International Airport Area (TIAA) Superfund Site. Characterization studies identified the source of DCE to be located in lower-permeability strata adjacent to the water table. Bench-scale studies were conducted using core material collected from boreholes drilled at the site to measure DCE concentrations and determine natural oxidant demand. The reactive zone was created by injecting ~1.7% KMnO4 solution into multiple wells screened within the lower-permeability unit. The site has been monitored for ~8 years to characterize the spatial distribution of DCE and permanganate. KMnO4 continues to persist at the site, demonstrating successful creation of a long-term reactive zone. Additionally, the footprint of the DCE contaminant plume in groundwater has decreased continuously with time. This project illustrates the application of ISCO as a reactive-treatment system for lower-permeability source zones, which appears to effectively mitigate persistent mass flux into groundwater.
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Verda, Vittorio
2014-05-01
The common use of well doublets for groundwater-sourced heating or cooling results in a thermal plume of colder or warmer re-injected groundwater known as the Thermal Affected Zone(TAZ). The plumes may be regarded either as a potential anthropogenic geothermal resource or as pollution, depending on downstream aquifer usage. A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. Temperature anomalies are detected through numerical methods. Crucial elements in the process of thermal impact assessment are the sizes of installations, their position, the heating/cooling load of the building, and the temperature drop/increase imposed on the re-injected water flow. For multiple-well schemes, heterogeneous aquifers, or variable heating and cooling loads, numerical models that simulate groundwater and heat transport are needed. These tools should consider numerous scenarios obtained considering different heating/cooling loads, positions, and operating modes. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump, depending on the characteristics of the subsurface and the heat pump. Nevertheless, these models require large computational efforts, and therefore their use may be limited to a reasonable number of scenarios. Neural networks could represent an alternative to CFD for assessing the TAZ under different scenarios referring to a specific site. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple installations. The neural network is trained using the results from a CFD model (FEFLOW) applied to the installation at Politecnico di Torino (Italy) under several operating conditions.
Hickey, J.J.; Ehrlich, G.G.
1984-01-01
The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Treated sewage with a mean chloride concentration of 170 mg/ml was injected through a single well for 12 months at a mean rate of 4.7 x 105 cubic feet per day. The volume of water injected during the year was 1.7x108 cubic feet. Dissolved oxygen was contained in the sewage prior to injection. Water removed from the injection zone during injection was essentially free of oxygen. Probable growth of denitrifying bacteria and, thus, microbial denitrification, was suggested by bacterial counts in water from two observation wells that were close to the injection well. The volume fraction of treated sewage in water from wells located 35 feet and 733 feet from the injection well and open to the upper part of the injection zone stabilized at about 0.9 and 0.75, respectively. Chloride concentrations stabilized at about 1,900 mg/l in water from the well that was 35 feet from the injection well and stabilized at about 4,000 mg/l in water from the well that was 733 feet from the injection well. These and other data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2012-06-05
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2010-06-08
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.
Newberry Well 55-29 Stimulation Data
Trenton T. Cladouhos
2012-12-08
The Newberry Volcano EGS Demonstration in central Oregon, a 3 year project started in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. Stimulation started October 17, 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Two TZIM treatments successfully shifted the depth of stimulation. Injectivity, DTS, and seismic analysis indicate that fracture permeability in well NWG 55-29 was enhanced by two orders of magnitude. This submission includes all of the files and reports associated with the geophysical exploration, stimulation, and monitoring included in the scope of the project.
Ehrlich, G.G.; Godsy, E.M.; Pascale, C.A.; Vecchioli, John
1979-01-01
An industrial waste liquid containing organonitrile compounds and nitrate ion has been injected into the lower limestone of the Floridan aquifer near Pensacola, Florida since June 1975. Chemical analyses of water from monitor wells and backflow from the injection well indicate that organic carbon compounds are converted to CO2 and nitrate is converted to N2. These transformations are caused by bacteria immediately after injection, and are virtually completed within 100 m of the injection well. The zone near the injection well behaves like an anaerobic filter with nitrate respiring bacteria dominating the microbial flora in this zone.Sodium thiocyanate contained in the waste is unaltered during passage through the injection zone and is used to detect the degree of mixing of injected waste liquid with native water at a monitor well 312 m (712 ft) from the injection well. The dispersivity of the injection zone was calculated to be 10 m (33 ft). Analyses of samples from the monitor well indicate 80 percent reduction in chemical oxygen demand and virtually complete loss of organonitriles and nitrate from the waste liquid during passage from the injection well to the monitor well. Bacterial densities were much lower at the monitor well than in backflow from the injection well.
Putnam, Larry D.; Long, Andrew J.
2007-01-01
The Madison aquifer, which contains fractures and solution openings in the Madison Limestone, is used extensively for water supplies for the city of Rapid City and other suburban communities in the Rapid City, S. Dak., area. The 48 square-mile study area includes the west-central and southwest parts of Rapid City and the outcrops of the Madison Limestone extending from south of Spring Creek to north of Rapid Creek. Recharge to the Madison Limestone occurs when streams lose flow as they cross the outcrop. The maximum net loss rate for Spring and Rapid Creek loss zones are 21 and 10 cubic feet per second (ft3/s), respectively. During 2003 and 2004, fluorescent dyes were injected in the Spring and Rapid Creek loss zones to estimate approximate locations of preferential flow paths in the Madison aquifer and to measure the response and transit times at wells and springs. Four injections of about 2 kilograms of fluorescein dye were made in the Spring Creek loss zone during 2003 (sites S1, S2, and S3) and 2004 (site S4). Injection at site S1 was made in streamflow just upstream from the loss zone over a 12-hour period when streamflow was about equal to the maximum loss rate. Injections at sites S2, S3, and S4 were made in specific swallow holes located in the Spring Creek loss zone. Injection at site R1 in 2004 of 3.5 kilograms of Rhodamine WT dye was made in streamflow just upstream from the Rapid Creek loss zone over about a 28-hour period. Selected combinations of 27 wells, 6 springs, and 3 stream sites were monitored with discrete samples following the injections. For injections at sites S1-S3, when Spring Creek streamflow was greater than or equal to 20 ft3/s, fluorescein was detected in samples from five wells that were located as much as about 2 miles from the loss zone. Time to first arrival (injection at site S1) ranged from less than 1 to less than 10 days. The maximum fluorescein concentration (injection at site S1) of 120 micrograms per liter (ug/L) at well CO, which is located adjacent to the loss zone, was similar to the concentration in the stream. Fluorescein arrived at well NON (injection at site S1), which is located about 2 miles northeast of the loss zone, within about 1.6 days, and the maximum concentration was 44 ug/L. For injection at site S4, when streamflow was about 12 ft3/s, fluorescein was detected in samples from six wells and time to first arrival ranged from 0.2 to 16 days. Following injection at site S4 in 2004, the length of time that dye remained in the capture zone of well NON, which is located approximately 2 miles from the loss zone, was almost an order of magnitude greater than in 2003. For injection at site R1, Rhodamine WT was detected at well DRU and spring TI-SP with time to first arrival of about 0.5 and 1.1 days and maximum concentrations of 6.2 and 0.91 ug/L, respectively. Well DRU and spring TI-SP are located near the center of the Rapid Creek loss zone where the creek has a large meander. Measurable concentrations were observed for spring TI-SP as many as 109 days after the dye injection. The direction of a conduit flow path in the Spring Creek area was to the northeast with ground-water velocities that ranged from 770 to 6,500 feet per day. In the Rapid Creek loss zone, a conduit flow path east of the loss zone was not evident from the dye injection.
Veninger, Albert [Coventry, CT
2008-12-30
A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.
The Northwest Geysers EGS Demonstration Project, California – Part 2: Modeling and interpretation
Rutqvist, Jonny; Jeanne, Pierre; Dobson, Patrick F.; ...
2015-09-02
In this paper, we summarize the results of coupled thermal, hydraulic, and mechanical (THM) modeling in support of the Northwest Geysers EGS Demonstration Project, which aims at enhancing production from a known High Temperature Reservoir (HTR) (280–400 °C) located under the conventional (240 °C) geothermal steam reservoir. The THM modeling was conducted to investigate geomechanical effects of cold-water injection during the stimulation of the EGS, first to predict the extent of the stimulation zone for a given injection schedule, and then to conduct interpretive analyses of the actual stimulation. By using a calibrated THM model based on historic injection and microseismic datamore » at a nearby well, we could reasonably predict the extent of the stimulation zone around the injection well, at least for the first few months of injection. However, observed microseismic evolution and pressure responses over the one-year stimulation-injection revealed more heterogeneous behavior as a result of more complex geology, including a network of shear zones. Therefore, for an interpretive analysis of the one-year stimulation campaign, we included two sets of vertical shear zones within the model; a set of more permeable NW-striking shear zones and a set of less permeable NE-striking shear zones. Our modeling indicates that the microseismic events in this system are related to shear reactivation of pre-existing fractures, triggered by the combined effects of injection-induced cooling around the injection well and rapid (but small) changes in steam pressure as far as a kilometer from the injection well. Overall, the integrated monitoring and modeling of microseismicity, ground surface deformations, reservoir pressure, fluid chemical composition, and seismic tomography depict an EGS system hydraulically bounded by some of the NE-striking low permeability shear zones, with the more permeable NW-striking shear zone providing liquid flow paths for stimulation deep (several kilometers) down into the HTR. The mo deling indicates that a significant mechanical degradation (damage) inferred from seismic tomography, and potential changes in fracture porosity inferred from cross-well pressure responses, are related to shear rupture in the stimulation zone driven by both pressure and cooling effects.« less
The Northwest Geysers EGS Demonstration Project, California – Part 2: Modeling and interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Jeanne, Pierre; Dobson, Patrick F.
In this paper, we summarize the results of coupled thermal, hydraulic, and mechanical (THM) modeling in support of the Northwest Geysers EGS Demonstration Project, which aims at enhancing production from a known High Temperature Reservoir (HTR) (280–400 °C) located under the conventional (240 °C) geothermal steam reservoir. The THM modeling was conducted to investigate geomechanical effects of cold-water injection during the stimulation of the EGS, first to predict the extent of the stimulation zone for a given injection schedule, and then to conduct interpretive analyses of the actual stimulation. By using a calibrated THM model based on historic injection and microseismic datamore » at a nearby well, we could reasonably predict the extent of the stimulation zone around the injection well, at least for the first few months of injection. However, observed microseismic evolution and pressure responses over the one-year stimulation-injection revealed more heterogeneous behavior as a result of more complex geology, including a network of shear zones. Therefore, for an interpretive analysis of the one-year stimulation campaign, we included two sets of vertical shear zones within the model; a set of more permeable NW-striking shear zones and a set of less permeable NE-striking shear zones. Our modeling indicates that the microseismic events in this system are related to shear reactivation of pre-existing fractures, triggered by the combined effects of injection-induced cooling around the injection well and rapid (but small) changes in steam pressure as far as a kilometer from the injection well. Overall, the integrated monitoring and modeling of microseismicity, ground surface deformations, reservoir pressure, fluid chemical composition, and seismic tomography depict an EGS system hydraulically bounded by some of the NE-striking low permeability shear zones, with the more permeable NW-striking shear zone providing liquid flow paths for stimulation deep (several kilometers) down into the HTR. The mo deling indicates that a significant mechanical degradation (damage) inferred from seismic tomography, and potential changes in fracture porosity inferred from cross-well pressure responses, are related to shear rupture in the stimulation zone driven by both pressure and cooling effects.« less
NASA Astrophysics Data System (ADS)
Brown, M. R. M.; Ge, S.; Sheehan, A. F.
2016-12-01
Previous studies have correlated seismicity with high rate injection at Underground Injection Control Class II wastewater disposal wells. In this study, we examine the impact of injection in the Denver Basin combined disposal zone that is used by numerous Class II wells. The disposal zone includes the Lyons Formation, a sandstone unit, and the Fountain Formation, an arkose unit just above the basement. Within a 30-km radius of the deep Class II injection well (NGL C4A) closest to the June 1, 2014 M3.2 Greeley earthquake, there are fifteen deep wastewater disposal wells injecting into the disposal zone and two shallow wastewater disposal wells injecting into the Lyons Formation only. One of the shallow wells is located at the same disposal facility as NGL-C4A and started injection in October 2004; the earliest deep injection in this region, at well NGL-C6, began in November 2007. The major episode of seismicity in the area started in November 2013. The timing of injection operation and seismicity occurrence raises several questions. Why did seismicity not begin in the area until nearly 10 years after the start of injection? Nine of the deep wastewater disposal wells began injection after the M3.2 earthquake on June 1, 2014; how does the large increase in the number of injection wells in the area change the pore-pressure in the disposal zone? How does the injection from the various wells interact? Does this increase the chances of induced seismicity? We conduct numerical modeling of 18 injection wells from 2004 to 2016 to explore these questions by better understanding the pore-pressure changes through time, pore-pressure changes in areas of induced earthquakes, and the interactions between injection wells. We include the asymmetry of the basin geometry in the model. We also use this case study to refine how well spacing and injection rate influences the occurrence of induced earthquakes.
Physical Properties of 3D Interconnected Graphite Networks - Aerographite
2015-10-30
Figure 1.2: Influence of toluene injection rate per time on Aerographite density...................... 6 Figure 1.3: Influence of toluene injection ...densities ........................... 20 Figure 3.15: Capacitance as a function of carbon precursor injection rate .............................. 20...At a constant temperature profile of 200° C in the injection zone and 760° C in main zone, a carbon precursor (toluene) is injected with a
Improved hydrocracker temperature control: Mobil quench zone technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarli, M.S.; McGovern, S.J.; Lewis, D.W.
1993-01-01
Hydrocracking is a well established process in the oil refining industry. There are over 2.7 million barrels of installed capacity world-wide. The hydrocracking process comprises several families of highly exothermic reactions and the total adiabatic temperature rise can easily exceed 200 F. Reactor temperature control is therefore very important. Hydrocracking reactors are typically constructed with multiple catalyst beds in series. Cold recycle gas is usually injected between the catalyst beds to quench the reactions, thereby controlling overall temperature rise. The design of this quench zone is the key to good reactor temperature control, particularly when processing poorer quality, i.e., highermore » heat release, feeds. Mobil Research and Development Corporation (MRDC) has developed a robust and very effective quench zone technology (QZT) package, which is now being licensed to the industry for hydrocracking applications.« less
NASA Astrophysics Data System (ADS)
Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.
2017-12-01
Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close to the pad operations providing information about the local ground motion at near offsets, although no ground motion was recorded that exceeds the minimum levels requiring mandatory reporting to the regulator.
Subsurface storage of freshwater in South Florida; a digital model analysis of recoverability
Merritt, Michael L.
1985-01-01
As part of a study of the feasibility of recovering freshwater injected and stored underground in south Florida, a digital solute-transport model was used to investigate the relation of recovery efficiency to the variety of hydrogeologic conditions that could prevail in brackish artesian aquifers and to a variety of management alternatives. The analyses employed a modeling approach in which the control for sensitivity testing was a hypothetical aquifer considered representative of permeable zones in south Florida that might be used for storage of freshwater. Parameter variations in the tests represented possible variations in aquifer conditions in the area. The applicability of the analyses to south Florida limestone aquifers required the assumption that flow nonuniformities in those aquifers are small on the scale of volumes of water likely to be injected, and that their effect could be represented as hydrodynamic dispersion. Generally, it was shown that a loss of recovery efficiency is caused by (1) processes causing mixing of injected freshwater with native saline water (hydrodynamic dispersion), (2) processes causing the more or less irreversible displacement of the injected freshwater with respect to the well (buoyancy stratification, background hydraulic gradients, and interlayer dispersion), or (3) processes causing injection and withdrawal flow patterns to be dissimilar (directionally biased well-bore plugging, and dissimilar injection and withdrawal schedules in multiple-well systems). Other results indicated that recovery efficiency improves considerably with successive cycles, providing that each recovery phase ends when the chloride concentration of withdrawn water exceeds established criteria for potability (usually 250 milligrams per liter), and that freshwater injected into highly permeable or highly saline aquifers (such as the 'boulder zone') would buoy rapidly. Many hydrologic conditions were posed for model analysis. To have obtained comparable results with operational testing would have been more costly by orders of magnitude. The tradeoff is that the validity of results obtained from computer modeling is somewhat less certain. In particular, results must be qualified with observations that (1) the complex set of processes lumped as hydrodynamic dispersion is represented with a somewhat simplified mathematical approximation, and (2) other flow processes in limestone injection zones are as yet incompletely understood. Despite such reservations, the study is considered a practical example of the use of transport models in ground-water investigations.
Hydrologic data for a subsurface waste-injection site at Mulberry, Florida; 1972-77
Wilson, William Edward; Parsons, David C.; Spechler, R.M.
1979-01-01
Since October 1972, industrial liquid waste has been injected into a brine aquifer of limestone and dolomite in Mulberry, FL., at a depth of more than 4,000 feet below land surface. During 1977, the injection rate was about 8.8 million gallons per month. To determine what effect the injected waste has on the ground-water body, water levels have been measured and water samples collected from two monitor wells that tap different permeable zones above the injection zone, and from a satellite monitor well that taps the injection zone. The monitor wells are in the annulus of the injection well, and the satellite monitor well is 2,291 feet from the injection well. This report updates previous data reports and includes all hydrologic data collected by the U.S. Geological Survey during 1972-77. Included is a table of well-construction data, a graph showing the volume of waste injected each month, and hydrographs of the annulus monitor wells and the satellite monitor well. (Woodard-USGS)
40 CFR 146.67 - Operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fractures or propagate existing fractures in the injection zone. The owner or operator shall assure that the injection pressure does not initiate fractures or propagate existing fractures in the confining zone, nor...
40 CFR 146.67 - Operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fractures or propagate existing fractures in the injection zone. The owner or operator shall assure that the injection pressure does not initiate fractures or propagate existing fractures in the confining zone, nor...
40 CFR 146.67 - Operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fractures or propagate existing fractures in the injection zone. The owner or operator shall assure that the injection pressure does not initiate fractures or propagate existing fractures in the confining zone, nor...
40 CFR 146.67 - Operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fractures or propagate existing fractures in the injection zone. The owner or operator shall assure that the injection pressure does not initiate fractures or propagate existing fractures in the confining zone, nor...
Estimates of projection overlap and zones of convergence within frontal-striatal circuits.
Averbeck, Bruno B; Lehman, Julia; Jacobson, Moriah; Haber, Suzanne N
2014-07-16
Frontal-striatal circuits underlie important decision processes, and pathology in these circuits is implicated in many psychiatric disorders. Studies have shown a topographic organization of cortical projections into the striatum. However, work has also shown that there is considerable overlap in the striatal projection zones of nearby cortical regions. To characterize this in detail, we quantified the complete striatal projection zones from 34 cortical injection locations in rhesus monkeys. We first fit a statistical model that showed that the projection zone of a cortical injection site could be predicted with considerable accuracy using a cross-validated model estimated on only the other injection sites. We then examined the fraction of overlap in striatal projection zones as a function of distance between cortical injection sites, and found that there was a highly regular relationship. Specifically, nearby cortical locations had as much as 80% overlap, and the amount of overlap decayed exponentially as a function of distance between the cortical injection sites. Finally, we found that some portions of the striatum received inputs from all the prefrontal regions, making these striatal zones candidates as information-processing hubs. Thus, the striatum is a site of convergence that allows integration of information spread across diverse prefrontal cortical areas. Copyright © 2014 the authors 0270-6474/14/339497-09$15.00/0.
Coanda injection system for axially staged low emission combustors
Evulet, Andrei Tristan [Clifton Park, NY; Varatharajan, Balachandar [Cincinnati, OH; Kraemer, Gilbert Otto [Greer, SC; ElKady, Ahmed Mostafa [Niskayuna, NY; Lacy, Benjamin Paul [Greer, SC
2012-05-15
The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.
Evidences of Multiple Magma Injections in Quaternary Balerang and Rajabasa Volcanoes, Indonesia
NASA Astrophysics Data System (ADS)
Hasibuan, R. F.; Ohba, T.; Abdurrachman, M.
2016-12-01
Quaternary Balerang and Rajabasa volcanoes are situated along the nearly north-south lineament with a most explosive Krakatau volcanic complex in the south and effusive Sukadana basalt plateau in the north. Some studies have elucidated that Krakatau volcano has multiple magma storage regions beneath together with evidences of magma mixing process. By considering these circumstances, it is necessary to know lateral variations of magmas and to characterize volcanic rocks from Rajabasa volcanic complex which is located between these distinct magmatic systems, in terms of magmatic processes and evolution. Methodologies we used are X-ray fluorescence to determine the whole rock chemistry, K-Ar isotope dating to determine the lifespan of the volcano, as well as EPMA analysis to obtain the chemical composition of minerals. The rock chemistry or TAS plot shows a linear trend, ranging from basaltic (51 wt.%) to rhyolitic (75 wt.%), indicating a chemical heterogeneity of magma. When SiO2 contents are correlated with the relative ages, we found a broad tendency that SiO2 contents progressively decrease with age. The Rajabasa volcano lifespan is known formed at 0.31 Ma while one of the youngest lava is identified erupted at 0.12 Ma. Some plagioclase crystals exhibit disequilibrium textures, like highly sieved core and clear rim regions, also overgrowth rim on the plagioclase and pyroxene crystals whose composition more primitive than the core's composition, indicating magmatic recharge events. Reverse zoning and resorption textures associated with compositional step zoning or progressive zoning are quite common as well in clinopyroxene and plagioclase crystals. By considering these evidences, we conclude that injection of a hotter basaltic magma into colder and more felsic magma occurred beneath the volcanoes.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Daley, T. M.; Borgia, A.; Zhang, R.; Doughty, C.; Jung, Y.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.
2016-12-01
Faults and fractures in geothermal systems are difficult to image and characterize because they are nearly indistinguishable from host rock using traditional seismic and well-logging tools. We are investigating the use of CO2 injection and production (push-pull) in faults and fractures for contrast enhancement for better characterization by active seismic, well logging, and push-pull pressure transient analysis. Our approach consists of numerical simulation and feasibility assessment using conceptual models of potential enhanced geothermal system (EGS) sites such as Brady's Hot Spring and others. Faults in the deep subsurface typically have associated damage and gouge zones that provide a larger volume for uptake of CO2 than the slip plane alone. CO2 injected for push-pull well testing has a preference for flowing in the fault and fractures because CO2 is non-wetting relative to water and the permeability of open fractures and fault gouge is much higher than matrix. We are carrying out numerical simulations of injection and withdrawal of CO2 using TOUGH2/ECO2N. Simulations show that CO2 flows into the slip plane and gouge and damage zones and is driven upward by buoyancy during the push cycle over day-long time scales. Recovery of CO2 during the pull cycle is limited because of buoyancy effects. We then use the CO2 saturation field simulated by TOUGH2 in our anisotropic finite difference code from SPICE-with modifications for fracture compliance-that we use to model elastic wave propagation. Results show time-lapse differences in seismic response using a surface source. Results suggest that CO2 can be best imaged using time-lapse differencing of the P-wave and P-to-S-wave scattering in a vertical seismic profile (VSP) configuration. Wireline well-logging tools that measure electrical conductivity show promise as another means to detect and image the CO2-filled fracture near the injection well and potential monitoring well(s), especially if a saline-water pre-flush is carried out to enhance conductivity contrast. Pressure-transient analysis is also carried out to further constrain fault zone characteristics. These multiple complementary characterization approaches are being used to develop working models of fault and fracture zone characteristics relevant to EGS energy recovery.
Natural variations in the geomagnetically trapped electron population
NASA Technical Reports Server (NTRS)
Vampola, A. L.
1972-01-01
Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.
40 CFR 146.95 - Class VI injection depth waiver requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and/or down-hole carbon dioxide... injection zone(s); and indirect methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and...
40 CFR 146.95 - Class VI injection depth waiver requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and/or down-hole carbon dioxide... injection zone(s); and indirect methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and...
40 CFR 146.95 - Class VI injection depth waiver requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and/or down-hole carbon dioxide... injection zone(s); and indirect methods (e.g., seismic, electrical, gravity, or electromagnetic surveys and...
Multiple parietal-frontal pathways mediate grasping in macaque monkeys
Gharbawie, Omar A.; Stepniewska, Iwona; Qi, Huixin; Kaas, Jon H.
2011-01-01
The nodes of a parietal-frontal pathway that mediates grasping in primates are in anterior intraparietal area (AIP) and ventral premotor cortex (PMv). Nevertheless, multiple somatosensory and motor representations of the hand, respectively in parietal and frontal cortex, suggest that additional pathways remain unrealized. We explored this possibility in macaque monkeys by injecting retrograde tracers into grasp zones identified in M1, PMv, and area 2 with long train electrical stimulation. The M1 grasp zone was densely connected with other frontal cortex motor regions. The remainder of the connections originated from somatosensory areas 3a and S2/PV, and from the medial bank and fundus of the intraparietal sulcus (IPS). The PMv grasp zone was also densely connected with frontal cortex motor regions, albeit to a lesser extent than the M1 grasp zone. The remainder of the connections originated from areas S2/PV and aspects of the inferior parietal lobe such as PF, PFG, AIP, and the tip of the IPS. The area 2 grasp zone was densely connected with the hand representations of somatosensory areas 3b, 1, and S2/PV. The remainder of the connections was with areas 3a and 5 and the medial bank and fundus of the IPS. Connections with frontal cortex were relatively weak and concentrated in caudal M1. Thus, the three grasp zones may be nodes of parallel parietal-frontal pathways. Differential points of origin and termination of each pathway suggest varying functional specializations. Direct and indirect connections between those parietal-frontal pathways likely coordinate their respective functions into an accurate grasp. PMID:21832196
System and method for treatment of a medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surinder Prabhjot; Acharya, Harish Radhakrishna; Perry, Robert James
2017-05-23
A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and amore » reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.« less
Apparatus and method for continuous production of materials
Chang, Chih-hung; Jin, Hyungdae
2014-08-12
Embodiments of a continuous-flow injection reactor and a method for continuous material synthesis are disclosed. The reactor includes a mixing zone unit and a residence time unit removably coupled to the mixing zone unit. The mixing zone unit includes at least one top inlet, a side inlet, and a bottom outlet. An injection tube, or plurality of injection tubes, is inserted through the top inlet and extends past the side inlet while terminating above the bottom outlet. A first reactant solution flows in through the side inlet, and a second reactant solution flows in through the injection tube(s). With reference to nanoparticle synthesis, the reactant solutions combine in a mixing zone and form nucleated nanoparticles. The nucleated nanoparticles flow through the residence time unit. The residence time unit may be a single conduit, or it may include an outer housing and a plurality of inner tubes within the outer housing.
NASA Astrophysics Data System (ADS)
Ahrns, Johannes; Bartak, Rico; Grischek, Thomas; Pörschke, Richard
2017-11-01
In subsurface iron removal (SIR), oxygen-enriched water is injected into an aquifer to create a reaction zone. Aside from the hydraulic properties of the aquifer, groundwater quality often varies with depth so that in vertical wells the dissolved oxygen distribution (reaction zone) may not correspond to the dissolved iron concentration which may result in a lower efficiency coefficient. Therefore, measures to hydraulically optimize the formation of the reaction zone through a non-conventional injection were investigated. A high-resolution groundwater flow model was calibrated based on tracer and pump tests and used to plan the optimized injection for a SIR-pilot well with two screen segments. An optimized injection appears to be possible through the inactivation of well screen sections using packers. A doubling of the efficiency coefficient in comparison to a conventional injection was predicted when a packer, which remains evacuated inside the well while pumping, was used to seal 4/5 of the upper well screen length during injection. This scenario was used to plan the operating regime for a SIR field test, which is presented in Part 2.
A strategy for low cost development of incremental oil in legacy reservoirs
Attanasi, E.D.
2016-01-01
The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.
Field experiment with liquid manure and enhanced biochar
NASA Astrophysics Data System (ADS)
Dunst, Gerald
2017-04-01
Field experiments with low amounts of various liquid manure enhanced biochars. In 2016 a new machine was developed to inject liquid biochar based fertilizer directly into the crop root zone. A large-scale field experiment with corn and oil seed pumpkin was set-up on 42 hectares on 15 different fields in the south East of Austria. Three treatments were compared: (1) surface spreading of liquid manure as control (common practice), (2) 20 cm deep root zone injection with same amount of liquid manure, and (3) 20 cm deep root zone injection with same amount of liquid manure mixed with 1 to 2 tons of various nutrient enhanced biochars. The biochar were quenched with the liquid phase from a separated digestate from a biogas plant (feedstock: cow manure). From May to October nitrate and ammonium content was analyzed monthly from 0-30cm and 30-60cm soil horizons. At the end of the growing season the yield was determined. The root zone injection of the liquid manure reduced the nitrate content during the first two months at 13-16% compared to the control. When the liquid manure was blended with biochar, Nitrate soil content was lowest (reduction 40-47%). On average the root zone injection of manure-biochar increased the yield by 7% compared to the surface applied control and 3% compared to the root zone injected manure without biochar. The results shows, that biochar is able to reduce the Nitrate load in soils and increase the yield of corn at the same time. The nutrient efficiency of organic liquid fertilizers can be increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio
The Northwest Geysers Enhanced Geothermal System (EGS) demonstration project aims to create an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (280–400 °C) Zone (HTZ) located under the conventional (240 °C) geothermal steam reservoir at The Geysers geothermal field in California. Here we report that , the results of coupled thermal, hydraulic, and mechanical (THM) analyses made using a model developed as part of the pre-stimulation phase of the EGS demonstration project is presented. The model simulations were conducted in order to investigate injection strategies and the resulting effects of cold-watermore » injection upon the EGS system; in particular to predict the extent of the stimulation zone for a given injection schedule. The actual injection began on October 6, 2011, and in this paper a comparison of pre-stimulation model predictions with micro-earthquake (MEQ) monitoring data over the first few months of a one-year injection program is presented. The results show that, by using a calibrated THM model based on historic injection and MEQ data at a nearby well, the predicted extent of the stimulation zone (defined as a zone of high MEQ density around the injection well) compares well with observed seismicity. The modeling indicates that the MEQ events are related to shear reactivation of preexisting fractures, which is triggered by the combined effects of injection-induced cooling around the injection well and small changes in steam pressure as far as half a kilometer away from the injection well. Pressure-monitoring data at adjacent wells and satellite-based ground-surface deformation data were also used to validate and further calibrate reservoir-scale hydraulic and mechanical model properties. The pressure signature monitored from the start of the injection was particularly useful for a precise back-calculation of reservoir porosity. Ultimately, the first few months of reservoir pressure and surface deformation data were useful for estimating the reservoir-rock permeability and elastic modulus. Finally, although the extent of the calculated stimulation zone matches the field observations over the first few months of injection, the observed surface deformations and MEQ evolution showed more heterogeneous behavior as a result of more complex geology, including minor faults and fracture zones that are important for consideration in the analysis of energy production and the long-term evolution of the EGS system.« less
Rutqvist, Jonny; Dobson, Patrick F.; Garcia, Julio; ...
2013-10-17
The Northwest Geysers Enhanced Geothermal System (EGS) demonstration project aims to create an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (280–400 °C) Zone (HTZ) located under the conventional (240 °C) geothermal steam reservoir at The Geysers geothermal field in California. Here we report that , the results of coupled thermal, hydraulic, and mechanical (THM) analyses made using a model developed as part of the pre-stimulation phase of the EGS demonstration project is presented. The model simulations were conducted in order to investigate injection strategies and the resulting effects of cold-watermore » injection upon the EGS system; in particular to predict the extent of the stimulation zone for a given injection schedule. The actual injection began on October 6, 2011, and in this paper a comparison of pre-stimulation model predictions with micro-earthquake (MEQ) monitoring data over the first few months of a one-year injection program is presented. The results show that, by using a calibrated THM model based on historic injection and MEQ data at a nearby well, the predicted extent of the stimulation zone (defined as a zone of high MEQ density around the injection well) compares well with observed seismicity. The modeling indicates that the MEQ events are related to shear reactivation of preexisting fractures, which is triggered by the combined effects of injection-induced cooling around the injection well and small changes in steam pressure as far as half a kilometer away from the injection well. Pressure-monitoring data at adjacent wells and satellite-based ground-surface deformation data were also used to validate and further calibrate reservoir-scale hydraulic and mechanical model properties. The pressure signature monitored from the start of the injection was particularly useful for a precise back-calculation of reservoir porosity. Ultimately, the first few months of reservoir pressure and surface deformation data were useful for estimating the reservoir-rock permeability and elastic modulus. Finally, although the extent of the calculated stimulation zone matches the field observations over the first few months of injection, the observed surface deformations and MEQ evolution showed more heterogeneous behavior as a result of more complex geology, including minor faults and fracture zones that are important for consideration in the analysis of energy production and the long-term evolution of the EGS system.« less
Hearn, Elizabeth H.; Koltermann, Christine; Rubinstein, Justin R.
2018-01-01
We have developed groundwater flow models to explore the possible relationship between wastewater injection and the 12 November 2014 Mw 4.8 Milan, Kansas earthquake. We calculate pore pressure increases in the uppermost crust using a suite of models in which hydraulic properties of the Arbuckle Formation and the Milan earthquake fault zone, the Milan earthquake hypocenter depth, and fault zone geometry are varied. Given pre‐earthquake injection volumes and reasonable hydrogeologic properties, significantly increasing pore pressure at the Milan hypocenter requires that most flow occur through a conductive channel (i.e., the lower Arbuckle and the fault zone) rather than a conductive 3‐D volume. For a range of reasonable lower Arbuckle and fault zone hydraulic parameters, the modeled pore pressure increase at the Milan hypocenter exceeds a minimum triggering threshold of 0.01 MPa at the time of the earthquake. Critical factors include injection into the base of the Arbuckle Formation and proximity of the injection point to a narrow fault damage zone or conductive fracture in the pre‐Cambrian basement with a hydraulic diffusivity of about 3–30 m2/s. The maximum pore pressure increase we obtain at the Milan hypocenter before the earthquake is 0.06 MPa. This suggests that the Milan earthquake occurred on a fault segment that was critically stressed prior to significant wastewater injection in the area. Given continued wastewater injection into the upper Arbuckle in the Milan region, assessment of the middle Arbuckle as a hydraulic barrier remains an important research priority.
NASA Astrophysics Data System (ADS)
Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.
2016-12-01
Delivery of nutrient to and establish a slow release carbon source in the vadose zone and capillary fringe zone is essential for setting up of a long-lasting bioremediation of contaminations in those zones. Conventional solution-based injection and infiltration approaches are facing challenges to achieve the delivery and remedial goals. Aqueous silica suspensions undergo a delayed gelation process under favorite geochemical conditions. The delay in gelation provides a time window for the injection of the suspension into the subsurface; and the gelation of the amendment-silica suspension enables the amendment-laden gel to stay in the target zone and slowly release the constituents for contaminant remediation. This approach can potentially be applied to deliver bio-nutrients to the vadose zone and capillary fringe zone for enhanced bioremediation and achieve remedial goals. This research was conducted to demonstrate delayed gelation of colloidal silica suspensions when carbon sources were added and to prove the gelation occurs in sediments under vadose conditions. Sodium lactate, vegetable oil, ethanol, and molasses were tested as the examples of carbon source (or nutrient) amendments. The rheological properties of the silica suspensions during the gelation were characterized. The influence of silica, salinity, nutrient concentrations, and the type of nutrients was studied. The kinetics of nutrient release from silica-nutrient gel was quantified using molasses as the example, and the influence of suspension gelation time was evaluated. The injection behavior of the suspensions was investigated by monitoring their viscosity changes and the injection pressures when the suspensions were delivered into sediment columns.
In Situ Thermal Remediation of DNAPL Source Zones
2011-12-01
electrode locations, the red Xs are injection and extraction .......... 20 Figure 3. 3. Photograph showing detail of the visualization tank...tank. The green circles are thermocouple locations, the blue squares are electrode locations, the red Xs are injection and extraction...through that zone. As water continues to move into that zone and outgas bubbles, the bubbles will move upward. In general terms, it has been
Vasconcelos, Barbara Cristina Baldez; Vieira, Juliana Almeida; Silva, Geane Oliveira; Fernandes, Taiany Nogueira; Rocha, Luciano Chaves; Viana, André Pereira; Serique, Cássio Diego Sá; Filho, Carlos Santos; Bringel, Raissa Aires Ribeiro; Teixeira, Francisco Fernando Dacier Lobato; Ferreira, Milene Silveira; Casseb, Samir Mansour Moraes; Carvalho, Valéria Lima; de Melo, Karla Fabiane Lopes; de Castro, Paulo Henrique Gomes; Araújo, Sanderson Corrêa; Diniz, José Antonio Picanço; Demachki, Samia; Anaissi, Ana Karyssa Mendes; Sosthenes, Marcia Consentino Kronka; Vasconcelos, Pedro Fernando da Costa; Anthony, Daniel Clive; Diniz, Cristovam Wanderley Picanço; Diniz, Daniel Guerreiro
2016-02-01
Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24 h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFα. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFα-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important. © 2015 Japanese Society of Neuropathology.
Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - December 1976
Pascale, Charles A.; Martin, J.B.
1977-01-01
Hydraulic and chemical data were collected through a monitoring program conducted by the U.S. Geological Survey at an industrial liquid-waste injection site 6 mi southwest of Milton, Fla., in Santa Rosa County. The injection system is described. Data include injection rates, volumes, and pressures; water-level data at three monitor wells and a standby injection well, and field and laboratory analyses of water samples from four wells. Hydraulic and geochemical effects of the waste-injection system at the plant as of December 31, 1976, have been detected only in the injection zone, the lower limestone of the Floridan aquifer. Increased pressures are evident at the three wells used to monitor the injection zone. Geochemical changes have been noted only at the deep-test monitor well closest to the injection well. (Woodard-USGS)
Hickey, J.J.
1984-01-01
The city of St. Petersburg has been testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. Treated sweage that had a mean chloride concentration of 170 milligrams per liter (mg/l) was injected through a single well for 12 months at a mean rate of 4. 7 multiplied by 10**5 cubic feet per day (ft**3/d). The volume of water injected during the year was 1. 7 multiplied by 10**8 cubic feet. Pressure buildup at the end of one year ranged from less than 0. 1 to as much as 2. 4 pounds per square inch (lb/in**2) in observation wells at the site. Pressure buildup in wells open to the upper part of the injection zone was related to buoyant lift acting on the mixed water in the injection zone in addition to subsurface injection through the injection well. Calculations of the vertical component of pore velocity in the semiconfining bed underlying the shallowest permeable zone of the Floridan aquifer indicate upward movement of native water.
2014-10-01
enhanced amendments delivery process, a non-toxic biodegradable polymer, such as xanthan gum, is added to the injection solution to form a non- Newtonian...Once injection stops, the injected fluid viscosity increases and creates a more stable zone for biodegradation reactions because the amendment-laden...electron acceptors and biodegradation of the shear-thinning agent. • Determine the cost factors for applying the STF enhanced delivery technology
Persulfate injection into a gasoline source zone
NASA Astrophysics Data System (ADS)
Sra, Kanwartej S.; Thomson, Neil R.; Barker, Jim F.
2013-07-01
One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O82 -, SO42 -, Na+, dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for > 10 months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in M indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M increased by > 100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone.
Monitoring regional effects of high pressure injection of wastewater in a limestone aquifer
Faulkner, Glen L.; Pascale, Charles A.
1975-01-01
More than 10 billion gallons (38 × 106 m3) of acid industrial liquid waste has been injected in about 11 years under high pressure into a saline-water-filled part of a limestone aquifer of low transmissivity between 1,400 and 1,700 feet (430 and 520 m) below land surface near Pensacola, Florida. A similar waste disposal system is planned for the same zone at a site about 8.5 miles (13.7 km) to the east. The injection zone is the lower limestone of the Floridan aquifer. The lower limestone is overlain by a confining layer of plastic clay about 220 feet (67 m) thick at the active injection site and underlain by another confining layer of shale and clay. The upper confining layer is overlain by the upper limestone of the Floridan aquifer.The active injection system consists of two injection wells about a quarter of a mile (0.4 km) apart and three monitor wells. Two of the monitor wells (deep monitors) are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations about 1.5 miles (2.4 km) south and 1.9 miles (3.1 km) north of the center of the injection site. The third well (shallow monitor), used to observe any effects in the upper limestone, is about 100 feet (30 m) from one of the injection wells. Since 1972 the injection zone has also been monitored at a test well at the planned new injection site. Three more monitor wells in the injection zone were activated in early 1974 at sites 17 miles (27 km) northeast, 22 miles (35 km) east and 33 miles (53 km) northeast of the injection site. The six deep monitors provide a system for evaluating the regional effects of injecting wastes. No change in pressure or water quality due to injection was, by mid-1974, evident in the upper limestone at the injection site, but static pressures in the lower limestone at the site had increased 8 fold since injection began in 1963. Chemical analyses indicated probable arrival of the diluted waste at the south monitor well in 1973. By mid-1974 waste evidently had not reached the north monitor well.Calculations indicate that by mid-1974 pressure effects from waste injection extended radially more than 40 miles (64 km) from the injection site. By mid-1974 pressure effects of injection were evident from water-level measurements made at the five deep monitor wells nearest the active injection site. No effects were recognized at the well 33 miles (53 km) away. Less than 20 miles (32 km) northeast of the active injection site, the lower limestone contains fresh water. Changes in the pressure regime due to injection indicate a tendency for northeastward movement of the fresh-water/salt-water interface in the lower limestone.
NASA Technical Reports Server (NTRS)
Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel
2002-01-01
The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36 fuel injectors and fuel-air mixers that replaced two fuel injectors in a conventional dual-annular combustor. During tests, inlet temperatures were up to 870 K and inlet pressures were up to 5400 kPa. A correlation was developed that related the NOx emissions with the inlet temperature, inlet pressure, fuel-air ratio, and pressure drop. At low-power conditions, fuel staging was used so that high combustion efficiency was obtained with only one-fourth of the fuel injectors flowing. The test facility had optical access, and visual images showed the flame to be very short, approximately 25 mm long.
Injectable barriers for waste isolation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persoff, P.; Finsterle, S.; Moridis, G.J.
In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture themore » formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.« less
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Anderson, Robert C.; Tedder, Sarah A.; Tacina, Kathleen M.
2015-01-01
This paper presents results obtained during testing in optically-accessible, JP8-fueled, flame tube combustors using swirl-venturi lean direct injection (LDI) research hardware. The baseline LDI geometry has 9 fuel/air mixers arranged in a 3 x 3 array within a square chamber. 2-D results from this 9-element array are compared to results obtained in a cylindrical combustor using a 7-element array and a single element. In each case, the baseline element size remains the same. The effect of air swirler angle, and element arrangement on the presence of a central recirculation zone are presented. Only the highest swirl number air swirler produced a central recirculation zone for the single element swirl-venturi LDI and the 9-element LDI, but that same swirler did not produce a central recirculation zone for the 7-element LDI, possibly because of strong interactions due to element spacing within the array.
NASA Astrophysics Data System (ADS)
Kurz, Marie J.; Schmidt, Christian; Blaen, Phillip; Knapp, Julia L. A.; Drummond, Jennifer D.; Martí, Eugenia; Zarnetske, Jay P.; Ward, Adam S.; Krause, Stefan
2016-04-01
In-stream transient storage zones, including the hyporheic zone and vegetation beds, can be hotspots of biogeochemical processing in streams, enhancing ecosystem functions such as metabolism and nutrient uptake. The spatio-temporal dynamics and reactivity of these storage zones are influenced by multiple factors, including channel geomorphology, substrate composition and hydrology, and by anthropogenic modifications to flow regimes and nutrient loads. Tracer injections are a commonly employed method to evaluate solute transport and transient storage in streams; however, reactive tracers are needed to differentiate between metabolically active and inactive transient storage zones. The reactive stream tracer resazurin (Raz), a weakly fluorescent dye which irreversibly transforms to resorufin (Rru) under mildly reducing conditions, provides a proxy for aerobic respiration and an estimate of the metabolic activity associated with transient storage zones. Across a range of lotic ecosystems, we try to assess the influence of stream channel hydro-morphology, morphologic heterogeneity, and substrate type on reach (103 m) and sub-reach (102 m) scale transient storage, respiration, and nutrient uptake. To do so, we coupled injections of Raz and conservative tracers (uranine and/or salt) at each study site. The study sites included: vegetated mesocosms controlled for water depth; vegetated and un-vegetated sediment-filled mesocosms fed by waste-water effluent; a contrasting sand- vs. gravel-bedded lowland stream (Q = 0.08 m3/s); and a series of upland streams with varying size (Q = 0.1 - 1.5 m3/s) and prevalence of morphologic features. Continuous time-series of tracer concentrations were recorded using in-situ fluorometers and EC loggers. At the stream sites, time-series were recorded at multiple downstream locations in order to resolve sub-reach dynamics. Analyses yielded highly variable transport metrics and Raz-Rru transformation between study sites and between sub-reaches within stream sites. Higher Raz-Rru transformation rates were typically observed in smaller streams, in sub-reaches with higher prevalence of morphologic features known to promote hyporheic exchange, and in mesocosms with higher water depth, vegetation density and retention time. However, relationships between transformation rates and common metrics of transient storage were not consistent among study cases, indicating the existence of yet unrealized complexities in the relationships between water and solute transport and metabolism. Further insights were also gained related to the utility of Raz and improved tracer test practices.
40 CFR 146.86 - Injection well construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stages. (4) Circulation of cement may be accomplished by staging. The Director may approve an alternative... injection tubing and long string casing. (b) Casing and cementing of Class VI wells. (1) Casing and cement... confining zone(s); (viii) Type or grade of cement and cement additives; and (ix) Quantity, chemical...
NASA Astrophysics Data System (ADS)
Kim, Jongchan; Archer, Rosalind
2017-04-01
In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).
Lee, Jung-Ju; Lee, Sang Kun; Choi, Jang Wuk; Kim, Dong-Wook; Park, Kyung Il; Kim, Bom Sahn; Kang, Hyejin; Lee, Dong Soo; Lee, Seo-Young; Kim, Sung Hun; Chung, Chun Kee; Nam, Hyeon Woo; Kim, Kwang Ki
2009-12-01
Ictal single-photon emission computed tomography (SPECT) is a valuable method for localizing the ictal onset zone in the presurgical evaluation of patients with intractable epilepsy. Conventional methods used to localize the ictal onset zone have problems with time lag from seizure onset to injection. To evaluate the clinical usefulness of a method that we developed, which involves an attachable automated injector (AAI), in reducing time lag and improving the ability to localize the zone of seizure onset. Patients admitted to the epilepsy monitoring unit (EMU) between January 1, 2003, and June 30, 2008, were included. The definition of ictal onset zone was made by comprehensive review of medical records, magnetic resonance imaging (MRI), data from video electroencephalography (EEG) monitoring, and invasive EEG monitoring if available. We comprehensively evaluated the time lag to injection and the image patterns of ictal SPECT using traditional visual analysis, statistical parametric mapping-assisted, and subtraction ictal SPECT coregistered to an MRI-assisted means of analysis. Image patterns were classified as localizing, lateralizing, and nonlateralizing. The whole number of patients was 99: 48 in the conventional group and 51 in the AAI group. The mean (SD) delay time to injection from seizure onset was 12.4+/-12.0 s in the group injected by our AAI method and 40.4+/-26.3 s in the group injected by the conventional method (P=0.000). The mean delay time to injection from seizure detection was 3.2+/-2.5 s in the group injected by the AAI method and 21.4+/-9.7 s in the group injected by the conventional method (P=0.000). The AAI method was superior to the conventional method in localizing the area of seizure onset (36 out of 51 with AAI method vs. 21 out of 48 with conventional method, P=0.009), especially in non-temporal lobe epilepsy (non-TLE) patients (17 out of 27 with AAI method vs. 3 out of 13 with conventional method, P=0.041), and in lateralizing the seizure onset hemisphere (47 out of 51 with AAI method vs. 33 out of 48 with conventional method, P=0.004). The AAI method was superior to the conventional method in reducing the time lag of tracer injection and in localizing and lateralizing the ictal onset zone, especially in patients with non-TLE.
NASA Astrophysics Data System (ADS)
Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.
2010-12-01
In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.
Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun
2012-01-03
We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold. © 2011 American Chemical Society
Newberry Volcano EGS Demonstration: Plans and Results
NASA Astrophysics Data System (ADS)
Cladouhos, T. T.; Petty, S.; Moore, M.; Nordin, Y.; De Rocher, T.; Callahan, O.; Perry, D.
2012-12-01
Engineered or Enhanced Geothermal Systems (EGS) have the potential to expand the availability of clean renewable, baseload energy beyond conventional geothermal areas. An EGS reservoir is created by injecting large volumes of cold water into hot, low-permeability rock to induce seismic slip and enhance the permeability of pre-existing fractures. To date, EGS demonstrations have been limited to a single stimulation per well and sub-economic production rates because a method to isolate the first fracture in a hot well has been lacking. In addition, some recent EGS demonstrations have been negatively impacted by induced seismicity felt by area residents. The Newberry Volcano Enhanced Geothermal System (EGS) Demonstration in central Oregon, funded in part by DOE Grant DE-EE0002777, is now in the field operations phase after two years of planning. The stimulation well, NWG 55-29 drilled in 2008, has very little natural permeability but is very hot, with a bottom hole temperature over 300°C. The Demonstration will test recent technological advances designed to reduce the cost of power generated by EGS and the risk of felt seismicity. First, the stimulation pumps used were designed to run for weeks with little downtime and deliver large volumes of water (1000 gpm, 63 l/s) at relatively low well-head pressure (max. 3000 psi, 20 MPa). This pump specification is based on the rock mechanics-based model of hydroshearing, reduction of effective normal stress and friction on existing fractures, which promotes shear slip and enhances permeability. In contrast, pumps used in hydrofracking, creation of permeability through tensile failure of the rock, operate for shorter periods at much lower volumes and higher pressures. Second, multiple zone stimulation in the open-hole sections of EGS wells would significantly reduce the cost of EGS power production by increasing the productivity of each well. To facilitate multiple zone stimulation, AltaRock Energy has developed a suite of thermo-degradable zonal isolation materials (TZIMs) to temporarily seal off fractures in a geothermal well, allowing for stimulation of secondary and tertiary fracture zones, thus optimizing the injection/production profile of the entire well. TZIMs with ranges of thermal degradation properties have been extensively tested in the lab and two conventional geothermal fields. At Newberry, TZIMs that are stable at 200°C and degrade quickly at 300°C will be used. Third, the project follows a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. During stimulation, 16 seismic stations, installed within 4 km of the target stimulation zone, monitor microseismicity and growth of the EGS reservoir. Seismicity occurring in undesirable locations or with ground accelerations or magnitudes above agreed thresholds, would result in operational changes to prevent unwanted seismicity, such as the use of TZIMs or lower well head pressures. Results of the Demonstration, shared with the public, geothermal and scientific communities include the real-time microseismicity, injection pressures and flow rates, and final injectivity of the stimulated well.
Persulfate injection into a gasoline source zone.
Sra, Kanwartej S; Thomson, Neil R; Barker, Jim F
2013-07-01
One pore volume of unactivated sodium persulfate was delivered into an emplaced gasoline residual source zone at CFB Borden. Concentrations of inorganic species (S2O8(2-), SO4(2-), Na(+), dissolved inorganic carbon (DIC)) and selected gasoline compounds (benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene) were monitored across a transect equipped with 90 multilevel sampling points for >10months post-injection. Mass loading (M˙) of compounds constructed from the transect data was used for assessment purposes. Breakthrough of inorganic species was observed when the injection slug crossed the monitoring transect. An increase in [Formula: see text] indicated persulfate consumption during oxidation of gasoline compounds or degradation due to the interaction with aquifer materials. M˙DIC increased by >100% suggesting some mineralization of gasoline compounds during treatment. Mass loading for all the monitored gasoline compounds reduced by 46 to 86% as the inorganic slug crossed the monitoring transect. The cumulative mass discharge across the monitoring transect was 19 to 58% lower than that expected without persulfate injection. After the inorganic injection slug was flushed from the source zone a partial rebound (40 to 80% of baseline levels) of mass discharge of the monitored gasoline compounds was observed. The ensemble of data collected provides insight into the fate and transport of the injected persulfate solution, and the accompanying treatment of a gasoline the source zone. Copyright © 2013 Elsevier B.V. All rights reserved.
Vroblesky, Don A.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Casey, Clifton C.
2010-01-01
The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated the hydrology and groundwater chemistry in the vicinity of an emulsified vegetable-oil injection zone at Solid Waste Management Unit (SWMU) 17, Naval Weapons Station Charleston, North Charleston, South Carolina. In May 2004, Solutions-IES initiated a Phase-I pilot-scale treatability study at SWMU17 involving the injection of an edible oil emulsion into the aquifer near wells 17PS-01, 17PS-02, and 17PS-03 to treat chlorinated solvents. The Phase-I injection of emulsified vegetable oil resulted in dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE), but the dechlorination activity appeared to stall at cDCE, with little further dechlorination of cDCE to vinyl chloride (VC) or to ethene. The purpose of the present investigation was to examine the groundwater hydrology and chemistry in and near the injection zone to gain a better understanding of the apparent remediation stall. It is unlikely that the remediation stall was due to the lack of an appropriate microbial community because groundwater samples showed the presence of Dehalococcoides species (sp.) and suitable enyzmes. The probable causes of the stall were heterogeneous distribution of the injectate and development of low-pH conditions in the injection area. Because groundwater pH values in the injection area were below the range considered optimum for dechlorination activity, a series of tests was done to examine the effect on dechlorination of increasing the pH within well 17PS-02. During and following the in-well pH-adjustment tests, VC concentrations gradually increased in some wells in the injection zone that were not part of the in-well pH-adjustment tests. These data possibly reflect a gradual microbial acclimation to the low-pH conditions produced by the injection. In contrast, a distinct increase in VC concentration was observed in well 17PS-02 following the in-well pH increase. Adjustment of the pH to near-neutral values in well 17PS-02 may have made that well relatively favorable to VC production compared with much of the rest of the injection zone, possibly accounting for acceleration of VC production at that well. Following a Phase-II injection in which Solutions-IES, Inc., injected pH-buffered emulsified vegetable oil with an improved efficiency injection approach, 1,1-dichloroethene, TCE, and cDCE rapidly decreased in concentration and are now (2009) undetectable in the injection zone, with the exception of a low concentration (43 micrograms per liter, August 2009) of cDCE in well 17PS-01. In August 2009, VC was still present in groundwater at the test wells in concentrations ranging from 150 to 640 micrograms per liter. The Phase-II injection, however, appears to have locally decreased aquifer permeability, possibly resulting in movement of contamination around, rather than through, the treatment area.
LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.
Reducing ultrafine particle emissions using air injection in wood-burning cookstoves
Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; ...
2016-06-27
In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less
Reducing ultrafine particle emissions using air injection in wood-burning cookstoves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.
In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less
Field characterization of elastic properties across a fault zone reactivated by fluid injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny
In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less
Field characterization of elastic properties across a fault zone reactivated by fluid injection
Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; ...
2017-08-12
In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less
Disposal of liquid wastes by injection underground--Neither myth nor millennium
Piper, Arthur M.
1969-01-01
Injecting liquid wastes deep underground is an attractive but not necessarily practical means for disposing of them. For decades, impressive volumes of unwanted oil-field brine have been injected, currently about 10,000 acre-feet yearly. Recently, liquid industrial wastes are being injected in ever-increasing quantity. Dimensions of industrial injection wells range widely but the approximate medians are: depth, 2,660 feet; thickness of injection zone, 185 feet; injection rate, 135 gallons per minute; wellhead injection pressure, 185 pounds per square inch. Effects of deep injection are complex and not all are understood clearly. In a responsible society, injection cannot be allowed to put wastes out of mind. Injection is no more than storage--for all time in the case of the most intractable wastes--in underground space of which little is attainable in some areas and which is exhaustible in most areas. Liquid wastes range widely in character and concentration-some are incompatible one with another or with materials of the prospective injection zone; some which are reactive or chemically unstable would require pretreatment or could not be injected. Standards by which to categorize the wastes are urgently desirable. To the end that injection may be planned effectively and administered in orderly fashion, there is proposed an immediate and comprehensive canvass of all the United States to outline injection provinces and zones according to their capacities to accept waste. Much of the information needed to this end is at hand. Such a canvass would consider (1) natural zone, of groundwater circulation, from rapid to stagnant, (2) regional hydrodynamics, (3) safe injection pressures, and (4) geochemical aspects. In regard to safe pressure, definitive criteria would be sought by which to avoid recurrence of earthquake swarms such as seem to have been triggered by injection at the Rocky Mountain Arsenal well near Denver, Colo. Three of the 50 States--Missouri, .Ohio, and Texas-have statutes specifically to regulate injection of industrial wastes. Other States impose widely diverse constraints under unlike administrative authorities. Few, if any, State agencies currently have the staff skills, centralized authority, and financial resources to assure rights of the general public to be spared harm from, and to reap the benefit of accrued experience with, deep injection. Some new, fully competent institutional arrangement appears to be essential, under a unified policy. As required, such an institution might have en echelon components, respectively having nationwide, single State or major province, subprovince, or local jurisdiction.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... from the injection zone for as long as the waste remains hazardous. This final decision allows the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-18
... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... from the injection zone for as long as the waste remains hazardous. This final decision allows the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... from the injection zone for as long as the waste remains hazardous. This final decision allows the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Don L.; Koederitz, Leonard F.; Laudon, Robert C.
The Underground Injection Control Regulations promulgated in 1980, under the Safe Drinking Water Act of 1974, require Area-of-Review (AOR) studies be conducted as part of the permitting process for newly drilled or converted Class II injection wells. Existing Class II injection wells operating at the time regulations became effective were excluded from the AOR requirement. The AOR is the area surrounding an injection well or wells defined by either the radial distance within which pressure in the injection zone may cause migration of the injection and/or formation fluid into an underground source of drinking water (USDW) or defined by amore » fixed radius of not less than one-fourth mile. In the method where injection pressure is used to define the AOR radial distance, the AOR is also known as the ''zone of endangering influence.''« less
Method of operating a two-stage coal gasifier
Tanca, Michael C.
1982-01-01
A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.
Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus
2011-04-23
A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D columnmore » and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.« less
NASA Astrophysics Data System (ADS)
Menegon, Luca; Pennacchioni, Giorgio; Harris, Katherine; Wood, Elliot
2014-05-01
Understanding the mechanisms of initiation and growth of shear zones under lower crustal conditions is of fundamental importance when assessing lithosphere rheology and strength. In this study we investigate brittle-ductile shear zones developed under lower crustal conditions in anorthosites from Nusfjord, Lofoten (northern Norway). Steep ductile shear zones trend E-W to ESE-WSW and have a stretching lineation plunging steeply to the SSW or SSE. The shear sense is normal (south block down to the south) as indicated by SC and SC' fabrics and sigmoidal foliations. The shear zone show a mylonitic to ultramylonitic fabric, sharp boundaries to the host anorthosites, and abundant anastomosing dark fine-grained layers along the main foliation. The fine-grained layers localized much of the strain. Relatively lower strain domains within or adjacent to shear zones indicate that the fine dark bands of mylonites represent transposed pseudotachylyte which still locally preserve the pristine structures such as chilled margins, breccia textures with angular clasts of the host rock and injection veins; intersecting veins of pseudotachylyte record multiple stages of seismic slip. The orientation of injection veins and marker offset along the most preserved pseudotachylyte fault veins indicate approximately a sinistral strike slip kinematic during faulting event responsible for the friction-induced melting. These observations indicate that ductile shear zones exploited pre-existing brittle fault zones including a network of pseudotachylytes, and that the fine-grained "ultramylonites" derive from former fine-grained pseudotachylytes. The pseudotachylyte microstructure is dominated by plagioclase microlites dispersed in a groundmass of fine-grained clinopyroxene. Clinopyroxene recrystallizes in the damage zone flanking the pseudotachylytes, indicating high metamorphic grade during pseudotachylyte formation. Small idioblastic or cauliflower garnet are scattered through the matrix and overgrow the plagioclase porphyroclasts; in some cases small garnets nucleated along thin microfractures discordant to the pseudotachylyte vein or along the pseudotachylyte boundary. In the host rock garnet form thin continuous coronitic rims surrounding biotite and opaque and discontinuous one around pyroxene. The mineral assemblage of ultramlylonites is also consistent with high grade metamorphic conditions (recrystallized plagioclase and clinopyroxene, biotite and amphibole). Nucleation of ductile shear zones is dictated by the availability of pseudotachylyte veins; remarkably, lithological boundaries have not been exploited by ductile shear zones. Brittle deformation and extreme grain size reduction are likely to be necessary conditions in order to promote ductile strain localization in dry rocks in the lower crust.
NASA Astrophysics Data System (ADS)
Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.
2016-12-01
Although it has long been known that anthropogenic fluid injections can induce earthquakes, the mechanisms involved are still poorly understood and our ability to assess the seismic hazard associated to the production of geothermal energy or unconventional hydrocarbon remains limited. Here we present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). A dense network of sensors recorded fluid pressure, flow-rate, deformation and seismic activity. Injections followed an extended leak-off test protocol. Failure in the host rock was observed for a pressure of 4.4 MPa associated to a strike-slip-to-reverse reactivation of a pre-existing fracture. Magnitude -4.2 to -3.8 seismic events were located in the fault zone 3.5-to->10m away from the injection showing focal mechanisms in reasonable agreement with a strike-slip reactivation of the fault structures. We first used fully coupled hydro-mechanical numerical modeling to quantify the injection source parameters (state of stress, size of the rupture patch and size of the pressurized patch). We applied an injection loading protocol characterized by an imposed flow rate-vs-time history according to the volume of fluid injected in-situ, to match calculated and measured pressure and displacement variations at the injection source. We then used a larger model including the fault zone to discuss how predominant the effects of stress transfer mechanisms causing a purely mechanical fault activation can be compared to the effects of effective stress variations associated to fluid propagation in the fault structures. Preliminary results are that calculated slipping patches are much higher than the one estimated from seismicity, respectively 0.3m and <10-6m, and that the dimensions of the pressurized zone hardly matches with the distance of the earthquakes.
A Phase I/II Study of Intratumoral Injection of SD-101
2017-09-04
Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Splenic Marginal Zone Lymphoma
Annular core liquid-salt cooled reactor with multiple fuel and blanket zones
Peterson, Per F.
2013-05-14
A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.
NASA Astrophysics Data System (ADS)
Chen, F.; Wiese, B.; Zhou, Q.; Birkholzer, J. T.; Kowalsky, M. B.
2013-12-01
The Stuttgart formation used for ongoing CO2 injection at the Ketzin pilot test site in Germany is highly heterogeneous in nature. The site characterization data, including 3D seismic amplitude images, the regional geology data, and the core measurements and geophysical logs of the wells show the formation is composed of permeable sandstone channels of varying thickness and length embedded in less permeable mudstones. Most of the sandstone channels are located in the upper 10-15 m of the formation, with only a few sparsely distributed sandstone channels in the bottom 70-m layer. Three-dimensional seismic data help to identify the large-scale facies distribution patterns in the Stuttgart formation, but are unable to resolve internal structures at a smaller scale (e.g. ~100 m). Heterogeneity has a large effect on the pressure propagation measured during a suite of pumping tests conducted in 2007-2008 and also impacts strongly the CO2 arrival times observed during the ongoing CO2 injection experiment. The arrival time of the CO2 plume at the observation well Ktzi 202was 12.5 times greater than at the other observation well Ktzi 200, even though the distance to the injection well is only 2.2 times farther than that of Ktzi 200. To characterize subsurface properties and help predict the behavior of injected CO2 in subsequent experiments, we develop a TOUGH2/EOS9 model for modeling the hydraulic pumping tests and use the inverse modeling tool iTOUGH2 for automatic model calibration. The model domain is parameterized using multiple zones, with each zone assumed to have uniform rock properties. The calibrated model produces system responses that are in good agreement with the measured pressure drawdown data, indicating that it captures the essential flow processes occurring during the pumping tests. The estimated permeability distribution shows that the heterogeneity is significant and that the study site is situated a semi-closed system with one or two sides open to permeable regions and the others effectively blocked by low-permeability regions. A low-permeability zone appears at the northern boundary of the model. Of the three wells that are analyzed, permeable channels are found to connect Ktzi 202 with Ktzi 200/Ktzi 201, while a low-permeability zone is observed between Ktzi 201 and Ktzi 200. The calibrated results are consistent with the crosshole ERT data and can help explain the position of a CO2 plume, inferred from 3D seismic surveys in a subsequent CO2 injection experiment. Because the CO2 transport that occurs during a CO2 injection and the pressure propagation that occurs during pumping tests are sensitive to different scales of subsurface heterogeneity, direct application of a model calibrated from pumping test data is inappropriate for predicting CO2 arrival. However, by including a thin layer of highly permeable sandstone, we present a proof-of-concept model that produces CO2 arrival times comparable to those observed at the site.
ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE
The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...
Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.
Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2 are measurably different from the isotopic content of basalt, injection zone groundwater and for naturally occurring calcite. Final post-injection wireline geophysical logging results also indicate the presence of free-phase CO 2 at the top of the two injection interflow zones, with no vertical migration of CO 2 above the injection horizons. Furthermore, these findings are significant and demonstrate the feasibility of sequestering CO 2 in a basalt formation.« less
Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions
McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.; ...
2017-08-18
Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2 are measurably different from the isotopic content of basalt, injection zone groundwater and for naturally occurring calcite. Final post-injection wireline geophysical logging results also indicate the presence of free-phase CO 2 at the top of the two injection interflow zones, with no vertical migration of CO 2 above the injection horizons. Furthermore, these findings are significant and demonstrate the feasibility of sequestering CO 2 in a basalt formation.« less
36C1 measurements and the hydrology of an acid injection site
Vourvopoulos, G.; Brahana, J.V.; Nolte, E.; Korschinek, G.; Priller, A.; Dockhorn, B.
1990-01-01
In an area in western Tennessee (United States), an industrial firm is injecting acidic (pH = 0.1) iron chloride into permeable zones of carbonate rocks at depths ranging from 1000 to 2200 m below land surface. Overlying the injection zone at a depth of approximately 500 m below land surface is a regional fresh-water aquifer, the Knox aquifer. A study is currently underway to investigate whether the injection wells are hydraulically isolated from the fresh-water aquifer. Drilling of a test well that will reach a total depth of 2700 m has been initiated. The 36Cl content of 15 samples from the Knox aquifer, from monitor wells in the vicinity of the injection site, and from the test well have been analyzed. ?? 1990.
Klunder, Edgar B [Bethel Park, PA
2011-08-09
The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.
Particle acceleration model for the broad-band baseline spectrum of the Crab nebula
NASA Astrophysics Data System (ADS)
Fraschetti, F.; Pohl, M.
2017-11-01
We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.
Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl
NASA Astrophysics Data System (ADS)
Liao, Ying-Hao
This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO emissions. The elevated NO emissions are due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. The reaction zone structure, based on OH planar laser-induced fluorescence (PLIF) is broadly consistent with the observation of luminous flame structure for these types of flames. In many cases, the reaction zone exhibits discontinuities at the instantaneous flame tip in the early period of fuel injection. These discontinuities in the reaction zone likely result from the non-ignition of injected fuel, due to a relatively slower reaction rate in comparison with the mixing rate. The discontinuity in the OH zone is generally seen to diminish with increased swirl level. Statistics generated from the OH PLIF signals show that the reaction zone area generally increases with increased swirl level, consistent with a broader and more convoluted OH-zone structure for flames with swirl. The reaction zone area for swirled flames generally exhibits a higher degree of fluctuation, suggesting a relatively stronger impact of flow turbulence on the flame structure for flames with swirl.
NASA Astrophysics Data System (ADS)
Gihm, Yong Sik; Kwon, Chang Woo
2017-02-01
Multiple exposures of peperite within the Cretaceous Buan Volcanics, southwest Korea, have been examined in order to determine variations in their textural characteristics and to investigate their mode of formation. Along undulating boundaries between rhyolite (lava flow) and deformed host sediment expressed as a series of load and flame structures, exposures commonly contain two distinct types of peperite. Type-1 peperites are composed mostly of rounded juvenile clasts at their base and polyhedral juvenile clasts at their upper levels, interpreted to have formed via a two-stage process. Firstly, abrasion of juvenile clasts occurred after their fragmentation due to shear stress imparted by the overlying and still-moving lava flow, forming rounded juvenile clasts. Subsequent in situ quenching fragmentation of the lava flow produced clasts with platy to polyhedral shapes immediately after emplacement of the lava flow. Type-2 peperites laterally extend into the interior of featureless rhyolite as layers that decrease in thickness with increasing distance away from the flame zone. These layers exhibit horizontal textural variations, ranging from poorly sorted mixtures of ash- to block-sized angular juvenile clasts in the proximal zone, to closely packed polyhedral and tabular juvenile clasts with jigsaw-crack textures in the middle and distal zones. Type-2 peperite are inferred to have formed due to internal steam explosions that resulted from an expansion of heated pore water (leading to an increase in pore fluid pressure) that had been vertically injected into the interior of the rhyolite from the flame zone. The proximal zone, composed mainly of poorly sorted mixtures of juvenile clasts, represents the explosion sites. Juvenile clasts in the middle and distal zones are interpreted to have formed due to three separate processes: the development of fractures in the rhyolite during the internal steam explosions, injection of the host sediment through the fractures, and in situ quenching fragmentation. Deformation of the host sediment exerted an important control on peperite-forming processes, with the internal steam explosions suggested to have formed the closely packed, juvenile clasts with a jigsaw-crack texture rather than the clasts that are widely dispersed.
NASA Astrophysics Data System (ADS)
Ruth, D. C.; Costa Rodriguez, F.; Bouvet de Maisonneuve, C.; Calder, E. S.
2013-12-01
Melt inclusion compositions in crystals from many volcanic systems are notoriously variable and some times difficult to interpret. Their compositions can be a combination of rapid crystal growth, entrapment of local melt, and diffusive re-equilibration, among other processes. Additionally, chemical zoning in olivine records changing environmental conditions, most importantly temperature and magma composition. Many geochemical studies focus on either melt inclusion data or chemical zoning data to ascertain volcanic processes. Here we combine melt inclusion data with that of chemical zoning of the olivine host crystals from the 2008 violent Strombolian eruption of Llaima volcano, Chile, to obtain a more refined understanding of the processes related to crystal growth, melt inclusion formation, and magma dynamics. We investigated zoning characteristics in a suite of olivine crystals, created X-ray element maps (Al, Ca, Mg, P, Fe), and collected quantitative elemental abundances across chemical zones for detailed diffusion modeling. Melt inclusion compositions were collected via electron microprobe analysis and LA-ICPMS. We observe three types of zoning in the host olivine crystals: normal, reverse, and multiple zones with fluctuating Fo content. Reverse zoning was more common than the other types. Regardless of zoning character, multiple melt inclusions are present within a given olivine, often found near the crystal rim. For some of these melt inclusions, the olivine surrounding the melt inclusion was also zoned, often to a similar composition as the olivine rim. This implies that these inclusions remained connected with interstitial matrix melt until melt inclusion closure. These ';open' melt inclusions exhibited slightly different major (higher SiO2, Na2O+K2O, TiO2) and trace elements (positive Eu and Sr anomalies) compared to melt inclusions in the same olivine that were not surrounded by compositional zoning. Quantitative elemental profiles produce modeled timescales on the order of 10s-100s days prior to eruption. Zoning textures, melt inclusion compositions, and timescale modeling indicates that crystal dissolution (open melt inclusions), mafic magma injection (reverse zoning), and partial melting of upper crustal plagioclase-rich cumulates (positive Eu and Sr anomalies) were occurring in the months prior to the 2008 eruption. The combination of both melt inclusion data and textural data of the host crystals provides deeper insight into the nature and timing of deep and shallow reservoir processes that generate violent Strombolian eruptions at Llaima.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinbasarov, M.U.; Murygina, V.P.; Mats, A.A.
1995-12-31
The pilot area of the Vyngapour oil field allotted for MIOR tests contains three injection and three producing wells. These wells were treated in summer 1993 and 1994. Before, during, and after MIOR treatments on the pilot area the chemical compounds of injected and formation waters were studied, as well as the amount and species of microorganisms entering the stratum with the injected water and indigenous bacteria presented in bottomhole zones of the wells. The results of monitoring showed that the bottomhole zone of the injection well already had biocenosis of heterotrophic, hydrocarbon-oxidizing, methanogenic, and sulfate-reducing bacteria, which were besidesmore » permanently introduced into the reservoir during the usual waterflooding. The nutritious composition activated vital functions of all bacterial species presented in the bottomhole zone of the injection well. The formation waters from producing wells showed the increase of the content of nitrate, sulfate, phosphate, and bicarbonate ions by the end of MIOR. The amount of hydrocarbon-oxidizing bacteria in formation waters of producing wells increased by one order. The chemical and biological monitoring revealed the activation of the formation microorganisms, but no transport of food industry waste bacteria through the formation from injection to producing wells was found.« less
Imaging of CO{sub 2} injection during an enhanced-oil-recovery experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritto, Roland; Daley, Thomas M.; Myer, Larry R.
2003-04-29
A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, using P- and S-wave data. During the first phase the set of seismic experiments were conducted after the injection of water into the hydrofrac-zone. The set of seismic experiments was repeated after a time period of 7 months during which CO{sub 2} was injected into the hydrofractured zone. The issues to be addressed ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} withinmore » the hydrofracture. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5 percent). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6 percent). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50 percent) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5 percent. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The results of the cross well experiments were corroborated by single well data and laboratory measurements on core data.« less
NASA Astrophysics Data System (ADS)
Zhu, Tieyuan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.
2017-09-01
A continuous active source seismic monitoring data set was collected with crosswell geometry during CO2 injection at the Frio-II brine pilot, near Liberty, TX. Previous studies have shown that spatiotemporal changes in the P wave first arrival time reveal the movement of the injected CO2 plume in the storage zone. To further constrain the CO2 saturation, particularly at higher saturation levels, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period are estimated by the amount of the centroid frequency shift computed by local time-frequency analysis. We observe that (1) at receivers above the injection zone seismic attenuation does not change in a physical trend; (2) at receivers in the injection zone attenuation sharply increases following injection and peaks at specific points varying with distributed receivers, which is consistent with observations from time delays of first arrivals; then, (3) attenuation decreases over the injection time. The attenuation change exhibits a bell-shaped pattern during CO2 injection. Under Frio-II field reservoir conditions, White's patchy saturation model can quantitatively explain both the P wave velocity and attenuation response observed. We have combined the velocity and attenuation change data in a crossplot format that is useful for model-data comparison and determining patch size. Our analysis suggests that spatial-temporal attenuation change is not only an indicator of the movement and saturation of CO2 plumes, even at large saturations, but also can quantitatively constrain CO2 plume saturation when used jointly with seismic velocity.
Dolan, Samantha B; Patel, Manish; Hampton, Lee M; Burnett, Eleanor; Ehlman, Daniel C; Garon, Julie; Cloessner, Emily; Chmielewski, Elizabeth; Hyde, Terri B; Mantel, Carsten; Wallace, Aaron S
2017-07-01
In 2013, the World Health Organization's (WHO's) Strategic Advisory Group of Experts (SAGE) recommended that all 126 countries using only oral polio vaccine (OPV) introduce at least 1 dose of inactivated polio vaccine (IPV) into their routine immunization schedules by the end of 2015. In many countries, the addition of IPV would necessitate delivery of multiple injectable vaccines (hereafter, "multiple injections") during a single visit, with infants receiving IPV alongside pentavalent vaccine (which covers diphtheria, tetanus, and whole-cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine. Unanticipated concerns emerged from countries over acceptability of multiple injections, sites of administration, and safety. We contextualized the issues surrounding multiple injections by documenting concerns associated with administration of ≥3 injections, existing evidence in the published literature, and findings of a systematic review on administration practices and techniques. Concerns associated with multiple-injection visits were documented from meetings and personal communications with immunization program managers. Published literature on the acceptability of multiple injections by providers and caregivers was summarized, and a systematic review of the literature on administration practices was completed on the following topics: spacing between injection sites (ie, vaccine spacing), site of injection, route of injection, and procedural preparedness. WHO and United Nations Children's Fund data from 2013-2015 were used to assess multiple-injection visits included in national immunization schedules. Healthcare provider and caregiver attitudes and practices indicated concerns about infant pain, potential adverse effects, and uncertainty about vaccine effectiveness with multiple-injection visits. Published literature reinforced the record of safety and acceptance of the recommended schedule of IPV by the SAGE, but the evidence was largely from developed countries. Parental acceptance of multiple injections was associated with a positive provider recommendation to the caregiver. Findings of the systematic review identified that the intramuscular route is preferred over the subcutaneous route for vaccine administration and that the vastus lateralis muscle is preferred over the deltoid muscle for intramuscular injections. Recommendations on vaccine spacing and procedural preparedness were based on practical necessities, but comparative evidence was not identified. During 2013-2015, 85 countries added IPV to their immunization schedules, 46 (55%) of which adopted a schedule resulting in 3 injectable vaccines being administered in a single visit. The multiple-injection experience identified gaps in guidance for future vaccine introductions. Global partner organizations quickly mobilized to assess, document, and communicate the existing global experience on multiple-injection visits. This evidence-based approach provided reassurance to opinion leaders, health workers, and professional societies, thus encouraging uptake of IPV as a second or third injection in an accelerated manner globally. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Documents related to Proposed Class II injection well permit modification MI-147-2D-0014
Public notice for proposed modification of permit number MI-147-2D-0014 (St. Clair County, MI). The proposed modification would change the injection zone, the construction, and reduce the injection pressure.
Jones, Gregg W; Pichler, Thomas
2007-02-01
Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.
NASA Astrophysics Data System (ADS)
Mirzaei, Masoud; Zavada, Prokop; Machek, Matej; Roxerova, Zuzana
2016-04-01
Magma emplacement in extended brittle crust was simulated by injecting plaster of Paris (magma) into a large sandbox with central deformable rubber sheet. Analog magma is during the experiments injected through small circular inlet cut in the center of the elastic sheet. Injection force oscillation during the steadily evacuating analog magma was recorded during the experiments and regularly showed 3-4 increases followed by a quick drop. The recorded oscillation amplitude is largest for static injection without extension of the sandbox, which formed a columnar body with concentric and zonal internal fabric. Experiments including normal or oblique 20% extension resulted in along rift axis elongated oblate ellipsoidal pluton with rift parallel ridges in the top part of the pluton. Inspection of horizontal profiles show bone-shaped internal zoning patterns limited by conjugate sets of shear zones. Orientation of these internal shear zones is correlated with the sand-clock fault pattern developed in the overburden sand pack. Another set of shear zones parallel with the long axes of the plutons (rift axis) are associated with successive emplacement of distinct plaster pulses during the buildup of the entire body. The innermost lastly emplaced pulses of plaster display weak vertical magnetic fabrics with vertical lineations, while the outer shells of already emplaced plaster reveal stronger and margin parallel oblate magnetic fabrics with subhorizontal lineations. We interpret the vertical innermost fabrics as a result of active ascent of plaster from the injection inlet, while the fabrics in the outer zones likely reflect push due to inflation of the inner domain reflected in the reworking of the magnetic fabric.
Patel, Manish; Hampton, Lee M.; Burnett, Eleanor; Ehlman, Daniel C.; Garon, Julie; Cloessner, Emily; Chmielewski, Elizabeth; Hyde, Terri B.; Mantel, Carsten; Wallace, Aaron S.
2017-01-01
Abstract Background. In 2013, the World Health Organization’s (WHO’s) Strategic Advisory Group of Experts (SAGE) recommended that all 126 countries using only oral polio vaccine (OPV) introduce at least 1 dose of inactivated polio vaccine (IPV) into their routine immunization schedules by the end of 2015. In many countries, the addition of IPV would necessitate delivery of multiple injectable vaccines (hereafter, “multiple injections”) during a single visit, with infants receiving IPV alongside pentavalent vaccine (which covers diphtheria, tetanus, and whole-cell pertussis; hepatitis B; and Haemophilus influenzae type b) and pneumococcal vaccine. Unanticipated concerns emerged from countries over acceptability of multiple injections, sites of administration, and safety. We contextualized the issues surrounding multiple injections by documenting concerns associated with administration of ≥3 injections, existing evidence in the published literature, and findings of a systematic review on administration practices and techniques. Methods. Concerns associated with multiple-injection visits were documented from meetings and personal communications with immunization program managers. Published literature on the acceptability of multiple injections by providers and caregivers was summarized, and a systematic review of the literature on administration practices was completed on the following topics: spacing between injection sites (ie, vaccine spacing), site of injection, route of injection, and procedural preparedness. WHO and United Nations Children’s Fund data from 2013–2015 were used to assess multiple-injection visits included in national immunization schedules. Results. Healthcare provider and caregiver attitudes and practices indicated concerns about infant pain, potential adverse effects, and uncertainty about vaccine effectiveness with multiple-injection visits. Published literature reinforced the record of safety and acceptance of the recommended schedule of IPV by the SAGE, but the evidence was largely from developed countries. Parental acceptance of multiple injections was associated with a positive provider recommendation to the caregiver. Findings of the systematic review identified that the intramuscular route is preferred over the subcutaneous route for vaccine administration and that the vastus lateralis muscle is preferred over the deltoid muscle for intramuscular injections. Recommendations on vaccine spacing and procedural preparedness were based on practical necessities, but comparative evidence was not identified. During 2013–2015, 85 countries added IPV to their immunization schedules, 46 (55%) of which adopted a schedule resulting in 3 injectable vaccines being administered in a single visit. Conclusion. The multiple-injection experience identified gaps in guidance for future vaccine introductions. Global partner organizations quickly mobilized to assess, document, and communicate the existing global experience on multiple-injection visits. This evidence-based approach provided reassurance to opinion leaders, health workers, and professional societies, thus encouraging uptake of IPV as a second or third injection in an accelerated manner globally. PMID:28838188
Slip Zone versus Damage Zone Micromechanics, Arima-Takasuki Tectonic Line, Japan
NASA Astrophysics Data System (ADS)
White, J. C.; Lin, A.
2017-12-01
The Arima-Takasuki Tectonic Line (ATTL) of southern Honshu, Japan is defined by historically active faults and multiple splays producing M7 earthquakes. The damage zone of the ATTL comprises a broad zone of crushed, comminuted and pulverized granite/rhyolite1,2containing cm-scale slip zones and highly comminuted injection veins. In this presentation, prior work on the ATTL fault rocks is extending to include microstructural characterization by transmission electron microscopy (TEM) from recent trenching of the primary slip zone, as well as secondary slip zones. This is necessary to adequately characterize the extremely fine-grained material (typically less than 1mm) in both damage and core zones. Damage zone material exhibits generally random textures3 whereas slip zones are macroscopically foliated, and compositionally layered, notwithstanding a fairly homogeneous protolith. The latter reflects fluid-rock interaction during both coseismic and interseismic periods. The slip zones are microstructurally heterogeneous at all scales, comprising not only cataclasites and phyllosilicate (clay)-rich gouge zones, but Fe/Mn pellets or clasts that are contained within gouge. These structures appear to have rolled and would suggest rapid recrystallization and/or growth. A central question related to earthquake recurrence along existing faults is the nature of the gouge. In both near-surface exposures and ongoing drilling at depth, "plastic" or "viscous" gouge zones comprise ultra-fine-grained clay-siliciclastic particles that would not necessarily respond in a simple frictional manner. Depending on whether the plastic nature of these slip zones develops during or after slip, subsequent focusing of slip within them could be complicated. 1 Mitchell, T.A., Ben-Zion, Y., Shimamoto, T., 2011. Ear. Planet. Sci. Lett. 308, 284-297. 2 Lin, A., Yamashita, K, Tanaka, M. J., 2013. Struc. Geol. 48, 3-13. 3 White, J.C., Lin, A. 2016. Proc. AGU Fall Mtg., T42-02 San Francisco.
In Vivo Evaluation of Lung Microwave Ablation in a Porcine Tumor Mimic Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Planche, Olivier, E-mail: oli.hrp@gmail.com; Teriitehau, Christophe; Boudabous, Sana
2013-02-15
To evaluate the microwave ablation of created tumor mimics in the lung of a large animal model (pigs), with examination of the ablative synergy of multiple antennas. Fifty-six tumor-mimic models of various sizes were created in 15 pigs by using barium-enriched minced collected thigh muscle injected into the lung of the same animal. Tumors were ablated under fluoroscopic guidance by single-antenna and multiple-antenna microwaves. Thirty-five tumor models were treated in 11 pigs with a single antenna at 75 W for 15 min, with 15 measuring 20 mm in diameter, 10 measuring 30 mm, and 10 measuring 40 mm. Mean circularitymore » of the single-antenna ablation zones measured 0.64 {+-} 0.12, with a diameter of 35.7 {+-} 8.7 mm along the axis of the antenna and 32.7 {+-} 12.8 mm perpendicular to the feeding point. Multiple-antenna delivery of 75 W for 15 min caused intraprocedural death of 2 animals; modified protocol to 60 W for 10 min resulted in an ablation zone with a diameter of 43.0 {+-} 7.7 along the axis of the antenna and 54.8 {+-} 8.5 mm perpendicular to the feeding point; circularity was 0.70 {+-} 0.10. A single microwave antenna can create ablation zones large enough to cover lung tumor mimic models of {<=}4 cm with no heat sink effect from vessels of {<=}6 mm. Synergic use of 3 antennas allows ablation of larger volumes than single-antenna or radiofrequency ablation, but great caution must be taken when 3 antennas are used simultaneously in the lung in clinical practice.« less
Vertical migration of municipal wastewater in deep injection well systems, South Florida, USA
NASA Astrophysics Data System (ADS)
Maliva, Robert G.; Guo, Weixing; Missimer, Thomas
2007-11-01
Deep well injection is widely used in South Florida, USA for wastewater disposal largely because of the presence of an injection zone (“boulder zone” of Floridan Aquifer System) that is capable of accepting very large quantities of fluids, in some wells over 75,000 m3/day. The greatest potential risk to public health associated with deep injection wells in South Florida is vertical migration of wastewater, containing pathogenic microorganisms and pollutants, into brackish-water aquifer zones that are being used for alternative water-supply projects such as aquifer storage and recovery. Upwards migration of municipal wastewater has occurred in a minority of South Florida injection systems. The results of solute-transport modeling using the SEAWAT program indicate that the measured vertical hydraulic conductivities of the rock matrix would allow for only minimal vertical migration. Fracturing at some sites increased the equivalent average vertical hydraulic conductivity of confining zone strata by approximately four orders of magnitude and allowed for vertical migration rates of up 80 m/year. Even where vertical migration was rapid, the documented transit times are likely long enough for the inactivation of pathogenic microorganisms.
Roshandel, Danial; Soheilian, Masoud; Pakravan, Mohammad; Aghayan, Sara; Peyman, Gholam A
2015-05-01
A 65-year-old woman with left hemiparesis and sudden loss of visual acuity in her right eye presented a few hours after cosmetic injection of autologous fat to her forehead. Right eye visual acuity was no light perception. Funduscopy revealed widespread retinal whitening and multibranch retinal vessel occlusion. Fluorescein angiography showed markedly delayed choroidal and retinal filling together with occlusion of multiple branches of retinal arteries and veins. On magnetic resonance imaging of the brain, multiple lesions compatible with recent infarction were detected. The authors diagnosed multibranch retinal artery and vein occlusion in the right ophthalmic and middle cerebral arteries due to fat emboli. This case emphasizes the need to reevaluate the safety of such aesthetic procedures, particularly in the facial zone to prevent devastating complications. Copyright 2015, SLACK Incorporated.
Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - June 1977
Pascale, Charles A.; Martin, J.B.
1978-01-01
This report presents the hydraulic and chemical data collected from June 1, 1975, when injection began, to June 30, 1977 through a monitoring program at a deep-well waste-injection system at the American Cyanamid Company's plant near Milton, about 12 miles northwest of Pensacola. The injection system consists of a primary injection well, a standby injection well, and two deep monitor wells all completed open hole in the lower limestone of the Floridan aquifer and one shallow-monitor well completed in the upper limestone of the Floridan aquifer. Two of the monitor wells and the standby injection well are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations 8,180 feet northeast, 1,560 feet south, and 1,025 feet southwest of the primary injection well. The shallow-monitor well, used to observe any effects in the first permeable zone above the 200-foot-thick confining bed, is 28 feet north of the primary injection well. Since injection began in June 1975, 607 million gallons of treated industrial liquid waste with a pH of 4.6 to 6.3 and containing high concentrations of nitrate, organic nitrogen and carbon have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at the injection well in June 1977 average 137 pounds per square inch and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Water levels rose from 36 to 74 feet at the three wells used to monitor the injection zone during the 25-month period. The water level in the shallow-monitor well declined about 8 feet. No changes were detected in the chemical character of water from the shallow-monitor well and deep-monitor well-north. Increases in concentration of bicarbonate and dissolved organic carbon were detected in water from the deep-test monitor well in February 1976 and at the standby injection well in August 1976. In addition to increases in bicarbonate and dissolved organic carbon, sulfate, total organic nitrogen, and total nitrogen concentrations have also increased substantially in samples from these wells. Nitrogen gas concentrations in water samples collected at the three deep-monitor wells ranged from 19 to 176 milligrams per liter, methane from 4.5 to 11.4 milligrams per liter, and carbon dioxide from 7.7 to 44 milligrams per liter. The most probable number of denitrifying bacteria in water samples collected at the three deep-monitor wells ranged from less than 2 colonies to 17 colonies per 100 milliliters. None of the water samples collected in April 1977 at the three deep-monitor wells showed positive concentrations of acetone, ethanol, methanol, or acrylonitrile.
NASA Astrophysics Data System (ADS)
Rinaldi, A.; Rutqvist, J.
2012-12-01
The In Salah CO2 storage project (a joint venture among Statoil, BP, and Sonatrach) is one of the most important sites for understanding the geomechanics associated with carbon dioxide injection. InSAR data evaluated for the first years of injection show a ground-surface uplift of 5 to 10 mm per year at each of the injection wells. A double-lobe uplift pattern has been observed at KB-502, and both semi-analytical inverse deformation analysis (Vasco et al., 2010) and coupled numerical modeling of fluid flow and geomechanics (Rutqvist et al., 2011) have shown that this pattern of displacement can be explained by injection-induced deformation in a deep vertical fracture zone of fault, whose presence has been confirmed by recent 3D seismic survey (Gibson-Poole et al., 2010). Recently, Rinaldi and Rutqvist (2012) refined the previous modeling results, through the use of TOUGH-FLAC (Rutqvist et al., 2002), in order to more conclusively constrain the height of the fracture zone. Results were well in agreement with all available field observations, including all time evolutions and the shape of surface deformation, time-evolution of injection pressure, and the 3D seismic indications of the CO2 saturated fracture zone extending thousands of meters laterally. However, the analysis included a number of simplifications and uncertainties, such as time-step changes in aquifer permeability and the use of an elastic model, which preclude a good match with field data after shut in. Here we implement a new stress-dependent permeability function, to consider a more realistic changes in reservoir and fracture zone permeability, and to improve the match between field observations and modeling results, considering both the bottomhole pressure and the ground surface displacement. Furthermore, here we extent the length of the simulation to include modeling of the re-injection occurred in late 2010 for few months. A second major simplification by Rinaldi and Rutqvist (2012) is the assumption of fracture zone that could have opened instantaneously. Here we present also some early, simple study on potential fracture propagations coupled with stress-dependent permeability changes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS General § 148.2 Definitions. Injection interval means that part of the injection zone in which the well is screened, or in which the waste is otherwise directly emplaced...
Fox, P.M.; Kent, D.B.; Davis, J.A.
2010-01-01
Tracer tests were performed in distinct biogeochemical zones of a sand and gravel aquifer in Cape Cod, MA, to study the redox chemistry (I) and transport (Cs, I) of cesium and iodine in a field setting. Injection of iodide (I -) into an oxic zone of the aquifer resulted in oxidation of I - to molecular iodine (I2) and iodate (IO3-) over transport distances of several meters. Oxidation is attributed to Mn-oxides present in the sediment. Transport of injected IO 3- and Cs+ was retarded in the mildly acidic oxic zone, with retardation factors of 1.6-1.8 for IO3- and 2.3-4.4for Cs. Cs retardation was likely due to cation exchange reactions. Injection of IO3- into a Fe-reducing zone of the aquifer resulted in rapid and complete reduction to I- within 3 m of transport. The nonconservative behavior of Cs and I observed during the tracer tests underscores the necessity of taking the redox chemistry of I as well as sorption properties of I species and Cs into account when predicting transport of radionuclides (e.g., 129I and 137Cs) in the environment.
Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.
2000-01-01
The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of storage capacity and exchange flux occurred in different storage zones. We also used the one storage zone model to estimate a “single” lumped rate constant representing the net removal of a solute by biogeochemical reactions in multiple storage zones. For most cases the lumped rate constant that was optimized by one storage zone modeling estimated the flux‐weighted rate constant for multiple storage zones. Our results explain how the relative hydrologic properties of multiple storage zones (retention time, storage capacity, exchange flux, and biogeochemical reaction rate constant) affect the reliability of lumped parameters determined by a one storage zone transport model. We conclude that stream transport models with a single storage compartment will in most cases reliably characterize the dominant physical processes of solute retention and biogeochemical reactions in streams with multiple storage zones.
NASA Astrophysics Data System (ADS)
Endreny, T. A.; Robinson, J.
2012-12-01
River restoration structures, also known as river steering deflectors, are designed to reduce bank shear stress by generating wake zones between the bank and the constricted conveyance region. There is interest in characterizing the surface transient storage (STS) and associated biogeochemical processing in the STS zones around these structures to quantify the ecosystem benefits of river restoration. This research explored how the hydraulics around river restoration structures prohibits application of transient storage models designed for homogenous, completely mixed STS zones. We used slug and constant rate injections of a conservative tracer in a 3rd order river in Onondaga County, NY over the course of five experiments at varying flow regimes. Recovered breakthrough curves spanned a transect including the main channel and wake zone at a j-hook restoration structure. We noted divergent patterns of peak solute concentration and times within the wake zone regardless of transect location within the structure. Analysis reveals an inhomogeneous STS zone which is frequently still loading tracer after the main channel has peaked. The breakthrough curve loading patterns at the restoration structure violated the assumptions of simplified "random walk" 2 zone transient storage models which seek to identify representative STS zones and zone locations. Use of structure-scale Weiner filter based multi-rate mass transfer models to characterize STS zones residence times are similarly dependent on a representative zone location. Each 2 zone model assumes 1 zone is a completely mixed STS zone and the other a completely mixed main channel. Our research reveals limits to simple application of the recently developed 2 zone models, and raises important questions about the measurement scale necessary to identify critical STS properties at restoration sites. An explanation for the incompletely mixed STS zone may be the distinct hydraulics at restoration sites, including a constrained high velocity conveyance region closely abutting a wake zone that receives periodic disruption from the upstream structure shearing vortices.igure 1. River restoration j-hook with blue dye revealing main channel and edge of wake zone with multiple surface transient storage zones.
Geology of the Vienna Mineralized Area, Blaine and Camas Counties, Idaho
Mahoney, J. Brian; Horn, Michael C.
2005-01-01
The Vienna mineralized area of south-central Idaho was an important silver-lead-producing district in the late 1800s and has intermittently produced lead, silver, zinc, copper, and gold since that time. The district is underlain by biotite granodiorite of the Cretaceous Idaho batholith, and all mineral deposits are hosted by the biotite granodiorite. The granodiorite intrudes Paleozoic sedimentary rocks of the Sun Valley Group, is overlain by rocks of the Eocene Challis Volcanic Group, and is cut by numerous northeast-trending Eocene faults and dikes. Two mineralogically and texturally distinct vein types are present in a northwest- and east-trending conjugate shear-zone system. The shear zones postdate granodiorite emplacement and joint formation, but predate Eocene fault and dike formation. Ribbon veins consist of alternating bands of massive vein quartz and silver-sulfide (proustite and pyrargyrite) mineral stringers. The ribbon veins were sheared and brecciated during multiple phases of injection of mineralizing fluids. A quartz-sericite-pyrite-galena vein system was subsequently emplaced in the brecciated shear zones. Both vein systems are believed to be the product of mesothermal, multiphase mineralization. K-Ar dating of shear-zone sericite indicates that sericitization occurred at 80.7?2.8 Ma; thus mineralization in the Vienna mineralized area probably is Late Cretaceous in age.
NASA Astrophysics Data System (ADS)
Improta, L.; Bagh, S.; De Gori, P.; Valoroso, L.; Pastori, M.; Piccinini, D.; Chiarabba, C.; Anselmi, M.; Buttinelli, M.
2017-11-01
Wastewater injection into a high-rate well in the Val d'Agri oilfield, the largest in onshore Europe, has induced swarm microseismicity since the initiation of disposal in 2006. To investigate the reservoir structure and to track seismicity, we performed a high-spatial resolution local earthquake tomography using 1,281 natural and induced earthquakes recorded by local networks. The properties of the carbonate reservoir (rock fracturing, pore fluid pressure) and inherited faults control the occurrence and spatiotemporal distribution of seismicity. A low-Vp, high-Vp/Vs region under the well represents a fluid saturated fault zone ruptured by induced seismicity. High-Vp, high-Vp/Vs bumps match reservoir culminations indicating saturated liquid-bearing zones, whereas a very low Vp, low Vp/Vs anomaly might represent a strongly fractured and depleted zone of the hydrocarbon reservoir characterized by significant fluid withdrawal. The comprehensive picture of the injection-linked seismicity obtained by integrating reservoir-scale tomography, high-precision earthquake locations, and geophysical and injection data suggests that the driving mechanism is the channeling of pore pressure perturbations through a high permeable fault damage zone within the reservoir. The damage zone surrounds a Pliocene reverse fault optimally oriented in the current extensional stress field. The ruptured damage zone measures 2 km along strike and 3 km along dip and is confined between low permeability ductile formations. Injection pressure is the primary parameter controlling seismicity rate. Our study underlines that local earthquake tomography also using wastewater-induced seismicity can give useful insights into the physical mechanism leading to these earthquakes.
Direct push injection logging for high resolution characterization of low permeability zones
NASA Astrophysics Data System (ADS)
Liu, G.; Knobbe, S.; Butler, J. J., Jr.; Reboulet, E. C.; Borden, R. C.; Bohling, G.
2017-12-01
One of the grand challenges for groundwater protection and contaminated site remediation efforts is dealing with the slow, yet persistent, release of contaminants from low permeability zones. In zones of higher permeability, groundwater flow is relatively fast and contaminant transport can be more effectively affected by treatment activities. In the low permeability zones, however, groundwater flow and contaminant transport are slow and thus become largely insensitive to many in-situ treatment efforts. Clearly, for sites with low permeability zones, accurate depiction of the mass exchange between the low and higher permeability zones is critical for designing successful groundwater protection and remediation systems, which requires certain information such as the hydraulic conductivity (K) and porosity of the subsurface. The current generation of field methods is primarily developed for relatively permeable zones, and little work has been undertaken for characterizing zones of low permeability. For example, the direct push injection logging (DPIL) approach (e.g., Hydraulic Profiling Tool by Geoprobe) is commonly used for high resolution estimation of K over a range of 0.03 to 23 m/d. When K is below 0.03 m/d, the pressure responses from the current DPIL are generally too high for both the formation (potential formation alteration at high pressure) and measuring device (pressure exceeding the upper sensor limit). In this work, we modified the current DPIL tool by adding a low-flow pump and flowmeter so that injection logging can be performed with much reduced flow rates when K is low. Numerical simulations showed that the reduction in injection rates (reduced from 250 to 1 mL/min) allowed pressures to be measurable even when K was as low as 0.001 m/d. They also indicated that as the K decreased, the pore water pressure increase induced by probe advancement had a more significant impact on DPIL results. A new field DPIL profiling procedure was developed for reducing that impact. Our preliminary test results in both the lab and at a field site have demonstrated the promise of the modified DPIL approach as a practical method for characterizing low permeability zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. White; B. P. McGrail; S. K. Wurstner
Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to poremore » clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.« less
McKenzie, Donald J.
1976-01-01
In 1966, a furfural plant at Belle Glade, Florida, began injecting hot, acidic liquid waste into the saline, water-filled lower part of the Floridan aquifer, between the depths of 1 ,495-1,939 feet. The beds above and below the injection zone were subjected to attack by the acid waste. By 1969, effects of the waste were detected in the water of the well monitoring the upper part of the Floridan aquifer at 1,400 feet. The disposal well was deepened late in 1971 to 2,242 feet in an attempt to stop the upward migration of waste. The results of research investigations by the U.S. Geological Survey during 1966-73 indicated that the waste continued to move upward and laterally. This investigated, continued by the U.S. Geological Survey in 1973-1975, shows that the remedial actions of repairing the disposal well liner and injecting periodically into the deep monitor well at 2,060 feet failed to contain the wastes within the lower part of the Floridan aquifer. The data collected by the Survey are supported by the owner 's chemical-oxygen-demand and pH determinations. A hydraulic connection between the injection zone and the overlying monitoring zone is implied. Plans call for injecting into deepter strata. (Woodard-USGS)
EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN ...
The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame zone was also studied. Tests involved burning CFC-12 in a propane gas flame. Combustion gas samples were taken and analyzed for volatile organic compounds as well as polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF). CDD/PCDF were not detected at baseline operating conditions (1204 C and 9.3% CFC-12 by volume in fuel). Low levels of PCDD/ PCDF were detected in the combustion gas at a lower temperature (913 C). Poor combustion conditions producing smoke and soot may have contributed to the formation of PCDD/PCDF. Low levels of PCC/PCDF were also detected at the lower temperature with water injection into the flame zone. lame zone water injection may have a reducing effect on PCDD/PCDF formation during CFC-12 incineration. alogenated PICs (including chloromethane, vinyl chloride, CFC-11, dichloroethane, chloroform, trichloroethane, chlorobenzene, dichloropropene, carbon tetrachloride, methylene chloride, and tetrachloroethane) were detected during CFC-12 incineration. Information.
Seismic Borehole Monitoring of CO2 Injection in an Oil Reservoir
NASA Astrophysics Data System (ADS)
Gritto, R.; Daley, T. M.; Myer, L. R.
2002-12-01
A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous (~ 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data.
NASA Astrophysics Data System (ADS)
Yao, Yao
2012-05-01
Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.
NASA Astrophysics Data System (ADS)
Kim, U.; Parker, J.; Borden, R. C.
2014-12-01
In-situ chemical oxidation (ISCO) has been applied at many dense non-aqueous phase liquid (DNAPL) contaminated sites. A stirred reactor-type model was developed that considers DNAPL dissolution using a field-scale mass transfer function, instantaneous reaction of oxidant with aqueous and adsorbed contaminant and with readily oxidizable natural oxygen demand ("fast NOD"), and second-order kinetic reactions with "slow NOD." DNAPL dissolution enhancement as a function of oxidant concentration and inhibition due to manganese dioxide precipitation during permanganate injection are included in the model. The DNAPL source area is divided into multiple treatment zones with different areas, depths, and contaminant masses based on site characterization data. The performance model is coupled with a cost module that involves a set of unit costs representing specific fixed and operating costs. Monitoring of groundwater and/or soil concentrations in each treatment zone is employed to assess ISCO performance and make real-time decisions on oxidant reinjection or ISCO termination. Key ISCO design variables include the oxidant concentration to be injected, time to begin performance monitoring, groundwater and/or soil contaminant concentrations to trigger reinjection or terminate ISCO, number of monitoring wells or geoprobe locations per treatment zone, number of samples per sampling event and location, and monitoring frequency. Design variables for each treatment zone may be optimized to minimize expected cost over a set of Monte Carlo simulations that consider uncertainty in site parameters. The model is incorporated in the Stochastic Cost Optimization Toolkit (SCOToolkit) program, which couples the ISCO model with a dissolved plume transport model and with modules for other remediation strategies. An example problem is presented that illustrates design tradeoffs required to deal with characterization and monitoring uncertainty. Monitoring soil concentration changes during ISCO was found to be important to avoid decision errors associated with slow rebound of groundwater concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less
Poulos, Christine; Kinter, Elizabeth; Yang, Jui-Chen; Bridges, John F P; Posner, Joshua; Gleißner, Erika; Mühlbacher, Axel; Kieseier, Bernd
2016-03-01
The aim of this study was to assess the relative importance of features of a hypothetical injectable disease-modifying treatment for patients with multiple sclerosis using a discrete-choice experiment. German residents at least 18 years of age with a self-reported physician diagnosis of multiple sclerosis completed a 25-30 minute online discrete-choice experiment. Patients were asked to choose one of two hypothetical injectable treatments for multiple sclerosis, defined by different levels of six attributes (disability progression, the number of relapses in the next 4 years, injection time, frequency of injections, presence of flu-like symptoms, and presence of injection-site reactions). The data were analyzed using a random-parameters logit model. Of 202 adults who completed the survey, results from 189 were used in the analysis. Approximately 50% of all patients reported a diagnosis of relapsing-remitting multiple sclerosis, and 31% reported secondary progressive multiple sclerosis. Approximately 71% of patients had current or prior experience with injectable multiple sclerosis medication. Approximately 53% had experienced flu-like symptoms caused by their medication, and 47% had experienced mild injection-site reactions. At least one significant difference was seen between levels in all attributes, except injection time. The greatest change in relative importance between levels of an attribute was years until symptoms get worse from 1 to 4 years. The magnitude of this difference was about twice that of relapses in the next 4 years, frequency of injections, and flu-like symptoms. Most attributes examined in this experiment had an influence on patient preference. Patients placed a significant value on improvements in the frequency of dosing and disability progression. Results suggest that changes in injection frequency can be as important as changes in efficacy and safety attributes. Understanding which attributes of injectable therapies influence patient preference could potentially improve outcomes and adherence in patients with multiple sclerosis.
Tejada-Casado, Carmen; Moreno-González, David; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2017-03-24
A novel method based on capillary zone electrophoresis-tandem mass spectrometry has been proposed and validated for the identification and simultaneous quantification of twelve benzimidazoles in meat samples. Electrophoretic separation was carried out using 500mM formic acid (pH 2.2) as background electrolyte and applying a voltage of 25kV at 25°C. In order to improve the sensitivity, stacking mode injection was applied, using as injection solvent a mixture of 30:70 acetonitrile/water at 50mbar for 75s. Sensitivity enhancement factors from 74 to 317 were obtained under these conditions. Detection using an ion trap as analyzer, operating in multiple reactions monitoring mode was employed. The main MS/MS parameters as well as the composition of the sheath liquid and other electrospray variables were optimized in order to obtain the highest sensitivity and precision in conjunction with an unequivocal identification. The method was applied to poultry and pork muscle samples. The deproteinization of samples and extraction of benzimidazoles was carried out with acetonitrile. MgSO 4 and NaCl were added as salting-out agents. Subsequently, dispersive liquid-liquid microextraction was applied as clean up procedure. The organic layer (acetonitrile, used as dispersant) containing the benzimidazoles was mixed with the extractant (chloroform) and both were injected in water, producing a cloudy solution. Recoveries for fortified samples were higher than 70%, with relative standard deviations lower than 16% were obtained in all cases. The limits of detection were below 3μgkg -1 , demonstrating the applicability of this fast, simple, and environmentally friendly method. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gabrielse, C.; Angelopoulos, V.; Artemyev, A.; Runov, A.; Harris, C.
2016-12-01
We study energetic electron injections using an analytical model that self-consistently describes electric and magnetic field perturbations of transient, localized dipolarizing flux bundles (DFBs). Previous studies using THEMIS, Van Allen Probes, and the Magnetospheric Multiscale Mission have shown that injections can occur on short (minutes) or long (10s of minutes) timescales. These studies suggest that the short timescale injections correspond to a single DFB, whereas long timescale injections are likely caused by an aggregate of multiple DFBs, each incrementally heating the particle population. We therefore model the effects of multiple DFBs on the electron population using multi-spacecraft observations of the fields and particle fluxes to constrain the model parameters. The analytical model is the first of its kind to model multiple dipolarization fronts in order to better understand the transport and acceleration process throughout the plasma sheet. It can reproduce most injection signatures at multiple locations simultaneously, reaffirming earlier findings that multiple earthward-traveling DFBs can both transport and accelerate electrons to suprathermal energies, and can thus be considered the injections' primary driver.
Cunningham, Kevin J.
2015-01-01
In addition to the preceding seismic-reflection analysis, interpretation of geophysical well log data from four effluent injection wells at the North District “Boulder Zone” Well Field delineated a narrow karst collapse structure beneath the injection facility that extends upward about 900 ft from the top of the Boulder Zone to about 125 ft above the top of the uppermost major permeable zone of the Lower Floridan aquifer. No karst collapse structures were identified in the seismic-reflection profiles acquired near the North District “Boulder Zone” Well Field. However, karst collapse structures at the level of the lowermost major permeable zone of the Lower Floridan aquifer at the South District “Boulder Zone” Well Field are present at three locations, as indicated by seismic-reflection data acquired in the C–1 Canal bordering the south side of the injection facility. Results from the North District “Boulder Zone” Well Field well data indicate that a plausible hydraulic connection between faults and stratiform permeability zones may contribute to the upward transport of effluent, terminating above the base of the deepest U.S. Environmental Protection Agency designated underground source of drinking water at the North District “Boulder Zone” Well Field.
NASA Astrophysics Data System (ADS)
Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.
2017-12-01
Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection should be stopped and how to avoid major events. Our work contributes to the assessment or mitigation of seismic hazard and risk, and our long-term target question is: How to not make an earthquake?
Lepage, D; Parratte, B; Tatu, L; Vuiller, F; Monnier, G
2005-12-01
Hypertonia of the upper limb due to spasticity causes pronation of the forearm and flexion of wrist and fingers. Nowadays this spasticity is often treated with injections of botulinum toxin and sometimes with selective fascicular neurotomy. To correctly perform this microsurgical technique, it is necessary to get precise knowledge of the extramuscular nerve branching in order to be better able to select the motor branches which supply the muscles involved in spasticity. The same knowledge is required for botulinum toxin injections which must be made as near as possible to the zones where intramuscular nerve endings are the densest, which is also where neuromuscular junctions are the most numerous. Thus, it is necessary to better know these zones, but their knowledge remains today imprecise. The muscles of the anterior compartment of 30 forearms were dissected, first macroscopically, then microscopically, to study the extra- and intramuscular nerve supply and the distribution of terminal nerve ramifications. The results were then linked to surface topographical landmarks to indicate the precise location of motor branches for each muscle with the aim of proposing appropriate surgical approaches for selective neurotomies. Then for each muscle, the zones with the highest density of nerve endings were divided into segments, thus determining the optimal zones for botulinim toxin injections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, J.; Vasco, D.W.; Myer, L.
2009-11-01
In Salah Gas Project in Algeria has been injecting 0.5-1 million tonnes CO{sub 2} per year over the past five years into a water-filled strata at a depth of about 1,800 to 1,900 m. Unlike most CO{sub 2} storage sites, the permeability of the storage formation is relatively low and comparatively thin with a thickness of about 20 m. To ensure adequate CO{sub 2} flow-rates across the low-permeability sand-face, the In Salah Gas Project decided to use long-reach (about 1 to 1.5 km) horizontal injection wells. In an ongoing research project we use field data and coupled reservoir-geomechanical numerical modelingmore » to assess the effectiveness of this approach and to investigate monitoring techniques to evaluate the performance of a CO{sub 2}-injection operation in relatively low permeability formations. Among the field data used are ground surface deformations evaluated from recently acquired satellite-based inferrometry (InSAR). The InSAR data shows a surface uplift on the order of 5 mm per year above active CO{sub 2} injection wells and the uplift pattern extends several km from the injection wells. In this paper we use the observed surface uplift to constrain our coupled reservoir-geomechanical model and conduct sensitivity studies to investigate potential causes and mechanisms of the observed uplift. The results of our analysis indicates that most of the observed uplift magnitude can be explained by pressure-induced, poro-elastic expansion of the 20 m thick injection zone, but there could also be a significant contribution from pressure-induced deformations within a 100 m thick zone of shaly sands immediately above the injection zone.« less
40 CFR 147.1355 - Requirements for all wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Requirements for all wells. 147.1355... Requirements for all wells. (a) Area of review. Notwithstanding the alternatives presented in § 146.6 of this... injection activities, including well location, name and depth of the injection zone, maximum injection...
40 CFR 147.1355 - Requirements for all wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Requirements for all wells. 147.1355... Requirements for all wells. (a) Area of review. Notwithstanding the alternatives presented in § 146.6 of this... injection activities, including well location, name and depth of the injection zone, maximum injection...
NASA Technical Reports Server (NTRS)
Mcsween, H. Y., Jr.; Jarosewich, E.
1983-01-01
The EETA 79001 achondrite consists of two distinct igneous lithologies joined along a planar, non-brecciated contact. Both are basaltic rocks composed primarily of pigeonite, augite, and maskelynite, but one contains zoned megacrysts of olivine, orthopyroxene, and chromite that represent disaggregated xenoliths of harzburzite. Both lithologies probably formed from successive volcanic flows or multiple injections of magma into a small, shallow chamber. Many similarities between the two virtually synchronous magmas suggest that they are related. Possible mechanisms to explain their differences involve varying degrees of assimilation, fractionation from similar parental magmas, or partial melting of a similar source peridotite; of these, assimilation of the observed megacryst assemblage seems most plausible. However, some isotopic contamination may be required in any of these petrogenetic models. The meteorite has suffered extensive shock metamorphism and localized melting during a large impact event that probably excavated and liberated it from its parent body.
NASA Astrophysics Data System (ADS)
Lin, Botao; Jin, Yan; Pang, Huiwen; Cerato, Amy B.
2016-04-01
The success of steam-assisted gravity drainage (SAGD) is strongly dependent on the formation of a homogeneous and highly permeable zone in the land-facies Karamay oil sand reservoirs. To accomplish this, hydraulic fracturing is applied through controlled water injection to a pair of horizontal wells to create a dilation zone between the dual wells. The mechanical response of the reservoirs during this injection process, however, has remained unclear for the land-facies oil sand that has a loosely packed structure. This research conducted triaxial, permeability and scanning electron microscopy (SEM) tests on the field-collected oil sand samples. The tests evaluated the influences of the field temperature, confining stress and injection pressure on the dilation mechanisms as shear dilation and tensile parting during injection. To account for petrophysical heterogeneity, five reservoir rocks including regular oil sand, mud-rich oil sand, bitumen-rich oil sand, mudstone and sandstone were investigated. It was found that the permeability evolution in the oil sand samples subjected to shear dilation closely followed the porosity and microcrack evolutions in the shear bands. In contrast, the mudstone and sandstone samples developed distinct shear planes, which formed preferred permeation paths. Tensile parting expanded the pore space and increased the permeability of all the samples in various degrees. Based on this analysis, it is concluded that the range of injection propagation in the pay zone determines the overall quality of hydraulic fracturing, while the injection pressure must be carefully controlled. A region in a reservoir has little dilation upon injection if it remains unsaturated. Moreover, a cooling of the injected water can strengthen the dilation potential of a reservoir. Finally, it is suggested that the numerical modeling of water injection in the Karamay oil sand reservoirs must take into account the volumetric plastic strain in hydrostatic loading.
Ho, Kevin I-J; Leung, Chi-Sing; Sum, John
2010-06-01
In the last two decades, many online fault/noise injection algorithms have been developed to attain a fault tolerant neural network. However, not much theoretical works related to their convergence and objective functions have been reported. This paper studies six common fault/noise-injection-based online learning algorithms for radial basis function (RBF) networks, namely 1) injecting additive input noise, 2) injecting additive/multiplicative weight noise, 3) injecting multiplicative node noise, 4) injecting multiweight fault (random disconnection of weights), 5) injecting multinode fault during training, and 6) weight decay with injecting multinode fault. Based on the Gladyshev theorem, we show that the convergence of these six online algorithms is almost sure. Moreover, their true objective functions being minimized are derived. For injecting additive input noise during training, the objective function is identical to that of the Tikhonov regularizer approach. For injecting additive/multiplicative weight noise during training, the objective function is the simple mean square training error. Thus, injecting additive/multiplicative weight noise during training cannot improve the fault tolerance of an RBF network. Similar to injective additive input noise, the objective functions of other fault/noise-injection-based online algorithms contain a mean square error term and a specialized regularization term.
Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.P. McGrail; E. C. Sullivan; F. A. Spane
2009-12-01
The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less
Gandhi, Varun; Roberts, Philip J W; Stoesser, Thorsten; Wright, Harold; Kim, Jae-Hong
2011-07-01
Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze mixing in a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. The recirculation zone and the von Karman vortex shedding that commonly occur in flows around bluff bodies were successfully visualized. Multiple flow paths were analyzed by injecting the dye at various heights with respect to the lamp sleeve. A major difference in these pathways was the amount of dye that traveled close to the sleeve, i.e., a zone of higher residence time and higher UV exposure. Paths away from the center height had higher velocities and hence minimal influence by the presence of sleeve. Approach length was also characterized in order to increase the probability of microbes entering the region around the UV lamp. The 3DLIF technique developed in this study is expected to provide new insight on UV dose delivery useful for the design and optimization of UV reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Larkum, M E; Zhu, J J; Sakmann, B
2001-01-01
Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204
Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.
Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan
2016-07-01
In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low emission U-fired boiler combustion system
Ake, Terence; Beittel, Roderick; Lisauskas, Robert A.; Reicker, Eric
2000-01-01
At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.
Chin, Ki Jinn; Alakkad, Husni; Cubillos, Javier E
2013-08-08
Regional anaesthesia comprising axillary block of the brachial plexus is a common anaesthetic technique for distal upper limb surgery. This is an update of a review first published in 2006 and updated in 2011. To compare the relative effects (benefits and harms) of three injection techniques (single, double and multiple) of axillary block of the brachial plexus for distal upper extremity surgery. We considered these effects primarily in terms of anaesthetic effectiveness; the complication rate (neurological and vascular); and pain and discomfort caused by performance of the block. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), MEDLINE, EMBASE and reference lists of trials. We contacted trial authors. The date of the last search was March 2013 (updated from March 2011). We included randomized controlled trials that compared double with single-injection techniques, multiple with single-injection techniques, or multiple with double-injection techniques for axillary block in adults undergoing surgery of the distal upper limb. We excluded trials using ultrasound-guided techniques. Independent study selection, risk of bias assessment and data extraction were performed by at least two investigators. We undertook meta-analysis. The 21 included trials involved a total of 2148 participants who received regional anaesthesia for hand, wrist, forearm or elbow surgery. Risk of bias assessment indicated that trial design and conduct were generally adequate; the most common areas of weakness were in blinding and allocation concealment.Eight trials comparing double versus single injections showed a statistically significant decrease in primary anaesthesia failure (risk ratio (RR 0.51), 95% confidence interval (CI) 0.30 to 0.85). Subgroup analysis by method of nerve location showed that the effect size was greater when neurostimulation was used rather than the transarterial technique.Eight trials comparing multiple with single injections showed a statistically significant decrease in primary anaesthesia failure (RR 0.25, 95% CI 0.14 to 0.44) and of incomplete motor block (RR 0.61, 95% CI 0.39 to 0.96) in the multiple injection group.Eleven trials comparing multiple with double injections showed a statistically significant decrease in primary anaesthesia failure (RR 0.28, 95% CI 0.20 to 0.40) and of incomplete motor block (RR 0.55, 95% CI 0.36 to 0.85) in the multiple injection group.Tourniquet pain was significantly reduced with multiple injections compared with double injections (RR 0.53, 95% CI 0.33 to 0.84). Otherwise there were no statistically significant differences between groups in any of the three comparisons on secondary analgesia failure, complications and patient discomfort. The time for block performance was significantly shorter for single and double injections compared with multiple injections. This review provides evidence that multiple-injection techniques using nerve stimulation for axillary plexus block produce more effective anaesthesia than either double or single-injection techniques. However, there was insufficient evidence for a significant difference in other outcomes, including safety.
Case Study of Ion Beams Observed By Cluster At Perigee
NASA Astrophysics Data System (ADS)
Sergeev, V.; Sauvaud, J.-A.; Perigee Beam Team
During substorms the short beams of ions in the keV-to-tens keV energy range are injected into the auroral flux tubes from the magnetotail (sometimes extending up to >100 keV energy) carrying the information on the source distance, scale-size and temporal history of plasma acceleration. We present observations with the CLUSTER crossing inward the auroral zone flux tubes at ~4Re distance near its perigee during the substorm activity on February 14, 2001. The ion beams cover the same region (poleward half) of the auroral oval where the low-energy ions are extracted from the ionosphere, and where the small-scale transient transverse Alfven waves are observed which carry predominantly the downward parallel Poynting flux into the ionosphere. The multiple beams were basically confirmed to be the transient effects, although some effects including the (spatial) velocity filter and the parallel electric fields (im- posed by quasineutrality requirement) may complicate the interpretation. The gener- ation region of ion beams is not limited to most poleward, newly-reconnected flux tubes; the beam generation region could extend across magnetic field inward by as much as >100km (if mapped to the ionosphere). Surprising variety of injection dis- tances observed nearly simultaneously (ranging between >60 Re and ~10 Re) have been inferred when using the full available energy and time resolution, with shorter injection distances be possibly associated with the flow braking process. The beam multiplicity often displays the apparent ~3 min quasiperiodicity inherent to the basic dissipation process, it was not yet explained by any substorm theory.
Pertinent anatomy and analysis for midface volumizing procedures.
Surek, Christopher C; Beut, Javier; Stephens, Robert; Jelks, Glenn; Lamb, Jerome
2015-05-01
The study was conducted to construct an anatomically inspired midfacial analysis facilitating safe, accurate, and dynamic nonsurgical rejuvenation. Emphasis is placed on determining injection target areas and adverse event zones. Twelve hemifacial fresh cadavers were dissected in a layered fashion. Dimensional measurements between the midfacial fat compartments, prezygomatic space, mimetic muscles, and neurovascular bundles were used to develop a topographic analysis for clinical injections. A longitudinal line from the base of the alar crease to the medial edge of the levator anguli oris muscle (1.9 cm), lateral edge of the levator anguli oris muscle (2.6 cm), and zygomaticus major muscle (4.6 cm) partitions the cheek into two aesthetic regions. A six-step facial analysis outlines three target zones and two adverse event zones and triangulates the point of maximum cheek projection. The lower adverse event zone yields an anatomical explanation to inadvertent jowling during anterior cheek injection. The upper adverse event zone localizes the palpebral branch of the infraorbital artery. The medial malar target area isolates quadrants for anterior cheek projection and tear trough effacement. The middle malar target area addresses lid-cheek blending and superficial compartment turgor. The lateral malar target area highlights lateral cheek projection and locates the prezygomatic space. This stepwise analysis illustrates target areas and adverse event zones to achieve midfacial support, contour, and profile in the repose position and simultaneous molding of a natural shape during animation. This reproducible method can be used both procedurally and in record-keeping for midface volumizing procedures.
O'Keefe, Daniel; McCormack, Angus; Cogger, Shelley; Aitken, Campbell; Burns, Lucinda; Bruno, Raimondo; Stafford, Jenny; Butler, Kerryn; Breen, Courtney; Dietze, Paul
2017-08-01
Recent work by McCormack et al. (2016) showed that the inclusion of syringe stockpiling improves the measurement of individual-level syringe coverage. We explored whether including the use of a new parameter, multiple sterile syringes per injecting episode, further improves coverage measures. Data comes from 838 people who inject drugs, interviewed as part of the 2015 Illicit Drug Reporting System. Along with syringe coverage questions, the survey recorded the number of sterile syringes used on average per injecting episode. We constructed three measures of coverage: one adapted from Bluthenthal et al. (2007), the McCormack et al. measure, and a new coverage measure that included use of multiple syringes. Predictors of multiple syringe use and insufficient coverage (<100% of injecting episodes using a sterile syringe) using the new measure, were tested in logistic regression and the ability of the measures to discriminate key risk behaviours was compared using ROC curve analysis. 134 (16%) participants reported needing multiple syringes per injecting episode. Women showed significantly increased odds of multiple syringe use, as did those reporting injection related injuries/diseases and injecting of opioid substitution drugs or pharmaceutical opioids. Levels of insufficient coverage across the three measures were substantial (20%-28%). ROC curve analysis suggested that our new measure was no better at discriminating injecting risk behaviours than the existing measures. Based on our findings, there appears to be little need for adding a multiple syringe use parameter to existing coverage formulae. Hence, we recommend that multiple syringe use is not included in the measurement of individual-level syringe coverage. Copyright © 2017 Elsevier B.V. All rights reserved.
Injection System for Multi-Well Injection Using a Single Pump
Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.
2015-01-01
Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014
An analytical study on groundwater flow in drainage basins with horizontal wells
NASA Astrophysics Data System (ADS)
Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Li, Hailong
2014-06-01
Analytical studies on release/capture zones are often limited to a uniform background groundwater flow. In fact, for basin-scale problems, the undulating water table would lead to the development of hierarchically nested flow systems, which are more complex than a uniform flow. Under the premise that the water table is a replica of undulating topography and hardly influenced by wells, an analytical solution of hydraulic head is derived for a two-dimensional cross section of a drainage basin with horizontal injection/pumping wells. Based on the analytical solution, distributions of hydraulic head, stagnation points and flow systems (including release/capture zones) are explored. The superposition of injection/pumping wells onto the background flow field leads to the development of new internal stagnation points and new flow systems (including release/capture zones). Generally speaking, the existence of n injection/pumping wells would result in up to n new internal stagnation points and up to 2n new flow systems (including release/capture zones). The analytical study presented, which integrates traditional well hydraulics with the theory of regional groundwater flow, is useful in understanding basin-scale groundwater flow influenced by human activities.
[Study of the intracerebral connections after intracortical administration of glutamate].
Otellin, V A; Rybakov, V L; Grigor'ev, I P
1980-10-01
Various microdoses of monosubstituted sodium L-glutamate (MSG) were injected into zone AI of the cat cerebral acoustic cortex. In 2 h--14 days, it was stated light optically that the place of injection was slightly stained, and most of neurons failed to stain. At the place of MSG injection, electron microscopic investigation revealed neurons with various degree of pathologic changes up to the lethal ones. Astroglia was edematous, oligodendrocytes and pericytes had normal appearance. In field 4 and in zone AII of the acoustic cortex, separate neural cells with sharply increasing number of ribosomes and polysomes were noted. Anterograde axonal degeneration in the lesioned neurons and their terminals was revealed in frontal sections impregnated after Wiitanen. In the cortical field 7, in zones AII, AIV, Ep of the acoustic cortex, in the head of the nucleus caudatus and in the internal geniculate body, terminal boutons degenerating after the dark type and at the same time as after surgical extirpation of zone AI were revealed. Owing to the fact that the lesions are of local character and the trauma is small, it is possible to use neuronal glutamate-induced degeneration as a method for investigating intracerebral connections.
NASA Astrophysics Data System (ADS)
Kaye, Andrew J.; Cho, Jaehyun; Basu, Nandita B.; Chen, Xiaosong; Annable, Michael D.; Jawitz, James W.
2008-11-01
This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction ( Rj) vs. mass reduction ( Rm) relationships ( Rj( Rm)): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the Rj( Rm) relationship. All of the single-flushing experiments exhibited similar Rj( Rm) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The Rj( Rm) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less Rj for a given Rm. UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict Rj( Rm) relationships for non-uniformly distributed NAPL sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbaresi, P.; Fabri, M.; Conti, F.
Experiments were carried out on cats to ascertain whether corticocortical neurons of somatosensory areas I (SI) and II (SII) could be labelled by retrograde axonal transport of D-(/sup 3/H)aspartate (D-(/sup 3/H)Asp). This tritiated enantiomer of the amino acid aspartate is (1) taken up selectively by axon terminals of neurons releasing aspartate and/or glutamate as excitatory neurotransmitter, (2) retrogradely transported and accumulated in perikarya, (3) not metabolized, and (4) visualized by autoradiography. A solution of D-(/sup 3/H)Asp was injected in eight cats in the trunk and forelimb zones of SI (two cats) or in the forelimb zone of SII (six cats).more » In order to compare the labelling patterns obtained with D-(/sup 3/H)Asp with those resulting after injection of a nonselective neuronal tracer, horseradish peroxidase (HRP) was delivered mixed with the radioactive tracer in seven of the eight cats. Furthermore, six additional animals received HRP injections in SI (three cats; trunk and forelimb zones) or SII (three cats; forelimb zone). D-(/sup 3/H)Asp retrograde labelling of perikarya was absent from the ipsilateral thalamus of all cats injected with the radioactive tracer but a dense terminal plexus of anterogradely labelled corticothalamic fibers from SI and SII was observed, overlapping the distribution area of thalamocortical neurons retrogradely labelled with HRP from the same areas. D-(/sup 3/H)Asp-labelled neurones were present in ipsilateral SII (SII-SI association neurones) in cats injected in SI. In these animals a bundle of radioactive fibres was observed in the rostral portion of the corpus callosum entering the contralateral hemisphere. There, neurones retrogradely labelled with silver grains were present in SI (SI-SI callosal neurons).« less
NASA Astrophysics Data System (ADS)
Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.
2017-12-01
During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.
Cadaveric Assessment of Lip Injections: Locating the Serious Threats.
Tansatit, Tanvaa; Apinuntrum, Prawit; Phetudom, Thavorn
2017-04-01
Lip augmentation could be a possible cause of blindness following filler injections. This study evaluated the risk by simulating clinical scenarios of marginal injections to the upper and lower lips and then evaluated the risk of vascular injuries. A 22G cannula was inserted bilaterally along the wet-dry junction of the upper and lower lip margins in fifteen cadavers, and then both lips were dissected to verify possible injuries to the superior and inferior labial arteries. The position of the labial arteries in the vermilion zone was documented to determine the appropriate injection technique. In the marginal injections to the lips, arterial injuries occurred at the medial segment of the vermilion zone of both the upper and lower lips, at the terminal part of the labial arteries or a distal branch. Considering arterial anatomy, the upper lip has a higher chance of arterial injury than the lower lip. The cannula should not be inserted in the submucosa as it is recommended to evert the vermilion because both the superior and inferior labial arteries are located in the submucosa of the medial and middle segments of the vermilion in all specimens. Awareness of the possibility of vascular injury is necessary during injections of the medial segments of the vermilion of the lips. Vermilion border and marginal injections are recommended for safe and effective lip augmentation. Deep injection around the oral commissure and submucosal injection of the medial and middle segments of the vermilion zone are prohibited because of the high risk of arterial injury. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Lee, Kiera-Nicole; Pellom, Samuel T.; Oliver, Ericka; Chirwa, Sanika
2014-01-01
Though not commonly used in behavior tests guinea pigs may offer subtle behavior repertoires that better mimic human activity and warrant study. To test this, 31 Hartley guinea pigs (male, 200–250 g) were evaluated in PhenoTyper cages using the video-tracking EthoVision XT 7.0 software. Results showed that guinea pigs spent more time in the hidden zone (small box in corner of cage) than the food/water zone, or arena zone. Guinea pigs exhibited thigmotaxis (a wall following strategy) and were active throughout the light and dark phases. Eating and drinking occurred throughout the light and dark phases. An injection of 0.25 mg/kg SCH23390, the dopamine D1 receptors (D1R) antagonist, produced significant decreases in time spent in the hidden zone. There were insignificant changes in time spent in the hidden zone for guinea pigs treated with 7.5 mg SKF38393 (D1R agonist), 1.0 mg/kg sulpiride (D2R antagonist), and 1.0 or 10.0 mg/kg methamphetamine. Locomotor activity profiles were unchanged after injections of saline, SKF38393, SCH23390 and sulpiride. By contrast, a single injection or repeated administration for 7 days of low-dose methamphetamine induced transient hyperactivity but this declined to baseline levels over the 22-hour observation period. Guinea pigs treated with high-dose methamphetamine displayed sustained hyperactivity and travelled significantly greater distances over the circadian cycle. Subsequent 7-day treatment with high-dose methamphetamine induced motor sensitization and significant increases in total distances moved relative to single drug injections or saline controls. These results highlight the versatility and unique features of the guinea pig for studying brain-behavior interactions. PMID:24436154
Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo.
Maeda, R; Kobayashi, A; Sekine, R; Lin, J J; Kung, H; Maéno, M
1997-07-01
This study analyzes the expression and the function of Xenopus msx-1 (Xmsx-1) in embryos, in relation to the ventralizing activity of bone morphogenetic protein-4 (BMP-4). Expression of Xmsx-1 was increased in UV-treated ventralized embryos and decreased in LiCl-treated dorsalized embryos at the neurula stage (stage 14). Whole-mount in situ hybridization analysis showed that Xmsx-1 is expressed in marginal zone and animal pole areas, laterally and ventrally, but not dorsally, at mid-gastrula (stage 11) and late-gastrula (stage 13) stages. Injection of BMP-4 RNA, but not activin RNA, induced Xmsx-1 expression in the dorsal marginal zone at the early gastrula stage (stage 10+), and introduction of a dominant negative form of BMP-4 receptor RNA suppressed Xmsx-1 expression in animal cap and ventral marginal zone explants at stage 14. Thus, Xmsx-1 is a target gene specifically regulated by BMP-4 signaling. Embryos injected with Xmsx-1 RNA in dorsal blastomeres at the 4-cell stage exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Histological observation and immunostaining revealed that these embryos had a large block of muscle tissue in the dorsal mesodermal area instead of notochord. On the basis of molecular marker analysis, however, the injection of Xmsx-1 RNA did not induce the expression of alpha-globin, nor reduce cardiac alpha-actin in dorsal marginal zone explants. Furthermore, a significant amount of alpha-actin was induced and alpha-globin was turned off in the ventral marginal zone explants injected with Xmsx-1. These results indicated that Xmsx-1 is a target gene of BMP-4 signaling, but possesses a distinct activity on dorsal-ventral patterning of mesodermal tissues.
Chiu, Tien-Lung; Lee, Pei-Yu
2012-01-01
In this paper, we investigate the carrier injection and transport characteristics in iridium(III)bis[4,6-(di-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) doped phosphorescent organic light-emitting devices (OLEDs) with oxadiazole (OXD) as the bipolar host material of the emitting layer (EML). When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL) into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL) spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD. PMID:22837713
NASA Astrophysics Data System (ADS)
Chambon, J.; Lemming, G.; Manoli, G.; Broholm, M. M.; Bjerg, P.; Binning, P. J.
2011-12-01
Enhanced Reductive Dechlorination (ERD) has been successfully used in high permeability media, such as sand aquifers, and is considered to be a promising technology for low permeability settings. Pilot and full-scale applications of ERD at several sites in Denmark have shown that the main challenge is to get contact between the injected bacteria and electron donor and the contaminants trapped in the low-permeability matrix. Sampling of intact cores from the low-permeability matrix has shown that the bioactive zones (where degradation occurs) are limited in the matrix, due to the slow diffusion transport processes, and this affects the timeframes for the remediation. Due to the limited ERD applications and the complex transport and reactive processes occurring in low-permeability media, design guidelines are currently not available for ERD in such settings, and remediation performance assessments are limited. The objective of this study is to combine existing knowledge from several sites with numerical modeling to assess the effect of the injection interval, development of bioactive zones and reaction kinetics on the remediation efficiency for ERD in diffusion-dominated media. A numerical model is developed to simulate ERD at a contaminated site, where the source area (mainly TCE) is located in a clayey till with fractures and interbedded sand lenses. Such contaminated sites are common in North America and Europe. Hydro-geological characterization provided information on geological heterogeneities and hydraulic parameters, which are relevant for clay till sites in general. The numerical model couples flow and transport in the fracture network and low-permeability matrix. Sequential degradation of TCE to ethene is modeled using Monod kinetics, and the kinetic parameters are obtained from laboratory experiments. The influence of the reaction kinetics on remediation efficiency is assessed by varying the biomass concentration of the specific degraders. The injected reactants (donor and bacteria) are assumed to spread in horizontal injection zones of various widths, depending on the development of bioactive zones. These injection zones are spaced at various intervals over depth, corresponding to the injection interval chosen. The results from the numerical model show that remediation timeframes can be reduced significantly by using closely spaced injection intervals and by ensuring the efficient spreading of the reactants into the clay till matrix. In contrast the reaction kinetics affect mass removal only up to a point where diffusive transport becomes limiting. Based on these results, guidelines on when ERD can be an effective remediation strategy in practice are provided. These take the form of dimensionless groupings (such as the Damkohler number), which combine site specific (physical and biogeochemical) and design parameters, and graphs showing how the main parameters affect remediation timeframes. Finally it is shown how model results can be used as input to other decision making tools such as life cycle assessment to guide remedial choices.
Method for controlling corrosion in thermal vapor injection gases
Sperry, John S.; Krajicek, Richard W.
1981-01-01
An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.
Mateas, Douglas J; Tick, Geoffrey R; Carroll, Kenneth C
2017-09-01
Widely used flushing and in-situ destruction based remediation techniques (i.e. pump-and treat, enhanced-solubilization, and chemical oxidation/reduction) for sites contaminated by nonaqueous phase liquid (NAPL) contaminant sources have been shown to be ineffective at complete mass removal and reducing aqueous-phase contaminant of concern (COC) concentrations to levels suitable for site closure. A remediation method was developed to reduce the aqueous solubility and mass-flux of COCs within NAPL through the in-situ creation of a NAPL mixture source-zone. In contrast to remediation techniques that rely on the rapid removal of contaminant mass, this technique relies on the stabilization of difficult-to-access NAPL sources to reduce COC mass flux to groundwater. A specific amount (volume) of relatively insoluble n-hexadecane (HEXDEC) or vegetable oil (VO) was injected into a trichloroethene (TCE) contaminant source-zone through a bench-scale flow cell port (i.e. well) to form a NAPL mixture of targeted mole fraction (TCE:HEXDEC or TCE:VO). NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE to design optimal NAPL (HEXDEC or VO) injection volumes for the flow-cell experiments. The NAPL-stabilization flow-cell experiments initiated and sustained significant reductions in COC concentration and mass flux due to a combination of both reduced relative permeability (increased NAPL-saturation) and via modification of NAPL composition (decreased TCE mole fraction). Variations in remediation performance (i.e. impacts on TCE concentration and mass flux reduction) between the different HEXDEC injection volumes were relatively minor, and therefore inconsistent with Raoult's Law predictions. This phenomenon likely resulted from non-uniform mixing of the injected HEXDEC with TCE in the source-zone. VO injection caused TCE concentrations and mass-flux to decrease more rapidly than with HEXDEC injections. This phenomenon occurred because the injected VO was observed to mix more uniformly with TCE in the source-zone due to a lower mobilization potential. The relative lower density differences (buoyancy effects) between VO and the flushing solution (water) was the primary factor contributing to the lower mobilization potential for VO. Overall, this study indicated that the delivery of HEXDEC or VO into the toxic TCE source-zone was effective in significantly reducing contaminant aqueous-phase concentration and mass-flux. However, the effectiveness of this in-situ NAPL stabilization technique depends on source delivery, uniform mixing of amendment, and that the amendment remains immobilized within and around the NAPL contaminant source. Copyright © 2017 Elsevier B.V. All rights reserved.
Eyuboglu, Atilla Adnan; Uysal, Cagri A; Ozgun, Gonca; Coskun, Erhan; Markal Ertas, Nilgun; Haberal, Mehmet
2018-03-01
Stasis zone is the surrounding area of the coagulation zone which is an important part determining the extent of the necrosis in burn patients. In our study we aim to salvage the stasis zone by injecting adipose derived stromal vascular fraction (ADSVF). Thermal injury was applied on dorsum of Sprague-Dawley rats (n=20) by the "comb burn" model as described previously. When the burn injury was established on Sprague-Dawley rats (30min); rat dorsum was separated into 2 equal parts consisting of 4 burn zones (3 stasis zone) on each pair. ADSVF cells harvested from inguinal fat pads of Sprague-Dawley rats (n=5) were injected on the right side while same amount of phosphate buffered saline (PBS) injected on the left side of the same animal. One week later, average vital tissue on the statis zone was determined by macroscopy, angiography and microscopy. Vascular density, inflammatory cell density, gradient of fibrosis and epithelial thickness were determined via immunohistochemical assay. Macroscopic stasis zone tissue viability (32±3.28%, 57±4.28%) (p<0.01), average number of vessels (10.28±1.28, 19.43±1.72) (p<0.01), capillary count (15.67±1.97, 25.35±2.15) (p<0.01) vascular density (1.55±0.38, 2.14±0.45) (p<0.01) epithelial thickness (0.014±0.009mm, 0.024±0.0011mm) were higher on ADSVF side. Fibrosis gradient (1.87±0.51, 1.50±0.43) (p<0.01) and inflammatory cell density (1.33±0.40, 1.20±0.32) (p<0.01) were higher on the PBS side. Macroscopic and microscopic findings determined that ADSVF has a statistically significant benefit for salvaging stasis zone on acute burn injuries. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
40 CFR 147.2920 - Operating requirements for wells authorized by permit.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (c) Injection pressure at the wellhead shall be limited so that it does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any UDSW. (d) Injection wells or projects...
40 CFR 147.2920 - Operating requirements for wells authorized by permit.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (c) Injection pressure at the wellhead shall be limited so that it does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any UDSW. (d) Injection wells or projects...
40 CFR 147.2920 - Operating requirements for wells authorized by permit.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (c) Injection pressure at the wellhead shall be limited so that it does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any UDSW. (d) Injection wells or projects...
40 CFR 147.2920 - Operating requirements for wells authorized by permit.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Injection pressure at the wellhead shall be limited so that it does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any UDSW. (d) Injection wells or projects...
Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Q.; Birkholzer, J.T.; Mehnert, E.
Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of highmore » injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.« less
Kim, Kyung Min; Kim, Jae Hui; Chang, Young Suk; Kim, Jong Woo; Kim, Chul Gu
2018-01-01
To evaluate long-term changes in visual acuity and retinal microstructure in patients with neovascular age-related macular degeneration (AMD) who had maintained dry macula after initial treatment. This retrospective observational study included 55 eyes that were diagnosed with neovascular AMD, were treated with three monthly ranibizumab injections, and maintained dry macula during a two-year follow-up. Best-corrected visual acuity (BCVA) at three months and at the final follow-up were compared, and the degree of visual improvement was compared between eyes with and without improvement of the ellipsoid zone. In addition, the incidence of improvement of the ellipsoid zone was compared between eyes with different extents of disruption. The mean follow-up period was 30.3 ± 4.1 months. BCVA at three months and at the final follow-up was 0.51 ± 0.46 and 0.45 ± 0.49 (P<0.001). Among 35 eyes that exhibited >200 μm of disruption of the ellipsoid zone, 15 (42.9%) showed improvement of the ellipsoid zone, and the improvement in BCVA was greater in these eyes than that in the remaining 20 eyes (P=0.021). A higher incidence of improvement of the ellipsoid zone was noted in eyes with 200 to 800 μm of disruption than in eyes with >800 μm of disruption (P<0.001). Long-term improvement in visual acuity was noted in eyes that had maintained dry macula after three ranibizumab injections. The status of the ellipsoid zone at three months was closely associated with visual improvement.
Determination of benzylpenicillin in pharmaceuticals by capillary zone electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, A.M. Jr.; Sepaniak, M.J.
A rapid and direct method is described for the determination of benzylpenicillin (penicillin G) in pharmaceutical preparations. The method involves very little sample preparation and total analysis time for duplicate results is less 30 minutes per sample. The method takes advantage of the speed and separating power of capillary zone electrophoresis (CZE). Detection of penicillin is by absorption at 228 nm. An internal standard is employed to reduce sample injection error. The method was applied successfully to both tablets and injectable preparations. 14 refs., 5 figs., 3 tabs.
Aerosol Delivery for Amendment Distribution in Contaminated Vadose Zones
NASA Astrophysics Data System (ADS)
Hall, R. J.; Murdoch, L.; Riha, B.; Looney, B.
2011-12-01
Remediation of contaminated vadose zones is often hindered by an inability to effectively distribute amendments. Many amendment-based approaches have been successful in saturated formations, however, have not been widely pursued when treating contaminated unsaturated materials due to amendment distribution limitations. Aerosol delivery is a promising new approach for distributing amendments in contaminated vadose zones. Amendments are aerosolized and injected through well screens. During injection the aerosol particles are transported with the gas and deposited on the surfaces of soil grains. Resulting distributions are radially and vertically broad, which could not be achieved by injecting pure liquid-phase solutions. The objectives of this work were A) to characterize transport and deposition behaviors of aerosols; and B) to develop capabilities for predicting results of aerosol injection scenarios. Aerosol transport and deposition processes were investigated by conducting lab-scale injection experiments. These experiments involved injection of aerosols through a 2m radius, sand-filled wedge. A particle analyzer was used to measure aerosol particle distributions with time, and sand samples were taken for amendment content analysis. Predictive capabilities were obtained by constructing a numerical model capable of simulating aerosol transport and deposition in porous media. Results from tests involving vegetable oil aerosol injection show that liquid contents appropriate for remedial applications could be readily achieved throughout the sand-filled wedge. Lab-scale tests conducted with aqueous aerosols show that liquid accumulation only occurs near the point of injection. Tests were also conducted using 200 g/L salt water as the aerosolized liquid. Liquid accumulations observed during salt water tests were minimal and similar to aqueous aerosol results. However, particles were measured, and salt deposited distal to the point of injection. Differences between aqueous and oil deposition are assumed to occur due to surface interactions, and susceptibility to evaporation of aqueous aerosols. Distal salt accumulation during salt water aerosol tests suggests that solid salt forms as salt water aerosols evaporate. The solid salt aerosols are less likely to deposit, so they travel further than aqueous aerosols. A numerical model was calibrated using results from lab-scale tests. The calibrated model was then used to simulate field-scale aerosol injection. Results from field-scale simulations suggest that effective radii of influence on the scale of 8-10 meters could be achieved in partially saturated sand. The aerosol delivery process appears to be capable distributing oil amendments over considerable volumes of formation at concentrations appropriate for remediation purposes. Thus far, evaporation has limited liquid accumulation observed when distributing aqueous aerosols, however, results from salt water experiments suggest that injection of solid phase aerosols can effectively distribute water soluble amendments (electron donor, pH buffer, oxidants, etc.). Utilization of aerosol delivery could considerably expand treatment options for contaminated vadose zones at a wide variety of sites.
Diesel engine emissions reduction by multiple injections having increasing pressure
Reitz, Rolf D.; Thiel, Matthew P.
2003-01-01
Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, F.; Rutqvist, J.
2010-06-01
The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less
Subsurface storage of freshwater in South Florida; a digital analysis of recoverability
Merritt, Michael L.
1983-01-01
As part of a feasibility study of cyclic freshwater injection, digital models were implemented to analyze the relation of recovery efficiency to various hydrogeologic conditions which could prevail in brackish aquifers and to various management regimes. The analyses implemented an approach in which the control for sensitivity testing was a hypothetical aquifer representative of potential injection zones in south Florida, and parameter variations in sensitivity tests represented possible variations in aquifer conditions in the area. The permeability of the aquifer determined whether buoyancy stratification could reduce recovery efficiency. The range of permeability leading to buoyancy stratification became lower as resident fluid salinity increased. Thus, recovery efficiency was optimized by both low permeability and low resident fluid density. High levels of simulated hydrodynamic dispersion led to the lowest estimates of recovery efficiency. Advection by regional flow within the artesian injection zone could significantly affect recovery efficiency, depending upon the storage period, the volume injected, and site-specific hydraulic characteristics. Recovery efficiency was unrelated to the rate of injection or withdrawal or to the degree of penetration of permeable layers, and improved with successive cycles of injection and recovery. (USGS)
Long-term thermal effects on injectivity evolution during CO 2 storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilarrasa, Victor; Rinaldi, Antonio P.; Rutqvist, Jonny
Carbon dioxide (CO 2 ) is likely to reach the bottom of injection wells at a colder temperature than that of the storage formation, causing cooling of the rock. This cooling, together with overpressure, tends to open up fractures, which may enhance injectivity. Here, we investigate cooling effects on injectivity enhancement by modeling the In Salah CO 2 storage site and a theoretical, long-term injection case. We use stress-dependent permeability functions that predict an increase in permeability as the effective stress acting normal to fractures decreases. Normal effective stress can decrease either due to overpressure or cooling. We calibrate ourmore » In Salah model, which includes a fracture zone perpendicular to the well, obtaining a good fitting with the injection pressure measured at KB-502 and the rapid CO 2 breakthrough that occurred at the observation well KB-5 located 2 km away from the injection well. CO 2 preferentially advances through the fracture zone, which becomes two orders of magnitude more permeable than the rest of the reservoir. Nevertheless, the effect of cooling on the long-term injectivity enhancement is limited in pressure dominated storage sites, like at In Salah, because most of the permeability enhancement is due to overpressure. But, thermal effects enhance injectivity in cooling dominated storage sites, which may decrease the injection pressure by 20%, saving a significant amount of compression energy all over the duration of storage projects. Overall, our simulation results show that cooling has the potential to enhance injectivity in fractured reservoirs.« less
Long-term thermal effects on injectivity evolution during CO 2 storage
Vilarrasa, Victor; Rinaldi, Antonio P.; Rutqvist, Jonny
2017-08-22
Carbon dioxide (CO 2 ) is likely to reach the bottom of injection wells at a colder temperature than that of the storage formation, causing cooling of the rock. This cooling, together with overpressure, tends to open up fractures, which may enhance injectivity. Here, we investigate cooling effects on injectivity enhancement by modeling the In Salah CO 2 storage site and a theoretical, long-term injection case. We use stress-dependent permeability functions that predict an increase in permeability as the effective stress acting normal to fractures decreases. Normal effective stress can decrease either due to overpressure or cooling. We calibrate ourmore » In Salah model, which includes a fracture zone perpendicular to the well, obtaining a good fitting with the injection pressure measured at KB-502 and the rapid CO 2 breakthrough that occurred at the observation well KB-5 located 2 km away from the injection well. CO 2 preferentially advances through the fracture zone, which becomes two orders of magnitude more permeable than the rest of the reservoir. Nevertheless, the effect of cooling on the long-term injectivity enhancement is limited in pressure dominated storage sites, like at In Salah, because most of the permeability enhancement is due to overpressure. But, thermal effects enhance injectivity in cooling dominated storage sites, which may decrease the injection pressure by 20%, saving a significant amount of compression energy all over the duration of storage projects. Overall, our simulation results show that cooling has the potential to enhance injectivity in fractured reservoirs.« less
Subsurface storage of freshwater in south Florida; a prospectus
Merritt, M.L.; Meyer, F.W.; Sonntag, W.H.; Fitzpatrick, D.J.
1983-01-01
A method of increasing storage capacity for freshwater in south Florida is to use brackish artesian aquifers as reservoirs. In this way, water deficiencies occurring during the annual dry season can be offset by surplus water obtained during the wet season and injected underground. Most of south Florida is underlain by several deep, confined, carbonate waterbearing zones which might be suitable for freshwater storage. These zones are in the Avon Park, Ocala, Suwannee, Tampa, and Hawthorn Formations. Experimental freshwater injection systems have been operated at five locations with promising, but not fully definitive, results. A determination of the feasibility of freshwater injection at a selected site begins with an assessment of the local geologic suitability. Verification of feasibility, however, requires injection and recovery tests to be performed at the site. Recovery efficiency, a measure of the success of the operation, is the amount of potable water, expressed as a percentage of the volume injected, which can be recovered before its salinity, or the concentration of other chemical constituents present in the native aquifer water, increases to the point that the recovered water is no longer useable. (USGS)
NASA Astrophysics Data System (ADS)
Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas
2016-09-01
Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.
Geohydrology of the Aguirre and Pozo Hondo areas, southern Puerto Rico
Graves, R.P.
1992-01-01
The subsurface geology of the Aguirre and Pozo Hondo areas in southern Puerto Rico is primarily a fractured igneous volcanic rock (andesite) with three distinct zones: regolith, transition zone, and bedrock. Alluvial deposits are present, locally in each area, as well as weathered low- grade metamorphosed volcanics with a schistose texture and a vertical plane of foliation. A thin, water-table aquifer exists in the study areas. Ground water in this aquifer occurs primarily in the regolith and transition zone. The depth to the water table ranges from less than 1 foot to 75 feet below land surface. Ground- water flow out of the study areas is to the south into the southern coastal plain. The results of 2 multiple-well aquifer tests and 21 single-well slug injection and removal tests indicate that transmissivities range from 175 to 5,700 feet squared per day; hydraulic conductivities, from 0.02 to 160 feet per day; and storage coefficients from 0.02 to 0.2. The ground water in the study areas is of the calcium carbonate type. With the exception of dissolved solids, which were as much as 1,110 milligrams per liter, concentrations of common constituents in ground water did not exceed the U.S. Environmental Protection Agency's drinking water criteria.
NASA Astrophysics Data System (ADS)
Chaput, Marie; Famin, Vincent; Michon, Laurent
2017-10-01
To understand the volcano-tectonic history of Piton des Neiges (the dormant volcano of La Réunion), we measured in the field the orientation of sheeted intrusions and deformation structures, and interpreted the two datasets separately with a paleostress inversion. Results show that the multiple proposed rift zones may be simplified into three trends: (1) a N30°E, 5 km wide linear rift zone running to the south of the edifice, active in the shield building (≥ 2.48-0.43 Ma) and terminal stages (190-22 ka); (2) a curved N110 to N160°E rift zone, widening from 5 km to 10 km toward the NW flank, essentially active during the early emerged shield building (≥ 1.3 Ma); and (3) two sill zones, ≤ 1 km thick in total, in the most internal parts of the volcano, active in the shield building and terminal stages. In parallel, deformation structures reveal that the tectonics of the edifice consisted in three end-member stress regimes sharing common stress axes: (1) NW-SE extension affecting in priority the south of the edifice near the N30°E rift zone; (2) NNE-SSW extension on the northern half of the volcano near the N110-160°E rift zone; (3) compression occurring near the sill zones, with a NE-SW or NW-SE maximum principal stress. These three stress regimes are spatially correlated and mechanically compatible with the injection trends. Combined together, our data show that the emerged Piton des Neiges underwent sector spreading delimited by perpendicular rift zones, as observed on Piton de la Fournaise (the active volcano of La Réunion). Analogue experiments attribute such sector spreading to brittle edifices built on a weaker substratum. We therefore conclude that La Réunion volcanoes are both brittle, as opposed to Hawaiian volcanoes or Mount Etna whose radial spreading is usually attributed to a ductile body within the edifices.
NASA Astrophysics Data System (ADS)
Sagi, D. A.; De Paola, N.; McCaffrey, K. J. W.; Holdsworth, R. E.
2016-10-01
To better understand fault zone architecture and fluid flow in mesoscale fault zones, we studied normal faults in chalks with displacements up to 20 m, at two representative localities in Flamborough Head (UK). At the first locality, chalk contains cm-thick, interlayered marl horizons, whereas at the second locality marl horizons were largely absent. Cm-scale displacement faults at both localities display ramp-flat geometries. Mesoscale fault patterns in the marl-free chalk, including a larger displacement fault (20 m) containing multiple fault strands, show widespread evidence of hydraulically-brecciated rocks, whereas clays smears along fault planes, and injected into open fractures, and a simpler fault zone architecture is observed where marl horizons are present. Hydraulic brecciation and veins observed in the marl-free chalk units suggest that mesoscale fault patterns acted as localized fault conduit allowing for widespread fluid flow. On the other hand, mesoscale fault patterns developed in highly fractured chalk, which contains interlayered marl horizons can act as localized barriers to fluid flow, due to the sealing effect of clays smears along fault planes and introduced into open fractures in the damage zone. To support our field observations, quantitative analyses carried out on the large faults suggest a simple fault zone in the chalk with marl units with fracture density/connectivity decreasing towards the protolith. Where marls are absent, density is high throughout the fault zone, while connectivity is high only in domains nearest the fault core. We suggest that fluid flow in fractured chalk is especially influenced by the presence of marls. When present, it can smear onto fault planes, forming localised barriers. Fluid flow along relatively large displacement faults is additionally controlled by the complexity of the fault zone, especially the size/geometry of weakly and intensely connected damage zone domains.
The travel-time ellipse: An approximate zone of transport
Almendinger, J.E.
1994-01-01
A zone of transport for a well is defined as the area in the horizontal plane bounded by a contour of equal ground-water travel time to the well. For short distances and ground-water travel times near a well, the potentiometric surface may be simulated analytically as that for a fully penetrating well in a uniform flow field. The zone of transport for this configuration is nearly elliptical. A simple method is derived to calculate a travel-time ellipse that approximates the zone of transport for a well in a uniform flow field. The travel-time ellipse was nearly congruent with the exact solution for the theoretical zone of transport for ground-water travel times of at least 10 years and for aquifer property values appropriate for southeastern Minnesota. For distances and travel times approaching infinity, however, the ellipse becomes slightly wider at its midpoint and narrower near its upgradient boundary than the theoretical zone of transport. The travel-time ellipse also may be used to simulate the plume area surrounding an injection well. However, the travel-time ellipse is an approximation that does not account for the effect of dispersion in enlarging the true area of an injection plume or zone of transport; hence, caution is advised in the use and interpretation of this simple construction.
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1981-01-01
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
Fuel injection staged sectoral combustor for burning low-BTU fuel gas
Vogt, Robert L.
1985-02-12
A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.
40 CFR 146.32 - Construction requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... during drillings. (c) Where the injection zone is a formation which is naturally water-bearing the... characteristics of the formation fluids. (d) Where the injection formation is not a water-bearing formation, the... Section 146.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...
Kol, Amir; Wood, Joshua A; Carrade Holt, Danielle D; Gillette, Jessica A; Bohannon-Worsley, Laurie K; Puchalski, Sarah M; Walker, Naomi J; Clark, Kaitlin C; Watson, Johanna L; Borjesson, Dori L
2015-04-15
Intravenous (IV) injection of mesenchymal stem cells (MSCs) is used to treat systemic human diseases and disorders but is not routinely used in equine therapy. In horses, MSCs are isolated primarily from adipose tissue (AT) or bone marrow (BM) and used for treatment of orthopedic injuries through one or more local injections. The objective of this study was to determine the safety and lymphocyte response to multiple allogeneic IV injections of either AT-derived MSCs (AT-MSCs) or BM-derived MSCs (BM-MSCs) to healthy horses. We injected three doses of 25 × 10(6) allogeneic MSCs from either AT or BM (a total of 75 × 10(6) MSCs per horse) into five and five, respectively, healthy horses. Horses were followed up for 35 days after the first MSC infusion. We evaluated host inflammatory and immune response, including total leukocyte numbers, serum cytokine concentration, and splenic lymphocyte subsets. Repeated injection of allogeneic AT-MSCs or BM-MSCs did not elicit any clinical adverse effects. Repeated BM-MSC injection resulted in increased blood CD8(+) T-cell numbers. Multiple BM-MSC injections also increased splenic regulatory T cell numbers compared with AT-MSC-injected horses but not controls. These data demonstrate that multiple IV injections of allogeneic MSCs are well tolerated by healthy horses. No clinical signs or clinico-pathologic measurements of organ toxicity or systemic inflammatory response were recorded. Increased numbers of circulating CD8(+) T cells after multiple IV injections of allogeneic BM-MSCs may indicate a mild allo-antigen-directed cytotoxic response. Safety and efficacy of allogeneic MSC IV infusions in sick horses remain to be determined.
NASA Astrophysics Data System (ADS)
Bartak, Rico; Macheleidt, Wolfgang; Ahrns, Johannes; Grischek, Thomas
2017-11-01
In subsurface iron removal (SIR), oxygen-enriched water is injected into an aquifer to create a reaction zone. Ahrns et al. (2017) simulated a doubling of the efficiency coefficient by the inactivation of well screen sections during injection for a vertical SIR pilot well penetrating an aquifer with varying dissolved iron concentrations. The optimized injection regime was adopted conceptually in a pilot SIR test. An inflatable packer was used to manipulate the outflow distribution. The packer was inflated before the injection phase then evacuated with a vacuum pump before pumping while remaining inside the casing. Cycles with conventional injection were performed first and iron breakthrough was monitored in the pumped water. Subsequently when the packer was used, iron removal increased by 25% and the efficiency coefficient by 50% for an adopted reference value of 5.0 mg/l. Although the study site was unfavorable for SIR because of the unfavorable low alkalinity (pH in the re- and infiltrate decreased down to 4.2), the injectant could have been pretreated by the addition of alkalis prior to injection. This was not considered in the simulation and iron concentrations were above the limits commonly used in practice. However, the overall use of an optimized injection will still be presented.
Pieper, A.P.; Ryan, J.N.; Harvey, R.W.; Amy, G.L.; Illangasekare, T.H.; Metge, D.W.
1997-01-01
To test the effects of sewage-derived organic matter on virus attachment, 32P-labeled bacteriophage PRD1, linear alkylbenzene sulfonates (LAS), and tracers were injected into sewage-contaminated (suboxic, elevated organic matter) and uncontaminated (oxic, low organic matter) zones of an iron oxide-coated quartz sand and gravel aquifer on Cape Cod, MA. In the uncontaminated zone, 83% of the PRD1 were attenuated over the first meter of transport by attachment to aquifer grains. In the contaminated zone, 42% of the PRD1 were attenuated over the first meter of transport. Sewage-derived organic matter contributed to the difference in PRD1 attenuation by blocking attachment sites in the contaminated zone. At greater distances down gradient (to a total transport distance of 3.6 m), a near-constant amount of PRD1 continued to break through, suggesting that aquifer grain heterogeneities allowed a small amount of reversible attachment. Injection of an LAS mixture (25 mg L-1), a common sewage constituent, remobilized 87% of the attached PRD1 in the contaminated zone, but only 2.2% in the uncontaminated zone. LAS adsorption promoted virus recovery in the contaminated zone by altering the PRD1-surface interactions; however, the amount of LAS adsorbed was not sufficient to promote release of the attached PRD1 in the uncontaminated zone.
Kaye, Andrew J; Cho, Jaehyun; Basu, Nandita B; Chen, Xiaosong; Annable, Michael D; Jawitz, James W
2008-11-14
This study investigated the benefits of partial removal of dense nonaqueous phase liquid (DNAPL) source zones using enhanced dissolution in eight laboratory scale experiments. The benefits were assessed by characterizing the relationship between reductions in DNAPL mass and the corresponding reduction in contaminant mass flux. Four flushing agents were evaluated in eight controlled laboratory experiments to examine the effects of displacement fluid property contrasts and associated override and underride on contaminant flux reduction (R(j)) vs. mass reduction (R(m)) relationships (R(j)(R(m))): 1) 50% ethanol/50% water (less dense than water), 2) 40% ethyl-lactate/60% water (more dense than water), 3) 18% ethanol/26% ethyl-lactate/56% water (neutrally buoyant), and 4) 2% Tween-80 surfactant (also neutrally buoyant). For each DNAPL architecture evaluated, replicate experiments were conducted where source zone dissolution was conducted with a single flushing event to remove most of the DNAPL from the system, and with multiple shorter-duration floods to determine the path of the R(j)(R(m)) relationship. All of the single-flushing experiments exhibited similar R(j)(R(m)) relationships indicating that override and underride effects associated with cosolvents did not significantly affect the remediation performance of the agents. The R(j)(R(m)) relationship of the multiple injection experiments for the cosolvents with a density contrast with water tended to be less desirable in the sense that there was less R(j) for a given R(m). UTCHEM simulations supported the observations from the laboratory experiments and demonstrated the capability of this model to predict R(j)(R(m)) relationships for non-uniformly distributed NAPL sources.
Determining the Area of Review for Industrial Waste Disposal Wells.
1981-12-01
pressure increases sufficiently to force formation fluids and/or injected wastes up abandoned well bores to contaminate underground sources of drinking...Drilling Mud Circulating System . . 72 9. Increase in Gel Strength of Various Mud Types With Time . . . . . . . . . . . . . . . . . . 96 10. Gel... increased fluid pressure in a disposal zone which results from a waste injection operation may force injected and/or formation fluid to migrate up an
2013-08-01
remediation, ISCO, permanganate , persistence, DNAPL 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...focus on the lower-K zone 2 and surrounding higher-K matrix sand during the constant permanganate injection………………………… 45 Figure 5.1.3-3...Photographic image of the lower-K zone 2 and surrounding area after permanganate injection, exhibiting the shadow zone downgradient of the lower-K zone
Omori, Yoshinori; Honmou, Osamu; Harada, Kuniaki; Suzuki, Junpei; Houkin, Kiyohiro; Kocsis, Jeffery D
2008-10-21
The systemic injection of human mesenchymal stem cells (hMSCs) prepared from adult bone marrow has therapeutic benefits after cerebral artery occlusion in rats, and may have multiple therapeutic effects at various sites and times within the lesion as the cells respond to a particular pathological microenvironment. However, the comparative therapeutic benefits of multiple injections of hMSCs at different time points after cerebral artery occlusion in rats remain unclear. In this study, we induced middle cerebral artery occlusion (MCAO) in rats using intra-luminal vascular occlusion, and infused hMSCs intravenously at a single 6 h time point (low and high cell doses) and various multiple time points after MCAO. From MRI analyses lesion volume was reduced in all hMSC cell injection groups as compared to serum alone injections. However, the greatest therapeutic benefit was achieved following a single high cell dose injection at 6 h post-MCAO, rather than multiple lower cell infusions over multiple time points. Three-dimensional analysis of capillary vessels in the lesion indicated that the capillary volume was equally increased in all of the cell-injected groups. Thus, differences in functional outcome in the hMSC transplantation subgroups are not likely the result of differences in angiogenesis, but rather from differences in neuroprotective effects.
Quinones-Aponte, Vicente; Kotun, Kevin; Whitley, J.F.
1996-01-01
A series of freshwater subsurface injection, storage, and recovery tests were conducted at an injection-well site near Lake Okeechobee in Okeechobee County, Florida, to assess the recoverability of injected canal water from the Lower Floridan aquifer. At the study site, the Lower Floridan aquifer is characterized as having four local, relatively independent, high-permeability flow zones (389 to 398 meters, 419 to 424 meters, 456 to 462 meters, and 472 to 476 meters below sea level). Four subsurface injection, storage, and recovery cycles were performed at the Lake Okeechobee injection-well site in which volumes of water injected ranged from about 387,275 to 1,343,675 cubic meters for all the cycles, and volumes of water recovered ranged from about 106,200 to 484,400 cubic meters for cycles 1, 2, and 3. The recovery efficiency for successive cycles 2 and 3 increased from 22 to 36 percent and is expected to continue increasing with additional cycles. A comparison of chloride concentration breakthrough curves at the deep monitor well (located about 171 meters from the injection well) for cycles 1, 4, and test no. 4 (from a previous study) revealed unexpected finings. One significant result was that the concentration asymptote, expected to be reached at concentration levels equivalent or close to the injected water concentration, was instead reached at higher concentration levels. The injection to recovery rate ratio might affect the chloride concentration breakthrough curve at the deep monitor well, which could explain this unexpected behavior. Because there are four high-permeability zones, if the rate of injection is smaller than the rate of recovery (natural artesian flow), the head differential might not be transmitted through the entire open wellbore, and injected water would probably flow only through the upper high- permeability zones. Therefore, observed chloride concentration values at the deep monitor well would be higher than the concentration of the injected water and would represent a mix of water from the different high-permeability zones. A generalized digital model was constructed to simulate the subsurface injection, storage, and recovery of freshwater in the Lower Floridan aquifer at the Lake Okeechobee injection-well site. The model was constructed using a modified version of the Saturated-Unsaturated TRAnsport code (SUTRA), which simulates variable-density advective-dispersive solute transport and variable-density ground-water flow. Satisfactory comparisons of simulated to observed dimensionless chloride concentrations for the deep monitor well were obtained when using the model during the injection and recovery phases of cycle 1, but not for the injection well during the recovery phase of cycle 1 even after several attempts. This precluded the determination of the recovery efficiency values by using the model. The unsatisfactory comparisons of simulated to observed dimensionless chloride concentrations for the injection well and failure of the model to represent the field data at this well could be due to the characteristics of the Lower Floridan aquifer (at the local scale), which is cavernous or conduit in nature. To test this possibility, Reynolds numbers were estimated at varying distances from the injection well, taking into consideration two aquifer types or conceptual systems, porous media and cavernous. For the porous media conceptual system, the Reynolds numbers were greater than 10 at distances less than 1.42 meters from the injection well. Thus, application of Darcy's law to ground-water flow might not be valid at this distance. However, at the deep monitor well (171 meters from the injection well), the Reynolds number was 0.08 which is indicative of laminar porous media flow. For the cavernous conceptual system, the Reynolds numbers were greater than 2,000 at distances less than 1,000 meters from the well. This number represents the upper limit of laminar flow, which is the fundamental assumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kenan; Jacobsen, Chris
Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less
DEVELOPMENT OF A METHODOLOGY FOR REGIONAL EVALUATION OF CONFINING BED INTEGRITY
For safe underground injection of liquid waste, confining formations must be thick, extensive, and have low permeability. Recognition of faults that extend from the potential injection zone to underground sources of drinking water is critical for evaluation of confining-bed integ...
Somnam, Sarawut; Jakmunee, Jaroon; Grudpan, Kate; Lenghor, Narong; Motomizu, Shoji
2008-12-01
An automated hydrodynamic sequential injection (HSI) system with spectrophotometric detection was developed. Thanks to the hydrodynamic injection principle, simple devices can be used for introducing reproducible microliter volumes of both sample and reagent into the flow channel to form stacked zones in a similar fashion to those in a sequential injection system. The zones were then pushed to the detector and a peak profile was recorded. The determination of nitrite and nitrate in water samples by employing the Griess reaction was chosen as a model. Calibration graphs with linearity in the range of 0.7 - 40 muM were obtained for both nitrite and nitrate. Detection limits were found to be 0.3 muM NO(2)(-) and 0.4 muM NO(3)(-), respectively, with a sample throughput of 20 h(-1) for consecutive determination of both the species. The developed system was successfully applied to the analysis of water samples, employing simple and cost-effective instrumentation and offering higher degrees of automation and low chemical consumption.
Freethey, Geoffrey W.
1994-01-01
In the Altamont-Bluebell Petroleum Field within the Uinta Basin of Utah, saline oil-production water is being injected into the Duchesne River Formation. On the basis of geohydrologic information, a qualitative assessment of the possible effects of this injection indicates that fresh groundwater in certain areas of the Duchesne River formation may be more susceptible than water in other areas to becoming mixed with injected oil-production water. The reason for this possible mixing is because these areas containing the susceptible groundwater lack a thick shale layer above the disposal zone, as indicated in geophysical logs. In other areas, naturally occurring moderately saline water exists at shallow depths and may be withdrawn from water wells completed more than 200 ft below land surface. Additional geohydrologic information will need to be collected to allow investigators to make a quantitative determination of the rate of horizontal and vertical migration of injected oil-production water within and above the disposal zone.
NASA Astrophysics Data System (ADS)
Plamondon, Etienne
Using biodiesel/diesel fuel blends and multiple injection strategies in diesel engines have shown promising results in improving the trade-off relationship between nitrous oxides and particulate matters, but their effects are still not completely understood. In this context, this thesis focuses on the characterization of the multiple injection strategies and biodiesel impacts on pollutant emissions, performances and injection system behavior. To reach this goal, an experimental campaign on a diesel engine was performed and a model simulating the injection process was developed. The engine tests at low load with pilot injection allowed the reduction of NOx emissions up to 27% and those of PM up to 22.3% compared to single injection, provided that a precise tuning of the injection parameters was previously realized. This simultaneous reduction is explained by the reduction of the premixed combustion phase and injected fuel quantity during principal injection when a pilot injection is used. With triple injection for the tested engine load, the post-injection did not result in PM reduction since it contributes by itself to the PM production while the preinjection occurred too soon to burn conveniently and caused perturbations in the injection system as well. Using B20 blend in single injection caused a PM increase and a NOx reduction which might be explained by the poorer fuel atomization. However, pilot injection with B20 allowed to get a simultaneous reduction of NOx and PM, as observed with diesel. An injection simulation model was also developed and experimentally validated for different injection pressures as well as different energizing times and dwell times. When comparing the use of biodiesel with diesel, simulation showed that there was a critical energizing time for which both fuels yielded the same injection duration. For shorter energizing times, the biodiesel injection duration was shorter than for diesel, while longer energizing times presented the opposite behavior. The injection duration for the different blends falls between the pure-fuel situations. The use of constant properties (density, viscosity) and constant discharge coefficient showed no major loss in the precision of the flow-rate estimation, but revealed a great gain in calculus time. The use of pressure dependent bulk modulus and fluctuating injection pressure proved to be essential in order to have no drastic changes in the final predictions. Finally, the proposed model relevance in a case of engine testing was demonstrated with multiple injection strategies as well as with biodiesel since it allows a precise adjustment of the injection parameters while considering the dynamic effects caused by the injection. Keywords : Diesel engine, multiple injection, biodiesel, pollutant emission, heat release, mathematical model, injection simulation.
Nilsson, Bertel; Tzovolou, Dimitra; Jeczalik, Maciej; Kasela, Tomasz; Slack, William; Klint, Knud E; Haeseler, Frank; Tsakiroglou, Christos D
2011-03-01
A steam injection pilot-scale experiment was performed on the unsaturated zone of a strongly heterogeneous fractured soil contaminated by jet fuel. Before the treatment, the soil was stimulated by creating sub-horizontal sand-filled hydraulic fractures at three depths. The steam was injected through one hydraulic fracture and gas/water/non-aqueous phase liquid (NAPL) was extracted from the remaining fractures by applying a vacuum to extraction wells. The injection strategy was designed to maximize the heat delivery over the entire cell (10 m × 10 m × 5 m). The soil temperature profile, the recovered NAPL, the extracted water, and the concentrations of volatile organic compounds (VOCs) in the gas phase were monitored during the field test. GC-MS chemical analyses of pre- and post-treatment soil samples allowed for the quantitative assessment of the remediation efficiency. The growth of the heat front followed the configuration of hydraulic fractures. The average concentration of total hydrocarbons (g/kg of soil) was reduced by ∼ 43% in the upper target zone (depth = 1.5-3.9 m) and by ∼ 72% over the entire zone (depth = 1.5-5.5 m). The total NAPL mass removal based on gas and liquid stream measurements and the free-NAPL product were almost 30% and 2%, respectively, of those estimated from chemical analyses of pre- and post-treatment soil samples. The dominant mechanisms of soil remediation was the vaporization of jet fuel compounds at temperatures lower than their normal boiling points (steam distillation) enhanced by the ventilation of porous matrix due to the forced convective flow of air. In addition, the significant reduction of the NAPL mass in the less-heated deeper zone may be attributed to the counter-current imbibition of condensed water from natural fractures into the porous matrix and the gravity drainage associated with seasonal fluctuations of the water table. Copyright © 2010 Elsevier Ltd. All rights reserved.
Geomechanics-Based Stochastic Analysis of Injection- Induced Seismicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghassemi, Ahmad
The production of geothermal energy from dry and low permeability reservoirs is achieved by water circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or pre-existing fracture planes and possibly their propagations.more » The microseismic signals contain information about the sources of energy that can be used for understanding the hydraulic fracturing process and the created reservoir properties. Detection and interpretation of microseismic events is useful for estimating the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir characterization (SBRC). Although, progress has been made by scientific & geothermal communities for quantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate, delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties and in-situ stress in the data inversion process. The objective of this research and technology developments was to develop a 3D SBRC model that addresses these shortcomings by taking into account hydro-thermo-poro-mechanical mechanisms associated with injection and utilizing a state-of-the-art stochastic inversion procedure. The approach proposed herein is innovative and significantly improves the existing SBCR technology (e.g., Shapiro et al. 2003) for geothermal reservoirs in several ways. First, the current scope of the SBRC is limited with respect to the physical processes considered and the rock properties used. Usually, the geomechanics analyses within SBRC is limited to the pore pressure diffusion in the rock mass, which is modeled using a time-dependent parabolic equation and solved using a finite element algorithm with either a line or a point source. However, water injection induces both poroelastic and thermoelastic stresses in the rock mass which affect the stress state. In fact, it has been suggested that thermoelastic stresses can play a dominant role in reservoir seismicity (Ghassemi et al., 2007). We include these important effects by using a fully-coupled poro-thermoelastic constitutive equations for the rock mass which will be solved using a 3D finite element model with more realistic injection geometries such as multiple injection/extraction sources (and in fractures), uncertainty in the material parameters and the in-situ stress distribution to better reflect the pore pressure and stress distributions. In addition, we developed a 3D stochastic fracture network model to study MEQ generation in fracture rocks. The model was verified using laboratory experiments, and calibrated and applied to Newberry EGS stimulation. In previous SBRC approaches, the triggering of micro-seismicity is modeled base on the assumption that the prior stochastic criticality model of the rock mass is a valid and adequate description. However, this assumption often does not hold in the field. Thus, we improved upon the current SBRC approach by using the micro-seismic responses to estimate the hydraulic diffusivity as well as the criticality distribution itself within the field. In this way, instead of relying on our a priori knowledge of criticality distribution, we combine an initial probabilistic description of criticality with the information contained in microseismic measurements to arrive at criticality solutions that are conditioned on both field data and our prior knowledge. Previous SBRC have relied upon a deterministic inversion approach to estimate the permeability, and the extent of the stimulated zone, whereas a stochastic inversion algorithm that recognizes and quantifies the uncertainties in the prior model, the time evolution of pore pressure distributions (modeling errors), and the observed seismic events is developed and used herein to realistically assess the quality of the solution. Finally, we developed a technique for processing discrete MEQ data to estimate fracture network properties such as dip and dip directions. The approach was successfully applied to the Fenton Hill HRD experiment and the Newberry EGS with results in good agreement with field observations.« less
Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.
Takaki, Yasuhiro; Nakaoka, Mitsuki
2016-08-08
Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.
Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.
2006-01-01
Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 μM) and ammonium (19 to 625 μM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02–0.28 μmol (L aquifer)−1 h−1 with in situ oxygen concentrations and up to 0.81 μmol (L aquifer)−1 h−1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.
77 FR 35852 - Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... 13045, Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may... 1625-AA00 Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone AGENCY...
40 CFR 144.55 - Corrective action.
Code of Federal Regulations, 2010 CFR
2010-07-01
... injection zone does not exceed hydrostatic pressure at the site of any improperly completed or abandoned... the case of Class II wells operating over the fracture pressure of the injection formation, all known wells within the area of review penetrating formations affected by the increase in pressure. For such...
40 CFR 147.305 - Requirements for all wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 147.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... (2) A Caliper log. (b) The owner or operator of a new injection well cased with plastic (PVC, ABS... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...
40 CFR 147.305 - Requirements for all wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 147.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... (2) A Caliper log. (b) The owner or operator of a new injection well cased with plastic (PVC, ABS... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...
40 CFR 147.305 - Requirements for all wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 147.305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... (2) A Caliper log. (b) The owner or operator of a new injection well cased with plastic (PVC, ABS... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...
SODIUM DITHIONITE INJECTIONS USED FOR CHROMIUM REDUCTION
A field-scale pilot study was conducted in 1999 at the U.S. Coast Guard Support Center in Elizabeth City, NC, to evaluate the effectiveness of injecting sodium dithionite into the upper aquifer and lower vadose zone to create a permeable reactive barrier (PRB) system utilizing na...
Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.
Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric
2013-01-01
In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties. © 2013, The Author(s). Ground Water © 2013, National Ground Water Association.
Human and bovine spinal disc mechanics subsequent to trypsin injection.
Alsup, Jeremy; Bishop, Timothy; Eggett, Dennis; Bowden, Anton E
2017-10-01
To investigate the biomechanical effects of injections of a protease on the characteristics of bovine coccygeal and human lumbar disc motion segments. Mechanics of treated tissues were measured immediately after injection and 3 h after injection. Motion segments underwent axial rotation and flexion-extension loading. Stiffness and neutral zone parameters experienced significant changes over time, with bovine tissues more strongly affected than human cadaver tissues. This was true in both axial rotation and flexion-extension. The treatment type significantly affected the neutral zone measurements in axial rotation. Hysteresis parameters were impacted by control injections. The extrapolation of bovine coccygeal motion testing results to human lumbar disc mechanics is not yet practical. The injected treatment may have a smaller impact on disc mechanics than time in testing. Viscoelasticity of human lumbar discs may be impacted by any damage to the annulus fibrosis induced by needlestick. Preclinical testing of novel spinal devices is essential to the design validation and regulatory processes, but current testing techniques rely on cadaveric testing of primarily older spines with essentially random amounts of disc degeneration. The present work investigates the viability of using trypsin injections to create a more uniform preclinical model of disc degeneration from a mechanics perspective, for the purpose of testing spinal devices. Such a model would facilitate translation of new spinal technologies to clinical practice.
NASA Astrophysics Data System (ADS)
Baab, S.; Förster, F. J.; Lamanna, G.; Weigand, B.
2016-11-01
The four-wave mixing technique laser-induced thermal acoustics was used to measure the local speed of sound in the farfield zone of extremely underexpanded jets. N-hexane at supercritical injection temperature and pressure (supercritical reservoir condition) was injected into quiescent subcritical nitrogen (with respect to the injectant). The technique's capability to quantify the nonisothermal, turbulent mixing zone of small-scale jets is demonstrated for the first time. Consistent radially resolved speed of sound profiles are presented for different axial positions and varying injection temperatures. Furthermore, an adiabatic mixing model based on nonideal thermodynamic properties is presented to extract mixture composition and temperature from the experimental speed of sound data. High fuel mass fractions of up to 94 % are found for the centerline at an axial distance of 55 diameters from the nozzle followed by a rapid decay in axial direction. This is attributed to a supercritical fuel state at the nozzle exit resulting in the injection of a high-density fluid. The obtained concentration data are complemented by existing measurements and collapsed in a similarity law. It allows for mixture prediction of underexpanded jets with supercritical reservoir condition provided that nonideal thermodynamic behavior is considered for the nozzle flow. Specifically, it is shown that the fuel concentration in the farfield zone is very sensitive to the thermodynamic state at the nozzle exit. Here, a transition from supercritical fluid to subcritical vapor state results in strongly varying fuel concentrations, which implies high impact on the mixture formation and, consequently, on the combustion characteristics.
40 CFR 146.83 - Minimum criteria for siting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or fractures and of sufficient areal extent and integrity to contain the injected carbon dioxide... without initiating or propagating fractures in the confining zone(s). (b) The Director may require owners... vertical fluid movement, are free of faults and fractures that may interfere with containment, allow for...
40 CFR 146.83 - Minimum criteria for siting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or fractures and of sufficient areal extent and integrity to contain the injected carbon dioxide... without initiating or propagating fractures in the confining zone(s). (b) The Director may require owners... vertical fluid movement, are free of faults and fractures that may interfere with containment, allow for...
40 CFR 146.83 - Minimum criteria for siting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... or fractures and of sufficient areal extent and integrity to contain the injected carbon dioxide... without initiating or propagating fractures in the confining zone(s). (b) The Director may require owners... vertical fluid movement, are free of faults and fractures that may interfere with containment, allow for...
40 CFR 146.83 - Minimum criteria for siting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or fractures and of sufficient areal extent and integrity to contain the injected carbon dioxide... without initiating or propagating fractures in the confining zone(s). (b) The Director may require owners... vertical fluid movement, are free of faults and fractures that may interfere with containment, allow for...
NASA Astrophysics Data System (ADS)
Manoli, Gabriele; Chambon, Julie C.; Bjerg, Poul L.; Scheutz, Charlotte; Binning, Philip J.; Broholm, Mette M.
2012-04-01
A numerical model of metabolic reductive dechlorination is used to describe the performance of enhanced bioremediation in fractured clay till. The model is developed to simulate field observations of a full scale bioremediation scheme in a fractured clay till and thereby to assess remediation efficiency and timeframe. A relatively simple approach is used to link the fermentation of the electron donor soybean oil to the sequential dechlorination of trichloroethene (TCE) while considering redox conditions and the heterogeneous clay till system (clay till matrix, fractures and sand stringers). The model is tested on lab batch experiments and applied to describe sediment core samples from a TCE-contaminated site. Model simulations compare favorably to field observations and demonstrate that dechlorination may be limited to narrow bioactive zones in the clay matrix around fractures and sand stringers. Field scale simulations show that the injected donor is expected to be depleted after 5 years, and that without donor re-injection contaminant rebound will occur in the high permeability zones and the mass removal will stall at 18%. Long remediation timeframes, if dechlorination is limited to narrow bioactive zones, and the need for additional donor injections to maintain dechlorination activity may limit the efficiency of ERD in low-permeability media. Future work should address the dynamics of the bioactive zones, which is essential to understand for predictions of long term mass removal.
The Boomerang Lift: A Three-Step Compartment-Based Approach to the Youthful Cheek.
Schreiber, Jillian E; Terner, Jordan; Stern, Carrie S; Beut, Javier; Jelks, Elizabeth B; Jelks, Glenn W; Tepper, Oren M
2018-04-01
Autologous fat grafting is an important tool for plastic surgeons treating the aging face. Malar augmentation with fat is often targeted to restore the youthful facial contour and provides support to the lower eyelid. The existence of distinct facial fat compartments suggests that a stepwise approach may be appropriate in this regard. The authors describe a three-step approach to malar augmentation using targeted deep malar fat compartmental augmentation, termed the "boomerang lift." Clinical patients undergoing autologous fat grafting for malar augmentation were injected in three distinct deep malar fat compartments: the lateral sub-orbicularis oculi fat, the medial sub-orbicularis oculi fat, and the deep medial cheek (n = 9). Intraoperative three-dimensional images were taken at baseline and following compartmental injections (Canfield VECTRA H1). Images were overlaid between the augmented and baseline captures, and the three-dimensional surface changes were analyzed, which represented the resulting "augmentation zone." Three-dimensional analysis demonstrated a unique pattern for the augmentation zone consistent across patients. The augmentation zone resembled a boomerang, with the short tail supporting the medial lower lid and the long tail extending laterally along the zygomatic arch. The upper border was restricted by the level of the nasojugal interface, and the lower border was defined medially by the nasolabial fold and laterally by the level of the zygomaticocutaneous ligament. Lateral and medial sub-orbicularis oculi fat injections defined the boundaries of the boomerang shape, and injection to the deep medial cheek provided maximum projection. This is the first description of deep malar augmentation zones in clinical patients. Three-dimensional surface imaging was ideal for analyzing the surface change in response to targeted facial fat grafting. The authors' technique resulted in a reproducible surface shape, which they term the boomerang lift.
NASA Astrophysics Data System (ADS)
Chuang, P. Y.; Chiu, Y.; Liou, Y. H.; Teng, M. H.; Chia, Y.
2016-12-01
Fracture flow is of importance for water resources as well as the investigation of contaminant pathways. In this study, a novel characterization approach of nanoscale zero-valent iron (nZVI) tracer test was developed to accurately identify the connecting fracture zones of preferential flow between a screened well and an open well. Iron nanoparticles are magnetic and can be attracted by a magnet. This feature make it possible to design a magnet array for attracting nZVI particles at the tracer inlet to characterize the location of incoming tracer in the observation well. This novel approach was tested at two experiment wells with well hydraulic connectivity in a hydrogeological research station in central Taiwan. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. Then, the most permeable zone in the injection well was hydraulically isolated by well screen to prevent the injected nZVI particles from being stagnated at the hole bottom. Afterwards, another hydraulic test was implemented to re-examine the hydraulic connectivity between the two wells. When nZVI slurry was injected in the injection well, they migrated through connected permeable fractures to the observation well. A breakthrough curve, observed by the fluid conductivity sensor in the observation well, indicated the arrival of nZVI slurry. The iron nanoparticles attracted to the magnets in the observation well provide the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. This article demonstrates the potential of nano-iron tracer test to provide the quantitative information of fracture flow paths in fractured rock.
Laeseke, Paul F; Sampson, Lisa A; Haemmerich, Dieter; Brace, Chris L; Fine, Jason P; Frey, Tina M; Winter, Thomas C; Lee, Fred T
2005-12-01
A multiple-electrode radiofrequency (RF) system was developed based on switching between electrodes that allows for the simultaneous use of as many as three electrically independent electrodes. The purpose of this study was to determine if each multiple-electrode ablation zone is identical to an ablation zone created with conventional single-electrode mode. Nine female domestic pigs (mean weight, 90 kg) were used for this study. A prototype monopolar multiple-electrode RF ablation system was created with use of an RF generator and an electronic switching algorithm. A maximum of three electrodes can be used simultaneously by switching between electrodes at each impedance spike (30 omega greater than baseline levels). A total of 39 zones of ablation were created at open laparotomy in pig livers with use of a conventional single electrode (n = 9), two single electrodes simultaneously (n = 6 ablations; 12 ablation zones), or three single electrodes simultaneously (n = 6 ablations; 18 ablation zones). RF electrodes were spaced in separate lobes of the liver when multiple zones of coagulation were created simultaneously. Animals were euthanized after RF ablation, livers were removed, and ablation zones were sectioned and measured. Zones of coagulation created simultaneously with two or three electrodes were equivalent to ablation zones created with use of conventional single-electrode ablation. No significant differences were observed among control animals treated with a single electrode, those with two separate zones of ablation created simultaneously, and those with three simultaneously created ablation zones in terms of mean (+/-SD) minimum diameter (1.6 cm +/- 0.6, 1.6 cm +/- 0.5, and 1.7 cm +/- 0.4, respectively), maximum diameter (2.0 cm +/- 0.5, 2.3 cm +/- 0.5, 2.2 cm +/- 0.5, respectively), and volume (6.7 cm3 +/- 3.7, 7.4 cm3 +/- 3.8, and 7.8 cm3 +/- 3.9; P > .30, analysis of variance, pairwise t-test comparisons). A rapid-switching multiple-electrode RF system was able to simultaneously create as many as three separate ablation zones of equivalent size compared with single-electrode controls. This system would allow physicians to simultaneously treat multiple tumors, substantially reducing procedure time and anesthesia risk.
40 CFR 147.2104 - Requirements for all wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 147.2104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... analysis log; or (2) A caliper log. (b) The owner or operator of a new injection well cased with plastic... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...
40 CFR 147.2104 - Requirements for all wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 147.2104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... analysis log; or (2) A caliper log. (b) The owner or operator of a new injection well cased with plastic... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...
40 CFR 147.2104 - Requirements for all wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 147.2104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... analysis log; or (2) A caliper log. (b) The owner or operator of a new injection well cased with plastic... injection zone; and (3) Use cement: (i) Of sufficient quantity and quality to withstand the maximum...
a Borehole-Dilution Method for Quantifying Vertical Darcy Fluxes in the Hyporheic Zone
NASA Astrophysics Data System (ADS)
Augustine, S. D.; Annable, M. D.; Cho, J.
2017-12-01
The borehole dilution method has consistently and successfully been used for estimating local water fluxes, however, this method can be relatively labor intensive and expensive. The focus of this research is aimed at developing a low-cost, borehole dilution method for quantifying vertical water fluxes in the hyporheic zone at the surface-groundwater interface. This would allow for the deployment of multiple units within a targeted surface water body and thus produce high-resolution, spatially distributed data on the infiltration rates over a short period of time with minimal set-up requirements. The device consists of a 2-inch, inner diameter PVC pipe containing short, screened sections in its upper and lower segments. The working unit is driven into the sediment and acts as a continuous flow reactor creating a pathway between the subsurface pore-water and the overlying surface water where the presence of a hydraulic gradient facilitates vertical movement. We developed a simple electrode and tracer-injection system housed within the unit to inject and measure salt tracer concentrations at the desired intervals while monitoring and storing those measurements using open-source Arduino technology. Preliminary lab and field scale trials provided data that was fit to both zero and first order reaction rate functions for analysis. The field test was conducted over approximately one day within a wet retention basin. The initial results estimated a vertical Darcy flux of 113.5 cm/d. Additional testing over a range of expected Darcy fluxes will be presented along with an evaluation considering enhanced water flow due to the high hydraulic conductivity of the device.
Burnham, Willis L.; Larson, S.P.; Cooper, Hilton Hammond
1977-01-01
Field studies and digital modeling of a lava rock aquifer system near Kahului, Maui, Hawaii, describe the distribution of planned injected wastewater from a secondary treatment facility. The aquifer contains water that is almost as saline as seawater. The saline water is below a seaward-discharging freshwater lens, and separated from it by a transition zone of varying salinity. Injection of wastewater at an average rate of 6.2 cubic feet per second is planned through wells open only to the aquifer deep within the saline water zone. The lava rock aquifer is overlain by a sequence of residual soil, clay, coral reef deposits, and marine sand that form a low-permeability caprock which semiconfines the lava rock aquifer. Under conditions measured and assumed without significant change. After reaching a new steady state, the wastewater will discharge into and through the caprock sequence within an area measuring approximately 1,000 feet inland, 1,000 feet laterally on either side of the injection site, and about 2,000 feet seaward. Little, if any, of the injected wastewater may be expected to reach the upper part of the caprock flow system landward of the treatment plant facility. (Woodard-USGS)
[Steam and air co-injection in removing TCE in 2D-sand box].
Wang, Ning; Peng, Sheng; Chen, Jia-Jun
2014-07-01
Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.
Brace, Christopher L; Laeseke, Paul F; Sampson, Lisa A; Frey, Tina M; van der Weide, Daniel W; Lee, Fred T
2007-07-01
To prospectively investigate the ability of a single generator to power multiple small-diameter antennas and create large zones of ablation in an in vivo swine liver model. Thirteen female domestic swine (mean weight, 70 kg) were used for the study as approved by the animal care and use committee. A single generator was used to simultaneously power three triaxial antennas at 55 W per antenna for 10 minutes in three groups: a control group where antennas were spaced to eliminate ablation zone overlap (n=6; 18 individual zones of ablation) and experimental groups where antennas were spaced 2.5 cm (n=7) or 3.0 cm (n=5) apart. Animals were euthanized after ablation, and ablation zones were sectioned and measured. A mixed linear model was used to test for differences in size and circularity among groups. Mean (+/-standard deviation) cross-sectional areas of multiple-antenna zones of ablation at 2.5- and 3.0-cm spacing (26.6 cm(2) +/- 9.7 and 32.2 cm(2) +/- 8.1, respectively) were significantly larger than individual ablation zones created with single antennas (6.76 cm(2) +/- 2.8, P<.001) and were 31% (2.5-cm spacing group: multiple antenna mean area, 26.6 cm(2); 3 x single antenna mean area, 20.28 cm(2)) to 59% (3.0-cm spacing group: multiple antenna mean area, 32.2 cm(2); 3 x single antenna mean area, 20.28 cm(2)) larger than 3 times the mean area of the single-antenna zones. Zones of ablation were found to be very circular, and vessels as large as 1.1 cm were completely coagulated with multiple antennas. A single generator may effectively deliver microwave power to multiple antennas. Large volumes of tissue may be ablated and large vessels coagulated with multiple-antenna ablation in the same time as single-antenna ablation. (c) RSNA, 2007.
NASA Astrophysics Data System (ADS)
Srinivasagupta, Deepak; Kardos, John L.
2004-05-01
Injected pultrusion (IP) is an environmentally benign continuous process for low-cost manufacture of prismatic polymer composites. IP has been of recent regulatory interest as an option to achieve significant vapour emissions reduction. This work describes the design of the IP process with multiple design objectives. In our previous work (Srinivasagupta D et al 2003 J. Compos. Mater. at press), an algorithm for economic design using a validated three-dimensional physical model of the IP process was developed, subject to controllability considerations. In this work, this algorithm was used in a multi-objective optimization approach to simultaneously meet economic, quality related, and environmental objectives. The retrofit design of a bench-scale set-up was considered, and the concept of exergy loss in the process, as well as in vapour emission, was introduced. The multi-objective approach was able to determine the optimal values of the processing parameters such as heating zone temperatures and resin injection pressure, as well as the equipment specifications (die dimensions, heater, puller and pump ratings) that satisfy the various objectives in a weighted sense, and result in enhanced throughput rates. The economic objective did not coincide with the environmental objective, and a compromise became necessary. It was seen that most of the exergy loss is in the conversion of electric power into process heating. Vapour exergy loss was observed to be negligible for the most part.
Seismic multiple attenuation in the northern continent-ocean transition zone of the South China Sea
NASA Astrophysics Data System (ADS)
Chen, N.; Li, C. F.
2017-12-01
In seismic exploration, especially in marine oil and gas exploration, presence of multiple reflections lowers signal-to-noise ratio of seismic data and makes it difficult to analyze seismic velocity. In northern continent-ocean transition zone of the South China Sea (SCS), low-velocity Cenozoic strata cover sets of high-velocity carbonate strata directly, and over 1000 m thick of sediments were deposited on the igneous basement in the northwest SCS. These sedimentary boundaries generate quite strong impedance interfaces and strong internal multiples. Diffractions as a result of variation of seabed topography, coupled with the vibration, free surface multiples and refraction multiples, cause a variety of strong energy disturbances and missing of frequency component. In this study, we process four recently acquired multichannel reflection seismic profiles from the northern continent-ocean transition zone of the SCS with a new combination of demultiple techniques. There is a variety of strong multiples in the raw data, and the seabed multiple occurs between 9 to 11 seconds in two-way travel time (TWTT), and we apply Surface-related Multiple Elimination (SRME) to attenuate the free surface multiples. After SRME, we use high-resolution Radon transform (RAMUR) to attenuate deep multiples concentrating below 10 seconds in TWTT. Normal moveout correction (NMO) is necessary to flatten true reflections and turn multiples into a parabola before RAMUR, and we can attenuate the deep multiples in theτ-p domain. The seabed topography varies greatly in the continent-ocean transition zone, so the diffractions are well developed. However, SRME and RAMUR are not effective in attenuating diffractions and internal multiples. We select diffracted multiple attenuation (DIMAT) after many trials and detailed analysis. The diffractions are extracted in decomposed frequency bands. The internal multiples below 11 seconds in TWTT and high-amplitude noises are successfully suppressed while keeping the primary events. This combination of SRME, RAMUR and DIMAT in sequence demonstrates to be quite effective in attenuating these types of multiples on the continent-ocean transition zone. Keywords: Continent-ocean transition zone, seismic exploration, data processing, multiple attenuation
Subsurface injection of liquid waste in Florida, United States of America
Vecchioli, John
1981-01-01
In 1979, liquid waste was injected into the subsurface of Florida by 10 injection systems at an aggregate average rate of 165,000 m3/d. All the systems inject into carbonate rocks that contain salty water. Extensive precautions are taken in the construction of the injection wells and in the monitoring of their operation to provide assurance that overlying and laterally contiguous freshwater resources do not become contaminated with either the injected waste or the saltwater displaced by the waste. Several concerns relating to the effectiveness of the confining bed above the injection zone for containing the injected wastes have arisen over the years. These concerns accentuate the value of a well-planned and implemented monitoring program from which one can evaluate the potential impact of waste injection on the subsurface environment.
This program serves two purposes: (1) as a general-purpose indoor exposure model in buildings with multiple zones, multiple chemicals and multiple sources and sinks, and (2) as a special-purpose concentration model
van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I
2002-09-01
An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.
Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction.
Pinney, James R; Du, Kim T; Ayala, Perla; Fang, Qizhi; Sievers, Richard E; Chew, Patrick; Delrosario, Lawrence; Lee, Randall J; Desai, Tejal A
2014-10-01
Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-β, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
CO2 plume management in saline reservoir sequestration
Frailey, S.M.; Finley, R.J.
2011-01-01
A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very close to the injection well, compared to monitoring wells intended to measure CO2 saturation via fluid sampling or cased-hole well logs. If pressure monitoring wells become mandated, these wells could be used for managing the CO2 saturation and aquifer pressure distribution. To understand the relevance and effectiveness of producing and injecting brine to improve storage efficiency, direct the plume to specific pore space, and redistribute the pressure, numerical models of CO2 injection into aquifers are used. Simulated cases include various aquifer properties at a single well site and varying the number and location of surrounding wells for plume management. Strategies in terms of completion intervals can be developed to effectively contact more vertical pore space in relatively thicker geologic formations. Inter-site plume management (or cooperative) wells for the purpose of pressure monitoring and plume management may become the responsibility of a consortium of operators or a government entity, not individual sequestration site operators. ?? 2011 Published by Elsevier Ltd.
In-situ remediation system and method for contaminated groundwater
Corey, John C.; Looney, Brian B.; Kaback, Dawn S.
1989-01-01
A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.
In-situ remediation system and method for contaminated groundwater
Corey, J.C.; Looney, B.B.; Kaback, D.S.
1989-05-23
A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.
Simultaneous injection-effective mixing analysis of palladium.
Teshima, Norio; Noguchi, Daisuke; Joichi, Yasutaka; Lenghor, Narong; Ohno, Noriko; Sakai, Tadao; Motomizu, Shoji
2010-01-01
A novel concept of simultaneous injection-effective mixing analysis (SIEMA) is proposed, and a SIEMA method applied to the spectrophotometric determination of palladium using a water-soluble chromogenic reagent has been demonstrated. The flow configuration of SIEMA is a hybrid format of flow injection analysis (FIA), sequential injection analysis (SIA) and multicommutation in flow-based analysis. Sample and reagent solutions are aspirated into each holding coil through each solenoid valve by a syringe pump, and then the zones are simultaneously dispensed (injected) into a mixing coil by reversed flow toward a detector through a confluence point. This results in effective mixing and rapid detection with low reagent consumption.
Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor
NASA Technical Reports Server (NTRS)
Fan, L.; Yang, S. L.; Kundu, K. P.
1996-01-01
NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.
40 CFR 146.12 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... water. The casing and cement used in the construction of each newly drilled well shall be designed for... intervals; and (7) Type or grade of cement. (c) All Class I injection wells, except those municipal wells... injection zone, or tubing with an approved fluid seal as an alternative. The tubing, packer, and fluid seal...
Liang, Qin-Qin; Li, Yong-Sheng
2013-12-01
An accurate and rapid method and a system to determine protein content using asynchronous-injection alternating merging zone flow-injection spectrophotometry based on reaction between coomassie brilliant blue G250 (CBBG) and protein was established. Main merit of our approach is that it can avoid interferences of other nitric-compounds in samples, such as melamine and urea. Optimized conditions are as follows: Concentrations of CBBG, polyvinyl alcohol (PVA), NaCl and HCl are 150 mg/l, 30 mg/l, 0.1 mol/l and 1.0% (v/v), respectively; volumes of the sample and reagent are 150 μl and 30 μl, respectively; length of a reaction coil is 200 cm; total flow rate is 2.65 ml/min. The linear range of the method is 0.5-15 mg/l (BSA), its detection limit is 0.05 mg/l, relative standard deviation is less than 1.87% (n=11), and analytical speed is 60 samples per hour. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Newell, P.; Yoon, H.; Martinez, M. J.; Bishop, J. E.; Arnold, B. W.; Bryant, S.
2013-12-01
It is essential to couple multiphase flow and geomechanical response in order to predict a consequence of geological storage of CO2. In this study, we estimate key hydrogeologic features to govern the geomechanical response (i.e., surface uplift) at a large-scale CO2 injection project at In Salah, Algeria using the Sierra Toolkit - a multi-physics simulation code developed at Sandia National Laboratories. Importantly, a jointed rock model is used to study the effect of postulated fractures in the injection zone on the surface uplift. The In Salah Gas Project includes an industrial-scale demonstration of CO2 storage in an active gas field where CO2 from natural gas production is being re-injected into a brine-filled portion of the structure downdip of the gas accumulation. The observed data include millimeter scale surface deformations (e.g., uplift) reported in the literature and injection well locations and rate histories provided by the operators. Our preliminary results show that the intrinsic permeability and Biot coefficient of the injection zone are important. Moreover pre-existing fractures within the injection zone affect the uplift significantly. Estimation of additional (i.e., anisotropy ratio) and coupled parameters will help us to develop models, which account for the complex relationship between mechanical integrity and CO2 injection-induced pressure changes. Uncertainty quantification of model predictions will be also performed using various algorithms including null-space Monte Carlo and polynomial-chaos expansion methods. This work will highlight that our coupled reservoir and geomechanical simulations associated with parameter estimation can provide a practical solution for designing operating conditions and understanding subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Guo, Hui; Liu, Xia-Lei; Wang, Yu-Ling; Li, Jing-Yi; Lu, Wu-Zhu; Xian, Jian-Zhong; Zhang, Bai-Meng; Li, Jian
2014-06-01
This study was to evaluate the efficacy of subcutaneous administration of 5% dextrose in water (D5W), to prevent skin injury during radiofrequency (RF) ablation. Twenty-four rabbits were divided into three groups: a pre-injection group, a perfusion group, and a control group. Ablative zones were created in the superficial part of the thigh muscle for 6 min. A needle was placed subcutaneously for injection of D5W, and a thermal sensor was positioned nearby for real-time temperature monitoring. The sizes of the ablative zones were measured by contrast-enhanced ultrasonography, and severity of the observed skin injury were scored semi-quantitatively and compared. The highest temperature, the duration of the temperature above 50 °C, and the rise time of the post-procedure temperature were all highest in the control group (p < 0.001), while these values were lower in the perfusion group than those in the pre-injection group (p < 0.001). Post-procedure skin injury was most severe in the control group (p < 0.001). On post-procedure day 1, no significant difference was found between the skin injury of the pre-injection group and the perfusion group (p = 0.091), while the skin injury of the perfusion group was less severe than that of the pre-injection group on post-procedure day 14 (p = 0.004). No significant difference was found in the sizes of the ablative zones among the groups (p = 0.720). Subcutaneous perfusion with D5W is effective in protecting the skin against burns during RF ablation without compromising the effect of ablation.
NASA Astrophysics Data System (ADS)
Zhang, R.; Borgia, A.; Daley, T. M.; Oldenburg, C. M.; Jung, Y.; Lee, K. J.; Doughty, C.; Altundas, B.; Chugunov, N.; Ramakrishnan, T. S.
2017-12-01
Subsurface permeable faults and fracture networks play a critical role for enhanced geothermal systems (EGS) by providing conduits for fluid flow. Characterization of the permeable flow paths before and after stimulation is necessary to evaluate and optimize energy extraction. To provide insight into the feasibility of using CO2 as a contrast agent to enhance fault characterization by seismic methods, we model seismic monitoring of supercritical CO2 (scCO2) injected into a fault. During the CO2 injection, the original brine is replaced by scCO2, which leads to variations in geophysical properties of the formation. To explore the technical feasibility of the approach, we present modeling results for different time-lapse seismic methods including surface seismic, vertical seismic profiling (VSP), and a cross-well survey. We simulate the injection and production of CO2 into a normal fault in a system based on the Brady's geothermal field and model pressure and saturation variations in the fault zone using TOUGH2-ECO2N. The simulation results provide changing fluid properties during the injection, such as saturation and salinity changes, which allow us to estimate corresponding changes in seismic properties of the fault and the formation. We model the response of the system to active seismic monitoring in time-lapse mode using an anisotropic finite difference method with modifications for fracture compliance. Results to date show that even narrow fault and fracture zones filled with CO2 can be better detected using the VSP and cross-well survey geometry, while it would be difficult to image the CO2 plume by using surface seismic methods.
Injection flow during steam condensation in silicon microchannels
NASA Astrophysics Data System (ADS)
Wu, Huiying; Yu, Mengmeng; Cheng, Ping; Wu, Xinyu
2007-08-01
An experimental investigation with the combined use of visualization and measurement techniques was performed on flow pattern transitions and wall temperature distributions in the condensation of steam in silicon microchannels. Three sets of trapezoidal silicon microchannels, having hydraulic diameters of 53.0 µm, 77.5 µm and 128.5 µm, respectively, were tested under different flow and cooling conditions. It was found that during the transitions from the annular flow to the slug/bubbly flow, a peculiar flow pattern injection flow appeared in silicon microchannels. The location at which the injection flow occurred was dependent on the Reynolds number, condensation number and hydraulic diameter. With increase in the Reynolds number, or decrease in the condensation number and hydraulic diameter, the injection flow moved towards the channel outlet. Based on the experimental results, a dimensionless correlation for the location of injection flow in functions of the Reynolds number, condensation number and hydraulic diameter was proposed for the first time. This correlation can be used to determine the annular flow zone and the slug/bubbly flow zone, and further to determine the dominating condensation flow pattern in silicon microchannels. Wall temperature distributions were also explored in this paper. It was found that near the injection flow, wall temperatures have a rapid decrease in the flow direction, while upstream and downstream far away from the injection flow, wall temperatures decreased mildly. Thus, the location of injection flow can also be determined based on the wall temperature distributions. The results presented in this paper help us to better understand the condensation flow and heat transfer in silicon microchannels.
Multiple-Zone Diffractive Optic Element for Laser Ranging Applications
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis A.
2011-01-01
A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during the manufacturing process, and the same space-compatible DOE substrates (fused silica, sapphire) that are used on standard DOE s could be used for multiple- zone DOE s. DOEs are an elegant and cost-effective optical design option for spacebased laser altimeters that require multiple output laser beams. The use of multiple-zone DOEs would allow for the design and optimization of a laser altimeter instrument required to operate over a large range of target distances, such as those designed to both map and land on a planetary body. In addition to space-based laser altimeters, this technology could find applications in military or commercial unmanned aerial vehicles (UAVs) that fly at an altitude of several kilometers and need to land. It is also conceivable that variations of this approach could be used in land-based applications such as collision avoidance and robotic control of cars, trains, and ships.
Investigation of the Profile Control Mechanisms of Dispersed Particle Gel
Zhao, Guang; Dai, Caili; Zhao, Mingwei
2014-01-01
Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery. PMID:24950174
Hickey, John D.
1977-01-01
Lithologic, hydraulic, geophysical, and water-quality data collected at the McKay Creek subsurface waste-injection test site in Pinellas County, Florida, are reported. Data were collected to determine the possibility of subsurface injection of waste-treatment plant effluent. One exploratory hole, one test injection well, and eight observation wells were constructed between May 1973 and February 1976. The exploratory hole was drilled to a depth of 1,750 feet below land surface; the test injection well is open in dolomite between 952 and 1 ,040 feet; and the observation wells are open to intervals above , in, and below the test injection zone. The lithology of the upper 100 feet is predominantly clay. From 100 to 1,750 feet below land surface, limestone and dolomite predominate. Gypsum is present 1,210 feet below land surface. Laboratory analyses of cores taken during drilling are given for vertical intrinsic permeability, porosity, interval transit time, and compressibility. Specific capacities tested during drilling range from 4 to 2,500 gallons per minute per foot of drawdown. An 83-hour withdrawal test at 4,180 gallons per minute and a 2-month injection test at 650 gallons per minute were run. Small water-quality changes were observed in one observation well immediately above the test injection zone during and after the injection test. Formation water in all of the wells with the exception of the shallowest observation wells is saline. The vertical position of saltwater is estimated to be at about 280 feet below land surface. Thirteen wells within a 1-mile radius of the test site were located and sampled for water quality. (USGS)
Anomalous transport in fracture networks: field scale experiments and modelling
NASA Astrophysics Data System (ADS)
Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.
2012-12-01
Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection fracture on the tailing behavior: where we inject makes the difference in the tailing. Blue line is a BTC with injection into a slow velocity zone under convergent flow configuration. The late-time tailing observed for the convergent test diminished for push-pull experiment performed in the same zone(red line). Black line is a BTC with injection into a high velocity zone under convergent flow configuration. Insets: illustration of convergent and push-pull tracer tests using a double packer system.
Flavopiridol in Treating Patients With Relapsed or Refractory Lymphoma or Multiple Myeloma
2016-06-27
Adult Lymphocyte Depletion Hodgkin Lymphoma; Adult Lymphocyte Predominant Hodgkin Lymphoma; Adult Mixed Cellularity Hodgkin Lymphoma; Adult Nodular Sclerosis Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; Stage I Multiple Myeloma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Waldenström Macroglobulinemia
Potocki, J K; Tharp, H S
1993-01-01
Multiple model estimation is a viable technique for dealing with the spatial perfusion model mismatch associated with hyperthermia dosimetry. Using multiple models, spatial discrimination can be obtained without increasing the number of unknown perfusion zones. Two multiple model estimators based on the extended Kalman filter (EKF) are designed and compared with two EKFs based on single models having greater perfusion zone segmentation. Results given here indicate that multiple modelling is advantageous when the number of thermal sensors is insufficient for convergence of single model estimators having greater perfusion zone segmentation. In situations where sufficient measured outputs exist for greater unknown perfusion parameter estimation, the multiple model estimators and the single model estimators yield equivalent results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming; Liu, Jie; Gleber, Sophie C.
An enhanced mechanical design of multiple zone plates precision alignment apparatus for hard x-ray focusing in a twenty-nanometer scale is provided. The precision alignment apparatus includes a zone plate alignment base frame; a plurality of zone plates; and a plurality of zone plate holders, each said zone plate holder for mounting and aligning a respective zone plate for hard x-ray focusing. At least one respective positioning stage drives and positions each respective zone plate holder. Each respective positioning stage is mounted on the zone plate alignment base frame. A respective linkage component connects each respective positioning stage and the respectivemore » zone plate holder. The zone plate alignment base frame, each zone plate holder and each linkage component is formed of a selected material for providing thermal expansion stability and positioning stability for the precision alignment apparatus.« less
Taylor, Charles J.
1994-01-01
Dye-tracer tests were done during 1985-92 to investigate the hydraulic connection between fractures in Pennsylvanian coal-bearing strata at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Ky. Fluorescent dye was injected into a core hole penetrating near-surface and mining-induced fractures near the crest of the ridge. The rate and direction of migration of dye in the subsurface were determined by measuring the relative concentration of dye in water samples collected from piezometers completed in conductive fracture zones and fractured coal beds at various stratigraphic horizons within the ridge. Dye-concentration data and water-level measurements for each piezometer were plotted as curves on dye-recovery hydrographs. The dye-recovery hydrographs were used to evaluate trends in the fluctuation of dye concentrations and hydraulic heads in order to identify geologic and hydrologic factors affecting the subsurface transport of dye. The principal factors affecting the transport of dye in the subsurface hydrologic system were determined to be (1) the distribution, interconnection, and hydraulic properties of fractures; (2) hydraulic-head conditions in the near-fracture zone at the time of dye injection; and (3) subsequent short- and long-term fluctuations in recharge to the hydrologic system. In most of the dye-tracer tests, dye-recovery hydrographs are characterized by complex, multipeaked dye-concentration curves that are indicative of a splitting of dye flow as ground water moved through fractures. Intermittent dye pulses (distinct upward spikes in dye concentration) mark the arrivals of dye-labeled water to piezometers by way of discrete fracture-controlled flow paths that vary in length, complexity, and hydraulic conductivity. Dye injections made during relatively high- or increasinghead conditions resulted in rapid transport of dye (within several days or weeks) from near-surf ace fractures to piezometers. Injections made during relatively low- or decreasing-head conditions resulted in dye being trapped in hydraulically dead zones in water-depleted fractures. Residual dye was remobilized from storage and transported (over periods ranging from several months to about 2 years) by increased recharge to the hydrologic system. Subsequent fluctuations in hydraulic gradients, resulting from increases or decreases in recharge to the hydrologic system, acted to speed or slow the transport of dye along the fracture-controlled flow paths. The dye-tracer tests also demonstrated that mining-related disturbances significantly altered the natural fracture-controlled flow paths of the hydrologic system over time. An abandoned underground mine and subsidence-related surface cracks extend to within 250 ft of the principal dye-injection core hole. Results from two of the dye-tracer tests at the site indicate that the annular seal in the core hole was breached by subsurface propagation of the mining-induced fractures. This propagation of fractures resulted in hydraulic short-circuiting between the dye-injection zone in the core hole and two lower piezometer zones, and a partial disruption of the hydraulic connection between the injection core hole and downgradient piezometers on the ridge crest and valley wall. In addition, injected dye was detected in piezometers monitoring a flooded part of the abandoned underground mine. Dye was apparently transported into the mine through a hydraulic connection between the injection core hole and subsidence-related fractures.
Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine
NASA Astrophysics Data System (ADS)
Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.
2015-12-01
In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within the system, as redox couples involving these species collectively bracket the predicted transition redox potential for the U(VI)/U(IV) couple. Reduction should provide much longer-lasting immobilization of constituents than adsorption, especially given the inherent reducing characteristics of roll-front systems.
Passive characterization of hydrofracture properties using signals from hydraulic pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rector III, J.W.; Dong, Q.; Patzek, T.W.
1999-01-02
Massive hydraulic fracturing is used to enhance production from the low-permeability diatomite fields of Kern County, CA. Although critical for designing injection and recovery well patterns, the in-situ hydraulic fracture geometry is poorly understood. In 1990, Shell conducted an extensive seismic monitoring experiment on several hydrofractures prior to a steam drive pilot to characterize hydrofracture geometry. The seismic data were recorded by cemented downhole geophone arrays in three observation holes (MO-1, MO-2, and MO-3) located near the hydraulic fracture treatment wells. Using lowpass filtering and moveout analysis, events in the geophone recordings are identified as conical shear waves radiating frommore » tube waves traveling down the treatment well. These events appear to be created by the hydraulic pumps, since their amplitudes are correlated with the injection rate and the wellhead pressure. Conical wave amplitudes are related to the tube wave attenuation in the treatment well and to wave-propagation characteristics of the shear component traveling in the earth. During the main fracturing stage, geophones above the fracture zone for wells MO-1 and MO-2 (both roughly along the inferred vertical fracture plane) exhibited conical-wave amplitude increases that are caused by shear wave reflection/scattering off the top of a fracture zone. From changes in the reflection amplitude as a function of depth, we interpret that the fracture zone initially extends along a confined vertical plane at a depth that correlates with many of the microseismic events. Toward the end of the main fracturing stage, the fracture zone extends upward and also extends in width, although we cannot determine the dimensions of the fracture from the reflection amplitudes alone. For all wells, we observe that the reflection (and what we infer to be the initial fracture) begins during a time period where no marked change in fracture pressure or injection rate or slurry concentration is observed. As the main fracturing stage progressed, we observed a significant decrease in amplitude for geophones below the top of the fracture zone. The attenuation was most pronounced for wells MO-1 and MO-2 (along the fracture plane). However, near the end of the main stage, well MO-3 also exhibited a significant amplitude decrease, suggesting the development of a fractured ''process zone'' around the main fracture plane. In addition, well MO-3 also exhibited an amplitude decrease in an interval well below the initial fracture zone. Both the interval and the direction (toward MO-3) correspond with temperature log increases observed during later steam injection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alex A. Vadie; Lewis R. Brown
1998-04-20
The use of indigenous microbes as a method of profile control in waterfloods is investigated. It is expected that as the microbial population is induced to increase the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency.
NASA Astrophysics Data System (ADS)
Nebel, O.; Arculus, R. J.; Ivanic, T. J.; Nebel-Jacobsen, Y. J.
2013-10-01
Most layered mafic intrusions (LMI) are formed via multiple magma injections into crustal magma chambers. These magmas are originally sourced from the mantle, likely via plume activity, but may interact with the overriding lithosphere during ascent and emplacement in the crust. The magma injections lead to the establishment of different layers and zones with complex macroscopic, microscopic and cryptic compositional layering through magmatic differentiation and associated cumulate formation, sometimes accompanied by crustal assimilation. These complex mineralogical and petrological processes obscure the nature of the mantle sources of LMI, and typically have limited the degree to which parental liquids can be fully characterised. Here, we present Lu-Hf isotope data for samples from distinct layers of the Upper Zone of the Windimurra Igneous Complex (WIC), an immense late-Archean LMI in the West Australian Yilgarn Craton. Lu-Hf isotope systematics of whole rocks are well correlated (MSWD=5.6, n=17) with an age of ˜3.05±0.05 Ga and initial ɛHf˜+8. This age, however, is older than whole rock Sm-Nd and zircon U-Pb ages of the intrusion, both of which are ca. 2.8 Ga. Stratigraphically-controlled initial Hf isotope variations (associated with multiple episodes of emplacement at ca. 2.8 Ga) indicate isotope mixing between a near-chondritic and an ultra-radiogenic component, the latter with ɛHf[2.8 Ga]>+15. This Hf isotope mixing creates a pseudochron-relationship at the time of intrusion of ˜250 Myr that is superimposed on subsequent radiogenic ingrowth after crystallisation, generating an age that predates the actual emplacement event. Mixing between late-stage crystallisation products (melt + crystals) from the Middle Zone and replenishing, plume-derived liquids was followed by crystal accumulation in a chemically evolving magma chamber. The ultra-radiogenic Hf isotope endmember in the WIC mantle source requires parent-daughter ratios consistent with very early formation in Earth history, akin to early Archean komatiitic plume sources. We propose that plume-derived melts that formed the Windimurra LMI reacted with ancient refractory lithospheric keels already underpinning ancient cratons, creating a melt with extremely high ɛHf[t]. Melting a refractory component with super-chondritic, time-integrated high Lu/Hf, in this case by plume-lithosphere interaction, simultaneously accounts for the extreme Hf isotope signals, Hf-Nd isotope decoupling, and difference in radiometric Lu-Hf and Sm-Nd ages.
Reznik, Yves; Cohen, Ohad; Aronson, Ronnie; Conget, Ignacio; Runzis, Sarah; Castaneda, Javier; Lee, Scott W
2014-10-04
Many patients with advanced type 2 diabetes do not meet their glycated haemoglobin targets and randomised controlled studies comparing the efficacy of pump treatment and multiple daily injections for lowering glucose in insulin-treated patients have yielded inconclusive results. We aimed to resolve this uncertainty with a randomised controlled trial (OpT2mise). We did this multicentre, controlled trial at 36 hospitals, tertiary care centres, and referal centres in Canada, Europe, Israel, South Africa, and the USA. Patients with type 2 diabetes who had poor glycaemic control despite multiple daily injections with insulin analogues were enrolled into a 2-month dose-optimisation run-in period. After the run-in period, patients with glycated haemoglobin of 8·0-12·0% (64-108 mmol/mol) were randomly assigned (1:1) by a computer-generated randomisation sequence (block size 2 with probability 0·75 and size 4 with probability 0·25) to pump treatment or to continue with multiple daily injections. Neither patients nor investigators were masked to treatment allocation. The primary endpoint was change in mean glycated haemoglobin between baseline and end of the randomised phase for the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01182493. 495 of 590 screened patients entered the run-in phase and 331 were randomised (168 to pump treatment, 163 to multiple daily injections). Mean glycated haemoglobin at baseline was 9% (75 mmol/mol) in both groups. At 6 months, mean glycated haemoglobin had decreased by 1·1% (SD 1·2; 12 mmol/mol, SD 13) in the pump treatment group and 0·4% (SD 1·1; 4 mmol/mol, SD 12) in the multiple daily injection group, resulting in a between-group treatment difference of -0·7% (95% CI -0·9 to -0·4; -8 mmol/mol, 95% CI -10 to -4, p<0·0001). At the end of the study, the mean total daily insulin dose was 97 units (SD 56) with pump treatment versus 122 units (SD 68) for multiple daily injections (p<0·0001), with no significant difference in bodyweight change between the two groups (1·5 kg [SD 3·5] vs 1·1 kg [3·6], p=0·322). Two diabetes-related serious adverse events (hyperglycaemia or ketosis without acidosis) resulting in hospital admission occurred in the pump treatment group compared with one in the multiple daily injection group. No ketoacidosis occurred in either group and one episode of severe hypoglycaemia occurred in the multiple daily injection group. In patients with poorly controlled type 2 diabetes despite using multiple daily injections of insulin, pump treatment can be considered as a safe and valuable treatment option. Medtronic. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leonard, T. W.; Baker, D. N.; Blake, J. B.; Burch, J. L.; Cohen, I. J.; Ergun, R.; Fennell, J. F.; Gershman, D. J.; Giles, B. L.; Jaynes, A. N.; Le Contel, O.; Mauk, B.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Turner, D. L.; Wilder, F. D.
2017-12-01
The Magnetospheric Multiscale (MMS) Fly's Eye Energetic Particle Spectrometer (FEEPS) instrument has observed a multitude of particle injection events since its launch in 2014. These injections often lead to enhancements observed by the Van Allen Probes MagEIS instrument, as well as other elements of the modern-day Heliophysics System Observatory. The high spatial resolution and unprecedented time scales of the MMS observations provide a microscope view of the plasma physical properties in Earth's neighborhood while the combination with other missions in the Heliophysics System Observatory provides a telescope view of the larger Sun-Earth system. Past studies have found a relationship between substorm activity, which can be more powerful during high speed solar wind stream events, and enhancements of the outer radiation belt electrons. In this study, we examine several distinct particle injection events with dipolarization front characteristics observed by MMS and multiple complementary missions. In particular, cases involving multiple injection events are compared to singular injection events for their effectiveness of creating radiation belt enhancements.
Plasma discharge elemental detector for a mass spectrometer
NASA Astrophysics Data System (ADS)
Heppner, R. A.
1983-06-01
A material to be analyzed is injected into a mirowave-induced plasma discharge unit, in which the material is carried with a flow of buffer gas through an intense microwave energy field which produces a plasma discharge in the buffer gas. As the material exits from the plasma discharge, the material is sampled and conveyed along a capillary transfer tube to a mass spectrometer where it is analyzed. The plasma discharge causes dissociation of complex organic molecules into simpler molecules which return to the neutral ground state before they are analyzed in the mass spectrometer. The buffer gas is supplied to one end portion of the discharge tube and is withdrawn from the other end portion by a vacuum pump which maintains a subatmospheric pressure in the discharge tube. The sample material is injected by a capillary injection tube into the buffer gas flow as it enters the plasma discharge zone. The dissociated materials are sampled by an axial sampling tube having an entrance where the buffer gas exits from the plasma discharge zone. The sample material may be supplied by a gas chromatography having a capillary effluent line connected to the capillary injection tube, so that the effluent material is injected into the microwave induced plasma discharge. The microwave field is produced by a cavity resonator through which the discharge tube passes.
NASA Technical Reports Server (NTRS)
Tacina, Robert; Mao, Chien-Pei; Wey, Changlie
2004-01-01
A low-NOx emissions combustor concept has been demonstrated in flame-tube tests. A lean-direct injection (LDI) concept was used where the fuel is injected directly into the flame zone and the overall equivalence ratio of the mixture is lean. The LDI concept described in this report is a multiplex fuel injector module containing multipoint fuel injection tips and multi-burning zones. The injector module comprises 25 equally spaced injection tips within a 76 by 76 mm area that fits into the flame-tube duct. The air swirlers were made from a concave plate on the axis of the fuel injector using drilled holes at an angle to the axis of the fuel injector. The NOx levels were quite low and are greater than 70 percent lower than the 1996 ICAO standard. At an inlet temperature of 810 K, inlet pressure of 2760 kPa, pressure drop of 4 percent and a flame temperature of 1900 K with JP8 fuel, the NOx emission index was 9. The 25-point injector module exhibited the most uniform radial distribution of fuel-air mixture and NOx emissions in the flame tube when compared to other multipoint injection devices. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, equivalence ratio and pressure drop.
Fluidized bed coal combustion reactor
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L. (Inventor)
1981-01-01
A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.
Joint Cross Well and Single Well Seismic Studies at Lost Hills, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritto, Roland; Daley, Thomas M.; Myer, Larry R.
2002-06-25
A series of time-lapse seismic cross well and single well experiments were conducted in a diatomite reservoir to monitor the injection of CO{sub 2} into a hydrofracture zone, based on P- and S-wave data. A high-frequency piezo-electric P-wave source and an orbital-vibrator S-wave source were used to generate waves that were recorded by hydrophones as well as three-component geophones. The injection well was located about 12 m from the source well. During the pre-injection phase water was injected into the hydrofrac-zone. The set of seismic experiments was repeated after a time interval of 7 months during which CO{sub 2} wasmore » injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geologic structure in the diatomic reservoir to the detectability of CO{sub 2} within the hydrofracture. Furthermore it was intended to determine which experiment (cross well or single well) is best suited to resolve these features. During the pre-injection experiment, the P-wave velocities exhibited relatively low values between 1700-1900 m/s, which decreased to 1600-1800 m/s during the post-injection phase (-5%). The analysis of the pre-injection S-wave data revealed slow S-wave velocities between 600-800 m/s, while the post-injection data revealed velocities between 500-700 m/s (-6%). These velocity estimates produced high Poisson ratios between 0.36 and 0.46 for this highly porous ({approx} 50%) material. Differencing post- and pre-injection data revealed an increase in Poisson ratio of up to 5%. Both, velocity and Poisson estimates indicate the dissolution of CO{sub 2} in the liquid phase of the reservoir accompanied by a pore-pressure increase. The single well data supported the findings of the cross well experiments. P- and S-wave velocities as well as Poisson ratios were comparable to the estimates of the cross well data. The cross well experiment did not detect the presence of the hydrofracture but appeared to be sensitive to overall changes in the reservoir and possibly the presence of a fault. In contrast, the single well reflection data revealed an arrival that could indicate the presence of the hydrofracture between the source and receiver wells, while it did not detect the presence of the fault, possibly due to out of plane reflections.« less
Induced Seismicity of the Paradox Valley Brine Injection
NASA Astrophysics Data System (ADS)
Bachmann, C. E.; Foxall, W.; Daley, T. M.
2013-12-01
The Paradox Valley Unit (PVU) is operated by the U.S. Bureau of Reclamation (USBR) and is built to control the water quality of the Dolores River - a feeder of the Colorado River. Brine is extracted along the river from several shallow wells. Before it is injected into a 4.8km deep well for long-term storage, it is filtered at a surface-treatment facility. The target zone of the injection is a subhorizontal formation of a Mississippian-age limestone. The first injection test started in 1991, continuous injections started in 1996 and are still ongoing. The injection of the fluid in the underground induces micro-seismicity that is monitored by the USBR with the 15-station Paradox Valley Seismic Network. This network located more then 5700 events in the 20 years since the injection started. The locations of the seismic events give crucial insights to the pathways of the injected fluid. In this study we analyze the seismicity up to the end of 2011, which does not include the magnitude 3.9 event that caused a temporary shut down of the PVU in January 2013. The largest event included in our study period is an event with M4.3 of May 2000. The majority (75%) of events are micro-seismic events with magnitudes of 1 or smaller; only 74 events have magnitudes larger or equal to 2.5 of which only 4 are larger or equal to 3.5. Most of the seismicity is constrained to the vicinity of the injection well with roughly 80% of the events occurring within a 4km radius. However, there is one active zone more then 10 km away from the injection well that showed first activity in late 2010. More than 500 micro-seismic events occurred within several weeks in this new zone. The goal behind this study is to understand the processes behind a long-term injection of fluid into the underground where no circulation takes place. While other such projects exist, such as different wastewater injections, none of them has been monitored as well as the Paradox Valley seismicity and or has been going on for such a long time. We aim to get more insight of long-term processes so it can be applied to the study of Carbon Capture and Sequestration (CCS), where large volumes of carbon are injected into the underground for long-term storage. A first step is to understand the frequency magnitude distributions (FMD) of the ongoing seismicity at Paradox Valley better. We divide the events into sub-clusters and examine them individually. We find that the b-Values of the Gutenberg-Richter relationship change substantially within the different clusters from values of 0.7 to 1.2. Comparing the b-Values from this study with earlier studies of induced seismicity in from an Enhanced Geothermal System in Basel, Switzerland, we find that while the values are smaller, the overall pattern is surprisingly similar. We find the largest b-Values closest to the injection well and early on during the injections. Unlike in Basel, we can't compare co-injection and post-injection seismicity, as the injection is still ongoing. However, there are biannual 20-day shutdowns of the injection since 1999, which were implemented to reduce the risk of large magnitude events. We investigate the different behavior of the seismicity during this shut-in compared to the seismicity during the active injection.
Neural network approach to prediction of temperatures around groundwater heat pump systems
NASA Astrophysics Data System (ADS)
Lo Russo, Stefano; Taddia, Glenda; Gnavi, Loretta; Verda, Vittorio
2014-01-01
A fundamental aspect in groundwater heat pump (GWHP) plant design is the correct evaluation of the thermally affected zone that develops around the injection well. This is particularly important to avoid interference with previously existing groundwater uses (wells) and underground structures. Temperature anomalies are detected through numerical methods. Computational fluid dynamic (CFD) models are widely used in this field because they offer the opportunity to calculate the time evolution of the thermal plume produced by a heat pump. The use of neural networks is proposed to determine the time evolution of the groundwater temperature downstream of an installation as a function of the possible utilization profiles of the heat pump. The main advantage of neural network modeling is the possibility of evaluating a large number of scenarios in a very short time, which is very useful for the preliminary analysis of future multiple installations. The neural network is trained using the results from a CFD model (FEFLOW) applied to the installation at Politecnico di Torino (Italy) under several operating conditions. The final results appeared to be reliable and the temperature anomalies around the injection well appeared to be well predicted.
Thalidomide Prevents the Progression of Peritoneal Fibrosis in Mice
Arai, Hideyuki; Furusu, Akira; Nishino, Tomoya; Obata, Yoko; Nakazawa, Yuka; Nakazawa, Masayuki; Hirose, Misaki; Abe, Katsushige; Koji, Takehiko; Kohno, Shigeru
2011-01-01
Thalidomide is clinically recognized as a therapeutic agent for multiple myeloma and has been known to exert anti-angiogenic actions. Recent studies have suggested the involvement of angiogenesis in the progression of peritoneal fibrosis. The present study investigated the effects of thalidomide on the development of peritoneal fibrosis induced by injection of chlorhexidine gluconate (CG) into the mouse peritoneal cavity every other day for 3 weeks. Thalidomide was given orally every day. Peritoneal tissues were dissected out 21 days after CG injection. Expression of CD31 (as a marker of endothelial cells), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), α-smooth muscle actin (as a marker of myofibroblasts), type III collagen and transforming growth factor (TGF)-β was examined using immunohistochemistry. CG group showed thickening of the submesothelial zone and increased numbers of vessels and myofibroblasts. Large numbers of VEGF-, PCNA-, and TGF-β-positive cells were observed in the submesothelial area. Thalidomide treatment significantly ameliorated submesothelial thickening and angiogenesis, and decreased numbers of PCNA- and VEGF-expressing cells, myofibroblasts, and TGF-β-positive cells. Moreover, thalidomide attenuated peritoneal permeability for creatinine, compared to the CG group. Our results indicate the potential utility of thalidomide for preventing peritoneal fibrosis. PMID:21614166
NASA Technical Reports Server (NTRS)
Waithe, Kenrick A.; Deere, Karen A.
2003-01-01
A computational and experimental study was conducted to investigate the effects of multiple injection ports in a two-dimensional, convergent-divergent nozzle, for fluidic thrust vectoring. The concept of multiple injection ports was conceived to enhance the thrust vectoring capability of a convergent-divergent nozzle over that of a single injection port without increasing the secondary mass flow rate requirements. The experimental study was conducted at static conditions in the Jet Exit Test Facility of the 16-Foot Transonic Tunnel Complex at NASA Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios up to 10 with secondary nozzle pressure ratios up to 1 for five configurations. The computational study was conducted using the Reynolds Averaged Navier-Stokes computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. Internal nozzle performance was predicted for nozzle pressure ratios up to 10 with a secondary nozzle pressure ratio of 0.7 for two configurations. Results from the experimental study indicate a benefit to multiple injection ports in a convergent-divergent nozzle. In general, increasing the number of injection ports from one to two increased the pitch thrust vectoring capability without any thrust performance penalties at nozzle pressure ratios less than 4 with high secondary pressure ratios. Results from the computational study are in excellent agreement with experimental results and validates PAB3D as a tool for predicting internal nozzle performance of a two dimensional, convergent-divergent nozzle with multiple injection ports.
Effects of Advanced Fuel Injection Strategies on DI Diesel Emissions
2001-06-19
Skeletal mechanism for NO chemistry in Diesel engines ," SAE Paper 981450. 2) Duffy, K. P. and Mellor, A. M. (1998), "jadf;lkajdf," SAE Paper. 3) Lavoie...pressure for this zone are the start of combustion, stoichiometric flame temperature (Tý.,) and pressure. The NO chemistry is based on a skeletal mechanism ...emissions from a 2.2L high speed direct injection (HSDI) Diesel engine [2]. Model Formulation for Single Injections: The model is based on the assumption
Verdun di Cantogno, Elisabetta; Russell, Susan; Snow, Tom
2011-01-01
Background: All established disease-modifying drugs for multiple sclerosis require parenteral administration, which can cause difficulties for some patients, sometimes leading to suboptimal adherence. A new electronic autoinjection device has been designed to address these issues. Methods: Patients with relapsing multiple sclerosis currently receiving subcutaneous or intramuscular interferon beta-1a, interferon beta-1b, or glatiramer acetate completed an online questionnaire (July 4–25, 2008) that surveyed current injection practices, experiences with current injection methods, and impressions and appeal of the new device. Results: In total, 422 patients completed the survey, of whom 44% used autoinjectors, 43% prefilled syringes, and 13% syringes and vials; overall, 66% currently self-injected. Physical and psychological barriers to self-injection included difficulty with injections, needle phobia, and concerns over correct injection technique. Only 40% of respondents were “very satisfied” with their current injection method. The new electronic autoinjector was rated as “very appealing” by 65% of patients. The benefits of the new device included the ability to customize injection settings and to review dosing history. Conclusion: New technologies may help patients overcome physical and psychological barriers to self-injection. The combination of a reliable and flexible autoinjection device with dose-monitoring technology may improve communication between health care professionals and patients, and improve treatment adherence. PMID:21573048
NASA Astrophysics Data System (ADS)
Brugman, K. K.; Till, C. B.
2017-12-01
The goal of our research is to quantify the time period between events in the magma chamber and eruption for the Scaup Lake rhyolite lava, as it erupted after a period of quiescence similar to what Yellowstone is experiencing today. The overarching goal of studies such as this that focus on past eruptions is to provide context and statistics that will ultimately improve volcano monitoring at different types of active volcanoes. The Scaup Lake flow contains zoned minerals (e.g., feldspar, zircon, clinopyroxene) that record multiple magma injection events shortly before they were erupted. Our previous work using nano-scale elemental concentration profiles from zoned clinopyroxene (cpx) as a diffusion dating tool reinforced our hypothesis that different minerals may not record the same series of pre-eruptive events, and that cpx crystal rims record older events in the Scaup Lake flow (on the order of 100s of years prior to eruption [Brugman et al., AGU OSPA talk, 2016]) than do feldspar rims (< 10 months and 10-40 years prior to eruption [Till et al., Geology, 2015]). In light of new temperature data, we have updated our diffusion dating results to better quantify pre-eruption timescales at Yellowstone.
NASA Technical Reports Server (NTRS)
1982-01-01
A newly patented process for slicing silicon wafers that has distinct advantages over methods now widely used is described. The primary advantage of the new system is that it allows the efficient slicing of a number of ingots simultaneously at high speed. The cutting action is performed mechanically, most often with diamond particles that are transported to the cutting zone by a fluid vehicle or have been made an integral part of the blade by plating or impregnation. The new system uses a multiple or ganged band saw, arranged and spaced so that each side, or length, segment of a blade element, or loop, provides a cutting function. Each blade is maintained precisely in position by guides as it enters and leaves each ingot. The cutting action is performed with a conventional abrasive slurry composed of diamond grit suspended in an oil- or water-based vehicle. The distribution system draws the slurry from the supply reservoir and pumps it to the injection tubes to supply it to each side of each ingot. A flush system is provided at the outer end of the work-station zone. In order to reduce potential damage, a pneumatically driven flushing fluid is provided.
2013-11-15
was conducted. As expected, a cylinder was formed similar to the one shown in Figure 5.9 using potassium permanganate , with slight elongation in the...clean water injections at 400 mg/L. This was not necessary during the ISCO disturbance test, as potassium permanganate (KMnO4), which forms a deep
Dai, Quan; Wang, Lu-Lu; Shao, Xiao-Hui; Wang, Si-Ming; Dong, Xiao-Qiu
2012-10-01
To study the effect of local interventional treatment of unruptured ectopic pregnancies with multiple-drug injection guided by color Doppler sonography. In this retrospective analysis, 49 patients with an unruptured ectopic pregnancy were treated with two different local injection methods administered under sonographic guidance. The patients were divided into single-drug (n = 23) and multiple-drug (n = 26) injection groups, and they received a locally administered injection of methotrexate alone or a combination including methotrexate, hemocoagulase, antibiotics, and anti-inflammatory drugs, respectively. Overall, local injection treatment was successful in 44 patients. The 5 patients with failed treatment underwent laparotomy about 1 week after single-drug injection. Serum β-human chorionic gonadotropin (β-hCG ) levels, ectopic pregnancy mass sizes, blood flow at various points after treatment, the incidence of pelvic bleeding, and the time for serum β-hCG levels to return to normal and the mass to resolve were analyzed in the remaining 44 patients. Single-drug treatment was successful in 18 patients; 10 of 23 had low to moderate pelvic bleeding after treatment, and 5 were referred for surgery. All 26 patients were successfully treated by multiple-drug injection. Only 2 patients had a small amount of pelvic bleeding. Differences between groups were statistically significant (P < .05) for surgery rates, the incidence of pelvic bleeding, transient increases in serum β-hCG levels, mean days to normal β-hCG levels, mean days of mass resolution, and mean mass diameters 1 to 6 weeks after treatment. Local multiple-drug injection under color Doppler guidance is a new, safe, and effective method for treating unruptured ectopic pregnancies. It accelerates the serum β-hCG decline and facilitates mass resolution. This regimen is associated with a very low rate of pelvic bleeding, improves the success rate of conservative treatment, and, therefore, has value as an important clinical application.
NASA Astrophysics Data System (ADS)
Nussbaum, C.; Guglielmi, Y.
2016-12-01
The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations of the Coulomb stress variations on discrete fault planes, considering the injection pressure variations with time in the packed-off sections as the source parameters. Results suggest that the fault architecture and heterogeneity play an important role on the local stress variation at the core-damage zone interface, favouring slip activation below sigma 3.
Method of operating a coal gasifier
Blaskowski, Henry J.
1979-01-01
A method of operating an entrained flow coal gasifier which comprises the steps of firing coal at two levels in a combustion zone with near stoichiometric air, removing molten ash from the combustion zone, conveying combustion products upwardly from the combustion zone through a reduction zone, injecting additional coal into the combustion products in the reduction zone and gasifying at least a portion of the coal to form low BTU gas, conveying the gas to a point of use, including also reducing gasifier output by modifying the ratio of air to coal supplied to the upper level of the combustion zone so that the ratio becomes increasingly substoichiometric thereby extending the gasification of coal from the reduction zone into the upper level of the combustion zone, and maintaining the lower level of coal in the combustion zone at near stoichiometric conditions so as to provide sufficient heat to maintain effective slagging conditions.
An experimental investigation of gas fuel injection with X-ray radiography
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.; ...
2017-04-21
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
Gonzalez, Aroa Garcia; Taraba, Lukáš; Hraníček, Jakub; Kozlík, Petr; Coufal, Pavel
2017-01-01
Dasatinib is a novel oral prescription drug proposed for treating adult patients with chronic myeloid leukemia. Three analytical methods, namely ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis, were developed, validated, and compared for determination of the drug in the tablet dosage form. The total analysis time of optimized ultra high performance liquid chromatography and capillary zone electrophoresis methods was 2.0 and 2.2 min, respectively. Direct ultraviolet detection with detection wavelength of 322 nm was employed in both cases. The optimized sequential injection analysis method was based on spectrophotometric detection of dasatinib after a simple colorimetric reaction with folin ciocalteau reagent forming a blue-colored complex with an absorbance maximum at 745 nm. The total analysis time was 2.5 min. The ultra high performance liquid chromatography method provided the lowest detection and quantitation limits and the most precise and accurate results. All three newly developed methods were demonstrated to be specific, linear, sensitive, precise, and accurate, providing results satisfactorily meeting the requirements of the pharmaceutical industry, and can be employed for the routine determination of the active pharmaceutical ingredient in the tablet dosage form. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An experimental investigation of gas fuel injection with X-ray radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
NASA Astrophysics Data System (ADS)
Trubač, Jakub; Janoušek, Vojtěch; Žák, Jiří; Somr, Michael; Kabele, Petr; Švancara, Jan; Gerdes, Axel; Žáčková, Eliška
2017-04-01
This study integrates gravimetry and thermal modelling with petrology, U-Th-Pb monazite and zircon geochronology and whole-rock geochemistry of the early Carboniferous Říčany Pluton, Bohemian Massif, in order to discuss the origin of compositional and textural zoning in granitic plutons and complex histories of horizontally stratified, multiply replenished magma chambers. The pluton consists of two coeval, nested biotite (-muscovite) granite facies: outer one, strongly porphyritic (SPm) and inner one, weakly porphyritic (WPc). Their contact is concealed but is likely gradational over several hundreds of meters. The two facies have nearly identical modal composition, are subaluminous to slightly peraluminous and geochemically evolved. Mafic microgranular enclaves, commonly associated with K-feldspar phenocryst patches, are abundant in the pluton center and indicate a repeated basic magma injection and its multistage interactions with the granitic magma and nearly solidified cumulates. Furthermore, the gravimetric data show that the nested pluton is only a small outcrop of a large anvil-like body reaching the depth of at least 14 km, where the pluton root is expected. Trace-element compositions reveal that the pluton is doubly reversely zoned. On the pluton scale, the outer SRG is geochemically more evolved than the inner WPc. On the scale of individual units, outward whole-rock geochemical variations within each facies (SPm, WPc) are compatible with fractional crystallization dominated by feldspars. The proposed genetic model invokes vertical overturn of a deeper, horizontally stratified anvil-shaped magma chamber. The overturn was driven by reactivation of resident felsic magma from the K-feldspar-rich crystal mush. The energy for the melt remobilization, extraction and subsequent ascent is thought to be provided by a long-lived thermal anomaly above the pluton feeding zone, enhanced by the multiple injections of hot basic magmas. In general, it is concluded that the three-dimensional shape of the granitic bodies exerts a first-order control on their cooling histories and thus also on their physico-chemical evolution. Thicker and longer lived portions of magma chambers are the favourable sites for extensive fractionation and/or, potentially vigorous interaction with the basic magmas. These hot domains are then particularly prone to rejuvenation and subsequent extraction of highly mobile magma leading potentially to volcanic eruptions.
High exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
2015-09-22
A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.
NASA Astrophysics Data System (ADS)
Cai, Zun; Liu, Xiao; Gong, Cheng; Sun, Mingbo; Wang, Zhenguo; Bai, Xue-Song
2016-09-01
Large Eddy Simulation (LES) was employed to investigate the fuel/oxidizer mixing process in an ethylene fueled scramjet combustor with a rearwall-expansion cavity. The numerical solver was first validated for an experimental flow, the DLR strut-based scramjet combustor case. Shock wave structures and wall-pressure distribution from the numerical simulations were compared with experimental data and the numerical results were shown in good agreement with the available experimental data. Effects of the injection location on the flow and mixing process were then studied. It was found that with a long injection distance upstream the cavity, the fuel is transported much further into the main flow and a smaller subsonic zone is formed inside the cavity. Conversely, with a short injection distance, the fuel is entrained more into the cavity and a larger subsonic zone is formed inside the cavity, which is favorable for ignition in the cavity. For the rearwall-expansion cavity, it is suggested that the optimized ignition location with a long upstream injection distance should be in the bottom wall in the middle part of the cavity, while the optimized ignition location with a short upstream injection distance should be in the bottom wall in the front side of the cavity. By employing a cavity direct injection on the rear wall, the fuel mass fraction inside the cavity and the local turbulent intensity will both be increased due to this fueling, and it will also enhance the mixing process which will also lead to increased mixing efficiency. For the rearwall-expansion cavity, the combined injection scheme is expected to be an optimized injection scheme.
Experiments on Plume Spreading by Engineered Injection and Extraction
NASA Astrophysics Data System (ADS)
Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.
2014-12-01
The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered injection and extraction at field sites where improvements to the rate, extent, and cost of remediation are hoped.
NASA Astrophysics Data System (ADS)
Roback, R. C.; Jones, C. L.; Hull, L. C.; McLing, T. L.; Baker, K. E.; Abdel-Fattah, A. I.; Adams, J. D.; Nichols, E. M.
2003-12-01
The Vadose Zone Research Park (VZRP) provides a unique opportunity to investigate flow and transport in a thick, fractured and layered vadose zone. The VZRP includes two newly constructed percolation ponds each approximately 160000 square ft in area, which receive roughly 1.0 to 1.5 million gallons/day of uncontaminated process water. Monitoring wells and instrumented boreholes surround the percolation ponds. These are distributed in nested sets that allow continuous monitoring and sample collection along two important hydrologic contacts; one located at roughly 60' bls along a contact between alluvium and basalt and the other at 125' bls, along a sedimentary interbed in basalt. Both of these contacts support perched water zones. Hydraulic data have been collected nearly continuously since the first use of the percolation ponds in August 2002. Samples for geochemical studies were also collected during the first few weeks of discharge to the south pond to observe geochemical trends during initial wetting of the subsurface. During the summer of 2003, two tracer tests were performed. The first test consisted of injecting a conservative tracer (2,4,5-trifluorobenzoic acid) into the south pond, which had been receiving water for almost 10 months prior and for which hydraulic data indicated a steady state hydraulic system. The second tracer test was conducted in the north pond and consisted of simultaneous injection of two conservative tracers with different diffusion coefficients (2,4-difluorobenzoic acid, and Br- ion). Tracer injection coincided with the switching of water from the south to the north pond, which had been dry for 10 months prior. Thus, this test afforded us the opportunity to evaluate transport behavior in a relatively dry vadose zone, and to compare this to observed transport behavior under the earlier steady state, more saturated flow condition. Results from the first tracer test show tracer breakthrough in a shallow well, close to the south pond within approximately 30 hours with the peak at approximately 70 hours. In an adjacent, though deeper well located in a perched water zone at the 125' interbed, two tracer peaks were observed, one at approximately 50 hours and the other at approximately 200 hours, indicating multiple flow pathways and different travel times. Flow velocities calculated from this test are on the order of 100 m/day, in good agreement with velocities determined through hydraulic data. Initial results from the second tracer test show tracer recovery in at least four of the sampled wells. During this test, the discharge and four wells were also sampled for colloid concentration and particle size distribution. Colloid concentrations in the wells are roughly equivalent to, or larger than, those from the discharge and show sharp peaks up to an order of magnitude above background values. Comparison of colloid concentration data from the discharge, shallow wells located in the alluvium, and deeper wells in fractured basalt suggest that colloids are liberated in the alluvium and that advection through the fractured basalt does not affect the stability of the colloids. Preliminary tracer data show that tracer breakthrough in the monitoring wells occurred at similar times to colloid peaks. Further analytical work will yield breakthrough curves for the 2,4-tFBA that will be quantitatively compared with the colloid peaks.
Review of factors affecting recovery of freshwater stored in saline aquifers
Merritt, Michael L.
1989-01-01
A simulation analysis reported previously, and summarized herein, identified the effects of various geohydrologic and operational factors on recoverability of the injected water. Buoyancy stratification, downgradient advection, and hydrodynamic dispersion are the principal natural processes that reduce the amount of injected water that can be recovered. Buoyancy stratification is shown to depend on injection-zone permeability and the density contrast between injected and saline native water. Downgradient advection occurs as a result of natural or induced hydraulic gradients in the aquifer. Hydrodynamic dispersion reduces recovery efficiency by mixing some of the injected water with native saline aquifer water. In computer simulations, the relation of recovery efficiency to volume injected and its improvement during successive injection-recovery cycles was shown to depend on changes in the degree of hydrodynamic dispersion that occurs. Additional aspects of the subject are discussed.
NASA Astrophysics Data System (ADS)
Prante, M. R.; Evans, J. P.
2012-12-01
Description and identification of fault-related deformation products that are diagnostic of seismic slip have implications for the energy budget of earthquakes, fault strength, and fault-rock assemblages. We describe tectonic pseduotachylyte, cataclastic rocks, crystal-plastic deformation, and hydrothermal alteration form faults exhumed from seismogenic depths in the Volcanic Lakes area, in northern Sequoia and Kings Canyon National Park, CA, USA. Fault rock protoliths include Mesozoic granite and granodiorite plutonic and limited metasedimentary and metavolcanic rocks. These plutonic and metamorphic rocks are cross-cut by the E-W striking, steeply dipping, left-lateral strike-slip Granite Pass (GPF) and Glacier Lakes faults (GLF). Cross-cutting relationships and microstructural data suggest that the GPF is the oldest fault in the area and preserves evidence for coeval brittle and plastic crystal deformation, and hydrothermal fluid-flow. Tectonic pseudotachylyte from the area has been dated using the 40Ar/39Ar method at 76.6 ± 0.3 Ma; when placed into a thermochronologic framework for the plutonic host rock it can be inferred that the pseudotachylyte formed at depths between 2.4-6.0 km with ambient temperatures between 110-160°C. Exceptionally well preserved tectonic pseudotachylyte from the GLF and GPF contain evidence for a frictional melt origin including: 1) plagioclase spherulites and microlites, 2) injection vein morphology, 3) amygdules, 4) viscous flow banding and folds, and 5) embayed and corroded clasts. Pseudotachylyte from the GPF and GLF is associated with brittle and plastic deformation in the damage zone of the faults. Evidence for plastic deformation includes undulose extinction, deformation lamellae, subgrain development, and grain boundary bulging in quartz; and limited undulose extinction in feldspar. Additionally, abundant hydrothermal alteration and mineralization has been documented in the GPF and GLF fault zones, including, chlorite pseudomorphs after biotite and alteration of mafic phases to epidote, sericite and calcite alteration of albite, and calcite and chlorite filled veins. Cross-cutting calcite veins contain fine-grained calcite with abundant twins up to 20 μm-thick. Multiple pseudotachylyte injection veins and reworked pseudotachylyte in cataclastic rock suggest multiple earthquakes along the GPF and GLF at depths favorable to pseudotachylyte formation. Abundant hydrothermal alteration and cross-cutting calcite veins with thick (> 1 μm) twins is consistent with ambient temperatures between 170 and 200°C. These temperatures are generally consistent with the reported ambient temperature conditions during pseudotachylyte formation. Crystal-plastic deformation of quartz and feldspar in the GPF and GLF zones is consistent with deformation at temperatures between 200-400°C. Frictional melt and associated brittle and plastic deformation, and fluid alteration are presumed to have occurred at similar temperature conditions and may be coeval. These results have important implication for understanding energy sinks associated with seismic slip and the conditions of tectonic pseudotachylyte formation.
Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo
2017-03-01
Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.
Optimization of a Time-Lapse Gravity Network for Carbon Sequestration
NASA Astrophysics Data System (ADS)
Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.
2017-12-01
The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented boreholes that could be used to track the CO2 plume and potential leaks. A preliminary cost estimate will also be provided.
Distributed parallel messaging for multiprocessor systems
Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka
2013-06-04
A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.
Tímár, József; Forster-Horváth, C; Lukits, J; Döme, B; Ladányi, A; Remenár, E; Kásler, M; Bencsik, M; Répássy, G; Szabó, G; Velich, N; Suba, Z; Elõ, J; Balatoni, Z; Bajtai, A; Chretien, P; Talor, Eyal
2003-12-01
The main objective of this study was to investigate the effect of the administration of a novel immunoadjuvant, leukocyte interleukin injection, as part of an immuno-augmenting treatment regimen on the peritumoral and intratumoral subpopulations of the tumor infiltrating mononuclear cells and on the epithelial and stromal components, when administered to patients with advanced primary oral squamous cell carcinoma classified as T2-3N0-2M0, as compared with disease-matched control patients (not treated with leukocyte interleukin injection). Multicenter Phase I/II clinical trial. Fifty-four patients from four clinical centers were included in the dose-escalating study (27 in each group [leukocyte interleukin injection-treated and control groups]). Cumulative leukocyte inter-leukin injection doses were 2400, 4800, and 8000 IU (as interleukin-2 equivalent). Paraffin-embedded tumor samples obtained at surgical resection of the residual tumor (between days 21 and 28 after treatment initiation) were used. Histological analysis, necrosis evaluation, and American Joint Committee on Cancer grading were performed from H&E-stained sections. Immunohistochemical analysis was performed on three different tumor regions (surface, zone 1; center, zone 2; and tumor-stroma interface, zone 3). Trichrome staining was used to evaluate connective tissue, and morphometric measurements were made using ImagePro analysis software. Cell cycling was determined by the use of Ki-67 marker. Leukocyte interleukin injection treatment induced a shift from stromal infiltrating T cells toward intraepithelial T cells and posted a significant (P <.05) increase in intraepithelial CD3-positive T cells independent of the leukocyte interleukin injection dose, whereas the increase in CD25 (interleukin-2 receptor alpha [IL-2Ralpha])-positive lymphoid cells was significant only at the lowest leukocyte interleukin injection dose (P <.05). Furthermore, both low- and medium-dose leukocyte interleukin injection treatment induced a significant (P <.05) increase in the number of cycling tumor cells, as compared with control values. The results could be highly beneficial for patients with oral squamous cell carcinoma. First, leukocyte interleukin injection treatment induces T-cell migration into cancer nests and, second, noncycling cancer cells may enter cell cycling on administration of leukocyte interleukin injection. This latter effect may modulate the susceptibility of cancer cells to radiation therapy and chemotherapy. The findings may indicate a need to re-evaluate the way in which follow-up treatment (with radiation therapy and chemotherapy) of patients with head and neck cancer is currently approached.
Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations
Tiedeman, Claire; Shapiro, Allen M.; Hsieh, Paul A.; Imbrigiotta, Thomas; Goode, Daniel J.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Johnson, Carole D.; Williams, John H.; Curtis, Gary P.
2018-01-01
Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.
2012-09-01
121 Published text books , book chapters, and theses.........................................................................125...optimize the rate and method of injection (e.g. direct push, hydraulic fracture ), or to optimize the nanoiron properties for specific site geology...expected that higher injection rates will increase the radius of influence by decreasing the efficiency of all three attachment mechanisms (diffusion
[Seniority of neurobladder and effectiveness of a first intradetrusor injection of botulinum toxin].
Lacout, M; Guinet-Lacoste, A; Popoff, M; Verollet, D; Lebreton, F; Amarenco, G
2015-09-01
Intradetrusor injection of botulinum toxin is one of the second-line therapy of neurologenic detrusor overactivity. In 26% to 66% of the cases, intradetrusor injection of botulinum toxin is inefficient in order to reduce overactive bladder symptoms and/or overactive detrusor. The objective of this study is to determine whether it exists a link between the efficacy of the first IDBT and the length of neurological detrusor overactivity symptoms. Retrospective study on 79 patients which have a first intradetrusor injection of botulinum toxin between January 2001 and December 2013. Inclusion criteria were patients older than 18 and having neurological detrusor overactivity. There is no significant difference of intradetrusor injection of botulinum toxin efficacy according to duration of urinary symptoms in the general neurologigal population (multiple sclerosis, spinal cord injury, spinal cord compression, ischemic pathology, infectious pathology) with the mean age being 46 years. On the contrary, the length of evolution of neurological detrusor overactivity symptoms before the intradetrusor botox injection therapy and the efficiency of the first intradetrusor injection of botulinum toxin seem to be correlated with negative results in patients with multiple sclerosis. The duration of urinary symptoms is a predictive factor of primary failure of intradetrusor injection of botulinum toxin in multiple sclerosis patients, in univariate analysis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Horizontal insulating barriers as a way to protect groundwater
NASA Astrophysics Data System (ADS)
Cicha-Szot, Renata; Labus, Krzysztof; Falkowicz, Sławomir; Madetko, Norbert
2018-06-01
Trenchless Technology of Forming Horizontal Insulating Barriers (TFHB) can be considered a method of groundwater protection against inflow of pollutants. In TFHB technology, the working fluid (sodium silicate solution) and the gelling agent (CO2) are injected separately, using one tool, to different zones of the aquifer profile. Carbon dioxide injected into the saturation zone rises due to buoyancy forces and reaches the silicate which was injected at the water table level. This initiates the process of silicate gelation, resulting in the formation of an insulating barrier. For technological purposes, the gelation time must be controlled, and the resulting gel must have certain mechanical properties. In order to apply THFB in real conditions it was necessary to identify important technological and technical parameters, as well as to define interactions between the injected fluid and the aquifer rocks. Geochemical modelling (equilibrium, reaction path and reactive transport) was used to identify potential geochemical effects of the application of TFHB in sandy aquifers. Certain petrophysical parameters and mineralogical assemblages of aquifers were addressed, taking into account both low and strongly mineralized groundwater. The simulations revealed that TFHB does not have a negative impact on the chemistry of rock-water systems described in this work.
The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claudepierre, Seth G.; O'Brien, T. P.; Fennell, J. F.
We present measurements of relativistic electrons (0.7–1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that ~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As ~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these twomore » events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Lastly, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.« less
The hidden dynamics of relativistic electrons (0.7-1.5 MeV) in the inner zone and slot region
Claudepierre, Seth G.; O'Brien, T. P.; Fennell, J. F.; ...
2017-03-15
We present measurements of relativistic electrons (0.7–1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that ~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As ~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these twomore » events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Lastly, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.« less
Cozzetto, Karen D.; Bencala, Kenneth E.; Gooseff, Michael N.; McKnight, Diane M.
2013-01-01
Given projected increases in stream temperatures attributable to global change, improved understanding of relationships between stream temperatures and hyporheic exchange would be useful. We conducted two conservative tracer injection experiments in a glacial meltwater stream, to evaluate the effects of hyporheic thermal gradients on exchange processes, including preferential flow paths (PFPs). The experiments were conducted on the same day, the first (a stream injection) during a cool, morning period and the second (dual stream and hyporheic injections) during a warm, afternoon period. In the morning, the hyporheic zone was thermally uniform at 4°C, whereas by the afternoon the upper 10 cm had warmed to 6–12°C and exhibited greater temperature heterogeneity. Solute transport modeling showed that hyporheic cross-sectional areas (As) at two downstream sites were two and seven times lower during the warm experiment. Exchange metrics indicated that the hyporheic zone had less influence on downstream solute transport during the warm, afternoon experiment. Calculated hyporheic depths were less than 5 cm, contrasting with tracer detection at 10 and 25 cm depths. The hyporheic tracer arrival at one downstream site was rapid, comparable to the in-stream tracer arrival, providing evidence for PFPs. We thus propose a conceptual view of the hyporheic zone in this reach as being dominated by discrete PFPs weaving through hydraulically isolated areas. One explanation for the simultaneous increase in temperature heterogeneity and As decrease in a warmer hyporheic zone may be a flow path preferentiality feedback mechanism resulting from a combination of temperature-related viscosity decreases and streambed heterogeneity.
Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock
NASA Astrophysics Data System (ADS)
Chia, Y.; Chuang, P. Y.
2015-12-01
Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.
NASA Astrophysics Data System (ADS)
Crispini, L.; Scambelluri, M.; Capponi, G.
2013-12-01
Recent friction experiments on calcite-bearing systems reproduce pseudotachylyte structures, that are diagnostic of dinamic calcite recrystallization related to seismic slip in the shallow crust. Here we provide the study of a pseudotachylyte (PT) bearing low angle oblique-slip fault. The fault is linked to the exhumation of Alpine HP-ophiolites and it is syn- to post-metamorphic with respect to retrograde greenschist facies metamorphism. The observed microstructures developed at the brittle-ductile transition and suggest that seismic and interseismic slip was enhanced by interaction with fluids. The fault zone is in-between high-pressure eclogite-facies metabasites (hangingwall) and calcite bearing metasediments (footwall). The mafic rocks largely consist of upper greenschist facies hornblende, albite, chlorite, epidote with relict eclogitic garnet, Na-pyroxene and rutile; metasediments correspond to calcschist and micaschist with quartz, phengite, zoisite, chlorite, calcite and relics of garnet. Key features of the oucrop are: the thickness and geometry of the PT and gouge; the multiple production of PT characterized by overprinting plastic and brittle deformation; the occurrence in footwall metasediments of mm-thick bands of finely recrystallized calcite coeval with PT development in the hangingwall. The damage zone is ca. 2 m-thick and is characterized by two black, ultra-finegrained straight and sharp Principal Slip Zones (PSZ) marked by PT. The damage zone shows a variety of fault rocks (cataclasite and ultracataclasite, gouge and PT) with multiple crosscutting relationships. Within the two main PSZ, PT occurs in 10-20 cm thick layer, in small scale injection veins and in microfractures. In the mafic hanging wall, the PT is recrystallized and does not preserve glass: it shows flow structures with subrounded, embayed and rebsorbed quartz in a fine grained matrix composed of isotropic albite + chlorite + quartz + epidote + titanite, suggesting recrystallization at ca. 270-300°C, 8-10 km of the original glass. PT show plastic deformations overprinted by shear bands and fracturing. The matrix of cataclastic layers has the same mineral assemblage as PT and clasts of recrystallised PT, to indicate polyphase PSZ formation. In the metasedimentary footwall, the original foliation is deflected parallel to the PSZ and is cut by cm-spaced shear bands parallel to PSZ. Deformation propagates in the footwall through mm-thick injections veins, shear bans, P-shears and veins. Pockets of recrystallized PT occur along the pre-existing mylonitic foliation of metasediments. Worthnote is the presence of mm-thick deformation bands (CDB) that are post-mylonitic foliation and mainly composed of fine grained calcite bounded by dissolution seams or ribbon grains of deformed calcite. CDB are characterised by subrounded embayed and rebsorbed quartz grains rimmed by new Ca-Mg amphibole, K-feldspar (90-93%K), in a dinamic recrystallized calcite 2-10 micron in size and slightly elongated. The features of the CDB suggest that these structures can be considered as diagnostic of localised deformation during coesismic slip in metasedimentary rocks.
NASA Astrophysics Data System (ADS)
Ledevin, M.; Arndt, N.; Davaille, A.; Ledevin, R.; Simionovici, A.
2015-02-01
In the Barberton Greenstone Belt, South Africa, a 100-250 m thick complex of carbonaceous chert dikes marks the transition from the Mendon Formation to the Mapepe Formation (3260 Ma). The sub-vertical- to vertical position of the fractures, the abundance of highly shattered zones with poorly rotated angular fragments and common jigsaw fit, radial structures, and multiple injection features point to repetitive hydraulic fracturing that released overpressured fluids trapped within the shallow crust. The chemical and isotopic compositions of the chert favour a model whereby seawater-derived fluids circulated at low temperature (< 100-150 °C) within the shallow crust. From the microscopic structure of the chert, the injected material was a slurry of abundant clay-sized, rounded particles of silica, carbonaceous matter and minor clay minerals, all suspended in a siliceous colloidal solution. The dike geometry and characteristics of the slurry concur on that the chert was viscoelastic, and most probably thixotropic at the time of injection: the penetration of black chert into extremely fine fractures is evidence for low viscosity at the time of injection and the suspension of large country rock fragments in the chert matrix provides evidence of high viscosity soon thereafter. We explain the rheology by the particulate and colloidal structure of the slurry, and by the characteristic of silica suspensions to form cohesive 3-D networks through gelation. Our results provide valuable information about the compositions, physical characteristics and rheological properties of the fluids that circulated through Archean volcano-sedimentary sequences, which is an additional step to understand conditions on the floor of Archean oceans, the habitat of early life.
Cihan, Abdullah; Birkholzer, Jens; Bianchi, Marco
2014-12-31
Large-scale pressure increases resulting from carbon dioxide (CO 2) injection in the subsurface can potentially impact caprock integrity, induce reactivation of critically stressed faults, and drive CO 2 or brine through conductive features into shallow groundwater. Pressure management involving the extraction of native fluids from storage formations can be used to minimize pressure increases while maximizing CO2 storage. However, brine extraction requires pumping, transportation, possibly treatment, and disposal of substantial volumes of extracted brackish or saline water, all of which can be technically challenging and expensive. This paper describes a constrained differential evolution (CDE) algorithm for optimal well placement andmore » injection/ extraction control with the goal of minimizing brine extraction while achieving predefined pressure contraints. The CDE methodology was tested for a simple optimization problem whose solution can be partially obtained with a gradient-based optimization methodology. The CDE successfully estimated the true global optimum for both extraction well location and extraction rate, needed for the test problem. A more complex example application of the developed strategy was also presented for a hypothetical CO 2 storage scenario in a heterogeneous reservoir consisting of a critically stressed fault nearby an injection zone. Through the CDE optimization algorithm coupled to a numerical vertically-averaged reservoir model, we successfully estimated optimal rates and locations for CO 2 injection and brine extraction wells while simultaneously satisfying multiple pressure buildup constraints to avoid fault activation and caprock fracturing. The study shows that the CDE methodology is a very promising tool to solve also other optimization problems related to GCS, such as reducing ‘Area of Review’, monitoring design, reducing risk of leakage and increasing storage capacity and trapping.« less
Selective nanoparticle-directed photothermal ablation of the canine prostate
NASA Astrophysics Data System (ADS)
Schwartz, Jon A.; Price, Roger E.; Gill-Sharp, Kelly L.; Sang, Krystina L.; Khorchani, Jennifer D.; Payne, J. Donald; Goodwin, Bradford S.
2011-03-01
This study adapted AuroLase® Therapy, previously reported for the treatment of brain tumors, to the treatment of prostate disease by 1) using normal canine prostate in vivo, directly injected with a solution of nanoparticles as a proxy for prostate tumor and, 2) developing an appropriate laser dosimetry for prostate which is which is subablative in native prostate while simultaneously producing photothermal coagulation in prostate tissue containing therapeutic nanoshells. Healthy, mixed-breed hound dogs were given surgical laparotomies during which nanoshells were injected directly into one or both prostate hemispheres. Laser energy was delivered percutaneously to the parenchyma of the prostate along 1-5 longitudinal tracts via a liquid-cooled optical fiber catheter terminated with a 1-cm isotropic diffuser after which the incision was closed and sutured using standard surgical techniques. The photothermal lesions were permitted to resolve for up to 8 days, after which each animal was euthanized, necropsied, and the prostate taken for histopathological analysis. We developed a laser dosimetry which is sub- to marginally ablative in native prostate and simultaneously ablative of prostate tissue containing nanoshells which would indicate a viable means of treating tumors of the prostate which are known from other studies to accumulate nanoshells. Secondly, we determined that multiple laser treatments of nanoshell-containing prostate tissue could be accomplished while sparing the urethra and prostate capsule thermal damage. Finally, we determined that the extent of damage zone radii correlate positively with nanoshell concentration, and negatively to the length of time between nanoshell injection and laser treatment.
Müller, Marco; Wasmer, Katharina; Vetter, Walter
2018-06-29
Countercurrent chromatography (CCC) is an all liquid based separation technique typically used for the isolation and purification of natural compounds. The simplicity of the method makes it easy to scale up CCC separations from analytical to preparative and even industrial scale. However, scale-up of CCC separations requires two different instruments with varying coil dimensions. Here we developed two variants of the CCC multiple injection mode as an alternative to increase the throughput and enhance productivity of a CCC separation when using only one instrument. The concept is based on the parallel injection of samples at different points in the CCC column system and the simultaneous separation using one pump only. The wiring of the CCC setup was modified by the insertion of a 6-port selection valve, multiple T-pieces and sample loops. Furthermore, the introduction of storage sample loops enabled the CCC system to be used with repeated injection cycles. Setup and advantages of both multiple injection modes were shown by the isolation of the furan fatty acid 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5-EE) from an ethyl ester oil rich in 4,7,10,13,16,19-docosahexaenoic acid (DHA-EE). 11D5-EE was enriched in one step from 1.9% to 99% purity. The solvent consumption per isolated amount of analyte could be reduced by ∼40% compared to increased throughput CCC and by ∼5% in the repeated multiple injection mode which also facilitated the isolation of the major compound (DHA-EE) in the sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Estimating the change of porosity in the saturated zone during air sparging.
Tsai, Yih-jin; Kuo, Yu-chia; Chen, Tsu-chi; Chou, Feng-chih
2006-01-01
Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.
Characteristics of a trapped-vortex (TV) combustor
NASA Technical Reports Server (NTRS)
Hsu, K.-Y.; Gross, L. P.; Trump, D. D.; Roquemore, W. M.
1994-01-01
The characteristics of a Trapped-Vortex (TV) combustor are presented. A vortex is trapped in the cavity established between two disks mounted in tandem. Fuel and air are injected directly into the cavity in such a way as to increase the vortex strength. Some air from the annular flow is also entrained into the recirculation zone of the vortex. Lean blow-out limits of the combustor are determined for a wide range of annular air flow rates. These data indicate that the lean blow-out limits are considerably lower for the TV combustor than for flames stabilized using swirl or bluff-bodies. The pressure loss through the annular duct is also low, being less than 2% for the flow conditions in this study. The instantaneous shape of the recirculation zone of the trapped vortex is measured using a two-color PIV technique. Temperature profiles obtained with CARS indicate a well mixed recirculation zone and demonstrate the impact of primary air injection on the local equivalence ratio.
Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.
Reddy, K R; Adams, J A
2000-02-25
This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.
Lanni, Stefano; Bertamino, Marta; Consolaro, Alessandro; Pistorio, Angela; Magni-Manzoni, Silvia; Galasso, Roberta; Lattanzi, Bianca; Calvo-Aranda, Enrique; Martini, Alberto; Ravelli, Angelo
2011-09-01
To investigate the efficacy of IA CS (IAC) therapy in single and multiple joints in children with JIA and to seek for predictors of synovitis flare. The clinical charts of patients who received their first IAC injection between January 2002 and December 2008 were reviewed. The CS used was triamcinolone hexacetonide for large joints and methylprednisolone acetate for small or difficult to access joints. Patients were stratified as follows: one joint injected; two joints injected; and three or more joints injected. Predictors included sex, age at disease onset, JIA category, age and disease duration, ANA status, iridocyclitis, general anaesthesia, number and type of injected joints, acute-phase reactants and concomitant MTX therapy. The cumulative probability of survival without synovitis flare for patients injected in one, two, or three or more joints was 70, 45 and 44%, respectively, at 1 year; 61, 32 and 30%, respectively, at 2 years; and 37, 22 and 19%, respectively, at 3 years. On Cox regression analysis, positive CRP, negative ANA and injection in the ankle were the strongest predictors for synovitis flare. The only significant side effect was skin hypopigmentation or s.c. atrophy, which occurred in <2% of patients. IAC therapy-induced sustained remission of synovitis in a substantial proportion of patients injected either in single or multiple joints, with a good safety profile. The risk of synovitis flare was higher in patients who had positive CRP, negative ANA and were injected in the ankle.
Hydrocortisone injection is used to treat symptoms of low corticosteroid levels (lack of certain substances that are ... is also used to treat severe allergic reactions. Hydrocortisone injection is used in the management of multiple ...
NASA Astrophysics Data System (ADS)
Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie
2013-04-01
The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non-isothermal porous media numerical flow simulator in order to model the evolution and injection-related operational dynamics of The Geysers geothermal field. At the bottom of the domain in the felsite, we impose a constant temperature, constant saturation, low-permeability boundary. Laterally we set no-flow boundaries (no mass or heat flow), while at the top we use a fully aqueous-phase-saturated constant atmospheric pressure boundary condition. We compute initial conditions for two different conceptual models. The first conceptual model has two phases (gas and aqueous) with decreasing proportions of gas from the steam zone downward; the second model has dry steam all the way from the steam zone to the bottom. The first may be more similar to a pre-exploitation condition, before production reduced pressure and dried out the system, while the second is calibrated to the pressure and temperature actually measured in the reservoir today. Our preliminary results are in reasonable agreement with the pressure monitoring at Prati State 31. These results will be used in hydrogeomechanical modeling to plan, design, and validate the effects of injection in the system.
Mburu, Gitau; Ayon, Sylvia; Tsai, Alexander C; Ndimbii, James; Wang, Bangyuan; Strathdee, Steffanie; Seeley, Janet
2018-05-25
A tenth of all people who inject drugs in Kenya are women, yet their social contexts and experiences remain poorly understood. This paper reports how multiple forms of stigma are experienced by women who inject drugs in coastal Kenya and the impact that they have on their ability to access essential health services. In 2015, in-depth interviews and focus group discussions were held with 45 women who inject drugs in two coastal towns. These data were supplemented with in-depth interviews with five individual stakeholders involved in service provision to this population. Data were analyzed thematically using NVivo. Women who inject drugs experience multiple stigmas, often simultaneously. These included the external stigma and self-stigma of injection drug use, external gender-related stigma of being a female injecting drug user, and the external stigma of being HIV positive (i.e., among those living with HIV). Stigma led to rejection, social exclusion, low self-esteem, and delay or denial of services at health facilities. HIV and harm reduction programs should incorporate interventions that address different forms of stigma among women who inject drugs in coastal Kenya. Addressing stigma will require a combination of individual, social, and structural interventions, such as collective empowerment of injecting drug users, training of healthcare providers on issues and needs of women who inject drugs, peer accompaniment to health facilities, addressing wider social determinants of stigma and discrimination, and expansion of harm reduction interventions to change perceptions of communities towards women who inject drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modern, energy-efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impactmore » of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.« less
Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poerschke, Andrew
2016-02-17
"Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate themore » impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.« less
de Jesus, E B; de Andrade Lima, L R P
2016-08-01
Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity.
Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, Elizabeth; Dempsey, David; Pawar, Rajesh
The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less
Pressure Monitoring to Detect Fault Rupture Due to CO 2 Injection
Keating, Elizabeth; Dempsey, David; Pawar, Rajesh
2017-08-18
The capacity for fault systems to be reactivated by fluid injection is well-known. In the context of CO 2 sequestration, however, the consequence of reactivated faults with respect to leakage and monitoring is poorly understood. Using multi-phase fluid flow simulations, this study addresses key questions concerning the likelihood of ruptures, the timing of consequent upward leakage of CO 2, and the effectiveness of pressure monitoring in the reservoir and overlying zones for rupture detection. A range of injection scenarios was simulated using random sampling of uncertain parameters. These include the assumed distance between the injector and the vulnerable fault zone,more » the critical overpressure required for the fault to rupture, reservoir permeability, and the CO 2 injection rate. We assumed a conservative scenario, in which if at any time during the five-year simulations the critical fault overpressure is exceeded, the fault permeability is assumed to instantaneously increase. For the purposes of conservatism we assume that CO 2 injection continues ‘blindly’ after fault rupture. We show that, despite this assumption, in most cases the CO 2 plume does not reach the base of the ruptured fault after 5 years. As a result, one possible implication of this result is that leak mitigation strategies such as pressure management have a reasonable chance of preventing a CO 2 leak.« less
Evaluation of liquid aerosol transport through porous media
NASA Astrophysics Data System (ADS)
Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.
2016-07-01
Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.
A multi-staining chip using hydrophobic valves for exfoliative cytology in cancer
NASA Astrophysics Data System (ADS)
Lee, Tae Hee; Bu, Jiyoon; Moon, Jung Eun; Kim, Young Jun; Kang, Yoon-Tae; Cho, Young-Ho; Kim, In Sik
2017-07-01
Exfoliative cytology is a highly established technique for the diagnosis of tumors. Various microfluidic devices have been developed to minimize the sample numbers by conjugating multiple antibodies in a single sample. However, the previous multi-staining devices require complex control lines and valves operated by external power sources, to deliver multiple antibodies separately for a single sample. In addition, most of these devices are composed of hydrophobic materials, causing unreliable results due to the non-specific binding of antibodies. Here, we present a multi-staining chip using hydrophobic valves, which is formed by the partial treatment of 2-hydroxyethyl methacrylate (HEMA). Our chip consists of a circular chamber, divided into six equal fan-shaped regions. Switchable injection ports are located at the center of the chamber and at the middle of the arc of each fan-shaped zone. Thus, our device is beneficial for minimizing the control lines, since pre-treatment solutions flow from the center to outer ports, while six different antibodies are introduced oppositely from the outer ports. Furthermore, hydrophobic narrow channels, connecting the central region and each of the six fan-shaped zones, are closed by capillary effect, thus preventing the fluidic mixing without external power sources. Meanwhile, HEMA treatment on the exterior region results in hydrophobic-to-hydrophilic transition and prevents the non-specific binding of antibodies. For the application, we measured the expression of six different antibodies in a single sample using our device. The expression levels of each antibody highly matched the conventional immunocytochemistry results. Our device enables cancer screening with a small number of antibodies for a single sample.
Hermanides, J; Nørgaard, K; Bruttomesso, D; Mathieu, C; Frid, A; Dayan, C M; Diem, P; Fermon, C; Wentholt, I M E; Hoekstra, J B L; DeVries, J H
2011-10-01
To investigate the efficacy of sensor-augmented pump therapy vs. multiple daily injection therapy in patients with suboptimally controlled Type 1 diabetes. In this investigator-initiated multi-centre trial (the Eurythmics Trial) in eight outpatient centres in Europe, we randomized 83 patients with Type 1 diabetes (40 women) currently treated with multiple daily injections, age 18-65 years and HbA(1c) ≥ 8.2% (≥ 66 mmol/mol) to 26 weeks of treatment with either a sensor-augmented insulin pump (n = 44) (Paradigm(®) REAL-Time) or continued with multiple daily injections (n = 39). Change in HbA(1c) between baseline and 26 weeks, sensor-derived endpoints and patient-reported outcomes were assessed. The trial was completed by 43/44 (98%) patients in the sensor-augmented insulin pump group and 35/39 (90%) patients in the multiple daily injections group. Mean HbA(1c) at baseline and at 26 weeks changed from 8.46% (SD 0.95) (69 mmol/mol) to 7.23% (SD 0.65) (56 mmol/mol) in the sensor-augmented insulin pump group and from 8.59% (SD 0.82) (70 mmol/mol) to 8.46% (SD 1.04) (69 mmol/mol) in the multiple daily injections group. Mean difference in change in HbA(1c) after 26 weeks was -1.21% (95% confidence interval -1.52 to -0.90, P < 0.001) in favour of the sensor-augmented insulin pump group. This was achieved without an increase in percentage of time spent in hypoglycaemia: between-group difference 0.0% (95% confidence interval -1.6 to 1.7, P = 0.96). There were four episodes of severe hypoglycaemia in the sensor-augmented insulin pump group and one episode in the multiple daily injections group (P = 0.21). Problem Areas in Diabetes and Diabetes Treatment Satisfaction Questionnaire scores improved in the sensor-augmented insulin pump group. Sensor augmented pump therapy effectively lowers HbA(1c) in patients with Type 1 diabetes suboptimally controlled with multiple daily injections. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
NASA Astrophysics Data System (ADS)
Pedretti, D.; Molinari, A.; Fallico, C.; Guzzi, S.
2016-10-01
A series of experimental tracer tests were performed to explore the implications of the change in the pressure status of a heterogeneous bimodal aquifer for scale-dependent dispersion and mass-transfer processes. The sandbox was filled with sands and gravel channels and patches to form an alluvial-like bimodal aquifer. We performed multiple injections of a conservative tracer from 26 different locations of the sandbox and interpreted the resulting depth-integrated breakthrough curves (BTCs) at the central pumping well to obtain a scale-dependent distribution of local and field-integrated apparent longitudinal dispersivity (respectively, αLloc and αLapp). We repeated the experiments under confined (CS) and unconfined (UNS) pressure status, keeping the same heterogeneous configuration. Results showed that αLloc(associated with transport through gravel zones) was poorly influenced by the change in aquifer pressure and the presence of channels. Instead, αLapp(i.e. macrodispersion) strongly increased when changing from CS to UNS. In specific, we found αLapp ≈ 0.03 r for the CS and αLapp ≈ 0.15 r for the UNS (being r the distance from the well). Second-to-fourth-order temporal moments showed strong spatial dependence in the UNS and no spatial dependence in the CS. These results seem consistent with a ;vadose-zone-driven; kinetic mass-transfer process occurring in the UNS but not in the CS. The vadose zone enhances vertical flow due to the presence of free surface and large contrasts in hydraulic conductivity triggered by the desaturation of gravel channels nearby the pumping well. The vadose zone enhances vertical mixing between gravel and sands and generates BTC tailing. In the CS vertical mixing is negligible and anomalous transport is not observed.
Combuston method of oil shale retorting
Jones, Jr., John B.; Reeves, Adam A.
1977-08-16
A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.
Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response.
Tzeng, Stephany Y; McHugh, Kevin J; Behrens, Adam M; Rose, Sviatlana; Sugarman, James L; Ferber, Shiran; Langer, Robert; Jaklenec, Ana
2018-05-21
Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule-based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. Copyright © 2018 the Author(s). Published by PNAS.
Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response
Tzeng, Stephany Y.; McHugh, Kevin J.; Behrens, Adam M.; Rose, Sviatlana; Sugarman, James L.; Ferber, Shiran; Jaklenec, Ana
2018-01-01
Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule–based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world. PMID:29784798
Nanotune: A Novel Approach to Control the Deposition and Fate of Particles in Porous Media
NASA Astrophysics Data System (ADS)
Sethi, R.; Bianco, C.; Tosco, T.; Tiraferri, A.; Patiño Higuita, J. E.
2017-12-01
Nanoremediation is an innovative environmental nanotechnology aimed at reclaiming contaminated aquifers. It consists in the subsurface injection of a reactive colloidal suspension for the in-situ treatment of pollutants. The greatest challenges faced by engineers to advance nanoremediation are the effective delivery and the appropriate dosing of the nanoparticles into the subsoil. These are necessary for the correct emplacement of the in situ reactive zone and to minimize the overall cost of the reclamation and the potential secondary risks associated to the uncontrolled migration of the injected particles. In this study, a model assisted strategy, NanoTune, is developed to control the distribution of colloids in porous media. The proposed approach consists in the sequential injection of a stable suspension of reactive nanoparticles and of a destabilizing agent with the aim of creating a reactive zone within a targeted portion of the contaminated aquifer. The controlled and irreversible deposition of the particles is achieved by inducing the mixing of the two fluids in the desired portion of the aquifer. This approach is here exemplified by the delivery of humic acid-stabilized iron oxide nanoparticles (FeOx), a typical reagent for in situ immobilization of heavy metals. Divalent cations, which are known to cause rapid aggregation of the suspension because of their strong interaction with the humic acid coating, are used as destabilizing agents. The injection strategy is here applied in 1D columns to create a reactive zone for heavy metal removal in the central region of the sandy bed. The software MNMs was used to assess the correct sequence and duration of the injection of the different solutions in the 1D medium. Moreover, the numerical code MNM3D (MNM3D - Micro and Nanoparticle transport Model in 3D geometries) was developed by the authors of this work to support the case-specific design of the injection strategy during field scale applications. The NanoTune approach represents an advancement in the control of the fate of nanomaterials in the environment, and could enhance nanoremediation making it an effective alternative to more conventional techniques.
NASA Astrophysics Data System (ADS)
Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.
2016-12-01
An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.
NASA Astrophysics Data System (ADS)
Daily, W.; Ramirez, A.
1995-04-01
Electrical resistance tomography was used to monitor in-situ remediation processes for removal of volatile organic compounds from subsurface water and soil at the Savannah River Site near Aiken, South Carolina. This work was designed to test the feasibility of injecting a weak mixture of methane in air as a metabolic carbon source for natural microbial populations which are capable of trichloroethylene degradation. Electrical resistance tomograms were constructed of the subsurface during the test to provide detailed images of the process. These images were made using an iterative reconstruction algorithm based on a finite element forward model and Newton-type least-squares minimization. Changes in the subsurface resistivity distribution were imaged by a pixel-by-pixel subtraction of images taken before and during the process. This differential tomography removed all static features of formation resistivity but clearly delineated dynamic features induced by remediation processes. The air-methane mixture was injected into the saturated zone and the intrained air migration paths were tomographically imaged by the increased resistivity of the path as air displaced formation water. We found the flow paths to be confined to a complex three-dimensional network of channels, some of which extended as far as 30 m from the injection well. These channels were not entirely stable over a period of months since new channels appeared to form with time. Also, the resistivity of the air injection paths increased with time. In another series of tests, resistivity images of water infiltration from the surface support similar conclusions about the preferential permeability paths in the vadose zone. In this case, the water infiltration front is confined to narrow channels which have a three-dimensional structure. Here, similar to air injection in the saturated zone, the water flow is controlled by local variations in formation permeability. However, temporal changes in these channels are minor, indicating that the permeable paths do not seem to be modified by continued infiltration.
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai
2017-11-01
Ground deformation, commonly observed in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.
Rinaldi, Antonio P.; Rutqvist, Jonny; Finsterle, Stefan; ...
2016-10-24
Ground deformation, commonly seen in storage projects, carries useful information about processes occurring in the injection formation. The Krechba gas field at In Salah (Algeria) is one of the best-known sites for studying ground surface deformation during geological carbon storage. At this first industrial-scale on-shore CO 2 demonstration project, satellite-based ground-deformation monitoring data of high quality are available and used to study the large-scale hydrological and geomechanical response of the system to injection. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO 2 injection wells (KB-501, KB-502, KB-503). Previousmore » numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 have single-lobe patterns, but they can also indicate a deep fracture zone mechanical response to the injection.The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties are determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in agreement with both spatial and temporal observations. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results. In addition, the formal joint inversion of hydrogeological and geomechanical data provides measures of the estimation uncertainty.« less
Method for producing viscous hydrocarbons
Poston, Robert S.
1982-01-01
A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.
Papadopoulou, Charalampia; Kostik, Mikhail; Gonzalez-Fernandez, Maria Isabel; Bohm, Marek; Nieto-Gonzalez, Juan Carlos; Pistorio, Angela; Lanni, Stefano; Consolaro, Alessandro; Martini, Alberto; Ravelli, Angelo
2013-07-01
To investigate the outcome and predicting factors of multiple intraarticular corticosteroid (IAC) injections in children with juvenile idiopathic arthritis (JIA). The clinical charts of patients who received their first IAC injection in ≥3 joints between January 2002 and December 2011 were reviewed. The corticosteroid used was triamcinolone hexacetonide for large joints and methylprednisolone acetate for small or difficult to access joints. In each patient, the followup period after IAC injection was censored in case of synovitis flare or at the last visit with continued remission. Predictors included sex, age at disease onset, JIA category, antinuclear antibody (ANA) status, age and disease duration, disease course, general anesthesia, number and type of injected joints, acute-phase reactants, and concomitant systemic medications. A total of 220 patients who had 1,096 joints injected were included. Following IAC therapy, 66.4% of patients had synovitis flare after a median of 0.5 years, whereas 33.6% of patients had sustained remission after a median of 0.9 years. The cumulative probability of survival without synovitis flare was 50.0%, 31.5%, and 19.5% at 1, 2, and 3 years, respectively. On Cox regression analysis, positive C-reactive protein value, negative ANA, lack of concomitant methotrexate administration, and a polyarticular (versus an oligoarticular) disease course were the strongest predictors for synovitis flare. Multiple IAC injection therapy induced sustained remission of joint synovitis in a substantial proportion of patients. A controlled trial comparing multiple IAC injection therapy and methotrexate versus methotrexate and a tumor necrosis factor antagonist is worthy of consideration. Copyright © 2013 by the American College of Rheumatology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Lewis R.; Stephens, James O.; Vadie, Alex A.
The objective of this work is to demonstrate the use of indigenous microbes as a method of profile control in waterfloods. It is expected that as the microbial population is induced to increase, that the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency. This increase in microbial population will be accomplished by injecting a nutrient solution into four injectors. Four other injectors will act as control wells. During Phase I, two wells will be cored through the zonemore » of interest. The core will be subjected to special core analyses in order to arrive at the optimum nutrient formulation. During Phase II, nutrient injection will begin, the results monitored, and adjustments to the nutrient composition made, if necessary. Phase II also will include the drilling of three wells for post-mortem core analysis. Phase III will focus on technology transfer of the results. It should be pointed out that one expected outcome of this new technology will be a prolongation of economical waterflooding operations, i.e. economical oil recovery should continue for much longer periods in the producing wells subjected to this selective plugging technique.« less
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute exchange rates are fast relative to stream-water velocity and all solute is exchanged with the storage zone over the experimental reach. As DaI increases, tracer dispersion caused by hyporheic exchange eventually reaches an equilibrium condition and storage-zone exchange parameters become essentially nonidentifiable.
NASA Astrophysics Data System (ADS)
Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.
2010-12-01
The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.
Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery
NASA Astrophysics Data System (ADS)
DeBruyn, R. P.
2017-12-01
Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or insufficiency of data make other technologies too expensive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Peter E.; Pashin, Jack; Carlson, Eric
2013-11-29
Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the westmore » of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.« less
Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davey, R.A.; Lappin-Scott, H.
1995-12-31
During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducingmore » the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.« less
... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... interferon beta-1b injection at around the same time of day each time you inject it. Follow ...
Peginterferon Beta-1a Injection
... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... peginterferon beta-1a injection at around the same time of day each time you inject it. Follow ...
Interferon Beta-1a Subcutaneous Injection
... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS, a disease in which ... under the skin). It is usually injected three times a week. You should inject this medication on ...
Quinones-Aponte, Vicente; Wexler, Eliezer J.
1995-01-01
A preliminary assessment of subsurface injection, storage and recovery of fresh canal water was made in the naturally brackish lower Hawthorn aquifer in Cape Coral, southwestern Florida. A digital modeling approach was used for this preliminary assessment, incorporating available data on hydrologic conditions, aquifer properties, and water quality to simulate density-dependent ground-water flow and advective-dispersive transport of a conservative ground-water solute (chloride ion). A baseline simulation was used as reference to compare the effects of changing various operational factors on the recovery efficiency. A recovery efficiency of 64 percent was estimated for the baseline simulation. Based on the model, the recovery efficiency increases if the injection rate and recovery rates are increased and if the ratio of recovery rate to injection rate is increased. Recovery efficiency decreases if the amount of water injected is increased; slightly decreases if the storage time is increased; is not changed significantly if the water is injected to a specific flow zone; increases with successive cycles of injection, storage, and recovery; and decreases if the chloride concentrations in either the injection water or native aquifer water are increased. In everal hypothetical tests, the recovery efficiency fluctuated between 22 and about 100 percent. Two successive cycles could bring the recovery efficiency from 60 to about 80 percent. Interlayer solute mass movement across the upper and lower boundaries seems to be the most important factor affecting the recovery efficiency. A sensitivity analysis was performed applying a technique in which the change in the various factors and the corresponding model responses are normalized so that meaningful comparisons among the responses could be made. The general results from the sensitivity analysis indicated that the permeabilities of the upper and lower flow zones were the most important factors that produced the greatest changes in the relative sensitivity of the recovery efficiency. Almost equally significant changes occurred in the relative sensitivity of the recovery efficiency when all porosity values of the upper and lower flow zones and the leaky confining units and the vertical anisotropy ratio were changed. The advective factors are the most important in the Cape Coral area according to the sensitivity analysis. However, the dispersivity values used in the model were extrapolated from studies conducted at the nearby Lee County Water Treatment Plant, and these values might not be representative of the actual dispersive characteristics of the lower Hawthorn aquifer in the Cape Coral area.
Krueger, C.J.; Barber, L.B.; Metge, D.W.; Field, J.A.
1998-01-01
Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of IAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.Two natural-gradient tracer tests were conducted to determine the transport and biodegradation behavior of linear alkylbenzenesulfonate (LAS) surfactant under in situ conditions in a sewage-contaminated aquifer. The tests were conducted in two biogeochemically distinct zones of the aquifer: (1) an aerobic uncontaminated zone (oxic zone) and (2) a moderately aerobic, sewage-contaminated zone (transition zone). Chromatographic separation of the surfactant mixture was observed in both zones and attributed to the retardation of the longer alkyl chain homologues during transport. No significant loss of LAS mass was observed for the oxic zone while 20% of the LAS mass injected into the transition zone was removed due to biodegradation. Biodegradation preferentially removed the longer alkyl chain homologues and the external isomers (i.e., 2- and 3-phenyl). The removal of LAS mass coincided with a decrease in dissolved oxygen concentrations, the appearance of LAS metabolites, and an increase in the number of free-living bacteria with a concomitant change in bacteria morphology. The formation of LAS metabolites accounted for 86% of the LAS mass removed in the transition zone. Over the duration of the test, sorption and biodegradation enriched the LAS mixture in the more water-soluble and biologically resistant components.
Methane Transmission and Oxidation throughout the Soil Column from Three Central Florida Sites
NASA Astrophysics Data System (ADS)
Bond-Lamberty, B. P.; Fansler, S.; Becker, K. E.; Hinkle, C. R.; Bailey, V. L.
2015-12-01
When methane (CH4) is generated in anoxic soil sites, it may be subsequently re-oxidized to carbon dioxide (CO2). Understanding the controls on, and magnitudes of, these processes is necessary to accurately represent greenhouse gas production and emission from soils. We used a laboratory incubation to examine the influence of variable conditions on methane transmission and oxidation, and identify critical reaction zones throughout the soil column. Sandy soils were sampled from three different sites at Disney Wilderness Preserve (DWP), Florida, USA: a depression marsh characterized by significant surface organic matter accumulation, a dry pine flatwood site with water intrusion and organic horizon at depth (200+ cm); and an intermediate-drainage site. Contiguous, 30-cm long cores were sampled from N=4 random boreholes at each site, from the surface to the water table (varying from 90 to 240 cm). In the lab, each core was monitored for 50 hours to quantify baseline (pretreatment) gas fluxes before injection with 6 ml CH4 (an amount commensurate with previous field collar measurements) at the base of each core. We then monitored CH4 and CO2 evolution for 100 hours after injection, calculating per-gas and total C evolution. Methane emissions spiked ~10 hours after injection for all cores, peaking at 0.001 μmol/g soil/hr, ~30x larger than pre-injection flux rates. On a C basis, CO2 emissions were orders of magnitude larger, and rose significantly after injection, with elevated rates generally sustained throughout the incubation. Cores from the depression marsh and shallower depths had significantly higher fluxes of both gases. We estimate that 99.1% of the original CH4 injection was oxidized to CO2. These findings suggest either that the methane measured in the field at DWP originates from within a few centimeters of the surface, or that it is produced in much larger quantities deeper in the profile before most is subsequently oxidized. This highlights the need for better understanding and modeling the multiple processes that result in soil-atmosphere CO2 and CH4 fluxes.
Oxidative particle mixtures for groundwater treatment
Siegrist, Robert L.; Murdoch, Lawrence C.
2000-01-01
The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.
Healing of rotator cuff tendons using botulinum toxin A and immobilization in a rat model.
Gilotra, Mohit N; Shorofsky, Michael J; Stein, Jason A; Murthi, Anand M
2016-03-15
We evaluated effects of botulinum toxin A (Botox) and cast immobilization on tendon healing in a rat model. Injection of Botox into rat supraspinatus was hypothesized to reduce muscle active force and improved healing. Eighty-four supraspinatus tendons were surgically transected and repaired in 42 Sprague-Dawley rats (transosseous technique). After repair, supraspinatus muscle was injected with saline or Botox (3 or 6 U/kg). Half the shoulders were cast-immobilized for the entire postoperative period; half were allowed free cage activity. Histology was examined at 2, 4, 8, and 12 weeks. A healing zone cross-sectional area was measured, and biomechanical testing of repair strength and tendon viscoelastic properties was conducted at 4 and 12 weeks. Botox alone and cast immobilization alone exhibited increased ultimate load compared with controls (saline injection, no immobilization) at 4 weeks. No difference in ultimate load occurred between Botox-only and cast-only groups. At 12 weeks, the Botox (6 U/kg) plus cast immobilization group was significantly weakest (p < 0.05). A trend was shown toward decreased healing zone cross-sectional areas in casted groups. Supraspinatus Botox injection after rotator cuff repair might help protect the repair. However, cast immobilization plus Botox administration is harmful to rotator cuff healing in a rat tendon model.
Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer
NASA Astrophysics Data System (ADS)
Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.
2010-04-01
The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.
NASA Technical Reports Server (NTRS)
St.John, D.; Samuelsen, G. S.
2000-01-01
The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.
Parker, Beth L; Chapman, Steven W; Guilbeault, Martin A
2008-11-14
This paper concludes that back diffusion from one or a few thin clayey beds in a sand aquifer can cause contaminant persistence above MCLs in a sand aquifer long after the source zone initially causing the plume is isolated or removed. This conclusion is based on an intensive case study of a TCE contaminated site in Florida, with the processes evaluated using numerical modeling. At this site, the TCE DNAPL zone formed decades ago, and was hydraulically isolated by means of an innovative system performing groundwater extraction, treatment and re-injection. Treated water is re-injected in a row of injection wells situated a short distance downgradient of the extraction wells, creating a clean-water displacement front to efficiently flush the downgradient plume. This scheme avoids the creation of stagnation zones typical of most groundwater pump-and-treat systems, thereby minimizing the time for aquifer flushing and therefore downgradient cleanup. The system began operation in August 2002 and although the performance monitoring shows substantial declines in concentrations, detectable levels of TCE and degradation products persist downgradient of the re-injection wells, long after the TCE should have disappeared based on calculations assuming a nearly homogenous sand aquifer. Three hypotheses were assessed for this plume persistence: 1) incomplete source-zone capture, 2) DNAPL occurrence downgradient of the re-injection wells, and 3) back diffusion from one or more thin clay beds in the aquifer. After careful consideration, the first two hypotheses were eliminated, leaving back diffusion as the only plausible hypothesis, supported by detailed measurements of VOC concentrations within and near the clay beds and also by numerical model simulations that closely represent the field site hydrogeologic conditions. The model was also used to simulate a more generalized, hypothetical situation where more thin clayey beds occur in a sand aquifer with an underlying aquitard. While there is no doubt that DNAPL source mass reduction can eventually improve downgradient groundwater quality, the magnitude and time scale over which the improvement occurs is the major uncertainty given current characterization approaches. This study shows that even one thin clay bed, less than 0.2 m thick, can cause plume persistence due to back diffusion for several years or even decades after the flux from the source is completely isolated. Thin clay beds, which have a large storage capacity for dissolved and sorbed contaminant mass, are common in many types of sandy aquifers. However, without careful inspection of continuous cores and sampling, such thin clay beds, and their potential for causing long-term back-diffusion effects, can easily go unnoticed during site characterization.
Enhancing SNCR-aided combustion with oxygen addition
Kobayashi, Hisashi; Wu, Kuang Tsai; Bool, III, Lawrence E.
2004-03-09
NOx emissions from combustion are reduced, NOx reduction efficiency by SNCR is improved, and other efficiencies are realized, by injecting oxygen into a fuel-rich combustion zone under controlled conditions.
Görlach, E; Richmond, R; Lewis, I
1998-08-01
For the last two years, the mass spectroscopy section of the Novartis Pharma Research Core Technology group has analyzed tens of thousands of multiple parallel synthesis samples from the Novartis Pharma Combinatorial Chemistry program, using an in-house developed automated high-throughput flow injection analysis electrospray ionization mass spectroscopy system. The electrospray spectra of these samples reflect the many structures present after the cleavage step from the solid support. The overall success of the sequential synthesis is mirrored in the purity of the expected end product, but the partial success of individual synthesis steps is evident in the impurities in the mass spectrum. However this latter reaction information, which is of considerable utility to the combinatorial chemist, is effectively hidden from view by the very large number of analyzed samples. This information is now revealed at the workbench of the combinatorial chemist by a novel three-dimensional display of each rack's complete mass spectral ion current using the in-house RackViewer Visual Basic application. Colorization of "forbidden loss" and "forbidden gas-adduct" zones, normalization to expected monoisotopic molecular weight, colorization of ionization intensity, and sorting by row or column were used in combination to highlight systematic patterns in the mass spectroscopy data.
ERIC Educational Resources Information Center
Cox, Darcy; Mohr, David C.; Epstein, Lucy
2004-01-01
This article provides a case description of a patient with multiple sclerosis prescribed interferon beta-1a (IFN[beta]-1a), a weekly intramuscular injection, who met "DSM-IV" criteria for specific phobia, blood/injection type. This patient successfully completed a 6-week manualized cognitive-behavioral treatment for self-injection anxiety. Issues…
Method for siting detectors within a facility
Gleason, Nathaniel Jeremy Meyer
2007-12-11
A method, system and article of manufacture of siting one or more detectors in a facility represented with zones are provided. Signals S.sub.i,j representing an effect in zone j in response to a release of contaminant in zone i for one or more flow conditions are provided. A candidate architecture has one or more candidate zones. A limiting case signal is determined for each flow condition for multiple candidate architectures. The limiting case signal is a smallest system signal of multiple system signals associated with a release in a zone. Each system signal is a maximum one of the signals representing the effect in the candidate zones from the release in one zone for the flow condition. For each candidate architecture, a robust limiting case signal is determined based on a minimum of the limiting case signals. One candidate architecture is selected based on the robust limiting case signals.
Benkhadra, Khalid; Alahdab, Fares; Tamhane, Shrikant U; McCoy, Rozalina G; Prokop, Larry J; Murad, Mohammad Hassan
2017-01-01
The relative efficacy of continuous subcutaneous insulin infusion and multiple daily injections in individuals with type 1 diabetes is unclear. We sought to synthesize the existing evidence about the effect of continuous subcutaneous insulin infusion on glycosylated hemoglobin, hypoglycemic events, and time spent in hypoglycemia compared to multiple daily injections. We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials and Database of Systematic Reviews, and Scopus from January 2008 through November 2015 for randomized controlled trials that enrolled children or adults with type 1 diabetes. Trials identified in a previous systematic review and published prior to 2008 were also included. We included 25 randomized controlled trials at moderate risk of bias. Meta-analysis showed a significant reduction in glycosylated hemoglobin in patients treated with continuous subcutaneous insulin infusion compared to multiple daily injections (mean difference 0.37; 95 % confidence interval, 0.24-0.51). This effect was demonstrated in both children and adults. There was no significant difference in minor or severe hypoglycemic events. Continuous subcutaneous insulin infusion was associated with lower incidence of nocturnal hypoglycemia. There was no significant difference in the time spent in hypoglycemia. In children and adults with type 1 diabetes and compared to multiple daily injections, continuous subcutaneous insulin infusion is associated with a modest reduction in glycosylated hemoglobin. There was no difference in severe or minor hypoglycemia, but likely a lower incidence of nocturnal hypoglycemia with continuous subcutaneous insulin infusion.
NASA Astrophysics Data System (ADS)
Clapp, L. W.; Cabezas, J.; Gamboa, Y.; Fernandez, W.
2011-12-01
State and federal regulations require that groundwater at in-situ recovery (ISR) uranium mining operations be restored to pre-mining conditions. Reverse osmosis (RO) filtration of several pore volumes of the post-leached groundwater and reinjection of the clean permeate is the most common technology currently used for restoring groundwater at uranium ISR sites. However, this approach does not revert the formation back to its initial reducing conditions, which can potentially impede timely groundwater restoration. In-situ biostimulation of indigenous iron- and sulfate reducing bacteria by injection of organic electron donors (e.g., ethanol, acetate, and lactate) to promote soluble uranium reduction and immobilization has been the subject of previous studies. However, injection of organic substrates has been observed to cause aquifer clogging near the injection point. In addition, U(VI) solubility may be enhanced through complexation with carbonate generated by organic carbon oxidation. An alternative approach that may overcome these problems involves the use of hydrogen as a reductant to promote microbial reduction and immobilization of U(VI) in situ. To test this approach, approximately 100,000 scf of compressed hydrogen gas was injected into a leached unconsolidated sand zone over two months at an ISR mining site. During this time groundwater was recirculated between injection and extraction wells (separated by 130 ft) at a rate of about 40 gpm and bromide was coinjected as a conservative tracer. A well monitoring program has been executed since June 2009 to evaluate the performance of the hydrogen injection. Current results show that U(VI) has been reduced from 4.2 to 0.05 ppm in the area surrounding the injection well and to 2.0 ± 0.3 ppm in the area surrounding the extraction well and two intermediate monitoring wells. Other water quality changes near the injection well include significant decreases in concentrations of Mo, sulfate, Fe, Mn, bicarbonate, Ca, and Eh, and increases in pH, methane, and sulfide. No significant rebound of soluble uranium concentrations was observed, but significant rebounds in molybdenum and sulfate have been observed. Ongoing studies are evaluating the effective zone of influence of the hydrogen injection.
Light guiding properties of soap films
NASA Astrophysics Data System (ADS)
Emile, Janine; Emile, Olivier; Casanova, Federico
2013-02-01
The injection of a laser beam from the side in a horizontal free-standing draining soap film is reported. We observe the self-deflection of the beam that varies in a random way. The film thinning is affected by the injection and depends on the polarization of the light beam, not on the laser power. The liquid in the soap film is ejected towards the meniscus, without modifying its molecular structure. Besides, this injection seems to stabilize the film near the light beam propagation and to destabilize the film in the other zones. Consequences and applications are then discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at thismore » site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less
A borehole-to-surface electromagnetic survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Becker, A.; Wilt, M.
1995-12-31
We have assessed the feasibility of borehole to surface electromagnetic measurements for fluid injection monitoring. To do this we performed a vertical electromagnetic profiling (VEMP) experiment at the University of California Richmond Field Station where a saline water injection zone was created at a subsurface depth of 30 meters. The methodology used is quite similar to the conventional seismic (VSP) procedure for surface to borehole measurements. In our case however, the transmitter was located in a PVC cased borehole while the receivers were deployed on the surface. With a carefully designed system operating at 9.6 kHz we were able tomore » make measurements accurate to 1 % in amplitude and 1 degree in phase. The data profiles at surface were centered on the injection well and extended for 60 m on either side of it. Measurements were made at 5 m intervals. Although the VEMP process is quite vulnerable to near surface conductivity anomalies we readily detected the flat tabular target zone which was about 3 m thick and covered an area of about 120 M{sup 2}.« less
Dickerson, Jane A.; Ramsay, Lauren M.; Dada, Oluwatosin O.; Cermak, Nathan
2011-01-01
Capillary isoelectric focusing and capillary zone electrophoresis are coupled with laser-induced fluorescence detection to create an ultrasensitive two-dimensional separation method for proteins. In this method, two capillaries are joined through a buffer filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second dimension separation. A fraction was transferred to the second dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125. PMID:20603830
Zone separator for multiple zone vessels
Jones, John B.
1983-02-01
A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.
The Monitoring of Sallow CO2 Leakage From the CO2 Release Experiment in South Korea
NASA Astrophysics Data System (ADS)
Kim, H. J.; Han, S. H.; Kim, S.; Son, Y.
2017-12-01
This study was conducted to analyze the in-soil CO2 gas diffusion from the K-COSEM shallow CO2 release experiment. The study site consisting of five zones was built in Eumseong, South Korea, and approximately 1.8 t CO2 were injected from the perforated release well at Zones 1 to 4 from June 1 to 30, 2016. In-soil CO2 concentrations were measured once a day at 15 cm and 60 cm depths at 0 m, 2.5 m, 5.0 m, and 10.0 m away from the CO2 releasing well using a portable gas analyzer (GA5000) from May 11 to July 27, 2016. On June 4, CO2 leakage was simultaneously detected at 15 cm (8.8 %) and 60 cm (44.0 %) depths at 0 m from the well at Zone 3, and were increased up to about 30 % and 70 %, respectively. During the CO2 injection period, CO2 concentrations measured at 15 cm depth were significantly lower than those measured at 60 cm depth because of the atmospheric pressure effect. After stopping the CO2 injection, CO2 concentrations gradually decreased until July 27, but were still higher than the natural background concentration. This result suggested the possibility of long-term CO2 leakage. In addition, low levels of CO2 leakage were determined using CO2 regression analysis and CO2:O2 ratio. CO2 concentrations measured at 60 cm depth at 0 m from the well at Zones 1 to 4 consistently showed sigmoid increasing patterns with the injection time (R2=0.60-0.99). O2 concentrations at 15 cm and 60 cm depths from the CO2 release experiment were reached 0 % at about 76 % and 84 % of CO2 concentrations, respectively, whereas, those from biological reaction approached 0 % when CO2 increased to about 21 %. Therefore, deep underground monitoring would be able to detect CO2 leakage faster than near-surface monitoring, and CO2 regression and CO2:O2 ratio analyses seemed to be useful as clear indicators of CO2 leakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandhauer, Todd M.; Farmer, Joseph C.
A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of themore » multiplicity of sensors, so that the thermal runaway event is rapidly quenched.« less
NASA Astrophysics Data System (ADS)
Jordan, P. D.; Gillespie, J.
2013-12-01
Injection of CO2 during geologic carbon storage pressurizes reservoir fluid, which can cause its migration. Migration of saline water from the reservoir into underground sources of drinking water (USDW) via pathways such as permeable wells and faults is one concern. As of 2010, 2 billion cubic meters (MMMm3) of oil, 10 MMMm3 of water, and 400 MMMm3 of gas had been produced in the southern San Joaquin Valley. A considerable portion of the gas and a majority of the water were injected into production zones for pressure support, water flooding, or as steam for thermal recovery. However a portion of the produced water was disposed of by injection into zones without economic quantities of hydrocarbons, termed saline aquifers in the geologic carbon storage community. These zones often had the shallowest activity in a field, and so had no overlying pressure sink due to production and all oil and gas-related wells in the field encountered or passed through them. The subset of such zones at CO2 storage depths received disposed water volumes equivalent to tens of megatons (MT) of CO2 injected at overpressures of many MPa. For instance a water volume equivalent to over 20 MT of CO2 was injected at a depth of 900 m and an average wellhead pressure of 6 MPa in the Fruitvale oil field, which had almost a thousand wells. Use of USDW for irrigation and consumption is widespread in the area. An increase in total dissolved solids (TDS) in well water is acutely detectable either by taste or effect on crops. Consequently the produced water disposal injection in the southern San Joaquin Valley provides an analog for assessing the occurrence of water leakage impacts due to reservoir pressurization. Almost 230 articles regarding groundwater contamination published from 2000 to 2013 by The Bakersfield Californian, the main newspaper in the area, were assessed. These were written by 71 authors including 38 staff writers, covered 53 different types of facilities or activities that either contaminated groundwater or for which there was such a concern, and discussed 85 different geographic locations. They described groundwater contamination at hundreds of wells during and previous to the publication period. Contamination due to upward leakage caused by produced water disposal injection was not mentioned. Previous research found The Bakersfield Californian covered more well blowouts with the highest public consequence (evacuation) than did reports from the relevant state agency, but had virtually no coverage of the least consequential blow outs. This suggests the lack of reporting of groundwater impacts from leakage due to produced water disposal injection indicates no significant public impact, such as closure of numerous public supply wells, occurred during the article time period or for some years previous. This research continues with analysis of historic groundwater constituent data available from the California State Water Resources Control Board's Geotracker Groundwater Ambient Monitoring & Assessment database. For instance this database contains TDS and other constituent results for 149 wells within or in the immediate vicinity of the Fruitvale oil field.
NASA Astrophysics Data System (ADS)
Sun, A. Y.; Islam, A.; Lu, J.
2017-12-01
Time-lapse oscillatory pumping test (OPT) has been introduced recently as a pressure-based monitoring technique for detecting potential leakage in geologic repositories. By routinely conducting OPT at a number of pulsing frequencies, a site operator may identify the potential anomalies in the frequency domain, alleviating the ambiguity caused by reservoir noise and improving the signal-to-noise ratio. Building on previous theoretical and field studies, this work performed a series of laboratory experiments to validate the concept of time-lapse OPT using a custom made, stainless steel tank under relatively high pressures ( 120psi). The experimental configuration simulates a miniature geologic storage repository consisting of three layers (i.e., injection zone, caprock, and above-zone aquifer). Results show that leakage in the injection zone led to deviations in the power spectrum of observed pressure data, and the amplitude of which also increases with decreasing pulsing frequencies. The experimental results were further analyzed by developing a 3D flow model, using which the model parameters were estimated through frequency domain inversion.
Marble, Justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, Mark L.
2010-01-01
The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment. PMID:20685008
NASA Astrophysics Data System (ADS)
Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-11-01
The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.
Yamamoto, Hiroto; Sakura, Shinichi; Wada, Minori; Shido, Akemi
2014-12-01
It is believed that local anesthetic injected to obtain circumferential spread around nerves produces a more rapid onset and successful blockade after some ultrasound-guided peripheral nerve blocks. However, evidence demonstrating this point is limited only to the popliteal sciatic nerve block, which is relatively easy to perform by via a high-frequency linear transducer. In the present study, we tested the hypothesis that multiple injections of local anesthetic to make circumferential spread would improve the rate of sensory and motor blocks compared with a single-injection technique for ultrasound-guided subgluteal sciatic nerve block, which is considered a relatively difficult block conducted with a low-frequency, curved-array transducer. Ninety patients undergoing knee surgery were divided randomly into 2 groups to receive the ultrasound-guided subgluteal approach to sciatic nerve block with 20 mL of 1.5% mepivacaine with epinephrine. For group M (the multiple-injection technique), the local anesthetic was injected to create circumferential spread around the sciatic nerve without limitation on the number of needle passes. For group S (the single-injection technique), the number of needle passes was limited to 1, and the local anesthetic was injected to create spread along the dorsal surface of the sciatic nerve, during which no adjustment of the needle tip was made. Sensory and motor blockade were assessed in double-blind fashion for 30 minutes after completion of the block. The primary outcome was sensory blockade of all sciatic components tested, including tibial, superficial peroneal, and sural nerves at 30 minutes after injection. Data from 86 patients (43 in each group) were analyzed. Block execution took more time for group M than group S. The proportion of patients with complete sensory blockade of all sciatic components at 30 minutes after injection was significantly larger for group M than group S (41.9% vs 16.3%, P = 0.018). Complete motor blockade of foot and toes extension also was observed more frequently in group M than in group S (67.4% vs 34.9%, P = 0.005 and 51.2% vs 25.6%, P = 0.027, respectively). When ultrasound-guided subgluteal sciatic nerve block is conducted, multiple injections of local anesthetic to make a circumferential spread around the sciatic nerve improve the rate of sensory and motor blocks compared with a single injection.
Johnson, R.H.; Poeter, E.P.
2005-01-01
Ground-penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before modeling, the GPR data provide a qualitative image of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. DNAPL saturation in sublayers of a specified thickness could not be quantified because calibration of the 1D GPR model is nonunique when both permittivity and depth of multiple layers are unknown. One-dimensional GPR modeling of the sand tank indicates geometric interferences in a small portion of the tank. These influences are removed from the interpretation using an alternate matching target. Two-dimensional (2D) GPR modeling provides a qualitative interpretation of the DNAPL distribution through pattern matching and tests for possible 2D influences that are not accounted for in the 1D GPR modeling. Accurate quantitative interpretation of DNAPL volumes using GPR modeling requires (1) identification of a suitable target that produces a strong reflection and is not subject to any geometric interference; (2) knowledge of the exact depth of that target; and (3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance on signal amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths, low electrical conductivities, and a known reflective target), the procedures in this laboratory study can be adapted to a field site to delineate shallow DNAPL source zones.
Rossner, S; Brückner, M K; Bigl, V
2001-06-01
We have recently shown that in utero treatment of guinea pigs with the DNA methylating substance methylazoxymethanol acetate (MAM) on gestation day (GD) 24 results in neocortical microencephalopathy, increased protein kinase C activity and altered processing of the amyloid precursor protein in neocortex of the offsprings. In order to identify the primary neuronal lesions produced by MAM-treatment, we mapped the 5-bromo-2'-deoxyuridine (BrdU)-incorporation in dividing neurons on GD 24 and we followed the effects of MAM-treatment on GD 24 on embryonic immediate early gene expression and on glial cell activation. BrdU injected on GD 24 labeled many neurons of the ventricular zone and of the intermediate zone but only scattered neurons of the cortical plate. When time-mated guinea pigs were injected intraperitoneally with MAM on GD 24, we observed the activation of microglial cells in the ventricular/intermediate zone and the appearence of astrocytes between the intermediate zone and the cortical plate, 48 h after intoxification. The activation of glial cells was accompanied by the neuronal expression of c-Fos but not of c-Jun in the ventricular/intermediate zone. Based on our observations on BrdU-incorporation and on the morphological outcome of MAM treatment in the juvenile guinea pig, our data presented here indicate that selective neurodegeneration during development induces the activation of both phagocytotic microglial cells and of astrocytes which might trophically support damaged neurons surviving this lesion procedure.
Labile dissolved organic carbon supply limits hyporheic denitrification
NASA Astrophysics Data System (ADS)
Zarnetske, Jay P.; Haggerty, Roy; Wondzell, Steven M.; Baker, Michelle A.
2011-12-01
We used an in situ steady state 15N-labeled nitrate (15NO3-) and acetate (AcO-) well-to-wells injection experiment to determine how the availability of labile dissolved organic carbon (DOC) as AcO-influences microbial denitrification in the hyporheic zone of an upland (third-order) agricultural stream. The experimental wells receiving conservative (Cl- and Br) and reactive (15NO3-) solute tracers had hyporheic median residence times of 7.0 to 13.1 h, nominal flowpath lengths of 0.7 to 3.7 m, and hypoxic conditions (<1.5 mg O2 L-1). All receiving wells demonstrated 15N2 production during ambient conditions, indicating that the hyporheic zone was an environment with active denitrification. The subsequent addition of AcO- stimulated more denitrification as evidenced by significant δ15N2 increases by factors of 2.7 to 26.1 in receiving wells and significant decreases of NO3- and DO in the two wells most hydrologically connected to the injection. The rate of nitrate removal in the hyporheic zone increased from 218 kg ha-1 yr-1 to 521 kg ha-1 yr-1 under elevated AcO- conditions. In all receiving wells, increases of bromide and 15N2 occurred without concurrent increases in AcO-, indicating that 100% of AcO- was retained or lost in the hyporheic zone. These results support the hypothesis that denitrification in anaerobic portions of the hyporheic zone is limited by labile DOC supply.
Metals purification by improved vacuum arc remelting
Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.
1994-12-13
The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.
NASA Astrophysics Data System (ADS)
Okamoto, Kyosuke; Yi, Li; Asanuma, Hiroshi; Okabe, Takashi; Abe, Yasuyuki; Tsuzuki, Masatoshi
2018-02-01
A continuous water injection test was conducted to halt the reduction in steam production in the Okuaizu Geothermal Field, Japan. Understanding the factors triggering microseismicity associated with water injection is essential to ensuring effective steam production. We identified possible triggering processes by applying methods based on microseismic monitoring, including a new method to determine the presence of water in local fractures using scattered P-waves. We found that the evolving microseismicity near the injection point could be explained by a diffusion process and/or water migration. We also found that local microseismicity on a remote fault was likely activated by stress fluctuations resulting from changes in the injection rate. A mediator of this fluctuation might be water remaining in the fracture zone. After the injection was terminated, microseismicity possibly associated with the phase transition of the liquid was found. We conclude that a variety of triggering processes associated with water injection may exist.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Eschenbach, W.; Well, R.; Walther, W.
2014-12-01
Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in Northern Germany. The 15N analysis of denitrification derived 15N labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed by isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS), in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated and the initial and cumulative denitrification after one year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using membrane-inlet mass spectrometry satisfactorily coincided with laboratory analysis by conventional isotope ratio mass spectrometry, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulphidic zone of both aquifers compared to the zone of non-sulphidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. But the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone a lag phase of denitrification after NO3- injections was observed, which confounded the relationship between reactive compounds and in situ denitrification activity. This finding was attributed to adaptation processes in the microbial community after NO3- injections. Exemplarily, it was demonstrated that the microbial community in the NO3--free zone close below the NO3--bearing zone can be adapted to denitrification by amending wells with NO3--injections for an extended period. In situ denitrification rates were 30 to 65% higher after pre-conditioning with NO3-. Results from this study suggest that such pre-conditioning is crucial for the measurement of Dr(in situ) in deeper aquifer material from the NO3--free groundwater zone and thus for the prediction of Dcum(365) and SRC from Dr(in situ).
NASA Astrophysics Data System (ADS)
Eschenbach, W.; Well, R.; Walther, W.
2015-04-01
Knowledge about the spatial variability of in situ denitrification rates (Dr(in situ)) and their relation to the denitrification capacity in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, 28 push-pull 15N tracer tests for the measurement of in situ denitrification rates were conducted in two sandy Pleistocene aquifers in northern Germany. The 15N analysis of denitrification-derived 15N-labelled N2 and N2O dissolved in water samples collected during the push-pull 15N tracer tests was performed using isotope ratio mass spectrometry (IRMS) in the lab and additionally for some tracer tests online in the field with a quadrupole membrane inlet mass spectrometer (MIMS) in order to test the feasibility of on-site real-time 15N analysis. Aquifer material from the same locations and depths as the push-pull injection points was incubated, and the initial and cumulative denitrification after 1 year of incubation (Dcum(365)) as well as the stock of reduced compounds (SRC) was compared with in situ measurements of denitrification. This was done to derive transfer functions suitable to predict Dcum(365) and SRC from Dr(in situ). Dr(in situ) ranged from 0 to 51.5 μg N kg-1 d-1. Denitrification rates derived from on-site isotope analysis using MIMS satisfactorily coincided with laboratory analysis by conventional IRMS, thus proving the feasibility of in situ analysis. Dr(in situ) was significantly higher in the sulfidic zone of both aquifers compared to the zone of non-sulfidic aquifer material. Overall, regressions between the Dcum(365) and SRC of the tested aquifer material with Dr(in situ) exhibited only a modest linear correlation for the full data set. However, the predictability of Dcum(365) and SRC from Dr(in situ) data clearly increased for aquifer samples from the zone of NO3--bearing groundwater. In the NO3--free aquifer zone, a lag phase of denitrification after NO3- injections was observed, which confounded the relationship between reactive compounds and in situ denitrification activity. This finding was attributed to adaptation processes in the microbial community after NO3- injections. It was also demonstrated that the microbial community in the NO3--free zone just below the NO3--bearing zone can be adapted to denitrification by NO3- injections into wells for an extended period. In situ denitrification rates were 30 to 65 times higher after pre-conditioning with NO3-. Results from this study suggest that such pre-conditioning is crucial for the measurement of D
NASA Astrophysics Data System (ADS)
Gaafar, Ibrahim
2015-12-01
This study is an attempt to use the gamma ray spectrometric measurements and VLF-EM data to identify the subsurface structure and map uranium mineralization along El Sela shear zone, South Eastern Desert of Egypt. Many injections more or less mineralized with uranium and associated with alteration processes were recorded in El Sela shear zone. As results from previous works, the emplacement of these injections is structurally controlled and well defined by large shear zones striking in an ENE-WSW direction and crosscut by NW-SE to NNW-SSE fault sets. VLF method has been applied to map the structure and the presence of radioactive minerals that have been delineated by the detection of high uranium mineralization. The electromagnetic survey was carried out to detect the presence of shallow and deep conductive zones that cross the granites along ENE-WSW fracturing directions and to map its spatial distribution. The survey comprised seventy N-S spectrometry and VLF-EM profiles with 20 m separation. The resulted data were displayed as composite maps for K, eU and eTh as well as VLF-Fraser map. Twelve profiles with 100 m separation were selected for detailed description. The VLF-EM data were interpreted qualitatively as well as quantitatively using the Fraser and the Karous-Hjelt filters. Fraser filtered data and relative current density pseudo-sections indicate the presence of shallow and deep conductive zones that cross the granites along ENE-WSW shearing directions. High uranium concentrations found just above the higher apparent current-density zones that coincide with El-Sela shear zone indicate a positive relation between conductivity and uranium minerals occurrence. This enables to infer that the anomalies detected by VLF-EM data are due to the highly conductive shear zone enriched with uranium mineralization extending for more than 80 m.
NASA Astrophysics Data System (ADS)
Kruhl, J. H.; Vernon, R. H.
2009-05-01
The calc-alcaline granitoids of the Hercynian Corsica Batholith show a large-scale magmatic flow pattern, outlined by the alignment of large (mm-cm) euhedral feldspar crystals. The trend of the steep magmatic foliation is generally N-S in the northern part of the island, swings to approximately E-W orientation in the central part of the Batholith and back again to approximately N-S orientation in the southern part. This pattern is intensified by large-scale magmatic layering, mainly kilometer long lenses and layers of mafic and intermediate intrusions into the granitoids. On the macro- to micro-scale, magma mingling and mixing are present, reflecting the complex intrusion history and the compositional variability of the Corsica Batholith on different scales. Around the Golf of Valinco, a steep, sinistral magmatic shear zone is represented by E-W trending magmatic layering in mingled dioritic, tonalitic, and granitic magmas - previously misleadingly interpreted as migmatites - and by a magmatic flow foliation formed by the alignment of platy feldspar crystals, as well as amphibole and biotite. Characteristic magmatic structures include multiple thin layering, boudinage, monoclinic folding, melt-injected micro shear zones, and fragmenting and back- veining of dioritic enclaves. The intensity of grain alignment roughly correlates with the thickness of layers. It is low in thick and short boudins and high in cm-thin and cm-m long layers. The monoclinic folds refold the magmatic layering. Flat faces of amphibole and biotite grains are aligned in the axial planes of the folds. The feldspar crystals are locally recrystallized to a few large polygonal grains (up to 1 mm across), and quartz commonly shows chessboard subgrain patterns. No further indications of solid-state deformation are present. Field observations, as well as pattern quantification on variably oriented rock surfaces, indicate variations of crystal alignment and fabric anisotropy in cm- to more than 100m-wide bands parallel to the E-W oriented layering, and various stages of melt-present fragmentation. These variations are interpreted as variations of flow intensity and possibly strain-rate variation. The observations on the macro- as well as the micro-scale point to repeated injection of mafic to felsic magma and crystallization in the presence of a regional stress field. The resulting km-scale sinistral, sub-horizontal synmagmatic shear zone reflects large-scale movements during late-Hercynian crustal reorganization and represents an excellent example of localization of deformation into magma-enriched parts of the continental crust.
2010-07-01
Used Defense Site GAC granular activated carbon HA health advisory HFCS high fructose corn syrup HMX octahydro-1,3,5,7-tetranitro 1,3,5,7... fructose corn syrup (HFCS) by injection is another innovative alternative and was demonstrated at Milan Army Ammunition Plant. Data needed for comparison...tetrazocine HPLC high pressure liquid chromatograph HVAC heating, ventilation, and air conditioning ID inside diameter IW injection well MNX
Peters, Jeff; Wood, Nathan J.; Wilson, Rick; Miller, Kevin
2016-01-01
Tsunami-evacuation planning in coastal communities is typically based on maximum evacuation zones for a single scenario or a composite of sources; however, this approach may over-evacuate a community and overly disrupt the local economy and strain emergency-service resources. To minimize the potential for future over-evacuations, multiple evacuation zones based on arrival time and inundation extent are being developed for California coastal communities. We use the coastal city of Alameda, California (USA), as a case study to explore population and evacuation implications associated with multiple tsunami-evacuation zones. We use geospatial analyses to estimate the number and type of people in each tsunami-evacuation zone and anisotropic pedestrian evacuation models to estimate pedestrian travel time out of each zone. Results demonstrate that there are tens of thousands of individuals in tsunami-evacuation zones on the two main islands of Alameda, but they will likely have sufficient time to evacuate before wave arrival. Quality of life could be impacted by the high number of government offices, schools, day-care centers, and medical offices in certain evacuation zones and by potentially high population density at one identified safe area after an evacuation. Multi-jurisdictional evacuation planning may be warranted, given that many at-risk individuals may need to evacuate to neighboring jurisdictions. The use of maximum evacuation zones for local tsunami sources may be warranted given the limited amount of available time to confidently recommend smaller zones which would result in fewer evacuees; however, this approach may also result in over-evacuation and the incorrect perception that successful evacuations are unlikely.
Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier
NASA Astrophysics Data System (ADS)
Borden, Robert C.
2007-10-01
A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS®) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 μg/L to below detection (< 4 μg/L) in the injection and nearby monitor wells within 5 days following the injection. Two years after the single emulsion injection, perchlorate was less than 6 μg/L in every downgradient well compared to an average upgradient concentration of 13,100 μg/L. Immediately after emulsion injection, there were large shifts in concentrations of chlorinated solvents and degradation products due to injection of clean water, sorption to the oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 μM to 0.2-4 μM during passage through the bio-barrier. However, 1-9 μM 1,1-dichloroethane (DCA) and 8-14 μM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2- cis-dichloroethene ( cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average = 68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio-barrier. Contaminant transport and degradation within the bio-barrier was simulated using an advection-dispersion-reaction model where biodegradation rate was assumed to be linearly proportional to the residual oil concentration ( Soil) and the contaminant concentration. Using this approach, the calibrated model was able to closely match the observed contaminant distribution. The calibrated model was then used to design a full-scale barrier to treat both ClO 4 and chlorinated solvents.
Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier.
Borden, Robert C
2007-10-30
A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 microg/L to below detection (<4 microg/L) in the injection and nearby monitor wells within 5 days following the injection. Two years after the single emulsion injection, perchlorate was less than 6 microg/L in every downgradient well compared to an average upgradient concentration of 13,100 microg/L. Immediately after emulsion injection, there were large shifts in concentrations of chlorinated solvents and degradation products due to injection of clean water, sorption to the oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 microM to 0.2-4 microM during passage through the bio-barrier. However, 1-9 microM 1,1-dichloroethane (DCA) and 8-14 microM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2-cis-dichloroethene (cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average=68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio-barrier. Contaminant transport and degradation within the bio-barrier was simulated using an advection-dispersion-reaction model where biodegradation rate was assumed to be linearly proportional to the residual oil concentration (Soil) and the contaminant concentration. Using this approach, the calibrated model was able to closely match the observed contaminant distribution. The calibrated model was then used to design a full-scale barrier to treat both ClO4 and chlorinated solvents.
Carrasco Pancorbo, Alegría; Cruces-Blanco, Carmen; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto
2004-11-03
A sensitive, rapid, efficient, and reliable method for the separation and determination of phenolic acids by capillary zone electrophoresis has been carried out. A detailed method optimization was carried out to separate 14 different compounds by studying parameters such as pH, type and concentration of buffer, applied voltage, and injection time. The separation was performed within 16 min, using a 25 mM sodium borate buffer (pH 9.6) at 25 kV with 8 s of hydrodynamic injection. With this method and using a liquid-liquid extraction system, with recovery values around 95%, it has been possible to detect small quantities of phenolic acids in olive oil samples. This is apparently the first paper showing the quantification of this specific family of phenolic compounds in virgin olive oil samples.
Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.
Shen, Xin; Zhao, Lin; Ding, Yuanzhao; Liu, Bo; Zeng, Hui; Zhong, Lirong; Li, Xiqing
2011-02-28
Foam delivery of remedial amendments for in situ immobilization of deep vadose zone contaminants can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoparticles in unsaturated porous media was investigated. Carboxyl-modified polystyrene latex microspheres were used as surrogates for nanoparticles of remediation purposes. Foams generated from the solutions of six commonly available surfactants all had excellent abilities to carry the microspheres. The presence of the microspheres did not reduce the stabilities of the foams. When microsphere-laden foam was injected through the unsaturated columns, the fractions of microspheres exiting the column were much higher than that when the microsphere water suspensions were injected through the columns. The enhanced microsphere transport implies that foam delivery could significantly increase the radius of influence of injected nanoparticles of remediation purposes. Reduced tension at air-water interfaces by the surfactant and increased driving forces imparted on the microspheres at the interfaces by the flowing foam bubbles may have both contributed to the enhanced transport. Preliminary tests also demonstrated that foam can carry significant fractions of zero valent iron nanoparticles at concentrations relevant to field remediation conditions (up to 5.3 g L(-1)). As such, this study demonstrates that surfactant foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation. Copyright © 2010 Elsevier B.V. All rights reserved.
Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand
NASA Astrophysics Data System (ADS)
Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.
2011-11-01
The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.
Lepore, Domenico; Quinn, Graham E; Molle, Fernando; Baldascino, Antonio; Orazi, Lorenzo; Sammartino, Maria; Purcaro, Velia; Giannantonio, Carmen; Papacci, Patrizia; Romagnoli, Costantino
2014-11-01
To compare the structural outcome at 9 months of eyes treated with intravitreal injection of bevacizumab with fellow eyes treated with conventional laser photoablation in zone I type 1 retinopathy of prematurity (ROP). Single randomized controlled trial. All inborn babies with type 1 zone I ROP at a single institution were included in the study. One eye was randomized to receive an intravitreal injection of 0.5 mg bevacizumab; the fellow eye received conventional laser photoablation. Digital fundus photographs and fluorescein angiography (FA) using the RetCam (Clarity Medical Systems Inc., Pleasanton, CA) were performed before treatment and 9 months after treatment. Presence of retinal and choroidal abnormalities on FA at 9 months. Thirteen infants were enrolled; 1 died 3 months after birth. One laser-treated eye progressed to stage 5 retinal detachment. The remaining 23 eyes had favorable structural results at the 9-month follow-up and provided FA results. At 9 months of age, all eyes treated with a bevacizumab injection were noted to have abnormalities at the periphery (large avascular area, abnormal branching, shunt) or the posterior pole (hyperfluorescent lesion, absence of foveal avascular zone). These posterior and peripheral lesions were not observed in the majority of the lasered eyes. This study documents significant vascular and macular abnormalities of eyes in the bevacizumab group. Long-lasting implications of these abnormalities for visual function of the child need to be studied. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leger, J.; Chevalier, J.; Larue, C.
1991-08-01
The use of three different monoclonal antibodies specific for human ventricular myosin heavy chains in the visualization of the location and extent of necrosis in dogs with experimental acute myocardial infarction and in humans is described. Using a classic immunohistochemical method or ex vivo analysis of heart slices in dogs with acute myocardial infarction subjected to intravenous injection of unlabeled antimyosin antibodies or antimyosin antibodies labeled with indium-111, it was observed that all antibody fragments specifically reached the targeted necrotic zone less than 2 h after antibody injection and remained bound for up to 24 h. In a limited butmore » significant number of cases (5 of the 12 humans and 11 of 43 dogs), it was possible to image the necrotic zone in vivo as early as 2 to 4 h after antibody injection. In other cases, individual blood clearance variations retarded or even prevented in vivo necrosis detection. Higher antimyosin fixation values were obtained in the necrotic zones in dogs with a rapid blood clearance relative to that of the other dogs. It is concluded that antimyosin antibodies always reached necrotic areas within 2 h. If blood clearance was rapid, in vivo imaging of the necrotic area was possible 2 to 6 h after necrosis, even in humans. In some cases, however, uncontrolled individual variations in the timing required for sufficient blood clearance hampered this rapid in vivo detection of myocardial necrosis.« less
Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography
Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.
2016-01-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Johnson, T.; Major, B.; Day-Lewis, F. D.; Lane, J. W.
2010-12-01
Enhanced bioremediation, which involves introduction of amendments to promote biodegradation, increasingly is used to accelerate cleanup of recalcitrant compounds and has been identified as the preferred remedial treatment at many contaminated sites. Although blind introduction of amendments can lead to sub-optimal or ineffective remediation, the distribution of amendment throughout the treatment zone is difficult to measure using conventional sampling. Because amendments and their degradation products commonly have electrical properties that differ from those of ambient soil, time-lapse electrical geophysical monitoring has the potential to verify amendment emplacement and distribution. In order for geophysical monitoring to be useful, however, results of the injection ideally should be accessible in near real time. In August 2010, we demonstrated the feasibility of near real-time, autonomous electrical geophysical monitoring of amendment injections at the former Defense Reutilization and Marketing Office (DRMO) in Brandywine, Maryland. Two injections of about 1000 gallons each of molasses, a widely used amendment for enhanced bioremediation, were monitored using measurements taken with borehole and surface electrodes. During the injections, multi-channel resistance data were recorded; data were transmitted to a server and processed using a parallel resistivity inversion code; and results in the form of time-lapse imagery subsequently were posted to a website. This process occurred automatically without human intervention. The resulting time-lapse imagery clearly showed the evolution of the molasses plume. The delay between measurements and online delivery of images was between 45 and 60 minutes, thus providing actionable information that could support decisions about field procedures and a check on whether amendment reached target zones. This experiment demonstrates the feasibility of using electrical imaging as a monitoring tool both during amendment emplacement and post-injection to track amendment distribution, geochemical breakdown, and other remedial effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacMartin, Douglas G.; Kravitz, Ben; Tilmes, Simone
The climate response to geoengineering with stratospheric aerosols has the potential to be designed to achieve some chosen objectives. By injecting different amounts of SO2 at multiple different latitudes, the spatial pattern of aerosol optical depth (AOD) can be partially controlled. We use simulations from the fully-coupled whole-atmosphere chemistry-climate model CESM1(WACCM), to demonstrate that three spatial degrees of freedom of AOD can be achieved by appropriately combining injection at different locations: an approximately spatially-uniform AOD distribution, the relative difference in AOD between Northern and Southern hemispheres, and the relative AOD in high versus low latitudes. For forcing levels that yieldmore » 1–2°C cooling, the AOD and surface temperature response are sufficiently linear in this model so that many climate effects can be predicted from single-latitude injection simulations. Optimized injection at multiple locations is predicted to improve compensation of CO2-forced climate change, relative to a case using only equatorial aerosol injection. The additional degrees of freedom can be used, for example, to balance interhemispheric temperature differences and the equator to pole temperature difference in addition to the global mean temperature; this is projected in this model to reduce the mean-square error in temperature compensation by 30%.« less
NASA Astrophysics Data System (ADS)
Bucharskaya, Alla B.; Maslyakova, Galina N.; Navolokin, Nikita A.; Terentyuk, Georgy S.; Khlebtsov, Boris N.; Khlebtsov, Nikolai G.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, V. V.
2017-03-01
To assess the effectiveness of plasmonic photothermal therapy (PPT) multiple intravenous strategy of gold nanorods (GNRs) administration was used before laser exposure. The model of alveolar liver cancer PC-1 was used in male outbred albino rats, which were intravenously administrated by single and multiple injections of GNRs and then were treated by PPT. The gold dosage was 400 μg (single injection group), 800 μg (double injection group), 1200 μg (triple injection group), and absorption maximum of gold nanorods suspension was at the wavelength of 808 nm. 24 hours after last injection the tumors were irradiated by the 808-nm diode laser during 15 min at power density 2.3 W/cm2. Temperature control of the tumor heating was provided by IR imager. 24 hours after the PPT the half of animals from each group was withdrawn from the experiments and the sampling tumor tissue for morphological study was performed. In survived animals the growth of tumors was evaluated during 21 days after the PPT. The antitumor effects of PPT after triple intravenous injection were comparable with those obtained at direct intratumoral administration of similar total dose of GNRs. The effectiveness of PPT depended on gold accumulation in tumor, probably, due to sufficient vascularization of tumor tissue.
Miller, J.S.; Wooden, J.L.
2004-01-01
Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.
Inflatable straddle packers and associated equipment for hydraulic fracturing and hydrologic testing
Shuter, Eugene; Pemberton, Robert R.
1978-01-01
Independent aquifer testing is the only way to fully understand the hydrology encountered in boreholes intersecting multiple aquifers. The most feasible method to accomplish the testing of multiple aquifer wells is through the use inflatable packers. The straddle packers and associated equipment herein described arE valuable tools for making isolated aquifer tests as well as conducting hydraulic fracturing experiments. The system, due to design, permits multiple tests in a bore-hole without the necessity of tripping in and out of the hole to redress the packers prior to testing each zone. Electronic pressure transducers, the output of which was fed into strip-chart recorders, were used to monitor the zone being tested, as well as to monitor the zones above and below the packers. This was necessary to ensure that no leaking had occurred around the packers, causing hydraulic continuity between the isolated zones.
NASA Astrophysics Data System (ADS)
Sawyer, W.; Resor, P. G.
2016-12-01
Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress and strength drop, as well as slip weakening distance and wall rock stiffness. These studies, however, have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a modified analytical approximation of injection vein formation based on a dike intrusion model we find that the timescales of quenching and flow propagation are similar for a composite set of injection veins compiled from the Asbestos Mountain Fault, USA (Rowe et al., 2012), Gole Larghe Fault Zone, Italy (Griffith et al., 2012) and the Fort Foster Brittle Zone. This indicates a complex, dynamic process whose behavior is not fully captured by the current approach. To assess the applicability of the simplifying assumptions of the dike model when applied to injection veins we employ a finite-element time-dependent model of injection vein formation. This model couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. The final geometry of many injection veins is unaffected by the inclusion of these processes. However, some injection veins are found to be flow limited, with a final geometry reflecting cooling of the vein before it reaches an elastic equilibrium with the wall rock. In these cases, numerical results are significantly different from the dike model, and two basic assumptions of the dike model, self-similar growth and a uniform pressure gradient, are shown to be false. Additionally, we apply the finite-element model to provide two new constraints on the Fort Foster coseismic environment: a lower limit on the initial melt temperature of 1400 *C, and either significant coseismic wall rock softening or high transient tensile stress.
NASA Astrophysics Data System (ADS)
Brusseau, M. L.; Carroll, K. C.; Baker, J. B.; Allen, T.; DiGuiseppi, W.; Hatton, J.; Morrison, C.; Russo, A. E.; Berkompas, J. L.
2011-12-01
A large-scale permanganate-based in-situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 Kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly-accessible contaminant mass residing within lower-permeability zones.
Brusseau, M L; Carroll, K C; Allen, T; Baker, J; Diguiseppi, W; Hatton, J; Morrison, C; Russo, A; Berkompas, J
2011-06-15
A large-scale permanganate-based in situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly accessible contaminant mass residing within lower-permeability zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yukun; Wang, Shuai; Feng, Lungang
In this study, gallium nitride (GaN) based light-emitting diodes (LEDs) with single and multiple hole-reservoir layers (HRLs) inserted in the electron-blocking layer (EBL) have been investigated numerically and experimentally. According to simulation results, a better electron confinement and a higher hole injection level can be achieved by the multiple HRLs inserted in the EBL region. To further reveal the underlying mechanism of hole injection enhancement experimentally, the active regions were intentionally designed to emit photons with three different wavelengths of 440 nm, 460 nm, and 480 nm, respectively. Based on the experimental results of photoluminescence (PL) and time-resolved PL (TRPL) measurements conducted atmore » 298 K, the remarkable enhancement (148%) of PL intensities and significant increase in the decay times of the quantum wells close to p-GaN can be obtained. Therefore, the mechanism is proposed that carriers are able to reserve in the EBL region with multiple HRLs for a much longer time. Meanwhile, carriers could diffuse into the active region by tunnelling and/or thermo-electronic effect and then recombine efficiently, leading to the better carrier reservoir effect and higher hole injection in LEDs. As a result, by inserting multiple HRLs in the EBL region instead of single HRL, the experimental external quantum efficiency is enhanced by 19.8%, while the serious droop ratio is markedly suppressed from 37.0% to 27.6% at the high current injection of 100 A/cm{sup 2}.« less
nZVI injection into variably saturated soils: Field and modeling study
NASA Astrophysics Data System (ADS)
Chowdhury, Ahmed I. A.; Krol, Magdalena M.; Kocur, Christopher M.; Boparai, Hardiljeet K.; Weber, Kela P.; Sleep, Brent E.; O'Carroll, Denis M.
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142 L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications.
Multiple hearth furnace for reducing iron oxide
Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC
2012-03-13
A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).
40 CFR 146.22 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... such a fashion that they inject into a formation which is separated from any USDW by a confining zone... drinking water. The casing and cement used in the construction of each newly drilled well shall be designed...
Planar near-nozzle velocity measurements during a single high-pressure fuel injection
NASA Astrophysics Data System (ADS)
Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas
2015-09-01
In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.
NASA Astrophysics Data System (ADS)
Bromhal, G. S.; Wilson, T. H.; Wells, A.; Diehl, R.; Smith, D. H.
2003-12-01
Recently, a few thousand tons of CO2 were injected into the West Pearl Queen field, a depleted oil reservoir in southeastern New Mexico, for a pilot carbon sequestration project. Small amounts of 3 different perfluorocarbon tracers were injected with the CO2. Approximately 50 capillary absorption tube samplers (CATS) were located across the field within 2m of the grounds surface to detect the tracers in extremely small (~10-13L) quantities. After only several days, the CATS detected quantities of tracers at distances of up to 350m from the injection well. Greater amounts of tracers were detected in the different directions. The underground transport mechanism(s) are uncertain; however, appearance of tracer in the CATS after only a 6 day period suggests that CO2 movement may have occurred through near-surface processes. Subsequent tracer measurements made over 10 and 54 day time periods revealed continued tracer leakage. To try to understand the tracer information, we conducted lineament interpretations of the area using a black and white aerial photo taken in 1949, digital orthophotos, and Landsat TM imagery. Lineament interpretations revealed distinct northeast and northwest trending lineament sets. These directions coincided roughly with the direction of tracer-leakage into areas northwest and southwest of the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. A survey of the caliche was made using ground penetrating radar (GPR) to attempt to identify any preferential migration pathways. Modeling studies also were performed to identify the potential leakage pathways at the site. Because of the relatively fast appearance of tracers at large distances from the injection well, simple diffusion through the surface layers was ruled out. Wind patterns in the area have also made transport through the atmosphere and back into the ground highly unlikely. Other potential leakage pathways were transport from the well through the saturated zone and diffusion into the unsaturated zone or combined pressure-driven and diffusive flow through the vadose zone. An analysis of these alternatives has been made for this study.
Patel, Sunit M; Ebenezer, Ivor S
2008-12-28
This study was undertaken to examine the effects of acute repeated administration of the GABA(B) receptor agonist baclofen on food intake in rats. In Experiment 1, the effects of repeated intraperitoneal (i.p.) injections of the GABA(B) receptor agonist baclofen (1 and 2 mg/kg) at 2 h intervals were investigated on food intake in non-deprived male Wistar rats. Both doses of baclofen significantly increased food intake after the 1st injection (P<0.05), but had no effects on intake following the 2nd and 3rd injections. By contrast, in Experiment 2, diazepam (1 and 2 mg/kg, i.p.) significantly increased food intake (at least, P<0.05) after each of 3 injection separated by 2 h in non-deprived rats. These data show that tolerance occurs to the hyperphagic effects of baclofen with acute multiple injections, and may have important implications for future studies investigating the effects of GABA(B) receptor agonists on food intake and energy homeostasis.
Cleary, Edward N. G.
1982-10-12
An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.
2004-12-17
other substrates can also be used, including high fructose corn syrup , whey, etc. Through this subsurface molasses injection, the existing aerobic or...is not the only carbohydrate material that can be used for this purpose; other carbohydrates such as high fructose corn syrup and whey can also be... fructose corn syrup , lactate, butyrate, or benzoate). Through periodic subsurface substrate injection, the ERD technology alters existing aerobic or mildly
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Ginn, T. R.; Spycher, N.; Barkouki, T. H.; Fujita, Y.; Smith, R. W.
2009-12-01
Subsurface contamination is often mitigated with an injection/extraction well system. An understanding of heterogeneities within this radial flowfield is critical for modeling, prediction, and remediation of the subsurface. We address this using a Lagrangian approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). A well-to-well treatment system that incorporates in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90 has been explored at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. PHREEQC2 provides a one-dimensional advective-dispersive transport option that can be and has been used in streamtube ensemble models. Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is variable in space, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance if kinetic reactions are present with multiple components, if kinetic reaction rates vary in space, if the reactions involve multiple phases (e.g. heterogeneous reactions), and/or if they impact physical characteristics (porosity/permeability), as does ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized “fast-slow-fast” nonuniform velocity along the streamline. Breakthrough curves produced by each simulation are weighted by the path-respective flux fractions (obtained by deconvolution of tracer tests conducted at the VZRP) to obtain the flux-average of flow contributions to the observation well. Breakthrough data from urea injection experiments performed at the VZRP are compared to the model results from the PHREEQC2 variable velocity ensemble.
NASA Technical Reports Server (NTRS)
Fernandez, C.; Lysakowski, A.; Goldberg, J. M.
1995-01-01
1. The numbers of type I and type II hair cells were estimated by dissector techniques applied to semithin, stained sections of the horizontal, superior, and posterior cristae in the squirrel monkey and the chinchilla. 2. The crista in each species was divided into concentrically arranged central, intermediate, and peripheral zones of equal areas. The three zones can be distinguished by the sizes of individual hair cells and calyx endings, by the density of hair cells, and by the relative frequency of calyx endings innervating single or multiple type I hair cells. 3. In the monkey crista, type I hair cells outnumber type II hair cells by a ratio of almost 3:1. The ratio decreases from 4-5:1 in the central and intermediate zones to under 2:1 in the peripheral zone. For the chinchilla, the ratio is near 1:1 for the entire crista and decreases only slightly between the central and peripheral zones. 4. Nerve fibers supplying the cristae in the squirrel monkey were labeled by extracellular injections of horseradish peroxidase (HRP) into the vestibular nerve. Peripheral terminations of individual fibers were reconstructed and related to the zones of the cristae they innervated and to the sizes of their parent axons. Results were similar for the horizontal, superior, and posterior cristae. 5. Axons seldom bifurcate below the neuroepithelium. Most fibers begin branching shortly after crossing the basement membrane. Their terminal arbors are compact, usually extending no more than 50-100 microns from the parent exon. A small number of long intraepithelial fibers enter the intermediate and peripheral zones of the cristae near its base, then run unbranched for long distances through the neuroepithelium to reach the central zone. 6. There are three classes of afferent fibers innervating the monkey crista. Calyx fibers terminate exclusively on type I hair cells, and bouton fibers end only on type II hair cells. Dimorphic fibers provide a mixed innervation, including calyx endings to type I hair cells and bouton endings to type II hair cells. Long intraepithelial fibers are calyx and dimorphic units, whose terminal fields are similar to those of other fibers. The central zone is innervated by calyx and dimorphic fibers; the peripheral zone, by bouton and dimorphic fibers; and the intermediate zone, by all three kinds of fibers. Internal (axon) diameters are largest for calyx fibers and smallest for bouton fibers. Of the entire sample of 286 labeled fibers, 52% were dimorphic units, 40% were calyx units, and 8% were bouton units.(ABSTRACT TRUNCATED AT 400 WORDS).
Multiple-orifice liquid injection into hypersonic airstreams and applications to ram C-3 flight
NASA Technical Reports Server (NTRS)
Weaver, W. L.
1972-01-01
Experimental data are presented for the oblique injection of water and three electrophilic liquids (fluorocarbon compounds) through multiple-orifice nozzles from a flat plate and the sides of a hemisphere-cone (0.375 scale of RAM C spacecraft) into hypersonic airstreams. The nozzle patterns included single and multiple orifices, single rows of nozzles, and duplicates of the RAM C-III nozzles. The flat-plate tests were made at Mach 8. Total pressure was varied from 3.45 MN/m2 to 10.34 MN/m2, Reynolds number was varied form 9,840,000 per meter to 19,700,000 per meter, and liquid injection pressure was varied from 0.69 MN/m2 to 3.5 MN/m2. The hemisphere-cone tests were made at Mach 7.3. Total pressure was varied from 1.38 MN/m2, to 6.89 MN/m2, Reynolds number was varied from 3,540,000 per meter to 17,700,000 per meter, and liquid-injection pressure was varied from 0.34 MN/m2 to 4.14 MN/m2. Photographs of the tests and plots of liquid-penetration and spray cross-section area are presented. Maximum penetration was found to vary as the square root of the dynamic-pressure ratio and the square root of the total injection nozzle area. Spray cross-section area was linear with maximum penetration. The test results are used to compute injection parameters for the RAM C-3 flight injection experiment.
NASA Astrophysics Data System (ADS)
King, J. N.; Cunningham, K. J.; Foster, A. L.
2011-12-01
The Miami-Dade Water and Sewer Department (MDWASD) injects effluent approximately one km below land surface into the Boulder Zone (BZ) at the North District Wastewater Treatment Plant (NDWWTP). The BZ is highly conductive and composed of fractured dolomite. MDWASD monitors upward effluent migration 450 m below land surface in the Avon Park Permeable Zone (APPZ). The BZ and APPZ---units within the Floridan aquifer system---are separated by a series of inter-bedded aquifers and leaky confining units with hydraulic conductivities that are orders of magnitude smaller than the BZ. MDWASD injected effluent at the NDWWTP during two distinct periods: (1) July 1997 to September 1999, and (2) August 2004 to January 2011. No effluent was injected between October 1999 and July 2004. A few months after the July 1997 injection, MDWASD observed effluent constituents in the APPZ (Figure 1). Some confinement bypass feature permits effluent constituents to be transported from the BZ to the APPZ. Bypass features may include poorly-cased wells, or natural conduits such as fractures, faults, or karst collapse systems. It is possible to describe confinement bypass features with conductance KA/L, where K is hydraulic conductivity, A is cross-sectional area, and L is length. MDWASD observed a distinct transition in the transport response to injection stress of total dissolved solids (TDS) concentration in the APPZ. The conductance required to describe early system response (1997-1999) is one order-of-magnitude larger than the conductance required to describe late system response (2004-2011). Hypotheses to explain transient conductance include clogging of bypass features by some geochemical or biological process that results from the mixing of effluent with groundwater; dissolution or precipitation; or changes in bypass-feature geometry forced by cyclical changes in aquifer-fluid pressure associated with injection. Hypotheses may be tested with geochemical analyses, tracer tests, hydraulic tomography, or microseismic monitoring.
Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei
2018-04-20
This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.
NASA Astrophysics Data System (ADS)
Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.
2015-12-01
Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.
Safety becomes danger: dilemmas of drug-use in public space.
Dovey, K; Fitzgerald, J; Choi, Y
2001-12-01
This paper provides a socio-spatial analysis of injecting drug-use in public space. It focuses on one urban district in Melbourne, Australia, which has become strongly identified with heroin sale and use in public space. Selling activities are camouflaged within a diverse street life while injecting sites are dispersed through a broad diversity of laneways, car parks and toilets. These injecting zones occupy liminal places which slide between categories of private and public, and which mediate complex and paradoxical relations between safety and danger. Those who inject in public space are caught in a dilemma--needing both privacy and exposure in the event of an overdose, safety from police becomes danger from an overdose. This empirical work, based on interview and spatial analysis, is presented as a basis for theorizing the socio-spatial construction of heroin use and for assessing the prospects for safe injecting.
The effect of kerosene injection on ignition probability of local ignition in a scramjet combustor
NASA Astrophysics Data System (ADS)
Bao, Heng; Zhou, Jin; Pan, Yu
2017-03-01
The spark ignition of kerosene is investigated in a scramjet combustor with a flight condition of Ma 4, 17 km. Based plentiful of experimental data, the ignition probabilities of the local ignition have been acquired for different injection setups. The ignition probability distributions show that the injection pressure and injection location have a distinct effect on spark ignition. The injection pressure has both upper and lower limit for local ignition. Generally, the larger mass flow rate will reduce the ignition probability. The ignition position also affects the ignition near the lower pressure limit. The reason is supposed to be the cavity swallow effect on upstream jet spray near the leading edge, which will make the cavity fuel rich. The corner recirculation zone near the front wall of the cavity plays a significant role in the stabilization of local flame.
Bowen, Amanda L; Martin, R. Scott
2010-01-01
A microfluidic approach that integrates peristaltic pumping from an on-chip reservoir with injection valves, microchip electrophoresis and electrochemical detection is described. Fabrication and operation of both the peristaltic pumps and injection valves were optimized to ensure efficient pumping and discrete injections. The final device uses the peristaltic pumps to continuously direct sample from a reservoir containing a mixture of analytes to injection valves that are coupled with microchip electrophoresis and amperometric detection. The separation and direct detection of dopamine and norepinephrine were possible with this approach and the utility of the device was demonstrated by monitoring the stimulated release of these neurotransmitters from a layer of cells introduced into the microchip. It is also shown that this pumping/reservoir approach can be expanded to multiple reservoirs and pumps, where one reservoir can be addressed individually or multiple reservoirs sampled simultaneously. PMID:20665914
Li, Zhijun; Su, Chun-Yi
2013-09-01
In this paper, adaptive neural network control is investigated for single-master-multiple-slaves teleoperation in consideration of time delays and input dead-zone uncertainties for multiple mobile manipulators carrying a common object in a cooperative manner. Firstly, concise dynamics of teleoperation systems consisting of a single master robot, multiple coordinated slave robots, and the object are developed in the task space. To handle asymmetric time-varying delays in communication channels and unknown asymmetric input dead zones, the nonlinear dynamics of the teleoperation system are transformed into two subsystems through feedback linearization: local master or slave dynamics including the unknown input dead zones and delayed dynamics for the purpose of synchronization. Then, a model reference neural network control strategy based on linear matrix inequalities (LMI) and adaptive techniques is proposed. The developed control approach ensures that the defined tracking errors converge to zero whereas the coordination internal force errors remain bounded and can be made arbitrarily small. Throughout this paper, stability analysis is performed via explicit Lyapunov techniques under specific LMI conditions. The proposed adaptive neural network control scheme is robust against motion disturbances, parametric uncertainties, time-varying delays, and input dead zones, which is validated by simulation studies.
Staged direct injection diesel engine
Baker, Quentin A.
1985-01-01
A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.
Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India
NASA Astrophysics Data System (ADS)
Chetty, T. R. K.; Yellappa, T.; Santosh, M.
2016-11-01
The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.
Heat transfer within a flat micro heat pipe with extra liquid
NASA Astrophysics Data System (ADS)
Sprinceana, Silviu; Mihai, Ioan
2016-12-01
In the real functioning of flat micro heat pipe (FMHP), there can appear cases when the temperature from the vaporization zone can exceed a critical value caused by a sudden increase of the thermal flow. The heat transfer which is completed conductively through the copper wall of a FMHP vaporizer causes the vaporization of the work fluid. On the condenser, the condensation of the fluid vapors and the transfer of the condenser to the vaporizer can no longer be achieved. The solution proposed for enhancing heat transfer in the event of blockage phenomenon FMHP, it is the injection of a certain amount of working fluid in the vaporization zone. By this process the working fluid injected into the evaporator passes suddenly in the vapor, producing a cooling zone. The new product additional mass of vapor will leave the vaporization zone and will condense in condensation zone, thereby supplementing the amount of condensation. Thus resumes normal operating cycle of FMHP. For the experimental measurements made for the transfer of heat through the FMHP working fluid demineralized water, they were made two micro-capillary tubes of sintered copper layer. The first was filled with 1ml of demineralized water was dropped under vacuum until the internal pressure has reached a level of 1•104Pa. The second FMHP was filled with the same amount of working fluid was used and the same capillary inner layer over which was laid a polysynthetic material that will accrue an additional amount of fluid. In this case, the internal pressure was reduced to 1•104Pa.
Dynamics and mitigation of six pesticides in a "Wet" forest buffer zone.
Passeport, Elodie; Richard, Benjamin; Chaumont, Cédric; Margoum, Christelle; Liger, Lucie; Gril, Jean-Joël; Tournebize, Julien
2014-04-01
Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a "Wet" forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of "Wet" forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.; Rucci, A.; Ferretti, A.
2009-10-15
Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model,more » the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.« less
Pandey, S N; Vishal, Vikram
2017-12-06
3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.
... injection is used to treat certain types of brain tumors. Carmustine injection is also used along with prednisone to treat multiple myeloma (a type of cancer of the bone marrow). It is also used ...
Plants as Indicators of Past and Present Zones of Upwelling Soil CO2 at the ZERT Facility
NASA Astrophysics Data System (ADS)
Apple, M. E.; Sharma, B.; Zhou, X.; Shaw, J. A.; Dobeck, L.; Cunnningham, A.; Spangler, L.; ZERT Team
2011-12-01
By their very nature, photosynthetic plants are sensitive and responsive to CO2, which they fix during the Calvin-Benson cycle. Responses of plants to CO2 are valuable tools in the surface detection of upwelling and leaking CO2 from carbon sequestration fields. Plants exposed to upwelling CO2 rapidly exhibit signs of stress such as changes in stomatal conductance, hyperspectral signatures, pigmentation, and viability (Lakkaraju et al. 2010; Male et al. 2010). The Zero Emission Research and Technology (ZERT) site in Bozeman, MT is an experimental facility for surface detection of CO2 where 0.15 ton/day of CO2 was released (7/19- 8/15/2010, and 7/18 - 8/15/2011) from a 100m horizontal injection well, (HIW), 1.5 m underground with deliberate leaks of CO2 at intervals, and from a vertical injector, (VIW), (6/3-6/24/2010). Soil CO2 concentrations reached 16%. Plants at ZERT include Taraxacum officinale (Dandelion), Dactylis glomerata (Orchard Grass), Poa pratensis, (Kentucky Bluegrass), Phleum pratense (Timothy), Bromus japonicus (Japanese Brome), Medicago sativa (Alfalfa) and Cirsium arvense (Canadian Thistle). Dandelion leaves above the zones of upwelling CO2 at the HIW and the VIW changed color from green to reddish-purple (indicative of an increase in anthocyanins) to brown as they senesced within two weeks of CO2 injection. Their increased stomatal conductance along with their extensive surface area combined to make water loss occur quickly following injection of CO2. Xeromorphic grass leaves were not as profoundly affected, although they did exhibit changes in stomatal conductance, accelerated loss of chlorophyll beyond what would normally occur with seasonal senescence, and altered hyperspectral signatures. Within two weeks of CO2 injection at the HIW and the VIW, hot spots formed, which are circular zones of visible leaf senescence that appear at zones of upwelling CO2. The hot spots became more pronounced as the CO2 injection continued, and were detectable until obscured by snow in the fall and winter. Residual hot spots were visible in the spring after a summer CO2 injection. At both the HIW and the VIW, dandelions were less abundant, if not scarce, in the hot spots when quantified the next year. We mounted a Star-Dot web camera on a scaffold, from which the camera photographs the area each day at noon. The camera remains in place year round and obtains images of the current and residual hot spots, and the growth, color changes, and senescence of the plants. We also quantified percent coverage of plant species along the HIW and the VIW. At the VIW, which received CO2 in 2010 but not in 2011, the site of the 2010 hot spot was detectable in 2011 as a scarcity of dandelion leaves. Therefore, previous, or antecedent, conditions influenced the distribution of species at the VIW and do not depend on continuous injection of CO2. Sudden and long-term shifts in species composition have important ecological implications and may serve as a means of surface detection of upwelling CO2.
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Lu, Jiemin; Islam, Akand
2017-05-01
Geologic repositories are extensively used for disposing byproducts in mineral and energy industries. The safety and reliability of these repositories are a primary concern to environmental regulators and the public. Time-lapse oscillatory pumping test (OPT) has been introduced recently as a pressure-based technique for detecting potential leakage in geologic repositories. By routinely conducting OPT at a number of pulsing frequencies, an operator may identify the potential repository anomalies in the frequency domain, alleviating the ambiguity caused by reservoir noise and improving the signal-to-noise ratio. Building on previous theoretical and field studies, this work performed a series of laboratory experiments to validate the concept of time-lapse OPT using a custom made, stainless steel tank under relatively high pressures. The experimental configuration simulates a miniature geologic storage repository consisting of three layers (i.e., injection zone, caprock, and above-zone aquifer). Results show that leakage in the injection zone led to deviations in the power spectrum of observed pressure data, and the amplitude of which also increases with decreasing pulsing frequencies. The experimental results are further analyzed by developing a 3D flow model, using which the model parameters are estimated through frequency domain inversion.
Ocriplasmin for treatment of stage 2 macular holes: early clinical results.
Miller, John B; Kim, Leo A; Wu, David M; Vavvas, Demetrios G; Eliott, Dean; Husain, Deeba
2014-01-01
To review clinical and structural outcomes of ocriplasmin for treatment of stage 2 macular holes. A retrospective review of the first patients with stage 2 macular holes to be treated with ocriplasmin at Massachusetts Eye and Ear Infirmary. All patients were imaged with spectral-domain optical coherence tomography (SD-OCT). Eight patients with stage 2 macular holes received a single injection of 125 μg of ocriplasmin. One patient (12.5%) demonstrated macular hole closure. The posterior hyaloid separated from the macula in six eyes (75%). All seven holes that remained open showed enlargement in hole diameters (narrowest, apical, and basal) at 1 week and 1 month. All seven were successfully closed with surgery. Ellipsoid zone disruptions were observed by OCT in four eyes (50%) and persisted throughout follow-up (more than 6 months on average). In early clinical results, the authors found a lower macular hole closure rate with ocriplasmin than previously reported. Enlargement was observed in all holes that failed to close with ocriplasmin. The authors found ellipsoid zone disruptions that persisted through 6 months of follow-up after ocriplasmin injection. Further work is needed to investigate the cause for these ellipsoid zone changes. Copyright 2014, SLACK Incorporated.
Method for rigless zone abandonment using internally catalyzed resin system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.C.
1980-02-19
A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silic flour to control fluid loss.« less
Song, Ji-Yeon; Oh, Donghoon; Lee, Chang-Ha
2015-07-17
The effects of a malfunctional column on the performance of a simulated moving bed (SMB) process were studied experimentally and theoretically. The experimental results of conventional four-zone SMB (2-2-2-2 configuration) and FeedCol operation (2-2-2-2 configuration with one feed column) with one malfunctional column were compared with simulation results of the corresponding SMB processes with a normal column configuration. The malfunctional column in SMB processes significantly deteriorated raffinate purity. However, the extract purity was equivalent or slightly improved compared with the corresponding normal SMB operation because the complete separation zone of the malfunctional column moved to a lower flow rate range in zones II and III. With the malfunctional column configuration, FeedCol operation gave better experimental performance (up to 7%) than conventional SMB operation because controlling product purity with FeedCol operation was more flexible through the use of two additional operating variables, injection time and injection length. Thus, compared with conventional SMB separation, extract with equivalent or slightly better purity could be produced from FeedCol operation even with a malfunctional column, while minimizing the decrease in raffinate purity (less than 2%). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.
2017-12-01
Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.
NASA Astrophysics Data System (ADS)
Picazo, Suzanne; Cannat, Mathilde; Delacour, AdéLie; EscartíN, Javier; RouméJon, StéPhane; Silantyev, Sergei
2012-09-01
Outcrops of deeply derived ultramafic rocks and gabbros are widespread along slow spreading ridges where they are exposed in the footwall of detachment faults. We report on the microstructural and petrological characteristics of a large number of samples from ultramafic exposures in the walls of the Mid-Atlantic Ridge (MAR) axial valley at three distinct locations at lat. 13°N and 14°45'N. One of these locations corresponds to the footwall beneath a corrugated paleo-fault surface. Bearing in mind that dredging and ROV sampling may not preserve the most fragile lithologies (fault gouges), this study allows us to document a sequence of deformation, and the magmatic and hydrothermal history recorded in the footwall within a few hundred meters of the axial detachment fault. At the three sampled locations, we find that tremolitic amphiboles have localized deformation in the ultramafic rocks prior to the onset of serpentinization. We interpret these tremolites as hydrothermal alteration products after evolved gabbroic rocks intruded into the peridotites. We also document two types of brittle deformation in the ultramafic rocks, which we infer could produce the sustained low magnitude seismicity recorded at ridge axis detachment faults. The first type of brittle deformation affects fresh peridotite and is associated with the injection of the evolved gabbroic melts, and the second type affects serpentinized peridotites and is associated with the injection of Si-rich hydrothermal fluids that promote talc crystallization, leading to strain localization in thin talc shear zones. We also observed chlorite + serpentine shear zones but did not identify samples with serpentine-only shear zones. Although the proportion of magmatic injections in the ultramafic rocks is variable, these characteristics are found at each investigated location and are therefore proposed as fundamental components of the deformation in the footwall of the detachment faults associated with denudation of mantle-derived rocks at the MAR.
Dauwe, Dieter Frans; Nuyens, Dieter; De Buck, Stijn; Claus, Piet; Gheysens, Olivier; Koole, Michel; Coudyzer, Walter; Vanden Driessche, Nina; Janssens, Laurens; Ector, Joris; Dymarkowski, Steven; Bogaert, Jan; Heidbuchel, Hein; Janssens, Stefan
2014-08-01
Biological therapies for ischaemic heart disease require efficient, safe, and affordable intramyocardial delivery. Integration of multiple imaging modalities within the fluoroscopy framework can provide valuable information to guide these procedures. We compared an anatomo-electric method (LARCA) with a non-fluoroscopic electromechanical mapping system (NOGA(®)). LARCA integrates selective three-dimensional-rotational angiograms with biplane fluoroscopy. To identify the infarct region, we studied LARCA-fusion with pre-procedural magnetic resonance imaging (MRI), dedicated CT, or (18)F-FDG-PET/CT. We induced myocardial infarction in 20 pigs by 90-min LAD occlusion. Six weeks later, we compared peri-infarct delivery accuracy of coloured fluospheres using sequential NOGA(®)- and LARCA-MRI-guided vs. LARCA-CT- and LARCA-(18)F-FDG-PET/CT-guided intramyocardial injections. MRI after 6 weeks revealed significant left ventricular (LV) functional impairment and remodelling (LVEF 31 ± 3%, LVEDV 178 ± 15 mL, infarct size 17 ± 2% LV mass). During NOGA(®)-procedures, three of five animals required DC-shock for major ventricular arrhythmias vs. one of ten during LARCA-procedures. Online procedure time was shorter for LARCA than NOGA(®) (77 ± 6 vs. 130 ± 3 min, P < 0.0001). Absolute distance of injection spots to the infarct border was similar for LARCA-MRI (4.8 ± 0.5 mm) and NOGA(®) (5.4 ± 0.5 mm). LARCA-CT-integration allowed closer approximation of the targeted border zone than LARCA-PET (4.0 ± 0.5 mm vs. 6.2 ± 0.6 mm, P < 0.05). Three-dimensional -rotational angiography fused with multimodal imaging offers a new, cost-effective, and safe strategy to guide intramyocardial injections. Endoventricular procedure times and arrhythmias compare favourably to NOGA(®), without compromising injection accuracy. LARCA-based fusion imaging is a promising enabling technology for cardiac biological therapies. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.
Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun
2015-07-27
A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services.
Deuba, Keshab; Ekström, Anna Mia; Tomson, Göran; Shrestha, Rachana; Marrone, Gaetano
2017-08-01
We assessed changes in HIV prevalence and risk behaviours among young key populations in Nepal. A total of 7505 participants (aged 16-24 years) from key populations who were at increased risk of HIV infection (2767 people who inject drugs (PWID); 852 men who have sex with men/transgender (MSM/TG); 2851 female sex workers (FSW) and 1035 male labour migrants) were recruited randomly over a 12-year period, 2001-2012. Local epidemic zones of Nepal (Kathmandu valley, Pokhara valley, Terai Highway and West to Far West hills) were analysed separately. We found a very strong and consistent decline in HIV prevalence over the past decade in different epidemic zones among PWID and MSM/TG in Kathmandu, the capital city, most likely due to a parallel increase in safe needle and syringe use and increased condom use. A decrease in HIV prevalence in 22 Terai highway districts, sharing an open border with India, was also consistent with increased condom use among FSW. Among male labour migrants, HIV prevalence was low throughout the period in the West to Far West hilly regions. Condom use by migrant workers involved with FSW abroad increased while their condom use with Nepalese FSW declined. Other risk determinants such as mean age at starting first injection, injection frequency, place of commercial sex solicitation, their mean age when leaving to work abroad did not change consistently across epidemic zones among the young key populations under study. In Nepal, the decline in HIV prevalence over the past decade was remarkably significant and consistent with an increase in condom use and safer use of clean needles and syringes. However, diverging trends in risk behaviours across local epidemic zones of Nepal suggest a varying degree of implementation of national HIV prevention policies. This calls for continued preventive efforts as well as surveillance to sustain the observed downward trend.
Lisle, John T.
2014-01-01
The Upper Floridan aquifer in the southern region of Florida is a multi-use, regional scale aquifer that is used as a potable water source and as a repository for passively recharged untreated surface waters, and injected treated surface water and wastewater, industrial wastes, including those which contain greenhouse gases (for example, carbon dioxide). The presence of confined zones within the Floridan aquifer that range in salinity from fresh to brackish allow regulatory agencies to permit the injection of these different types of product waters into specific zones without detrimental effects to humans and terrestrial and aquatic ecosystems. The type of recharge that has received the most regulatory attention in south Florida is aquifer storage and recovery (ASR). The treated water, prior to injection and during recovery, must meet primary and secondary drinking water standards. The primary microbiology drinking water standard is total coliforms, which have been shown to be difficult to inactivate below the regulatory standard during the treatment process at some ASR facilities. The inefficient inactivation of this group of indicator bacteria permits their direct injection into the storage zones of the Floridan aquifer. Prior to this study, the inactivation rates for any member of the total coliform group during exposure to native geochemical conditions in groundwater from any zone of the Floridan aquifer had not been derived. Aboveground flow through mesocosms and diffusion chambers were used to quantify the inactivation rates of two bacterial indicators, Escherichia coli and Pseudomonas aeruginosa, during exposure to groundwater from six wells. These wells collect water from two ASR storage zones: the Upper Floridan aquifer (UFA) and Avon Park Permeable Zone (APPZ). Both bacterial strains followed a biphasic inactivation model. The E. coli populations had slower inactivation rates in the UFA (range: 0.217–0.628 per hour (h-1)) during the first phase of the model than when exposed to groundwater from the APPZ (range: 0.540–0.684 h-1). The inactivation rates for the first phase of the models for P. aeruginosa were not significantly different between the UFA (range: 0.144–0.770 h-1) and APPZ (range: 0.159–0.772 h-1) aquifer zones. The inactivation rates for the second phase of the model for this P. aeruginosa were also similar between UFA (range: 0.003–0.008 h-1) and APPZ (0.004–0.005 h-1) zones, although significantly slower than the model’s first phase rates for this bacterial species. Geochemical data were used to determine which dissimilatory biogeochemical reactions were most likely to occur under the native conditions in the UFA and APPZ zones using thermodynamics principles to calculate free energy yields and other cell-related energetics data. The biogeochemical processes of acetotrophic and hydrogenotrophic sulfate reduction, methanogenesis and anaerobic oxidation of methane dominated in all six groundwater sites. A high throughput DNA microarray sequencing technology was used to characterize the diversity in the native aquifer bacterial communities (bacteria and archaea) and assign putative physiological capabilities to the members of those communities. The bacterial communities in both zones of the aquifer were shown to possess the capabilities for primary and secondary fermentation, acetogenesis, methanogenesis, anaerobic methane oxidation, syntrophy with methanogens, ammonification, and sulfate reduction. The data from this study provide the first determination of bacterial indicator survival during exposure to native geochemical conditions of the Floridan aquifer in south Florida. Additionally, the energetics and functional bacterial diversity characterizations are the first descriptions of native bacterial communities in this region of the Floridan aquifer and reveal how these communities persist under such extreme conditions. Collectively, these types of data can be used to develop and refine groundwater models.
Imaging Pathways in Fractured Rock Using Three-Dimensional Electrical Resistivity Tomography.
Robinson, Judith; Slater, Lee; Johnson, Timothy; Shapiro, Allen; Tiedeman, Claire; Ntarlagiannis, Dimitrios; Johnson, Carole; Day-Lewis, Frederick; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John
2016-03-01
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone. © 2015, National Ground Water Association.
2013-01-04
Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Multiple Myeloma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Multiple Myeloma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma; Unspecified Adult Solid Tumor, Protocol Specific; Waldenström Macroglobulinemia
Solar coal gasification reactor with pyrolysis gas recycle
Aiman, William R.; Gregg, David W.
1983-01-01
Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.
PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukul Sharma; Steven Bryant; Chun Huh
There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents tomore » better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a factor of 2 to 10 can have a significant impact on the economics of chemical flooding and conformance control applications. Simulation tools and experimental data presented in this report help to design and implement such polymer injection projects.« less
NASA Astrophysics Data System (ADS)
Vakulovskaya, Elena G.; Kemov, Yuriy V.; Zalevsky, Igor D.; Reshetnikov, Andrew V.; Umnova, Loubov V.; Vorozhcsov, Georgiu N.
2004-06-01
Photodynamic therapy (PDT) and fluorescent diagnostics (FD) with Radaclorine (RadaPharma, Russia) (RC) have been provided in 32 patients with T1-4 stage basal cell carcinoma (BCC) and in 81 patients with Photsense. Pharmacocynetic studies with detecting the borders of tumor growth and intensity of accumulation of photosensizers in tumor, normal tissues and visualization have been done by Spectral-fluorescent Complex and spectranalyser LESA-01 (He-Ne-laser, λ=633nm). We've got fluorescence of all tumors and additional fluorescence zones were found, cytological verification of BCC was got in most of cases. The fluorescent signs of RC in normal skin were found till 5 days after injection. As a source of light for PDT we used simeconductive lasers: Milon - λ = 660+2nm, light dose was 200-300 J/cm2 and Biospec (λ+672+2nm), multiple laser surface and interstitial irradiation was performed 24 hours after PS injection with total light dose till 400-600 J/cm2. 2 months after PDT with RC complete response (CR) in 65.6% of cases, partial response-in 34.4% of cases. The efficacy of PDT with PS was higher (CR-84.0%, PR-14.8%). Our experience show pronounced efficacy of PDT with RC for BCC without side effects and very short skin toxicity.
Slack, J.F.; Coad, P.R.
1989-01-01
The tourmalines and chlorites record a series of multiple hydrothermal and metamorphic events. Paragenetic studies suggest that tourmaline was deposited during several discrete stages of mineralization, as evidence by brecciation and cross-cutting relationships. Most of the tourmalines have two concentric growth zones defined by different colours (green, brown, blue, yellow). Some tourmalines also display pale discordant rims that cross-cut and embay the inner growth zones and polycrystalline, multiple-extinction domains. Late sulphide veinlets (chalcopyrite, pyrrhotite) transect the inner growth zones and pale discordant rims of many crystals. The concentric growth zones are interpreted as primary features developed by the main ore-forming hydrothermal system, whereas the discordant rims, polycrystalline domains, and cross-cutting sulphide veinlets reflect post-ore metamorphic processes. Variations in mineral proportions and mineral chemistry within the deposit mainly depend on fluctuations in temperature, pH, water/rock ratios, and amounts of entrained seawater. -from Authors
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
...-AA00 Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Area of... sites being held in the Captain of the Port, Puget Sound area of responsibility (AOR). This action is... the area for a short time and vessels can still transit in the majority of Puget Sound during the...
Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.
Walstead, Sean P; Deane, Grant B
2014-08-01
Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.
2017-10-23
Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Refractory Multiple Myeloma; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Stage II Multiple Myeloma; Stage III Multiple Myeloma; Testicular Lymphoma; Waldenström Macroglobulinemia
NASA Astrophysics Data System (ADS)
Conte, Eric D.; Barry, Eugene F.; Rubinstein, Harry
1996-12-01
Certain individuals may be sensitive to specific compounds in comsumer products. It is important to quantify these analytes in food products in order to monitor their intake. Caffeine is one such compound. Determination of caffeine in beverages by spectrophotometric procedures requires an extraction procedure, which can prove time-consuming. Although the corresponding determination by HPLC allows for a direct injection, capillary zone electrophoresis provides several advantages such as extremely low solvent consumption, smaller sample volume requirements, and improved sensitivity.
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1974-01-01
The effects of reducing the primary-zone equivalence ratio on the exhaust emission levels of oxides of nitrogen, carbon monoxide, and unburned hydrocarbons in experimental hydrocarbon-fueled combustor segments at simulated supersonic cruise and idle conditions were investigated. In addition, the effects of the injection of hydrogen fuel (up to 4 percent of the total weight of fuel) on the stability of the hydrocarbon flame and exhaust emissions were studied and compared with results obtained without hydrogen addition.
Completion Design Considerations for a Horizontal Enhanced Geothermal System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William
2015-09-02
The petroleum industry has had considerable success in recent decades in developing unconventional shale plays using horizontal drilling and multi-zonal isolation and stimulation techniques to fracture tight formations to enable the commercial production of oil and gas. Similar well completions could be used in Enhanced Geothermal Systems (EGS) to create multiple fractures from horizontal wells. This study assesses whether well completion techniques used in the unconventional shale industry to create multi-stage fractures can be applied to an enhanced geothermal system, with a focus on the completion of the EGS injection well. This study assumes an Enhanced Geothermal System (EGS) consistingmore » of a central horizontal injection well flanked on each side by horizontal production wells, connected to the injection well by multiple fractures. The focus is on the design and completion of the horizontal well. For the purpose of developing design criteria, a reservoir temperature of 200 degrees C (392 degrees F) and an injection well flow rate of 87,000 barrels per day (160 kg/s), corresponding to production well flow rates of 43,500 barrels per day (80 kg/s) is assumed. The analysis found that 9-5/8 inches 53.5 pounds per foot (ppf) P110 casing string with premium connections meets all design criteria for the horizontal section of injection well. A P110 grade is fairly common and is often used in horizontal sections of shale development wells in petroleum operations. Next, several zonal isolation systems commonly used in the shale gas industry were evaluated. Three techniques were evaluated -- a 'plug and perf' design, a 'sand and perf' design, and a 'packer and port' design. A plug and perf system utilizes a cemented casing throughout the length of the injector wellbore. The sand and perf system is identical to the plug and perf system, but replaces packers with sand placed in the casing after stimulation to screen out the stimulated perforated zones and provide zonal isolation. The packer and port completion approach utilizes an open horizontal hole that zonally isolates areas through the use of external packers and a liner. A review of technologies used in these systems was performed to determine if commercially available equipment from the petroleum industry could be used at the temperatures, pressures, and sizes encountered in geothermal settings. The study found no major technical barriers to employing shale gas multi-zonal completion techniques in a horizontal well in a geothermal setting for EGS development. For all techniques considered, temperature limitations of equipment are a concern. Commercially available equipment designed to operate at the high temperatures encountered in geothermal systems are available, but is generally unproven for geothermal applications. Based on the study, further evaluation of adapting oil and gas completion techniques to EGS is warranted.« less
Kneeshaw, T.A.; McGuire, J.T.; Smith, E.W.; Cozzarelli, I.M.
2007-01-01
This paper presents small-scale push-pull tests designed to evaluate the kinetic controls on SO42 - reduction in situ at mixing interfaces between a wetland and aquifer impacted by landfill leachate at the Norman Landfill research site, Norman, OK. Quantifying the rates of redox reactions initiated at interfaces is of great interest because interfaces have been shown to be zones of increased biogeochemical transformations and thus may play an important role in natural attenuation. To mimic the aquifer-wetland interface and evaluate reaction rates, SO42 --rich anaerobic aquifer water (??? 100 mg / L SO42 -) was introduced into SO42 --depleted wetland porewater via push-pull tests. Results showed SO42 - reduction was stimulated by the mixing of these waters and first-order rate coefficients were comparable to those measured in other push-pull studies. However, rate data were complex involving either multiple first-order rate coefficients or a more complex rate order. In addition, a lag phase was observed prior to SO42 - reduction that persisted until the mixing interface between test solution and native water was recovered, irrespective of temporal and spatial constraints. The lag phase was not eliminated by the addition of electron donor (acetate) to the injected test solution. Subsequent push-pull tests designed to elucidate the nature of the lag phase support the importance of the mixing interface in controlling terminal electron accepting processes. These data suggest redox reactions may occur rapidly at the mixing interface between injected and native waters but not in the injected bulk water mass. Under these circumstances, push-pull test data should be evaluated to ensure the apparent rate is actually a function of time and that complexities in rate data be considered. ?? 2007 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gance, Julien; Texier, Benoît; Leite, Orlando; Bernard, Jean; Truffert, Catherine; Lebert, François; Yamashita, Yoshihiro
2016-04-01
Electrical resistivity tomography (ERT) is an adapted tool for the monitoring of soil moisture variations in aquifers (Binley et al., 2015). Nevertheless, in some specific cases, like for highly permeable soils or fractured aquifers, the measurements from the device can be slower than the water flow through the entire investigated zone. Therefore, the monitoring of such phenomena cannot be performed with classical devices. In such cases, we require a high-speed measurement of soils resistivity. Since 20 years, the speed of acquisition of the resistivity meters has been improved by the development of multi-channel devices allowing to perform multi-electrode (> 4) measurements. The switching capabilities of the actual devices allow to measure over long profiles up to hundreds of electrodes only using one transmitter. Based on this multi-receiver technology and on previous work from Yamashita et al. (2013), authors have developed a 250 W multi-transmitter device for the high speed measurement of resistivity and induced polarization. Current is therefore injected simultaneously in the soil through six injection electrodes. The injected current is coded for each transmitter using Code Division Multiple Access (CDMA, Yamashita et al., 2014) so that the different voltages induced by each sources can be reconstructed from the total potential measurement signal at each receiver, allowing to save acquisition time. The first operational prototype features 3 transmitters and 6 receivers. Its performances are compared to a mono-transmitter device for different sequences of acquisition in 2D and 3D configurations both in theory and on real field data acquired on a shallow sedimentary aquifer in the Loire valley in France. This device is promising for the accurate monitoring of rapid water flows in heterogeneous aquifers.
NASA Astrophysics Data System (ADS)
Ben, R.; Chalaturnyk, R.; Gardner, C.; Hawkes, C.; Johnson, J.; White, D.; Whittaker, S.
2008-12-01
In July 2000, a major research project was initiated to study the geological storage of CO2 as part of a 5000 tonnes/day EOR project planned for the Weyburn Field in Saskatchewan, Canada. Major objectives of the IEA GHG Weyburn CO2 monitoring and storage project included: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone (approximately 1500 metres depth) to the surface. Over the period 2000-2004, a diverse group of 80+ researchers worked on: geological, geophysical, and hydrogeological characterizations at both the regional (100 km beyond the field) and detailed scale (10 km around the field); conducted time-lapse geophysical surveys; carried out surface and subsurface geochemical surveys; and undertook numerical reservoir simulations. Results of the characterization were used for a performance assessment that concluded the risk of CO2 movement to the biosphere was very small. By September 2007, more than 14 Mtonnes of CO2 had been injected into the Weyburn reservoir, including approximately 3 Mtonnes recycled from oil production. A "Final Phase" research project was initiated (2007- 2011) to contribute to a "Best Practices" guide for long-term CO2 storage in EOR settings. Research objectives include: improving the geoscience characterization; further detailed analysis and data collection on the role of wellbores; additional geochemical and geophysical monitoring activities; and an emphasis on quantitative risk assessments using multiple analysis techniques. In this talk a review of results from Phase I will be presented followed by plans and initial results for the Final Phase.
System and process for pulsed multiple reaction monitoring
Belov, Mikhail E
2013-05-17
A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.
NASA Astrophysics Data System (ADS)
Kravitz, Ben; MacMartin, Douglas G.; Mills, Michael J.; Richter, Jadwiga H.; Tilmes, Simone; Lamarque, Jean-Francois; Tribbia, Joseph J.; Vitt, Francis
2017-12-01
We describe the first simulations of stratospheric sulfate aerosol geoengineering using multiple injection locations to meet multiple simultaneous surface temperature objectives. Simulations were performed using CESM1(WACCM), a coupled atmosphere-ocean general circulation model with fully interactive stratospheric chemistry, dynamics (including an internally generated quasi-biennial oscillation), and a sophisticated treatment of sulfate aerosol formation, microphysical growth, and deposition. The objectives are defined as maintaining three temperature features at their 2020 levels against a background of the RCP8.5 scenario over the period 2020-2099. These objectives are met using a feedback mechanism in which the rate of sulfur dioxide injection at each of the four locations is adjusted independently every year of simulation. Even in the presence of uncertainties, nonlinearities, and variability, the objectives are met, predominantly by SO2 injection at 30°N and 30°S. By the last year of simulation, the feedback algorithm calls for a total injection rate of 51 Tg SO2 per year. The injections are not in the tropics, which results in a greater degree of linearity of the surface climate response with injection amount than has been found in many previous studies using injection at the equator. Because the objectives are defined in terms of annual mean temperature, the required geongineering results in "overcooling" during summer and "undercooling" during winter. The hydrological cycle is also suppressed as compared to the reference values corresponding to the year 2020. The demonstration we describe in this study is an important step toward understanding what geoengineering can do and what it cannot do.
Devascularization of Head and Neck Paragangliomas by Direct Percutaneous Embolization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozyer, Umut, E-mail: umut_ozyer@yahoo.com; Harman, Ali; Yildirim, Erkan
2010-10-15
Preoperative transarterial embolization of head and neck paragangliomas using particulate agents has proven beneficial for decreasing intraoperative blood loss. However, the procedure is often incomplete owing to extensive vascular structure and arteriovenous shunts. We report our experience with embolization of these lesions by means of direct puncture and intratumoral injection of n-butyl cyanoacrylate (NBCA) or Onyx. Ten patients aged 32-82 years who were referred for preoperative embolization of seven carotid body tumors and three jugular paragangliomas were retrospectively analyzed. Intratumoral injections were primarily performed in four cases with multiple small-caliber arterial feeders and adjunctive to transarterial embolization in six casesmore » with incomplete devascularization. Punctures were performed under ultrasound and injections were performed under roadmap fluoroscopic guidance. Detailed angiographies were performed before and after embolization procedures. Control angiograms showed complete or near-complete devascularization in all tumors. Three tumors with multiple small-caliber arterial feeders were treated with primary NBCA injections. One tumor necessitated transarterial embolization after primary injection of Onyx. Six tumors showed regional vascularization from the vasa vasorum or small-caliber branches of the external carotid artery following the transarterial approach. These regions were embolized with NBCA injections. No technical or clinical complications related to embolization procedures occurred. All except one of the tumors were surgically removed following embolization. In conclusion, preoperative devascularization with percutaneous direct injection of NBCA or Onyx is feasible, safe, and effective in head and neck paragangliomas with multiple small-caliber arterial feeders and in cases of incomplete devascularization following transarterial embolization.« less
Simulated fault injection - A methodology to evaluate fault tolerant microprocessor architectures
NASA Technical Reports Server (NTRS)
Choi, Gwan S.; Iyer, Ravishankar K.; Carreno, Victor A.
1990-01-01
A simulation-based fault-injection method for validating fault-tolerant microprocessor architectures is described. The approach uses mixed-mode simulation (electrical/logic analysis), and injects transient errors in run-time to assess the resulting fault impact. As an example, a fault-tolerant architecture which models the digital aspects of a dual-channel real-time jet-engine controller is used. The level of effectiveness of the dual configuration with respect to single and multiple transients is measured. The results indicate 100 percent coverage of single transients. Approximately 12 percent of the multiple transients affect both channels; none result in controller failure since two additional levels of redundancy exist.
... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a disease in which ... injections. Before you use daclizumab yourself the first time, read the written instructions that come with it. ...
40 CFR Table 9 to Subpart Wwww of... - Initial Compliance With Work Practice Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... compression/injection molding uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill... cycle per compression/injection molding machine, or prior to the loader, hoppers are closed except when...
Foam injection molding of elastomers with iron microparticles
NASA Astrophysics Data System (ADS)
Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto
2015-12-01
In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.
Fault activation by hydraulic fracturing in western Canada.
Bao, Xuewei; Eaton, David W
2016-12-16
Hydraulic fracturing has been inferred to trigger the majority of injection-induced earthquakes in western Canada, in contrast to the Midwestern United States, where massive saltwater disposal is the dominant triggering mechanism. A template-based earthquake catalog from a seismically active Canadian shale play, combined with comprehensive injection data during a 4-month interval, shows that earthquakes are tightly clustered in space and time near hydraulic fracturing sites. The largest event [moment magnitude (M W ) 3.9] occurred several weeks after injection along a fault that appears to extend from the injection zone into crystalline basement. Patterns of seismicity indicate that stress changes during operations can activate fault slip to an offset distance of >1 km, whereas pressurization by hydraulic fracturing into a fault yields episodic seismicity that can persist for months. Copyright © 2016, American Association for the Advancement of Science.
Busch, Stephen; Miles, Paul C.
2015-03-31
A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot–main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. Furthermore, a comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for amore » single injection but dramatically different for multiple injections with short dwells.« less
... how well your heart is working before beginning treatment with mitoxantrone and if you show any signs of heart problems. If you are using mitoxantrone injection for multiple sclerosis (MS; a condition in which the nerves do ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm Pitts; Jie Qi; Dan Wilson
2005-10-01
Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl more oil than only water injection.« less
Tagliaro, F; Manetto, G; Crivellente, F; Scarcella, D; Marigo, M
1998-04-05
The present paper describes the methodological optimisation and validation of a capillary zone electrophoresis method for the determination of morphine, cocaine and 3,4-methylenedioxymethamphetamine (MDMA) in hair, with injection based on field-amplified sample stacking. Diode array UV absorption detection was used to improve analytical selectivity and identification power. Analytical conditions: running buffer 100 mM potassium phosphate adjusted to pH 2.5 with phosphoric acid, applied potential 10 kV, temperature 20 degrees C, injection by electromigration at 10 kV for 10 s, detection by UV absorption at the fixed wavelength of 200 nm or by recording the full spectrum between 190 and 400 nm. Injection conditions: the dried hair extracts were reconstituted with a low-conductivity solvent (0.1 mM formic acid), the injection end of the capillary was dipped in water for 5 s without applying pressure (external rinse step), then a plug of 0.1 mM phosphoric acid was loaded by applying 0.5 psi for 10 s and, finally, the sample was injected electrokinetically at 10 kV for 10 s. Under the described conditions, the limit of detection was 2 ng/ml for MDMA, 8 ng/ml for cocaine and 6 ng/ml for morphine (with a signal-to-noise ratio of 5). The lowest concentration suitable for recording interpretable spectra was about 10-20-times the limit of detection of each analyte. The intraday and day-to-day reproducibility of migration times (n = 6), with internal standardisation, was characterised by R.S.D. values < or = 0.6%; peak area R.S.D.s were better than 10% in intraday and than 15% in day-to-day experiments. Analytical linearity was good with R2 better than 0.9990 for all the analytes.
NASA Astrophysics Data System (ADS)
Houzé, Clémence; Pessel, Marc; Durand, Veronique
2016-04-01
Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .
Guidance on Soil Vapor Extraction Optimization
2001-06-01
propagate further from the extraction well, increasing the advective flow zone round the well. Pneumatic and hydraulic fracturing are the primary methods...enhancing existing fractures and increasing the secondary fracture network. Hydraulic fracturing involves the injection of water or slurry into the
IN SITU SOIL VAPOR EXTRACTION TREATMENT
Soil vapor extraction (SVE) is designed to physically remove volatile compounds, generally from the vadose or unsaturated zone. t is an in situ process employing vapor extraction wells alone or in combination with air injection wells. acuum blowers supply the motive force, induci...
Fate and Transport of Select Hydraulic Fracturing Compounds of Potential Concern
Use of proprietary mixtures of reagents in fracing fluids injected in deep zones, has led to controversy over potential contamination of drinking water aquifers. This presentation focuses on the different classes of compounds identified in fracing fluids.
Foam-assisted delivery of nanoscale zero valent iron in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Yuanzhao; Liu, Bo; Shen, Xin
2013-09-01
Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through themore » unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.« less
NASA Astrophysics Data System (ADS)
Kværner, Jens; Snilsberg, Petter
2013-11-01
Groundwater monitoring along the Romeriksporten tunnel, south-eastern Norway, provided an opportunity for studying the impacts of tunnelling on groundwater in fractured Precambrian gneiss rocks, and examining relations between bedrock hydrology, tectonic weakness zones and catchments. Tunnel leakage resulted in groundwater drawdown up to 35 m in weakness zones, converted groundwater discharge zones into recharge zones, and affected groundwater chemistry. The magnitude of drawdown and fluctuations in groundwater level differed between weakness zones, and varied with distance from the tunnel route, tunnel leakage, and recharge from catchments. Clear differences in groundwater level and fluctuation patterns indicated restricted groundwater flow between weakness zones. The groundwater drawdowns demonstrated coherent water-bearing networks to 180-m depth in faults and fracture zones. Similar groundwater levels with highly correlated fluctuations demonstrated hydraulic connectivity within fracture zones. Different groundwater drawdown and leakage in weakness zones with different appearance and influence of tectonic events demonstrated the importance of the geological history for bedrock hydrogeology. Water injection into the bedrock counteracted groundwater drawdowns. Even moderate leakage to underground constructions may lead to large groundwater drawdown in areas with small groundwater recharge. Hydrogeological interpretation of tectonic weakness zones should occur in the context of geological history and local catchment hydrology.
nZVI injection into variably saturated soils: Field and modeling study.
Chowdhury, Ahmed I A; Krol, Magdalena M; Kocur, Christopher M; Boparai, Hardiljeet K; Weber, Kela P; Sleep, Brent E; O'Carroll, Denis M
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications. Copyright © 2015 Elsevier B.V. All rights reserved.
The Possibility of Multiple Habitable Worlds Orbiting Binary Stars
NASA Astrophysics Data System (ADS)
Mason, P. A.
2014-03-01
Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a lower mass companion provide enhanced habitable zones as well as improved photosynthetic flux for habitable zone worlds.
In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada
Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.
1997-01-01
Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.