Formation and interaction of multiple coherent phase space structures in plasma
NASA Astrophysics Data System (ADS)
Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu
2017-06-01
The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.
Inglis, Jeremy D.; Maassen, Joel; Kara, Azim; ...
2017-04-28
This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inglis, Jeremy D.; Maassen, Joel; Kara, Azim
This study presents a total evaporation method for the analysis of sub-picogram quantities of Pu, utilizing an array of multiple ion counters. Data from three standards are presented to assess the utility of the technique. An external precision of 1.5% RSD (2σ) was achieved on aliquots approaching 100 fg for the minor 240Pu isotope. Accurate analysis of <1 femtogram of 240Pu, is achievable, with an external reproducibility of better than 10% RSD (2σ). Finally, this new technique represents a significant advance in the total evaporation method and will allow routine measurement of femtogram sized Pu samples by thermal ionization massmore » spectrometry.« less
Fire Hose Instability in the Multiple Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Alexandrova, A.; Retino, A.; Divin, A. V.; Le Contel, O.; Matteini, L.; Breuillard, H.; Deca, J.; Catapano, F.; Cozzani, G.; Nakamura, R.; Panov, E. V.; Voros, Z.
2017-12-01
We present observations of multiple reconnection in the Earth's magnetotail. In particular, we observe an ion temperature anisotropy characterized by large temperature along the magnetic field, between the two active X-lines. The anisotropy is associated with right-hand polarized waves at frequencies lower than the ion cyclotron frequency and propagating obliquely to the background magnetic field. We show that the observed anisotropy and the wave properties are consistent with linear kinetic theory of fire hose instability. The observations are in agreement with the particle-in-cell simulations of multiple reconnection. The results suggest that the fire hose instability can develop during multiple reconnection as a consequence of the ion parallel anisotropy that is produced by counter-streaming ions trapped between the X-lines.
Evidence for Spiral Magnetic Structures at the Magnetopause: A Case for Multiple Reconnections
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.
2003-01-01
We analyze plasma structures within the low latitude boundary layer (LLBL) observed by the lnterball Tail spacecraft under southward interplanetary magnetic field. Ion velocity distributions observed in the LLBL under these conditions fall into three categories: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counterstreaming magnetosheath-type, and (c) distributions with three components where one of them has nearly zero velocity parallel to magnetic field (VlI), while the other two are counter-streaming components. D-shaped ion velocity distributions (a) correspond to magnetosheath plasma injections into reconnected flux tubes, as influenced by spacecraft location relative to the reconnection site. Simultaneous counter-streaming injections (b) suggest multiple reconnections. Three-component ion velocity distributions (c) and theii evolution with decreasing number density in the LLBL are consistent v behavior expected on long spiral flux tube islands at the magnetopaus as has been proposed and found to occur in magnetopause simulatior We interpret these distributions as a natural consequence of the formation of spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and magnetospheric plasmas. We suggest that multiple reconnections pla! an important role in the formation of the LLBL.
Yamada, Yuki; Ninomiya, Satoshi; Hiraoka, Kenzo; Chen, Lee Chuin
2016-01-01
We report on combining a self-aspirated sampling probe and an ESI source using a single metal capillary which is electrically grounded and safe for use by the operator. To generate an electrospray, a negative H.V. is applied to the counter electrode of the ESI emitter to operate in positive ion mode. The sampling/ESI capillary is enclosed within another concentric capillary similar to the arrangement for a standard pneumatically assisted ESI source. The suction of the liquid sample is due to the Venturi effect created by the high-velocity gas flow near the ESI tip. In addition to serving as the mechanism for suction, the high-velocity gas flow also assists in the nebulization of charged droplets, thus producing a stable ion signal. Even though the potential of the ion source counter electrode is more negative than the mass spectrometer in the positive ion mode, the electric field effect is not significant if the ion source and the mass spectrometer are separated by a sufficient distance. Ion transmission is achieved by the viscous flow of the carrier gas. Using the present arrangement, the user can hold the ion source in a bare hand and the ion signal appears almost immediately when the sampling capillary is brought into contact with the liquid sample. The automated analysis of multiple samples can also be achieved by using motorized sample stage and an automated ion source holder. PMID:28616373
Yamada, Yuki; Ninomiya, Satoshi; Hiraoka, Kenzo; Chen, Lee Chuin
2016-01-01
We report on combining a self-aspirated sampling probe and an ESI source using a single metal capillary which is electrically grounded and safe for use by the operator. To generate an electrospray, a negative H.V. is applied to the counter electrode of the ESI emitter to operate in positive ion mode. The sampling/ESI capillary is enclosed within another concentric capillary similar to the arrangement for a standard pneumatically assisted ESI source. The suction of the liquid sample is due to the Venturi effect created by the high-velocity gas flow near the ESI tip. In addition to serving as the mechanism for suction, the high-velocity gas flow also assists in the nebulization of charged droplets, thus producing a stable ion signal. Even though the potential of the ion source counter electrode is more negative than the mass spectrometer in the positive ion mode, the electric field effect is not significant if the ion source and the mass spectrometer are separated by a sufficient distance. Ion transmission is achieved by the viscous flow of the carrier gas. Using the present arrangement, the user can hold the ion source in a bare hand and the ion signal appears almost immediately when the sampling capillary is brought into contact with the liquid sample. The automated analysis of multiple samples can also be achieved by using motorized sample stage and an automated ion source holder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druchok, Maksym; Malikova, Natalie; Rollet, Anne-Laure
Counter-ion binding and mobility in aqueous solutions of partially hydrophobic ionene oligoions is studied here by a combination of all-atomic molecular dynamics (MD) simulations and NMR ({sup 19}F and {sup 81}Br nuclei) measurements. We present results for 12, 12–ionenes in the presence of different halide ions (F{sup −}, Cl{sup −}, Br{sup −} and I{sup −}), as well as their mixtures; the latter allowing us to probe counter-ion selectivity of these oligoions. We consolidate both structural and dynamic information, in particular simulated radial distribution functions and average residence times of counter-ions in the vicinity of ionenes and NMR data in themore » form of counter-ion chemical shift and self-diffusion coefficients. On one hand, previously reported enthalpy of dilution and mixing measurements show a reverse counter-ion sequence for 12, 12–ionenes with respect to their less hydrophobic 3, 3– and 6, 6– analogues. On the other hand, the current MD and NMR data, reflecting the counter-ion binding tendencies to the ionene chain, give evidence for the same ordering as that observed by MD for 3, 3–ionenes. This is not seen as a contradiction and can be rationalized on the basis of increasing chain hydrophobicity, which has different consequences for enthalpy and ion-binding. The latter is reflecting free energy changes and as such includes both enthalpic and entropic contributions.« less
Sikora, Karol; Neubauer, Damian; Jaśkiewicz, Maciej; Kamysz, Wojciech
2018-01-01
In view of the increasing interest in peptides in various market sectors, a stronger emphasis on topics related to their production has been seen. Fmoc-based solid phase peptide synthesis, although being fast and efficient, provides final products with significant amounts of trifluoroacetate ions in the form of either a counter-ion or an unbound impurity. Because of the proven toxicity towards cells and peptide activity inhibition, ion exchange to more biocompatible one is purposeful. Additionally, as most of the currently used counter-ion exchange techniques are time-consuming and burdened by peptide yield reduction risk, development of a new approach is still a sensible solution. In this study, we examined the potential of peptide counter-ion exchange using non-aqueous organic solvents saturated with HCl. Counter-ion exchange of a model peptide, citropin 1.1 (GLFDVIKKVASVIGGL-NH 2 ), for each solvent was conducted through incubation with subsequent evaporation under reduced pressure, dissolution in water and lyophilization. Each exchange was performed four times and compared to a reference method-lyophilization of the peptide from an 0.1 M HCl solution. The results showed superior counter-ion exchange efficiency for most of the organic solutions in relation to the reference method. Moreover, HCl-saturated acetonitrile and tert -butanol provided a satisfying exchange level after just one repetition. Thus, those two organic solvents can be potentially introduced into routine peptide counter-ion exchange.
Strengthening of the Coordination Shell by Counter Ions in Aqueous Th 4+ Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atta-Fynn, Raymond; Bylaska, Eric J.; de Jong, Wibe A.
The presence of counter ions in solutions containing highly charged metal cations can trigger processes such as ion-pair formation, hydrogen bond breakages and subsequent reformation, and ligand exchanges. In this work, it is shown how halide (Cl-, Br-) and perchlorate (ClO4-) anions affect the strength of the primary solvent coordination shells around Th4+ using explicit solvent and finite temperature ab initio molecular dynamics modeling methods. The 9-fold solvent geometry was found to be the most stable hydration structure in each aqueous solution. Relative to the dilute aqueous solution, the presence of the counter ions did not significantly alter the geometrymore » of the primary hydration shell. However, the free energy analyses indicated that the 10-fold hydrated states were thermodynamically accessible in dilute and bromide aqueous solutions within 1 kcal/mol. Analysis of the results showed that the hydrogen bond lifetimes were longer and solvent exchange energy barriers were larger in solutions with counter ions in comparison with the solution with no counter ions. This implies that the presence of the counter ions induces a strengthening of the Th4+ hydration shell.« less
Takács-Novák, K; Szász, G
1999-10-01
The ion-pair partition of quaternary ammonium (QA) pharmacons with organic counter ions of different lipophilicity, size, shape and flexibility was studied to elucidate relationships between ion-pair formation and chemical structure. The apparent partition coefficient (P') of 4 QAs was measured in octanol/pH 7.4 phosphate buffer system by the shake-flask method as a function of molar excess of ten counter ions (Y), namely: mesylate (MES), acetate (AC), pyruvate (PYRU), nicotinate (NIC), hydrogenfumarate (HFUM), hydrogenmaleate (HMAL), p-toluenesulfonate (PTS), caproate (CPR), deoxycholate (DOC) and prostaglandin E1 anion (PGE1). Based on 118 of highly precise logP' values (SD< 0.05), the intrinsic lipophilicity (without external counter ions) and the ion-pair partition of QAs (with different counter ions) were characterized. Linear correlation was found between the logP' of ion-pairs and the size of the counter ions described by the solvent accessible surface area (SASA). The lipophilicity increasing effect of the counter ions were quantified and the following order was established: DOC approximate to PGE1 > CPR approximate to PTS > NIC approximate to HMAL > PYRU approximate to AC approximate to MES approximate to HFUM. Analyzing the lipophilicity/molar ratio (QA:Y) profile, the differences in the ion-pair formation were shown and attributed to the differences in the flexibility/rigidity and size both of QA and Y. Since the largest (in average, 300 X) lipophilicity enhancement was found by the influence of DOC and PGE1 and considerable (on average 40 X) increase was observed by CPR and PTS, it was concluded that bile acids and prostaglandin anions may play a significant role in the ion-pair transport of quaternary ammonium drugs and caproic acid and p-toluenesulfonic acid may be useful salt forming agents to improve the pharmacokinetics of hydrophilic drugs.
NASA Astrophysics Data System (ADS)
Villarreal, Oscar; Chen, Liao; Whetten, Robert; Yacaman, Miguel
2015-03-01
We studied the interactions of functionalized Au144 nanoparticles (NPs) in a near-physiological environment through all-atom molecular dynamics simulations. The AuNPs were coated with a homogeneous selection of 60 thiolates: 11-mercapto-1-undecanesulfonate, 5-mercapto-1-pentanesulfonate, 5-mercapto-1-pentane-amine, 4-mercapto-benzoate or 4-mercapto-benzamide. These ligands were selected to elucidate how the aggregation behavior depends on the ligands' sign of charge, length, and flexibility. Simulating the dynamics of a pair of identical AuNPs in a cell of saline of 150 mM NaCl in addition to 120 Na+/Cl- counter-ions, we computed the aggregation affinities from the potential of mean force as a function of the pair separation. We found that NPs coated with negatively charged, short ligands have the strongest affinities mediated by multiple Na+ counter-ions residing on a plane in-between the pair and forming ``salt bridges'' to both NPs. Positively charged NPs have weaker affinities, as Cl counter-ions form fewer and weaker salt bridges. The longer ligands' large fluctuations disfavor the forming of salt bridges, enable hydrophobic contact between the exposed hydrocarbon chains and interact at greater separations due to the fact that the screening effect is rather incomplete. Supported by the CONACYT, NIH, NSF and TACC.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
NASA Astrophysics Data System (ADS)
Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki
A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).
Method and reaction pathway for selectively oxidizing organic compounds
Camaioni, Donald M.; Lilga, Michael A.
1998-01-01
A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.
NASA Astrophysics Data System (ADS)
Nagy, Peter I.; Durant, Graham J.
1996-01-01
Results of calculations for the equilibrium of the syn-syn, anti-syn, and anti-anti conformers of the N, N'-diphenyl-guanidinium ion in aqueous solution are sensitive to whether a counter ion is considered. Relative internal free energies were calculated upon MP2/6-31G*//HF/4-31G energies (second order Møller-Plesset energies obtained when using the 6-31G* basis set at geometries optimized at the Hartree-Fock level and using the 4-31G basis set) and relative solvation free energy terms were obtained by Monte Carlo simulations. Without considering a counter ion only a small fraction of the solute has been predicted to adopt the anti-anti conformation in the solution. When considering acetate and chloride counter ions with salt concentration of 0.11 mol/l at 310 K, mimicking physiological conditions, the counter ion close to the cation stabilizes the anti-anti form significantly. Though there are not local free energy minima for the present systems with close counter ions because of the relatively weak ion-ion interaction due to the largely delocalized total charge and atomic charge alternation in the cation, the constraint for the C(guanidinium)...C(carboxylate) separation of 4.6 Å allows an insight into the arginine...aspartate or glutamate interactions commonly found in peptides. The N-H(guanidinium)...O(carboxylate) hydrogen bonds are not stable due to thermal motion in aqueous solution. The neighboring water molecules, however, move into the space in-between the charged groups and comprise a hydrogen bonded network. Interactions with a chloride counter ion may be significant for the drug delivery process to the receptor site. Close contact between the N, N'-diphenyl guanidinium and a chloride ion is also not favored, though it may occur temporarily and then would favor the anti-anti conformer. Deviation from the relative solvation free energy obtained for the conformational change of the single cation is still some tenths of a kcal/mol with ions separated as much as 12.4 Å. While solvation energetics is affected even at such a separation, solution structure around the ions can be basically characterized without considering the effect of a remote counterpart.
Spatial fragment distribution from a therapeutic pencil-like carbon beam in water.
Matsufuji, Naruhiro; Komori, Masataka; Sasaki, Hitomi; Akiu, Kengo; Ogawa, Masako; Fukumura, Akifumi; Urakabe, Eriko; Inaniwa, Taku; Nishio, Teiji; Kohno, Toshiyuki; Kanai, Tatsuaki
2005-07-21
The latest heavy ion therapy tends to require information about the spatial distribution of the quality of radiation in a patient's body in order to make the best use of any potential advantage of swift heavy ions for the therapeutic treatment of a tumour. The deflection of incident particles is described well by Molière's multiple-scattering theory of primary particles; however, the deflection of projectile fragments is not yet thoroughly understood. This paper reports on our investigation of the spatial distribution of fragments produced from a therapeutic carbon beam through nuclear reactions in thick water. A DeltaE-E counter telescope system, composed of a plastic scintillator, a gas-flow proportional counter and a BGO scintillator, was rotated around a water target in order to measure the spatial distribution of the radiation quality. The results revealed that the observed deflection of fragment particles exceeded the multiple scattering effect estimated by Molière's theory. However, the difference can be sufficiently accounted for by considering one term involved in the multiple-scattering formula; this term corresponds to a lateral 'kick' at the point of production of the fragment. This kick is successfully explained as a transfer of the intra-nucleus Fermi momentum of a projectile to the fragment; the extent of the kick obeys the expectation derived from the Goldhaber model.
Counter-diabatic driving for Dirac dynamics
NASA Astrophysics Data System (ADS)
Fan, Qi-Zhen; Cheng, Xiao-Hang; Chen, Xi
2018-03-01
In this paper, we investigate the fast quantum control of Dirac equation dynamics by counter-diabatic driving, sharing the concept of shortcut to adiabaticity. We systematically calculate the counter-diabatic terms in different Dirac systems, like graphene and trapped ions. Specially, the fast and robust population inversion processes are achieved in Dirac system, taking into account the quantum simulation with trapped ions. In addition, the population transfer between two bands can be suppressed by counter-diabatic driving in graphene system, which might have potential applications in opt-electric devices.
Importance of counteranions on the hydration structure of the curium ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atta Fynn, Raymond; Bylaska, Eric J.; De Jong, Wibe A.
2013-07-04
Using density functional theory based ab initio molecular dynamics and metadynamics we show that counter ions can trigger noticeable changes in the hydration shell structure of the curium ion. The free energies of curium-water coordination and the solvent hydrogen bond (HB) lifetimes in the absence and presence the counter anions predict that chloride and bromide counter anions strengthen the first shell and consequently the 8-fold coordination state is dominant by at least 98%. In contrast, the perchlorate counter anions are found to weaken the coordination shell and the HB network, with the 9-fold and 8-fold states existing in an 8:1more » ratio, which is in good agreement with reported 9:1 ratio seen in time resolved fluorescence spectroscopy experiments. To our knowledge this is the first time molecular simulations have shown that counter anions can directly affect the first hydration shell structure of a cation.« less
Simple chemical synthesis of novel ZnO nanostructures: Role of counter ions
NASA Astrophysics Data System (ADS)
Pudukudy, Manoj; Yaakob, Zahira
2014-04-01
This article reports the synthesis, characterisation and photocatalytic activity of novel ZnO nanostructures prepared via the thermal decomposition of hydrozincite. Hydrozincites were obtained by the conventional precipitation route using different zinc salts such as acetate, nitrate, chloride and sulphate. The effect of counter ions (CH3COO-, Cl-, NO3-, and SO42-) on the structural, textural, morphological and optical properties was investigated. Various characterisations depicted the active role of counter ions in the properties of ZnO. Hexagonal wurtzite structure of ZnO with fine crystalline size was obvious from the XRD results, irrespective of the counter ions. Electron microscopic images indicated the role of counter ions in the surface and internal morphology of ZnO nanomaterials. Special coral like agglomerated morphology of elongated particles with high porosity was observed for the ZnO prepared from acetate precursor. Spherical, elongated and irregular shaped bigger lumps of ZnO nanoparticles with various novel morphologies were resulted for the sulphate, nitrate and chloride precursors respectively. Highly ordered porous micro disc like morphology was noted for the ZnO samples prepared from the sulphate and nitrate salts. Photoluminescence spectra showed the characteristic blue and green emission bands, depicting the presence of large crystal defects and high oxygen vacancies in the samples. Photocatalytic activity of the as-prepared ZnO catalysts was examined by the degradation of methylene blue under UV light irradiation. Degradation results indicated their substantial activity with respect to the counter ions. ZnO prepared from the acetate precursor showed highest photoactivity due to its high surface area, special morphology and high oxygen vacancies.
Electrostatic effects on clustering and ion dynamics in ionomer melts
NASA Astrophysics Data System (ADS)
Ma, Boran; Nguyen, Trung; Pryamitsyn, Victor; Olvera de La Cruz, Monica
An understanding of the relationships between ionomer chain morphology, dynamics and counter-ion mobility is a key factor in the design of ion conducting membranes for battery applications. In this study, we investigate the influence of electrostatic coupling between randomly charged copolymers (ionomers) and counter ions on the structural and dynamic features of a model system of ionomer melts. Using coarse-grained molecular dynamics (CGMD) simulations, we found that variations in electrostatic coupling strength (Γ) remarkably affect the formation of ion-counter ion clusters, ion mobility, and polymer dynamics for a range of charged monomer fractions. Specifically, an increase in Γ leads to larger ionic cluster sizes and reduced polymer and ion mobility. Analysis of the distribution of the radius of gyration of the clusters further reveals that the fractal dimension of the ion clusters is nearly independent from Γ for all the cases studied. Finally, at sufficiently high values of Γ, we observed arrested heterogeneous ions mobility, which is correlated with an increase in ion cluster size. These findings provide insight into the role of electrostatics in governing the nanostructures formed by ionomers.
Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria
2014-08-14
Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.
Method for enhancing the resolving power of ion mobility separations over a limited mobility range
Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D
2014-09-23
A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.
The importance of ion size and electrode curvature on electrical double layers in ionic liquids.
Feng, Guang; Qiao, Rui; Huang, Jingsong; Dai, Sheng; Sumpter, Bobby G; Meunier, Vincent
2011-01-21
Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) ≈ [BMIM][Cl] (near the negative electrode) ≈ [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a "Multiple Ion Layers with Overscreening" (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.
Closed cycle ion exchange method for regenerating acids, bases and salts
Dreyfuss, Robert M.
1976-01-01
A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.
Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.
Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A
2014-10-21
Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.
Heating of Solar Wind Ions via Cyclotron Resonance
NASA Astrophysics Data System (ADS)
Navarro, R.; Moya, P. S.; Figueroa-Vinas, A.; Munoz, V.; Valdivia, J. A.
2017-12-01
Remote and in situ observations in the solar wind show that ion and electron velocity distributions persistently deviate from thermal equilibrium in the form of relative streaming between species components, temperature anisotropy, etc. These non-thermal features represent a source of free energy for the excitation of kinetic instabilities and fluctuations in the plasma. In this regard, it is believed that plasma particles can be heated, through a second order Fermi acceleration process, by multiple resonances with unstable counter-propagating field-aligned Ion-cyclotron waves. For multi-species plasmas, several collective wave modes participate in this process. In this work, we test this model by studying the percentage of ions that resonate with the waves modes described by the proper kinetic multi-species dispersion relation in a solar-wind-like plasma composed of electrons, protons, and alpha particles. Numerical results are compared with WIND spacecraft data to test its relevance for the existence of thresholds for the preferential perpendicular heating of He+2 ions as observed in the solar wind fast streams.
Four pi-recoil proportional counter used as neutron spectrometer
NASA Technical Reports Server (NTRS)
Bennett, E. F.
1968-01-01
Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.
Solid state electrochromic light modulator
Cogan, S.F.; Rauh, R.D.
1990-07-03
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr
2015-04-13
Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effectmore » in the co-current magnetic field configuration.« less
Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre
2016-10-01
Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A history of radiation detection instrumentation.
Frame, Paul W
2004-08-01
A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.
A history of radiation detection instrumentation.
Frame, Paul W
2005-06-01
A review is presented of the history of radiation detection instrumentation. Specific radiation detection systems that are discussed include the human senses, photography, calorimetry, color dosimetry, ion chambers, electrometers, electroscopes, proportional counters, Geiger Mueller counters, scalers and rate meters, barium platinocyanide, scintillation counters, semiconductor detectors, radiophotoluminescent dosimeters, thermoluminescent dosimeters, optically stimulated luminescent dosimeters, direct ion storage, electrets, cloud chambers, bubble chambers, and bubble dosimeters. Given the broad scope of this review, the coverage is limited to a few key events in the development of a given detection system and some relevant operating principles. The occasional anecdote is included for interest.
NASA Technical Reports Server (NTRS)
Dell, G. F.; Uto, H.; Yuan, L. C. L.; Amaldi, E.; Beneventano, M.; Borgia, B.; Pistilli, P.; Sestili, I.; Dooher, J.
1976-01-01
An experiment was conducted at the CERN intersecting storage rings using colliding proton beams to investigate high-multiplicity gamma-ray events. The objective of the study was to reveal certain features of multiple pion production as well as other possible mechanisms of gamma-ray production. The detector system consisted of ten planes of spark chambers, three scintillation counter hodoscopes and two arrays of lead-glass Cerenkov counters, the first array containing 16 counters and the second, 60 counters. The event trigger was obtained from the Cerenkov counters, and the energies in all the Cerenkov counters after trigger, as well as the information on all the charged particles given by the scintillation counters and spark chambers were recorded on magnetic tape. The relationship between the number of gamma-rays per event and the number of Cerenkov counters triggered by a neutral secondary was established by means of a Monte Carlo calculation.
Equilibrium swelling properties of polyampholytic hydrogels
NASA Astrophysics Data System (ADS)
English, Anthony E.; Mafé, Salvador; Manzanares, José A.; Yu, Xiahong; Grosberg, Alexander Yu.; Tanaka, Toyoichi
1996-06-01
The role of counter ions and ion dissociation in establishing the equilibrium swelling of balanced and unbalanced polyampholytic hydrogels has been investigated experimentally and theoretically. The swelling dependence on both the net charge offset and the external bath salt concentration has been examined using an acrylamide based polyampholytic hydrogels. By careful consideration of the swelling kinetics, we illustrate the effects of ion dissociation equilibria and counter ion shielding in polyampholytic hydrogels near their balance point where both polyelectrolyte and polyampholyte effects are present. The theory considers a Flory type swelling model where the Coulombic interactions between fixed ions in the hydrogel resemble those of an ionic solid with a Debye screening factor. Theoretical predictions from this model are in qualitative agreement with our experimental results.
Newell, Matthew R [Los Alamos, NM; Jones, David Carl [Los Alamos, NM
2009-09-01
A portable multiplicity counter has signal input circuitry, processing circuitry and a user/computer interface disposed in a housing. The processing circuitry, which can comprise a microcontroller integrated circuit operably coupled to shift register circuitry implemented in a field programmable gate array, is configured to be operable via the user/computer interface to count input signal pluses receivable at said signal input circuitry and record time correlations thereof in a total counting mode, coincidence counting mode and/or a multiplicity counting mode. The user/computer interface can be for example an LCD display/keypad and/or a USB interface. The counter can include a battery pack for powering the counter and low/high voltage power supplies for biasing external detectors so that the counter can be configured as a hand-held device for counting neutron events.
Environment and Structure Influence in DNA Conduction
NASA Technical Reports Server (NTRS)
Adessi, C.; Walch, S.; Anantram, M. P.; Biegel, Bryan (Technical Monitor)
2002-01-01
Results for transmission through the poly(G) DNA molecule are presented. We show that (i) periodically arranged sodium counter-ions in close proximity to dry DNA gives rise to a new conduction channel and aperiodicity in the counter-ion sequence can lead to a significant reduction in conduction, (ii) modification of the rise of B-DNA induces a change in the width of the transmission window, and (iii) specifically designed sequences are predicted to show intrinsic resonant tunneling behavior.
Two-Scale Ion Meandering Caused by the Polarization Electric Field During Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara L.; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert;
2016-01-01
Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.
Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection
NASA Astrophysics Data System (ADS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Bessho, Naoki; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Strangeway, Robert; Ergun, Robert E.; Burch, James L.; Avanov, Levon; Lavraud, Benoit; Moore, Thomas E.; Saito, Yoshifumi
2016-08-01
Ion velocity distribution functions (VDFs) from a particle-in-cell simulation of asymmetric reconnection are investigated to reveal a two-scale structure of the ion diffusion region (IDR). Ions bouncing in the inner IDR are trapped mainly by the electric field normal to the current sheet (N direction), while those reaching the outer IDR are turned back mainly by the magnetic force. The resulting inner layer VDFs have counter-streaming populations along N with decreasing counter-streaming speeds away from the midplane while maintaining the out-of-plane speed, and the outer layer VDFs exhibit crescent shapes toward the out-of-plane direction. Observations of the above VDF features and the normal electric fields provide evidence for the two-scale meandering motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astrelin, V. T., E-mail: V.T.Astrelin@inp.nsk.su; Kotelnikov, I. A.
Emission of positively charged ions from a plasma emitter irradiated by a counterpropagating electron beam is studied theoretically. A bipolar diode with a plasma emitter in which the ion temperature is lower than the electron temperature and the counter electron flow is extracted from the ion collector is calculated in the one-dimensional model. An analog of Bohm’s criterion for ion emission in the presence of a counterpropagating electron beam is derived. The limiting density of the counterpropagating beam in a bipolar diode operating in the space-charge-limited-emission regime is calculated. The full set of boundary conditions on the plasma emitter surfacemore » that are required for operation of the high-current optics module in numerical codes used to simulate charged particle sources is formulated.« less
Multiple channel programmable coincidence counter
Arnone, Gaetano J.
1990-01-01
A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.
Electrochromic device using mercaptans and organothiolate compounds
Lampert, Carl M.; Ma, Yan-ping; Doeff, Marca M.; Visco, Steven
1995-01-01
An electrochromic cell is disclosed which comprises an electrochromic layer and a composite ion counter electrode for transporting ions. The counter electrode further comprises a polymer electrolyte material and an organosulfur material in which, in its discharged state, the organosulfur material is further comprised of a mercaptan or an organothiolate. In one preferred embodiment, both the electrochromic electrode and the counter electrode are transparent either to visible light or to the entire electromagnetic spectrum in both charged and discharged states. An electrochromic device is disclosed which comprises one or more electrochromic electrodes encased in glass or plastic plates on the inner surface of each of which is formed a transparent electrically conductive film. Electrical contacts, which are in electrical contact with the conductive films, facilitate external electrical connection.
Development of an ion-pair to improve the colon permeability of a low permeability drug: Atenolol.
Lozoya-Agullo, Isabel; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival
2016-10-10
To ensure the optimal performance of oral controlled release formulations, drug colon permeability is one of the critical parameters. Consequently developing this kind of formulations for low permeability molecules requires strategies to increase their ability to cross the colonic membrane. The objective of this work is to show if an ion-pair formation can improve the colon permeability of atenolol as a low permeability drug model. Two counter ions have been tested: brilliant blue and bromophenol blue. The Distribution coefficients at pH7.00 (DpH7) of atenolol, atenolol + brilliant blue and atenolol + bromophenol blue were experimentally determined in n-octanol. Moreover, the colonic permeability was determined in rat colon using in situ closed loop perfusion method based in Doluisio's Technique. To check the potential effects of the counter ions on the membrane integrity, a histological assessment of colonic tissue was done. The results of the partitioning studies were inconclusive about ion-pair formation; nevertheless colon permeability was significantly increased by both counter ions (from 0.232±0.021cm/s to 0.508±0.038cm/s in the presence of brilliant blue and to 0.405±0.044cm/s in the presence of bromophenol blue). Neither damage on the membrane was observed on the histological studies, nor any change on paracellular permeability suggesting that the permeability enhancement could be attributed to the ion-pair formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian C.; Behling, Richard S.; Imel, George R.
Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less
Drug Safety - Multiple Languages
... Expand Section Guide to Over the Counter Medications - English PDF Guide to Over the Counter Medications - Amarɨñña / ... Information Translations Guide to Over the Counter Medications - English PDF Guide to Over the Counter Medications - العربية ( ...
Electrospray ion source with reduced analyte electrochemistry
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-08-23
An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.
Electrospray ion source with reduced analyte electrochemistry
Kertesz, Vilmos; Van Berkel, Gary J
2013-07-30
An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.
Duchstein, Patrick; Milek, Theodor; Zahn, Dirk
2015-01-01
Molecular models of 5 nm sized ZnO/Zn(OH)2 core-shell nanoparticles in ethanolic solution were derived as scale-up models (based on an earlier model created from ion-by-ion aggregation and self-organization) and subjected to mechanistic analyses of surface stabilization by block-copolymers. The latter comprise a poly-methacrylate chain accounting for strong surfactant association to the nanoparticle by hydrogen bonding and salt-bridges. While dangling poly-ethylene oxide chains provide only a limited degree of sterical hindering to nanoparticle agglomeration, the key mechanism of surface stabilization is electrostatic shielding arising from the acrylates and a halo of Na+ counter ions associated to the nanoparticle. Molecular dynamics simulations reveal different solvent shells and distance-dependent mobility of ions and solvent molecules. From this, we provide a molecular rationale of effective particle size, net charge and polarizability of the nanoparticles in solution.
Duchstein, Patrick; Milek, Theodor; Zahn, Dirk
2015-01-01
Molecular models of 5 nm sized ZnO/Zn(OH)2 core-shell nanoparticles in ethanolic solution were derived as scale-up models (based on an earlier model created from ion-by-ion aggregation and self-organization) and subjected to mechanistic analyses of surface stabilization by block-copolymers. The latter comprise a poly-methacrylate chain accounting for strong surfactant association to the nanoparticle by hydrogen bonding and salt-bridges. While dangling poly-ethylene oxide chains provide only a limited degree of sterical hindering to nanoparticle agglomeration, the key mechanism of surface stabilization is electrostatic shielding arising from the acrylates and a halo of Na+ counter ions associated to the nanoparticle. Molecular dynamics simulations reveal different solvent shells and distance-dependent mobility of ions and solvent molecules. From this, we provide a molecular rationale of effective particle size, net charge and polarizability of the nanoparticles in solution. PMID:25962096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus-Dueck, T.; Scott, B.
An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less
Electrochromic device using mercaptans and organothiolate compounds
Lampert, C.M.; Ma, Y.P.; Doeff, M.M.; Visco, S.
1995-08-15
An electrochromic cell is disclosed which comprises an electrochromic layer and a composite ion counter electrode for transporting ions. The counter electrode further comprises a polymer electrolyte material and an organosulfur material in which, in its discharged state, the organosulfur material is further comprised of a mercaptan or an organothiolate. In one preferred embodiment, both the electrochromic electrode and the counter electrode are transparent either to visible light or to the entire electromagnetic spectrum in both charged and discharged states. An electrochromic device is disclosed which comprises one or more electrochromic electrodes encased in glass or plastic plates on the inner surface of each of which is formed a transparent electrically conductive film. Electrical contacts, which are in electrical contact with the conductive films, facilitate external electrical connection. 5 figs.
ERIC Educational Resources Information Center
Wankat, Phillip C.
1984-01-01
Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)
STUDY OF THE UPPER ATMOSPHERE BY MEANS OF THE COSMOS 3 AND COSMOS 5 SATELLITES. 2. SOFT PARTICLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovskii, V.I.; Gal'perin, Yu.I.; Dzhordzhio, N.V.
1963-01-01
Geoactive particle research was conducted during the Cosmos 3 and Cosmos 5 orbital flights. The existence of currents of electrons and positive ions in the upper ionosphere having energies that are relatively low but greater than thermal is postulated. This was concluded from fluxes detected by the two types of particle counters used. a sensor formed of a fluorescent screen and photomultiplier, which was biased negatively and also shielded with Al foil so as to register only electrons above 40 ev and positive ions whose free path exceeded the foil thickness (e.g., protons of the order of 200 kev), andmore » an ion trap which registered electrons of 5 kev or more and positive ions. The trap counters showed repeated instances of anisotropic positive ion flow in a direction normal to the geomagnetic force lines; the fact that no simultaneous indications appeared in the indicator screen type counters suggests that these were soft'' positive ions; if protons, their energy would be less than 200 kev. This conclusion is supported by the fact that when the satellite had turned 180 deg the indicator counters in turn registered particles not sensed by the ion traps, which were evidently electrons below 5 kev. lt was concluded that there are areas which exhibit local current flow, in which positive ion energies are estimated to be several dozen ev and average density is 10/sup 8/ ion/cm/sup 2//sec/ster. These areas are in the 200- to 600-km region and tend to remain at the same earth latitudes for prolonged periods, sometimes as much as 9 hours. Additional observations were made of some highenergy particles, particularly those registered in the South Atlantic geomagnetic anomaly. It was concluded that these particles were electrons, estimated at between 50 kev and 1 Mev and at an omnidirectional density of 5 x 10/sup 7//cm/sup 2//sec. The possibility of spurious effects caused by the fields of on-board transmitting antennas, principally that of the telemetry transmitter, was rejected since no difference in electron count was noted whether the transmitters were on or off. The intensity and anisotropy of recorded electron currents agreed with earlier data from the 1958 Sputnik and from the U. S. Injun'' rocket of 1961. (AID)« less
Momentum flux parasitic to free-energy transfer
Stoltzfus-Dueck, T.; Scott, B.
2017-05-11
An often-neglected portion of the radialmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ drift is shown to drive an outward flux of co-current momentum when free energy is transferred from the electrostatic potential to ion parallel flows. This symmetry breaking is fully nonlinear, not quasilinear, necessitated simply by free-energy balance in parameter regimes for which significant energy is dissipated via ion parallel flows. The resulting rotation peaking is counter-current and has a scaling and order of magnitude that are comparable with experimental observations. Finally, the residual stress becomes inactive when frequencies are much higher than the ion transit frequency, which may explain the observed relation of density peaking and counter-current rotation peaking in the core.« less
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian; Behling, Spencer; Baldez, Phoenix
Here, the feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved amore » 36% neutron detection efficiency (ϵϵ) and an View the MathML source11.7μs neutron die-away time (ττ) for a doubles figure-of-merit (ϵ 2/τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.« less
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
NASA Astrophysics Data System (ADS)
Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick
2018-04-01
The feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved a 36% neutron detection efficiency (ɛ) and an 11 . 7 μs neutron die-away time (τ) for a doubles figure-of-merit (ɛ2 / τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
Cowles, Christian; Behling, Spencer; Baldez, Phoenix; ...
2018-01-12
Here, the feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved amore » 36% neutron detection efficiency (ϵϵ) and an View the MathML source11.7μs neutron die-away time (ττ) for a doubles figure-of-merit (ϵ 2/τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.« less
Poznar, Monika; Hołubowicz, Rafał; Wojtas, Magdalena; Gapiński, Jacek; Banachowicz, Ewa; Patkowski, Adam; Ożyhar, Andrzej; Dobryszycki, Piotr
2017-11-01
Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Wen, Yaoming; Wang, Jiaoyan; Chen, Xiuming; Le, Zhanxian; Chen, Yuxiang; Zheng, Wei
2009-05-29
Three macrolide antibiotic components - ascomycin, tacrolimus and dihydrotacrolimus - were separated and purified by silver ion high-speed counter-current chromatography (HSCCC). The solvent system consisted of n-hexane-tert-butyl methyl ether-methanol-water (1:3:6:5, v/v) and silver nitrate (0.10mol/l). The silver ion acted as a pi-complexing agent with tacrolimus because of its extra side double bond compared with ascomycin and dihydrotacrolimus. This complexation modified the partition coefficient values and the separation factors of the three components. As a result, ascomycin, tacrolimus and dihydrotacrolimus were purified from 150mg extracted crude sample with purities of 97.6%, 98.7% and 96.5%, respectively, and yields over 80% (including their tautomers). These results cannot be achieved with the same solvent system but without the addition of silver ion.
NASA Astrophysics Data System (ADS)
Gułajski, Łukasz; Grela, Karol
Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.
Ion mobility spectrometry for the rapid analysis of over-the-counter drugs and beverages
Fernández-Maestre, Roberto
2009-01-01
In the pharmaceutical industry, there are increasing requirements for analytical methods in quality assessment for the production of drugs. In this investigation, ion mobility spectrometry (IMS) was used for the rapid qualitative separation and identification of active ingredients in generic over-the-counter drugs and food additives in beverages. The active ingredients determined in drugs were acetaminophen, aspartame, bisacodyl, caffeine, dextromethorphan, diphenhydramine, famotidine, glucosamine, guaifenesin, loratadine, niacin, phenylephrine, pyridoxine, thiamin, and tetrahydrozoline. Aspartame and caffeine were determined in beverages. Fourteen over-the-counter drugs and beverages were analyzed. Analysis times below 10 s were obtained for IMS, and reduced mobilities were reported for the first time for 12 compounds. A quadrupole mass spectrometer coupled to a mobility spectrometer was used to assure a correct peak assignation. The combination of fast analysis, low cost, and inexpensive maintenance of IMS instruments makes IMS an attractive technique for the qualitative determination of the active ingredients in over-the-counter drugs and food additives in manufacture quality control and cleaning verification for the drug and food industries. PMID:20835390
Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi
2015-01-01
Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, y¯D, were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured y¯D were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm−1. PMID:25210053
Polyelectrolytes and Their Biological Interactions
Katchalsky, A.
1964-01-01
Polyelectrolytes are water-soluble electrically charged polymers. Their properties are determined by the interplay of the electrical forces, the Brownian motion of the macromolecular chain, and intermolecular Van der Waals forces. Charged polyacids or polybases are stretched by the electrostatic forces, as evidenced by increase in solution viscosity, or by the stretching of polyelectrolyte gels. The electrical field of the polyions is neutralized by a dense atmosphere of counter-ions. The counter-ion attraction to the polyions is expressed by a reduction of the osmotic activity of the polyion—the osmotic pressure being only 15 to 20 per cent of the ideal in highly charged polyelectrolytes neutralized by monovalent counter-ions, and as low as 1 to 3 per cent of the ideal for polyvalent counter-ions. Since the ionic atmosphere is only slightly dependent on added low molecular salt, the osmotic pressure of polyelectrolyte salt mixtures is approximately equal to the sum of the osmotic pressure of polyelectrolyte and salt alone. Acidic and basic polyelectrolytes interact electrostatically with precipitation at the point of polymeric electroneutrality. At higher salt concentrations the interaction is inhibited by the screening of polymeric fixed charges. The importance of these interactions in enzymatic processes is discussed. The electrical double layer is polarizable as may be deduced from dielectric and conductometric studies. The polarizability leads to strong dipole formation in an electrical field. These macromolecular dipoles may play a role in the adsorption of polyelectrolytes on charged surfaces. The final part of the paper is devoted to interactions of polyelectrolytes with cell membranes and the gluing of cells to higher aggregates by charged biocolloids. ImagesFigure 17Figure 18Figure 19Figure 20 PMID:14104085
ERIC Educational Resources Information Center
Biddle, Christopher J.
2013-01-01
The purpose of this qualitative holistic multiple-case study was to identify the optimal theoretical approach for a Counter-Terrorism Reality-Based Training (CTRBT) model to train post-9/11 police officers to perform effectively in their counter-terrorism assignments. Post-9/11 police officers assigned to counter-terrorism duties are not trained…
Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk
2016-04-14
Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for allmore » water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) membranes but comparable to the number inferred for 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) membranes. Some of the properties of the DMPG membrane are compared with those of the neutral zwitterionic DMPC bilayer membrane at 303 K and 1 atm, which is the same reduced temperature with respect to the gel-to-fluid transition temperature as 310 K is for the DMPG bilayer membrane.« less
Monte Carlo track structure for radiation biology and space applications
NASA Technical Reports Server (NTRS)
Nikjoo, H.; Uehara, S.; Khvostunov, I. G.; Cucinotta, F. A.; Wilson, W. E.; Goodhead, D. T.
2001-01-01
Over the past two decades event by event Monte Carlo track structure codes have increasingly been used for biophysical modelling and radiotherapy. Advent of these codes has helped to shed light on many aspects of microdosimetry and mechanism of damage by ionising radiation in the cell. These codes have continuously been modified to include new improved cross sections and computational techniques. This paper provides a summary of input data for ionizations, excitations and elastic scattering cross sections for event by event Monte Carlo track structure simulations for electrons and ions in the form of parametric equations, which makes it easy to reproduce the data. Stopping power and radial distribution of dose are presented for ions and compared with experimental data. A model is described for simulation of full slowing down of proton tracks in water in the range 1 keV to 1 MeV. Modelling and calculations are presented for the response of a TEPC proportional counter irradiated with 5 MeV alpha-particles. Distributions are presented for the wall and wall-less counters. Data shows contribution of indirect effects to the lineal energy distribution for the wall counters responses even at such a low ion energy.
Arruda, Thomas M; Kumar, Amit; Jesse, Stephen; Veith, Gabriel M; Tselev, Alexander; Baddorf, Arthur P; Balke, Nina; Kalinin, Sergei V
2013-09-24
The application of electric bias across tip-surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after ∼12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Simpson, Jr, J A
1950-12-05
A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.
Shinde, Dhanraj B.; Majumder, Mainak; Pillai, Vijayamohanan K.
2014-01-01
Here we report for the first time, a simple hydrothermal approach for the bulk production of highly conductive and transparent graphene nanoribbons (GNRs) using several counter ions from K2SO4, KNO3, KOH and H2SO4 in aqueous media, where, selective intercalation followed by exfoliation gives highly conducting GNRs with over 80% yield. In these experiments, sulfate and nitrate ions act as a co-intercalant along with potassium ions resulting into exfoliation of multi-walled carbon nanotubes (MWCNTs) in an effective manner. The striking similarity of experimental results in KOH and H2SO4 that demonstrates partially damaged MWCNTs, implies that no individual K+, SO42− ion plays a key role in unwrapping of MWCNTs, rather this process is largely effective in the presence of both cations and anions working in a cooperative manner. The GNRs can be used for preparing conductive 16 kΩsq−1, transparent (82%) and flexible thin films using low cost fabrication method. PMID:24621526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitter, M.; von Goeler, S.; Horton, R.
1979-01-29
Ion-temperature results are deduced from Doppler-broadening measurements of the K..cap alpha.. (1s-2p) resonance line emitted from heliumlike iron impurity ions in the hot central core of PLT (Princeton Large Torus) tokamak discharges. The measurements were performed using a high-resolution Bragg-crystal spectrometer with a multiwire proportional counter.
Tsuda, Shuichi; Sato, Tatsuhiko; Watanabe, Ritsuko; Takada, Masashi
2015-01-01
Using a wall-less tissue-equivalent proportional counter for a 0.72-μm site in tissue, we measured the radial dependence of the lineal energy distribution, yf(y), of 290-MeV/u carbon ions and 500-MeV/u iron ion beams. The measured yf(y) distributions and the dose-mean of y, [Formula: see text], were compared with calculations performed with the track structure simulation code TRACION and the microdosimetric function of the Particle and Heavy Ion Transport code System (PHITS). The values of the measured [Formula: see text] were consistent with calculated results within an error of 2%, but differences in the shape of yf(y) were observed for iron ion irradiation. This result indicates that further improvement of the calculation model for yf(y) distribution in PHITS is needed for the analytical function that describes energy deposition by delta rays, particularly for primary ions having linear energy transfer in excess of a few hundred keV μm(-1). © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Wang, Li-Juan; Liu, Xiu-Feng; Lu, Qie-Nan; Yang, Geng-Liang; Chen, Xing-Guo
2013-04-05
A chiral recognition mechanism of ion-pair principle has been proposed in this study. It rationalized the enantioseparations of some basic analytes using the complex of di-n-butyl l-tartrate and boric acid as the chiral selector in methanolic background electrolytes (BGEs) by nonaqueous capillary electrophoresis (NACE). An approach of mass spectrometer (MS) directly confirmed that triethylamine promoted the formation of negatively charged di-n-butyl l-tartrate-boric acid complex chiral counter ion with a complex ratio of 2:1. And the negatively charged counter ion was the real chiral selector in the ion-pair principle enantioseparations. It was assumed that triethylamine should play its role by adjusting the apparent acidity (pH*) of the running buffer to a higher value. Consequently, the effects of various basic electrolytes including inorganic and organic ones on the enantioseparations in NACE were investigated. The results showed that most of the basic electrolytes tested were favorable for the enantioseparations of basic analytes using di-n-butyl l-tartrate-boric acid complex as the chiral ion-pair selector. Copyright © 2013 Elsevier B.V. All rights reserved.
Measuring 226Ra/228Ra in Oceanic Lavas by MC-ICPMS
NASA Astrophysics Data System (ADS)
Standish, J. J.; Sims, K.; Ball, L.; Blusztajn, J.
2007-12-01
238U-230Th-226Ra disequilibrium in volcanic rocks provides an important and unique tool to evaluate timescales of recent magmatic processes. Determination of 230Th-226Ra disequilibria requires measurement of U and Th isotopes and concentrations as well as measurement of 226Ra. While measurement of U and Th by ICPMS is now well established, few published studies documenting 226Ra measurement via ICPMS exist. Using 228Ra as an isotope spike we have investigated two ion-counting methods; a 'peak-hopping' routine, where 226Ra and 228Ra are measured in sequence on the central discrete dynode ETP secondary electron multiplier (SEM), and simultaneous measurement of 226Ra and 228Ra on two multiple ion-counter system (MICS) channeltron type detectors mounted on the low end of the collector block. Here we present 226Ra measurement by isotope dilution using the Thermo Fisher NEPTUNE MC-ICPMS. Analysis of external rock standards TML and AThO along with mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) samples show three issues that need to be considered when making precise and accurate Ra measurements: 1) mass bias, 2) background, and 3) relative efficiencies of the detectors when measuring in MICS mode. Due to the absence of an established 226Ra/228Ra standard, we have used U reference material NBL-112A to monitor mass bias. Although Ball et. al., (in press) have shown that U does not serve as an adequate proxy for Th (and thus not likely for Ra either), measurements of rock standards TML and AThO are repeatedly in equilibrium within the uncertainty of the measurements (where total uncertainty includes propagation of the uncertainty in the 226Ra standard used for calibrating the 228Ra spike). For this application, U is an adequate proxy for Ra mass bias at the 1% uncertainly level. The more important issue is the background correction. Because of the extensive chemistry required to separate and purify Ra (typically fg/g level in volcanic rocks), we observe large ambient backgrounds using both ion-counting techniques, which can significantly influence the measured 226Ra/228Ra ratio. Ra off-peak backgrounds need to be measured explicitly and quantitatively corrected. One advantage of using a 'peak-hopping' routine on the central SEM is the optional use of the high abundance sensitivity lens or repelling potential quadrapole (RPQ). This lens virtually eliminates the ambient background and significantly enhances the signal to noise ratio with only a small decrease in Ra ion transmission. Even with the diminished background levels observed using 'peak-hopping' on the SEM with the RPQ, accurate measurement of Ra isotopes requires off-peak background measurement. Finally, when using MICS it is important to account for the relative efficiency of the detectors. Multiple ion counting is, in principle, preferable to 'peak-hopping' because more time is spent counting each individual isotope. However, our results illustrate that proper calibration of detector yields requires dynamic switching of 226Ra between the two ion counters. This negates the inherent advantage of multiple ion counting. Therefore, when considering mass bias, background correction, and detector gain calibration, we conclude that 'peak-hopping' on the central SEM with the RPQ abundance filter is the preferred technique for 226Ra/228Ra isotopic measurement on the Neptune MC-ICPMS.
Pistos, C; Tsantili-Kakoulidou, A; Koupparis, M
2005-09-15
The retention/pH profiles of three fluoroquinolones, ofloxacin, norfloxacin and ciprofloxacin, was investigated by means of reversed-phase high performance liquid chromatography (RP-HPLC) and reversed-phase ion-interaction chromatography (RP-IIC), using an octadecylsilane stationary phase and acetonitrile as organic modifier. Sodium hexanesulphonate and tetrabutylammonium hydroxide were used as sources of counter ions in ion-interaction chromatography. The retention/pH profiles under in RP-HPLC were compared to the corresponding lipophilicity/pH profiles. Despite the rather hydrophilic nature of the three fluoroquinolones positive retention factors were obtained while there was a shift of the retention maximum towards more acidic pH values. This behavior was attributed mainly to non-hydrophobic silanophilic interactions with the silanized silica gel material of the stationary phase. In ion-interaction chromatography the effect of counter ions over a broad pH range was found to be ruled rather by the ion pair formation in the mobile phase which led to a drastic decrease in retention as a consequence of the disruption of the zwitterionic structure and thereupon the deliberation of a net charge in the molecules. At pH values at which zwitterionic structure was not favored both the ion-exchange and ion pair formation mechanisms were assumed to contribute to the retention.
NASA Astrophysics Data System (ADS)
Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki
2016-07-01
We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.
ISFET pH Sensitivity: Counter-Ions Play a Key Role.
Parizi, Kokab B; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H S Philip
2017-02-02
The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor.
ISFET pH Sensitivity: Counter-Ions Play a Key Role
Parizi, Kokab B.; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H. S. Philip
2017-01-01
The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor. PMID:28150700
NASA Astrophysics Data System (ADS)
Patel, R. N.; Singh, Nripendra; Gundla, V. L. N.; Chauhan, U. K.
2007-03-01
A series of ternary copper(II) complexes containing same coordination sphere but difference in the counter ions, viz., [Cu(PMDT)(OAc)]PF 6(1); [Cu(PMDT)(OAc)]ClO 4(2); [Cu(PMDT)(OAc)]BF 4(3) and [Cu(PMDT)(OAc)]BPh 4(4) where PMDT = N, N, N', N″, N″-pentamethyldiethylenetriamine, OAc = Acetate ion were synthesized and characterized by means of spectroscopic, magnetic and cyclic voltammetric measurements. In frozen solution e.p.r. spectra, an interesting relation g|| > g⊥ has been observed which is a typical of the axially symmetric d 9 Cu II ( SCu = 1/2) having an unpaired electron in a d orbital. Single crystal X-ray analysis of (1) has revealed the presence of distorted square planar geometry. The influence of the counter ion on the complexes has been examined by performing some biological experiments like superoxide dismutase and anti-microbial activity.
ALTERNATIVES TO HELIUM-3 FOR NEUTRON MULTIPLICITY DETECTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ely, James H.; Siciliano, Edward R.; Swinhoe, Martyn T.
Collaboration between the Pacific Northwest National Laboratory (PNNL) and the Los Alamos National Laboratory (LANL) is underway to evaluate neutron detection technologies that might replace the high-pressure helium (3He) tubes currently used in neutron multiplicity counter for safeguards applications. The current stockpile of 3He is diminishing and alternatives are needed for a variety of neutron detection applications including multiplicity counters. The first phase of this investigation uses a series of Monte Carlo calculations to simulate the performance of an existing neutron multiplicity counter configuration by replacing the 3He tubes in a model for that counter with candidate alternative technologies. Thesemore » alternative technologies are initially placed in approximately the same configuration as the 3He tubes to establish a reference level of performance against the 3He-based system. After these reference-level results are established, the configurations of the alternative models will be further modified for performance optimization. The 3He model for these simulations is the one used by LANL to develop and benchmark the Epithermal Neutron Multiplicity Counter (ENMC) detector, as documented by H.O. Menlove, et al. in the 2004 LANL report LA-14088. The alternative technologies being evaluated are the boron-tri-fluoride-filled proportional tubes, boron-lined tubes, and lithium coated materials previously tested as possible replacements in portal monitor screening applications, as documented by R.T. Kouzes, et al. in the 2010 PNNL report PNNL-72544 and NIM A 623 (2010) 1035–1045. The models and methods used for these comparative calculations will be described and preliminary results shown« less
Calibration of the active radiation detector for Spacelab-One
NASA Technical Reports Server (NTRS)
1982-01-01
The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.
Camilo, Mariana R; Martins, Felipe T; Malta, Valéria R S; Ellena, Javier; Carlos, Rose M
2013-02-01
In the title complex, [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](PF(6))(2)·CH(3)CN, the Ru(II) atom is bonded to two α-diimine ligands, viz. 2,2'-bipyridine, in a cis configuration and to two 4-amino-pyridine (4Apy) ligands in the expected distorted octa-hedral configuration. The compound is isostructural with [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](ClO(4))(2)·CH(3)CN [Duan et al. (1999 ▶). J. Coord. Chem.46, 301-312] and both structures are stabilized by classical hydrogen bonds between 4Apy ligands as donors and counter-ions and acetonitrile solvent mol-ecules as acceptors. Indeed, N-H⋯F inter-actions give rise to an inter-molecularly locked assembly of two centrosymmetric complex mol-ecules and two PF(6) (-) counter-ions, which can be considered as the building units of both crystal architectures. The building blocks are connected to one another through hydrogen bonds between 4Apy and the connecting pieces made up of two centrosymmetric motifs with PF(6) (-) ions and acetonitrile mol-ecules, giving rise to ribbons running parallel to [011]. 2(1)-Screw-axis-related complex mol-ecules and PF(6) (-) counter-ions alternate in helical chains formed along the a axis by means of these contacts.
NASA Astrophysics Data System (ADS)
Vener, M. V.; Chernyshov, I. Yu.; Rykounov, A. A.; Filarowski, A.
2018-01-01
Crystalline HCl and CF3SO3H hydrates serve as excellent model systems for protonated water and perfluorosulphonic acid membranes, respectively. They contain characteristic H3O+, H5О+2, H7О+3 and H3O+(H2O)3 (the Eigen cation) structures. The properties of these cations in the crystalline hydrates of strong monobasic acids are studied by solid-state density function theory (DFT). Simultaneous consideration of the HCl and CF3SO3H hydrates reveals the impact of the size of a counter ion and the crystalline environment on the structure and infrared active bands of the simplest proton hydrates. The H7O+3 structure is very sensitive to the size of the counter ion and symmetry of the local environment. This makes it virtually impossible to identify the specific features of H7O+3 in molecular crystals. The H3O+ ion can be treated as the Eigen-like cation in the crystalline state. Structural, infrared and electron-density features of H5О+2 and the Eigen cation are virtually insensitive to the size of the counter ion and the symmetry of the local crystalline environment. These cations can be considered as the simplest stable proton hydrates in the condensed phase. Finally, the influence of the Grimme correction on the structure and harmonic frequencies of the molecular crystals with short (strong) intermolecular O-H···O bonds is discussed.
A Study on Double Event Detection for PHENIX at RHIC
NASA Astrophysics Data System (ADS)
Vazquez-Carson, Sebastian; Phenix Collaboration
2016-09-01
Many measurements made in Heavy Ion experiments such as PHENIX at RHIC focus on geometrical properties because phenomena such as collective flow give insight into quark-gluon plasma and the strong nuclear force. As part of this investigation, PHENIX has taken data in 2016 for deuteron on gold collisions at several energies. An acceptable luminosity is achieved by injecting up to 120 separate bunches each with billions of ions into the storage ring, from which two, separate beams are made to collide. This method has a drawback as there is a chance for multiple pairs of nuclei to collide in a single bunch crossing. Data taken in a double event cannot be separated into two independent events and has no clear interpretation. This effect's magnitude is estimated and incorporated in published results as a systematic uncertainty and studies on this topic have already been conducted within PHENIX. I develop several additional algorithms to flag multiple interaction events by examining the time dependence of data from the two Beam-Beam Counters - detectors surrounding the beam pipe on opposite ends of the interaction region. The algorithms are tested with data, in which events with double interactions are artificially produced using low luminosity data. I am working at the University of Colorado at Boulder on behalf of the PHENIX collaboration.
Counter-ions at single charged wall: Sum rules.
Samaj, Ladislav
2013-09-01
For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.
NASA Astrophysics Data System (ADS)
Malek, Kourosh; Odijk, Theo; Coppens, Marc-Olivier
2005-07-01
The dynamics of water and sodium counter-ions (Na+) in a C2221 orthorhombic β-lactoglobulin crystal is investigated by means of 5 ns molecular dynamics simulations. The effect of the fluctuation of the protein atoms on the motion of water and sodium ions is studied by comparing simulations in a rigid and in a flexible lattice. The electrostatic interactions of sodium ions with the positively charged LYS residues inside the crystal channels significantly influence the ionic motion. According to our results, water molecules close to the protein surface undergo an anomalous diffusive motion. On the other hand, the motion of water molecules further away from the protein surface is normal diffusive. Protein fluctuations affect the diffusion constant of water, which increases from 0.646 ± 0.108 to 0.887 ± 0.41 nm2 ns-1, when protein fluctuations are taken into account. The pore size (0.63-1.05 nm) and the water diffusivities are in good agreement with previous experimental results. The dynamics of sodium ions is disordered. LYS residues inside the pore are the main obstacles to the motion of sodium ions. However, the simulation time is still too short for providing a precise description of anomalous diffusion of sodium ions. The results are not only of interest for studying ion and water transport through biological nanopores, but may also elucidate water-protein and ion-protein interactions in protein crystals.
NASA Astrophysics Data System (ADS)
Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan
2018-05-01
Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.
Luo, Dong; Fang, Shaohua; Tamiya, Yu; Yang, Li; Hirano, Shin-Ichi
2016-08-01
High-voltage layered lithium transition-metal oxides are very promising cathodes for high-energy Li-ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large-scale application of layered lithium transition-metal oxides. In this work, an ultralong life LiMn1/3 Co1/3 Ni1/3 O2 microspherical cathode is prepared by constructing an Mn-rich surface. Its capacity retention ratio at 700 mA g(-1) is as large as 92.9% after 600 cycles. The energy dispersive X-ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as-prepared cathode is attributed to the mitigation of TM-ions segregation. Additionally, it is discovered that layered lithium transition-metal oxide cathodes with an Mn-rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition-metal oxides and will help to the design and development of high-energy cathodes with ultralong life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ESI activity of Br⁻, BF₄⁻ , ClO₄⁻ and BPh₄⁻ anions in the presence of Li⁺ and NBu⁴⁺ counter-ions.
Koszinowski, K; Lissy, F
2017-03-01
To improve our understanding of the electrospray ionization (ESI) process, we have subjected equimolar mixtures of salts A + X - (A + = Li + , NBu 4 + ; X - = Br - , ClO 4 - , BF 4 - , BPh 4 - ) in different solvents (CH 3 CN, tetrahydrofuran, CH 3 OH, H 2 O) to negative-ion mode ESI and analyzed the relative ESI activity of the different anionic model analytes. The ESI activity of the large and hydrophobic BPh 4 - ion greatly exceeds that of the smaller and more hydrophilic anions Br - , ClO 4 - and BF 4 - , which we ascribe to its higher surface activity. Moreover, the ESI activity of the anions is modulated by the action of the counter-ions and their different tendency toward ion pairing. The tendency toward ion pairing can be reduced by the addition of the chelating ligands 12-crown-4 and 2.2.1 cryptand and is, although to a smaller degree, further influenced by the variation of the solvent. Complementary electrical conductivity measurements afford additional information on the interactions of the ionic constituents of the sample solutions. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Counter-balanced, multiple cable construction crane
NASA Astrophysics Data System (ADS)
Mikulas, Martin M., Jr.; Yang, Li-Farn
1991-11-01
The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.
Counter-balanced, multiple cable construction crane
NASA Astrophysics Data System (ADS)
Mikulas, Martin M., Jr.; Yang, Li-Farn
1993-10-01
The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.
Counter-balanced, multiple cable construction crane
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr. (Inventor); Yang, Li-Farn (Inventor)
1993-01-01
The invention is a counter-balanced, multiple cable construction crane. The apparatus for hoisting payloads comprises a crane having a lifting means, the lifting means comprising an end effector means and three suspension means or cables. One end of each cable attaches to a different winding means located on the lifting means, and the other end of each cable attaches to a different point on the end effector, such that the three cables have a theoretical point of convergence with this point corresponding to the center of mass of the payload. Three controls command rotation of the winding means to a predetermined position. Accordingly, the crane provides precise and autonomous positioning of the payload without human guidance. The crane further comprises a counter-balancing means. Two controls position the counter-balancing means to offset the overturning moment which arises during the lifting of heavy payloads.
Counter design influences the privacy of patients in health care.
Mobach, Mark P
2009-03-01
A re-furnishing of counter areas in primary health care was used to assess patient privacy and its influences on the nature of conversations in a controlled experiment. Patients in two community-based pharmacies in the Netherlands were assigned to enclosed counters and a queue at distance, or to counters that exposed patients mutually and a closer queue. Patients assigned to counters with reduced sight were more satisfied with the privacy than patients at visually exposed counters. However, in comparison with visually exposed pharmacy counters, conversations of patients at enclosed counters could still be overheard and did not have different conversations to other patients. Architectural design of health-care institutions has potential to positively influence perceived patient privacy in areas in where multiple patient-staff communications routinely occur and where patient privacy is an important issue, but enclosed counters with a queue at distance do not prevent incidental disclosure of individually identifiable health information.
Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi
2012-01-01
The frequency distributions of the lineal energy, y, of 160 MeV proton, 150 MeV/u helium, and 490 MeV/u silicon ion beams were measured using a wall-less tissue equivalent proportional counter (TEPC) with a site size of 0.72 µm. The measured frequency distributions of y as well as the dose-mean values, y(D), agree with the corresponding data calculated using the microdosimetric function of the particle and heavy ion transport code system PHITS. The values of y(D) increase in the range of LET below ~10 keV µm(-1) because of discrete energy deposition by delta rays, while the relation is reversed above ~10 keV µm(-1) as the amount of energy escaping via delta rays increases. These results indicate that care should be taken with the difference between y(D) and LET when estimating the ionization density that usually relates to relative biological effectiveness (RBE) of energetic heavy ions.
Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias.
Zimmermann, U; Schulz, J; Pilwat, G
1973-10-01
Dielectric breakdown of cell membranes and, in response, transcellular ion flows were measured in Escherichia coli B 163 and B 525 using a Coulter counter as the detector with a hydrodynamic jet focusing close to the orifice of the counter. Plotting the relative pulse height for compensated amplification of a certain size of the cells against increasing detector current, a rather sharp bend within the linear function was found, which did not occur when measuring fixed cells or polystyrene latex. The start current for transcellular ion flow causing the change of the slope is different for the potassium-deficient mutant B 525 in comparison with the wild-type B 163, indicating a change in the membrane structure of B 525 by mutation and demonstrating the sensitivity of the method for studying slight changes in membrane structure in general. The theoretical size distributions for two current values in the range of transcellular ion flow were constructed from the true size distribution at low detector currents, assuming an idealized sharp changeover of the bacterial conductivity from zero to one-third of the electrolyte conductivity.
Transcellular Ion Flow in Escherichia coli B and Electrical Sizing of Bacterias
Zimmermann, U.; Schulz, J.; Pilwat, G.
1973-01-01
Dielectric breakdown of cell membranes and, in response, transcellular ion flows were measured in Escherichia coli B 163 and B 525 using a Coulter counter as the detector with a hydrodynamic jet focusing close to the orifice of the counter. Plotting the relative pulse height for compensated amplification of a certain size of the cells against increasing detector current, a rather sharp bend within the linear function was found, which did not occur when measuring fixed cells or polystyrene latex. The start current for transcellular ion flow causing the change of the slope is different for the potassium-deficient mutant B 525 in comparison with the wild-type B 163, indicating a change in the membrane structure of B 525 by mutation and demonstrating the sensitivity of the method for studying slight changes in membrane structure in general. The theoretical size distributions for two current values in the range of transcellular ion flow were constructed from the true size distribution at low detector currents, assuming an idealized sharp changeover of the bacterial conductivity from zero to one-third of the electrolyte conductivity. PMID:4583964
New Perspectives on the Charging Mechanisms of Supercapacitors
2016-01-01
Supercapacitors (or electric double-layer capacitors) are high-power energy storage devices that store charge at the interface between porous carbon electrodes and an electrolyte solution. These devices are already employed in heavy electric vehicles and electronic devices, and can complement batteries in a more sustainable future. Their widespread application could be facilitated by the development of devices that can store more energy, without compromising their fast charging and discharging times. In situ characterization methods and computational modeling techniques have recently been developed to study the molecular mechanisms of charge storage, with the hope that better devices can be rationally designed. In this Perspective, we bring together recent findings from a range of experimental and computational studies to give a detailed picture of the charging mechanisms of supercapacitors. Nuclear magnetic resonance experiments and molecular dynamics simulations have revealed that the electrode pores contain a considerable number of ions in the absence of an applied charging potential. Experiments and computer simulations have shown that different charging mechanisms can then operate when a potential is applied, going beyond the traditional view of charging by counter-ion adsorption. It is shown that charging almost always involves ion exchange (swapping of co-ions for counter-ions), and rarely occurs by counter-ion adsorption alone. We introduce a charging mechanism parameter that quantifies the mechanism and allows comparisons between different systems. The mechanism is found to depend strongly on the polarization of the electrode, and the choice of the electrolyte and electrode materials. In light of these advances we identify new directions for supercapacitor research. Further experimental and computational work is needed to explain the factors that control supercapacitor charging mechanisms, and to establish the links between mechanisms and performance. Increased understanding and control of charging mechanisms should lead to new strategies for developing next-generation supercapacitors with improved performances. PMID:27031622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.
An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the K{sub α} spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.
NASA Astrophysics Data System (ADS)
Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo
2017-03-01
Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.
Synthesis and Characterization of Polymer-Metal Nanostructured Membranes
ions creating unique polymer -metal nanostructured membranes. A comprehensive materials characterization study was performed to understand their...fluoropolymers were also investigated. First the polymer -metal nanostructure of Nafion with several counter-ions was studied upon supercritical fluid CO2...processing. Then, novel fluorinated block copolymers were synthesized using atom transfer radical polymerization (ATRP) and their resulting nanostructure was
Karakashev, Stoyan I; Smoukov, Stoyan K
2017-09-01
The critical micelle concentration (CMC) of various surfactants is difficult to predict accurately, yet often necessary to do in both industry and science. Hence, quantum-chemical software packages for precise calculation of CMC were developed, but they are expensive and time consuming. We show here an easy method for calculating CMC with a reasonable accuracy. Firstly, CMC 0 (intrinsic CMC, absent added salt) was coupled with quantitative structure - property relationship (QSPR) with defined by us parameter "CMC predictor" f 1 . It can be easily calculated from a number of tabulated molecular parameters - the adsorption energy of surfactant's head, the adsorption energy of its methylene groups, its number of carbon atoms, the specific adsorption energy of its counter-ions, their valency and bare radius. We applied this method to determine CMC 0 to a test set of 11 ionic surfactants, yielding 7.5% accuracy. Furthermore, we calculated CMC in the presence of added salts using the advanced version of Corrin-Harkins equation, which accounts for both the intrinsic and the added counter-ions. Our salt-saturation multiplier, accounts for both the type and concentration of the added counter-ions. We applied our theory to a test set containing 11 anionic/cationic surfactant+salt systems, achieving 8% accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Pulsed voltage electrospray ion source and method for preventing analyte electrolysis
Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN
2011-12-27
An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.
Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.
Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi
2012-08-07
The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.
Proportional counter radiation camera
Borkowski, C.J.; Kopp, M.K.
1974-01-15
A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)
Experimental Studies on Energy Storage
1990-02-01
and Karl 0. Christe* Received March 6, 1989 Chlorine trifluoride and its ionic CIF 2 + and CIF 4 - salts are powerful oxidizers and generally either...new compound N(CH 3 )4 ClF 4 was prepared and characterized and is the first known combination of an organic ion with a chlorine fluoride counterion...not shock sensitive and is thermally stable up to 100°C. It is the first known combination of a chlorine fluoride ion with an organic counter ion
Spectroscopic Measurement of Ion Flow During Merging Start-up of Field-Reversed Configuration
NASA Astrophysics Data System (ADS)
Oka, Hirotaka; Inomoto, Michiaki; Tanabe, Hiroshi; Annoura, Masanobu; Ono, Yasushi; Nemoto, Koshichi
2012-10-01
The counter-helicity merging method [1] of field-reversed configuration (FRC) formation involves generation of bidirectional toroidal flow, known as a ``sling-shot.'' In two fluids regime, reconnection process is strongly affected by the Hall effect [2]. In this study, we have investigated the behavior of toroidal bidirectional flow generated by the counter-helicity merging in two-fluids regime. We use 2D Ion Doppler Spectroscopy to mesure toroidal ion flow during merging start-up of FRC from Ar gas. We defined two cases: one case with a radially pushed-in X line (case I) and the other case with a radially pushed-out X line(case O). The flow during the plasma merging shows radial asymmetry, as expected from the magnetic measurement, but finally relaxes to a unidirectional flow in plasma current direction in both cases. We observed larger toroidal flow in the plasma current direction in case I after FRC is formed, though the FRC in case O has larger magnetic flux. These results suggest that more ions are lost during merging start-up in case I. This selective ion loss might account for stability and confinement of FRCs probably maintained by high energy ions.[4pt] [1] Y. Ono, et al., Nucl. Fusion 39, pp. 2001-2008 (1999).[0pt] [2] M. Inomoto, et al., Phys. Rev. Lett., 97, 135002, (2006)
Concerted manipulation of laser plasma dynamics with two laser pulses
NASA Astrophysics Data System (ADS)
Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Sommer, D.; Schnürer, M.
2017-05-01
In this article we present experimental results from a counter-propagating two laser pulse experiment at high intensity and using ultrathin gold and plastic foil targets. We applied one laser pulse as a pre-pulse with an intensity of up to 1x1018 W/cm2. By this method we manipulated the pre-plasma of the foil target with which the stronger laser pulse with an intensity of 6x1019W/cm2 interacts. This alters significantly subsequent processes from the laser plasma interaction which we show the ion acceleration and high harmonic generation. On the one hand, the maximum kinetic ion energy and the maximum charge state for gold ions decline due to the pre-heating of the target in the time range of few ps, on the other hand the number of accelerated ions is increased. For the same parameter range we detected a significant raise of the high harmonic emission. Moreover, we present first experimental observations, that when the second laser pulse is applied as a counter-propagating post-pulse the energy distribution of accelerated carbon ions is charge selective altered. Our findings indicate that using this method a parametric optimization can be achieved, which promises new insights about the concurrent processes of the laser plasma dynamics.
Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata
2011-11-21
The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.
Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando
2015-04-21
A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.
Kang, Jiesheng; Cheng, Hsien; Ji, Junzhi; Incardona, Josephine; Rampe, David
2010-08-01
Epigallocatechin-3-gallate (EGCG) is the major catechin found in green tea. EGCG is also available for consumption in the form of concentrated over-the-counter nutritional supplements. This compound is currently undergoing clinical trials for the treatment of a number of diseases including multiple sclerosis, and a variety of cancers. To date, few data exist regarding the effects of EGCG on the electrophysiology of the heart. Therefore, we examined the effects of EGCG on the electrocardiogram recorded from Langendorff-perfused guinea pig hearts and on cardiac ion channels using patch-clamp electrophysiology. EGCG had no significant effects on the electrocardiogram at concentrations of 3 and 10 microM. At 30 microM, EGCG prolonged PR and QRS intervals, slightly shortened the QT interval, and altered the shape of the ST-T-wave segment. The ST segment merged with the upstroke of the T wave, and we noted a prolongation in the time from the peak of the T wave until the end. Patch-clamp studies identified the KvLQT1/minK K(+) channel as a target for EGCG (IC(50) = 30.1 microM). In addition, EGCG inhibited the cloned human cardiac Na(+) channel Na(v)1.5 in a voltage-dependent fashion. The L-type Ca(2+) channel was inhibited by 20.8% at 30 microM, whereas the human ether-a-go-go-related gene and Kv4.3 cardiac K(+) channels were less sensitive to inhibition by EGCG. ECGC has a number of electrophysiological effects in the heart, and these effects may have clinical significance when multigram doses of this compound are used in human clinical trials or through self-ingestion of large amounts of over-the-counter products enriched in EGCG.
Sze, Heven; Chanroj, Salil
2018-04-24
Plants remodel their cells through the dynamic endomembrane system. Intracellular pH is important for membrane trafficking, but the determinants of pH homeostasis are poorly defined in plants. Electrogenic proton (H+) pumps depend on counter-ion fluxes to establish transmembrane pH gradients at the plasma membrane and endomembranes. Vacuolar-type H+-ATPase-mediated acidification of the trans-Golgi network (TGN) is crucial for secretion and membrane recycling. Pump and counter-ion fluxes are unlikely to fine-tune pH; rather, alkali cation/H+ antiporters, which can alter pH and/or cation homeostasis locally and transiently, are prime candidates. Plants have a large family of predicted cation/H+ exchangers (CHX) of obscure function, in addition to the well-studied K+(Na+)/H+ exchangers (NHX). Here, we review the regulation of cytosolic and vacuolar pH, highlighting the similarities and distinctions of NHX and CHX members. In planta, alkalinization of the TGN or vacuole by NHXs promotes membrane trafficking, endocytosis, cell expansion, and growth. CHXs localize to endomembranes and/or the plasma membrane, contribute to male fertility, pollen tube guidance, pollen wall construction, stomatal opening, and in soybean (Glycine max), tolerance to salt stress. Three-dimensional structural models and mutagenesis of Arabidopsis thaliana genes have allowed us to infer that AtCHX17 and AtNHX1 share a global architecture and a translocation core like bacterial Na+/H+ antiporters. Yet the presence of distinct residues suggests some CHXs differ from NHXs in pH sensing and electrogenicity. How H+ pumps, counter-ion fluxes, and cation/H+ antiporters are linked with signaling and membrane trafficking to remodel membranes and cell walls awaits further investigation. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Thomson scattering measurements from asymmetric interpenetrating plasma flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.
2014-11-15
Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawano, T.; Tanaka, M.; Isozumi, S.
Air exerts a negative effect on radiation detection using a gas counter because oxygen contained in air has a high electron attachment coefficient and can trap electrons from electron-ion pairs created by ionization from incident radiation in counting gas. This reduces radiation counts. The present study examined the influence of air on energy and rise-time spectra measurements using a proportional gas counter. In addition, a decompression procedure method was proposed to reduce the influence of air and its effectiveness was investigated. For the decompression procedure, the counting gas inside the gas counter was decompressed below atmospheric pressure before radiation detection.more » For the spectrum measurement, methane as well as various methane and air mixtures were used as the counting gas to determine the effect of air on energy and rise-time spectra. Results showed that the decompression procedure was effective for reducing or eliminating the influence of air on spectra measurement using a proportional gas counter. (authors)« less
Solid state electrochromic light modulator
Cogan, Stuart F.; Rauh, R. David
1993-01-01
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.
Solid state electrochromic light modulator
Cogan, Stuart F.; Rauh, R. David
1993-12-07
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.
Solid state electrochromic light modulator
Cogan, Stuart F.; Rauh, R. David
1990-01-01
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.
Estimating the mass variance in neutron multiplicity counting-A comparison of approaches
NASA Astrophysics Data System (ADS)
Dubi, C.; Croft, S.; Favalli, A.; Ocherashvili, A.; Pedersen, B.
2017-12-01
In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event triggered neutron count distribution are used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α , n) production and the induced fission source responsible for multiplication. This study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra, Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.
Estimating the mass variance in neutron multiplicity counting $-$ A comparison of approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubi, C.; Croft, S.; Favalli, A.
In the standard practice of neutron multiplicity counting, the first three sampled factorial moments of the event triggered neutron count distribution are used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. This study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra, Italy,more » sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
Estimating the mass variance in neutron multiplicity counting $-$ A comparison of approaches
Dubi, C.; Croft, S.; Favalli, A.; ...
2017-09-14
In the standard practice of neutron multiplicity counting, the first three sampled factorial moments of the event triggered neutron count distribution are used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. This study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra, Italy,more » sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
Neutral Beam Driven Neoclassical Transport in NSTX
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Shaing, K. C.; Callen, J. D.
2002-11-01
We re-examine the particle and heat flows driven by neutral beam injection in tokamak plasmas. These appear as inward pinches for co-injection and outward for counter injection. We derive the parallel friction and heat friction forces exerted on the thermal species by the energetic beam ions by extending the early analysis of Callen, et al. [1], which are then used as external forces in the moments formulation of neoclassical transport in NCLASS [2]. NCLASS is based on the multiple species treatment of Hirshman and Sigmar [3]. Of particular interest is the ion energy flux driven by the heat friction term. It scales as the beam energy, while the particle and electron heat terms scale as the thermal plasma temperature. In NSTX the high beam energy to plasma temperature ratio may lead to a net negative ion heat flux with strong co-injection. Limtations to the theory, such as the large fast ion orbit size relative to the radius of the flux surface, are discussed. Comparisons are made with earlier works by Hinton and Kim [4] and Stacey [5], who evaluated only the beam-thermal friction. [1] J.D. Callen, et al, 5th IAEA, Tokyo (1974), Vol 1, 645 [2] W.A. Houlberg, K.C. Shaing, S.P. Hirshman, M.C. Zarnstorff, Phys. Plasmas 4 (1997) 3230 [3] S.P. Hirshman, D.J. Sigmar, Nucl. Fusion 21 (1981) 1079 [4] F.L. Hinton, Y.-B. Kim, Phys. Fluids B 5 (1993) 3012 [5] W.M. Stacey, Phys. Fluids B 5 (1993) 4505
Marginal instability threshold condition of the aperiodic ordinary mode in equal-mass plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vafin, S.; Schlickeiser, R.; Yoon, P. H.
The purely growing ordinary (O) mode instability for counter-streaming bi-Maxwellian plasma particle distribution functions has recently received renewed attention due to its importance for the solar wind plasma. Here, the analytical marginal instability condition is derived for magnetized plasmas consisting of equal-mass charged particles, distributed in counter-streams with equal temperatures. The equal-mass composition assumption enormously facilitates the theoretical analysis due to the equality of the values of the electron and positron (positive and negative ion) plasma and gyrofrequencies. The existence of a new instability domain of the O-mode at small plasma beta values is confirmed, when the parallel counter-stream freemore » energy exceeds the perpendicular bi-Maxwellian free energy.« less
Disruption of current filaments and isotropization of magnetic field in counter-streaming plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiuza, Frederico
We study the stability of current filaments produced by the Weibel, or current filamentation, instability in weakly magnetized counter-streaming plasmas. It is shown that a resonance exists between the current-carrying ions and a longitudinal drift-kink mode that strongly deforms and eventually breaks the current filaments. Analytical estimates of the wavelength, growth rate and saturation level of the resonant mode are derived and validated by three-dimensional particle-in-cell simulations. Furthermore, self-consistent simulations of counter-streaming plasmas indicate that this drift-kink mode is dominant in the slow down of the flows and in the isotropization of the magnetic field, playing an important role inmore » the formation of collision less shocks.« less
Plasma Rotation During Neutral Beam Injection In MST
NASA Astrophysics Data System (ADS)
Hudson, Ben; Ding, W.; Fiksel, G.; Prager, S.; Yates, T.
2006-10-01
The effect of fast ions from neutral beam injection (20 keV, 30 A, 1.5 ms) on plasma rotation and magnetic tearing modes is studied. We observe that during co-injected NBI (with the injection in the same direction as the plasma and mode rotation) the rotation of the core-resonant n = 5 magnetic mode decreases and in many instances lock to the vessel wall. There is an associated drop in the poloidal component of n = 5 magnetic mode amplitude. The drop in the mode velocity suggests a counter-directed torque, perhaps due to modification of the radial electric field. The rotation slows during the injection phase, then restores itself on the timescale of the fast ion slowing down time (5 ms @ Te = 100 eV). The fluctuation-induced j x b Maxwell stress is measured using MST's FIR diagnostic and presented for comparison. Equilibrium reconstruction suggests a small increase in on-axis J||, consistent with the presence of a localized fast ion population moving in the direction of the plasma current. Mode rotation during NBI counter-injection is also presented.
NASA Astrophysics Data System (ADS)
Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.
2015-09-01
The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.
Development of a lithium fluoride zinc sulfide based neutron multiplicity counter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowles, Christian; Behling, Spencer; Baldez, Phoenix
Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on eachmore » end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.« less
ultimately the United States. Due to its geographical , and multiple international borders, including access to both Atlantic and Pacific littorals...therefore achieving freedom of movement causing further instability throughout the region. Because of that reason , United States has the Counter-Narco
NASA Astrophysics Data System (ADS)
Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping
2018-05-01
The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.
McKenna, J; Gutierrez, K; McCall, K
2000-05-01
Intensive and sustained efforts to "counter-market" tobacco among teenagers are necessary to negate the "friendly familiarity" created by tobacco advertising and to communicate the true health and social costs of tobacco use. Counter-marketing campaigns should: highlight a tobacco-free lifestyle as the majority lifestyle of diverse and interesting individuals; explain the dangers of tobacco in a personal, emotional way; offer youth empowerment and control; use multiple voices, strategies, and executions; offer constructive alternatives to tobacco use; and portray smoking as unacceptable and undesirable for everyone. Counter-marketing activities should work in concert with other interventions to alter social norms regarding tobacco.
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1977-01-01
Up to now, microchannel array plates (MCPs) have been constructed with microchannels having a straight geometry and hence have been prone to ion-feedback instabilities at high operating potentials and high ambient pressures. This paper describes the performances of MCPs with curved (J and C configuration) microchannels to inhibit ion feedback. Plates with curved microchannels have demonstrated performances comparable to those of conventional channel electron multipliers with saturated output pulse-height distributions and modal gain values in excess of 10 to the 6th electrons/pulse.
Improved gaseous leak detector
Juravic, F.E. Jr.
1983-10-06
In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the nonlinear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.
Juravic, Jr., Frank E.
1988-01-01
In a short path length mass-spectrometer type of helium leak detector wherein the helium trace gas is ionized, accelerated and deflected onto a particle counter, an arrangement is provided for converting the detector to neon leak detection. The magnetic field of the deflection system is lowered so as to bring the non linear fringe area of the magnetic field across the ion path, thereby increasing the amount of deflection of the heavier neon ions.
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.;
1985-01-01
In 1982 a hybrid electronic counter-emulsion chamber experiment was flown on a balloon to study heavy nucleus interactions in the 20 to approximately 100 GeV/AMU energy range. A gas Cerenkov counter, two solid Cerenkov counters, and a proportional counter hodoscope gave the primary energy, the primary charge and the trajectory of the particles, respectively. Using the trajectory information cosmic ray nuclei of Z 10 were found reliably and efficiently, and interaction characteristics of the Fe group nuclei were measured in the chamber. A plastic scintillator below the emulsion chamber responded to showers resulting from interactions in the chamber and to noninteracting nuclei. Data on the response of the counter have been compared with simulations of hadronic-electromagnetic cascades to derive the average neutral energy fraction released by the heavy interactions, and to predict the performance of this kind of counter at higher energies. For the interacting events of highest produced particles multiplicity comparison between various simulations and the shower counter signal have been made.
Djurado, David; Bée, Marc; Sniechowski, Maciej; Howells, Spencer; Rannou, Patrice; Pron, Adam; Travers, J P; Luzny, Wojciech
2005-03-21
Proton dynamics in films of poly(aniline) "plastdoped" with di-esters of sulfophthalic (or sulfosuccinic) acids have been investigated by using quasi-elastic neutron scattering techniques. A broad time range (10(-13)-10(-9) s) has been explored by using four different spectrometers. In this time range, the dynamics is exclusively due to protons attached to the flexible tails of the counter-ions. A model of limited diffusion in spheres whose radii are distributed in size gives a realistic view of the geometry of molecular motions. However, it is found that the characteristic times of these motions are widely distributed over several orders of magnitude. The time decay of the intermediate scattering function is well described by a time power law. This behaviour is qualitatively discussed in connection with the structure of the systems and by comparison with other so-called complex systems.
Reshaping and linking of molecules in ion-pair traps
NASA Astrophysics Data System (ADS)
Cochrane, Bryce; Naumkin, Fedor Y.
2016-01-01
A series of insertion complexes of small molecules trapped between alkali-halide counter-ions are investigated ab initio. The molecular shape is altered inside the complexes and varies in corresponding anions. Stabilities and charge distributions are investigated. Strong charge-transfer in the alkali-halide component effectively through the almost neutral molecule results in very large dipole moments. The most stable species is used to construct a dimer significantly bound via dipole-dipole interaction. Another complex with two alkali-halide diatoms trapping the molecule represents a unit of corresponding longer oligomer. This completes the array of systems with the molecule effectively in ion-pair, ion-dipole, dipole-pair electric fields.
Wilman, Edward S; Gardiner, Sara H; Nomerotski, Andrei; Turchetta, Renato; Brouard, Mark; Vallance, Claire
2012-01-01
A new type of ion detector for mass spectrometry and general detection of low energy ions is presented. The detector consists of a scintillator optically coupled to a single-photon avalanche photodiode (SPAD) array. A prototype sensor has been constructed from a LYSO (Lu(1.8)Y(0.2)SiO(5)(Ce)) scintillator crystal coupled to a commercial SPAD array detector. As proof of concept, the detector is used to record the time-of-flight mass spectra of butanone and carbon disulphide, and the dependence of detection sensitivity on the ion kinetic energy is characterised.
Separation of metal ions from aqueous solutions
Almon, Amy C.
1994-01-01
A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.
In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event triggered neutron count distribution were used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. Our study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra,more » Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
Quantifying the movement of multiple insects using an optical insect counter
USDA-ARS?s Scientific Manuscript database
An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...
Electro-optical switching and memory display device
Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.
1983-12-29
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
Electro-optical switching and memory display device
Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.
1986-01-01
An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.
Detection near 1-nm with a laminar-flow, water-based condensation particle counter
Hering, Susanne V.; Lewis, Gregory S.; Spielman, Steven R.; ...
2016-11-18
Presented is a laminar-flow, water-based condensation particle counter capable of particle detection near 1 nm. This instrument employs a three-stage, laminar-flow growth tube with a “moderator” stage that reduces the temperature and water content of the output flow without reducing the peak supersaturation, and makes feasible operation at the large temperature differences necessary for achieving high supersaturations. The instrument has an aerosol flow of 0.3 L/min, and does not use a filtered sheath flow. It is referred to as a “versatile” water condensation particle counter, or vWCPC, as operating temperatures can be adjusted in accordance with the cut-point desired. Whenmore » operated with wall temperatures of ~2°C, >90°C, and ~22°C for the three stages, respectively, the vWCPC detects particles generated from a heated nichrome wire with a 50% efficiency cut-point near 1.6 nm mobility diameter. At these operating temperatures, it also detects 10–20% of large molecular ions formed from passing filtered ambient air through a bipolar ion source. Decreasing the temperature difference between the first two stages, with the first and second stages operated at 10 and 90°C, respectively, essentially eliminates the response to charger ions, and raises the 50% efficiency cut-point for the nichrome wire particles to 1.9 nm mobility diameter. Here, the time response, as measured by rapid removal of an inlet filter, yields a characteristic time constant of 195 ms.« less
Computational Nanoelectronics: Applications to DNA, Carbon Nanotubes and Nanotransistors
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Svizhenko, Alexei; Govindan, T. R.; Govindan, T. R.; Walch, S.; Mehrez, H.
2003-01-01
The topics covered by the panels of this viewgraph presentation include phonon scattering, layered structures, DNA as a device, the influence of twist and rise in the DNA molecule, counter-ions, conductance versus length, and intrinsic resonant tunneling.
Technological developments for strontium-90 determination using AMS
NASA Astrophysics Data System (ADS)
Satou, Yukihiko; Sueki, Keisuke; Sasa, Kimikazu; Matsunaka, Tetsuya; Takahashi, Tsutomu; Shibayama, Nao; Izumi, Daiki; Kinoshita, Norikazu; Matsuzaki, Hiroyuki
2015-10-01
Accelerator mass spectrometry (AMS) is one of method used for 90Sr determination. It would enable rapid 90Sr measurements from environmental samples such as water, soil, and milk. However, routine analysis of 90Sr using AMS has not yet been achieved because of difficulties associated with isobaric separation and production of intense negative ion beams characterized by currents from hundreds of nanoamperes to several microamperes. We have developed a rapid procedure for preparing samples with optimum compositions for use with AMS, which enables production of intense Sr beam currents from an ion source. Samples of SrF2 were prepared from a standard Sr solution and agricultural soil. The time required to prepare a SrF2 sample from a soil sample was 10 h. Negative 88SrF3- ions were successfully extracted at 500 nA from mixed samples of SrF2 and PbF2. In the present work, negative ions of 90Zr, included as an impurity, were accelerated with a tandem accelerator operated at a terminal voltage of 5 MV. Ions characterized by a charge state of 6+ were channeled into a gas counter. An atomic ratio of 90Zr/88Sr of 3 × 10-8 was estimated for the soil sample. No signal was detected from the assay of PbF2, which was pressed in an aluminum cathode, for a mass number of 90. PbF2 revealed good performance in the production of negative SrF3- molecular ion beams and detection of 90Sr with a gas counter.
NASA Astrophysics Data System (ADS)
Wang, Wei; Yuan, Hang; Wang, Xiangqin; Yu, Zengliang
2008-02-01
An identification of Phe dipeptide from L-phenylalanine monomers after keV nitrogen and argon ion implantation, by using the HPLC (high performance liquid chromatography) and LC-MS(liquid chromatography mass spectrometer) methods is reported. The results showed a similar yield behavior for both ion species, namely: 1) the yield of dipeptides under alkalescent conditions was distinctly higher than that under acidic or neutral conditions; 2) for different ion species, the dose-yield curves tracked a similar trend which was called a counter-saddle curve. The dipeptide formation may implicate a recombination repair mechanism of damaged biomolecules that energetic ions have left in their wake. Accordingly a physicochemical self-repair mechanism by radiation itself for the ion-beam radiobiological effects is proposed.
Whitfield, Dennis M
2012-07-15
That the ring conformation of glycopyranosyl oxacarbenium ions can influence the stereochemical outcome of glycosylation reactions has been postulated for some time. Some new ionization calculations show that the ultimate conformation (4)H(3) or (5)S(1) of D-glucopyranosyl oxacarbenium ions depends on the initial ϕ(H) (CH-1-C-1-S(+)-SCH(3)) conformation of anomeric thiosulfonium ions. Evidence is also presented that nucleophile:electrophile hydrogen bonded complexes, 1,6-anhydro-carbenium ions and electron rich carbon nucleophile:oxacarbenium ion complexes are all probably artifacts of neglecting counter ions or nucleophiles in the DFT calculation. All three cationic species are likely important for glycosylation reaction side reactions but not as productive species. Copyright © 2012. Published by Elsevier Ltd.
Zhang, Zheng-Jie; Shi, Wei; Niu, Zheng; Li, Huan-Huan; Zhao, Bin; Cheng, Peng; Liao, Dai-Zheng; Yan, Shi-Ping
2011-06-14
An interesting new MOF, built with interpenetrating cationic (MOF-A(+)) and anionic (MOF-B(-)) nets that do not require counter ions to balance charge, together with an architectural strategy focused on the use of MOPs as nodes and MOCs as spacers for the generation of 3D frameworks, is reported. This journal is © The Royal Society of Chemistry 2011
Elevated nitrate alters the metabolic activity of embryonic zebrafish.
Conlin, Sarah M; Tudor, M Scarlett; Shim, Juyoung; Gosse, Julie A; Neilson, Andrew; Hamlin, Heather J
2018-04-01
Nitrate accumulation in aquatic reservoirs from agricultural pollution has often been overlooked as a water quality hazard, yet a growing body of literature suggests negative effects on human and wildlife health following nitrate exposure. This research seeks to understand differences in oxygen consumption rates between different routes of laboratory nitrate exposure, whether via immersion or injection, in zebrafish (Danio rerio) embryos. Embryos were exposed within 1 h post fertilization (hpf) to 0, 10, and 100 mg/L NO 3 -N with sodium nitrate, or to counter ion control (CIC) treatments using sodium chloride. Embryos in the immersion treatments received an injection of 4 nL of appropriate treatment solution into the perivitelline space. At 24 hpf, Oxygen Consumption Rates (OCR) were measured and recorded in vivo using the Agilent Technologies XF e 96 Extracellular Flux Analyzer and Spheroid Microplate. Immersion exposures did not induce significant changes in OCR, yet nitrate induced significant changes when injected through the embryo chorion. Injection of 10 and 100 mg/L NO 3 -N down-regulated OCR compared to the control treatment group. Injection of the 100 mg/L CIC also significantly down-regulated OCR compared to the control treatment group. Interestingly, the 100 mg/L NO 3 -N treatment further down-regulated OCR compared to the 100 mg/L CIC treatment, suggesting the potential for additive effects between the counter ion and the ion of interest. These data support that elevated nitrate exposure can alter normal metabolic activity by changing OCR in 24 hpf embryos. These results highlight the need for regularly examining the counter ion of laboratory nitrate compounds while conducting research with developing zebrafish, and justify examining different routes of laboratory nitrate exposure, as the chorion may act as an effective barrier to nitrate penetration in zebrafish, which may lead to conservative estimates of significant effects in other species for which nitrate more readily penetrates the chorion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Data-optimized source modeling with the Backwards Liouville Test–Kinetic method
Woodroffe, J. R.; Brito, T. V.; Jordanova, V. K.; ...
2017-09-14
In the standard practice of neutron multiplicity counting , the first three sampled factorial moments of the event triggered neutron count distribution were used to quantify the three main neutron source terms: the spontaneous fissile material effective mass, the relative (α,n) production and the induced fission source responsible for multiplication. Our study compares three methods to quantify the statistical uncertainty of the estimated mass: the bootstrap method, propagation of variance through moments, and statistical analysis of cycle data method. Each of the three methods was implemented on a set of four different NMC measurements, held at the JRC-laboratory in Ispra,more » Italy, sampling four different Pu samples in a standard Plutonium Scrap Multiplicity Counter (PSMC) well counter.« less
Emergence of kinetic behavior in streaming ultracold neutral plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuillen, P.; Castro, J.; Bradshaw, S. J.
2015-04-15
We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.
An Improved Analytic Model for Microdosimeter Response
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.; Xapsos, Michael A.
2001-01-01
An analytic model used to predict energy deposition fluctuations in a microvolume by ions through direct events is improved to include indirect delta ray events. The new model can now account for the increase in flux at low lineal energy when the ions are of very high energy. Good agreement is obtained between the calculated results and available data for laboratory ion beams. Comparison of GCR (galactic cosmic ray) flux between Shuttle TEPC (tissue equivalent proportional counter) flight data and current calculations draws a different assessment of developmental work required for the GCR transport code (HZETRN) than previously concluded.
NASA Astrophysics Data System (ADS)
Okulov, A. Yu.
2010-10-01
The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, G. V.; Beiersdorfer, P.; Goddard, R.
2001-01-01
We have mounted 1 {mu}m thick aluminized polyimide windows onto the position sensitive proportional counters employed by the wide-band flat crystal spectrometers at the Lawrence Livermore National Laboratory electron beam ion trap experiment. The aluminized polyimide, supported by thin wires across the short axis of the window, is used to isolate the detection chamber of the proportional counters, which operate at a pressure of 760 Torr, from the vacuum chamber of the spectrometer. The windows are modified versions of those developed for the proportional counters which were used during ground calibration of the Chandra X-ray Observatory. The transmission properties ofmore » these windows are, therefore, well known. The increased transmission efficiency of the polyimide windows relative to the 4 {mu}m thick polypropylene window material previously employed by our proportional counters has extended the useful range of the spectrometer from roughly 20 to 30 Aa at energies below the carbon edge, as well as increasing detection efficiency at wavelengths beyond the carbon edge. Using an octadecyl hydrogen maleate crystal with 2d=63.5Aa, we demonstrate the increased wavelength coverage by measuring the resonance, intercombination, and forbidden lines in helium-like NVII in two different density regimes. The thin polyimide windows have also increased the efficiency of the spectrometers entire wavelength range. To demonstrate the increased efficiency we compare the FeXVII spectrum in the 15--17 Aa band measured with the 1 {mu}m aluminized polyimide windows to the 4 {mu}m aluminized polypropylene windows. The comparison shows an average increase in efficiency of {approx}40%. The polyimide windows have a significantly lower leak rate than the polypropylene windows making it possible to achieve approximately an order of magnitude lower pressure in the spectrometer vacuum chamber which reduces the gas load on the trap region.« less
HILT - A heavy ion large area proportional counter telescope for solar and anomalous cosmic rays
NASA Technical Reports Server (NTRS)
Klecker, Berndt; Hovestadt, Dietrich; Scholer, M.; Arbinger, H.; Ertl, M.; Kaestle, H.; Kuenneth, E.; Laeverenz, P.; Seidenschwang, E.; Blake, J. B.
1993-01-01
The HILT sensor has been designed to measure heavy ion elemental abundances, energy spectra, and direction of incidence in the mass range from He to Fe and in the energy range 4 to 250 MeV/nucleon. With its large geometric factor of 60 sq cm sr the sensor is optimized to provide compositional and spectral measurements for low intensity cosmic rays (i.e. for small solar energetic particle events and for the anomalous component of cosmic rays). The instrument combines a large area ion drift chamber-proportional counter system with two arrays of 16 Li-drift solid state detectors and 16 CsI crystals. The multi dE/dx-E technique provides a low background mass and energy determination. The sensor also measures particle direction. Combining these measurements with the information on the spacecraft position and attitude in the low-altitude polar orbit, it will be possible to infer the ionic charge of the ions from the local cutoff of the Earth's magnetic field. The ionic charge in this energy range is of particular interest because it provides unique clues to the origin of these particles and has not been investigated systematically so far. Together with the other instruments on board SAMPEX (LEICA, MAST, and PET), a comprehensive measurement of the entire solar and anomalous particle population will be achieved.
Nb/Al-AlOx/Nb Edge Junctions for Distributed Mixers
NASA Astrophysics Data System (ADS)
Amos, R. S.; Lichtenberger, A. W.; Tong, C. E.; Blundell, R.; Pan, S.-K.; Kerr, A. R.
We have fabricated high quality Nb/Al-oxide/Al/Nb edge junctions using a Nb/SiO/sub 2/ bi-layer film as the base electrode, suitable for use as traveling wave mixers. An edge is cut in the bi-layer with an ion gun at a 45 degree angle using a photoresist mask. The wafer is then cleaned in-situ with a physical ion gun clean followed by the deposition of a thin Al (a1) film, which is then thermally oxidized, an optional second Al (a2) layer, and a Nb counter electrode. It was found that devices with an a2 layer resulted in superior electrical characteristics, though proximity effects increased strongly with a2 thickness. The counter electrode is defined with an SF/sub 6/+N/sub 2/ reactive ion etch, using the Al barrier layer as an etch stop. The Al barrier layer is then either removed with an Al wet etch to isolate the individual devices, or the devices are separated with an anodization process. Various ion gun cleaning conditions have been examined; in addition, both wet and plasma etch bi-layer edge surface pre-treatments were investigated. It was found that edge junctions with large widths (i.e., those more suitable for traveling wave mixers) typically benefited more from such treatments. Initial receiver results at 260 GHz have yielded a DSB noise temperature of 60 K.
Multianode cylindrical proportional counter for high count rates
Hanson, J.A.; Kopp, M.K.
1980-05-23
A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.
Multianode cylindrical proportional counter for high count rates
Hanson, James A.; Kopp, Manfred K.
1981-01-01
A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.
Digital controller for a Baum folding machine. [providing automatic counting and machine shutoff
NASA Technical Reports Server (NTRS)
Bryant, W. H. (Inventor)
1974-01-01
A digital controller for controlling the operation of a folding machine enables automatic folding of a desired number of sheets responsive to entry of that number into a selector. The controller includes three decade counter stages for corresponding rows of units, tens and hundreds push buttons. Each stage including a decimal-to-BCD encoder, a buffer register, and a digital or binary counter. The BCD representation of the selected count for each digit is loaded into the respective decade down counters. Pulses generated by a sensor and associated circuitry are used to decrease the count in the decade counters. When the content of the decade counter reaches either 0 or 1, a solenoid control valve is actuated which interrupts operation of the machine. A repeat switch, when actuated, prevents clearing of the buffer registers so that multiple groups of the same number of sheets can be folded without reentering the number into the selector.
Single-ion adsorption and switching in carbon nanotubes
Bushmaker, Adam W.; Oklejas, Vanessa; Walker, Don; ...
2016-01-25
Single-ion detection has, for many years, been the domain of large devices such as the Geiger counter, and studies on interactions of ionized gasses with materials have been limited to large systems. To date, there have been no reports on single gaseous ion interaction with microelectronic devices, and single neutral atom detection techniques have shown only small, barely detectable responses. Here we report the observation of single gaseous ion adsorption on individual carbon nanotubes (CNTs), which, because of the severely restricted one-dimensional current path, experience discrete, quantized resistance increases of over two orders of magnitude. Only positive ions cause changes,more » by the mechanism of ion potentialinduced carrier depletion, which is supported by density functional and Landauer transport theory. Lastly, our observations reveal a new single-ion/CNT heterostructure with novel electronic properties, and demonstrate that as electronics are ultimately scaled towards the one-dimensional limit, atomic-scale effects become increasingly important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boatner, Lynn A; Neal, John S; Blackston, Matthew A
2012-01-01
A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6LiF or 10B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected rather than having half of the products absorbed in the wall of a conventional tube type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimummore » neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6LiF converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6LiF and 10B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.« less
Compact multiwire proportional counters for the detection of fission fragments
NASA Astrophysics Data System (ADS)
Jhingan, Akhil; Sugathan, P.; Golda, K. S.; Singh, R. P.; Varughese, T.; Singh, Hardev; Behera, B. R.; Mandal, S. K.
2009-12-01
Two large area multistep position sensitive (two dimensional) multiwire proportional counters have been developed for experiments involving study of fission dynamics using general purpose scattering chamber facility at IUAC. Both detectors have an active area of 20×10 cm2 and provide position signals in horizontal (X) and vertical (Y) planes, timing signal for time of flight measurements and energy signal giving the differential energy loss in the active volume. The design features are optimized for the detection of low energy heavy ions at very low gas pressures. Special care was taken in setting up the readout electronics, constant fraction discriminators for position signals in particular, to get optimum position and timing resolutions along with high count rate handling capability of low energy heavy ions. A custom made charge sensitive preamplifier, having lower gain and shorter decay time, has been developed for extracting the differential energy loss signal. The position and time resolutions of the detectors were determined to be 1.1 mm full width at half maximum (FWHM) and 1.7 ns FWHM, respectively. The detector could handle heavy ion count rates exceeding 20 kHz without any breakdown. Time of flight signal in combination with differential energy loss signal gives a clean separation of fission fragments from projectile and target like particles. The timing and position signals of the detectors are used for fission coincidence measurements and subsequent extraction of their mass, angular, and total kinetic energy distributions. This article describes systematic study of these fission counters in terms of efficiency, time resolution, count rate handling capability, position resolution, and the readout electronics. The detector has been operated with both five electrode geometry and four electrode geometry, and a comparison has been made in their performances.
Na+ Interactions with the Neutral Amino Acid Transporter ASCT1*
Scopelliti, Amanda J.; Heinzelmann, Germano; Kuyucak, Serdar; Ryan, Renae M.; Vandenberg, Robert J.
2014-01-01
The alanine, serine, cysteine transporters (ASCTs) belong to the solute carrier family 1A (SLC1A), which also includes the excitatory amino acid transporters (EAATs) and the prokaryotic aspartate transporter GltPh. Acidic amino acid transport by the EAATs is coupled to the co-transport of three Na+ ions and one proton, and the counter-transport of one K+ ion. In contrast, neutral amino acid exchange by the ASCTs does not require protons or the counter-transport of K+ ions and the number of Na+ ions required is not well established. One property common to SLC1A family members is a substrate-activated anion conductance. We have investigated the number and location of Na+ ions required by ASCT1 by mutating residues in ASCT1 that correspond to residues in the EAATs and GltPh that are involved in Na+ binding. Mutations to all three proposed Na+ sites influence the binding of substrate and/or Na+, or the rate of substrate exchange. A G422S mutation near the Na2 site reduced Na+ affinity, without affecting the rate of exchange. D467T and D467A mutations in the Na1 site reduce Na+ and substrate affinity and also the rate of substrate exchange. T124A and D380A mutations in the Na3 site selectively reduce the affinity for Na+ and the rate of substrate exchange without affecting substrate affinity. In many of the mutants that reduce the rate of substrate transport the amplitudes of the substrate-activated anion conductances are not substantially affected indicating altered ion dependence for channel activation compared with substrate exchange. PMID:24808181
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity
Oliver, J. B.
2017-06-12
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity.
Oliver, J B
2017-06-20
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. This systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Impact of a counter-rotating planetary rotation system on thin-film thickness and uniformity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, J. B.
Planetary rotation systems incorporating forward- and counter-rotating planets are used as a means of increasing coating-system capacity for large oblong substrates. Comparisons of planetary motion for the two types of rotating systems are presented based on point tracking for multiple revolutions, as well as comparisons of quantitative thickness and uniformity. Counter-rotation system geometry is shown to result in differences in thin-film thickness relative to standard planetary rotation for precision optical coatings. As a result, this systematic error in thin-film thickness will reduce deposition yields for sensitive coating designs.
Conductance of Dry DNA: Role of Environment
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Adessi, Ch.; S. Walch
2003-01-01
This paper presents viewgraphs on the conductance of dry DNA and its effect on the surrounding environment. The topics include: 1) Approach; 2) Influence of Counter Ions; 3) Conductance Versus DNA Length; 4) Intrinsic Resonant Tunneling in Engineered DNA Sequence; and 5) Transmission Versus Energy.
NASA Astrophysics Data System (ADS)
Ghasemi, Fatemeh; Rezvani, Ali Reza; Ghasemi, Khaled; Graiff, Claudia
2018-02-01
Complexes [VO(dipic) (H2O)2]·2H2O (1), [H2Met][V2O4(dipic)2] (2) and [HGly][VO2(dipic)] (3), where H2dipic = 2,6-pyridinedicarboxylic acid, Met = Metformin (N,N-dimethylbiguanide) and Gly = glycine, were synthesized. The three complexes were characterized by elemental analysis, FTIR, 1H and 13C NMR, and UV-Vis spectroscopy. Solid-state structures of (2) and (3) were determined by single-crystal X-ray diffraction analysis. The coordination geometry around the vanadium atoms in 2 is octahedral, while the coordination geometry in 3 is between trigonal bipyramidal and squared pyramidal. In the binuclear complex 2 and mononuclear complex 3, metformin and glycine are diprotonated and monoprotonated respectively, and act as a counter ion. The redox behavior of the complexes was also investigated by cyclic voltammetry.
Molecular version of the resistive pulse technique: counting ATP by a single ion channel
NASA Astrophysics Data System (ADS)
Rostovtseva, T. K.; Bezrukov, S. M.
1998-03-01
The ``molecular Coulter counter'' concept has been used to study transport of ATP molecules through the nanometer-scale aqueous pore of the voltage-dependent mitochondrial ion channel, VDAC. We examine the ATP-induced current fluctuations and the change in average current through a single fully open channel reconstituted into a planar lipid bilayer. At high salt concentration (1M NaCl), the addition of ATP reduces both solution specific conductivity and channel conductance, but the effect on the channel is several times stronger and shows saturation behavior at 50 mM ATP concentration. ATP addition also generates an excess noise in the ionic current through the channel. By relating the low-frequency spectral density of the noise to the equilibrium diffusion of ATP molecules in the aqueous pore, we calculate a diffusion coefficient D = (1.6-3.3)x10-11 m^2 /s. We show that the mesoscopic VDAC pore is a Coulter counter with the added features of attraction and diffusion.
Salt disproportionation: A material science perspective.
Thakral, Naveen K; Kelly, Ron C
2017-03-30
While screening the counter-ions for salt selection for an active pharmaceutical substance, there is often an uncertainty about disproportionation of the salt and hence physical stability of the final product formulation to provide adequate shelf life. Several examples of disproportionation reactions are reviewed to explain the concepts of pHmax, microenvironmental pH, and buffering capacity of excipients and APIs to gain mechanistic understanding of disproportionation reaction. Miscellaneous factors responsible for disproportionation are examined. In addition to the dissolution failure due to the formation of less soluble unionized form, various implications of the disproportionation are evaluated with specific examples. During lead optimization and early stages of development, when only a limited amount of material is available, use of predictive tools like mathematical models and model free kinetics to rank order the various counter-ions are discussed in detail. Finally, analytical methods and mitigation strategies are discussed to prevent the disproportionation by detecting it during early stages of drug development. Copyright © 2017 Elsevier B.V. All rights reserved.
Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J
2014-01-01
A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ghosh, Goutam; Panicker, Lata; Ningthoujam, R S; Barick, K C; Tewari, R
2013-03-01
The effects of electrostatic interaction between the hen egg white lysozyme (HEWL) and the functionalized iron oxide nanoparticles (IONPs) have been investigated using several techniques, e.g., CD, DSC, ζ-potential, UV-visible spectroscopy, DLS, TEM. Nanoparticles (IONPs) were functionalized with three hydrophilic ligands, viz., poly(ethylene glycol) (PEG), trisodium citrate (TSC) and sodium triphosphate (STP); where both TSC and STP contain Na(+) counter ions. It has been observed that the secondary structure of HEWL was not affected by PEG functionalized IONPs, but was partially and almost completely perturbed by TSC and STP functionalized IONPs, respectively. The perturbation of the secondary structure was irreversible. We have predicted an interaction model to explain the origin of perturbation of HEWL structure. We have also investigated the stability of nanoparticles dispersions after interaction with HEWL and used the DLVO theory to explain results. Copyright © 2012 Elsevier B.V. All rights reserved.
The Remote Detection of Alpha-Radioactive Nucleus Decay
NASA Astrophysics Data System (ADS)
Gurkovskiy, Boris; Miroshnichenko, Vladimir; Onishchenko, Evgeny; Simakov, Andrey; Streil, Thomas
Results of the new device design for the alpha-radiation remote detection are presented. Negative ions from the alpha particle tracks are detected by the discharge wire counter opened to air. Ion clusters being transferred from the particle tracks to the detector volume by an air flux. The detector works in a counting mode that provides sharp selectivity and accuracy of measurements. The basic parameters of the device are: detecting distance -0.5 m; measurement time -30 s; the square sensitivity -0.05 Bq/cm2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dong; Gara, Alana; Heidelberger, Philip
Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.
NASA Astrophysics Data System (ADS)
Bagulya, A. V.; Dalkarov, O. D.; Negodaev, M. A.; Rusetskii, A. S.; Chubenko, A. P.; Ralchenko, V. G.; Bolshakov, A. P.
2015-07-01
At the ion accelerator HELIS at LPI, the neutron yield is investigated in DD reactions within a strongly textured polycrystalline deuterium-saturated CVD diamond under irradiation by a deuterium ion beam with the energy of less than 30 keV. The measurements of the neutron flux in the beam direction are performed using a multichannel detector based on 3He counters, in dependence on the target angle, β, with respect to the beam axis. A significant anisotropy in the neutron yield is observed. At β = 0° the yield is higher by a factor of 3 as compared to that at β = ±45°. The possible reasons for the anisotropy, including ion channeling, are discussed.
The PANDA DIRC detectors at FAIR
NASA Astrophysics Data System (ADS)
Schwarz, C.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Allison, L.; Hyde, C.
2017-07-01
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.
Boulyga, Sergei F; Prohaska, Thomas
2008-01-01
This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten microsamples varied in the range from 0.0073 (corresponding to the natural uranium isotopic composition) to 0.023 (corresponding to initial 235U enrichment in reactor fuel). An inverse correlation was observed between the 236U/238U and 235U/238U isotope ratios, except in the case of one sample with natural uranium. The heterogeneity of the uranium isotope composition is attributed to the different burn-up grades of uranium in the fuel rods from which the microsamples originated.
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.
2014-12-01
A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.
Structural diversity of silver (I) azine complexes - Effect of substituents and counter anions
NASA Astrophysics Data System (ADS)
Patra, Goutam Kumar; Mukherjee, Anindita; Mitra, Partha; Adarsh, N. N.
2011-08-01
Three new Ag(I) complexes, 1, 2, and 3 of two azine ligands diacetyl dihydrazone ( L1) and benzil dihydrazone ( L2) have been synthesized and characterized by single crystal X-ray diffraction studies (for 2 and 3), X-ray powder diffraction studies( 1 and 2), elemental analyses, IR and UV-VIS spectroscopy and TGA analysis. They represent one-dimensional polymeric assemblies and discrete dinuclear Ag(I) complex depending on functionality of the ligands and the counter anions. Tetrahedral as well as square pyramidal coordination motifs of the silver (I) ions have been observed in the supramolecular designing of such hybrid organic-inorganic materials.
1984-01-01
TISSUE-EQUIVALENT ION CHAMBER GM - GEIGER-MUELLER COUNTER TE-GM - DIFFERENCE BETWEEN TE AND GM DATA MICRODOSE - MICRODOSIMETRY USING 0.5" ROSSI COUNTER...KERMA 4.26+8 1979 APRO NE-213+PR NEUTRON KERMA 4.26+8 1979 WWD NE-213 NEUTRON KERMA 3.10+8 > 550 KEV 1980 DREO MICRODOSE NEUTRON KERMA 4.32+8 1979...APRD GM GAMMA KERMA 3.86+7 1979 WWD NE-213 GAMMA KERMA 4.34+7 > 450 KEV 1980 DREO MICRODOSE GAMMA KERMA 3.90+7 76 1979 APRD TE TOTAL KERMA 4.50+8 50 c.c
MEXnICA, Mexican group in the MPD-NICA experiment at JINR
NASA Astrophysics Data System (ADS)
Rodríguez Cahuantzi, M.;
2017-10-01
The Nuclotron Ion Collider fAcility (NICA) accelerator complex is currently under construction at the Joint Institute for Nuclear Research (JINR) laboratory located in the city of Dubna in the Russian Federation. The main goal of NICA is to collide heavy ion nuclei to study the properties of the phase diagram of strongly interacting matter at high baryon density. In this accelerator complex, two big particle detectors are planned to be installed: Spin Physics Detector (SPD) and Multi-Purpose Detector (MPD). At the design luminosity, the event rate in the MPD interaction region is about 6 kHz; the total charged particle multiplicity would exceeds 1000 in the most central Au+Au collisions at \\sqrt{{sNN}} = 11 {{GeV}}. Since the middle of 2016 a group of researchers and students from Mexican institutions was formed (MEXnICA). The main goal of the MEXnICA group is to collaborate in the experimental efforts of MPD-NICA proposing a BEam-BEam counter detector which we called BEBE. In this written general aspects of MPD-NICA detector and BEBE are discussed. This material was shown in a contributed talk given at the XXXI Annual Meeting of the Mexican Division of Particles and Fields held in the Physics Department of CINVESTAV located in Mexico City during the last week of May 2017.
Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass
Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang
2015-01-01
In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671
Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.
Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang
2015-12-14
In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.
Ferrer, I.; Heine, C.E.; Thurman, E.M.
2004-01-01
Diphenhydramine (Benadryl) is a popular over-the-counter antihistaminic medication used for the treatment of allergies. After consumption, excretion, and subsequent discharge from wastewater treatment plants, it is possible that diphenhydramine will be found in environmental sediments due to its hydrophobicity (log P = 3.27). This work describes a methodology for the first unequivocal determination of diphenhydramine bound to environmental sediments. The drug is removed from the sediments by accelerated solvent extraction and then analyzed by liquid chromatography with a time-of-flight mass spectrometer and an ion trap mass spectrometer. This combination of techniques provided unequivocal identification and confirmation of diphenhydramine in two sediment samples. The accurate mass measurements of the protonated molecules were m/z 256.1703 and 256.1696 compared to the calculated mass of m/z 256.1701, resulting in errors of 0.8 and 2.3 ppm. This mass accuracy was sufficient to verify the elemental composition of diphenhydramine in each sample. Furthermore, accurate mass measurements of the primary fragment ion were obtained. This work is the first application of time-of-flight mass spectrometry for the identification of diphenhydramine and shows the accumulation of an over-the-counter medication in aquatic sediments at five different locations.
A Experimental Investigation of Fast Ion Confinement on the Isx-B Tokamak
NASA Astrophysics Data System (ADS)
Carnevali, Antonino
An experimental investigation of fast ion confinement was conducted on the ISX-B tokamak at the Oak Ridge National Laboratory to ascertain that the beam ion behavior is properly described by classical processes. Data were collected during tangential injection of H('0) beams (co-, counter -, and co- plus counter-) at power levels up to 1.9 MW in low plasma current (I(,p) = 80 to 215 kA) D('+) discharges. Experimental energy spectra of energetic charge-exchange neutrals along several sightlines in the torus equatorial plane are compared with the predictions of Fokker-Planck and orbit-following Monte Carlo calculations to verify the validity of classical theory. A further tool used in this investigation is the comparison of predicted and experimental beam-plasma neutron emission during injection of beams doped with 3% D('0). Both the fast neutral spectra and the beam-plasma neutron emission are in close agreement (within factors of <2) with the calculated values under a variety of plasma parameters, beam parameters, and injection geometries. Furthermore, measured decay rates of the beam-plasma neutron production following beam turn-off show that the beam slowing down --at energies close to the injection energy and in the plasma core-- is classical within a 30% uncertainty. These results demonstrate that classical theory describes well the behavior of the beam ions. Moreover, MHD activity is shown not to cause enhanced fast ion losses in the ISX-B. Also, beam additivity experiments indicate that the fast ion density in the plasma volume is proportional to the injected beam power P(,b). An unresolved issue is whether the central fast ion density is linear with P(,b). In addition, the analysis of charge-exchange spectra is critically evaluated. It is shown that the analysis need be integrated with a knowledge of the orbit topology to correctly interpret the spectra. Cases where the zero banana width, Fokker-Planck calculation is adequate/inadequate to predict fast neutral spectra and power deposited in the plasma are discussed.
2011-01-01
Background Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation. Results To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels. Conclusions We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons. PMID:21939532
Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars.
Northum, Jeremy D; Guetersloh, Stephen B; Braby, Leslie A; Ford, John R
2015-10-01
Uncertainties persist regarding the assessment of the carcinogenic risk associated with galactic cosmic ray (GCR) exposure during a mission to Mars. The GCR spectrum peaks in the range of 300(-1) MeV n to 700 MeV n(-1) and is comprised of elemental ions from H to Ni. While Fe ions represent only 0.03% of the GCR spectrum in terms of particle abundance, they are responsible for nearly 30% of the dose equivalent in free space. Because of this, radiation biology studies focusing on understanding the biological effects of GCR exposure generally use Fe ions. Acting as a thin shield, the Martian atmosphere alters the GCR spectrum in a manner that significantly reduces the importance of Fe ions. Additionally, albedo particles emanating from the regolith complicate the radiation environment. The present study uses the Monte Carlo code FLUKA to simulate the response of a tissue-equivalent proportional counter on the surface of Mars to produce dosimetry quantities and microdosimetry distributions. The dose equivalent rate on the surface of Mars was found to be 0.18 Sv y(-1) with an average quality factor of 2.9 and a dose mean lineal energy of 18.4 keV μm(-1). Additionally, albedo neutrons were found to account for 25% of the dose equivalent. It is anticipated that these data will provide relevant starting points for use in future risk assessment and mission planning studies.
Liquid chromatography of hydrocarbonaeous quaternary amines on cyclodextrin bonded silica
Abidi, S.L.
1986-01-01
Mixtures of n-alkylbenzyldimethylammonium chloride (ABDAC) were resolved into homologous components by high-performance liquid chromatography (HPLC) with a cyclodextrin-bonded silica stationary phase. With a few exceptions, results from this study are similar to those obtained from traditional reversed-phase HPLC. It was found that the presence of electrolytes in aqueous mobile phases is not a critical factor in determining the success of HPLC separation. Under normal HPLC conditions, a mobile phase consisting of either methanol–water (50:50) or acetonitrile–water (30:70) was employed for obtaining adequate resolution of the quaternary ammonium mixtures. Although the percent organic modifier–water profiles were similar to those in previous studies with these compounds, resolution (R) and selectivity (α) parameters were found to be quite susceptible to changes in the mobile phase solvent composition. The retention behavior of the cationic analytes in the homologous series is consistent with the hydrophobic-interaction concept proposed for the retention mechanism via dominant inclusion complex formation. Several electrolytes were chosen for a study of the counter ion effect on the chromatographic characteristics of ABDAC components. Among the electrolytes examined, the perchlorate ion was found most likely to act as an ion-pairing counter ion for ammonium cations in the HPLC system studied. A correlation study established linear relationships between the chain length of ABDAC and the logarithmic capacity factor (k2). The analytical utility of the HPLC method was demonstrated by the analysis of various unknown mixtures.
Measuring surfactant concentration in plating solutions
Bonivert, William D.; Farmer, Joseph C.; Hachman, John T.
1989-01-01
An arrangement for measuring the concentration of surfactants in a electrolyte containing metal ions includes applying a DC bias voltage and a modulated voltage to a counter electrode. The phase angle between the modulated voltage and the current response to the modulated voltage at a working electrode is correlated to the surfactant concentration.
Castleberry, Kimberly N.
1983-01-01
A surge counter for a rotating compressor is provided which detects surging by monitoring the vibration signal from an accelerometer mounted on the shaft bearing of the compressor. The circuit detects a rapid increase in the amplitude envelope of the vibration signal, e.g., 4 dB or greater in less than one second, which is associated with a surge onset and increments a counter. The circuit is rendered non-responsive for a period of about 5 seconds following the detection which corresponds to the duration of the surge condition. This prevents multiple registration of counts during the surge period due to rapid swings in vibration amplitude during the period.
Comparison of the energy response of an ionization spectrometer for pions and protons
NASA Technical Reports Server (NTRS)
Jones, W. V.; Verma, S. D.
1971-01-01
An ionization spectrometer consisting of a sandwich of iron absorbers and plastic scintillation counters was used to measure the energy of pions and protons in the interval 10 to 1000 GeV. For the limited energy interval of 10 to 40 GeV, pions and protons were identified by an air cerenkov counter. Interactions in carbon were studied in a multiplate cloud chamber placed between the cerenkov counter and the spectrometer. Knowledge of these interactions were used in conjunction with a Monte Carlo simulation of the cascade process to study differences in the response of the spectrometer to pions and protons.
Evaluation of a High Pressure Proportional Counter for the Detection of Radioactive Noble Gases
1987-01-01
Multiplication Curves Compared to Reconstructed Literature Curves .. .. ............ .81 6.4 Resolution .... . .. ......................... .... 90 v Figure...with 57 ~/57 energy resolution to 12% fwhm for Co photopeaks (-122 keV),sing argon fill gas at fifty atmospheres. Subsequent effects 0f a contami- nant...internal gas proportional counters for measuring low-level environmental radionuclides, resolutions to 27% fwhm and intrinsic efficiencies to 3 75
A bipolar population counter using wave pipelining to achieve 2.5 x normal clock frequency
NASA Technical Reports Server (NTRS)
Wong, Derek C.; De Micheli, Giovanni; Flynn, Michael J.; Huston, Robert E.
1992-01-01
Wave pipelining is a technique for pipelining digital systems that can increase clock frequency in practical circuits without increasing the number of storage elements. In wave pipelining, multiple coherent waves of data are sent through a block of combinational logic by applying new inputs faster than the delay through the logic. The throughput of a 63-b CML population counter was increased from 97 to 250 MHz using wave pipelining. The internal circuit is flowthrough combinational logic. Novel CAD methods have balanced all input-to-output paths to about the same delay. This allows multiple data waves to propagate in sequence when the circuit is clocked faster than its propagation delay.
The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.
Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E
2017-09-14
Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.
Burbank, Brant D; Slater, Michael; Kava, Alyssa; Doyle, James; McHale, William A; Latta, Mark A; Gross, Stephen M
2016-02-01
Dental materials capable of releasing calcium, phosphate and fluoride are of great interest for remineralization. Microencapsulated aqueous solutions of these ions in orthodontic cement demonstrate slow, sustained release by passive diffusion through a permeable membrane without the need for dissolution or etching of fillers. The potential to charge a dental material formulated with microencapsulated water with fluoride by toothbrushing with over the counter toothpaste and the effect of microcapsules on cement adhesion to enamel was determined. Orthodontic cements that contained microcapsules with water and controls without microcapsules were brushed with over-the-counter toothpaste and fluoride release was measured. Adhesion measurements were performed loading orthodontic brackets to failure. Cements that contained microencapsulated solutions of 5.0M Ca(NO3)2, 0.8M NaF, 6.0MK2HPO4 or a mixture of all three were prepared. Ion release profiles were measured as a function of time. A greater fluoride charge and re-release from toothbrushing was demonstrated compared to a control with no microcapsules. Adhesion of an orthodontic cement that contained microencapsulated remineralizing agents was 8.5±2.5MPa compared to the control without microcapsules which was of 8.3±1.7MPa. Sustained release of fluoride, calcium and phosphate ions from cement formulated with microencapsulated remineralizing agents was demonstrated. Orthodontic cements with microcapsules show a release of bioavailable fluoride, calcium, and phosphate ions near the tooth surface while having the ability to charge with fluoride and not effect the adhesion of the material to enamel. Incorporation of microcapsules in dental materials is promising for promoting remineralization. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.
NASA Astrophysics Data System (ADS)
Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua
Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.
Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)nickel(II) dithiocyanate dihydrate
De la Pinta, Noelia; Fidalgo, M. Luz; Ezpeleta, José M.; Cortés, Roberto; Madariaga, Gotzon
2011-01-01
In the title compound, [Ni(C24H16N6)2](NCS)2·2H2O, the central NiII ion is octahedrally coordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligands (tppz). Two thiocyanate anions act as counter-ions and two water molecules act as solvation agents. O—H⋯N hydrogen bonds are observed in the crystral structure. PMID:21522540
Parasitic momentum flux in the tokamak core
Stoltzfus-Dueck, T.
2017-03-06
A geometrical correction to the E × B drift causes an outward flux of co-current momentum whenever electrostatic potential energy is transferred to ion parallel flows. The robust, fully nonlinear symmetry breaking follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The resulting rotation peaking is counter-current and scales as temperature over plasma current. Lastly, this peaking mechanism can only act when fluctuations are low-frequency enough to excite ion parallel flows, which may explain some recent experimental observations related to rotation reversals.
Course 1: Physics of Protein-DNA Interaction
NASA Astrophysics Data System (ADS)
Bruinsma, R. F.
1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction
Faradaic AC Electrokinetic Flow and Particle Traps
NASA Astrophysics Data System (ADS)
Ben, Yuxing; Chang, Hsueh-Chia
2004-11-01
Faradaic reaction at higher voltages can produce co-ion polarization at AC electrodes instead of counter-ion polarization due to capacitive charging from the bulk. The Faradaic co-ion polarization also does not screen the external field and hence can produce large net electro-kinetic flows at frequencies lower than the inverse RC time of the double layer. Due to the opposite polarization of capacitve and Faradaic charging, we can reverse the direction of AC flows on electrodes by changing the voltage and frequency. Particles and bacteria are trapped and then dispersed at stagnation lines, at locations predicted by our theory, by using these two flows sequentially. This technique offers a good way to concentrate and detect bacteria.
Focal-surface detector for heavy ions
Erskine, John R.; Braid, Thomas H.; Stoltzfus, Joseph C.
1979-01-01
A detector of the properties of individual charged particles in a beam includes a gridded ionization chamber, a cathode, a plurality of resistive-wire proportional counters, a plurality of anode sections, and means for controlling the composition and pressure of gas in the chamber. Signals generated in response to the passage of charged particles can be processed to identify the energy of the particles, their loss of energy per unit distance in an absorber, and their angle of incidence. In conjunction with a magnetic spectrograph, the signals can be used to identify particles and their state of charge. The detector is especially useful for analyzing beams of heavy ions, defined as ions of atomic mass greater than 10 atomic mass units.
Ploc, Ondrej; Kubancak, Jan; Sihver, Lembit; Uchihori, Yukio; Jakubek, Jan; Ambrozova, Iva; Molokanov, Alexander; Pinsky, Lawrence
2014-01-01
Objective of our research was to explore capabilities of Timepix for its use as a single dosemeter and LET spectrometer in mixed radiation fields created by heavy ions. We exposed it to radiation field (i) at heavy ion beams at HIMAC, Chiba, Japan, (ii) in the CERN's high-energy reference field (CERF) facility at Geneva, France/Switzerland, (iii) in the exposure room of the proton therapy laboratory at JINR, Dubna, Russia, and (iv) onboard aircraft. We compared the absolute values of dosimetric quantities obtained with Timepix and with other dosemeters and spectrometers like tissue-equivalent proportional counter (TEPC) Hawk, silicon detector Liulin, and track-etched detectors (TEDs).
Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin
2017-12-19
Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.
Effect of toroidal field ripple on plasma rotation in JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vries, P.; Salmi, A.; Parail, V.
Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude ( ) from an average value of M = 0.40 0.55 for operations at the standard JET ripple of = 0.08% to M = 0.25 0.40 for = 0.5% and M = 0.1 0.3 for = 1%. TF ripple effectsmore » should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes ( ~ 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.« less
Chemical analyses of fossil bone.
Zheng, Wenxia; Schweitzer, Mary Higby
2012-01-01
The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.
Van Voorhis, Bradley J; Ryan, Ginny L
2010-07-01
In vitro fertilization (IVF) is an increasingly effective and popular means of achieving pregnancy for infertile women, but contributes to a growing incidence of risky twin pregnancies. Despite studies demonstrating cost-effective means to achieve IVF pregnancy while strictly limiting the number of embryos transferred, multiple-embryo transfer remains the most common practice in the United States, and twin pregnancies continue to increase. IVF providers resist restricting these practices, arguing that this is counter to principles of procreative liberty, patient and professional autonomy, and free-market economics. We counter that physicians have a professional fiduciary responsibility to weigh issues of nonmaleficence to patients and just use of health care resources with patient desires. With oversight from professional organizations, providers should follow strict but medically appropriate restrictions on embryo transfer practices and work toward safer means of optimizing IVF outcomes than multiple-embryo transfer. Thieme Medical Publishers.
NASA Astrophysics Data System (ADS)
Tsuda, Shuichi; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Sasaki, Shinichi
Lineal energy (y) distributions were measured for various types of charged particles such as protons and iron, with kinetic energies of up to 500 MeV/u, via the use of a wall-less tissue-equivalent proportional counter (TEPC). Radial dependencies of y distributions were also experimentally evaluated to investigate the track structures of protons, carbon, and iron beams. This paper reviews a series of measured data using the aforementioned TEPC as well as assesses the systematic verification of a microdosimetric calculation model of a y distribution incorporated into the particle and heavy ion transport code system (PHITS) and associated track structure models.
Counter-ion and dopant effects on charge carriers in intrinsically conductive polymer
NASA Astrophysics Data System (ADS)
Ogle, Jonathan; Yehulie, Mandefro; Boehme, Christoph; Whittaker-Brooks, Luisa
Recently, a significant amount of attention has been devoted to the optimization and applications of organic electronics. In particular, intrinsically conductive polymers have seen a strong continued interest for their use in thermoelectric and photovoltaic devices. With conductivities ranging from 10-8 to 103 S cm-1, the conductive polymer poly(3,4-ethylenedioxythiophene) -PEDOT is one of the most studied solution-processable polymer material due to its unique optical and electronic properties. While charge carriers at lower conductivities have been identified as polarons, an understanding of the electronic structure of PEDOT as its conductivity increases is not well understood. We have investigated the effect that counter-ion exchange and doping has on the polaron concentration of PEDOT via electron paramagnetic resonance, ultraviolet photoelectron spectroscopy, and X-ray absorption fine structure spectroscopy studies. Such studies have allowed us to correlate charge carriers concentrations and the real and virtual electronic states in PEDOT as a function of various dopants. As discussed in our talk, we believe our findings could be extended to the understanding of other polymeric materials.
NASA Astrophysics Data System (ADS)
Meddings, Nina; Owen, John R.; Garcia-Araez, Nuria
2017-10-01
Lithium ion conducting membranes are important to protect the lithium metal electrode and act as a barrier to crossover species such as polysulphides in Li-S systems, redox mediators in Li-O2 cells or dissolved cathode species or electrolyte oxidation products in high voltage Li-ion batteries. We present an in-situ method for measuring permeability of membranes to crossover redox species. The method employs a 'Swagelok' cell design equipped with a glassy carbon working electrode, in which redox species are placed initially in the counter electrode compartment only. Permeability through the membrane, which separates working and counter electrodes, is determined using a square wave voltammetry technique that allows the concentration of crossover redox species to be evaluated over time with very high precision. We test the method using a model and well-behaved electrochemical system to demonstrate its sensitivity, reproducibility and reliability relative to alternative approaches. This new method offers advantages in terms of small electrolyte volume, and simple, fast, quantitative and in-situ measurement.
High power continuous-wave titanium:sapphire laser
Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.
1993-09-21
A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.
Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
Foley, Joe P; Blackney, Donna M; Ennis, Erin J
2017-11-10
The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum peak capacity per unit time is a simple function of the upper bound, but its direct application is limited to samples with analytes whose electrophoretic mobilities can be varied independently of electroosmotic flow. For samples containing both co- and counter-electroosmotic ions whose electrophoretic mobilities cannot be easily manipulated, comparable levels of peak capacity and peak capacity per unit time for all ions can be obtained by adjusting the EOF to devote the same amount of time to the separation of each class of ions; this corresponds to μ r,Z =-0.5. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta
2017-07-01
We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the arguments from the liquid state theory and at the molecular scale.
Ca2+ Overload and Sarcoplasmic Reticulum Instability in tric-a Null Skeletal Muscle*
Zhao, Xiaoli; Yamazaki, Daiju; Park, Ki Ho; Komazaki, Shinji; Tjondrokoesoemo, Andoria; Nishi, Miyuki; Lin, Peihui; Hirata, Yutaka; Brotto, Marco; Takeshima, Hiroshi; Ma, Jianjie
2010-01-01
The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl−, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions. PMID:20858894
NASA Astrophysics Data System (ADS)
Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua
2016-03-01
Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.
Hydrogen-based electrochemical energy storage
Simpson, Lin Jay
2013-08-06
An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.
Fast-ion Dα spectrum diagnostic in the EAST
NASA Astrophysics Data System (ADS)
Hou, Y. M.; Wu, C. R.; Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Xu, Z.; Jin, Z.; Chang, J. F.; Zhu, Y. B.; Gao, W.; Chen, Y. J.; Lyu, B.; Hu, R. J.; Zhang, P. F.; Zhang, L.; Gao, W.; Wu, Z. W.; Yu, Y.; Ye, M. Y.
2016-11-01
In toroidal magnetic fusion devices, fast-ion D-alpha diagnostic (FIDA) is a powerful method to study the fast-ion feature. The fast-ion characteristics can be inferred from the Doppler shifted spectrum of Dα light according to charge exchange recombination process between fast ions and probe beam. Since conceptual design presented in the last HTPD conference, significant progress has been made to apply FIDA systems on the Experimental Advanced Superconducting Tokamak (EAST). Both co-current and counter-current neutral beam injectors are available, and each can deliver 2-4 MW beam power with 50-80 keV beam energy. Presently, two sets of high throughput spectrometer systems have been installed on EAST, allowing to capture passing and trapped fast-ion characteristics simultaneously, using Kaiser HoloSpec transmission grating spectrometer and Bunkoukeiki FLP-200 volume phase holographic spectrometer coupled with Princeton Instruments ProEM 1024B eXcelon and Andor DU-888 iXon3 1024 CCD camera, respectively. This paper will present the details of the hardware descriptions and experimental spectrum.
Krutenkova, A. P.; Abramov, B. M.; Alekseev, P. N.; ...
2015-05-29
Momentum distributions of hydrogen and helium isotopes from ¹²C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. The differential cross sections cover six orders of magnitude. The distributions measured are compared tomore » the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters.« less
Krutenkova, Anna P.; Abramov, B. M.; Alekseev, P. N.; ...
2015-05-29
The momentum distributions of hydrogen and helium isotopes from 12C fragmentation at 3.5° were measured at 0.6 GeV/nucleon in the FRAGM experiment at ITEP TWA heavy ion accelerator. The fragments were selected by correlated time of flight and dE/dx measurements with a magnetic spectrometer with scintillation counters. The main attention was drawn to the high momentum region where the fragment velocity exceeds the velocity of the projectile nucleus. The momentum spectra of fragments span the region of the fragmentation peak as well as the cumulative region. Moreover, the differential cross sections cover six orders of magnitude. The distributions measured aremore » compared to the predictions of three ion-ion interaction models: BC, QMD and LAQGSM03.03. The kinetic energy spectra of fragments in the projectile rest frame have an exponential shape with two temperatures, being defined by their slope parameters.« less
Microstructure of room temperature ionic liquids at stepped graphite electrodes
Feng, Guang; Li, Song; Zhao, Wei; ...
2015-07-14
Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, Weston M.; Schumann, Matthew T.
A more detailed calculation strategy for the evaluation of ion orbit loss of thermalized plasma ions in the edge of tokamaks is presented. In both this and previous papers, the direct loss of particles from internal flux surfaces is calculated from the conservation of canonical angular momentum, energy, and magnetic moment. The previous result that almost all of the ion energy and particle fluxes crossing the last closed flux surface are in the form of ion orbit fluxes is confirmed, and the new result that the distributions of these fluxes crossing the last closed flux surface into the scrape-off layermore » are very strongly peaked about the outboard midplane is demonstrated. Previous results of a preferential loss of counter current particles leading to a co-current intrinsic rotation peaking just inside of the last closed flux surface are confirmed. Various physical details are discussed.« less
Han, Chao; Wang, Wenli; Xue, Guimin; Xu, Dingqiao; Zhu, Tianyu; Wang, Shanshan; Cai, Pei; Luo, Jianguang; Kong, Lingyi
2018-01-12
Cu(II) ion was selected as an additive to improve the enantioseparation efficiency of three dihydroflavone enantiomers in high-speed counter-current chromatography (HSCCC), using hydroxypropyl-β-cyclodextrin (HP-β-CyD) as the chiral selector. The influences of important parameters, including the metal ion, the concentrations of HP-β-CyD and the Cu(II) ion, and the sample size were investigated. Under optimal conditions, three dihydroflavone enantiomers, including (±)-hesperetin, (±)-naringenin, and (±)-farrerol, were successfully enantioseparated. The chiral recognition mechanism was investigated. The enantioseparation was attributed to the different thermodynamic stabilities of the binary complexes of HP-β-CyD and (±)-hesperetin, and Cu(II) ion could enhance this difference by forming ternary complexes with the binary complexes. This Cu(II) ion-improved complexation HSCCC system exhibited improved performance for chiral separation, and therefore it has great application potential in the preparative enantioseparation of other compounds with similar skeletons. Copyright © 2017 Elsevier B.V. All rights reserved.
Inadequate Evidence for Multiple Intelligences, Mozart Effect, and Emotional Intelligence Theories
ERIC Educational Resources Information Center
Waterhouse, Lynn
2006-01-01
I (Waterhouse, 2006) argued that, because multiple intelligences, the Mozart effect, and emotional intelligence theories have inadequate empirical support and are not consistent with cognitive neuroscience findings, these theories should not be applied in education. Proponents countered that their theories had sufficient empirical support, were…
Pastor, María Jesús; Cuerva, Cristián; Campo, José A; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes
2016-05-12
Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO R(n)pyH ]⁺ and BF₄ - , ReO₄ - , NO₃ - , CF₃SO₃ - , CuCl₄ 2- counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO R(12)pyH ][ReO₄] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl₄ 2- salts exhibit the best LC properties followed by the ReO₄ - ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO₄ - , and CuCl₄ 2- families, and for the solid phase in one of the non-mesomorphic Cl - salts. The highest ionic conductivity was found for the smectic mesophase of the ReO₄ - containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.
The adsorption behavior of U(VI) on granite.
Fan, Q H; Hao, L M; Wang, C L; Zheng, Z; Liu, C L; Wu, W S
2014-03-01
The effects of pH, counter ions and temperature on the adsorption of U(VI) on Beishan granite (BsG) were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The adsorption edge of U(VI) on BsG suggested that U(VI) adsorption was mainly controlled by ion exchange and outer-sphere complexation at low pH, whereas inner-sphere complex was the dominant adsorption species in the pH range of 4.0-9.0. Above pH 9.0, Na2U2O7 might play an important role in the rise of U(VI) adsorption again. Counter ions such as Cl(-), SO4(2-) and PO4(3-) can provoke U(VI) adsorption on BsG to some extent, which was directly correlated to the complexing ability of U(VI)-ligand. More noticeably, the large enhancement of U(VI) adsorption in the presence of phosphate can be attributed to the ternary complex formation (BsG-PO4-UO2), precipitation ((UO2)3(PO4)2(s)) and secondary phase (Na-autunite). Both FA and HA can slightly increase U(VI) adsorption at low pH, whereas they strongly inhibited U(VI) adsorption at high pH range. Artificial synthesized granite (AsG) prepared in the laboratory is impossible to use as an analogue of natural granite because of the large difference in the adsorption and surface properties.
Modelling of minority ion cyclotron current drive during the activated phase of ITER
NASA Astrophysics Data System (ADS)
Laxåback, M.; Hellsten, T.
2005-12-01
Neoclassical tearing modes, triggered by the long-period sawteeth expected in tokamaks with large non-thermal α-particle populations, may impose a severe β limit on experiments with large fusion yields and on reactors. Sawtooth destabilization by localized current drive could relax the β limit and improve plasma performance. 3He minority ion cyclotron current drive around the sawtooth inversion radius has been planned for ITER. Several ion species, including beam injected D ions and fusion born α particles, are however also resonant in the plasma and may represent a parasitic absorption of RF power. Modelling of minority ion cyclotron current drive in an ITER-FEAT-like plasma is presented, including the effects of ion trapping, finite ion drift orbit widths, wave-induced radial transport and the coupled evolution of wave fields and resonant ion distributions. The parasitic absorption of RF power by the other resonant species is concluded to be relatively small, but the 3He minority current drive is nevertheless negligible due to the strong collisionality of the 3He ions and the drag current by toroidally counter-rotating background ions and co-rotating electrons. H minority current drive is found to be a significantly more effective alternative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diomede, Paola; Economou, Demetre J.; Donnelly, Vincent M.
2011-04-15
A Particle-in-Cell simulation with Monte Carlo Collisions (PIC-MCC) was conducted of the application of tailored DC voltage steps on an electrode, during the afterglow of a capacitively-coupled pulsed-plasma argon discharge, to control the energy of ions incident on the counter-electrode. Staircase voltage waveforms with selected amplitudes and durations resulted in ion energy distributions (IED) with distinct narrow peaks, with controlled energies and fraction of ions under each peak. Temporary electron heating at the moment of application of a DC voltage step did not influence the electron density decay in the afterglow. The IED peaks were 'smeared' by collisions, especially atmore » the higher pressures of the range (10-40 mTorr) investigated.« less
Characterization of in-flight performance of ion propulsion systems
NASA Astrophysics Data System (ADS)
Sovey, James S.; Rawlin, Vincent K.
1993-06-01
In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.
Characterization of in-flight performance of ion propulsion systems
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.
1993-01-01
In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.
USDA-ARS?s Scientific Manuscript database
Soybean oil (SO) and epoxidized soybean oil (ESO) were polymerized in the CO2 media (supercritical and sub-supercritical) by BF3•OEt2 catalyst. The resulting polymers (PSO and PESO) were hydrolyzed into polysoaps (HPSO) and (HPESO) with Na+, K+, or TEA+ (triethanolamine, ammonium salt) counter ions....
Atomic-scale thermocapillary flow in focused ion beam milling
NASA Astrophysics Data System (ADS)
Das, Kallol; Johnson, Harley; Freund, Jonathan
2016-11-01
Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.
The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation
Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar
2017-01-01
Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique. PMID:28906442
NASA Technical Reports Server (NTRS)
1972-01-01
A double-chambered gas proportional counter was constructed to detect and identify solar wind ions after acceleration by a high voltage power supply. It was determined that the best method of detecting deuterium in the solar wind is to use a tritium target as proposed for IMP H and J. The feasibility of detecting H(+) and He(+) ions of interstellar origin is considered. A program is described to carry out ground-based astronomical observations of faint, diffuse optical emission lines from interstellar gas. Hydrogen and oxygen emission lines from galactic sources were detected and the galactic and geocoronal H alpha and beta lines were clearly resolved.
Burgot, G; Burgot, J-L
2002-10-15
Thermometric titrimetry permits titration of acido-basic compounds in water in the presence of n-octanol. n-Octanol permits the solubilization of protolytes and moreover may also displace the equilibria of the titration reactions. Hydrochlorides of highly insoluble derivatives such as phenothiazine derivatives can be titrated with satisfactory accuracy and precision by sodium hydroxide despite their high pK(a) values. Likewise barbiturate salts can be titrated by hydrochloric acid. In the case of some salts, the methodology may permit the sequential titration of the ion and counter ion. Copyright 2002 Elsevier Science B.V.
Capacitor-type micrometeoroid detectors
NASA Technical Reports Server (NTRS)
Wortman, J. J.; Griffis, D. P.; Bryan, S. R.; Kinard, W.
1986-01-01
The metal oxide semiconductor (MOS) capacitor micrometeroid detector consists of a thin dielectric capacitor fabricated on a silicon wafer. In operation, the device is charged to a voltage level sufficiently near breakdown that micrometeoroid impacts will cause dielectric deformation or heating and subsequent arc-over at the point of impact. Each detector is capable of recording multiple impacts because of the self-healing characteristics of the device. Support instrumentation requirements consist of a voltage source and pulse counters that monitor the pulse of recharging current following every impact. An investigation has been conducted in which 0.5 to 5 micron diameter carbonized iron spheres traveling at velocities of 4 to 10 Km/sec were impacted on to detectors with either a dielectric thickness of 0.4 or 1.0 micron. This study demonstrated that an ion microprobe tuned to sufficiently high resolution can detect Fe remaining on the detector after the impact. Furthermore, it is also possible to resolve Fe ion images free of mass interferences from Si, for example, giving its spatial distribution after impact. Specifically this technique has shown that significant amounts of impacting particles remain in the crater and near it which can be analyzed for isotopic content. Further testing and calibration could lead to quantitive analysis. This study has shown that the capacitor type micrometeroid detector is capable of not only time and flux measurements but can also be used for isotopic analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bürger, Stefan; Riciputi, Lee R; Bostick, Debra A
A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U,more » {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.« less
Unattended Multiplicity Shift Register
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newell, Matt; Jones, David C.
2017-01-16
The Unattended Multiplicity Shift Register (UMSR) is a specialized pulse counter used primarily to count neutron events originating in neutron detection instruments. While the counter can be used to count any TTL input pulses, its unique ability to record time correlated events and the multiplicity distributions of these events makes it an ideal instrument for counting neutron events in the nuclear fields of material safeguards, waste assay and process monitoring and control. The UMSR combines the Los Alamos National Laboratory (LANL) simple and robust shift register design with a Commercial-Off-The-Shelf (COTS) processor and Ethernet communications. The UMSR is fully compatiblemore » with existing International Atomic Energy Agency (IAEA) neutron data acquisition instruments such as the Advance Multiplicity Shift Register (AMSR) and JSR-15. The UMSR has three input channels: a multiplicity shift register input and two auxiliary inputs. The UMSR provides 0V to 2kV of programmable High Voltage (HV) bias and both a 12V and a 5V detector power supply output. A serial over USB communication line to the UMSR allows the use of existing versions of INCC or MIC software while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.« less
NASA Astrophysics Data System (ADS)
Laakso, Thomas A.
2018-01-01
A combination of two anoxygenic pathways of photosynthesis could have helped to warm early Earth, according to geochemical models. These metabolisms, and attendant biogeochemical feedbacks, could have worked to counter the faint young Sun.
Graphene/Ionic Liquid Composite Films and Ion Exchange
Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan
2014-01-01
Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602
Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support
2011-01-01
Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with nitric and chlorine ions have been electrochemically deposited simply by a one-step electrochemical method in an aqueous media in the absence of any surfactant. The fabricated PEDOT films were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm. The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied. Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity. The specific nanostructure of the polymer was further studied as catalyst support for platinum nanoparticles to methanol electro-oxidation. PMID:21711871
Improved Multiple-Species Cyclotron Ion Source
NASA Technical Reports Server (NTRS)
Soli, George A.; Nichols, Donald K.
1990-01-01
Use of pure isotope 86Kr instead of natural krypton in multiple-species ion source enables source to produce krypton ions separated from argon ions by tuning cylcotron with which source used. Addition of capability to produce and separate krypton ions at kinetic energies of 150 to 400 MeV necessary for simulation of worst-case ions occurring in outer space.
NASA Technical Reports Server (NTRS)
Komatsu, G. K.; Stellen, J. M., Jr.
1976-01-01
Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.
Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro
2015-04-28
An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.
NASA Astrophysics Data System (ADS)
Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.
2017-04-01
Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.
An improved PRoPHET routing protocol in delay tolerant network.
Han, Seung Deok; Chung, Yun Won
2015-01-01
In delay tolerant network (DTN), an end-to-end path is not guaranteed and packets are delivered from a source node to a destination node via store-carry-forward based routing. In DTN, a source node or an intermediate node stores packets in buffer and carries them while it moves around. These packets are forwarded to other nodes based on predefined criteria and finally are delivered to a destination node via multiple hops. In this paper, we improve the dissemination speed of PRoPHET (probability routing protocol using history of encounters and transitivity) protocol by employing epidemic protocol for disseminating message m, if forwarding counter and hop counter values are smaller than or equal to the threshold values. The performance of the proposed protocol was analyzed from the aspect of delivery probability, average delay, and overhead ratio. Numerical results show that the proposed protocol can improve the delivery probability, average delay, and overhead ratio of PRoPHET protocol by appropriately selecting the threshold forwarding counter and threshold hop counter values.
NASA Astrophysics Data System (ADS)
Masoudi, Mohaddeseh; Behzad, Mahdi; Arab, Ali; Tarahhomi, Atekeh; Rudbari, Hadi Amiri; Bruno, Giuseppe
2016-10-01
Three new Cobalt(III) Schiff base complexes were synthesized and characterized by spectroscopic methods and x-ray crystallography. The DFT optimized structures of the complexes agreed well with the corresponding x-ray structures. According to the calculated vibrational normal modes, the observed signals in the IR spectra of the complexes were assigned. The experimental UV-Vis spectra of the complexes were also discussed considering the calculated excited states and molecular orbitals. Hirshfeld surface analysis was carried out to study the inter-contact interactions in these complexes. These studies provided comprehensive description of such inter-contact interactions by means of an appealing graphical approach using 3D Hirshfeld surfaces and 2D fingerprint plots derived from the surfaces. It indicated the dominant role of various hydrogen intermolecular interactions such as H⋯H (above 60%), C⋯H/H⋯C (near 15%-20%), O⋯H/H⋯O (about 16% or 17% for structures with counter ion ClO4-) and H⋯F (17% for structure with counter ion PF6-) contacts into the crystal packing which are discussed in details.
Na, Seung Yeon; Oh, Se Heang; Kim, Tae Ho; Yoon, Jin A; Lee, In Soo; Lee, Jin Ho
2014-12-10
The main aims of this study are (i) the development of an antibiotic complexed with multivalent ion, which can allow sustained release of the antibiotic without any additional matrix or difficult process and (ii) the feasibility study of the ion-complexed antibiotic as a therapeutic technique for peritonitis treatment. An ion-complexed antibiotic is prepared by simple mixing of two aqueous solutions containing an ionized (water-soluble) drug (tetracycline) and a multivalent counter ionic compound. The ion-complexed antibiotic shows a continuous release of the antibiotic up to 21 days, and thus prolonged anti-bacterial effect by gradual ionic exchange between the multivalent ions in the complex and same-charged monovalent ions in surrounding medium. From the in vivo animal study using a cecum perforated peritonitis mouse model, the ion-complexed antibiotic group shows sufficient anti-bacterial effect and thus effectively treat the peritonitis because of the extermination of the contaminated enteric bacteria in the peritoneum during wound healing of injury cecum (by the sustained release of antibiotic from the ion complex). These results suggest that the ion-complexed antibiotic system may be promising for the effective treatment of the peritonitis caused by frequent gastrointestinal defect in clinical fields. Copyright © 2014 Elsevier B.V. All rights reserved.
The phase-space dependence of fast-ion interaction with tearing modes
Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.; ...
2018-03-19
Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less
The phase-space dependence of fast-ion interaction with tearing modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, William W.; Bardoczi, Laszlo; Collins, Cami S.
Modulation of various neutral beam sources probes the interaction of fast ions with tearing modes (TM) in the DIII-D tokamak. As measured by electron cyclotron emission, the (m,n) = (2,1) tearing modes have an island width of ~8 cm and change phase 180 at the q = 2 surface. (Here, m is the poloidal mode number and n is the toroidal mode number.) Deuterium neutral beam injection by six sources with differing injection geometries produces the fast ions. To study the interaction in different parts of phase space, on successive discharges, one of the six sources is modulated at 20more » Hz to populate different fast-ion orbits. The modulation only changes the island width by a few millimeters, implying that any fast-ion effect on mode stability is below detection limits. When compared to the expected signals in the absence of TM-induced transport, both the average and modulated neutron signals deviate, implying that fast-ion transport occurs in much of phase space. Fast-ion D-α (FIDA) measurements detect reductions in signal at wavelengths that are sensitive to counter-passing ions. Neutral particle analyzer data imply poor confinement of trapped fast ions. Lastly, calculations of the expected fast-ion transport that use measured TM properties successfully reproduce the data.« less
Fragmentation of organic ions bearing fixed multiple charges observed in MALDI MS.
Lou, Xianwen; Li, Bao; de Waal, Bas F M; Schill, Jurgen; Baker, Matthew B; Bovee, Ralf A A; van Dongen, Joost L J; Milroy, Lech-Gustav; Meijer, E W
2018-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was used to analyze a series of synthetic organic ions bearing fixed multiple charges. Despite the multiple intrinsic charges, only singly charged ions were recorded in each case. In addition to the pseudo-molecular ions formed by counterion adduction, deprotonation and electron capture, a number of fragment ions were also observed. Charge splitting by fragmentation was found to be a viable route for charge reduction leading to the formation of the observed singly charged fragment ions. Unlike multivalent metal ions, organic ions can rearrange and/or fragment during charge reduction. This fragmentation process will evidently complicate the interpretation of the MALDI MS spectrum. Because MALDI MS is usually considered as a soft ionization technique, the fragment ion peaks can easily be erroneously interpreted as impurities. Therefore, the awareness and understanding of the underlying MALDI-induced fragmentation pathways is essential for a proper interpretation of the corresponding mass spectra. Due to the fragment ions generated during charge reduction, special care should be taken in the MALDI MS analysis of multiply charged ions. In this work, the possible mechanisms by which the organic ions bearing fixed multiple charges fragment are investigated. With an improved understanding of the fragmentation mechanisms, MALDI TOF MS should still be a useful technique for the characterization of organic ions with fixed multiple charges. Copyright © 2017 John Wiley & Sons, Ltd.
Kostanyan, Artak E; Shishilov, Oleg N
2018-06-01
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akparov, V. Kh., E-mail: valery@akparov.ru; Timofeev, V. I., E-mail: tostars@mail.ru; Maghsoudi, N. N., E-mail: maghsudi@yahoo.com
2017-03-15
Crystals of porcine pancreatic carboxypeptidase B (CPB) were grown by the capillary counter-diffusion method in the presence of polyethylene glycol and zinc acetate. The three-dimensional structure of CPB was determined at 1.40 Å resolution using the X-ray diffraction data set collected from the crystals of the enzyme at the SPring 8 synchrotron facility and was refined to R{sub fact} = 17.19%, R{sub free} = 19.78%. The structure contains five zinc atoms, two of which are present in the active site of the enzyme, and an acetate ion. The arrangement of an additional zinc atom in the active site and themore » acetate ion is different from that reported by Yoshimoto et al.« less
A New Global Multi-fluid MHD Model of the Solar Corona
NASA Astrophysics Data System (ADS)
van der Holst, B.; Chandran, B. D. G.; Alterman, B. L.; Kasper, J. C.; Toth, G.
2017-12-01
We present a multi-fluid generalization of the AWSoM model, a global magnetohydrodynamic (MHD) solar corona model with low-frequency Alfven wave turbulence (van der Holst et al., 2014). This new extended model includes electron and multi-ion temperatures and velocities (protons and alpha particles). The coronal heating and acceleration is addressed via outward propagating low-frequency Alfven waves that are partially reflected by Alfven speed gradients. The nonlinear interaction of these counter-propagating waves results in turbulent energy cascade. To apportion the wave dissipation to the electron and ion temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011, 2013). This heat partitioning results in a more than mass proportional heating among ions.
NASA Astrophysics Data System (ADS)
Franchin, A.; Downard, A. J.; Kangasluoma, J.; Nieminen, T.; Lehtipalo, K.; Steiner, G.; Manninen, H. E.; Petäjä, T.; Flagan, R. C.; Kulmala, M.
2015-06-01
Reliable and reproducible measurements of atmospheric aerosol particle number size distributions below 10 nm require optimized classification instruments with high particle transmission efficiency. Almost all DMAs have an unfavorable potential gradient at the outlet (e.g. long column, Vienna type) or at the inlet (nano-radial DMA). This feature prevents them from achieving a good transmission efficiency for the smallest nanoparticles. We developed a new high transmission inlet for the Caltech nano-radial DMA (nRDMA) that increases the transmission efficiency to 12 % for ions as small as 1.3 nm in mobility equivalent diameter (corresponding to 1.2 × 10-4 m2 V-1 s-1 in electrical mobility). We successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a Particle Size Magnifier (PSM) and a booster Condensation Particle Counter (CPC) as a counter. With this setup, we were able to measure size distributions of ions between 1.3 and 6 nm, corresponding to a mobility range from 1.2 × 10-4 to 5.8 × 10-6 m2 V-1 s-1. The system was modeled, tested in the laboratory and used to measure negative ions at ambient concentrations in the CLOUD 7 measurement campaign at CERN. We achieved a higher size resolution than techniques currently used in field measurements, and maintained a good transmission efficiency at moderate inlet and sheath air flows (2.5 and 30 LPM, respectively). In this paper, by measuring size distribution at high size resolution down to 1.3 nm, we extend the limit of the current technology. The current setup is limited to ion measurements. However, we envision that future research focused on the charging mechanisms could extend the technique to measure neutral aerosol particles as well, so that it will be possible to measure size distributions of ambient aerosols from 1 nm to 1 μm.
Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Grierson, B. A.; Battaglia, D. J.; Haskey, S. R.; Stoltzfus-Dueck, T.
2018-05-01
In a recent kinetic model of edge main-ion (deuterium) toroidal velocity, intrinsic rotation results from neoclassical orbits in an inhomogeneous turbulent field [T. Stoltzfus-Dueck, Phys. Rev. Lett. 108, 065002 (2012)]. This model predicts a value for the toroidal velocity that is co-current for a typical inboard X-point plasma at the core-edge boundary (ρ ˜ 0.9). Using this model, the velocity prediction is tested on the DIII-D tokamak for a database of L-mode and H-mode plasmas with nominally low neutral beam torque, including both signs of plasma current. Values for the flux-surface-averaged main-ion rotation velocity in the database are obtained from the impurity carbon rotation by analytically calculating the main-ion—impurity neoclassical offset. The deuterium rotation obtained in this manner has been validated by direct main-ion measurements for a limited number of cases. Key theoretical parameters of ion temperature and turbulent scale length are varied across a wide range in an experimental database of discharges. Using a characteristic electron temperature scale length as a proxy for a turbulent scale length, the predicted main-ion rotation velocity has a general agreement with the experimental measurements for neutral beam injection (NBI) powers in the range PNBI < 4 MW. At higher NBI power, the experimental rotation is observed to saturate and even degrade compared to theory. TRANSP-NUBEAM simulations performed for the database show that for discharges with nominally balanced—but high powered—NBI, the net injected torque through the edge can exceed 1 Nm in the counter-current direction. The theory model has been extended to compute the rotation degradation from this counter-current NBI torque by solving a reduced momentum evolution equation for the edge and found the revised velocity prediction to be in agreement with experiment. Using the theory modeled—and now tested—velocity to predict the bulk plasma rotation opens up a path to more confidently projecting the confinement and stability in ITER.
Roscioli, Kristyn M; Tufariello, Jessica A; Zhang, Xing; Li, Shelly X; Goetz, Gilles H; Cheng, Guilong; Siems, William F; Hill, Herbert H
2014-04-07
Desorption electrospray ionization (DESI) was coupled to an ambient pressure drift tube ion mobility time-of-flight mass spectrometer (IM-TOFMS) for the direct analysis of active ingredients in pharmaceutical samples. The DESI source was also coupled with a standalone IMS demonstrating potential of portable and inexpensive drug-quality testing platforms. The DESI-IMS required no sample pretreatment as ions were generated directly from tablets and cream formulations. The analysis of a range of over-the-counter and prescription tablet formations was demonstrated for amphetamine (methylphenidate), antidepressant (venlafaxine), barbiturate (Barbituric acid), depressant (alprazolam), narcotic (3-methylmorphine) and sympatholytic (propranolol) drugs. Active ingredients from soft and liquid formulations, such as Icy Hot cream (methyl salicylate) and Nyquil cold medicine (acetaminophen, dextromethorphan, doxylamine) were also detected. Increased sensitivity for selective drug responses was demonstrated through the formation of sodiated adduct ions by introducing small quantities of NaCl into the DESI solvent. Of the drugs and pharmaceuticals tested in this study, 68% (22 total samples) provided a clear ion mobility response at characteristic mobilities either as (M + H)(+), (M - H)(-), or (M + Na)(+) ions.
Validation of theoretical models of intrinsic torque in DIII-D
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Wang, W. X.; Battaglia, D. J.; Chrystal, C.; Solomon, W. M.; Degrassie, J. S.; Staebler, G. M.; Boedo, J. A.
2016-10-01
Plasma rotation experiments in DIII-D are validating models of main-ion intrinsic rotation by testing Reynolds stress induced toroidal flow in the plasma core and intrinsic rotation induced by ion orbit losses in the plasma edge. In the core of dominantly electron heated plasmas with Te=Ti, the main-ion intrinsic toroidal rotation undergoes a reversal that correlates with the critical gradient for ITG turbulence. Residual stress arising from zonal-flow ExB shear and turbulence intensity gradient produce residual stress and counter-current intrinsic torque, which is balanced by momentum diffusion, creating the hollow profile. Quantitative agreement is obtained for the first time between the measured main-ion toroidal rotation and the rotation profile predicted by nonlinear GTS gyrokinetic simulations. At the plasma boundary, new main-ion CER measurements show a co-current rotation layer and this is tested against ion orbit loss models as the source of bulk plasma rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.
Production of silver ions from colloidal silver by nanoparticle iontophoresis system.
Tseng, Kuo-Hsiung; Liao, Chih-Yu
2011-03-01
Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.
Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon
NASA Astrophysics Data System (ADS)
Di Giovanni, A.
2018-03-01
This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.
The background in a balloon-borne fluorescence-gated proportional counter
NASA Technical Reports Server (NTRS)
Ramsey, B. D.; Bower, C. R.; Dietz, K. L.; Weisskopf, M. C.
1990-01-01
The results of an analysis of the background in a fluorescence-gated proportional counter operating over the energy range 3-150 keV are presented. It is found that the dominant background component is that produced by high energy qamma-rays that penetrate the shields and undergo multiple scattering in the detector body, resulting in photoelectric absorption in the detector gas. A careful choice of materials and thickness can move the peak of this emission outside of the detector sensitive range, thereby dramatically reducing the residual background.
Radiation pressure injection in laser-wakefield acceleration
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Kuramitsu, Y.; Isayama, S.; Chen, S. H.
2018-01-01
We investigated the injection of electrons in laser-wakefield acceleration induced by a self-modulated laser pulse by a two dimensional particle-in-cell simulation. The localized electric fields and magnetic fields are excited by the counter-streaming flows on the surface of the ion bubble, owing to the Weibel or two stream like instability. The electrons are injected into the ion bubble from the sides of it and then accelerated by the wakefield. Contrary to the conventional wave breaking model, the injection of monoenergetic electrons are mainly caused by the electromagnetic process. A simple model was proposed to address the instability, and the growth rate was verified numerically and theoretically.
Insights on Li-TFSI diffusion in polyethylene oxide for battery applications
NASA Astrophysics Data System (ADS)
Molinari, Nicola; Mailoa, Jonathan; Kozinsky, Boris; Robert Bosch LLC Collaboration
Improving the energy density, safety and efficiency of lithium-ion (Li-ion) batteries is crucial for the future of energy storage and applications such as electric cars. A key step in the research of next-generation solid polymeric electrolyte materials is understanding the diffusion mechanism of Li-ion in polyethylene oxide (PEO) in order to guide the design of electrolytes materials with high Li-ion diffusion while, ideally, suppress counter-anion movement. In this work we use computer simulations to investigate this long-standing problem at a fundamental level. The system under study has Li-TFSI concentration and PEO chain length that are representative of practical application specifications; the interactions of the molecular model are described via the PCFF+ all-atom force-field. Validation of the model is performed by comparing trends against experiments for diffusivity and conductivity as a function of salt concentration. The analysis of Li-TFSI molecular dynamics trajectories reveals that 1. for high Li-TFSI concentration a significant fraction of Li-ion is coordinated by only TFSI and consistently move less than PEO-coordinated Li-ion, 2. PEO chain motion is key in enabling Li-ion movement. Robert Bosch LLC.
Ion-exchange and iontophoresis-controlled delivery of apomorphine.
Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni
2013-04-01
The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.
Snyder, Dalton T; Szalwinski, Lucas J; Cooks, R Graham
2017-10-17
Methods of performing precursor ion scans as well as neutral loss scans in a single linear quadrupole ion trap have recently been described. In this paper we report methodology for performing permutations of MS/MS scan modes, that is, ordered combinations of precursor, product, and neutral loss scans following a single ion injection event. Only particular permutations are allowed; the sequences demonstrated here are (1) multiple precursor ion scans, (2) precursor ion scans followed by a single neutral loss scan, (3) precursor ion scans followed by product ion scans, and (4) segmented neutral loss scans. (5) The common product ion scan can be performed earlier in these sequences, under certain conditions. Simultaneous scans can also be performed. These include multiple precursor ion scans, precursor ion scans with an accompanying neutral loss scan, and multiple neutral loss scans. We argue that the new capability to perform complex simultaneous and sequential MS n operations on single ion populations represents a significant step in increasing the selectivity of mass spectrometry.
Resonance ionization for analytical spectroscopy
Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.
1976-01-01
This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.
NASA Astrophysics Data System (ADS)
Jafari, Fatemeh; Behjat, Abbas; Khoshroo, Ali R.; Ghoshani, Maral
2015-02-01
Poly(3, 4-ethylendioxythiophene)-poly(styrene sulfonate) mixed with TiO2 nanoparticles (PEDOT:PSS/TiO2) was used as a catalyst for tri-iodide reduction in dye-sensitized solar cells based on natural photosensitizers. A PEDOT:PSS/TiO2 film was coated on a conductive glass substrate by the spin coating method. The solar cells were fabricated, having the PEDOT:PSS/TiO2 film as a counter electrode and Pomegranate juice dye-sensitized TiO2 as an anode. The morphology of PEDOT:PSS/TiO2 films was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. Cyclic voltammetry (CV) was employed to characterize the catalytic activity of the PEDOT:PSS/TiO2 film. Based on the analysis of CV, the enhancements for the electrochemical and photochemical performance of the PEDOT:PSS/TiO2 electrode are attributed to the fact that the dispersed TiO2 nanoparticles in the PEDOT:PSS matrix provide an improved catalytic activity and a facilitated diffusion for tri-iodide ions. The energy conversion efficiency is significantly improved after TiO2 nanoparticle incorporation. This improvement might be attributed to an increase in the counter electrode catalytic activity. The highest efficiency of 0.73% was obtained by using 100 nm TiO2 nanoparticles in the counter electrode.
Self-organizing plasma behavior in multiple grid IEC fusion devices for propulsion
NASA Astrophysics Data System (ADS)
McGuire, Thomas; Dietrich, Carl; Sedwick, Raymond
2004-11-01
Inertial Electrostatic Confinement, IEC, of charged particles for the purpose of producing fusion energy is a low mass alternative to more traditional magnetic and inertial confinement fusion schemes. Experimental fusion production and energy efficiency in IEC devices to date has been hindered by confinement limitations. Analysis of the major loss mechanisms suggests that the low pressure beam-beam interaction regime holds the most promise for improved efficiency operation. Numerical simulation of multiple grid schemes shows greatly increased confinement times over contemporary single grid designs by electrostatic focusing of the ion beams. An analytical model of this focusing is presented. With the increased confinement, beams self-organize from a uniform condition into bunches that oscillate at the bounce frequency. The bunches from neighboring beams are then observed to synchronize with each other. Analysis of the anisotropic collisional dynamics responsible for the synchronization is presented. The importance of focusing and density on the beam dynamics are examined. Further, this synchronization appears to modify the particle distribution so as to maintain the non-maxwellian, beam-like energy profile within a bunch. The ability of synchronization to modify and counter-act the thermalization process is examined analytically at the 2-body interaction level and as a conglomeration of particles via numerical simulation. Detailed description of the experiment under development at MIT to investigate the synchronization phenomenon is presented.
Detection method for dissociation of multiple-charged ions
Smith, Richard D.; Udseth, Harold R.; Rockwood, Alan L.
1991-01-01
Dissociations of multiple-charged ions are detected and analyzed by charge-separation tandem mass spectrometry. Analyte molecules are ionized to form multiple-charged parent ions. A particular charge parent ion state is selected in a first-stage mass spectrometer and its mass-to-charge ratio (M/Z) is detected to determine its mass and charge. The selected parent ions are then dissociated, each into a plurality of fragments including a set of daughter ions each having a mass of at least one molecular weight and a charge of at least one. Sets of daughter ions resulting from the dissociation of one parent ion (sibling ions) vary in number but typically include two to four ions, one or more multiply-charged. A second stage mass spectrometer detects mass-to-charge ratio (m/z) of the daughter ions and a temporal or temporo-spatial relationship among them. This relationship is used to correlate the daughter ions to determine which (m/z) ratios belong to a set of sibling ions. Values of mass and charge of each of the sibling ions are determined simultaneously from their respective (m/z) ratios such that the sibling ion charges are integers and sum to the parent ion charge.
Lateral charge transport from heavy-ion tracks in integrated circuit chips
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.
1988-01-01
A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.
NMT - A new individual ion counting method: Comparison to a Faraday cup
NASA Astrophysics Data System (ADS)
Burton, Michael; Gorbunov, Boris
2018-03-01
Two sample detectors used to analyze the emission from Gas Chromatography (GC) columns are the Flame Ionization Detector (FID) and the Electron Capture Detector (ECD). Both of these detectors involve ionization of the sample molecules and then measuring electric current in the gas using a Faraday cup. In this paper a newly discovered method of ion counting, Nanotechnology Molecular Tagging (NMT) is tested as a replacement to the Faraday cup in GCs. In this method the effective physical volume of individual molecules is enlarged up to 1 billion times enabling them to be detected by an optical particle counter. It was found that the sensitivity of NMT was considerably greater than the Faraday cup. The background in the NMT was circa 200 ions per cm3, corresponding to an extremely low electric current ∼10-17 A.
Multiple products monitoring as a robust approach for peptide quantification.
Baek, Je-Hyun; Kim, Hokeun; Shin, Byunghee; Yu, Myeong-Hee
2009-07-01
Quantification of target peptides and proteins is crucial for biomarker discovery. Approaches such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) rely on liquid chromatography and mass spectrometric analysis of defined peptide product ions. These methods are not very widespread because the determination of quantifiable product ion using either SRM or MRM is a very time-consuming process. We developed a novel approach for quantifying target peptides without such an arduous process of ion selection. This method is based on monitoring multiple product ions (multiple products monitoring: MpM) from full-range MS2 spectra of a target precursor. The MpM method uses a scoring system that considers both the absolute intensities of product ions and the similarities between the query MS2 spectrum and the reference MS2 spectrum of the target peptide. Compared with conventional approaches, MpM greatly improves sensitivity and selectivity of peptide quantification using an ion-trap mass spectrometer.
Studies of nonlinear interactions between counter-propagating Alfv'en waves in the LAPD
NASA Astrophysics Data System (ADS)
Auerbach, D. W.; Perez, J. C.; Carter, T. A.; Boldyrev, S.
2007-11-01
From a weak turbulence point of view, nonlinear interactions between shear Alfv'en waves are fundamental to the energy cascade in low-frequency magnetic turbulence. We report here on an experimental study of counter-propagating Alfv'en wave interactions in the Large Plasma Device (LAPD) at UCLA. Colliding, orthogonally polarized kinetic Alfv'en waves are generated by two antennae, separated by 5m along the guide magnetic field. Magnetic field and langmuir probes record plasma behavior between the antennae. When each antenna is operated separately, linearly polarized Alfv'en waves propagate in opposite directions along the guide field. When two antennae simultaneously excite counter propagating waves, we observe multiple side bands in the frequency domain, whose amplitude scales quadratically with wave amplitude. In the spatial domain we observe non-linear superposition in the 2D structure of the waves and spectral broadening in the perpendicular wave-number spectrum. This indicates the presence of nonlinear interaction of the counter propagating Alfv'en waves, and opens the possiblity to investigate Alfv'enic plasma turbulence in controlled and reproducible laboratory experiments.
Experimental validation of a coupled neutron-photon inverse radiation transport solver
NASA Astrophysics Data System (ADS)
Mattingly, John; Mitchell, Dean J.; Harding, Lee T.
2011-10-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
NASA Astrophysics Data System (ADS)
Largier, Timothy D.; Cornelius, Chris J.
2017-06-01
This study analyzes the effect of quaternary ammonium homopolymer (AmPP) and ionic and non-ionic random unit copolymerization (AmPP-PP) of Diels-Alder poly(phenylene)s on electrochemical and transport properties, vanadium redox flow battery performance, and material stability. AmPP-PP materials were synthesized with IEC's up to 2.2 meq/g, displaying a carbonate form ion conductivity of 17.3 mS/cm and water uptake of 57.3%. Vanadium ion permeability studies revealed that the random copolymers possess superior charge carrier selectivity. For materials of comparable ion content, at 10 mA/cm2 the random copolymer displayed a 14% increase in coulombic efficiency (CE) corresponding to a 7% increase in energy efficiency. All quaternary ammonium materials displayed ex situ degradation in a 0.5 M V5+ + 5 M H2SO4 solution, with the rate of degradation appearing to increase with IEC. Preliminary studies reveal that the neutralizing counter-ion has a significant effect on VRB performance, proportional to changes in vanadium ion molecular diffusion.
Yamamoto, K; Matsumoto, A
1997-11-01
The solvent extraction of an ion associate of tetrabromoindate(III) ion, InBr(-)(4), with quaternary ammonium cations (Q(+)) has been studied. The extraction constant (K(ex)) were determined for the ion associates of InBr(-)(4) with Q(+) between an aqueous phase and several organic phases (chloroform, chlorobenzene, benzene and toluene). A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the lines, the contribution of a methylene group to log K(ex) was calculated to be 0.91 for the chloroform extraction system and 0.52 for the other extraction systems. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetraalkylammonium cations and the mean difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 1.3. From the extraction constant obtained, the extractability of InBr(-)(4) among metal-halogeno complex anions was in the order TlBr(-)(4) > BiI(-)(4) > AuBr(-)(4) > AuCl(-)(4) > TlCl(-)(4) > InBr(-)(4) > CuCl(-)(2).
A magnesium-induced triplex pre-organizes the SAM-II riboswitch
Roy, Susmita; Lammert, Heiko; Dayie, T. Kwaku; Sanbonmatsu, Karissa Y.
2017-01-01
Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function. PMID:28248966
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Katz, R.; Wilson, J. W.
1998-01-01
An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.
Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean
2016-10-01
To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste
This work investigates the influence of lithium ions on the hydration at 25 °C of two calcium sulfoaluminate (CSA) cements comprising 0 or 10% gypsum. Small concentrations of lithium salts (LiOH, LiNO{sub 3}) accelerate the early hydration of both CSA cements either in paste or in diluted and stirred suspension. The effect of the lithium cation is much stronger than its counter-ion. Hydration is accelerated by an increase in the lithium concentration up to 30 μmol Li/g of the used CSA cement (with a high ye'elimite content), and then levels off. The postulated mechanism relies on a fast precipitation ofmore » amorphous Li-containing Al(OH){sub 3}, which acts as seeds for accelerating the precipitation of amorphous Al(OH){sub 3} that speeds up the whole hydration process. This process seems to be closely related to the one involved in the acceleration of the hydration of calcium aluminate cement by lithium ions.« less
NASA Technical Reports Server (NTRS)
Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.
1987-01-01
An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.
Local Dynamics of Acid- and Ion-containing Copolymer Melts
NASA Astrophysics Data System (ADS)
Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie
Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.
Pastor, María Jesús; Cuerva, Cristián; Campo, José A.; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes
2016-01-01
Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOOR(n)pyH]+ and BF4−, ReO4−, NO3−, CF3SO3−, CuCl42− counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOOR(12)pyH][ReO4] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl42− salts exhibit the best LC properties followed by the ReO4− ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO4−, and CuCl42− families, and for the solid phase in one of the non-mesomorphic Cl− salts. The highest ionic conductivity was found for the smectic mesophase of the ReO4− containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure. PMID:28773485
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.
Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries
Dose, W. M.; Piernas-Munoz, M. J.; Maroni, V. A.; ...
2018-02-09
A silicon-graphite blended anode is paired with a high capacity LiFePO 4 reference/counter electrode to track irreversibility and lithium inventory. The LiFePO 4 electrode provides a reliable, flat potential for dQ dV -1 analysis of Li xSi and Li xC electrochemical reactions. We can relate this electrochemistry to the morphological and physical changes taking place.
Mesenchymal Stem Cell-Based Therapy for Prostate Cancer
2014-09-01
method for incubating hbMSCs with radioactive sodium chromate (51CrO4). Sodium chromate is cell permeable, but following reduction to trivalent ... chromium ion intracellularly it becomes impermeable due to crosslinking to macromolecules. Chromium -labeled cells (1x106) were then injected IV into...animals bearing CWR22 xenografts. Whole tissues were excised at the respective time points and total chromium was measured using a gamma counter, which
Logic Nanocells Within 3-Terminal Ordered Arrays
2007-02-28
DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION STATEMEN A: UNLIMITED AFRL- SR -AR-TR-07-0494 13. SUPPLEMENTARY NOTES 14. ABSTRACT ON SEPARATE SHEET... sputter -coating a 200 nm Au layer. Molecular grafting. Compounds 1, 2 and 3 were synthesized according to literature methods.24 26 The synthesis of 4...neutral (no counter ions ). In order to facilitate molecular conduction, the molecule was designed to be small and contain a continuous Tr-electron system
Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dose, W. M.; Piernas-Munoz, M. J.; Maroni, V. A.
A silicon-graphite blended anode is paired with a high capacity LiFePO 4 reference/counter electrode to track irreversibility and lithium inventory. The LiFePO 4 electrode provides a reliable, flat potential for dQ dV -1 analysis of Li xSi and Li xC electrochemical reactions. We can relate this electrochemistry to the morphological and physical changes taking place.
Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro
2016-10-01
Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. Copyright © 2016 Elsevier B.V. All rights reserved.
Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Mohedano, Ángel F; Rodrigo, Manuel A
2017-12-06
In this work, sono- and photoelectrolysis of synthetic wastewaters polluted with the ionic liquids 1-Butyl-3-methylimidazolium acetate (BmimAc) and chloride (BmimCl) were investigated with diamond anodes. The results were compared to those attained by enhancing bare electrolysis with irradiation by UV light or with the application of high-frequency ultrasound (US). Despite its complex heterocyclic structure, the Bmim + cation was successfully depleted with the three technologies that were tested and was mainly transformed into four different organic intermediates, an inorganic nitrogen species and carbon dioxide. Regardless of the technology that was evaluated, removal of the heterocyclic ring is much less efficient (and much slower) than oxidation of the counter ion. In turn, the counter ion influences the rate of removal of the ionic liquid cation. Thus, the electrolysis and photoelectrolysis of BmimAc are much less efficient than sonoelectrolysis, but their differences become much less important in the case of BmimCl. In this later case, the most efficient technology is photoelectrolysis. This result is directly related to the generation of free radicals in the solution by irradiation of the electrochemical system with UV light, which contributes significantly to the removal of Bmim + . Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khare, Ketan S.; Phelan, Frederick R., Jr.
Specialized applications of single-walled carbon nanotubes (SWCNTs) require an efficient and reliable method to sort these materials into monodisperse fractions with respect to their defining metrics (chirality, length, etc.) while retaining their physical and chemical integrity. A popular method to achieve this goal is to use surfactants that individually disperse SWCNTs in water and then to separate the resulting colloidal mixture into fractions that are enriched in monodisperse SWCNTs. Recently, experiments at NIST have shown that subtle point mutations of chemical groups in bile salt surfactants have a large impact on the hydrodynamic properties of SWCNT-surfactant complexes during ultracentrifugation. These results provide strong motivation for understanding the rich physics underlying the assembly of surfactants around SWCNTs, the structure and dynamics of counter ions around the resulting complex, and propagation of these effects into the first hydration shell. Here, all-atom molecular dynamics simulations are used to investigate the thermodynamics of SWCNT-bile salt surfactant complexes in water with an emphasis on the buoyant characteristics of the SWCNT-surfactant complexes. Simulation results will be presented along with a comparison with experimental data. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.
Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.
Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean
2017-01-18
As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.
High power continuous-wave titanium:sapphire laser
Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.
1993-01-01
A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).
Dicationic Surfactants with Glycine Counter Ions for Oligonucleotide Transportation.
Pietralik, Zuzanna; Skrzypczak, Andrzej; Kozak, Maciej
2016-08-04
Gemini surfactants are good candidates to bind, protect, and deliver nucleic acids. Herein, the concept of amino acids (namely glycine) as counter ions of gemini surfactants for gene therapy application was explored. This study was conducted on DNA and RNA oligomers and two quaternary bis-imidazolium salts, having 2,5-dioxahexane and 2,8-dioxanonane spacer groups. The toxicity level of surfactants was assessed by an MTT assay, and their ability to bind nucleic acids was tested through electrophoresis. The nucleic acid conformation was established based on circular dichroism and infrared spectroscopic analyses. The structures of the formed complexes were characterized by small-angle scattering of synchrotron radiation. Both studied surfactants appear to be suitable for gene therapy; however, although they vary by only three methylene groups in the spacer, they differ in binding ability and toxicity. The tested oligonucleotides maintained their native conformations upon surfactant addition and the studied lipoplexes formed a variety of structures. In systems based on a 2,5-dioxahexane spacer, a hexagonal phase was observed for DNA-surfactant complexes and a micellar phase was dominant with RNA. For the surfactant with a 2,8-dioxanonane spacer group, the primitive cubic phase prevailed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shirayama, Sakae; Uda, Tetsuya
2016-04-01
This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.
Liu-Gonzalez, M; Sanz-Ruiz, F; Chufán, E E; Pedregosa, J C; Borras-Tortonda, J
2001-10-01
In the X-ray crystal structure of the title complex, [Ni(C(4)H(13)N(3))(2)](C(2)H(3)N(4)O(2)S(2))Cl.H(2)O, the coordination polyhedron is composed of non-centrosymmetric [Ni(diethylenetriamine)(2)](2+) cations in which the triamine ligands coordinate to the metal centre as tridentate ligands in a facial position. The Ni(II) ions are linked to six N atoms in an octahedral arrangement, slightly compressed in one extreme. The sulfonamide behaves as a counter-ion instead of as a ligand. Important information about the deprotonated sulfonamide group conformation has been obtained.
Denlinger, Kendra Leahy; Ortiz-Trankina, Lianna; Carr, Preston; Benson, Kingsley; Waddell, Daniel C; Mack, James
2018-01-01
Mechanochemistry is maturing as a discipline and continuing to grow, so it is important to continue understanding the rules governing the system. In a mechanochemical reaction, the reactants are added into a vessel along with one or more grinding balls and the vessel is shaken at high speeds to facilitate a chemical reaction. The dielectric constant of the solvent used in liquid-assisted grinding (LAG) and properly chosen counter-ion pairing increases the percentage conversion of stilbenes in a mechanochemical Wittig reaction. Utilizing stepwise addition/evaporation of ethanol in liquid-assisted grinding also allows for the tuning of the diastereoselectivity in the Wittig reaction.
Introduction to acoustic emission
NASA Technical Reports Server (NTRS)
Possa, G.
1983-01-01
Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.
NASA Astrophysics Data System (ADS)
Richardson, Norman E., IV
Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most widely used neutron detection technologies rely on thermal neutron capture reactions using a moderating material to cause the neutron to lose its energy prior to the detection event. This is necessary because as the fission event occurs, neutrons are emitted carrying high amounts of energy, typically on the order of mega electron volts (MeV). These energetic particles are classified as "fast" neutrons. For detecting the thermal neutrons, the Helium-3 (3He) gas-filled counters are arguably the most widely used technology of neutron detection. 3He counters have been the scientific standard for the nuclear engineering community for several decades, and have earned their place as a reliable technique for the detection of neutrons. However, 3He gas-filled counters have several disadvantages. First, gas-filled counters are not rigid and are sensitive to vibrations. Secondly, gas-filled counters are prone to the count rate limitations due to the physical processes of charge multiplication and transport in the gas medium in the electric field. Lastly, 3He gas-filled counters suffer from a supply shortage of the 3He isotope. As it is stated in [3], this shortage is created by the new demand for Helium-3 due to the deployment of neutron detectors at the borders after the 9/11 attack to help secure the nation against smuggled nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique using the list mode was employed for two detectors operating on the single time scale. This was necessary as no fission source was available to be used as a fast neutron multiplicity source. The detection technology was tested using isotopic photon sources and a plutonium-beryllium neutron source. It was shown that the system can be effectively used for fast-neutron multiplicity measurements, through a "proof-of-concept" model, enabling a shorter width of the time coincidence window compared to the 3He counters. This result opens prospects to reduce the false coincidence rates in the neutron multiplicity measurements, thus increasing the sensitivity of nuclear material detection.
Zuo, Kuichang; Yuan, Lulu; Wei, Jincheng; Liang, Peng; Huang, Xia
2013-10-01
Mixed ion-exchange resins packed microbial desalination cell (R-MDC) could stabilize the internal resistance, however, the impacts of multiple ions on R-MDC performance was unclear. This study investigated the desalination performance, multiple ions migration behaviors and their impacts on R-MDCs fed with salt solution containing multiple anions and cations. Results showed that R-MDC removed multiple anions better than multiple cations with desalination efficiency of 99% (effluent conductivity <0.05 ms/cm) at hydraulic retention time of 50 h. Competitive migration order was SO4(2-)>NO3(-)>Cl(-) for anions and Ca(2+)≈Mg(2+)>NH4(+)>Na(+) for cations, jointly affected by both their molar conductivity and exchange selectivity on resins. After long-term operation, the existence of higher concentration Ca(2+) and Mg(2+) caused the electric conductivity of mixed resins decrease and scaling on the surface of cation-exchange membrane adjoined with cathode chamber, suggesting that R-MDC would be more suitable for desalination of water with lower hardness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Marolt, Gregor; Pihlar, Boris
2015-01-01
Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Auna L., E-mail: mosera@fusion.gat.com; Hsu, Scott C., E-mail: scotthsu@lanl.gov
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional andmore » the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBeth, R; Elder, D; Kesner, A
2016-06-15
Purpose: Y-90 Selective Internal Radiation Therapy (SIRT) is used to treat liver tumors, and by nature has variability in the percent of the intended dose that is actually delivered. To determine the quality of the administration, pre and post activity measurements are taken, and used to infer percent delivered. Vendor specifications indicate the use of an ion chamber to take these measurements. In our work, we investigated the accuracy of ion chambers, and compared them to other detector systems. Methods: We have built phantoms, phantom holders, and protocols, which allow us to measure our Y90 doses with varying apparatuses: amore » dose calibrator, a Geiger-counter, an ion chamber, a crystal based thyroid probe, and a gamma camera. We have set up a system that has enabled us to gather data by measuring clinical Y90 doses as they are used in the clinic using all of the instrumental methods. Five initial doses (25 measurements/acquisitions) have been taken at the time of this abstract submission. Results: Our initial results show that measurements acquired using scintillation based detectors (thyroid probe and gamma camera) correlate better with the gold standard (i.e. the dose calibrator). Pearson correlations between the dose calibrator measurements and the GM counter, Ion chamber, thyroid probe, and gamma camera were found to be 0.88, 0.83, 0.98, 0.99, respectively. More acquisitions and analysis are planned to determine the precision of the systems, as well as optimal energy window settings. Conclusion: It is likely that current standard practice can be improved using scintillation crystal based detectors. Such systems are more sensitive, can integrate signal, and can use energy discrimination. Furthermore, phantoms can be built to integrate with probe and gamma camera systems that are robust and provide reproducibility. Future work will include expanded acquisition and analysis.« less
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-11-01
We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.
NASA Astrophysics Data System (ADS)
Mazaletskiy, L. A.; Lebedev, M. E.; Mironenko, A. A.; Naumov, V. V.; Novozhilova, A. V.; Fedorov, I. S.; Rudy, A. S.
2017-11-01
Results of studies of the solid electrolyte effect on capacitance of thin-film electrodes on the basis of Si-O-Al and VxOy nanocomposites are presented. The studies were carried out by comparing the charge-discharge characteristics of two pairs of the identical electrodes, one of which was covered by LiPON film, within prototypes with two lithium electrodes - the counter and the reference electrode.
15. Detail, lower chord connection point on downstream side, showing ...
15. Detail, lower chord connection point on downstream side, showing pinned connection of lower chord eye bars, laced vertical compression member, diagonal eye bar tension members, turnbuckled diagonal counters, and floor beam. Note also timber floor stringers supported by floor beam, and exposed ends of timber deck members visible at left above lower chord eye bar. View to northwest. - Dry Creek Bridge, Spanning Dry Creek at Cook Road, Ione, Amador County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariella, R
The separation of actinides and other elements of interest for nuclear forensics and threat reduction is currently performed using decades-old chemistries and ion-exchange columns. We propose to determine the technical feasibility of a novel method for separating actinide ions in solution. This method is based upon isotachophoresis (ITP), which has been applied in the purification of pharmaceuticals and other biochemical applications. This technique has the potential to separate inorganic ions more effectively than existing methods, which is key to analyzing very small samples. We will perform a quantitative assessment of the effectiveness of specific isotachophoretic approaches including predicting the physicalmore » and chemical properties, such as ion mobility, of inorganic ions under specific solvent conditions using a combination of ab initio calculations and semi-empirical methods. We expect to obtain a thorough understanding of the analytical systems parameters under which ITP is most effective for the separation of inorganic samples, including the influence of the double layer surrounding actinide ions, the Debye length for different ions and ion complexes, and Debye-Hueckel limits. Inorganic separations are key to nuclear forensics for countering terrorism and nuclear proliferation. If found to be feasible and potentially superior to currently used separation approaches, ITP could provide the conceptual basis for an improved means to separate samples of nuclear explosion debris for nuclear forensic analysis, in support of the Laboratory's missions in homeland and national security.« less
Saez Vergara, J C; Romero Gutiérrez, A M; Rodriguez Jiménez, R; Dominguez-Mompell Román, R
2004-01-01
The results from 2 years (2001-2002) of experimental measurements of in-board radiation doses received at IBERIA commercial flights are presented. The routes studied cover the most significant destinations and provide a good estimate of the route doses as required by the new Spanish regulations on air crew radiation protection. Details on the experimental procedures and calibration methods are given. The experimental measurements from the different instruments (Tissue Equivalent Proportional Counter and the combination of a high pressure ion chamber and a high-energy neutron compensated rem-counter) and their comparison with the predictions from some route-dose codes (CARI-6, EPCARD 3.2) are discussed. In contrast with the already published data, which are mainly focused on North latitudes over parallel 50, many of the data presented in this work have been obtained for routes from Spain to Central and South America.
Ion Beam Characterization of a NEXT Multi-Thruster Array Plume
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Foster, John E.; Patterson, Michael J.; Diaz, Esther M.; Van Noord, Jonathan L.; McEwen, Heather K.
2006-01-01
Three operational, engineering model, 7-kW ion thrusters and one instrumented, dormant thruster were installed in a cluster array in a large vacuum facility at NASA Glenn Research Center. A series of engineering demonstration tests were performed to evaluate the system performance impacts of operating various multiple-thruster configurations in an array. A suite of diagnostics was installed to investigate multiple-thruster operation impact on thruster performance and life, thermal interactions, and alternative system modes and architectures. The ion beam characterization included measuring ion current density profiles and ion energy distribution with Faraday probes and retarding potential analyzers, respectively. This report focuses on the ion beam characterization during single thruster operation, multiple thruster operation, various neutralizer configurations, and thruster gimbal articulation. Comparison of beam profiles collected during single and multiple thruster operation demonstrated the utility of superimposing single engine beam profiles to predict multi-thruster beam profiles. High energy ions were detected in the region 45 off the thruster axis, independent of thruster power, number of operating thrusters, and facility background pressure, which indicated that the most probable ion energy was not effected by multiple-thruster operation. There were no significant changes to the beam profiles collected during alternate thruster-neutralizer configurations, therefore supporting the viability of alternative system configuration options. Articulation of one thruster shifted its beam profile, whereas the beam profile of a stationary thruster nearby did not change, indicating there were no beam interactions which was consistent with the behavior of a collisionless beam expansion.
Multiple U.S. Agencies Provided Billions of Dollars to Train and Equip Foreign Police Forces
2011-04-27
Homeland Defense and Foreign Operations Committee on Oversight and Government Reform House of Representatives Subject: Multiple U.S. Agencies...its emphasis on training and equipping foreign police as a means of supporting a wide range of U.S. foreign- policy goals, including countering...reported on these issues in 1992.1 In response to your request, this report provides estimates of the funding the U.S. government provided for
Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.
2016-05-15
While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution.more » Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.« less
Raman scattering from phonons and magnons in magnetic semiconductors, MnTe
NASA Technical Reports Server (NTRS)
Mobasser, S. R.; Hart, T. R.
1985-01-01
Comparisons are made between theoretical and experimental data on laser Raman scattering by phonons and two-magnons in antiferromagnetic and paramagnetic phases of MnTe. The study was performed specifically to characterize the magnetic exchange coupling constants of the Mn ions in the samples. Crystal MnTe samples were bombarded with an Ar ion laser beam to obtain spectrometer and photon counter data. One E(2g) phonon with a room temperature energy of 178/cm and a two-magnon peak of 360/cm were observed in the Raman spectrum. A spin wave dispersion relation is presented for the spectrum. Finally, a Monte Carlo technique was used to calculate the two-magnon joint density of states that best fits the experimental data.
Dye-sensitized solar cells using ionic liquids as redox mediator
NASA Astrophysics Data System (ADS)
Denizalti, Serpil; Ali, Abdulrahman Khalaf; Ela, Çağatay; Ekmekci, Mesut; Erten-Ela, Sule
2018-01-01
In this research, the influence of ionic liquid on the conversion efficiency, incident photons to converted electrons (IPCE) and performance of fabricated solar cell was investigated using various ionic liquids. Ionic liquids with different substituents and ions were prepared and used as redox mediators in dye-sensitized solar cells (DSSCs). Ionic liquids were characterized 1H and 13C NMR spectra. We practically investigated the performance of ionic liquid salts were used as the mobile ions and found that the efficiencies of DSSCs were increased up to 40% comparing commercial electrolyte system. The ionic liquid compounds were incorporated in DSSCs to obtain an efficient charge transfer, solving the corrosion problem of platinum layer in counter electrode compared to commercial electrolyte.
A versatile electrophoresis system for the analysis of high- and low-molecular-weight proteins
Tastet, Christophe; Lescuyer, Pierre; Diemer, Hélène; Luche, Sylvie; van Dorsselaer, Alain; Rabilloud, Thierry
2003-01-01
A new, versatile, multiphasic buffer system for high resolution sodium dodecyl sulfatepolyacrylamide gel electrophoresis of proteins in the relative molecular weight Mw range of 300,000-3000 Da is described. The system, based on the theory of multiphasic zone electrophoresis, allows complete stacking and destacking of proteins in the above Mw range. The buffer system uses taurine and chloride as trailing and leading ion, respectively, and Tris, at a pH close to its pKa, as the buffering counter ion. Coupled with limited variation in the acrylamide concentration, this electrophoresis system allows to tailor the resolution in the 6–200 kDa Mw range, with minimal difficulties in the post electrophoretic identification processes. PMID:12783456
Structure and mechanism of Zn2+-transporting P-type ATPases
Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele; Autzen, Henriette Elisabeth; Andersson, Magnus; Klymchuk, Tetyana; Nielsen, Anna Marie; Rees, Douglas C.; Nissen, Poul; Gourdon, Pontus
2014-01-01
Zinc is an essential micronutrient for all living organisms, required for signaling and proper function of a range of proteins involved in e.g. DNA-binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements2,3. Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.Pi) of ZntA from Shigella sonnei, determined at 3.2 and 2.7 Å resolution, respectively. The structures reveal a similar fold as the Cu+-ATPases with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including Cys392, Cys394 and Asp714. The pathway closes in the E2.Pi state where Asp714 interacts with the conserved Lys693, which possibly stimulates Zn2+ release as a built-in counter-ion, as also proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter-transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases, and show at the same time structural features of the extracellular release pathway that resemble the PII-type ATPases such as the sarco(endo)plasmic reticulum Ca2+-ATPase4,5 (SERCA) and Na+,K+-ATPase6. PMID:25132545
SUNWARD PROPAGATING ALFVÉN WAVES IN ASSOCIATION WITH SUNWARD DRIFTING PROTON BEAMS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiansen; Pei, Zhongtian; Wang, Linghua
Using measurements from the WIND spacecraft, here we report the observation of sunward propagating Alfvén waves (AWs) in solar wind that is magnetically disconnected from the Earth's bow shock. In the sunward magnetic field sector, we find a period lasting for more than three days in which there existed (during most time intervals) a negative correlation between the flow velocity and magnetic field fluctuations, thus indicating that the related AWs are mainly propagating sunward. Simultaneous observations of counter-streaming suprathermal electrons suggest that these sunward AWs may not simply be due to the deflection of an open magnetic field line. Moreover,more » no interplanetary coronal mass ejection appears to be associated with the counter-streaming suprathermal electrons. As the scale goes from the magnetohydrodynamic down to the ion kinetic regime, the wave vector of magnetic fluctuations usually becomes more orthogonal to the mean magnetic field direction, and the fluctuations become increasingly compressible, which are both features consistent with quasi-perpendicular kinetic AWs. However, in the case studied here, we find clear signatures of quasi-parallel sunward propagating ion-cyclotron waves. Concurrently, the solar wind proton velocity distribution reveals a sunward field-aligned beam that drifts at about the local Alfvén speed. This beam is found to run in the opposite direction of the normally observed (anti-sunward) proton beam, and is apparently associated with sunward propagating Alfvén/ion-cyclotron waves. The results and conclusions of this study enrich our knowledge of solar wind turbulence and foster our understanding of proton heating and acceleration within a complex magnetic field geometry.« less
NASA Astrophysics Data System (ADS)
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
Multiple Ion Implantation Effects on Wear and Wet Ability of Polyethylene Based Polymers
NASA Astrophysics Data System (ADS)
Torrisi, L.; Visco, A. M.; Campo, N.
2004-10-01
Polyethylene based polymers were ion implanted with multiple irradiations of different ions (N+, Ar+ and Kr+) at energies between 30 keV and 300 keV and doses ranging between 1013 and 1016 ions/cm2. The ion implantation dehydrogenises the polyethylene inducing cross-link effects in the residual polymer carbons. At high doses the irradiated surface show properties similar to graphite surfaces. The depth of the modified layers depends on the ion range in polyethylene at the incident ion energy. The chemical modification depends on the implanted doses and on the specie of the incident ions. A "pin-on-disc" machine was employed to measure the polymer wear against AISI-316 L stainless steel. A "contact-angle-test" machine was employed to measure the wet ability of the polymer surface for 1 μl pure water drop. Measurements demonstrate that the multiple ion implantation treatments decrease the surface wear and the surface wetting and produce a more resistant polymer surface. The properties of the treated surfaces improves the polymer functionality for many bio-medical applications, such as those relative to the polyethylene friction discs employed in knee and hip prosthesis joints. The possibility to use multiply ion implantations of polymers with traditional ion implanters and with laser ion sources producing plasmas is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K.
2016-01-15
Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.
The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter.
Cater, Rosemary J; Ryan, Renae M; Vandenberg, Robert J
2016-03-01
Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl(-)) channels. The EAATs couple the transport of glutamate to the co-transport of three Na(+) ions and one H(+) ion into the cell, and the counter-transport of one K(+) ion out of the cell. The EAAT Cl(-) channel is activated by the binding of glutamate and Na(+), but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl(-) permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl(-) permeation and the mechanisms that underlie their split personality.
Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy
2015-12-10
Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Huanwen; Guan, Cao; Wang, Xuefeng; Fan, Hong Jin
2015-03-25
A novel hybrid Li-ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li-ion battery type anode (TiO(2) nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free-standing TiO(2) nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li-ion capacitor allows rapid electron and ion transport in the non-aqueous electrolyte. Within a voltage range of 0.0-3.8 V, a high energy of 82 Wh kg(-1) is achieved at a power density of 570 W kg(-1). Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg(-1) can be retained. These results demonstrate that the TiO(2) NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li-ion batteries, which makes it a promising electrochemical power source. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Brinca, Armando L.; Tsurutani, Bruce T.
1989-01-01
The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.
High strength fused silica flexures manufactured by femtosecond laser
NASA Astrophysics Data System (ADS)
Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe
2009-02-01
Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.
Influence of Disorder on DNA Conductance
NASA Technical Reports Server (NTRS)
Adessi, Christophe; Anantram, M. P.; Biegel, Bryan A. (Technical Monitor)
2003-01-01
Disorder along a DNA strand due to non uniformity associated with the counter ion type and location, and in rise and twist are investigated using density functional theory. We then model the conductance through a poly(G) DNA strand by including the influence of disorder. We show that the conductance drops by a few orders of magnitude between typical lengths of 10 and 100 nm. Such a decrease occurs with on-site potential disorder that is larger than 100 meV.
Tris-base buffer: a promising new inhibitor for cancer progression and metastasis.
Ibrahim-Hashim, Arig; Abrahams, Dominique; Enriquez-Navas, Pedro M; Luddy, Kim; Gatenby, Robert A; Gillies, Robert J
2017-07-01
Neutralizing tumor external acidity with oral buffers has proven effective for the prevention and inhibition of metastasis in several cancer mouse models. Solid tumors are highly acidic as a result of high glycolysis combined with an inadequate blood supply. Our prior work has shown that sodium bicarbonate, imidazole, and free-base (but not protonated) lysine are effective in reducing tumor progression and metastasis. However, a concern in translating these results to clinic has been the presence of counter ions and their potential undesirable side effects (e.g., hypernatremia). In this work, we investigate tris(hydroxymethyl)aminomethane, (THAM or Tris), a primary amine with no counter ion, for its effects on metastasis and progression in prostate and pancreatic cancer in vivo models using MRI and bioluminescence imaging. At an ad lib concentration of 200 mmol/L, Tris effectively inhibited metastasis in both models and furthermore led to a decrease in the expression of the major glucose transporter, GLUT-1. Our results also showed that Tris-base buffer (pH 8.4) had no overt toxicity to C3H mice even at higher doses (400 mmol/L). In conclusion, we have developed a novel therapeutic approach to manipulate tumor extracellular pH (pHe) that could be readily adapted to a clinical trial. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Arnould, Audrey; Perez, Adrian A; Gaillard, Cédric; Douliez, Jean-Paul; Cousin, Fabrice; Santiago, Liliana G; Zemb, Thomas; Anton, Marc; Fameau, Anne-Laure
2015-05-01
Salt-free catanionic systems based on fatty acids exhibit a broad polymorphism by simply tuning the molar ratio between the two components. For fatty acid combined with organic amino counter-ions, very few data are available on the phase behavior obtained as a function of the molar ratio between the counter-ion and the fatty acid. We investigated the choline hydroxide/myristic acid system by varying the molar ratio, R=n(choline hydroxide)/n(myristic acid), and the temperature. Myristic acid ionization state was determined by coupling pH, conductivity and infra-red spectroscopy measurements. Self-assemblies were characterized by small angle neutron scattering and microscopy experiments. Self-assembly thermal behavior was investigated by differential scanning calorimetry, wide angle X-ray scattering and nuclear magnetic resonance. For R<1, ionized and protonated myristic acid molecules coexisted leading to the formation of facetted self-assemblies and lamellar phases. The melting process between the gel and the fluid state of these bilayers induced a structural change from facetted or lamellar objects to spherical vesicles. For R>1, myristic acid molecules were ionized and formed spherical micelles. Our study highlights that both R and temperature are two key parameters to finely control the self-assembly structure formed by myristic acid in the presence of choline hydroxide. Copyright © 2015 Elsevier Inc. All rights reserved.
CHICO2, a two-dimensional pixelated parallel-plate avalanche counter
Wu, C. Y.; Cline, D.; Hayes, A.; ...
2016-01-27
CHICO 2 (Compact Heavy Ion COunter), is a large solid-angle, charged-particle detector array developed to provide both θ and Φ angle resolutions matching those of GRETINA (Gamma-Ray Energy Tracking In-beam Nuclear Array). CHICO 2 was successfully tested at the Argonne National Laboratory where it was fielded as an auxiliary detector with GRETINA for γ-ray spectroscopic studies of nuclei using a 252Cf spontaneous fission source, stable beams, and radioactive beams from CARIBU. In field tests of the 72,76Ge beams on a 0.5 mg/cm 2208Pb target at the sub-barrier energy, CHICO 2 provided charged-particle angle resolutions (FWHM) of 1.55° in θ andmore » 2.47° in Φ. This achieves the design goal for both coordinates assuming a beam-spot size (>3 mm) and the target thickness (>0.5 mg/cm 2). The combined angular resolution of GRETINA/CHICO 2 resulted in a Doppler-shift corrected energy resolution of 0.60% for 1 MeV coincident de-excitation γ-rays. This is nearly a factor of two improvements in resolution and sensitivity compared to Gammasphere/CHICO. Kinematically-coincident detection of scattered ions by CHICO 2 still maintains the mass resolution (ΔM/M) of ~5% that enhanced isolation of scattered weak beams of interest from scattered contaminant beams.« less
Retention behavior of long chain quaternary ammonium homologues and related nitroso-alkymethylamines
Abidi, S.L.
1985-01-01
Several chromatographic methods have been utilized to study the retentionbehavior of a homologous series of n-alkylbenzyldimethylammonium chlorides (ABDAC) and the corresponding nitroso-n-alkylmethylamines (NAMA). Linear correlation of the logarithmic capacity factor (k') with the number of carbons in the alkyl chain provides useful information on both gas chromatographic (GC) and high-performance liquid chromatographich (HPLC) retention parameters of unknown components. Under all conditions empolyed, GC methodology has proved effective in achieving complete resolution of the homologous mixture of NMA despite its obvious inadequacy in the separation of E-Z configurational isomers. Conversely, normal-phase HPLC on silica demonstrates that the selectivity (a) value for an E-Z pair is much higher than that for an adjacent homologous pair. In the reversed-phase HPLC study, three different silica-based column systems were examined under various mobile phase conditions. The extent of variation in k' was found to be a function of the organic modifier, counter-ion concentration, eluent pH, nature of counter-ion, and the polarity and type of stationary phase. The k'—[NaClO4] profiles showed similar trends between the ABDAC and the NAMA series, supporting the dipolar electronic structures of the latter compounds. Mobile phase and stationary phase effects on component separation are described. The methodology presented establishes the utility of HPLC separation techniques as versatile analytical tools for practical application.
A complete carbon counter electrode for high performance quasi solid state dye sensitized solar cell
NASA Astrophysics Data System (ADS)
Arbab, Alvira Ayoub; Peerzada, Mazhar Hussain; Sahito, Iftikhar Ali; Jeong, Sung Hoon
2017-03-01
The proposed research describes the design and fabrication of a quasi-solid state dye sensitized solar cells (Q-DSSCs) with a complete carbon based counter electrode (CC-CE) and gel infused membrane electrolyte. For CE, the platinized fluorinated tin oxide glass (Pt/FTO) was replaced by the soft cationic functioned multiwall carbon nanotubes (SCF-MWCNT) catalytic layer coated on woven carbon fiber fabric (CFF) prepared on handloom by interlacing of carbon filament tapes. SCF-MWCNT were synthesized by functionalization of cationised lipase from Candida Ragusa. Cationised enzyme solution was prepared at pH ∼3 by using acetic acid. The cationic enzyme functionalization of MWCNT causes the minimum damage to the tubular morphology and assist in fast anchoring of negative iodide ions present in membrane electrolyte. The high electrocatalytic activity and low charge transfer resistance (RCT = 2.12 Ω) of our proposed system of CC-CE shows that the woven CFF coated with cationised lipase treated carbon nanotubes enriched with positive surface ions. The Q-DSSCs fabricated with CC-CE and 5 wt% PEO gel infused PVDF-HFP membrane electrolyte exhibit power conversion efficiency of 8.90% under masking. Our suggested low cost and highly efficient system of CC-CE helps the proposed quasi-solid state DSSCs structure to stand out as sustainable next generation solar cells.
Waves generated in the plasma plume of helicon magnetic nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen
2013-03-15
Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less
Approximation of super-ions for single-file diffusion of multiple ions through narrow pores.
Kharkyanen, Valery N; Yesylevskyy, Semen O; Berezetskaya, Natalia M
2010-11-01
The general theory of the single-file multiparticle diffusion in the narrow pores could be greatly simplified in the case of inverted bell-like shape of the single-particle energy profile, which is often observed in biological ion channels. There is a narrow and deep groove in the energy landscape of multiple interacting ions in such profiles, which corresponds to the pre-defined optimal conduction pathway in the configurational space. If such groove exists, the motion of multiple ions can be reduced to the motion of single quasiparticle, called the superion, which moves in one-dimensional effective potential. The concept of the superions dramatically reduces the computational complexity of the problem and provides very clear physical interpretation of conduction phenomena in the narrow pores.
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...
2016-11-05
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
Interaction of NaOH solutions with silica surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.
Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Furthermore, across the NaOH concentrations (0.01 M – 1.0 M), ~50% of the Na + ions were concentrated in the surface region, developing silica surface charges between –0.01 C/m 2 (0.01 M NaOH) and –0.76 C/m 2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate,more » and tridentate configurations and two additional structures, with Na + ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na + ions by bridging oxygen atoms indicates partial or complete incorporation of Na + ions into the silica surface. Residence time analysis identified that Na + ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na + ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na + adsorption and lifetimes have implications for the stability of silica surfaces.« less
Interaction of NaOH solutions with silica surfaces
Rimsza, Jessica M.; Jones, Reese E.; Criscenti, Louise J.
2018-01-16
Sodium adsorption on silica surfaces depends on the solution counter-ion. Here, we use NaOH solutions to investigate basic environments. Sodium adsorption on hydroxylated silica surfaces from NaOH solutions were investigated through molecular dynamics with a dissociative force field, allowing for the development of secondary molecular species. Furthermore, across the NaOH concentrations (0.01 M – 1.0 M), ~50% of the Na + ions were concentrated in the surface region, developing silica surface charges between –0.01 C/m 2 (0.01 M NaOH) and –0.76 C/m 2 (1.0 M NaOH) due to surface site deprotonation. Five inner-sphere adsorption complexes were identified, including monodentate, bidentate,more » and tridentate configurations and two additional structures, with Na + ions coordinated by bridging oxygen and hydroxyl groups or water molecules. Coordination of Na + ions by bridging oxygen atoms indicates partial or complete incorporation of Na + ions into the silica surface. Residence time analysis identified that Na + ions coordinated by bridging oxygen atoms stayed adsorbed onto the surface four times longer than the mono/bi/tridentate species, indicating formation of relatively stable and persistent Na + ion adsorption structures. Such inner-sphere complexes form only at NaOH concentrations of > 0.5 M. Na + adsorption and lifetimes have implications for the stability of silica surfaces.« less
NASA Astrophysics Data System (ADS)
Zhang, Q.; Drake, J. F.; Swisdak, M.
2017-12-01
How ions and electrons are energized in magnetic reconnection outflows is an essential topic throughout the heliosphere. Here we carry out guide field PIC Riemann simulations to explore the ion and electron energization mechanisms far downstream of the x-line. Riemann simulations, with their simple magnetic geometry, facilitate the study of the reconnection outflow far downstream of the x-line in much more detail than is possible with conventional reconnection simulations. We find that the ions get accelerated at rotational discontinuities, counter stream, and give rise to two slow shocks. We demonstrate that the energization mechanism at the slow shocks is essentially the same as that of parallel electrostatic shocks. Also, the electron confining electric potential at the slow shocks is driven by the counterstreaming beams, which tend to break the quasi-neutrality. Based on this picture, we build a kinetic model to self consistently predict the downstream ion and electron temperatures. Additional explorations using parallel shock simulations also imply that in a very low beta(0.001 0.01 for a modest guide field) regime, electron energization will be insignificant compared to the ion energization. Our model and the parallel shock simulations might be used as simple tools to understand and estimate the energization of ions and electrons and the energy partition far downstream of the x-line.
Multiple ion beam irradiation for the study of radiation damage in materials
NASA Astrophysics Data System (ADS)
Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.
2017-12-01
The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.
THE EFFECTS OF CURRENT FLOW ON BIOELECTRIC POTENTIAL
Blinks, L. R.
1936-01-01
String galvanometer records show the effect of current flow upon the bioelectric potential of Nitella cells. Three classes of effects are distinguished. 1. Counter E.M.F'S, due either to static or polarization capacity, probably the latter. These account for the high effective resistance of the cells. They record as symmetrical charge and discharge curves, which are similar for currents passing inward or outward across the protoplasm, and increase in magnitude with increasing current density. The normal positive bioelectric potential may be increased by inward currents some 100 or 200 mv., or to a total of 300 to 400 mv. The regular decrease with outward current flow is much less (40 to 50 mv.) since larger outward currents produce the next characteristic effect. 2. Stimulation. This occurs with outward currents of a density which varies somewhat from cell to cell, but is often between 1 and 2 µa/cm.2 of cell surface. At this threshold a regular counter E.M.F. starts to develop but passes over with an inflection into a rapid decrease or even disappearance of positive P.D., in a sigmoid curve with a cusp near its apex. If the current is stopped early in the curve regular depolarization occurs, but if continued a little longer beyond the first inflection, stimulation goes on to completion even though the current is then stopped. This is the "action current" or negative variation which is self propagated down the cell. During the most profound depression of P.D. in stimulation, current flow produces little or no counter E.M.F., the resistance of the cell being purely ohmic and very low. Then as the P.D. begins to recover, after a second or two, counter E.M.F. also reappears, both becoming nearly normal in 10 or 15 seconds. The threshold for further stimulation remains enhanced for some time, successively larger current densities being needed to stimulate after each action current. The recovery process is also powerful enough to occur even though the original stimulating outward current continues to flow during the entire negative variation; recovery is slightly slower in this case however. Stimulation may be produced at the break of large inward currents, doubtless by discharge of the enhanced positive P.D. (polarization). 3. Restorative Effects.—The flow of inward current during a negative variation somewhat speeds up recovery. This effect is still more strikingly shown in cells exposed to KCl solutions, which may be regarded as causing "permanent stimulation" by inhibiting recovery from a negative variation. Small currents in either direction now produce no counter E.M.F., so that the effective resistance of the cells is very low. With inward currents at a threshold density of some 10 to 20 µa/cm.2, however, there is a counter E.M.F. produced, which builds up in a sigmoid curve to some 100 to 200 mv. positive P.D. This usually shows a marked cusp and then fluctuates irregularly during current flow, falling off abruptly when the current is stopped. Further increases of current density produce this P.D. more rapidly, while decreased densities again cease to be effective below a certain threshold. The effects in Nitella are compared with those in Valonia and Halicystis, which display many of the same phenomena under proper conditions. It is suggested that the regular counter E.M.F.'S (polarizations) are due to the presence of an intact surface film or other structure offering differential hindrance to ionic passage. Small currents do not affect this structure, but it is possibly altered or destroyed by large outward currents, restored by large inward currents. Mechanisms which might accomplish the destruction and restoration are discussed. These include changes of acidity by differential migration of H ion (membrane "electrolysis"); movement of inorganic ions such as potassium; movement of organic ions, (such as Osterhout's substance R), or the radicals (such as fatty acid) of the surface film itself. Although no decision can be yet made between these, much evidence indicates that inward currents increase acidity in some critical part of the protoplasm, while outward ones decrease acidity. PMID:19872991
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji
2011-04-01
Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.
Shared performance monitor in a multiprocessor system
Chiu, George; Gara, Alan G.; Salapura, Valentina
2012-07-24
A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.
UGV Interoperability Profile (IOP) - Overarching Profile JAUS Profiling Rules, Version 0
2011-12-21
negative values indicate pivot counter clockwise. - Multi- axle steering vehicles are not supported. Acceleration Limit A SetAcceleration limit...obtained from a Global Positioning Sensor (GPS), but may also be a combination of multiple sensor modalities that lead to a global pose referenced
Medium dependent dual turn on/turn off fluorescence sensing for Cu2 + ions using AMI/SDS assemblies
NASA Astrophysics Data System (ADS)
Gujar, Varsha B.; Ottoor, Divya
2017-02-01
Behavior of Amiloride (AMI) as a metal ion sensor in anionic surfactant assemblies of varying concentrations at different pH is depicted in this work. From a non-sensor fluorophore, AMI has been transformed in to a tunable fluorosensor for Cu2 + ions in various SDS concentrations. At premicellar concentration of SDS, ion-pair complex is expected to be formed between AMI and SDS due to electrostatic interactions between them. However at CMC concentrations of SDS, fluorescence intensity of AMI is greatly enhanced with red shift in emission, due to the incorporation of AMI molecule in the hydrophobic micellar interface. The behavior of metal sensing by AMI-SDS assemblies gives rise to several interesting observations. Micellation of SDS has been greatly enhanced by increasing copper ion concentrations, as these counter ions screens the charge on monomers of SDS which lead to the aggregation at premicellar concentrations only. Concentrations and pH dependent discrete trends of interactions between SDS-AMI and SDS-Cu2 + ions, have given tunable fluorescence responses (fluorescence turn on/turn off) of AMI for added Cu2 + ions. The electrostatic interaction between the metal cations and the anionic surfactants is the driving force for bringing the metal ions near to the vicinity of micelle where AMI resides. Thus, a comprehensive understanding of the mechanism related to the 'turn on-turn off' fluorescence response of AMI with respect to pH and SDS concentration for effective Cu2 + ion sensing is illustrated in this work.
Suicidal and homicidal behaviors related to dextromethorphan abuse in a middle-aged woman.
Modi, Dhruv; Bhalavat, Ravikumar; Patterson, James C
2013-01-01
Over-the-counter medications available without prescriptions are generally viewed safe for public consumption. However, when used in excess, these medications can lead to adverse consequences. There are multiple over-the-counter medications that have potential for abuse, and dextromethorphan is one such drug. We describe a case of a middle-aged woman who presented to the psychiatric emergency service after recent use of excessive amounts of dextromethorphan. The patient had developed severe psychotic symptoms and had attempted to kill both herself and her relative. This case highlights the importance of careful reviewing of both prescribed and nonprescribed medications that are being used by patients, especially in the emergency care setting.
Measurement of the 8Li(α,n)11B reaction and astrophysical implications
NASA Astrophysics Data System (ADS)
Mizoi, Y.; Fukuda, T.; Matsuyama, Y.; Miyachi, T.; Miyatake, H.; Aoi, N.; Fukuda, N.; Notani, M.; Watanabe, Y. X.; Yoneda, K.; Ishihara, M.; Sakurai, H.; Watanabe, Y.; Yoshida, A.
2000-12-01
We have measured the 8Li(α,n)11B reaction directly and exclusively, and determined the total cross sections in the center-of-mass energy of 1.5-7.0 MeV, by using a new-type gas counter, multiple-sampling and tracking proportional chamber (MSTPC), and neutron counters. This experiment was performed in the condition of inverse kinematics. The 8Li beam was produced by the RIKEN projectile-fragment separator, and injected into the MSTPC filled with 4He gas, which worked as a detector gas and served as a target. The reaction cross section obtained in the present exclusive measurement is about half of the one obtained in previous inclusive measurements.
High resolution multiple excitation spot optical microscopy
NASA Astrophysics Data System (ADS)
Dilipkumar, Shilpa; Mondal, Partha Pratim
2011-06-01
We propose fundamental improvements in three-dimensional (3D) resolution of multiple excitation spot optical microscopy. The excitation point spread function (PSF) is generated by two interfering counter-propagating depth-of-focus beams along the optical axis. Detection PSF is obtained by coherently interfering the emitted fluorescent light (collected by both the objectives) at the detector. System PSF shows upto 14-fold reduction in focal volume as compared to confocal, and almost 2-fold improvement in lateral resolution. Proposed PSF has the ability to simultaneously excite multiple 3D-spots of sub-femtoliter volume. Potential applications are in fluorescence microscopy and nanobioimaging.
A new look at the Lake Superior biomass size spectrum
We synthesized data from multiple sampling programs and years to describe the Lake Superior pelagic biomass size structure for two time periods separated by 5 years. The data consisted of water analyzed on a Coulter counter for algae, in situ measurements with a laser optical pl...
(En)Countering Language Ideologies: Language Policing in the Ideospace of Facebook
ERIC Educational Resources Information Center
Phyak, Prem
2015-01-01
This paper takes language policing as an ideospace, a space where multiple language ideologies are constructed and contested. Drawing on critical language policy and linguistic anthropology, it unravels how participants in a Nepalese Facebook group construct and reproduce language ideologies that both challenge and impose homogeneity and…
A Study of Child Variance, Volume 1: Conceptual Models; Conceptual Project in Emotional Disturbance.
ERIC Educational Resources Information Center
Rhodes, William C.; Tracy, Michael L.
Presented are 11 papers discussing the following six models of emotional disturbance in children: biophysical, behavioral, psychodynamic, sociological, and ecological, models, and counter theory. Emotional disturbance is defined as a distinctive human state having multiple manifestations and involving disability, deviance, and alienation. All the…
10 CFR 26.27 - Written policy and procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... available include, but are not limited to, posting the policy in multiple work areas, providing individuals... stress, fatigue, or illness, and the use of prescription and over-the-counter medications that could..., sale, or possession of illegal drugs; (ii) Consumed alcohol to excess before the mandatory pre-work...
10 CFR 26.27 - Written policy and procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... available include, but are not limited to, posting the policy in multiple work areas, providing individuals... stress, fatigue, or illness, and the use of prescription and over-the-counter medications that could..., sale, or possession of illegal drugs; (ii) Consumed alcohol to excess before the mandatory pre-work...
10 CFR 26.27 - Written policy and procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... available include, but are not limited to, posting the policy in multiple work areas, providing individuals... stress, fatigue, or illness, and the use of prescription and over-the-counter medications that could..., sale, or possession of illegal drugs; (ii) Consumed alcohol to excess before the mandatory pre-work...
DOT National Transportation Integrated Search
2013-01-07
An aircraft in flight generates multiple wake vortices, the largest of which are a result of : the lift on the wings. These vortices rapidly roll up into a counter-rotating vortex pair : behind the aircraft. The initial separation between the centroi...
Molecular dynamics in stiff ionene below glass transition.
Makrocka-Rydzyk, M; Glowinkowski, S; Jurga, S; Meyer, W H
1995-08-01
Temperature dependences of proton and fluorine second moments and spin-lattice relaxation time T1 below glass transition were measured in glassy "I-Do,Pip-Me-BF4" ionene. The existence of motions of methyl groups and segments linking the cationic centers, namely piperidinium rings and trimethylene groups, for the polymeric part of ionene were established. Isotropic rotation of the counter-ion was evidenced and its limited diffusion suggested. To interpret the proton and fluorine relaxation data, a Davidson-Cole distribution of correlation times was assumed.
2011-12-14
Manager, Mine Resistant Ambush Protected (MRAP) Vehicle Program u Mr. David Karcher, Director, Energy & Counter-Improvised Explosive Devices (C-IED...objective is to allow Marines to travel lighter, with less, and move faster through the reduction in size and amount of equipment and the dependence on...Lead Acid/Ni-Cd Kinetic Solid Oxide Gasoline Lithium Ion Solar Proton Exchange Membrane (PEM) Diesel/JP-8 A set of power technologies might also
Accomplishments of the Oak Ridge National Laboratory Seed Money program
DOE R&D Accomplishments Database
1986-09-01
In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)
Kudr, Jiri; Richtera, Lukas; Nejdl, Lukas; Xhaxhiu, Kledi; Vitek, Petr; Rutkay-Nedecky, Branislav; Hynek, David; Kopel, Pavel; Adam, Vojtech; Kizek, Rene
2016-01-01
Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to −1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL−1 was obtained. PMID:28787832
Non-destructive single-pass low-noise detection of ions in a beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias
2015-11-15
We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less
Czopyk, L; Olko, P
2006-01-01
The analytical model of Xapsos used for calculating microdosimetric spectra is based on the observation that straggling of energy loss can be approximated by a log-normal distribution of energy deposition. The model was applied to calculate microdosimetric spectra in spherical targets of nanometer dimensions from heavy ions at energies between 0.3 and 500 MeV amu(-1). We recalculated the originally assumed 1/E(2) initial delta electrons spectrum by applying the Continuous Slowing Down Approximation for secondary electrons. We also modified the energy deposition from electrons of energy below 100 keV, taking into account the effective path length of the scattered electrons. Results of our model calculations agree favourably with results of Monte Carlo track structure simulations using MOCA-14 for light ions (Z = 1-8) of energy ranging from E = 0.3 to 10.0 MeV amu(-1) as well as with results of Nikjoo for a wall-less proportional counter (Z = 18).
Moser, Auna L.; Hsu, Scott C.
2015-05-01
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less
Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.
Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R
2013-07-01
The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Auna L.; Hsu, Scott C.
We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease inmore » the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex equations of state.« less
Evolutionary game theory and multiple chemical sensitivity.
Newlin, D B
1999-01-01
Newlin's [Newlin D.B. Evolutionary game theory of tolerance and sensitization in substance abuse. Paper presented to the Research Society on Alcoholism, Hilton Head, SC, 1998] evolutionary game theory of addictive behavior specifies how evolutionarily stable strategies for survival and reproduction may lead to addiction. The game theory of multiple chemical sensitivity (MCS) assumes that: (1) the MCS patient responds to low-level toxicants as stressors or as direct threats to their survival and reproductive fitness, (2) this activates the cortico-mesolimbic dopamine system, (3) this system is a survival motivation center--not a 'reward center', (4) the subject emits a counter-response that is in the same direction as the naive response to the chemicals, (5) previously neutral stimuli associated with chemicals also trigger conditioned responses that mimic those to the chemicals, (6) these counter-responses further activate the dopaminergic survival motivation system, and (7) this produces a positive feedback loop that leads to strong neural sensitization in these structures and in behavior controlled by this system, despite a small initial response. Psychologically, the MCS patient with a sensitized cortico-mesolimbic dopamine system is behaving as though his/her survival is directly threatened by these chemicals. Non-MCS subjects have counter-responses opposite in direction to those of the chemicals and show tolerance. An autoshaping/sign-tracking model of this game is discussed. This evolutionary game makes several specific, testable predictions about differences between MCS subjects, non-MCS controls, and substance abusers in laboratory experiments, and between sensitized and nonsensitized animals.
Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions
Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.
2015-01-01
We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629
Room temperature, hybrid sodium-based flow batteries with multi-electron transfer redox reactions
Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; ...
2015-06-11
We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore » of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. Furthermore, the critical barriers to mature this new HNFBs have also been explored.« less
Hsu, Fong-Fu
2016-01-01
Ceramide is a huge lipid family consisting of diversified structures including various modifications in the fatty acyl chain and the long chain base (LCB). In this contribution, negative-ion ESI linear ion-trap multiple-stage mass spectrometric method (LIT MSn) towards complete structural determination of ceramides in ten major families characterized as the [M – H]− ions is described. Multiple sets of fragment ions reflecting the fatty acyl chain and LCB were observed in the CID MS2 spectrum, while the sequential MS3 and MS4 spectra contain structural information for locating the double bond and the functional groups, permitting realization of the fragmentation processes. Thereby, differentiation of ceramide molecules varied by chain length, the LCB (sphingosine, phytosphigosine, 6-hydroxy-sphingosine), and by the modification (α-hydroxy-, β-hydroxy-, ω-hydroxy-FA) can be achieved; and many isomeric structures in the biological specimen can be revealed in detail. PMID:27523779
Pseudomonas fluorescens' view of the periodic table.
Workentine, Matthew L; Harrison, Joe J; Stenroos, Pernilla U; Ceri, Howard; Turner, Raymond J
2008-01-01
Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.
NASA Astrophysics Data System (ADS)
Gavish, Nir
2018-04-01
We study the existence and stability of stationary solutions of Poisson-Nernst-Planck equations with steric effects (PNP-steric equations) with two counter-charged species. We show that within a range of parameters, steric effects give rise to multiple solutions of the corresponding stationary equation that are smooth. The PNP-steric equation, however, is found to be ill-posed at the parameter regime where multiple solutions arise. Following these findings, we introduce a novel PNP-Cahn-Hilliard model, show that it is well-posed and that it admits multiple stationary solutions that are smooth and stable. The various branches of stationary solutions and their stability are mapped utilizing bifurcation analysis and numerical continuation methods.
NASA Astrophysics Data System (ADS)
Goddard, Braden
The ability of inspection agencies and facility operators to measure powders containing several actinides is increasingly necessary as new reprocessing techniques and fuel forms are being developed. These powders are difficult to measure with nondestructive assay (NDA) techniques because neutrons emitted from induced and spontaneous fission of different nuclides are very similar. A neutron multiplicity technique based on first principle methods was developed to measure these powders by exploiting isotope-specific nuclear properties, such as the energy-dependent fission cross sections and the neutron induced fission neutron multiplicity. This technique was tested through extensive simulations using the Monte Carlo N-Particle eXtended (MCNPX) code and by one measurement campaign using the Active Well Coincidence Counter (AWCC) and two measurement campaigns using the Epithermal Neutron Multiplicity Counter (ENMC) with various (alpha,n) sources and actinide materials. Four potential applications of this first principle technique have been identified: (1) quantitative measurement of uranium, neptunium, plutonium, and americium materials; (2) quantitative measurement of mixed oxide (MOX) materials; (3) quantitative measurement of uranium materials; and (4) weapons verification in arms control agreements. This technique still has several challenges which need to be overcome, the largest of these being the challenge of having high-precision active and passive measurements to produce results with acceptably small uncertainties.
Moya, A A
2015-02-21
This work aims to extend the study of the formation of the electric double layer at the interface defined by a solution and an ion-exchange membrane on the basis of the Nernst-Planck and Poisson equations, including different values of the counter-ion diffusion coefficient and the dielectric constant in the solution and membrane phases. The network simulation method is used to obtain the time evolution of the electric potential, the displacement electric vector, the electric charge density and the ionic concentrations at the interface between a binary electrolyte solution and a cation-exchange membrane with total co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric potential and the surface electric charge are compared with analytical solutions derived in the limit of the shortest times by considering the Poisson equation for a simple cationic diffusion process. The steady-state results are justified from the Gouy-Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic concentrations with respect to the fixed-charge concentration inside the membrane. Interesting new physical insights arise from the interpretation of the process of the formation of the electric double layer at the ion exchange membrane-solution interface on the basis of a membrane model with total co-ion exclusion.
NASA Astrophysics Data System (ADS)
Shono, Kumi; Kobayashi, Takeshi; Tabuchi, Masato; Ohno, Yasutaka; Miyashiro, Hajime; Kobayashi, Yo
2014-02-01
We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment of the operation range between the cathode and anode after cycle operation. The proposed procedure is applicable to lithium ion battery systems using a solid electrolyte to prepare two cells with a lithium counter electrode. We determined the capacity decrease of a solvent-free lithium ion polymer battery consisting of a LiNi1/3Mn1/3Co1/3O2 (NMC), a polyether-based solid polymer electrolyte (SPE), and a graphite (Gr) with the proposed PRE over 1000 cycles. The capacity retention of the [Gr|SPE|NMC] cell reached 50% at the 1000th cycle upon the optimization of cell preparation, and we found that the main factor of the capacity decrease was the continuous irreversible loss of active lithium at the graphite anode, not the oxidation of the SPE. Our findings suggest that we should reconsider combining a polyether-based SPE with a conventionally used 4 V class cathode and a graphite anode to develop an innovative, safe, and low-cost battery for the expected large lithium ion battery systems for stationary use.
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.
Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming
2014-01-01
Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504
Tang, Xiaoxiao; Qiao, Xiuying; Miller, Reinhard; Sun, Kang
2016-12-01
The amphiphilic character and surface activity endows silk fibroin with the ability to reside at fluid interfaces and effectively stabilize emulsions. However, the influence of relevant factors and their actual effect on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface has received less attention. In the present study, the effect of ionic strength on the interfacial viscoelasticity, emulsification effectiveness and stability of silk fibroin at the oil/water interface was investigated in detail. A higher ion concentration facilitates greater adsorption, stronger molecular interaction and faster structure reorganization of silk fibroin at the oil/water interface, thus causing quicker interfacial saturation adsorption, greater interfacial strength and lower interfacial structural fracture on large deformation. However, the presence of concentrated ions screens the charges in silk fibroin molecules and the zeta potential decreases as a result of electrostatic screening and ion-binding effects, which may result in emulsion droplet coalescence and a decrease in emulsion stability. The positively-charged ions significantly affect the interfacial elasticity and stability of silk fibroin layers at the oil/water interface as a result of the strong electrostatic interactions between counter-ions and the negatively-charged groups of silk fibroin. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Shamp, Donald D.
2001-01-01
Over the past several decades investigators have extensively examined the 238U-234U- 230Th systematics of a variety of geologic materials using alpha spectroscopy. Analytical uncertainty for 230Th by alpha spectroscopy has been limited to about 2% (2σ). The advantage of thermal ionization mass spectroscopy (TIMS), introduced by Edwards and co-workers in the late 1980’s is the increased detectability of these isotopes by a factor of ~200, and decreases in the uncertainty for 230Th to about 5‰ (2σ) error. This report is a procedural manual for using the USGS-Stanford Finnegan-Mat 262 TIMS to collect and isolate Uranium and Thorium isotopic ratio data. Chemical separation of Uranium and Thorium from the sample media is accomplished using acid dissolution and then processed using anion exchange resins. The Finnegan-Mat262 Thermal Ionization Mass Spectrometer (TIMS) utilizes a surface ionization technique in which nitrates of Uranium and Thorium are placed on a source filament. Upon heating, positive ion emission occurs. The ions are then accelerated and focused into a beam which passes through a curved magnetic field dispersing the ions by mass. Faraday cups and/or an ion counter capture the ions and allow for quantitative analysis of the various isotopes.
Tsuda, Shuichi; Sato, Tatsuhiko; Takahashi, Fumiaki; Satoh, Daiki; Endo, Akira; Sasaki, Shinichi; Namito, Yoshihito; Iwase, Hiroshi; Ban, Shuichi; Takada, Masashi
2010-09-07
The frequency distribution of the lineal energy, y, of a 290 MeV/u carbon beam was measured to obtain the dose-weighted mean of y and compare it with the linear energy transfer (LET). In the experiment, a wall-less tissue-equivalent proportional counter (TEPC) in a cylindrical volume with a simulated diameter of 0.72 microm was used. The measured frequency distribution of y as well as its dose-mean value agrees within 10% uncertainty with the corresponding data from microdosimetric calculations using the PHITS code. The ratio of the measured dose-mean lineal energy to the LET of the 290 MeV/u carbon beam is 0.73, which is much smaller than the corresponding data obtained by a wall TEPC. This result demonstrates that a wall-less TEPC is necessary to precisely measure the dose-mean of y for energetic heavy ion beams.
A suspended boron foil multi-wire proportional counter neutron detector
NASA Astrophysics Data System (ADS)
Nelson, Kyle A.; Edwards, Nathaniel S.; Hinson, Niklas J.; Wayant, Clayton D.; McGregor, Douglas S.
2014-12-01
Three natural boron foils, approximately 1.0 cm in diameter and 1.0 μm thick, were obtained from The Lebow Company and suspended in a multi-wire proportional counter. Suspending the B foils allowed the alpha particle and Li ion reaction products to escape simultaneously, one on each side of the foil, and be measured concurrently in the gas volume. The thermal neutron response pulse-height spectrum was obtained and two obvious peaks appear from the 94% and 6% branches of the 10B(n,α)7Li neutron reaction. Scanning electron microscope images were collected to obtain the exact B foil thicknesses and MCNP6 simulations were completed for those same B thicknesses. Pulse-height spectra obtained from the simulations were compared to experimental data and matched well. The theoretical intrinsic thermal-neutron detection efficiency for enriched 10B foils was calculated and is presented. Additionally, the intrinsic thermal neutron detection efficiency of the three natural B foils was calculated to be 3.2±0.2%.
Wiemann, Philipp; Perevitsky, Adi; Lim, Fang Yun; Shadkchan, Yana; Knox, Benjamin P; Landero Figueora, Julio A; Choera, Tsokyi; Niu, Mengyao; Steinberger, Andrew J; Wüthrich, Marcel; Idol, Rachel A; Klein, Bruce S; Dinauer, Mary C; Huttenlocher, Anna; Osherov, Nir; Keller, Nancy P
2017-05-02
The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Suppression of Alfvénic modes through modification of the fast ion distribution
NASA Astrophysics Data System (ADS)
Fredrickson, Eric
2017-10-01
Experiments on NSTX-U have shown for the first time that small amounts of high pitch-angle, low ρL beam ions can strongly suppress the counter-propagating Global Alfvén Eigenmodes (GAE) [1]. GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfvén modes, and development of methods to control them, is important for fusion reactors like ITER, which like NSTX, will be heated with a large population of non-thermal, super-Alfvénic ions (unlike the normal operation of conventional tokamaks). The suppression of the GAE by adding a small population of high-pitch resonant fast ions is qualitatively consistent with an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability [2]. The model predicts that fast ions with k⊥ρL <1.9 are stabilizing, which is in good agreement with the experimental observations. A quantitative analysis was done using the HYM stability code [3] of one of the nearly 100 identified examples of GAE suppression. The simulations find remarkable agreement with the observed mode numbers and frequencies of the unstable GAE prior to suppression. Adding the population of high pitch-angle, low ρL beam ions to the HYM fast ion distribution function predicts complete suppression of the GAE. TRANSP/NUBEAM calculations for the example analyzed with HYM suggest that the additional beam source increases the population of resonant fast ions with k⊥ρL <1.9 by roughly a factor of four. Work supported by U.S. DOE Contract DE-AC02-09CH11466.
System and process for pulsed multiple reaction monitoring
Belov, Mikhail E
2013-05-17
A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.
NASA Astrophysics Data System (ADS)
Kangasluoma, Juha; Hering, Susanne; Picard, David; Lewis, Gregory; Enroth, Joonas; Korhonen, Frans; Kulmala, Markku; Sellegri, Karine; Attoui, Michel; Petäjä, Tuukka
2017-06-01
In this study we characterized the performance of three new particle counters able to detect particles smaller than 3 nm during the Helsinki condensation particle counter (CPC) workshop in summer 2016: the Aerosol Dynamics Inc. (ADI; Berkeley, USA) versatile water condensation particle counter (vWCPC), TSI 3777 nano enhancer (TSI Inc., Shoreview, USA) and modified and boosted TSI 3010-type CPC from Université Blaise Pascal called a B3010. The performance of all CPCs was first measured with charged tungsten oxide test particles at temperature settings which resulted in supersaturation low enough to not detect any ions produced by a radioactive source. Due to similar measured detection efficiencies, additional comparison between the 3777 and vWCPC were conducted using electrically neutral tungsten oxide test particles and with positively charged tetradodecylammonium bromide. Furthermore, the detection efficiencies of the 3777 and vWCPC were measured with boosted temperature settings yielding supersaturation which was at the onset of homogeneous nucleation for the 3777 or confined within the range of liquid water for the ADI vWCPC. Finally, CPC-specific tests were conducted to probe the response of the 3777 to various inlet flow relative humidities, of the B3010 to various inlet flow rates and of the vWCPC to various particle concentrations. For the 3777 and vWCPC the measured 50 % detection diameters (d50s) were in the range of 1.3-2.4 nm for the tungsten oxide particles, depending on the particle charging state and CPC temperature settings, between 2.5 and 3.3 nm for the organic test aerosol, and in the range of 3.2-3.4 nm for tungsten oxide for the B3010.
78 FR 26332 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... Department of Defense is publishing the unclassified text of a section 36(b)(1) arms sales notification. This... type of mission. 2. The AN/ALE-47 Counter-Measures Dispensing System (CMDS) is an integrated, threat... multiple Optical Sensor Converter (OSC) units, a Computer Processor (CP) and a Control Indicator (CI). The...
High speed multiwire photon camera
NASA Technical Reports Server (NTRS)
Lacy, Jeffrey L. (Inventor)
1991-01-01
An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occuring during the readout window.
High speed multiwire photon camera
NASA Technical Reports Server (NTRS)
Lacy, Jeffrey L. (Inventor)
1989-01-01
An improved multiwire proportional counter camera having particular utility in the field of clinical nuclear medicine imaging. The detector utilizes direct coupled, low impedance, high speed delay lines, the segments of which are capacitor-inductor networks. A pile-up rejection test is provided to reject confused events otherwise caused by multiple ionization events occurring during the readout window.
Safeguards Technology Development Program 1st Quarter FY 2018 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, Manoj K.
LLNL will evaluate the performance of a stilbene-based scintillation detector array for IAEA neutron multiplicity counting (NMC) applications. This effort will combine newly developed modeling methodologies and recently acquired high-efficiency stilbene detector units to quantitatively compare the prototype system performance with the conventional He-3 counters and liquid scintillator alternatives.
Kostanyan, Artak E; Erastov, Andrey A
2015-08-07
In the steady state (SS) multiple dual mode (MDM) counter-current chromatography (CCC), at the beginning of the first step of every cycle the sample dissolved in one of the phases is continuously fed into a CCC device over a constant time, not exceeding the run time of the first step. After a certain number of cycles, the steady state regime is achieved, where concentrations vary over time during each cycle, however, the concentration profiles of solutes eluted with both phases remain constant in all subsequent cycles. The objective of this work was to develop analytical expressions to describe the SS MDM CCC separation processes, which can be helpful to simulate and design these processes and select a suitable compromise between the productivity and the selectivity in the preparative and production CCC separations. Experiments carried out using model mixtures of compounds from the GUESSmix with solvent system hexane/ethyl acetate/methanol/water demonstrated a reasonable agreement between the predictions of the theory and the experimental results. Copyright © 2015 Elsevier B.V. All rights reserved.
Real-time multi-mode neutron multiplicity counter
Rowland, Mark S; Alvarez, Raymond A
2013-02-26
Embodiments are directed to a digital data acquisition method that collects data regarding nuclear fission at high rates and performs real-time preprocessing of large volumes of data into directly useable forms for use in a system that performs non-destructive assaying of nuclear material and assemblies for mass and multiplication of special nuclear material (SNM). Pulses from a multi-detector array are fed in parallel to individual inputs that are tied to individual bits in a digital word. Data is collected by loading a word at the individual bit level in parallel, to reduce the latency associated with current shift-register systems. The word is read at regular intervals, all bits simultaneously, with no manipulation. The word is passed to a number of storage locations for subsequent processing, thereby removing the front-end problem of pulse pileup. The word is used simultaneously in several internal processing schemes that assemble the data in a number of more directly useable forms. The detector includes a multi-mode counter that executes a number of different count algorithms in parallel to determine different attributes of the count data.
A new tritium monitor design based on plasma source ion implantation technique
NASA Astrophysics Data System (ADS)
Nassar, Rafat Mohammad
Tritium is an important isotope of hydrogen. The availability of tritium in our environment is manifest through both natural and artificial sources. Consequently, the requirement for tritium handling and usage will continue to increase in the future. An important future contributor is nuclear fusion power plants and facilities. Essential safety regulations and procedures require effective monitoring and measurements of tritium concentrations in workplaces. The unique characteristics of tritium impose an important role on the criteria for its detection and measurement. As tritium decays by the emission of soft beta particles, maximum 18 keV, it cannot be readily detected by commonly used detectors. Specially built monitors are required. Additional complications occur due to the presence of other radioactive isotopes or ambient radiation fields and because of the high diffusivity of tritium. When it is in oxidized form it is 25000 times more hazardous biologically than when in elemental form. Therefore, contamination of the monitor is expected and compound specific monitors are important. A summary is given of the various well known methods of detecting tritium-in-air. This covers the direct as well as the indirect measuring techniques, although each has been continually improved and further developed, nevertheless, each has its own limitations. Ionization chambers cannot discriminate against airborne P emitters. Proportional counters have a narrow operating range, 3-4 decades, and have poor performance in relatively high humid environments and require a dry counting gas. Liquid scintillation counters are sensitive, but inspection of the sample is slow and they produce chemical liquid waste. A new way to improve the sensitivity of detecting tritium with plastic scintillators has been developed. The technique is based on a non-line-of-sight implantation of tritium ions into a 20 mum plastic scintillator using a plasma source ion implantation (PSII) technique, This type of source is different, superior to the line-of-sight implantation and requires no additional beam handling. It is capable of implanting ion species in a broad beam configuration into the entire surface of a target. The technique requires a special ion source with special characteristics of the type obtained from a surfatron plasma source. This ion source has a large high ion density plasma with minimum contamination and produces ions of low temperature. It was constructed to ionize the sampled air and to produce a plasma over a wide range of pressure, 4-0.1 mTorr. A plasma source ion implantation cell was designed and constructed using mathematical modeling with personal computer, to optimize the essential variables of the design and to estimate the implantation rate under different operation conditions. Also, a high voltage pulse modulator was designed and constructed to produce a series of 10 musec pulses (up to 2 MHz) with a maximum magnitude of -60 kV. The developed device was capable of ionizing air samples and implanting the resulting ions into a plastic scintillator. Two different methods to enhance the collection and deposition of the tritium ions, have been proposed and assessed. A movable prototype device for monitoring environmental tritium in air has been designed and constructed. Although this prototype was not fully tested, the primary calculations have shown that measurable concentrations of tritium ions can be collected from an air sample, with tritium activity ranging from 0.3 Bq/cm3 down to 0.03 mBq/cm3, in a short time, to the order of seconds, on-line. This sensitivity fulfills the requirement for environmental monitoring.
NASA Astrophysics Data System (ADS)
Cortie, D. L.; Lewis, R. A.
2012-06-01
It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs), scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.
Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation
Simakov, Andrei Nikolaevich; Molvig, Kim
2016-03-17
A generalization of the Braginskii ion fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. An asymptotic expansion in the ion Knudsen number is used to derive the individual ion species continuity, as well as the total ion mass density, momentum, and energy evolution equations accurate through the second order. Expressions for the individual ion species drift velocities with respect to the center of mass reference frame, as well as for the total ion heat flux and viscosity, which are required to close themore » fluid equations, are evaluated in terms of the first-order corrections to the lowest order Maxwellian ion velocity distribution functions. A variational formulation for evaluating such corrections and its relation to the plasma entropy are presented. Employing trial functions for the corrections, written in terms of expansions in generalized Laguerre polynomials, and maximizing the resulting functionals produces two systems of linear equations (for “vector” and “tensor” portions of the corrections) for the expansion coefficients. A general matrix formulation of the linear systems as well as expressions for the resulting transport fluxes are presented in forms convenient for numerical implementation. The general formulation is employed in the companion paper [A. N. Simakov and K. Molvig, Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas, submitted to Phys. Plasmas (2015)] to evaluate the individual ion drift velocities and the total ion heat flux and viscosity for specific cases of two and three ion species plasmas.« less
On neutral-beam injection counter to the plasma current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helander, P.; Akers, R.J.; Eriksson, L.-G.
2005-11-15
It is well known that when neutral beams inject ions into trapped orbits in a tokamak, the transfer of momentum between the beam and the plasma occurs through the torque exerted by a radial return current. It is shown that this implies that the angular momentum transferred to the plasma can be larger than the angular momentum of the beam, if the injection is in the opposite direction to the plasma current and the beam ions suffer orbit losses. On the Mega-Ampere Spherical Tokamak (MAST) [R. J. Akers, J. W. Ahn, G. Y. Antar, L. C. Appel, D. Applegate, C.more » Brickley et al., Plasma Phys. Controlled Fusion 45, A175 (2003)], this results in up to 30% larger momentum deposition with counterinjection than with co-injection, with substantially increased plasma rotation as a result. It is also shown that heating of the plasma (most probably of the ions) can occur even when the beam ions are lost before they have had time to slow down in the plasma. This is the dominant heating mechanism in the outer 40% of the MAST plasma during counterinjection.« less
Terborg, Lydia; Nowak, Sascha; Passerini, Stefano; Winter, Martin; Karst, Uwe; Haddad, Paul R; Nesterenko, Pavel N
2012-02-10
In this work, hydrolysis of three different hexafluorophosphate salts in purified water was investigated. Aqueous samples of lithium hexafluorophosphate (LiPF(6)), sodium hexafluorophosphate (NaPF(6)) and potassium hexafluorophosphate (KPF(6)) were prepared and stored for different times. Ion chromatography (IC) with UV as well as non-suppressed and suppressed conductivity detection was used for the analysis of the reaction products. For the detection and identification of the formed decomposition products, an IC method using IonPac AS14A 250 mm × 4.0 mm i.d. column and 2.5 mM KHCO(3)-2.5 mM K(2)CO(3) eluent was established. Besides hexafluorophosphate, four other anionic species were detected in fresh and matured aqueous solutions. The hydrolysis products fluoride (F(-)), monofluorophosphate (HPO(3)F(-)), phosphate (HPO(4)(2-)) and difluorophosphate (PO(2)F(2)(-)) were found and were unambiguously identified by means of standards or electrospray ionization mass spectrometry (ESI-MS). It was shown that stability of hexafluorophosphate solutions depends on the nature of the counter ion and decreases in the order potassium>sodium>lithium. Copyright © 2011 Elsevier B.V. All rights reserved.
One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2016-11-01
Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.
Preferential Heating and Acceleration of Heavy Ions in Impulsive Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rahul; Gaspari, Massimo; Spitkovsky, Anatoly
2017-02-01
We simulate decaying turbulence in a homogeneous pair plasma using a three-dimensional electromagnetic particle-in-cell method. A uniform background magnetic field permeates the plasma such that the magnetic pressure is three times larger than the thermal pressure and the turbulence is generated by counter-propagating shear Alfvén waves. The energy predominately cascades transverse to the background magnetic field, rendering the turbulence anisotropic at smaller scales. We simultaneously move several ion species of varying charge to mass ratios in our simulation and show that the particles of smaller charge to mass ratios are heated and accelerated to non-thermal energies at a faster rate.more » This is in accordance with the enhancement of heavy ions and a non-thermal tail in their energy spectrum observed in the impulsive solar flares. We further show that the heavy ions are energized mostly in the direction perpendicular to the background magnetic field, with a rate consistent with our analytical estimate of the rate of heating due to cyclotron resonance with the Alfvén waves, of which a large fraction is due to obliquely propagating waves.« less
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.
1999-01-01
Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.
NASA Technical Reports Server (NTRS)
Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.
1999-01-01
Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.
NASA Astrophysics Data System (ADS)
Sharapov, S. E.; Garcia-Munoz, M.; Van Zeeland, M. A.; Bobkov, B.; Classen, I. G. J.; Ferreira, J.; Figueiredo, A.; Fitzgerald, M.; Galdon-Quiroga, J.; Gallart, D.; Geiger, B.; Gonzalez-Martin, J.; Johnson, T.; Lauber, P.; Mantsinen, M.; Nabais, F.; Nikolaeva, V.; Rodriguez-Ramos, M.; Sanchis-Sanchez, L.; Schneider, P. A.; Snicker, A.; Vallejos, P.; the AUG Team; the EUROfusion MST1 Team
2018-01-01
Dedicated studies performed for toroidal Alfvén eigenmodes (TAEs) in ASDEX-Upgrade (AUG) discharges with monotonic q-profiles have shown that electron cyclotron resonance heating (ECRH) can make TAEs more unstable. In these AUG discharges, energetic ions driving TAEs were obtained by ion cyclotron resonance heating (ICRH). It was found that off-axis ECRH facilitated TAE instability, with TAEs appearing and disappearing on timescales of a few milliseconds when the ECRH power was switched on and off. On-axis ECRH had a much weaker effect on TAEs, and in AUG discharges performed with co- and counter-current electron cyclotron current drive (ECCD), the effects of ECCD were found to be similar to those of ECRH. Fast ion distributions produced by ICRH were computed with the PION and SELFO codes. A significant increase in T e caused by ECRH applied off-axis is found to increase the fast ion slowing-down time and fast ion pressure causing a significant increase in the TAE drive by ICRH-accelerated ions. TAE stability calculations show that the rise in T e causes also an increase in TAE radiative damping and thermal ion Landau damping, but to a lesser extent than the fast ion drive. As a result of the competition between larger drive and damping effects caused by ECRH, TAEs become more unstable. It is concluded, that although ECRH effects on AE stability in present-day experiments may be quite significant, they are determined by the changes in the plasma profiles and are not particularly ECRH specific.
Williams, D. Keith; Muddiman, David C.
2008-01-01
Fourier transform ion cyclotron resonance mass spectrometry has the ability to achieve unprecedented mass measurement accuracy (MMA); MMA is one of the most significant attributes of mass spectrometric measurements as it affords extraordinary molecular specificity. However, due to space-charge effects, the achievable MMA significantly depends on the total number of ions trapped in the ICR cell for a particular measurement. Even through the use of automatic gain control (AGC), the total ion population is not constant between spectra. Multiple linear regression calibration in conjunction with AGC is utilized in these experiments to formally account for the differences in total ion population in the ICR cell between the external calibration spectra and experimental spectra. This ability allows for the extension of dynamic range of the instrument while allowing mean MMA values to remain less than 1 ppm. In addition, multiple linear regression calibration is used to account for both differences in total ion population in the ICR cell as well as relative ion abundance of a given species, which also affords mean MMA values at the parts-per-billion level. PMID:17539605
Position-dependent effects of polylysine on Sec protein transport.
Liang, Fu-Cheng; Bageshwar, Umesh K; Musser, Siegfried M
2012-04-13
The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or "pause sites," were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport.
Position-dependent Effects of Polylysine on Sec Protein Transport*
Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.
2012-01-01
The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204
Liu, Fupin; Guan, Jian; Wei, Tao; Wang, Song; Jiao, Mingzhi; Yang, Shangfeng
2013-04-01
A series of nitrogen-containing inorganic solid compounds with variable oxidation states of nitrogen and counter ions have been successfully applied as new inorganic solid nitrogen sources toward the synthesis of Sc-based metal nitride clusterfullerenes (Sc-NCFs), including ammonium salts [(NH4)xH(3-x)PO4 (x = 0-2), (NH4)2SO4, (NH4)2CO3, NH4X (X = F, Cl), NH4SCN], thiocyanate (KSCN), nitrates (Cu(NO3)2, NaNO3), and nitrite (NaNO2). Among them, ammonium phosphates ((NH4)xH(3-x)PO4, x = 1-3) and ammonium thiocyanate (NH4SCN) are revealed to behave as better nitrogen sources than others, and the highest yield of Sc-NCFs is achieved when NH4SCN was used as a nitrogen source. The optimum molar ratio of Sc2O3:(NH4)3PO4·3H2O:C and Sc2O3:NH4SCN:C has been determined to be 1:2:15 and 1:3:15, respectively. The thermal decomposition products of these 12 inorganic compounds have been discussed in order to understand their different performances toward the synthesis of Sc-NCFs, and accordingly the dependence of the production yield of Sc-NCFs on the oxidation state of nitrogen and counter ion is interpreted. The yield of Sc3N@C80 (I(h) + D(5h)) per gram Sc2O3 by using the N2-based group of nitrogen sources (thiocyanate, nitrates, and nitrite) is overall much lower than those by using gaseous N2 and NH4SCN, indicating the strong dependence of the yield of Sc-NCFs on the oxidation state of nitrogen, which is attributed to the "in-situ" redox reaction taking place for the N2-based group of nitrogen sources during discharging. For NH3-based group of nitrogen sources (ammonium salts) which exhibits a (-3) oxidation states of nitrogen, their performance as nitrogen sources is found to be sensitively dependent on the anion, and this is understood by considering their difference on the thermal stability and/or decomposition rate. Contrarily, for the N2-based group of nitrogen sources, the formation of Sc-NCFs is independent to both the oxidation state of nitrogen (+3 or +5) and the cation.
Kangasluoma, Juha; Franchin, Alessandro; Duplissy, Jonahtan; ...
2016-07-14
Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subject to changing ambient conditions. In this study, we advance the current understanding of the operation of the Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of an A10 Particle Size Magnifier (PSM) and an A20 Condensation Particle Counter (CPC). The effect of the inlet line pressure on the measured particle concentration was measured, and two separate regions inside the A10, where supersaturation of working fluid can take place, were identified. The possibility ofmore » varying the lower cut-off diameter of the nCNC was investigated; by scanning the growth tube temperature, the range of the lower cut-off was extended from 1–2.5 to 1–6 nm. Here we present a new inlet system, which allows automated measurement of the background concentration of homogeneously nucleated droplets, minimizes the diffusion losses in the sampling line and is equipped with an electrostatic filter to remove ions smaller than approximately 4.5 nm. Lastly, our view of the guidelines for the optimal use of the Airmodus nCNC is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangasluoma, Juha; Franchin, Alessandro; Duplissy, Jonahtan
Measuring sub-3 nm particles outside of controlled laboratory conditions is a challenging task, as many of the instruments are operated at their limits and are subject to changing ambient conditions. In this study, we advance the current understanding of the operation of the Airmodus A11 nano Condensation Nucleus Counter (nCNC), which consists of an A10 Particle Size Magnifier (PSM) and an A20 Condensation Particle Counter (CPC). The effect of the inlet line pressure on the measured particle concentration was measured, and two separate regions inside the A10, where supersaturation of working fluid can take place, were identified. The possibility ofmore » varying the lower cut-off diameter of the nCNC was investigated; by scanning the growth tube temperature, the range of the lower cut-off was extended from 1–2.5 to 1–6 nm. Here we present a new inlet system, which allows automated measurement of the background concentration of homogeneously nucleated droplets, minimizes the diffusion losses in the sampling line and is equipped with an electrostatic filter to remove ions smaller than approximately 4.5 nm. Lastly, our view of the guidelines for the optimal use of the Airmodus nCNC is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, M. L.; Liu, B.; Hu, R. H.
In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less
Multiple Ions Resonant Heating and Acceleration by Alfven/cyclotron Fluctuations in the Solar Wind
NASA Astrophysics Data System (ADS)
Xie, H.; Ofman, L.
2003-12-01
We study the interaction between protons, and multiple minor ions (O5+, He++) and a given cyclotron resonant spectra in coronal hole plasma. One-dimensional hybrid simulations are performed in initially homogeneous, collisionless, magnetized plasma with waves propagating parallel to the background magnetic field. The self-consistent hybrid simulations are used to study how multiple minor species may affect the resonance interaction between a spectrum of waves and the solar wind protons. The results of the simulations provide a clear picture of wave-particle interaction under various coronal conditions, which can explain 1) how multiple minor ions affect the resonant heating and the temperature anisotropy of the solar wind protons by a given wave spectrum; 2) how energy is distributed and transferred among waves and different ion species; 3) the growth and damping of different beam microinstability modes, including both inward and outward waves; 4) the formation of proton double-peak distribution in the solar wind.
The role of the pharmacist in the selection and use of over-the-counter proton-pump inhibitors.
Boardman, Helen F; Heeley, Gordon
2015-10-01
Heartburn and other symptoms of gastro-oesophageal reflux occur in ~30% of survey respondents in multiple countries worldwide. Heartburn and acid regurgitation are common complaints in the pharmacy, where patients frequently seek relief through medication and advice. The growing number of proton-pump inhibitors available in the over-the-counter setting provides an efficacious choice to patients experiencing frequent heartburn. Pharmacists can assist patients in their treatment decisions whilst inquiring about alarm symptoms that should prompt a physician referral. Aim of the review Provide pharmacists with a review of current clinical research and expert guidelines on use of over-the-counter proton-pump inhibitors. This narrative review was conducted to identify publications relevant to the following themes: overview of available treatments for frequent episodes of heartburn/acid regurgitation; treatment algorithms providing guidance on when to use over-the-counter proton-pump inhibitors; and the role of the pharmacist in the use of over-the-counter proton-pump inhibitors. Frequent symptoms of acid reflux, such as heartburn and acid regurgitation, can interfere substantially with daily life activities. Proton-pump inhibitors are the most efficacious treatment for frequent reflux symptoms and are recommended as an appropriate initial treatment in uncomplicated cases. Proton-pump inhibitors have varying pharmacokinetics and pharmacodynamics across the class; 20 mg esomeprazole has higher bioavailability and exposure than over-the-counter omeprazole, for example. However, differences in clinical efficacy for symptom relief have not been demonstrated. The safety and tolerability of proton-pump inhibitors have been well established in clinical trial and post-marketing settings, and use of a short regimen is associated with a very low likelihood of missing a more serious condition. Pharmacists can assist patients with accurate self-diagnosis by asking short, simple questions to characterize the nature, severity, and frequency of symptoms. Additionally, pharmacists can inquire about alarm symptoms that should prompt referral to a physician. Pharmacists should inform those patients for whom over-the-counter proton-pump inhibitors are appropriate on their proper use. Over-the-counter proton-pump inhibitors have a valuable role in the treatment of frequent heartburn. Pharmacists have the opportunity to guide patients through selection of the best treatment option for their symptoms.
Effect of four over-the-counter tooth-whitening products on enamel microhardness.
Majeed, A; Grobler, S R; Moola, M H; Oberholzer, T G
2011-10-01
This in vitro study evaluated the effect of four over-the-counter tooth-whitening products on enamel microhardness. Fifty enamel blocks were prepared from extracted human molar teeth. The enamel surfaces were polished up to 1200 grit fineness and the specimens randomly divided into five groups. Enamel blocks were exposed to: Rapid White (n=10); Absolute White (n=10); Speed White (n=10) and White Glo (n=10) whitening products, according to the manufacturers' instructions. As control, ten enamel blocks were kept in artificial saliva at 37 degrees C without any treatment. Microhardness values were obtained before exposure (baseline) and after 1, 7 and 14-day treatment periods using a digital hardness tester with a Vickers diamond indenter. Data were analysed using Wilcoxon Signed Rank Sum Test, one-way ANOVA and Tukey-Kramer Multiple Comparison Test (p<0.05). Both Rapid White and Absolute White reduced enamel microhardness. Speed White increased the microhardness of enamel, while White Glo and artificial saliva had no effect on hardness. Over-the-counter tooth-whitening products might decrease enamel microhardness depending on the type of product.
Evidence Combination From an Evolutionary Game Theory Perspective.
Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu
2016-09-01
Dempster-Shafer evidence theory is a primary methodology for multisource information fusion because it is good at dealing with uncertain information. This theory provides a Dempster's rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multievidence system. Within the proposed ECR, we develop a Jaccard matrix game to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution's stability and convergence, have been mathematically proved as well.
Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai
2016-09-01
Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less
Effect of Valence of Counterions on the Structure of Charged Membranes, a Computer Simulation Study
NASA Astrophysics Data System (ADS)
Qiao, Baofu; Olvera de La Cruz, Monica
2012-02-01
Phospholipids have been investigated for a long period, due to its ability of self-assembling into bilayer structures which resemble biological membranes. But most of the studies have been limited on the neutral phosphatidylcholine based lipids. The understanding of charged membranes (e.g., phosphatidylserine) is very limited due to the repulsion between the charged groups on lipids. In the present work, we investigated the effect of different counter-ions on the structures of charged membranes formed by 1,2-dilauroyl-sn-glycoro-3-phospho-L-serine. Three kinds of counterions were investigated, from monovalent, to divalent, to trivalent ions. Molecular dynamics simulations were performed at all-atom level. We have calculated the area per lipid. And the interaction between counterions and COO^- groups was found to dominate over that between counterions and PO4^- groups.
Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G
2009-09-01
An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.
Multiple excitation nano-spot generation and confocal detection for far-field microscopy.
Mondal, Partha Pratim
2010-03-01
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
Multiple excitation nano-spot generation and confocal detection for far-field microscopy
NASA Astrophysics Data System (ADS)
Mondal, Partha Pratim
2010-03-01
An imaging technique is developed for the controlled generation of multiple excitation nano-spots for far-field microscopy. The system point spread function (PSF) is obtained by interfering two counter-propagating extended depth-of-focus PSF (DoF-PSF), resulting in highly localized multiple excitation spots along the optical axis. The technique permits (1) simultaneous excitation of multiple planes in the specimen; (2) control of the number of spots by confocal detection; and (3) overcoming the point-by-point based excitation. Fluorescence detection from the excitation spots can be efficiently achieved by Z-scanning the detector/pinhole assembly. The technique complements most of the bioimaging techniques and may find potential application in high resolution fluorescence microscopy and nanoscale imaging.
Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc
2012-11-01
Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiansen; Tu, Chuanyi; Wang, Linghua
Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) inmore » this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.« less
Fujita, Mayumi; Otsuka, Yoshimi; Imadome, Kaori; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi
2012-04-01
Pancreatic cancer is an aggressive disease that responds poorly to conventional photon radiotherapy. Carbon-ion (C-ion) radiation has advantages compared with conventional radiotherapy, because it enables more accurate dose distribution and more efficient tumor cell killing. To elucidate the effects of local radiotherapy on the characteristics of metastatic tumors, it is necessary to understand the nature of motility in irradiated tumor cells; this will, in turn, facilitate the development of effective strategies to counter tumor cell motility, which can be used in combination with radiotherapy. The aim of the present study was to examine the invasiveness of pancreatic cancer cells exposed to C-ion irradiation. We found that C-ion irradiation suppressed the migration of MIAPaCa-2, BxPC-3 and AsPC-1; diminished the invasiveness of MIAPaCa-2; and tended to reduce the invasion of BxPC-3 and AsPC-1. However, C-ion irradiation increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasiminogen activator. Administration of serine protease inhibitor (SerPI) alone failed to reduce C-ion-induced PANC-1 invasiveness, whereas the combination of SerPI and Rho-associated coiled-coil forming protein kinase (ROCK) inhibitor suppressed it. Furthermore, PANC-1 showed mesenchymal-amoeboid transition when we treated with SerPI alone. In conclusion, C-ion irradiation is effective in suppressing the invasive potential of several pancreatic tumor cell lines, but not PANC-1; this is the first study showing that C-ion irradiation induces the invasive potential of a tumor cell line. Further in vivo studies are required to examine the therapeutic effectiveness of radiotherapy combined with inhibitors of both mesenchymal and amoeboid modes of tumor cell motility. © 2011 Japanese Cancer Association.
NASA Astrophysics Data System (ADS)
Fornof, K. T.; Gilbert, G. O.
1988-12-01
The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.
NASA Technical Reports Server (NTRS)
Huba, J. D.; Chen, J.; Anderson, R. R.
1992-01-01
Attention is given to a mechanism to generate a broad spectrum of electrostatic turbulence in the quiet time central plasma sheet (CPS) plasma. It is shown theoretically that multiple-ring ion distributions can generate short-wavelength (less than about 1), electrostatic turbulence with frequencies less than about kVj, where Vj is the velocity of the jth ring. On the basis of a set of parameters from measurements made in the CPS, it is found that electrostatic turbulence can be generated with wavenumbers in the range of 0.02 and 1.0, with real frequencies in the range of 0 and 10, and with linear growth rates greater than 0.01 over a broad range of angles relative to the magnetic field (5-90 deg). These theoretical results are compared with wave data from ISEE 1 using an ion distribution function exhibiting multiple-ring structures observed at the same time. The theoretical results in the linear regime are found to be consistent with the wave data.
Skarstein, Siv; Rosvold, Elin O; Helseth, Sølvi; Kvarme, Lisbeth G; Holager, Tanja; Småstuen, Milada C; Lagerløv, Per
2014-03-01
To examine characteristics of 15- to 16-year-old adolescents who used over-the-counter analgesics daily to weekly (high-frequency users) as compared to those who used less or no analgesics (low-frequency users). Further to analyse the differences in pain experience, lifestyle, self-esteem, school attendance and educational ambition. An anonymous cross-sectional questionnaire-based study. The questionnaire covered the use of over-the-counter analgesics, pain experience, sociodemographics, lifestyle factors, self-esteem, school absence and future educational plans. The study took place in the 10th grade in six junior high schools in a medium-sized town in Norway. The local sales data for analgesics and antipyretics were close to the national average. We invited 626 adolescents to participate. Of the 367 adolescents (59%) who responded, 51% were girls. Associations between the frequency of use of over-the-counter analgesic and the mentioned variables were analysed using multiple logistic regression. In total, 26% (42 boys and 48 girls) used over-the-counter analgesics daily to weekly. These high-frequency users experienced more widespread pain, slept less, had more paid spare-time work, drank more caffeinated drinks, participated more often in binge drinking, had lower self-esteem, less ambitious educational plans and more frequent school absence than did the low-frequency users. These associations remained significant when controlling for gender, cultural background and self-evaluated economic status. Adolescent, who are high-frequency users of over-the-counter analgesics, suffer more pain and have identifiable characteristics indicative of complex problems. Their ability to handle stress appears to be discordant with the kind of situations to which they are exposed. The wear and tear associated with allostatic mechanisms counteracting stress may heighten their pain experience. © 2013 Nordic College of Caring Science. Published by Blackwell Publishing Ltd.
Hassell, Kerry M; LeBlanc, Yves; McLuckey, Scott A
2009-11-01
Charge inversion ion/ion reactions can convert several cation types associated with a single analyte molecule to a single anion type for subsequent mass analysis. Specifically, analyte ions present with one of a variety of cationizing agents, such as an excess proton, excess sodium ion, or excess potassium ion, can all be converted to the deprotonated molecule, provided that a stable anion can be generated for the analyte. Multiply deprotonated species that are capable of exchanging a proton for a metal ion serve as the reagent anions for the reaction. This process is demonstrated here for warfarin and for a glutathione conjugate. Examples for several other glutathione conjugates are provided as supplementary material to demonstrate the generality of the reaction. In the case of glutathione conjugates, multiple metal ions can be associated with the singly-charged analyte due to the presence of two carboxylate groups. The charge inversion reaction involves the removal of the excess cationizing agent, as well as any metal ions associated with anionic groups to yield a singly deprotonated analyte molecule. The ability to convert multiple cation types to a single anion type is analytically desirable in cases in which the analyte signal is distributed among several cation types, as is common in the electrospray ionization of solutions with relatively high salt contents. For analyte species that undergo efficient charge inversion, such as glutathione conjugates, there is the additional potential advantage for significantly improved signal-to-noise ratios when species that give rise to 'chemical noise' in the positive ion spectrum do not undergo efficient charge inversion.
A critical study on efficiency of different materials for fluoride removal from aqueous media
2013-01-01
Fluoride is a persistent and non-biodegradable pollutant that accumulates in soil, plants, wildlife and in human beings. Therefore, knowledge of its removal, using best technique with optimum efficiency is needed. The present survey highlights on efficacy of different materials for the removal of fluoride from water. The most important results of extensive studies on various key factors (pH, agitation time, initial fluoride concentration, temperature, particle size, surface area, presence and nature of counter ions and solvent dose) fluctuate fluoride removal capacity of materials are reviewed. PMID:23497619
Charged Polymer Brushes: Counterion Incorporation and Scaling Relations
NASA Astrophysics Data System (ADS)
Ahrens, Heiko; Förster, Stephan; Helm, Christiane A.
1998-11-01
Amphiphilic block copolymers consisting of a fluid hydrophobic and a polyelectrolyte part form monolayers at the air/water interface. With x-ray reflectivity it is shown that the hydrophobic block is a nm-thick melt, while the polyelectrolyte forms an osmotically swollen brush of constant thickness, independent of grafting density and with stochiometric counter ion incorporation. Only at high salt conditions (above 0.1 M), the brush shrinks and the thickness scales with the molecular area and the salt concentration (corrected for excluded volume interactions) with an exponent -1/3.
New mechanisms of macroion-induced disintegration of charged droplets
NASA Astrophysics Data System (ADS)
Consta, Styliani; Oh, Myong In; Malevanets, Anatoly
2016-10-01
Molecular modeling has revealed that the presence of charged macromolecules (macroions) in liquid droplets dramatically changes the pathways of droplet fission. These mechanisms are not captured by the traditional theories such as ion-evaporation and charge-residue models. We review the general mechanisms by which macroions emerge from droplets and the factors that determine the droplet fission. These mechanisms include counter-intuitive ;star; droplet formations and extrusion of linear macroions from droplets. These findings may play a direct role in determining macromolecule charge states in electrospray mass spectrometry experiments.
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.
1985-01-01
An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cerenkov counter is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed obtaining the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R sub c 5 GV.
Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?
2016-01-01
Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na+ would outcompete Cs+ by 1.8–2.1-fold; i.e., with Cs+ in 2-fold excess of Na+ the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res.2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na+ over Cs+. There is an ∼25% preferential occupancy of Li+ over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4–P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation–anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the development of next-generation nucleic acid computational models. PMID:27479701
Anomalous annealing of floating gate errors due to heavy ion irradiation
NASA Astrophysics Data System (ADS)
Yin, Yanan; Liu, Jie; Sun, Youmei; Hou, Mingdong; Liu, Tianqi; Ye, Bing; Ji, Qinggang; Luo, Jie; Zhao, Peixiong
2018-03-01
Using the heavy ions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL), the annealing of heavy-ion induced floating gate (FG) errors in 34 nm and 25 nm NAND Flash memories has been studied. The single event upset (SEU) cross section of FG and the evolution of the errors after irradiation depending on the ion linear energy transfer (LET) values, data pattern and feature size of the device are presented. Different rates of annealing for different ion LET and different pattern are observed in 34 nm and 25 nm memories. The variation of the percentage of different error patterns in 34 nm and 25 nm memories with annealing time shows that the annealing of FG errors induced by heavy-ion in memories will mainly take place in the cells directly hit under low LET ion exposure and other cells affected by heavy ions when the ion LET is higher. The influence of Multiple Cell Upsets (MCUs) on the annealing of FG errors is analyzed. MCUs with high error multiplicity which account for the majority of the errors can induce a large percentage of annealed errors.
Education and Countering Violent Extremism: Western Logics from South to North?
ERIC Educational Resources Information Center
Novelli, Mario
2017-01-01
This paper explores the way education and conflict have become entangled during the post-9/11 "war on terror" response to "radical Islam" at home and abroad. The paper charts the complex ways that education has been deployed to serve Western military and security objectives in multiple locations in the global south and how…
ERIC Educational Resources Information Center
Black, Felicia V.
2013-01-01
The purpose of this feminist case study was two-fold: (1) to describe the ways that Collaborative Inquiry (CI) can be proposed as a counter-discourse of professional development that acknowledges the multiple forms of personal and professional knowledge among five women preschool practitioners, and (2) to explore alternative constructs of the…
Code of Federal Regulations, 2014 CFR
2014-04-01
... in the Federal Register of November 19, 1972 (37 FR 25249). (xii) Certain OTC Multiple-Vitamin Preparations for Oral Use containing excessive amounts of vitamin D and/or vitamin A (DESI 97), for which... the products into conformity with current medical knowledge and experience. (d) Manufacturers and...
Code of Federal Regulations, 2013 CFR
2013-04-01
... in the Federal Register of November 19, 1972 (37 FR 25249). (xii) Certain OTC Multiple-Vitamin Preparations for Oral Use containing excessive amounts of vitamin D and/or vitamin A (DESI 97), for which... the products into conformity with current medical knowledge and experience. (d) Manufacturers and...
Code of Federal Regulations, 2012 CFR
2012-04-01
... in the Federal Register of November 19, 1972 (37 FR 25249). (xii) Certain OTC Multiple-Vitamin Preparations for Oral Use containing excessive amounts of vitamin D and/or vitamin A (DESI 97), for which... the products into conformity with current medical knowledge and experience. (d) Manufacturers and...
ERIC Educational Resources Information Center
Kissel, Brian T.; Miller, Erin T.
2015-01-01
In this article, we examine how young writers and their teachers transformed the language arts curriculum by asserting their power within a familiar framework--the writer's workshop. We present three narratives in which multiple pre-kindergarten agents (students, teachers, and administrators) used their power within the Writer's Workshop to a)…
NASA Astrophysics Data System (ADS)
Lee, Justin H.; Angelopoulos, Vassilis
2014-11-01
Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to the presence of drifting hot anisotropic protons and cold plasmaspheric ions with a dominant cold proton component. Near midnight, EMIC waves are less common because warm heavy ions that suppress wave growth are more abundant there. The waves can grow when cold, plume-like density enhancements are present, however. Dawn EMIC waves, known for their peculiar properties, are generated away from the equator and change polarization during propagation through the warm plasma cloak. Noon EMIC waves can also be generated nonlocally and their properties modified during propagation by a plasmaspheric plume combined with low-energy ions from solar and terrestrial sources. Accounting for multiple ion species, measured wave dispersion, and propagation characteristics can explain previously elusive EMIC wave properties and are therefore important for future studies of EMIC wave effects on energetic particle depletion.
NASA Astrophysics Data System (ADS)
Tarifeño-Saldivia, A.; Tain, J. L.; Domingo-Pardo, C.; Calviño, F.; Cortés, G.; Phong, V. H.; Riego, A.; Agramunt, J.; Algora, A.; Brewer, N.; Caballero-Folch, R.; Coleman-Smith, P. J.; Davinson, T.; Dillmann, I.; Estradé, A.; Griffin, C. J.; Grzywacz, R.; Harkness-Brennan, L. J.; Kiss, G. G.; Kogimtzis, M.; Labiche, M.; Lazarus, I. H.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Morales, A. I.; Nishimura, S.; Page, R. D.; Podolyák, Z. S.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Simpson, J.; Sokol, E.; Surman, R.; Svirkhin, A.; Thomas, S. L.; Tolosa, A.; Woods, P.
2017-04-01
The conceptual design of the BRIKEN neutron detector at the radioactive ion beam factory (RIBF) of the RIKEN Nishina Center is reported. The BRIKEN setup is a complex system aimed at detecting heavy-ion implants, β particles, γ rays and β-delayed neutrons. The whole setup includes the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and up to 166 3He-filled counters embedded in a high-density polyethylene moderator. The design is quite complex due to the large number and different types of 3He-tubes involved and the additional constraints introduced by the ancillary detectors for charged particles and γ rays. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-counter array, aiming for the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected detector parameters of merit, namely, the average neutron detection efficiency and the efficiency flatness as a function of a reduced number of geometric variables. The response of the neutron detector is obtained from a systematic Monte Carlo simulation implemented in GEANT4. The robustness of the algorithm allowed us to design a versatile detection system, which operated in hybrid mode includes the full neutron counter and two clover detectors for high-precision gamma spectroscopy. In addition, the system can be reconfigured into a compact mode by removing the clover detectors and re-arranging the 3He tubes in order to maximize the neutron detection performance. Both operation modes shows a rather flat and high average efficiency. In summary, we have designed a system which shows an average efficiency for hybrid mode (3He tubes + clovers) of 68.6% and 64% for neutron energies up to 1 and 5 MeV, respectively. For compact mode (only 3He tubes), the average efficiency is 75.7% and 71% for neutron energies up to 1 and 5 MeV, respectively. The performance of the BRIKEN detection system has been also quantified by means of Monte Carlo simulations with different neutron energy distributions.
Neutron counter based on beryllium activation
NASA Astrophysics Data System (ADS)
Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.
2014-08-01
The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.
NASA Astrophysics Data System (ADS)
Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer
2015-09-01
Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.
Henzlova, Daniela; Menlove, Howard Olsen; Croft, Stephen; ...
2015-06-15
In the field of nuclear safeguards, passive neutron multiplicity counting (PNMC) is a method typically employed in non-destructive assay (NDA) of special nuclear material (SNM) for nonproliferation, verification and accountability purposes. PNMC is generally performed using a well-type thermal neutron counter and relies on the detection of correlated pairs or higher order multiplets of neutrons emitted by an assayed item. To assay SNM, a set of parameters for a given well-counter is required to link the measured multiplicity rates to the assayed item properties. Detection efficiency, die-away time, gate utilization factors (tightly connected to die-away time) as well as optimummore » gate width setting are among the key parameters. These parameters along with the underlying model assumptions directly affect the accuracy of the SNM assay. In this paper we examine the role of gate utilization factors and the single exponential die-away time assumption and their impact on the measurements for a range of plutonium materials. In addition, we examine the importance of item-optimized coincidence gate width setting as opposed to using a universal gate width value. Finally, the traditional PNMC based on multiplicity shift register electronics is extended to Feynman-type analysis and application of this approach to Pu mass assay is demonstrated.« less
Hsu, Fong-Fu; Lodhi, Irfan J; Turk, John; Semenkovich, Clay F
2014-08-01
We describe a linear ion-trap (LIT) multiple-stage (MS(n)) mass spectrometric approach towards differentiation of alkylacyl, alk-1-enylacyl- and diacyl-glycerophoscholines (PCs) as the [M - 15]⁻ ions desorbed by electrospray ionization (ESI) in the negative-ion mode. The MS⁴ mass spectra of the [M - 15 - R²'CH = CO]⁻ ions originated from the three PC subfamilies are readily distinguishable, resulting in unambiguous distinction of the lipid classes. This method is applied to two alkyl ether rich PC mixtures isolated from murine bone marrow neutrophils and kidney, respectively, to explore its utility in the characterization of complex PC mixture of biological origin, resulting in the realization of the detailed structures of the PC species, including various classes and many minor isobaric isomers.
Background in X-ray astronomy proportional counters
NASA Technical Reports Server (NTRS)
Bower, C. R.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.
1991-01-01
The authors report the results of an investigation into the nature of background events in proportional counters sensitive to X-ray photons having energy of less than 150 keV. Even with the use of thick shields composed of high-atomic-number material, a significant flux background in the detector's energy region can result from multiple Compton scattering in the mass surrounding the active region of the detector. The importance of the selection of detector components in the reduction of the background by more than an order of magnitude is emphasized. Experimental results are shown to agree qualitatively with Monte Carlo simulations. It is concluded that escape gating is a powerful means of determining the nature of background in flight detectors: the single/pair ratios reveal whether the detected events are charged particles or photons.
Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids
Abidi, S.L.
1989-01-01
High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.
NASA Astrophysics Data System (ADS)
Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur
2017-05-01
In this study, three new complexes (4aepyH)2[Ni(CN)4] (1), (4aepyH)2[Pd(CN)4] (2) and (4aepyH)2[Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine] have been synthesized and characterized by elemental, thermal, vibrational (FT-IR and Raman) and single-crystal X-ray diffraction techniques. The crystallographic analyses reveal that the complexes crystallize in the monoclinic system, space group C2/c. The asymmetric units of the complexes contain one M(II) ion, two cyanide ligands and one non-coordinated the 4aepy ligand. Each M(II) ion is four coordinated with four cyanide-carbon atoms in a square planar geometry and the [M(CN)4]2- anions act as a counter ion. The 4aepyH cations in the complexes compose of the protonation of the 4aepy. The vibrational spectral data also supported to the crystal structures of the complexes. Thermal stabilities and decomposition products of the complexes were investigated in the temperature range 40-700 °C in the static air atmosphere.
Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István
2018-01-01
An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.
FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy
NASA Astrophysics Data System (ADS)
Agodi, C.; Abou-Haidar, Z.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Bohlen, T. T.; Bondì, M.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernandez-Garcia, J. P.; Finck, C.; Foti, A.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Lavagno, A.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.
2013-03-01
Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target.
Persistent Ion Pairing in Aqueous Hydrochloric Acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam
2014-07-03
For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that themore » Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.« less
Plasma rotation and transport in MAST spherical tokamak
NASA Astrophysics Data System (ADS)
Field, A. R.; Michael, C.; Akers, R. J.; Candy, J.; Colyer, G.; Guttenfelder, W.; Ghim, Y.-c.; Roach, C. M.; Saarelma, S.; MAST Team
2011-06-01
The formation of internal transport barriers (ITBs) is investigated in MAST spherical tokamak plasmas. The relative importance of equilibrium flow shear and magnetic shear in their formation and evolution is investigated using data from high-resolution kinetic- and q-profile diagnostics. In L-mode plasmas, with co-current directed NBI heating, ITBs in the momentum and ion thermal channels form in the negative shear region just inside qmin. In the ITB region the anomalous ion thermal transport is suppressed, with ion thermal transport close to the neo-classical level, although the electron transport remains anomalous. Linear stability analysis with the gyro-kinetic code GS2 shows that all electrostatic micro-instabilities are stable in the negative magnetic shear region in the core, both with and without flow shear. Outside the ITB, in the region of positive magnetic shear and relatively weak flow shear, electrostatic micro-instabilities become unstable over a wide range of wave numbers. Flow shear reduces the linear growth rates of low-k modes but suppression of ITG modes is incomplete, which is consistent with the observed anomalous ion transport in this region; however, flow shear has little impact on growth rates of high-k, electron-scale modes. With counter-NBI ITBs of greater radial extent form outside qmin due to the broader profile of E × B flow shear produced by the greater prompt fast-ion loss torque.
Formulation of long-wavelength indocyanine green nanocarriers.
Pansare, Vikram J; Faenza, William J; Lu, Hoang; Adamson, Douglas H; Prud'homme, Robert K
2017-09-01
Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim
2015-08-14
We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.
Sawtooth control in fusion plasmas
NASA Astrophysics Data System (ADS)
Graves, J. P.; Angioni, C.; Budny, R. V.; Buttery, R. J.; Coda, S.; Eriksson, L.-G.; Gimblett, C. G.; Goodman, T. P.; Hastie, R. J.; Henderson, M. A.; Koslowski, H. R.; Mantsinen, M. J.; Martynov, An; Mayoral, M.-L.; Mück, A.; Nave, M. F. F.; Sauter, O.; Westerhof, E.; Contributors, JET–EFDA
2005-12-01
Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclotron heating in order to locally increase the current penetration time in the core. The latter is also achieved in various machines by depositing electron cyclotron current drive or ion cyclotron current drive close to the q = 1 rational surface. Crucially, localized current drive also succeeds in destabilizing sawteeth which are otherwise stabilized by a co-existing population of energetic trapped ions in the core. In addition, a recent reversed toroidal field campaign at JET demonstrates that counter-neutral beam injection (NBI) results in shorter sawtooth periods than in the Ohmic regime. The clear dependence of the sawtooth period on the NBI heating power and the direction of injection also manifests itself in terms of the toroidal plasma rotation, which consequently requires consideration in the theoretical interpretation of the experiments. Another feature of NBI, expected to be especially evident in the negative ion based neutral beam injection (NNBI) heating planned for ITER, is the parallel velocity asymmetry of the fast ion population. It is predicted that a finite orbit effect of asymmetrically distributed circulating ions could strongly modify sawtooth stability. Furthermore, NNBI driven current with non-monotonic profile could significantly slow down the evolution of the safety factor in the core, thereby delaying sawteeth.
Formulation of long-wavelength indocyanine green nanocarriers
NASA Astrophysics Data System (ADS)
Pansare, Vikram J.; Faenza, William J.; Lu, Hoang; Adamson, Douglas H.; Prud'homme, Robert K.
2017-09-01
Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations.
Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.
Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V
2011-12-01
A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.
Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process
Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.
2011-01-01
A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589
Li, Qiaoyun; Wan, Xiaocao; Liu, Chao; Fang, Liang
2018-07-01
The aim of this study was to prepare a drug-in-adhesive patch of nicotine (NIC) and use ion-pair strategy to regulate drug delivery rate. Moreover, the mechanism of how ion-pair strategy regulated drug release was elucidated at molecular level. Formulation factors including pressure sensitive adhesives (PSAs), drug loading and counter ions (C 4 , C 6 , C 8 , C 10 , and C 12 ) were screened. In vitro release experiment and in vitro transdermal experiment were conducted to determine the rate-limiting step in drug delivery process. FT-IR and molecular modeling were used to characterize the interaction between drug and PSA. Thermal analysis and rheology study were conducted to investigate the mobility variation of PSA. The optimized patch prepared with NIC-C 8 had the transdermal profile fairly close to that of the commercial product (p > 0.05). The release rate constants (k) of NIC, NIC-C 4 and NIC-C 10 were 21.1, 14.4 and 32.4, respectively. Different release rates of NIC ion-pair complexes were attributed to the dual effect of ion-pair strategy on drug release. On one hand, ion-pair strategy enhanced the interaction between drug and PSA, which inhibited drug release. On the other hand, using ion-pair strategy improved the mobility of PSA, which facilitated drug release. Drug release behavior was determined by combined effect of two aspects above. These conclusions provided a new idea for us to regulate drug release behavior from patch. Copyright © 2018 Elsevier B.V. All rights reserved.
Application of the Nernst-Planck approach to lead ion exchange in Ca-loaded Pelvetia canaliculata.
Costa, Joana F de Sá S; Vilar, Vítor J P; Botelho, Cidália M S; da Silva, Eduardo A B; Boaventura, Rui A R
2010-07-01
Ca-loaded Pelvetia canaliculata biomass was used to remove Pb(2+) in aqueous solution from batch and continuous systems. The physicochemical characterization of algae Pelvetia particles by potentiometric titration and FTIR analysis has shown a gel structure with two major binding groups - carboxylic (2.8 mmol g(-1)) and hydroxyl (0.8 mmol g(-1)), with an affinity constant distribution for hydrogen ions well described by a Quasi-Gaussian distribution. Equilibrium adsorption (pH 3 and 5) and desorption (eluents: HNO(3) and CaCl(2)) experiments were performed, showing that the biosorption mechanism was attributed to ion exchange among calcium, lead and hydrogen ions with stoichiometry 1:1 (Ca:Pb) and 1:2 (Ca:H and Pb:H). The uptake capacity of lead ions decreased with pH, suggesting that there is a competition between H(+) and Pb(2+) for the same binding sites. A mass action law for the ternary mixture was able to predict the equilibrium data, with the selectivity constants alpha(Ca)(H)=9+/-1 and alpha(Ca)(Pb)=44+/-5, revealing a higher affinity of the biomass towards lead ions. Adsorption (initial solution pH 4.5 and 2.5) and desorption (0.3M HNO(3)) kinetics were performed in batch and continuous systems. A mass transfer model using the Nernst-Planck approximation for the ionic flux of each counter-ion was used for the prediction of the ions profiles in batch systems and packed bed columns. The intraparticle effective diffusion constants were determined as 3.73x10(-7)cm(2)s(-1) for H(+), 7.56x10(-8)cm(2)s(-1) for Pb(2+) and 6.37x10(-8)cm(2)s(-1) for Ca(2+). Copyright 2010 Elsevier Ltd. All rights reserved.
Use of multiple tobacco products in a national sample of persons enrolled in addiction treatment.
Guydish, Joseph; Tajima, Barbara; Pramod, Sowmya; Le, Thao; Gubner, Noah R; Campbell, Barbara; Roman, Paul
2016-09-01
To explore use of tobacco products in relationship to marketing exposure among persons in addiction treatment. A random sample of treatment programs was drawn from the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN). Participants in each program completed surveys concerning use of tobacco products (N=1113). Exposure to tobacco marketing and counter-marketing, advertising receptivity, and perceived health risks of smoking were tested for their association with use of multiple tobacco products. Prevalence of combustible cigarette use was 77.9%. Weekly or greater use of other products was: e-cigarettes (17.7%), little filtered cigars (8.6%), smokeless tobacco (5.2%), and standard cigars (4.6%) with 24.4% using multiple tobacco products. Compared to single product users, multiple product users smoked more cigarettes per day (OR=1.03, 95% CI 1.01-1.05, p<0.001), were more likely to have tried to quit (OR=1.41, 95% CI 1.02-1.96, p=0.041), reported greater daily exposure to advertising for products other than combustible cigarettes (OR=1.93, CI 1.35-2.75, p<0.001), and greater daily exposure to tobacco counter-marketing (OR=1.70, 95% CI: 1.09-2.63, p=0.019). Heavier smokers and those trying to quit may be more likely to use e-cigarettes, little filtered cigars, or smokeless tobacco and have greater susceptibility to their advertising. This highlights the importance of regulating advertising related to smoking cessation as their effectiveness for this purpose has not been demonstrated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Use of Multiple Tobacco Products in a National Sample of Persons Enrolled in Addiction Treatment
Guydish, Joseph; Tajima, Barbara; Pramod, Sowmya; Le, Thao; Gubner, Noah R.; Campbell, Barbara; Roman, Paul
2016-01-01
Objective To explore use of tobacco products in relationship to marketing exposure among persons in addiction treatment. Method A random sample of treatment programs was drawn from the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN). Participants in each program completed surveys concerning use of tobacco products (N = 1,113). Exposure to tobacco marketing and counter-marketing, advertising receptivity, and perceived health risks of smoking were tested for their association with use of multiple tobacco products. Results Prevalence of combustible cigarette use was 77.9%. Weekly or greater use of other products was: e-cigarettes (17.7%), little filtered cigars (8.6%), smokeless tobacco (5.2%), and standard cigars (4.6%) with 24.4% using multiple tobacco products. Compared to single product users, multiple product users smoked more cigarettes per day (OR = 1.03, 95% CI 1.01 – 1.05, p < 0.001), were more likely to have tried to quit (OR = 1.41, 95% CI 1.02 – 1.96, p = 0.041), reported greater daily exposure to advertising for products other than combustible cigarettes (OR = 1.93, CI 1.35 – 2.75, p < 0.001), and greater daily exposure to tobacco counter-marketing (OR =1.70, 95% CI: 1.09 – 2.63, p = 0.019). Conclusion Heavier smokers and those trying to quit may be more likely to use e-cigarettes, little filtered cigars, or smokeless tobacco and have greater susceptibility to their advertising. This highlights the importance of regulating advertising related to smoking cessation as their effectiveness for this purpose has not been demonstrated. PMID:27449271
Ion Acceleration by Double Layers with Multi-Component Ion Species
NASA Astrophysics Data System (ADS)
Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team
2017-10-01
Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.
Heinz, Leonard P; Kopec, Wojciech; de Groot, Bert L; Fink, Rainer H A
2018-05-02
The ryanodine receptor 1 is a large calcium ion channel found in mammalian skeletal muscle. The ion channel gained a lot of attention recently, after multiple independent authors published near-atomic cryo electron microscopy data. Taking advantage of the unprecedented quality of structural data, we performed molecular dynamics simulations on the entire ion channel as well as on a reduced model. We calculated potentials of mean force for Ba 2+ , Ca 2+ , Mg 2+ , K + , Na + and Cl - ions using umbrella sampling to identify the key residues involved in ion permeation. We found two main binding sites for the cations, whereas the channel is strongly repulsive for chloride ions. Furthermore, the data is consistent with the model that the receptor achieves its ion selectivity by over-affinity for divalent cations in a calcium-block-like fashion. We reproduced the experimental conductance for potassium ions in permeation simulations with applied voltage. The analysis of the permeation paths shows that ions exit the pore via multiple pathways, which we suggest to be related to the experimental observation of different subconducting states.
Consistency between real and synthetic fast-ion measurements at ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Geiger, B.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Michelsen, P. K.; Moseev, D.; Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; The ASDEX Upgrade Team
2015-07-01
Internally consistent characterization of the properties of the fast-ion distribution from multiple diagnostics is a prerequisite for obtaining a full understanding of fast-ion behavior in tokamak plasmas. Here we benchmark several absolutely-calibrated core fast-ion diagnostics at ASDEX Upgrade by comparing fast-ion measurements from collective Thomson scattering, fast-ion {{\\text{D}}α} spectroscopy, and neutron rate detectors with numerical predictions from the TRANSP/NUBEAM transport code. We also study the sensitivity of the theoretical predictions to uncertainties in the plasma kinetic profiles. We find that theory and measurements generally agree within these uncertainties for all three diagnostics during heating phases with either one or two neutral beam injection sources. This suggests that the measurements can be described by the same model assuming classical slowing down of fast ions. Since the three diagnostics in the adopted configurations probe partially overlapping regions in fast-ion velocity space, this is also consistent with good internal agreement among the measurements themselves. Hence, our results support the feasibility of combining multiple diagnostics at ASDEX Upgrade to reconstruct the fast-ion distribution function in 2D velocity space.
NASA Astrophysics Data System (ADS)
Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei
2016-06-01
We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d
Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan
2015-11-25
Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.
Bis(2,3,5,6-tetra-2-pyridylpyrazine-κ3 N 2,N 1,N 6)iron(II) bis(dicyanamidate) 4.5-hydrate
Callejo, L.; De la Pinta, N.; Madariaga, G.; Fidalgo, M.L.; Cortés, R.
2010-01-01
In the title compound, [Fe(C24H16N6)2][N(CN)2]2·4.5H2O, the central iron(II) ion is hexacoordinated by six N atoms of two tridentate 2,3,5,6-tetra-2-pyridylpyrazine (tppz) ligands. Two dicyanamide anions [dca or N(CN)2 −] act as counter-ions, and 4.5 water molecules act as solvation agents. The structure contains isolated cationic iron(II)–tppz complexes and the final neutrality is obtained with the two dicyanamide anions. One of the dicyanamide anions and a water molecule are disordered with an occupancy ratio of 0.614 (8):0.386 (8). O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds involving dca, water and tppz molecules are observed. PMID:21580205
Ion generation and CPC detection efficiency studies in sub 3-nm size range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangasluoma, J.; Junninen, H.; Sipilae, M.
2013-05-24
We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of themore » PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.« less
Tompa, P.; Bánki, P.; Bokor, M.; Kamasa, P.; Kovács, D.; Lasanda, G.; Tompa, K.
2006-01-01
Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation. PMID:16798808
Zhang, Weiyi; Yuan, Jiayin
2016-07-01
Herein, the synthesis of a series of poly(4-alkyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid)s is reported either via straightforward free radical polymerization of their corresponding ionic liquid monomers or via anion metathesis of the polymer precursors bearing halide as counter anion. The ionic liquid monomers are first prepared via N-alkylation reaction of commercially available 1-vinyl-1,2,4-triazole with alkyl iodides, followed by anion metathesis with targeted fluorinated anions. The thermal properties and solubilities of these poly(ionic liquid)s have been systematically investigated. Interestingly, it is found that the poly(4-ethyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid) exhibited an improved loading capacity of transition metal ions in comparison with its imidazolium counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
B1-Metallo-beta-Lactamases: Where do we stand?
Mojica, Maria F.; Bonomo, Robert A.; Fast, Walter
2015-01-01
Metallo-beta-Lactamases (MBLs) are class B β-lactamases that hydrolyze almost all clinically-available β-lactam antibiotics. MBLs feature the distinctive αβ/βα sandwich fold of the metallo-hydrolase / oxidoreductase superfamily and possess a shallow active-site groove containing one or two divalent zinc ions, flanked by flexible loops. According to sequence identity and zinc ion dependence, MBLs are classified into three subclasses (B1, B2 and B3), of which the B1 subclass enzymes have emerged as the most clinically significant. Differences among the active site architectures, the nature of zinc ligands, and the catalytic mechanisms have limited the development of a common inhibitor. In this review, we will describe the molecular epidemiology and structural studies of the most prominent representatives of class B1 MBLs (NDM-1, IMP-1 and VIM-2) and describe the implications for inhibitor design to counter this growing clinical threat. PMID:26424398
Forbes, Thomas P.; Dixon, R. Brent; Muddiman, David C.; Degertekin, F. Levent; Fedorov, Andrei G.
2009-01-01
An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported in order to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability. PMID:19525123
Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; ...
2016-05-31
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less
HIEN-LO: An experiment for charge determination of cosmic rays of interplanetary and solar origin
NASA Technical Reports Server (NTRS)
Klecker, B.; Hovestadt, D.; Mason, G. M.; Blake, J. B.; Nicholas, J.
1988-01-01
The experiment is designed to measure the heavy ion environment at low altitude (HIEN-LO) in the energy range 0.3 to 100 MeV/nucleon. In order to cover this wide energy range a complement of three sensors is used. A large area ion drift chamber and a time-of-flight telescope are used to determine the mass and energy of the incoming cosmic rays. A third omnidirectional counter serves as a proton monitor. The analysis of mass, energy and incoming direction in combination with the directional geomagnetic cut-off allows the determination of the ionic charge of the cosmic rays. The ionic charge in this energy range is of particular interest because it provides clues to the origin of these particles and to the plasma conditions at the acceleration site. The experiment is expected to be flown in 1988/1989.
Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90
Huntley, Mark W.
1996-01-01
A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a bidente ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.
Use of Chelex-100 for selectively removing Y-90 from its parent Sr-90
Huntley, M.W.
1996-02-27
A method for selectively removing yttrium-90 from its parent strontium-90 contained in an environmental sample includes loading the sample onto a column containing a chelating ion-exchange resin capable of retaining yttrium-90; washing the column with a solution capable of removing strontium, calcium, and other contaminants from the yttrium-90 fraction retained on the column; removing excess acetate salts from the column; eluting yttrium-90 solution from the column and adjusting the pH of this solution to about 2.7; filtering the yttrium-90 solution and weighing this solution for gravimetric yield; and, counting the yttrium-90 containing solution with a radiological counter for a time sufficient to achieve the statistical accuracy desired. It is preferred that the chelating ion-exchange resin is a ligand having the chemical name iminodiacetic acid mounted on a divinyl benzene substrate, converted from sodium form to ammonia form.
Microbial Iron Respiration Can Protect Steel from Corrosion
Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.
2002-01-01
Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499
Autogenic reaction synthesis of photocatalysts for solar fuel generation
Ingram, Brian J.; Pol, Vilas G.; Cronauer, Donald C.; Ramanathan, Muruganathan
2016-04-19
In one preferred embodiment, a photocatalyst for conversion of carbon dioxide and water to a hydrocarbon and oxygen comprises at least one nanoparticulate metal or metal oxide material that is substantially free of a carbon coating, prepared by heating a metal-containing precursor compound in a sealed reactor under a pressure autogenically generated by dissociation of the precursor material in the sealed reactor at a temperature of at least about 600.degree. C. to form a nanoparticulate carbon-coated metal or metal oxide material, and subsequently substantially removing the carbon coating. The precursor material comprises a solid, solvent-free salt comprising a metal ion and at least one thermally decomposable carbon- and oxygen-containing counter-ion, and the metal of the salt is selected from the group consisting of Mn, Ti, Sn, V, Fe, Zn, Zr, Mo, Nb, W, Eu, La, Ce, In, and Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suttle, L. G.; Hare, J. D.; Lebedev, S. V.
We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less
NASA Astrophysics Data System (ADS)
Tsuji, H.; Ebihara, Y.; Tanaka, T.
2017-04-01
An interplanetary (IP) shock has a large impact on magnetospheric ions. Satellite observations have shown that soon after arrival of the IP shock, overall intensity of the ions rapidly increases and multiple energy dispersion appears in an energy-time spectrogram of the ions. In order to understand the response of the magnetospheric ions to IP shock, we have performed test particle simulation under the electric and magnetic fields provided by the global magnetohydrodynamic simulation. We reconstructed the differential flux of H+, He+, and O+ ions at (7, 0, 0) Re in GSM coordinates by means of the semi-Lagrangian (phase space mapping) method. Simulation results show that the ions respond to the IP shock in two different ways. First, overall intensity of the flux gradually increases at all pitch angles. As the compressional wave propagates tailward, the magnetic field increases, which accelerates the ions due to the gyrobetatron. Second, multiple energy-time dispersion appears in the reconstructed spectrograms of the ion flux. The energy-time dispersion is caused by the ion moving toward mirror point together with tailward propagating compressional wave at off-equator. The ions are primarily accelerated by the drift betatron under the strong electric field looking dawnward. The dispersion is absent in the spectrogram of equatorially mirroring ions. The dispersion appears at higher energy for heavier ions. These features are consistent with the satellite observations. Because the acceleration depends on bounce phase, the bounce-averaged approximation is probably invalid for the ions during the interval of geomagnetic sudden commencement.
Simakov, Andrei Nikolaevich; Molvig, Kim
2016-03-17
Paper I [A. N. Simakov and K. Molvig, Phys. Plasmas23, 032115 (2016)] obtained a fluid description for an unmagnetized collisional plasma with multiple ion species. To evaluate collisional plasmatransport fluxes, required for such a description, two linear systems of equations need to be solved to obtain corresponding transport coefficients. In general, this should be done numerically. Herein, the general formalism is used to obtain analytical expressions for such fluxes for several specific cases of interest: a deuterium-tritium plasma; a plasma containing two ion species with strongly disparate masses, which agrees with previously obtained results; and a three ion species plasmamore » made of deuterium, tritium, and gold. We find that these results can be used for understanding the behavior of the aforementioned plasmas, or for verifying a code implementation of the general multi-ion formalism.« less
Single-atom detection of isotopes
Meyer, Fred W.
2002-01-01
A method for performing accelerator mass spectrometry, includes producing a beam of positive ions having different multiple charges from a multicharged ion source; selecting positive ions having a charge state of from +2 to +4 to define a portion of the beam of positive ions; and scattering at least a portion of the portion of the beam of positive ions off a surface of a target to directly convert a portion of the positive ions in the portion of the beam of positive ions to negative ions.
ERIC Educational Resources Information Center
Marsh, Herbert W.; Tracey, Danielle K.; Craven, Rhonda G.
2006-01-01
Confirmatory factor analysis of responses by 211 preadolescents (M age = 10.25 years,SD = 1.48) with mild intellectual disabilities (MIDs) to the individually administered Self Description Questionnaire I-Individual Administration (SDQI-IA) counters widely cited claims that these children cannot differentiate multiple self-concept factors. Results…
Using Video Prompting to Teach Cooking Skills to Secondary Students with Moderate Disabilities
ERIC Educational Resources Information Center
Graves, Tara B.; Collins, Belva C.; Schuster, John W.; Kleinert, Harold
2005-01-01
Three secondary students with moderate disabilities acquired cooking skills through a constant time delay procedure used with video prompting. A multiple probe design was used to evaluate effectiveness of the procedure to teach preparation of a food item (a) on a stove, (b) in a microwave, and (c) on a counter top. The procedure was effective for…
ERIC Educational Resources Information Center
Thigpen, L. Christine
2012-01-01
The purpose of this study was to explore teaching styles and how frequently teachers with a variety of teaching styles incorporate multiple representations, such as manipulatives, drawings, counters, etc., in the middle school mathematics classroom. Through this explanatory mixed methods study it was possible to collect the quantitative data in…
Spectral CT data acquisition with Medipix3.1
NASA Astrophysics Data System (ADS)
Walsh, M. F.; Nik, S. J.; Procz, S.; Pichotka, M.; Bell, S. T.; Bateman, C. J.; Doesburg, R. M. N.; De Ruiter, N.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.
2013-10-01
This paper describes the acquisition of spectral CT images using the Medipix3.1 in spectroscopic mode, in which the chip combines 2 × 2 pixel clusters to increase the number of energy thresholds and counters from 2 to 8. During preliminary measurements, it was observed that the temperature, DAC and equalisation stability of the Medipix3.1 outperformed the Medipix3.0, while maintaining similar imaging quality. In this paper, the Medipix3.1 chips were assembled in a quad (2 × 2) layout, with the four ASICs bump-bonded to a silicon semiconductor doped as an np-junction diode. To demonstrate the biological imaging quality that is possible with the Medipix3.1, an image of a mouse injected with gold nano-particle contrast agent was obtained. CT acquisition in spectroscopic mode was enabled and examined by imaging a customised phantom containing multiple contrast agents and biological materials. These acquisitions showed a limitation of imaging performance depending on the counter used. Despite this, identification of multiple materials in the phantom was demonstrated using an in-house material decomposition algorithm. Furthermore, gold nano-particles were separated from biological tissues and bones within the mouse by means of image rendering.
Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan
2017-07-13
Ion specific effects on colloidal stability of titania nanosheets (TNS) were investigated in aqueous suspensions. The charge of the particles was varied by the pH of the solutions, therefore, the influence of mono- and multivalent anions on the charging and aggregation behavior could be studied when they were present either as counter or co-ions in the systems. The aggregation processes in the presence of inorganic salts were mainly driven by interparticle forces of electrostatic origin, however, chemical interactions between more complex ions and the surface led to additional attractive forces. The adsorption of anions significantly changed the surface charge properties and hence, the resistance of the TNS against salt-induced aggregation. On the basis of their ability in destabilization of the dispersions, the monovalent ions could be ordered according to the Hofmeister series in acidic solutions, where they act as counterions. However, the behavior of the biphosphate anion was atypical and its adsorption induced charge reversal of the particles. The multivalent anions destabilized the oppositely charged TNS more effectively and the aggregation processes followed the Schulze-Hardy rule. Only weak or negligible interactions were observed between the anions and the particles in alkaline suspensions, where the TNS possessed negative charge.
Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.
2014-10-01
Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.
When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources
Chen, Lee Chuin
2015-01-01
In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912
Stimulated Parametric Decay of Large Amplitude Alfv'en waves in the Large Plasma Device (LaPD)
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.
2012-10-01
Alfv'en waves, the fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied, non-linear effects are important in many real systems. In particular, a parametric decay process in which a large amplitude Alfv'en wave decays into an ion acoustic wave and backward propagating Alfv'en wave may be key to the spectrum of solar wind turbulence. The present laboratory experiments aim to stimulate this process by launching counter-propagating Alfv'en waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has many properties consistent with an ion acoustic wave including: 1) The beat amplitude peaks when the frequency difference between the two Alfv'en waves is near the value predicted by Alfv'en-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfv'en waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfv'en wave. Strong damping observed after the pump Alfv'en waves are turned off is under investigation.
NASA Astrophysics Data System (ADS)
Wackerbarth, Eugene; Kang, In-Je; Park, In-Sun; Chung, Kyu-Sun; Hershkowitz, Noah; Severn, Greg
2017-10-01
We consider the problem of the sheath near a negatively biased grid (-100V) that permits ion flow in both directions. We show the first laser-induced fluorescence (LIF) measurements of ion velocity distribution functions (IVDFs) in such a system. We worked with a hot filament discharge at the University of San Diego (length = 64 cm, diameter = 32 cm) in which a Kr discharge was operated with a neutral pressure of 0.1mTorr, ne 3 ×109cm-3 and Te 3.5 eV. Sheath potentials were measured with an emissive probe using the inflection point method in the limit of zero emission. The LIF collection optics were recently upgraded to a 4f system with a spatial resolution smaller than 1mm. IVDFs measured near the grid (80mm diam. 40 lines/cm) indicate ion flow from both sides of the grid. Preliminary analysis of the moments of the IVDFs indicate that Bohm's Criterion is satisfied at the sheath edge. Thanks to DOE Grant No. DE-SC00114226, NSF Grant Nos. 1464741, 1464838, and the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2015M1A7A1A01002784).
Effects of bicarbonate on lithium transport in human red cells
1978-01-01
Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis. PMID:670928
High resolution Cerenkov and range detectors for balloon-borne cosmic-ray experiment
NASA Technical Reports Server (NTRS)
Ahlen, S. P.; Cartwright, B. G.; Tarle, G.
1975-01-01
A combination of an active Cerenkov detector and passive range detectors is proposed for the high resolution measurement of isotopic composition in the neighborhood of iron in the galactic cosmic rays. A large area (4,300 sq cm) Cerenkov counter and passive range detectors were tested. Tests with heavy ions (2.1 GeV/amu C-12, 289 MeV/amu Ar-40, and 594 MeV/amu Ne-20) revealed the spatial uniformity of response of the Cerenkov counter to be better than 1% peak-to-peak. Light collection efficiency is independent of projectile energy and incidence angle to within at least 0.5%. Passive Lexan track recorders to measure range in the presence of the nuclear interaction background which results from stopping particles through 0.9 interaction lengths of matter were also tested. It was found that nuclear interactions produce an effective range straggling distribution only approximately 75% wider than that expected from range straggling alone. The combination of these tested techniques makes possible high mass resolution in the neighborhood of iron.
Luczay, A; Vásárhelyi, B; Dobos, M; Holics, K; Ujhelyi, R; Tulassay, T
1997-03-01
Patients with cystic fibrosis (CF) exhibit normal concentrations of sodium and chloride in spite of the disturbance of Cl- and Na+ transport in epithelial cells. To characterize compensatory mechanisms in the regulation of sodium homeostasis, erythrocytes of 13 CF patients were analysed for sodium-lithium counter-transport (SLC), Na+/K(+)-ATPase activity and intracellular sodium content. Values were compared to those of healthy controls. Patients with CF had normal serum sodium and chloride concentrations and renal excretions of these ions were within the physiological range. Intracellular sodium concentration was similar in the CF and the control group (6.8 +/- 2.2 vs 5.7 +/- 1.0 mmol/l RBCs). Red blood cells' SLC and Na+/ K(+)-ATPase activity were elevated in CF patients (381 +/- 106 mumol/h/l RBCs vs 281 +/- 64; p < 0.01) and (445 +/- 129 mumol ATP mg prot/h vs 322 +/- 84, p < 0.01). Our study demonstrates that transmembrane cation transport systems are highly activated in CF. The increased sodium transport may be part of a compensatory mechanism of sodium homeostasis in children with CF.
Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia
NASA Astrophysics Data System (ADS)
Machta, Benjamin B.; Gray, Ellyn; Nouri, Mariam; McCarthy, Nicola L. C.; Gray, Erin M.; Miller, Ann L.; Brooks, Nicholas J.; Veatch, Sarah L.
2016-08-01
Diverse molecules induce general anesthesia with potency strongly correlated both with their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma membrane derived vesicles by lowering the critical temperature ($T_c$) for phase separation. Here we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on $T_c$. First we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described `intoxication reversers' raise $T_c$ and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that hydrostatic pressure, long known to reverse anesthesia, also raises $T_c$ in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that $\\Delta T_c$ predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.
Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N
2014-06-20
The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
The role of alternative Polyadenylation in regulation of rhythmic gene expression.
Ptitsyna, Natalia; Boughorbel, Sabri; El Anbari, Mohammed; Ptitsyn, Andrey
2017-08-04
Alternative transcription is common in eukaryotic cells and plays important role in regulation of cellular processes. Alternative polyadenylation results from ambiguous PolyA signals in 3' untranslated region (UTR) of a gene. Such alternative transcripts share the same coding part, but differ by a stretch of UTR that may contain important functional sites. The methodoogy of this study is based on mathematical modeling, analytical solution, and subsequent validation by datamining in multiple independent experimental data from previously published studies. In this study we propose a mathematical model that describes the population dynamics of alternatively polyadenylated transcripts in conjunction with rhythmic expression such as transcription oscillation driven by circadian or metabolic oscillators. Analysis of the model shows that alternative transcripts with different turnover rates acquire a phase shift if the transcript decay rate is different. Difference in decay rate is one of the consequences of alternative polyadenylation. Phase shift can reach values equal to half the period of oscillation, which makes alternative transcripts oscillate in abundance in counter-phase to each other. Since counter-phased transcripts share the coding part, the rate of translation becomes constant. We have analyzed a few data sets collected in circadian timeline for the occurrence of transcript behavior that fits the mathematical model. Alternative transcripts with different turnover rate create the effect of rectifier. This "molecular diode" moderates or completely eliminates oscillation of individual transcripts and stabilizes overall protein production rate. In our observation this phenomenon is very common in different tissues in plants, mice, and humans. The occurrence of counter-phased alternative transcripts is also tissue-specific and affects functions of multiple biological pathways. Accounting for this mechanism is important for understanding the natural and engineering the synthetic cellular circuits.
Variations in AmLi source spectra and their estimation utilizing the 5 Ring Multiplicity Counter
NASA Astrophysics Data System (ADS)
Weinmann-Smith, R.; Beddingfield, D. H.; Enqvist, A.; Swinhoe, M. T.
2017-06-01
Active-mode assay systems are widely used for the safeguards of uranium items to verify compliance with the Non-Proliferation Treaty. Systems such as the Active-Well Coincidence Counter (AWCC) and the Uranium Neutron Coincidence Collar (UNCL) use americium-lithium (AmLi) neutron sources to induce fissions which are measured to determine the sample mass. These systems have historically relied on calibrations derived from well-defined standards. Recently, restricted access to standards or more difficult measurements have resulted in a reliance on modeling and simulation for the calibration of systems, which introduces potential simulation biases. The AmLi source energy spectra commonly used in the safeguards community do not accurately represent measurement results and the spectrum uncertainty can represent a large contribution to the total modeling uncertainty in active-mode systems. The 5-Ring Multiplicity Counter (5RMC) has been used to measure 17 AmLi sources. The measurements showed a significant spectral variation between different sources. Utilization of a spectrum that is specific to an individual source or a series of sources will give improved results over historical general spectra when modeling AmLi sources. Candidate AmLi neutron spectra were calculated in MCNP and SOURCES4C for a range of physical AmLi characteristics. The measurement and simulation data were used to fit reliable and accurate AmLi spectra for use in the simulation of active-mode systems. Spectra were created for average Gammatron C, Gammatron N, and MRC series sources, and for individual sources. The systematic uncertainty introduced by physical aspects of the AmLi source were characterized through simulations. The accuracy of spectra from the literature was compared.
Charge exchange molecular ion source
Vella, Michael C.
2003-06-03
Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.
The firehose instability during multiple reconnection in the Earth's magnetotail
NASA Astrophysics Data System (ADS)
Alexandrova, Alexandra; Divin, Andrey; Retino, Alessandro; Deca, Jan; Catapano, Filomena; Cozzani, Giulia
2017-04-01
We found unique events in the Cluster spacecraft observations of the Earth's magnetotail which correspond to the case of multiple reconnection sites. The ion temperature anisotropy of more energized ions in the direction parallel to the magnetic field, rather than in the perpendicular direction, is observed in the region of dynamical interaction between two active X-lines. The magnetic field and plasma parameters associated with the anisotropy correspond to the firehose instability conditions. We discuss possible scenarios of development of the firehose instability in multiple reconnection by comparing the observations with numerical simulations. Conventional Particle-in-Cell simulations of 2D magnetic reconnection starting from Harris equilibria are performed using implicit PIC code iPIC3D [Markidis, 2010]. At earlier stages the evolution creates fronts which push the weakly magnetized current sheet plasma away from the X-line. Fronts accelerate and reflect particles, producing parallel ion beams and increasing parallel ion temperature ahead of the front. If multiple X-lines are present, then the counterstreaming ion beams appear inside the original current sheet between colliding reconnection jet fronts. For large enough parallel ion pressure anisotropy, the firehose-like mode is excited inside the original current sheet with a flapping-like appearance along the X GSM direction but not Y GSM (current) direction. One should note that our simulations do not include the Bz magnetic field component (normal to the current sheet), hence ion beams cannot escape into the lobes and the whole region between two colliding fronts is unstable to firehose-like instability. In the Earth's magnetotail such configuration likely occurs when two active X-lines are close enough to each other, similar to a few cases we found in the Cluster observations.
Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory
NASA Astrophysics Data System (ADS)
Mikosch, Jochen; Patchkovskii, Serguei
2013-10-01
We derive a formal theory of noisy Poisson processes with multiple outcomes. We obtain simple, compact expressions for the probability distribution function of arbitrarily complex composite events and its moments. We illustrate the utility of the theory by analyzing properties of coincidence and covariance photoelectron-photoion detection involving single-ionization events. The results and techniques introduced in this work are directly applicable to more general coincidence and covariance experiments, including multiple ionization and multiple-ion fragmentation pathways.
Gebhardt, Winifred A; van der Doef, Margot P; Billingy, Nicole; Carstens, Malou; Steenhuis, Ingrid
2012-07-01
Condom purchasing is an important preparation for condom use. The present study examined if products surrounding condoms in the store play a role in preferences for where to buy condoms among young people. Sixty-nine men and 111 women (<30 years) completed an online questionnaire on their preferences for condom placement, associated embarrassment with these placements, and motives for having sex. Fifty percent of men and 70% of women indicated the counter as least preferred placement. Two-fifths of men and women preferred the sensual context, including among sex toys and lubricants; however, the remainder of participants, particularly women, preferred other less sexual contexts. Both the counter and sensual placement were strongly associated with embarrassment, and this, in turn, was predictive of placement preference. Finally, the motive for having sex to experience intimacy was negatively related to counter preference, and the motive for having sex to experience pleasure was negatively related to the neutral placement and the female personal care placement preferences. The findings suggest that using multiple and alternative placements for condoms in stores may encourage condom purchasing behaviour among young people.
Evidence Combination From an Evolutionary Game Theory Perspective
Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu
2017-01-01
Dempster-Shafer evidence theory is a primary methodology for multi-source information fusion because it is good at dealing with uncertain information. This theory provides a Dempster’s rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multi-evidence system. Within the proposed ECR, we develop a Jaccard matrix game (JMG) to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution’s stability and convergence, have been mathematically proved as well. PMID:26285231
Characterizations of double pulsing in neutron multiplicity and coincidence counting systems
Koehler, Katrina E.; Henzl, Vladimir; Croft, Stephen; ...
2016-06-29
Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. But, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. Here, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, themore » double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We also discuss the role of these corrections across a range of scenarios.« less
Enhanced secondary ion emission with a bismuth cluster ion source
NASA Astrophysics Data System (ADS)
Nagy, G.; Walker, A. V.
2007-04-01
We have investigated the mechanism of secondary ion yield enhancement using Bin+ (n = 1-6) primary ions and three different samples - dl-phenylalanine, Irganox 1010 and polystyrene - adsorbed on Al, Si and Ag substrates. The largest changes in secondary ion yields are observed for Bi2+ and Bi3+ primary ions. Smaller increases in secondary ion yield are found using Bi4+, Bi5+ and Bi6+ projectiles. The secondary ion yield enhancements are generally larger on Si than on Al. Using Bin+ structures obtained from density functional theory (DFT) calculations we demonstrate that the yield enhancements cannot be explained by an increase in the deposited energy density (energy per area) into the substrate. These data show that the mechanism of Bin+ sputtering is very similar to that for Aun+ primary ion beams. When a polyatomic primary ion strikes the substrate, its constituent atoms are likely to remain near to each other, and so a substrate atom can be struck simultaneously by multiple atoms. The action of these multiple concerted impacts leads to efficient energy transfer in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two or three projectile atoms, which explains well the nonlinear yield enhancements observed going from Bi+ to Bi2+ to Bi3+.
Assessing Counter-Terrorism field training with multiple behavioral measures.
Spiker, V Alan; Johnston, Joan H
2013-09-01
Development of behavioral pattern recognition and analysis skills is an essential element of Counter-Terrorism training, particularly in the field. Three classes of behavioral measures were collected in an assessment of skill acquisition during a US Joint Forces Command-sponsored course consisting of Combat Tracking and Combat Profiling segments. Measures included situational judgment tests, structured behavioral observation checklists, and qualitative assessments of the emergence of specific knowledge-skills-attitudes over the course of the training. The paper describes statistical evidence across the three types of measures that indicate that behavioral pattern recognition and analysis skills were successfully acquired by most students (a mix of Army and civilian law enforcement personnel) during the field training exercises. Implications for broader training of these critical skills are also discussed. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
PULSION® HP: Tunable, High Productivity Plasma Doping
NASA Astrophysics Data System (ADS)
Felch, S. B.; Torregrosa, F.; Etienne, H.; Spiegel, Y.; Roux, L.; Turnbaugh, D.
2011-01-01
Plasma doping has been explored for many implant applications for over two decades and is now being used in semiconductor manufacturing for two applications: DRAM polysilicon counter-doping and contact doping. The PULSION HP is a new plasma doping tool developed by Ion Beam Services for high-volume production that enables customer control of the dominant mechanism—deposition, implant, or etch. The key features of this tool are a proprietary, remote RF plasma source that enables a high density plasma with low chamber pressure, resulting in a wide process space, and special chamber and wafer electrode designs that optimize doping uniformity.
1985-07-01
the reservoi r Iones and were connected t - to (-. m capacit t itted wit ’ el on diaphragms. These pumps 4, . fI Stir ear Sigure . i-pended se(ti ret’t...phases served as the control. Each treatment had 15 worms. The worms were fed prawn flakes (ADT-Prime, Aquatic Diet Technology, Brooklyn, N. Y .) in a...counter - -- 4 relay o switch solenoid valve -- ani; seawater mnf~ water wtr trap "- lo -t chamber,t a I mix"n chamber float switch distribution *chamber
Effect of Cerium(III) and ionic liquids on the clouding behavior of Triton X-100 micelles
NASA Astrophysics Data System (ADS)
Sen, Indrani Das; Negi, Charu; Jayaram, Radha V.
2018-04-01
In the present study, the effect of Ce(III) on the clouding behavior of Triton X-100 has been investigated in the presence and absence of imidazolium based ionic liquids of varying chain length and counter ions. Thermodynamic parameters of clouding were calculated to comprehend the underlying interactions between the surfactant and the additives. The cloud point (CP) of Triton X-100 was found to increase with the concentration of Ce(III) and that of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar solution1.
FPGA based demodulation of laser induced fluorescence in plasmas
NASA Astrophysics Data System (ADS)
Mattingly, Sean W.; Skiff, Fred
2018-04-01
We present a field programmable gate array (FPGA)-based system that counts photons from laser-induced fluorescence (LIF) on a laboratory plasma. This is accomplished with FPGA-based up/down counters that demodulate the data, giving a background-subtracted LIF signal stream that is updated with a new point as each laser amplitude modulation cycle completes. We demonstrate using the FPGA to modulate a laser at 1 MHz and demodulate the resulting LIF data stream. This data stream is used to calculate an LIF-based measurement sampled at 1 MHz of a plasma ion fluctuation spectrum.